

Reference number

ECMA-123:2009

© Ecma International 2009

ECMA-334
6th Edition / June 2022

C# Language

Specification

© Ecma International 2022 i

"COPYRIGHT NOTICE

© 2022 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(ii) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

C#

Language Specification
6th Edition, June 2022

 iii

Table of Contents

Foreword ... xix

Introduction .. xx

1. Scope ... 1

2. Normative references ... 3

3. Terms and definitions ... 5

4. General description ... 7

5. Conformance .. 9

6. Lexical structure .. 11

6.1 Programs ... 11
6.2 Grammars .. 11

6.2.1 General ... 11
6.2.2 Grammar notation ... 12
6.2.3 Lexical grammar ... 12
6.2.4 Syntactic grammar .. 12
6.2.5 Grammar ambiguities... 12

6.3 Lexical analysis ... 13
6.3.1 General ... 13
6.3.2 Line terminators ... 14
6.3.3 Comments ... 15
6.3.4 White space .. 17

6.4 Tokens .. 17
6.4.1 General ... 17
6.4.2 Unicode character escape sequences .. 17
6.4.3 Identifiers .. 18
6.4.4 Keywords... 21
6.4.5 Literals .. 22

6.4.5.1 General ... 22
6.4.5.2 Boolean literals ... 23
6.4.5.3 Integer literals ... 23
6.4.5.4 Real literals ... 24
6.4.5.5 Character literals .. 25
6.4.5.6 String literals ... 26
6.4.5.7 The null literal ... 28

6.4.6 Operators and punctuators .. 28
6.5 Pre-processing directives ... 29

6.5.1 General ... 29
6.5.2 Conditional compilation symbols .. 31
6.5.3 Pre-processing expressions ... 31
6.5.4 Definition directives ... 32
6.5.5 Conditional compilation directives .. 33
6.5.6 Diagnostic directives .. 36
6.5.7 Region directives .. 37
6.5.8 Line directives ... 37

ECMA-334

iv

6.5.9 Pragma directives .. 38

7. Basic concepts ... 41

7.1 Application startup .. 41
7.2 Application termination .. 42
7.3 Declarations ... 42
7.4 Members .. 46

7.4.1 General ... 46
7.4.2 Namespace members ... 46
7.4.3 Struct members .. 46
7.4.4 Enumeration members .. 46
7.4.5 Class members .. 47
7.4.6 Interface members .. 47
7.4.7 Array members ... 47
7.4.8 Delegate members ... 47

7.5 Member access .. 47
7.5.1 General ... 47
7.5.2 Declared accessibility ... 47
7.5.3 Accessibility domains ... 48
7.5.4 Protected access ... 51
7.5.5 Accessibility constraints ... 53

7.6 Signatures and overloading ... 54
7.7 Scopes ... 56

7.7.1 General ... 56
7.7.2 Name hiding ... 59

7.7.2.1 General ... 59
7.7.2.2 Hiding through nesting .. 59
7.7.2.3 Hiding through inheritance ... 60

7.8 Namespace and type names .. 61
7.8.1 General ... 61
7.8.2 Unqualified names ... 64
7.8.3 Fully qualified names ... 64

7.9 Automatic memory management .. 65
7.10 Execution order .. 68

8. Types .. 69

8.1 General ... 69
8.2 Reference types... 69

8.2.1 General ... 69
8.2.2 Class types ... 70
8.2.3 The object type .. 71
8.2.4 The dynamic type ... 71
8.2.5 The string type .. 71
8.2.6 Interface types ... 71
8.2.7 Array types ... 71
8.2.8 Delegate types ... 71

8.3 Value types .. 72
8.3.1 General ... 72
8.3.2 The System.ValueType type .. 73
8.3.3 Default constructors ... 73

Table of Contents

v

8.3.4 Struct types ... 74
8.3.5 Simple types ... 74
8.3.6 Integral types ... 75
8.3.7 Floating-point types .. 76
8.3.8 The Decimal type .. 77
8.3.9 The Bool type ... 78
8.3.10 Enumeration types ... 78
8.3.11 Nullable value types ... 78
8.3.12 Boxing and unboxing ... 79

8.4 Constructed types .. 79
8.4.1 General ... 79
8.4.2 Type arguments .. 80
8.4.3 Open and closed types ... 80
8.4.4 Bound and unbound types ... 81
8.4.5 Satisfying constraints ... 81

8.5 Type parameters .. 82
8.6 Expression tree types ... 83
8.7 The dynamic type ... 84
8.8 Unmanaged types ... 84

9. Variables ... 87

9.1 General ... 87
9.2 Variable categories .. 87

9.2.1 General ... 87
9.2.2 Static variables .. 87
9.2.3 Instance variables .. 88

9.2.3.1 General ... 88
9.2.3.2 Instance variables in classes ... 88
9.2.3.3 Instance variables in structs ... 88

9.2.4 Array elements .. 88
9.2.5 Value parameters ... 88
9.2.6 Reference parameters .. 88
9.2.7 Output parameters .. 89
9.2.8 Local variables... 89

9.3 Default values .. 90
9.4 Definite assignment .. 91

9.4.1 General ... 91
9.4.2 Initially assigned variables .. 92
9.4.3 Initially unassigned variables ... 92
9.4.4 Precise rules for determining definite assignment .. 92

9.4.4.1 General ... 92
9.4.4.2 General rules for statements ... 93
9.4.4.3 Block statements, checked, and unchecked statements .. 93
9.4.4.4 Expression statements... 93
9.4.4.5 Declaration statements.. 93
9.4.4.6 If statements .. 94
9.4.4.7 Switch statements.. 94
9.4.4.8 While statements ... 94
9.4.4.9 Do statements .. 94
9.4.4.10 For statements .. 95

ECMA-334

vi

9.4.4.11 Break, continue, and goto statements .. 95
9.4.4.12 Throw statements ... 95
9.4.4.13 Return statements .. 95
9.4.4.14 Try-catch statements ... 96
9.4.4.15 Try-finally statements ... 96
9.4.4.16 Try-catch-finally statements .. 96
9.4.4.17 Foreach statements .. 97
9.4.4.18 Using statements ... 98
9.4.4.19 Lock statements ... 98
9.4.4.20 Yield statements .. 98
9.4.4.21 General rules for constant expressions .. 98
9.4.4.22 General rules for simple expressions .. 99
9.4.4.23 General rules for expressions with embedded expressions .. 99
9.4.4.24 Invocation expressions and object creation expressions ... 99
9.4.4.25 Simple assignment expressions ... 100
9.4.4.26 && expressions ... 101
9.4.4.27 || expressions ... 102
9.4.4.28 ! expressions ... 103
9.4.4.29 ?? expressions .. 103
9.4.4.30 ?: expressions ... 103
9.4.4.31 Anonymous functions ... 104

9.5 Variable references ... 105
9.6 Atomicity of variable references .. 105

10. Conversions ... 107

10.1 General ... 107
10.2 Implicit conversions ... 107

10.2.1 General .. 107
10.2.2 Identity conversion ... 108
10.2.3 Implicit numeric conversions ... 108
10.2.4 Implicit enumeration conversions .. 109
10.2.5 Implicit interpolated string conversions .. 109
10.2.6 Implicit nullable conversions .. 109
10.2.7 Null literal conversions .. 109
10.2.8 Implicit reference conversions ... 109
10.2.9 Boxing conversions ... 110
10.2.10 Implicit dynamic conversions .. 112
10.2.11 Implicit constant expression conversions ... 112
10.2.12 Implicit conversions involving type parameters .. 113
10.2.13 User-defined implicit conversions ... 114
10.2.14 Anonymous function conversions and method group conversions ... 114

10.3 Explicit conversions ... 114
10.3.1 General .. 114
10.3.2 Explicit numeric conversions .. 114
10.3.3 Explicit enumeration conversions .. 116
10.3.4 Explicit nullable conversions .. 117
10.3.5 Explicit reference conversions ... 117
10.3.6 Unboxing conversions .. 118
10.3.7 Explicit dynamic conversions ... 119
10.3.8 Explicit conversions involving type parameters ... 119

Table of Contents

vii

10.3.9 User-defined explicit conversions ... 121
10.4 Standard conversions .. 121

10.4.1 General .. 121
10.4.2 Standard implicit conversions .. 121
10.4.3 Standard explicit conversions ... 121

10.5 User-defined conversions .. 122
10.5.1 General .. 122
10.5.2 Permitted user-defined conversions .. 122
10.5.3 Evaluation of user-defined conversions ... 122
10.5.4 User-defined implicit conversions .. 123
10.5.5 User-defined explicit conversions ... 124

10.6 Conversions involving nullable types ... 125
10.6.1 Nullable Conversions .. 125
10.6.2 Lifted conversions .. 126

10.7 Anonymous function conversions .. 126
10.7.1 General .. 126
10.7.2 Evaluation of anonymous function conversions to delegate types ... 128
10.7.3 Evaluation of lambda expression conversions to expression tree types .. 129

10.8 Method group conversions .. 129

11. Expressions ... 133

11.1 General ... 133
11.2 Expression classifications .. 133

11.2.1 General .. 133
11.2.2 Values of expressions ... 134

11.3 Static and Dynamic Binding .. 134
11.3.1 General .. 134
11.3.2 Binding-time ... 135
11.3.3 Dynamic binding ... 135
11.3.4 Types of subexpressions ... 136

11.4 Operators .. 136
11.4.1 General .. 136
11.4.2 Operator precedence and associativity ... 137
11.4.3 Operator overloading ... 138
11.4.4 Unary operator overload resolution .. 139
11.4.5 Binary operator overload resolution ... 139
11.4.6 Candidate user-defined operators .. 140
11.4.7 Numeric promotions ... 140

11.4.7.1 General .. 140
11.4.7.2 Unary numeric promotions .. 141
11.4.7.3 Binary numeric promotions .. 141

11.4.8 Lifted operators .. 142
11.5 Member lookup .. 143

11.5.1 General .. 143
11.5.2 Base types .. 144

11.6 Function members .. 144
11.6.1 General .. 144
11.6.2 Argument lists ... 147

11.6.2.1 General .. 147
11.6.2.2 Corresponding parameters .. 148

ECMA-334

viii

11.6.2.3 Run-time evaluation of argument lists .. 149
11.6.3 Type inference ... 151

11.6.3.1 General .. 151
11.6.3.2 The first phase ... 152
11.6.3.3 The second phase ... 152
11.6.3.4 Input types .. 152
11.6.3.5 Output types ... 152
11.6.3.6 Dependence .. 153
11.6.3.7 Output type inferences... 153
11.6.3.8 Explicit parameter type inferences ... 153
11.6.3.9 Exact inferences .. 153
11.6.3.10 Lower-bound inferences .. 153
11.6.3.11 Upper-bound inferences ... 154
11.6.3.12 Fixing .. 155
11.6.3.13 Inferred return type ... 155
11.6.3.14 Type inference for conversion of method groups .. 156
11.6.3.15 Finding the best common type of a set of expressions .. 157

11.6.4 Overload resolution ... 157
11.6.4.1 General .. 157
11.6.4.2 Applicable function member ... 158
11.6.4.3 Better function member .. 158
11.6.4.4 Better conversion from expression .. 159
11.6.4.5 Exactly matching expression ... 160
11.6.4.6 Better conversion target ... 160
11.6.4.7 Overloading in generic classes.. 160

11.6.5 Compile-time checking of dynamic member invocation ... 161
11.6.6 Function member invocation .. 162

11.6.6.1 General .. 162
11.6.6.2 Invocations on boxed instances ... 163

11.7 Primary expressions .. 163
11.7.1 General .. 163
11.7.2 Literals .. 164
11.7.3 Interpolated string expressions ... 164
11.7.4 Simple names ... 169
11.7.5 Parenthesized expressions ... 171
11.7.6 Member access .. 171

11.7.6.1 General .. 171
11.7.6.2 Identical simple names and type names ... 173

11.7.7 Null Conditional Member Access ... 174
11.7.8 Invocation expressions .. 174

11.7.8.1 General .. 174
11.7.8.2 Method invocations ... 175
11.7.8.3 Extension method invocations ... 177
11.7.8.4 Delegate invocations ... 179

11.7.9 Null Conditional Invocation Expression ... 180
11.7.10 Element access .. 180

11.7.10.1 General ... 180
11.7.10.2 Array access ... 181
11.7.10.3 Indexer access ... 181

11.7.11 Null Conditional Element Access... 182

Table of Contents

ix

11.7.12 This access .. 183
11.7.13 Base access ... 184
11.7.14 Postfix increment and decrement operators ... 184
11.7.15 The new operator .. 186

11.7.15.1 General ... 186
11.7.15.2 Object creation expressions .. 186
11.7.15.3 Object initializers ... 187
11.7.15.4 Collection initializers ... 190
11.7.15.5 Array creation expressions ... 191
11.7.15.6 Delegate creation expressions ... 194
11.7.15.7 Anonymous object creation expressions ... 195

11.7.16 The typeof operator .. 197
11.7.17 The sizeof operator ... 199
11.7.18 The checked and unchecked operators .. 200
11.7.19 Default value expressions .. 202
11.7.20 Nameof expressions ... 202
11.7.21 Anonymous method expressions .. 204

11.8 Unary operators ... 204
11.8.1 General .. 204
11.8.2 Unary plus operator .. 205
11.8.3 Unary minus operator .. 205
11.8.4 Logical negation operator ... 206
11.8.5 Bitwise complement operator .. 206
11.8.6 Prefix increment and decrement operators .. 206
11.8.7 Cast expressions ... 208
11.8.8 Await expressions .. 208

11.8.8.1 General .. 208
11.8.8.2 Awaitable expressions ... 209
11.8.8.3 Classification of await expressions ... 209
11.8.8.4 Run-time evaluation of await expressions .. 209

11.9 Arithmetic operators ... 210
11.9.1 General .. 210
11.9.2 Multiplication operator .. 210
11.9.3 Division operator.. 211
11.9.4 Remainder operator .. 213
11.9.5 Addition operator ... 214
11.9.6 Subtraction operator .. 216

11.10 Shift operators ... 218
11.11 Relational and type-testing operators ... 219

11.11.1 General ... 219
11.11.2 Integer comparison operators ... 220
11.11.3 Floating-point comparison operators ... 221
11.11.4 Decimal comparison operators .. 222
11.11.5 Boolean equality operators ... 222
11.11.6 Enumeration comparison operators ... 222
11.11.7 Reference type equality operators ... 223
11.11.8 String equality operators.. 225
11.11.9 Delegate equality operators .. 225
11.11.10 Equality operators between nullable value types and the null literal .. 226
11.11.11 The is operator ... 226

ECMA-334

x

11.11.12 The as operator .. 227
11.12 Logical operators .. 228

11.12.1 General ... 228
11.12.2 Integer logical operators .. 229
11.12.3 Enumeration logical operators .. 229
11.12.4 Boolean logical operators... 229
11.12.5 Nullable Boolean & and | operators ... 230

11.13 Conditional logical operators... 230
11.13.1 General ... 230
11.13.2 Boolean conditional logical operators .. 231
11.13.3 User-defined conditional logical operators .. 231

11.14 The null coalescing operator .. 232
11.15 Conditional operator ... 233
11.16 Anonymous function expressions .. 234

11.16.1 General ... 234
11.16.2 Anonymous function signatures ... 236
11.16.3 Anonymous function bodies ... 237
11.16.4 Overload resolution .. 237
11.16.5 Anonymous functions and dynamic binding .. 238
11.16.6 Outer variables ... 238

11.16.6.1 General ... 238
11.16.6.2 Captured outer variables .. 238
11.16.6.3 Instantiation of local variables ... 239

11.16.7 Evaluation of anonymous function expressions ... 242
11.16.8 Implementation Example ... 242

11.17 Query expressions .. 246
11.17.1 General ... 246
11.17.2 Ambiguities in query expressions .. 247
11.17.3 Query expression translation ... 247

11.17.3.1 General ... 247
11.17.3.2 select and group … by clauses with continuations .. 248
11.17.3.3 Explicit range variable types .. 248
11.17.3.4 Degenerate query expressions... 249
11.17.3.5 From, let, where, join and orderby clauses ... 250
11.17.3.6 Select clauses ... 253
11.17.3.7 Group clauses .. 254
11.17.3.8 Transparent identifiers ... 254

11.17.4 The query-expression pattern .. 256
11.18 Assignment operators ... 257

11.18.1 General ... 257
11.18.2 Simple assignment .. 258
11.18.3 Compound assignment .. 260
11.18.4 Event assignment .. 261

11.19 Expression ... 261
11.20 Constant expressions .. 262
11.21 Boolean expressions .. 263

12. Statements ... 265

12.1 General ... 265
12.2 End points and reachability .. 266

Table of Contents

xi

12.3 Blocks ... 267
12.3.1 General .. 267
12.3.2 Statement lists ... 268

12.4 The empty statement ... 268
12.5 Labeled statements ... 269
12.6 Declaration statements ... 270

12.6.1 General .. 270
12.6.2 Local variable declarations .. 270
12.6.3 Local constant declarations ... 272

12.7 Expression statements .. 273
12.8 Selection statements .. 273

12.8.1 General .. 273
12.8.2 The if statement .. 273
12.8.3 The switch statement ... 274

12.9 Iteration statements ... 278
12.9.1 General .. 278
12.9.2 The while statement .. 278
12.9.3 The do statement .. 279
12.9.4 The for statement ... 279
12.9.5 The foreach statement ... 281

12.10 Jump statements ... 285
12.10.1 General ... 285
12.10.2 The break statement .. 286
12.10.3 The continue statement .. 286
12.10.4 The goto statement ... 287
12.10.5 The return statement ... 288
12.10.6 The throw statement .. 289

12.11 The try statement ... 290
12.12 The checked and unchecked statements .. 294
12.13 The lock statement ... 295
12.14 The using statement .. 295
12.15 The yield statement ... 298

13. Namespaces ... 301

13.1 General ... 301
13.2 Compilation units .. 301
13.3 Namespace declarations ... 302
13.4 Extern alias directives ... 303
13.5 Using directives .. 304

13.5.1 General .. 304
13.5.2 Using alias directives .. 304
13.5.3 Using namespace directives ... 309
13.5.4 Using static directives .. 312

13.6 Namespace member declarations .. 314
13.7 Type declarations .. 314
13.8 Qualified alias member ... 315

13.8.1 General .. 315
13.8.2 Uniqueness of aliases .. 317

14. Classes ... 319

ECMA-334

xii

14.1 General ... 319
14.2 Class declarations .. 319

14.2.1 General .. 319
14.2.2 Class modifiers .. 319

14.2.2.1 General .. 319
14.2.2.2 Abstract classes ... 320
14.2.2.3 Sealed classes ... 321
14.2.2.4 Static classes ... 321

14.2.2.4.1 General.. 321
14.2.2.4.2 Referencing static class types ... 322

14.2.3 Type parameters .. 322
14.2.4 Class base specification.. 322

14.2.4.1 General .. 322
14.2.4.2 Base classes .. 323
14.2.4.3 Interface implementations ... 325

14.2.5 Type parameter constraints .. 326
14.2.6 Class body .. 331
14.2.7 Partial declarations ... 331

14.3 Class members .. 333
14.3.1 General .. 333
14.3.2 The instance type ... 335
14.3.3 Members of constructed types ... 335
14.3.4 Inheritance .. 336
14.3.5 The new modifier ... 337
14.3.6 Access modifiers ... 338
14.3.7 Constituent types ... 338
14.3.8 Static and instance members ... 338
14.3.9 Nested types ... 339

14.3.9.1 General .. 339
14.3.9.2 Fully qualified name .. 340
14.3.9.3 Declared accessibility ... 340
14.3.9.4 Hiding .. 340
14.3.9.5 this access .. 341
14.3.9.6 Access to private and protected members of the containing type... 342
14.3.9.7 Nested types in generic classes .. 343

14.3.10 Reserved member names ... 344
14.3.10.1 General ... 344
14.3.10.2 Member names reserved for properties .. 344
14.3.10.3 Member names reserved for events .. 345
14.3.10.4 Member names reserved for indexers .. 345
14.3.10.5 Member names reserved for finalizers ... 346

14.4 Constants .. 346
14.5 Fields .. 348

14.5.1 General .. 348
14.5.2 Static and instance fields ... 349
14.5.3 Readonly fields .. 349

14.5.3.1 General .. 349
14.5.3.2 Using static readonly fields for constants .. 349
14.5.3.3 Versioning of constants and static readonly fields ... 350

14.5.4 Volatile fields .. 351

Table of Contents

xiii

14.5.5 Field initialization .. 352
14.5.6 Variable initializers ... 353

14.5.6.1 General .. 353
14.5.6.2 Static field initialization ... 354
14.5.6.3 Instance field initialization ... 355

14.6 Methods ... 356
14.6.1 General .. 356
14.6.2 Method parameters ... 358

14.6.2.1 General .. 358
14.6.2.2 Value parameters ... 360
14.6.2.3 Reference parameters .. 361
14.6.2.4 Output parameters .. 362
14.6.2.5 Parameter arrays.. 363

14.6.3 Static and instance methods .. 366
14.6.4 Virtual methods .. 366
14.6.5 Override methods .. 369
14.6.6 Sealed methods ... 371
14.6.7 Abstract methods ... 372
14.6.8 External methods ... 373
14.6.9 Partial methods ... 374
14.6.10 Extension methods.. 377
14.6.11 Method body .. 378

14.7 Properties ... 379
14.7.1 General .. 379
14.7.2 Static and instance properties .. 380
14.7.3 Accessors ... 381
14.7.4 Automatically implemented properties .. 387
14.7.5 Accessibility .. 388
14.7.6 Virtual, sealed, override, and abstract accessors .. 389

14.8 Events ... 392
14.8.1 General .. 392
14.8.2 Field-like events .. 394
14.8.3 Event accessors ... 395
14.8.4 Static and instance events... 397
14.8.5 Virtual, sealed, override, and abstract accessors .. 397

14.9 Indexers ... 398
14.10 Operators ... 402

14.10.1 General ... 402
14.10.2 Unary operators ... 404
14.10.3 Binary operators .. 405
14.10.4 Conversion operators .. 405

14.11 Instance constructors ... 408
14.11.1 General ... 408
14.11.2 Constructor initializers ... 409
14.11.3 Instance variable initializers ... 410
14.11.4 Constructor execution ... 410
14.11.5 Default constructors ... 413

14.12 Static constructors ... 413
14.13 Finalizers .. 416
14.14 Iterators .. 418

ECMA-334

xiv

14.14.1 General ... 418
14.14.2 Enumerator interfaces... 418
14.14.3 Enumerable interfaces .. 419
14.14.4 Yield type .. 419
14.14.5 Enumerator objects .. 419

14.14.5.1 General ... 419
14.14.5.2 The MoveNext method .. 419
14.14.5.3 The Current property... 421
14.14.5.4 The Dispose method ... 421

14.14.6 Enumerable objects .. 421
14.14.6.1 General ... 421
14.14.6.2 The GetEnumerator method ... 422

14.15 Async Functions .. 422
14.15.1 General ... 422
14.15.2 Evaluation of a task-returning async function .. 423
14.15.3 Evaluation of a void-returning async function .. 423

15. Structs ... 425

15.1 General ... 425
15.2 Struct declarations .. 425

15.2.1 General .. 425
15.2.2 Struct modifiers .. 425
15.2.3 Partial modifier ... 426
15.2.4 Struct interfaces .. 426
15.2.5 Struct body .. 426

15.3 Struct members .. 426
15.4 Class and struct differences .. 427

15.4.1 General .. 427
15.4.2 Value semantics .. 427
15.4.3 Inheritance .. 428
15.4.4 Assignment ... 429
15.4.5 Default values .. 429
15.4.6 Boxing and unboxing .. 430
15.4.7 Meaning of this .. 430
15.4.8 Field initializers .. 432
15.4.9 Constructors ... 432
15.4.10 Static constructors .. 433
15.4.11 Automatically implemented properties ... 434

16. Arrays .. 435

16.1 General ... 435
16.2 Array types ... 435

16.2.1 General .. 435
16.2.2 The System.Array type ... 436
16.2.3 Arrays and the generic collection interfaces .. 436

16.3 Array creation ... 437
16.4 Array element access ... 437
16.5 Array members .. 438
16.6 Array covariance .. 438
16.7 Array initializers .. 439

Table of Contents

xv

17. Interfaces ... 441

17.1 General ... 441
17.2 Interface declarations .. 441

17.2.1 General .. 441
17.2.2 Interface modifiers .. 441
17.2.3 Variant type parameter lists .. 442

17.2.3.1 General .. 442
17.2.3.2 Variance safety .. 442
17.2.3.3 Variance conversion .. 443

17.2.4 Base interfaces... 443
17.3 Interface body ... 445
17.4 Interface members .. 445

17.4.1 General .. 445
17.4.2 Interface methods .. 446
17.4.3 Interface properties .. 447
17.4.4 Interface events ... 447
17.4.5 Interface indexers .. 447
17.4.6 Interface member access ... 448

17.5 Qualified interface member names .. 450
17.6 Interface implementations .. 451

17.6.1 General .. 451
17.6.2 Explicit interface member implementations .. 452
17.6.3 Uniqueness of implemented interfaces ... 454
17.6.4 Implementation of generic methods .. 456
17.6.5 Interface mapping .. 457
17.6.6 Interface implementation inheritance .. 460
17.6.7 Interface re-implementation ... 462
17.6.8 Abstract classes and interfaces ... 463

18. Enums .. 465

18.1 General ... 465
18.2 Enum declarations .. 465
18.3 Enum modifiers .. 466
18.4 Enum members .. 466
18.5 The System.Enum type .. 469
18.6 Enum values and operations .. 469

19. Delegates .. 471

19.1 General ... 471
19.2 Delegate declarations .. 471
19.3 Delegate members .. 472
19.4 Delegate compatibility .. 473
19.5 Delegate instantiation ... 474
19.6 Delegate invocation .. 476

20. Exceptions .. 479

20.1 General ... 479
20.2 Causes of exceptions .. 479
20.3 The System.Exception class .. 479
20.4 How exceptions are handled .. 479

ECMA-334

xvi

20.5 Common exception classes .. 480

21. Attributes ... 481

21.1 General ... 481
21.2 Attribute classes .. 481

21.2.1 General .. 481
21.2.2 Attribute usage .. 481
21.2.3 Positional and named parameters .. 483
21.2.4 Attribute parameter types .. 484

21.3 Attribute specification ... 484
21.4 Attribute instances ... 490

21.4.1 General .. 490
21.4.2 Compilation of an attribute .. 491
21.4.3 Run-time retrieval of an attribute instance ... 491

21.5 Reserved attributes .. 492
21.5.1 General .. 492
21.5.2 The AttributeUsage attribute .. 492
21.5.3 The Conditional attribute .. 493

21.5.3.1 General .. 493
21.5.3.2 Conditional methods ... 493
21.5.3.3 Conditional attribute classes ... 495

21.5.4 The Obsolete attribute ... 496
21.5.5 Caller-info attributes ... 497

21.5.5.1 General .. 497
21.5.5.2 The CallerLineNumber attribute ... 498
21.5.5.3 The CallerFilePath attribute .. 498
21.5.5.4 The CallerMemberName attribute .. 499

21.6 Attributes for interoperation ... 499

22. Unsafe code ... 501

22.1 General ... 501
22.2 Unsafe contexts .. 501
22.3 Pointer types ... 503
22.4 Fixed and moveable variables .. 506
22.5 Pointer conversions ... 506

22.5.1 General .. 506
22.5.2 Pointer arrays .. 508

22.6 Pointers in expressions ... 509
22.6.1 General .. 509
22.6.2 Pointer indirection ... 509
22.6.3 Pointer member access .. 509
22.6.4 Pointer element access .. 510
22.6.5 The address-of operator .. 511
22.6.6 Pointer increment and decrement .. 512
22.6.7 Pointer arithmetic .. 513
22.6.8 Pointer comparison ... 514
22.6.9 The sizeof operator .. 514

22.7 The fixed statement .. 514
22.8 Fixed-size buffers .. 518

22.8.1 General .. 518

Table of Contents

xvii

22.8.2 Fixed-size buffer declarations ... 518
22.8.3 Fixed-size buffers in expressions .. 519
22.8.4 Definite assignment checking ... 521

22.9 Stack allocation .. 521

A. Grammar ... 523

A.1 General ... 523
A.2 Lexical grammar... 523
A.3 Syntactic grammar .. 532
A.4 Grammar extensions for unsafe code .. 566

B. Portability issues ... 569

B.1 General ... 569
B.2 Undefined behavior .. 569
B.3 Implementation-defined behavior ... 569
B.4 Unspecified behavior.. 570
B.5 Other Issues.. 571

C. Standard library ... 573

C.1 General ... 573
C.2 Standard Library Types defined in ISO/IEC 23271 ... 573
C.3 Standard Library Types not defined in ISO/IEC 23271 ... 580
C.4 Format Specifications ... 581
C.5 Library Type Abbreviations ... 588

D. Documentation comments ... 591

D.1 General ... 591
D.2 Introduction ... 591
D.3 Recommended tags ... 593

D.3.1 General .. 593
D.3.2 <c> .. 593
D.3.3 <code> ... 594
D.3.4 <example> ... 594
D.3.5 <exception> .. 594
D.3.6 <include> ... 595
D.3.7 <list> .. 596
D.3.8 <para> ... 597
D.3.9 <param> ... 597
D.3.10 <paramref> ... 598
D.3.11 <permission> ... 598
D.3.12 <remarks>... 598
D.3.13 <returns> .. 599
D.3.14 <see> ... 599
D.3.15 <seealso> ... 600
D.3.16 <summary> .. 600
D.3.17 <typeparam> ... 601
D.3.18 <typeparamref>.. 601
D.3.19 <value> ... 601

D.4 Processing the documentation file ... 602
D.4.1 General .. 602
D.4.2 ID string format ... 602

ECMA-334

xviii

D.4.3 ID string examples ... 603
D.5 An example ... 607

D.5.1 C# source code... 607
D.5.2 Resulting XML .. 610

E. Bibliography .. 615

Foreword

xix

Foreword

This specification replaces ECMA-334:2017. Changes from the previous edition include the addition of the
following:

• Automatically implemented property initializers

• await in catch and finally blocks

• Exception filters

• Expression-bodied function members

• Extension Add methods in collection initializers

• Improved overload resolution

• Initialization of an accessible indexer

• Initialization of associative collections using indexers

• Interpolated strings

• nameof operator

• Null-conditional access operators ?. and ?[]

• Read-only auto-properties

• Relaxed rules for auto-properties

• using static

All grammar is now expressed using ANTLR notation.

xx

Introduction

This specification is based on a submission from Hewlett-Packard, Intel, and Microsoft, that described a
language called C#, which was developed within Microsoft. The principal inventors of this language were
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed implementation of C#
was released by Microsoft in July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) [later renamed to TC49] Task Group 2 (TG2) was formed in
September 2000, to produce a standard for C#. Another Task Group, TG3, was also formed at that time to
produce a standard for a library and execution environment called Common Language Infrastructure
(CLI). (CLI is based on a subset of the .NET Framework.) Although Microsoft’s implementation of C# relies
on CLI for library and run-time support, other implementations of C# need not, provided they support an
alternate way of getting at the minimum CLI features required by this C# standard (see Annex C).

As the definition of C# evolved, the goals used in its design were as follows:

• C# is intended to be a simple, modern, general-purpose, object-oriented programming language.

• The language, and implementations thereof, should provide support for software engineering
principles such as strong type checking, array bounds checking, detection of attempts to use
uninitialized variables, and automatic garbage collection. Software robustness, durability, and
programmer productivity are important.

• The language is intended for use in developing software components suitable for deployment in
distributed environments.

• Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

• Support for internationalization is very important.

• C# is intended to be suitable for writing applications for both hosted and embedded systems,
ranging from the very large that use sophisticated operating systems, down to the very small having
dedicated functions.

• Although C# applications are intended to be economical with regard to memory and processing
power requirements, the language was not intended to compete directly on performance and size
with C or assembly language.

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the NUMBER SIGN #
(U+0023).

This Ecma Standard was developed by Technical Committee 49 and was adopted by the General Assembly
of June 2022.

Chapter 1 Scope

1

1. Scope

This specification describes the form and establishes the interpretation of programs written in the
C# programming language. It describes

• The representation of C# programs;

• The syntax and constraints of the C# language;

• The semantic rules for interpreting C# programs;

• The restrictions and limits imposed by a conforming implementation of C#.

This specification does not describe

• The mechanism by which C# programs are transformed for use by a data-processing system;

• The mechanism by which C# applications are invoked for use by a data-processing system;

• The mechanism by which input data are transformed for use by a C# application;

• The mechanism by which output data are transformed after being produced by a C# application;

• The size or complexity of a program and its data that will exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

• All minimal requirements of a data-processing system that is capable of supporting a conforming
implementation

Chapter 2 Normative references

3

2. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on this specification are
encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid specifications.

ISO/IEC 23271:2012, Common Language Infrastructure (CLI), Partition IV: Base Class Library (BCL),
Extended Numerics Library, and Extended Array Library.

ISO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

ISO/IEC 2382, Information technology — Vocabulary.

ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic

The Unicode Consortium. The Unicode Standard, https://www.unicode.org/standard/standard.html

Chapter 3 Terms and definitions

5

3. Terms and definitions

For the purposes of this specification, the following definitions apply. Other terms are defined where they
appear in italic type or on the left side of a syntax rule. Terms explicitly defined in this specification are
not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this
specification are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in this
specification are to be interpreted according to ISO 80000-2.

3.1
application
assembly with an entry point

3.2
application domain
entity that enables application isolation by acting as a container for application state

3.3
argument
expression in the comma-separated list bounded by the parentheses in a method or instance constructor
call expression or bounded by the square brackets in an element access expression

3.4
assembly
one or more files output by the compiler as a result of program compilation

3.5
behavior
external appearance or action

3.6
behavior, implementation-defined
unspecified behavior where each implementation documents how the choice is made

3.7
behavior, undefined
behavior, upon use of a non-portable or erroneous construct or of erroneous data, for which this
specification imposes no requirements

3.8
behavior, unspecified
behavior where this specification provides two or more possibilities and imposes no further
requirements on which is chosen in any instance

3.9
character (when used without a qualifier)
In the context of a non-Unicode encoding, the meaning of character in that encoding; or

In the context of a character literal or a value of type char, a Unicode code point in the range U+0000 to
U+FFFF (including surrogate code points), that is a UTF-16 code unit; or

Otherwise, a Unicode code point

ECMA-334

6

3.10
class library
assembly that can be used by other assemblies

3.11
compilation unit
ordered sequence of Unicode characters that is input to a compiler

3.12
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.13
error, compile-time
error reported during program translation

3.14
exception
exceptional condition reported during program execution

3.15
implementation
particular set of software (running in a particular translation environment under particular control
options) that performs translation of programs for, and supports execution of methods in, a particular
execution environment

3.16
namespace
logical organizational system grouping related program elements

3.17
parameter
variable declared as part of a method, instance constructor, operator, or indexer definition, which
acquires a value on entry to that function member

3.18
program
one or more compilation units that are presented to the compiler and are run or executed by an execution
environment

3.19
unsafe code
code that is permitted to perform such lower-level operations as declaring and operating on pointers,
performing conversions between pointers and integral types, and taking the address of variables

3.20
warning, compile-time
informational message reported during program translation, which is intended to identify a potentially
questionable usage of a program element

Chapter 4 General description

7

4. General description

This text is informative.

This specification is intended to be used by implementers, academics, and application programmers. As
such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in
a formal language specification.

This standard is divided into the following subdivisions: front matter; language syntax, constraints, and
semantics; and annexes.

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this specification.

End of informative text.

Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative” and “End of
informative text”.

2. Example: The following example … code fragment, possibly with some narrative … end example
The Example: and end example markers are in the same paragraph for single paragraph examples. If
an example spans multiple paragraphs, the end example marker should be its own paragraph.

3. Note: narrative … end note
The Note: and end note markers are in the same paragraph for single paragraph notes. If a note
spans multiple paragraphs, the end note marker should be its own paragraph.

All text not marked as being informative is normative.

Chapter 5 Conformance

9

5. Conformance

Conformance is of interest to the following audiences:

• Those designing, implementing, or maintaining C# implementations.

• Governmental or commercial entities wishing to procure C# implementations.

• Testing organizations wishing to provide a C# conformance test suite.

• Programmers wishing to port code from one C# implementation to another.

• Educators wishing to teach Standard C#.

• Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this specification is aimed at specifying the
characteristics that make C# implementations and C# programs conforming ones.

The text in this specification that specifies requirements is considered normative. All other text in this
specification is informative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken into required and conditional categories. Conditionally
normative text specifies a feature and its requirements where the feature is optional. However, if that
feature is provided, its syntax and semantics shall be exactly as specified.

Undefined behavior is indicated in this specification only by the words ‘undefined behavior.’

A strictly conforming program shall use only those features of the language specified in this
specification as being required. (This means that a strictly conforming program cannot use any
conditionally normative feature.) It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior.

A conforming implementation of C# shall accept any strictly conforming program.

A conforming implementation of C# shall provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in the normative (but not the conditionally
normative) parts in this specification.

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard.
Conforming implementations shall accept compilation units encoded with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a #error
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produce at least one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirement is marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values, objects, properties,
and methods beyond those described in this specification, provided they do not alter the behavior of any
strictly conforming program. Conforming implementations are required to diagnose programs that use
extensions that are ill formed according to this specification. Having done so, however, they can compile
and execute such programs. (The ability to have extensions implies that a conforming implementation
reserves no identifiers other than those explicitly reserved in this specification.)

ECMA-334

10

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex C. This library is
included by reference in this specification.

A conforming program is one that is acceptable to a conforming implementation. (Such a program is
permitted to contain extensions or conditionally normative features.)

Chapter 6 Lexical structure

11

6. Lexical structure

6.1 Programs
A C# program consists of one or more source files, known formally as compilation units (§13.2).
Although a compilation unit might have a one-to-one correspondence with a file in a file system, such
correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme
into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.

3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode compilation units encoded with the UTF-8 encoding
form (as defined by the Unicode standard), and transform them into a sequence of Unicode characters.
Implementations can choose to accept and transform additional character encoding schemes (such as
UTF-16, UTF-32, or non-Unicode character mappings).

Note: The handling of the Unicode NULL character (U+0000) is implementation-specific. It is
strongly recommended that developers avoid using this character in their source code, for the sake
of both portability and readability. When the character is required within a character or string
literal, the escape sequences \0 or \u0000 may be used instead. end note

Note: It is beyond the scope of this standard to define how a file using a character representation
other than Unicode might be transformed into a sequence of Unicode characters. During such
transformation, however, it is recommended that the usual line-separating character (or sequence)
in the other character set be translated to the two-character sequence consisting of the Unicode
carriage-return character (U+000D) followed by Unicode line-feed character (U+000A). For the
most part this transformation will have no visible effects; however, it will affect the interpretation of
verbatim string literal tokens (§6.4.5.6). The purpose of this recommendation is to allow a verbatim
string literal to produce the same character sequence when its compilation unit is moved between
systems that support differing non-Unicode character sets, in particular, those using differing
character sequences for line-separation. end note

6.2 Grammars

6.2.1 General

This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (§6.2.3) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (§6.2.4) defines how the
tokens resulting from the lexical grammar are combined to form C# programs.

All terminal characters are to be understood as the appropriate Unicode character from the range U+0020
to U+007F, as opposed to any similar-looking characters from other Unicode character ranges.

ECMA-334

12

6.2.2 Grammar notation

The lexical and syntactic grammars are presented in the ANTLR grammar tool’s Extended Backus-Naur
form.

While the ANTLR notation is used, this Standard does not present a complete ANTLR-ready “reference
grammar” for C#; writing a lexer and parser, either by hand or using a tool such as ANTLR, is outside the
scope of a language specification. With that qualification, this Standard attempts to minimize the gap
between the specified grammar and that required to build a lexer and parser in ANTLR.

ANTLR distinguishes between lexical and syntactic, termed parser by ANTLR, grammars in its notation by
starting lexical rules with an uppercase letter and parser rules with a lowercase letter.

Note: The C# lexical grammar (§6.2.3) and syntactic grammar (§6.2.4) are not in exact
correspondence with the ANTLR division into lexical and parser grammers. This small mismatch
means that some ANTLR parser rules are used when specifying the C# lexical grammar. end note

6.2.3 Lexical grammar

The lexical grammar of C# is presented in §6.3, §6.4, and §6.5. The terminal symbols of the lexical
grammar are the characters of the Unicode character set, and the lexical grammar specifies how
characters are combined to form tokens (§6.4), white space (§6.3.4), comments (§6.3.3), and pre-
processing directives (§6.5).

Many of the terminal symbols of the syntactic grammar are not defined explicitly as tokens in the lexical
grammar. Rather, advantage is taken of the ANTLR behavior that literal strings in the grammar are
extracted as implicit lexical tokens; this allows keywords, operators, etc. to be represented in the
grammar by their literal representation rather than a token name.

Every compilation unit in a C# program shall conform to the input production of the lexical grammar
(§6.3.1).

6.2.4 Syntactic grammar

The syntactic grammar of C# is presented in the clauses, subclauses, and annexes that follow this
subclause. The terminal symbols of the syntactic grammar are the tokens defined explicitly by the lexical
grammar and implicitly by literal strings in the grammar itself (§6.2.3). The syntactic grammar specifies
how tokens are combined to form C# programs.

Every compilation unit in a C# program shall conform to the compilation_unit production (§13.2) of the
syntactic grammar.

6.2.5 Grammar ambiguities

The productions for simple_name (§11.7.4) and member_access (§11.7.6) can give rise to ambiguities in
the grammar for expressions.

Example: The statement:

F(G<A, B>(7));

could be interpreted as a call to F with two arguments, G < A and B > (7). Alternatively, it could be
interpreted as a call to F with one argument, which is a call to a generic method G with two type
arguments and one regular argument.

end example

Chapter 6 Lexical structure

13

If a sequence of tokens can be parsed (in context) as a simple_name (§11.7.4), member_access (§11.7.6), or
pointer_member_access (§22.6.3) ending with a type_argument_list (§8.4.2), the token immediately
following the closing > token is examined. If it is one of

()] : ; , . ? == !=

then the type_argument_list is retained as part of the simple_name, member_access, or
pointer_member_access and any other possible parse of the sequence of tokens is discarded. Otherwise,
the type_argument_list is not considered part of the simple_name, member_access, or
pointer_member_access, even if there is no other possible parse of the sequence of tokens.

Note: These rules are not applied when parsing a type_argument_list in a namespace_or_type_name
(§7.8). end note

Example: The statement:

F(G<A, B>(7));

will, according to this rule, be interpreted as a call to F with one argument, which is a call to a
generic method G with two type arguments and one regular argument. The statements

F(G<A, B>7);
F(G<A, B>>7);

will each be interpreted as a call to F with two arguments. The statement

x = F<A> + y;

will be interpreted as a less-than operator, greater-than operator and unary-plus operator, as if the
statement had been written x = (F < A) > (+y), instead of as a simple_name with a
type_argument_list followed by a binary-plus operator. In the statement

x = y is C<T> && z;

the tokens C<T> are interpreted as a namespace_or_type_name with a type_argument_list due to
being on the right-hand side of the is operator (§11.11.1). Because C<T> parses as a
namespace_or_type_name, not a simple_name, member_access, or pointer_member_access, the above
rule does not apply, and it is considered to have a type_argument_list regardless of the token that
follows.

end example

6.3 Lexical analysis

6.3.1 General

For convenience, the lexical grammar defines and references the following named lexer tokens:

DEFAULT : 'default' ;
NULL : 'null' ;
TRUE : 'true' ;
FALSE : 'false' ;
ASTERISK : '*' ;
SLASH : '/' ;

Although these are lexer rules, these names are spelled in all-uppercase letters to distinguish them from
ordinary lexer rule names.

ECMA-334

14

Note: These convenience rules are exceptions to the usual practice of not providing explicit token
names for tokens defined by literal strings. end note

The input production defines the lexical structure of a C# compilation unit.

input
 : input_section?
 ;

input_section
 : input_section_part+
 ;

input_section_part
 : input_element* New_Line
 | PP_Directive
 ;

input_element
 : Whitespace
 | Comment
 | token
 ;

Note: The above grammar is described by ANTLR parsing rules, it defines the lexical structure of a
C# compilation unit and not lexical tokens. end note

Five basic elements make up the lexical structure of a C# compilation unit: Line terminators (§6.3.2),
white space (§6.3.4), comments (§6.3.3), tokens (§6.4), and pre-processing directives (§6.5). Of these
basic elements, only tokens are significant in the syntactic grammar of a C# program (§6.2.4).

The lexical processing of a C# compilation unit consists of reducing the file into a sequence of tokens that
becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to
separate tokens, and pre-processing directives can cause sections of the compilation unit to be skipped,
but otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a compilation unit, the
lexical processing always forms the longest possible lexical element.

Example: The character sequence // is processed as the beginning of a single-line comment because
that lexical element is longer than a single / token. end example

Some tokens are defined by a set of lexical rules; a main rule and one or more sub-rules. The latter are
marked in the grammar by fragment to indicate the rule defines part of another token. Fragment rules are
not considered in the top-to-bottom ordering of lexical rules.

Note: In ANTLR fragment is a keyword which produces the same behavior defined here. end note

6.3.2 Line terminators

Line terminators divide the characters of a C# compilation unit into lines.

New_Line
 : New_Line_Character
 | '\u000D\u000A' // carriage return, line feed
 ;

Chapter 6 Lexical structure

15

For compatibility with source code editing tools that add end-of-file markers, and to enable a compilation
unit to be viewed as a sequence of properly terminated lines, the following transformations are applied, in
order, to every compilation unit in a C# program:

• If the last character of the compilation unit is a Control-Z character (U+001A), this character is
deleted.

• A carriage-return character (U+000D) is added to the end of the compilation unit if that compilation
unit is non-empty and if the last character of the compilation unit is not a carriage return (U+000D),
a line feed (U+000A), a next line character (U+0085), a line separator (U+2028), or a paragraph
separator (U+2029).

Note: The additional carriage-return allows a program to end in a PP_Directive (§6.5) that does not
have a terminating New_Line. end note

6.3.3 Comments

Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */. Delimited
comments can occupy a portion of a line, a single line, or multiple lines.

Example: The example

/* Hello, world program
 This program writes "hello, world" to the console
*/
class Hello
{
 static void Main()
 {
 System.Console.WriteLine("hello, world");
 }
}

includes a delimited comment.

end example

A single-line comment begins with the characters // and extends to the end of the line.

Example: The example

// Hello, world program
// This program writes "hello, world" to the console
//
class Hello // any name will do for this class
{
 static void Main() // this method must be named "Main"
 {
 System.Console.WriteLine("hello, world");
 }
}

shows several single-line comments.

end example

Comment
 : Single_Line_Comment

ECMA-334

16

 | Delimited_Comment
 ;

fragment Single_Line_Comment
 : '//' Input_Character*
 ;

fragment Input_Character
 // anything but New_Line_Character
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029')
 ;

fragment New_Line_Character
 : '\u000D' // carriage return
 | '\u000A' // line feed
 | '\u0085' // next line
 | '\u2028' // line separator
 | '\u2029' // paragraph separator
 ;

fragment Delimited_Comment
 : '/*' Delimited_Comment_Section* ASTERISK+ '/'
 ;

fragment Delimited_Comment_Section
 : SLASH
 | ASTERISK* Not_Slash_Or_Asterisk
 ;

fragment Not_Slash_Or_Asterisk
 : ~('/' | '*') // Any except SLASH or ASTERISK
 ;

Comments do not nest. The character sequences /* and */ have no special meaning within a single-line
comment, and the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

Note: These rules must be interpreted carefully. For instance, in the example below, the delimited
comment that begins before A ends between B and C(). The reason is that

// B */ C();

is not actually a single-line comment, since // has no special meaning within a delimited comment,
and so */ does have its usual special meaning in that line.

Likewise, the delimited comment starting before D ends before E. The reason is that "D */ " is not
actually a string literal, since it appears inside a delimited comment.

A useful consequence of /* and */ having no special meaning within a single-line comment is that a
block of source code lines can be commented out by putting // at the beginning of each line. In
general it does not work to put /* before those lines and */ after them, as this does not properly
encapsulate delimited comments in the block, and in general may completely change the structure
of such delimited comments.

Example code:

Chapter 6 Lexical structure

17

static void Main()
{
 /* A
 // B */ C();
 Console.WriteLine(/* "D */ "E");
}

end note

Single_Line_Comments and Delimited_Comments having particular formats can be used as documentation
comments, as described in §D.

6.3.4 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

Whitespace
 : [\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
 ;

6.4 Tokens

6.4.1 General

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token
 : identifier
 | keyword
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal
 | operator_or_punctuator
 ;

Note: This is an ANTLR parser rule, it does not define a lexical token but rather the collection of
token kinds. end note

6.4.2 Unicode character escape sequences

A Unicode escape sequence represents a Unicode code point. Unicode escape sequences are processed in
identifiers (§6.4.3), character literals (§6.4.5.5), regular string literals (§6.4.5.6), and interpolated regular
string expressions (§11.7.3). A Unicode escape sequence is not processed in any other location (for
example, to form an operator, punctuator, or keyword).

fragment Unicode_Escape_Sequence
 : '\\u' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 | '\\U' Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit
Hex_Digit
 ;

ECMA-334

18

A Unicode character escape sequence represents the single Unicode code point formed by the
hexadecimal number following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode
code points in character and string values, a Unicode code point in the range U+10000 to U+10FFFF is
represented using two Unicode surrogate code units. Unicode code points above U+FFFF are not permitted
in character literals. Unicode code points above U+10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal "\u005Cu005C" is equivalent to
"\u005C" rather than "\".

Note: The Unicode value \u005C is the character “\”. end note

Example: The example

class Class1
{
 static void Test(bool \u0066)
 {
 char c = '\u0066';
 if (\u0066)
 {
 System.Console.WriteLine(c.ToString());
 }
 }
}

shows several uses of \u0066, which is the escape sequence for the letter “f”. The program is
equivalent to

class Class1
{
 static void Test(bool f)
 {
 char c = 'f';
 if (f)
 {
 System.Console.WriteLine(c.ToString());
 }
 }
}

end example

6.4.3 Identifiers

The rules for identifiers given in this subclause correspond exactly to those recommended by the Unicode
Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the
C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is
allowed as a prefix to enable keywords to be used as identifiers.

identifier
 : Simple_Identifier
 | contextual_keyword
 ;

Simple_Identifier
 : Available_Identifier
 | Escaped_Identifier

Chapter 6 Lexical structure

19

 ;

fragment Available_Identifier
 : Basic_Identifier // excluding keywords or contextual keywords, see note
below
 ;

fragment Escaped_Identifier
 // Includes keywords and contextual keywords prefixed by '@'. See note below.
 : '@' Basic_Identifier
 ;

fragment Basic_Identifier
 : Identifier_Start_Character Identifier_Part_Character*
 ;

fragment Identifier_Start_Character
 : Letter_Character
 | Underscore_Character
 ;

fragment Underscore_Character
 : '_' // underscore
 | '\\u005' [fF] // Unicode_Escape_Sequence for underscore
 ;

fragment Identifier_Part_Character
 : Letter_Character
 | Decimal_Digit_Character
 | Connecting_Character
 | Combining_Character
 | Formatting_Character
 ;

fragment Letter_Character
 // Category Letter, all subcategories; category Number, subcategory letter.
 : [\p{L}\p{Nl}]
 // Only escapes for categories L & Nl allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Combining_Character
 // Category Mark, subcategories non-spacing and spacing combining.
 : [\p{Mn}\p{Mc}]
 // Only escapes for categories Mn & Mc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Decimal_Digit_Character
 // Category Number, subcategory decimal digit.
 : [\p{Nd}]
 // Only escapes for category Nd allowed. See note below.
 | Unicode_Escape_Sequence
 ;

ECMA-334

20

fragment Connecting_Character
 // Category Punctuation, subcategory connector.
 : [\p{Pc}]
 // Only escapes for category Pc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Formatting_Character
 // Category Other, subcategory format.
 : [\p{Cf}]
 // Only escapes for category Cf allowed, see note below.
 | Unicode_Escape_Sequence
 ;

Note:

• For information on the Unicode character classes mentioned above, see The Unicode Standard.

• The fragment Available_Identifier requires the exclusion of keywords and contextual
keywords. If the grammar in this Standard is processed with ANTLR then this exclusion is
handled automatically by the semantics of ANTLR:

o Keywords and contextual keywords occur in the grammar as literal strings.

o ANTLR creates implicit lexical token rules are created from these literal strings.

o ANTLR considers these implicit rules before the explicit lexical rules in the grammar.

o Therefore fragment Available_Identifier will not match keywords or contextual keywords
as the lexical rules for those precede it.

• Fragment Escaped_Identifier includes escaped keywords and contextual keywords as they are
part of the longer token starting with an @ and lexical processing always forms the longest
possible lexical element (§6.3.1).

• How an implementation enforces the restrictions on the allowable Unicode_Escape_Sequence
values is an implementation issue.

end note

Example: Examples of valid identifiers are identifier1, _identifier2, and @if. end example

An identifier in a conforming program shall be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be
seen in other languages as a normal identifier, without the prefix. An identifier with an @ prefix is called a
verbatim identifier.

Note: Use of the @ prefix for identifiers that are not keywords is permitted, but strongly discouraged
as a matter of style. end note

Example: The example:

class @class
{
 public static void @static(bool @bool)
 {

Chapter 6 Lexical structure

21

 if (@bool)
 {
 System.Console.WriteLine("true");
 }
 else
 {
 System.Console.WriteLine("false");
 }
 }
}

class Class1
{
 static void M()
 {
 cl\u0061ss.st\u0061tic(true);
 }
}

defines a class named “class” with a static method named “static” that takes a parameter named
“bool”. Note that since Unicode escapes are not permitted in keywords, the token “cl\u0061ss” is
an identifier, and is the same identifier as “@class”.

end example

Two identifiers are considered the same if they are identical after the following transformations are
applied, in order:

• The prefix “@”, if used, is removed.

• Each Unicode_Escape_Sequence is transformed into its corresponding Unicode character.

• Any Formatting_Characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the
implementation; however, no diagnostic is required if such an identifier is defined.

Note: For example, an implementation might provide extended keywords that begin with two
underscores. end note

6.4.4 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

keyword
 : 'abstract' | 'as' | 'base' | 'bool' | 'break'
 | 'byte' | 'case' | 'catch' | 'char' | 'checked'
 | 'class' | 'const' | 'continue' | 'decimal' | DEFAULT
 | 'delegate' | 'do' | 'double' | 'else' | 'enum'
 | 'event' | 'explicit' | 'extern' | FALSE | 'finally'
 | 'fixed' | 'float' | 'for' | 'foreach' | 'goto'
 | 'if' | 'implicit' | 'in' | 'int' | 'interface'
 | 'internal' | 'is' | 'lock' | 'long' | 'namespace'
 | 'new' | NULL | 'object' | 'operator' | 'out'
 | 'override' | 'params' | 'private' | 'protected' | 'public'
 | 'readonly' | 'ref' | 'return' | 'sbyte' | 'sealed'
 | 'short' | 'sizeof' | 'stackalloc' | 'static' | 'string'

ECMA-334

22

 | 'struct' | 'switch' | 'this' | 'throw' | TRUE
 | 'try' | 'typeof' | 'uint' | 'ulong' | 'unchecked'
 | 'unsafe' | 'ushort' | 'using' | 'virtual' | 'void'
 | 'volatile' | 'while'
 ;

A contextual keyword is an identifier-like sequence of characters that has special meaning in certain
contexts, but is not reserved, and can be used as an identifier outside of those contexts as well as when
prefaced by the @ character.

contextual_keyword
 : 'add' | 'alias' | 'ascending' | 'async' | 'await'
 | 'by' | 'descending' | 'dynamic' | 'equals' | 'from'
 | 'get' | 'global' | 'group' | 'into' | 'join'
 | 'let' | 'nameof' | 'on' | 'orderby' | 'partial'
 | 'remove' | 'select' | 'set' | 'value' | 'var'
 | 'when' | 'where' | 'yield'
 ;

Note: The rules keyword and contextual_keyword are parser rules as they do not introduce new
token kinds. All keywords and contextual keywords are defined by implicit lexical rules as they
occur as literal strings in the grammar (§6.2.3). end note

In most cases, the syntactic location of contextual keywords is such that they can never be confused with
ordinary identifier usage. For example, within a property declaration, the get and set identifiers have
special meaning (§14.7.3). An identifier other than get or set is never permitted in these locations, so this
use does not conflict with a use of these words as identifiers.

In certain cases the grammar is not enough to distinguish contextual keyword usage from identifiers. In
all such cases it will be specified how to disambiguate between the two. For example, the contextual
keyword var in implicitly typed local variable declarations (§12.6.2) might conflict with a declared type
called var, in which case the declared name takes precedence over the use of the identifier as a contextual
keyword.

Another example such disambiguation is the contextual keyword await (§11.8.8.1), which is considered a
keyword only when inside a method declared async, but can be used as an identifier elsewhere.

Just as with keywords, contextual keywords can be used as ordinary identifiers by prefixing them with
the @ character.

Note: When used as contextual keywords, these identifiers cannot contain
Unicode_Escape_Sequences. end note

6.4.5 Literals

6.4.5.1 General

A literal (§11.7.2) is a source-code representation of a value.

literal
 : boolean_literal
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal
 | null_literal
 ;

Chapter 6 Lexical structure

23

Note: literal is a parser rule as it groups other token kinds and does not introduce a new token kind.
end note

6.4.5.2 Boolean literals

There are two Boolean literal values: true and false.

boolean_literal
 : TRUE
 | FALSE
 ;

Note: boolean_literal is a parser rule as it groups other token kinds and does not introduce a new
token kind. end note

The type of a boolean_literal is bool.

6.4.5.3 Integer literals

Integer literals are used to write values of types int, uint, long, and ulong. Integer literals have two
possible forms: decimal and hexadecimal.

Integer_Literal
 : Decimal_Integer_Literal
 | Hexadecimal_Integer_Literal
 ;

fragment Decimal_Integer_Literal
 : Decimal_Digit+ Integer_Type_Suffix?
 ;

fragment Decimal_Digit
 : '0'..'9'
 ;

fragment Integer_Type_Suffix
 : 'U' | 'u' | 'L' | 'l' | 'UL' | 'Ul' | 'uL' | 'ul' | 'LU' | 'Lu' | 'lU' | 'lu'
 ;

fragment Hexadecimal_Integer_Literal
 : ('0x' | '0X') Hex_Digit+ Integer_Type_Suffix?
 ;

fragment Hex_Digit
 : '0'..'9' | 'A'..'F' | 'a'..'f'
 ;

The type of an integer literal is determined as follows:

• If the literal has no suffix, it has the first of these types in which its value can be represented: int,
uint, long, ulong.

• If the literal is suffixed by U or u, it has the first of these types in which its value can be represented:
uint, ulong.

• If the literal is suffixed by L or l, it has the first of these types in which its value can be represented:
long, ulong.

• If the literal is suffixed by UL, Ul, uL, ul, LU, Lu, lU, or lu, it is of type ulong.

ECMA-334

24

If the value represented by an integer literal is outside the range of the ulong type, a compile-time error
occurs.

Note: As a matter of style, it is suggested that “L” be used instead of “l” when writing literals of type
long, since it is easy to confuse the letter “l” with the digit “1”. end note

To permit the smallest possible int and long values to be written as integer literals, the following two
rules exist:

• When an Integer_Literal representing the value 2147483648 (2³¹) and no Integer_Type_Suffix
appears as the token immediately following a unary minus operator token (§11.8.3), the result (of
both tokens) is a constant of type int with the value −2147483648 (−2³¹). In all other situations, such
an Integer_Literal is of type uint.

• When an Integer_Literal representing the value 9223372036854775808 (2⁶³) and no
Integer_Type_Suffix or the Integer_Type_Suffix L or l appears as the token immediately following a
unary minus operator token (§11.8.3), the result (of both tokens) is a constant of type long with the
value −9223372036854775808 (−2⁶³). In all other situations, such an Integer_Literal is of type ulong.

6.4.5.4 Real literals

Real literals are used to write values of types float, double, and decimal.

Real_Literal
 : Decimal_Digit+ '.' Decimal_Digit+ Exponent_Part? Real_Type_Suffix?
 | '.' Decimal_Digit+ Exponent_Part? Real_Type_Suffix?
 | Decimal_Digit+ Exponent_Part Real_Type_Suffix?
 | Decimal_Digit+ Real_Type_Suffix
 ;

fragment Exponent_Part
 : ('e' | 'E') Sign? Decimal_Digit+
 ;

fragment Sign
 : '+' | '-'
 ;

fragment Real_Type_Suffix
 : 'F' | 'f' | 'D' | 'd' | 'M' | 'm'
 ;

If no Real_Type_Suffix is specified, the type of the Real_Literal is double. Otherwise, the Real_Type_Suffix
determines the type of the real literal, as follows:

• A real literal suffixed by F or f is of type float.
Example: The literals 1f, 1.5f, 1e10f, and 123.456F are all of type float. end example

• A real literal suffixed by D or d is of type double.
Example: The literals 1d, 1.5d, 1e10d, and 123.456D are all of type double. end example

• A real literal suffixed by M or m is of type decimal.
Example: The literals 1m, 1.5m, 1e10m, and 123.456M are all of type decimal. end example
 This literal is converted to a decimal value by taking the exact value, and, if necessary, rounding to
the nearest representable value using banker’s rounding (§8.3.8). Any scale apparent in the literal is
preserved unless the value is rounded.

Chapter 6 Lexical structure

25

Note: Hence, the literal 2.900m will be parsed to form the decimal with sign 0, coefficient 2900, and
scale 3. end note

If the magnitude of the specified literal is too large to be represented in the indicated type, a compile-time
error occurs.

Note: In particular, a Real_Literal will never produce a floating-point infinity. A non-zero Real_Literal
may, however, be rounded to zero. end note

The value of a real literal of type float or double is determined by using the IEC 60559 “round to nearest”
mode with ties broken to “even” (a value with the least-significant-bit zero), and all digits considered
significant.

Note: In a real literal, decimal digits are always required after the decimal point. For example, 1.3F
is a real literal but 1.F is not. end note

6.4.5.5 Character literals

A character literal represents a single character, and consists of a character in quotes, as in 'a'.

Character_Literal
 : '\'' Character '\''
 ;

fragment Character
 : Single_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Character
 : ~['\\\u000D\u000A\u0085\u2028\u2029] // anything but ', \, and
New_Line_Character
 ;

fragment Simple_Escape_Sequence
 : '\\\'' | '\\"' | '\\\\' | '\\0' | '\\a' | '\\b' | '\\f' | '\\n' | '\\r' |
'\\t' | '\\v'
 ;

fragment Hexadecimal_Escape_Sequence
 : '\\x' Hex_Digit Hex_Digit? Hex_Digit? Hex_Digit?
 ;

Note: A character that follows a backslash character (\) in a Character must be one of the following
characters: ', ", \, 0, a, b, f, n, r, t, u, U, x, v. Otherwise, a compile-time error occurs. end note

Note: The use of the \x Hexadecimal_Escape_Sequence production can be error-prone and hard to
read due to the variable number of hexadecimal digits following the \x. For example, in the code:

string good = "x9Good text";
string bad = "x9Bad text";

it might appear at first that the leading character is the same (U+0009, a tab character) in both
strings. In fact the second string starts with U+9BAD as all three letters in the word “Bad” are valid
hexadecimal digits. As a matter of style, it is recommended that \x is avoided in favour of either
specific escape sequences (\t in this example) or the fixed-length \u escape sequence.

ECMA-334

26

end note

A hexadecimal escape sequence represents a single Unicode UTF-16 code unit, with the value formed by
the hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.

A Unicode escape sequence (§6.4.2) in a character literal shall be in the range U+0000 to U+FFFF.

A simple escape sequence represents a Unicode character, as described in the table below.

Escape sequence Character name Unicode code point

\' Single quote U+0027

\" Double quote U+0022

\\ Backslash U+005C

\0 Null U+0000

\a Alert U+0007

\b Backspace U+0008

\f Form feed U+000C

\n New line U+000A

\r Carriage return U+000D

\t Horizontal tab U+0009

\v Vertical tab U+000B

The type of a Character_Literal is char.

6.4.5.6 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular
string literal consists of zero or more characters enclosed in double quotes, as in "hello", and can include
both simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode escape
sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character.

Example: A simple example is @"hello". end example

In a verbatim string literal, the characters between the delimiters are interpreted verbatim, with the only
exception being a Quote_Escape_Sequence, which represents one double-quote character. In particular,
simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim
string literals. A verbatim string literal may span multiple lines.

String_Literal
 : Regular_String_Literal
 | Verbatim_String_Literal
 ;

fragment Regular_String_Literal
 : '"' Regular_String_Literal_Character* '"'
 ;

Chapter 6 Lexical structure

27

fragment Regular_String_Literal_Character
 : Single_Regular_String_Literal_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Regular_String_Literal_Character
 : ~["\\\u000D\u000A\u0085\u2028\u2029] // anything but ", \, and
New_Line_Character
 ;

fragment Verbatim_String_Literal
 : '@"' Verbatim_String_Literal_Character* '"'
 ;

fragment Verbatim_String_Literal_Character
 : Single_Verbatim_String_Literal_Character
 | Quote_Escape_Sequence
 ;

fragment Single_Verbatim_String_Literal_Character
 : ~["] // anything but quotation mark (U+0022)
 ;

fragment Quote_Escape_Sequence
 : '""'
 ;

Example: The example

string a = "Happy birthday, Joel"; // Happy birthday, Joel
string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string c = "hello \t world"; // hello world
string d = @"hello \t world"; // hello \t world
string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\r\ntwo\r\nthree";
string j = @"one
two
three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans
multiple lines. The characters between the quotation marks, including white space such as new line
characters, are preserved verbatim, and each pair of double-quote characters is replaced by one
such character.

end example

Note: Any line breaks within verbatim string literals are part of the resulting string. If the exact
characters used to form line breaks are semantically relevant to an application, any tools that
translate line breaks in source code to different formats (between “\n” and “\r\n”, for example) will
change application behavior. Developers should be careful in such situations. end note

ECMA-334

28

Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string
literal "\x123" contains a single character with hex value 123. To create a string containing the
character with hex value 12 followed by the character 3, one could write "\x00123" or "\x12" + "3"
instead. end note

The type of a String_Literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals
that are equivalent according to the string equality operator (§11.11.8), appear in the same assembly,
these string literals refer to the same string instance.

Example: For instance, the output produced by

class Test
{
 static void Main()
 {
 object a = "hello";
 object b = "hello";
 System.Console.WriteLine(a == b);
 }
}

is True because the two literals refer to the same string instance.

end example

6.4.5.7 The null literal

null_literal
 : NULL
 ;

Note: null_literal is a parser rule as it does not introduce a new token kind. end note

A null_literal represents a null value. It does not have a type, but can be converted to any reference type
or nullable value type through a null literal conversion (§10.2.7).

6.4.6 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe
operations involving one or more operands.

Example: The expression a + b uses the + operator to add the two operands a and b. end example

Punctuators are for grouping and separating.

operator_or_punctuator
 : '{' | '}' | '[' | ']' | '(' | ')' | '.' | ',' | ':' | ';'
 | '+' | '-' | ASTERISK | SLASH | '%' | '&' | '|' | '^' | '!' | '~'
 | '=' | '<' | '>' | '?' | '??' | '::' | '++' | '--' | '&&' | '||'
 | '->' | '==' | '!=' | '<=' | '>=' | '+=' | '-=' | '*=' | '/=' | '%='
 | '&=' | '|=' | '^=' | '<<' | '<<=' | '=>'
 ;

right_shift
 : '>' '>'
 ;

right_shift_assignment

Chapter 6 Lexical structure

29

 : '>' '>='
 ;

Note: right_shift and right_shift_assignment are parser rules as they do not introduce a new token
kind but represent a sequence of two tokens. The operator_or_punctuator rule exists for descriptive
purposes only and is not used elsewhere in the grammar. end note

right_shift is made up of the two tokens > and >. Similarly, right_shift_assignment is made up of the two
tokens > and >=. Unlike other productions in the syntactic grammar, no characters of any kind (not even
whitespace) are allowed between the two tokens in each of these productions. These productions are
treated specially in order to enable the correct handling of type_parameter_lists (§14.2.3).

Note: Prior to the addition of generics to C#, >> and >>= were both single tokens. However, the
syntax for generics uses the < and > characters to delimit type parameters and type arguments. It is
often desirable to use nested constructed types, such as List<Dictionary<string, int>>. Rather
than requiring the programmer to separate the > and > by a space, the definition of the two
operator_or_punctuators was changed. end note

6.5 Pre-processing directives

6.5.1 General

The pre-processing directives provide the ability to skip conditionally sections of compilation units, to
report error and warning conditions, and to delineate distinct regions of source code.

Note: The term “pre-processing directives” is used only for consistency with the C and
C++ programming languages. In C#, there is no separate pre-processing step; pre-processing
directives are processed as part of the lexical analysis phase. end note

PP_Directive
 : PP_Start PP_Kind PP_New_Line
 ;

fragment PP_Kind
 : PP_Declaration
 | PP_Conditional
 | PP_Line
 | PP_Diagnostic
 | PP_Region
 | PP_Pragma
 ;

// Only recognised at the beginning of a line
fragment PP_Start
 : { getCharPositionInLine() == 0 }? PP_Whitespace? '#' PP_Whitespace? // see
note below
 ;

fragment PP_Whitespace
 : ([\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
)+
 ;

ECMA-334

30

fragment PP_New_Line
 : PP_Whitespace? Single_Line_Comment? New_Line
 ;

Note:

• The pre-processor grammar defines a single lexical token PP_Directive used for all pre-
processing directives. The semantics of each of the pre-processing directives are defined in
this language specification but not how to implement them.

• The PP_Start fragment must only be recognised at the start of a line, the
getCharPositionInLine() == 0 ANTLR lexical predicate above suggests one way in which
this may be achieved and is informative only, an implementation may use a different strategy.

end note

The following pre-processing directives are available:

• #define and #undef, which are used to define and undefine, respectively, conditional compilation
symbols (§6.5.4).

• #if, #elif, #else, and #endif, which are used to skip conditionally sections of source code (§6.5.5).

• #line, which is used to control line numbers emitted for errors and warnings (§6.5.8).

• #error, which is used to issue errors (§6.5.6).

• #region and #endregion, which are used to explicitly mark sections of source code (§6.5.7).

• #pragma, which is used to specify optional contextual information to a compiler (§6.5.9).

A pre-processing directive always occupies a separate line of source code and always begins with a
character and a pre-processing directive name. White space may occur before the # character and
between the # character and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, #line, or #endregion directive can
end with a single-line comment. Delimited comments (the /* */ style of comments) are not permitted on
source lines containing pre-processing directives.

Pre-processing directives are not part of the syntactic grammar of C#. However, pre-processing directives
can be used to include or exclude sequences of tokens and can in that way affect the meaning of a
C# program.

Example: When compiled, the program

#define A
#undef B
class C
{
#if A
 void F() {}
#else
 void G() {}
#endif
#if B
 void H() {}
#else
 void I() {}

Chapter 6 Lexical structure

31

#endif
}

results in the exact same sequence of tokens as the program

class C
{
 void F() {}
 void I() {}
}

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical.

end example

6.5.2 Conditional compilation symbols

The conditional compilation functionality provided by the #if, #elif, #else, and #endif directives is
controlled through pre-processing expressions (§6.5.3) and conditional compilation symbols.

fragment PP_Conditional_Symbol
 : Basic_Identifier // must not be equal to tokens TRUE or FALSE, see note below
 ;

Note How an implementation enforces the restriction on the allowable Basic_Identifier values is an
implementation issue. end note

Two conditional compilation symbols are considered the same if they are identical after the following
transformations are applied, in order:

• Each Unicode_Escape_Sequence is transformed into its corresponding Unicode character.

• Any Formatting_Characters are removed.

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the
lexical processing of a compilation unit, a conditional compilation symbol is undefined unless it has been
explicitly defined by an external mechanism (such as a command-line compiler option). When a #define
directive is processed, the conditional compilation symbol named in that directive becomes defined in
that compilation unit. The symbol remains defined until a #undef directive for that same symbol is
processed, or until the end of the compilation unit is reached. An implication of this is that #define and
#undef directives in one compilation unit have no effect on other compilation units in the same program.

When referenced in a pre-processing expression (§6.5.3), a defined conditional compilation symbol has
the Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.
There is no requirement that conditional compilation symbols be explicitly declared before they are
referenced in pre-processing expressions. Instead, undeclared symbols are simply undefined and thus
have the value false.

The namespace for conditional compilation symbols is distinct and separate from all other named entities
in a C# program. Conditional compilation symbols can only be referenced in #define and #undef
directives and in pre-processing expressions.

6.5.3 Pre-processing expressions

Pre-processing expressions can occur in #if and #elif directives. The operators !, ==, !=, &&, and || are
permitted in pre-processing expressions, and parentheses may be used for grouping.

fragment PP_Expression
 : PP_Whitespace? PP_Or_Expression PP_Whitespace?

ECMA-334

32

 ;

fragment PP_Or_Expression
 : PP_And_Expression (PP_Whitespace? '||' PP_Whitespace? PP_And_Expression)*
 ;

fragment PP_And_Expression
 : PP_Equality_Expression (PP_Whitespace? '&&' PP_Whitespace?
 PP_Equality_Expression)*
 ;

fragment PP_Equality_Expression
 : PP_Unary_Expression (PP_Whitespace? ('==' | '!=') PP_Whitespace?
 PP_Unary_Expression)*
 ;

fragment PP_Unary_Expression
 : PP_Primary_Expression
 | '!' PP_Whitespace? PP_Unary_Expression
 ;

fragment PP_Primary_Expression
 : TRUE
 | FALSE
 | PP_Conditional_Symbol
 | '(' PP_Whitespace? PP_Expression PP_Whitespace? ')'
 ;

When referenced in a pre-processing expression, a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.

Evaluation of a pre-processing expression always yields a Boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (§11.20), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

6.5.4 Definition directives

The definition directives are used to define or undefine conditional compilation symbols.

fragment PP_Declaration
 : 'define' PP_Whitespace PP_Conditional_Symbol
 | 'undef' PP_Whitespace PP_Conditional_Symbol
 ;

The processing of a #define directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of a #undef directive
causes the given conditional compilation symbol to become undefined, starting with the source line that
follows the directive.

Any #define and #undef directives in a compilation unit shall occur before the first token (§6.4) in the
compilation unit; otherwise a compile-time error occurs. In intuitive terms, #define and #undef
directives shall precede any “real code” in the compilation unit.

Example: The example:

#define Enterprise
#if Professional || Enterprise

Chapter 6 Lexical structure

33

#define Advanced
#endif
namespace Megacorp.Data
{
#if Advanced
 class PivotTable {...}
#endif
}

is valid because the #define directives precede the first token (the namespace keyword) in the
compilation unit.

end example

Example: The following example results in a compile-time error because a #define follows real code:

#define A
namespace N
{
#define B
#if B
 class Class1 {}
#endif
}

end example

A #define may define a conditional compilation symbol that is already defined, without there being any
intervening #undef for that symbol.

Example: The example below defines a conditional compilation symbol A and then defines it again.

#define A
#define A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to define the symbol as a compiler option as well as
in the source.

end example

A #undef may “undefine” a conditional compilation symbol that is not defined.

Example: The example below defines a conditional compilation symbol A and then undefines it
twice; although the second #undef has no effect, it is still valid.

#define A
#undef A
#undef A

end example

6.5.5 Conditional compilation directives

The conditional compilation directives are used to conditionally include or exclude portions of a
compilation unit.

fragment PP_Conditional
 : PP_If_Section
 | PP_Elif_Section
 | PP_Else_Section

ECMA-334

34

 | PP_Endif
 ;

fragment PP_If_Section
 : 'if' PP_Whitespace PP_Expression
 ;

fragment PP_Elif_Section
 : 'elif' PP_Whitespace PP_Expression
 ;

fragment PP_Else_Section
 : 'else'
 ;

fragment PP_Endif
 : 'endif'
 ;

Conditional compilation directives shall be written in groups consisting of, in order, a #if directive, zero
or more #elif directives, zero or one #else directive, and a #endif directive. Between the directives are
conditional sections of source code. Each section is controlled by the immediately preceding directive. A
conditional section may itself contain nested conditional compilation directives provided these directives
form complete groups.

Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction
{
 void Commit()
 {
#if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
#endif
 CommitHelper();
 }
 ...
}

end example

At most one of the contained conditional sections is selected for normal lexical processing:

• The PP_Expressions of the #if and #elif directives are evaluated in order until one yields true. If an
expression yields true, the conditional section following the corresponding directive is selected.

• If all PP_Expressions yield false, and if a #else directive is present, the conditional section following
the #else directive is selected.

• Otherwise, no conditional section is selected.

Chapter 6 Lexical structure

35

The selected conditional section, if any, is processed as a normal input_section: the source code contained
in the section shall adhere to the lexical grammar; tokens are generated from the source code in the
section; and pre-processing directives in the section have the prescribed effects.

Any remaining conditional sections are skipped and no tokens, except those for pre-processing directives,
are generated from the source code. Therefore skipped source code, except pre-processing directives,
may be lexically incorrect. Skipped pre-processing directives shall be lexically correct but are not
otherwise processed. Within a conditional section that is being skipped any nested conditional sections
(contained in nested #if...#endif constructs) are also skipped.

Note: The above grammar does not capture the allowance that the conditional sections between the
pre-processing directives may be malformed lexically. Therefore the grammar is not ANTLR-ready
as it only supports lexically correct input. end note

Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction
{
 void Commit()
 {
#if Debug
 CheckConsistency();
 #if Trace
 WriteToLog(this.ToString());
 #endif
#endif
 CommitHelper();
 }
 ...
}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For
example, the following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on
class PurchaseTransaction
{
 void Commit()
 {
#if Debug
 CheckConsistency();
#else
 /* Do something else
#endif
 }
 ...
}

Note, however, that pre-processing directives are required to be lexically correct even in skipped
sections of source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For
example, the program:

ECMA-334

36

class Hello
{
 static void Main()
 {
 System.Console.WriteLine(@"hello,
#if Debug
 world
#else
 Nebraska
#endif
 ");
 }
}

results in the output:

hello,
#if Debug
 world
#else
 Nebraska
#endif

In peculiar cases, the set of pre-processing directives that is processed might depend on the
evaluation of the pp_expression. The example:

#if X
 /*
#else
 /* */ class Q { }
#endif

always produces the same token stream (class Q { }), regardless of whether or not X is defined. If X
is defined, the only processed directives are #if and #endif, due to the multi-line comment. If X is
undefined, then three directives (#if, #else, #endif) are part of the directive set.

end example

6.5.6 Diagnostic directives

The diagnostic directives are used to generate explicitly error and warning messages that are reported in
the same way as other compile-time errors and warnings.

fragment PP_Diagnostic
 : 'error' PP_Message?
 | 'warning' PP_Message?
 ;

fragment PP_Message
 : PP_Whitespace Input_Character*
 ;

Example: The example

#if Debug && Retail
 #error A build can't be both debug and retail
#endif
class Test {...}

Chapter 6 Lexical structure

37

produces a compile-time error (“A build can’t be both debug and retail”) if the conditional
compilation symbols Debug and Retail are both defined. Note that a PP_Message can contain
arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single quote in
the word can't.

end example

6.5.7 Region directives

The region directives are used to mark explicitly regions of source code.

fragment PP_Region
 : PP_Start_Region
 | PP_End_Region
 ;

fragment PP_Start_Region
 : 'region' PP_Message?
 ;

fragment PP_End_Region
 : 'endregion' PP_Message?
 ;

No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. There must be one #endregion directive matching
every #region directive. The message specified in a #region or #endregion directive likewise has no
semantic meaning; it merely serves to identify the region. Matching #region and #endregion directives
may have different PP_Messages.

The lexical processing of a region:

#region
...
#endregion

corresponds exactly to the lexical processing of a conditional compilation directive of the form:

#if true
...
#endif

Note: This means that a region can include one or more #if/.../#endif, or be contained with a
conditional section within a #if/.../#endif; but a region cannot overlap with an just part of an
#if/.../#endif, or start & end in different conditional sections. end note

6.5.8 Line directives

Line directives may be used to alter the line numbers and compilation unit names that are reported by the
compiler in output such as warnings and errors. These values are also used by caller-info attributes
(§21.5.5).

Note: Line directives are most commonly used in meta-programming tools that generate C# source
code from some other text input. end note

fragment PP_Line
 : 'line' PP_Whitespace PP_Line_Indicator
 ;

ECMA-334

38

fragment PP_Line_Indicator
 : Decimal_Digit+ PP_Whitespace PP_Compilation_Unit_Name
 | Decimal_Digit+
 | DEFAULT
 | 'hidden'
 ;

fragment PP_Compilation_Unit_Name
 : '"' PP_Compilation_Unit_Name_Character+ '"'
 ;

fragment PP_Compilation_Unit_Name_Character
 // Any Input_Character except "
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029' | '#')
 ;

When no #line directives are present, the compiler reports true line numbers and compilation unit
names in its output. When processing a #line directive that includes a Line_Indicator that is not default,
the compiler treats the line after the directive as having the given line number (and compilation unit
name, if specified).

A #line default directive undoes the effect of all preceding #line directives. The compiler reports true
line information for subsequent lines, precisely as if no #line directives had been processed.

A #line hidden directive has no effect on the compilation unit and line numbers reported in error
messages, or produced by use of CallerLineNumberAttribute (§21.5.5.2). It is intended to affect source-
level debugging tools so that, when debugging, all lines between a #line hidden directive and the
subsequent #line directive (that is not #line hidden) have no line number information, and are skipped
entirely when stepping through code.

Note: Although a Compilation_Unit_Name might contain text that looks like an escape sequence, such
text is not an escape sequence; in this context a ‘\’ character simply designates an ordinary
backslash character. end note

6.5.9 Pragma directives

The #pragma preprocessing directive is used to specify contextual information to a compiler.

Note: For example, a compiler might provide #pragma directives that

• Enable or disable particular warning messages when compiling subsequent code.

• Specify which optimizations to apply to subsequent code.

• Specify information to be used by a debugger.

end note

fragment PP_Pragma
 : 'pragma' PP_Pragma_Text?
 ;

fragment PP_Pragma_Text
 : PP_Whitespace Input_Character*
 ;

Chapter 6 Lexical structure

39

The Input_Characters in the PP_Pragma_Text are interpreted by the compiler in an implementation-
defined manner. The information supplied in a #pragma directive shall not change program semantics. A
#pragma directive shall only change compiler behavior that is outside the scope of this language
specification. If the compiler cannot interpret the Input_Characters, the compiler can produce a warning;
however, it shall not produce a compile-time error.

Note: PP_Pragma_Text can contain arbitrary text; specifically, it need not contain well-formed
tokens. end note

Chapter 7 Basic concepts

41

7. Basic concepts

7.1 Application startup
A program may be compiled either as a class library to be used as part of other applications, or as an
application that may be started directly. The mechanism for determining this mode of compilation is
implementation-specific and external to this specification.

A program compiled as an application shall contain at least one method qualifying as an entry point by
satisfying the following requirements:

• It shall have the name Main.

• It shall be static.

• It shall not be generic.

• It shall be declared in a non-generic type. If the type declaring the method is a nested type, none of
its enclosing types may be generic.

• It shall not have the async modifier.

• The return type shall be void or int.

• It shall not be a partial method (§14.6.9) without an implementation.

• The formal parameter list shall either be empty, or have a single value parameter of type string[].

If more than one method qualifying as an entry point is declared within a program, an external
mechanism may be used to specify which method is deemed to be the actual entry point for the
application. It is a compile-time error for a program to be compiled as an application without exactly one
entry point. A program compiled as a class library may contain methods that would qualify as application
entry points, but the resulting library has no entry point.

Ordinarily, the declared accessibility (§7.5.2) of a method is determined by the access modifiers (§14.3.6)
specified in its declaration, and similarly the declared accessibility of a type is determined by the access
modifiers specified in its declaration. In order for a given method of a given type to be callable, both the
type and the member shall be accessible. However, the application entry point is a special case.
Specifically, the execution environment can access the application’s entry point regardless of its declared
accessibility and regardless of the declared accessibility of its enclosing type declarations.

When an application is run, a new application domain is created. Several different instantiations of an
application may exist on the same machine at the same time, and each has its own application domain. An
application domain enables application isolation by acting as a container for application state. An
application domain acts as a container and boundary for the types defined in the application and the class
libraries it uses. Types loaded into one application domain are distinct from the same types loaded into
another application domain, and instances of objects are not directly shared between application
domains. For instance, each application domain has its own copy of static variables for these types, and a
static constructor for a type is run at most once per application domain. Implementations are free to
provide implementation-specific policy or mechanisms for the creation and destruction of application
domains.

ECMA-334

42

Application startup occurs when the execution environment calls the application’s entry point. If the
entry point declares a parameter, then during application startup, the implementation shall ensure that
the initial value of that parameter is a non-null reference to a string array. This array shall consist of non-
null references to strings, called application parameters, which are given implementation-defined values
by the host environment prior to application startup. The intent is to supply to the application
information determined prior to application startup from elsewhere in the hosted environment.

Note: On systems supporting a command line, application parameters correspond to what are
generally known as command-line arguments. end note

If the entry point’s return type is int rather than void, the return value from the method invocation by
the execution environment is used in application termination (§7.2).

Other than the situations listed above, entry point methods behave like those that are not entry points in
every respect. In particular, if the entry point is invoked at any other point during the application’s
lifetime, such as by regular method invocation, there is no special handling of the method: if there is a
parameter, it may have an initial value of null, or a non-null value referring to an array that contains null
references. Likewise, the return value of the entry point has no special significance other than in the
invocation from the execution environment.

7.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the
application’s termination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that terminates that
method, or executing a return statement that has no expression, results in a termination status code of 0.
If the entry point method terminates due to an exception (§20.4), the exit code is implementation-specific.
Additionally, the implementation may provide alternative APIs for specifying the exit code.

Whether or not finalizers (§14.13) are run as part of application termination is implementation-specific.

Note: The .NET Framework implementation makes every reasonable effort to call finalizers (§14.13)
for all of its objects that have not yet been garbage collected, unless such cleanup has been
suppressed (by a call to the library method GC.SuppressFinalize, for example). end note

7.3 Declarations
Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespaces. These are introduced using namespace declarations (§13), which can contain type
declarations and nested namespace declarations. Type declarations (§13.7) are used to define classes
(§14), structs (§15), interfaces (§17), enums (§18), and delegates (§19). The kinds of members permitted
in a type declaration depend on the form of the type declaration. For instance, class declarations can
contain declarations for constants (§14.4), fields (§14.5), methods (§14.6), properties (§14.7), events
(§14.8), indexers (§14.9), operators (§14.10), instance constructors (§14.11), static constructors (§14.12),
finalizers (§14.13), and nested types (§14.3.9).

A declaration defines a name in the declaration space to which the declaration belongs. It is a compile-
time error to have two or more declarations that introduce members with the same name in a declaration
space, except in the following cases:

Chapter 7 Basic concepts

43

• Two or more namespace declarations with the same name are allowed in the same declaration
space. Such namespace declarations are aggregated to form a single logical namespace and share a
single declaration space.

• Declarations in separate programs but in the same namespace declaration space are allowed to
share the same name.
Note: However, these declarations could introduce ambiguities if included in the same application.
end note

• Two or more methods with the same name but distinct signatures are allowed in the same
declaration space (§7.6).

• Two or more type declarations with the same name but distinct numbers of type parameters are
allowed in the same declaration space (§7.8.2).

• Two or more type declarations with the partial modifier in the same declaration space may share
the same name, same number of type parameters and same classification (class, struct or interface).
In this case, the type declarations contribute to a single type and are themselves aggregated to form
a single declaration space (§14.2.7).

• A namespace declaration and a type declaration in the same declaration space can share the same
name as long as the type declaration has at least one type parameter (§7.8.2).

There are several different types of declaration spaces, as described in the following.

• Within all compilation units of a program, namespace_member_declarations with no enclosing
namespace_declaration are members of a single combined declaration space called the global
declaration space.

• Within all compilation units of a program, namespace_member_declarations within
namespace_declarations that have the same fully qualified namespace name are members of a single
combined declaration space.

• Each compilation_unit and namespace_body has an alias declaration space. Each
extern_alias_directive and using_alias_directive of the compilation_unit or namespace_body
contributes a member to the alias declaration space (§13.5.2).

• Each non-partial class, struct, or interface declaration creates a new declaration space. Each partial
class, struct, or interface declaration contributes to a declaration space shared by all matching parts
in the same program (§15.2.3).Names are introduced into this declaration space through
class_member_declarations, struct_member_declarations, interface_member_declarations, or
type_parameters. Except for overloaded instance constructor declarations and static constructor
declarations, a class or struct cannot contain a member declaration with the same name as the class
or struct. A class, struct, or interface permits the declaration of overloaded methods and indexers.
Furthermore, a class or struct permits the declaration of overloaded instance constructors and
operators. For example, a class, struct, or interface may contain multiple method declarations with
the same name, provided these method declarations differ in their signature (§7.6). Note that base
classes do not contribute to the declaration space of a class, and base interfaces do not contribute to
the declaration space of an interface. Thus, a derived class or interface is allowed to declare a
member with the same name as an inherited member. Such a member is said to hide the inherited
member.

• Each delegate declaration creates a new declaration space. Names are introduced into this
declaration space through formal parameters (fixed_parameters and parameter_arrays) and
type_parameters.

ECMA-334

44

• Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum_member_declarations.

• Each method declaration, property declaration, property accessor declaration, indexer declaration,
indexer accessor declaration, operator declaration, instance constructor declaration and
anonymous function creates a new declaration space called a local variable declaration space.
Names are introduced into this declaration space through formal parameters (fixed_parameters and
parameter_arrays) and type_parameters. The set accessor for a property or an indexer introduces
the valuename as a formal parameter. The body of the function member or anonymous function, if
any, is considered to be nested within the local variable declaration space. It is an error for a local
variable declaration space and a nested local variable declaration space to contain elements with
the same name. Thus, within a nested declaration space it is not possible to declare a local variable
or constant with the same name as a local variable or constant in an enclosing declaration space. It
is possible for two declaration spaces to contain elements with the same name as long as neither
declaration space contains the other.

• Each block or switch_block, as well as a for, foreach, and using statement, creates a local variable
declaration space for local variables and local constants. Names are introduced into this declaration
space through local_variable_declarations and local_constant_declarations. Note that blocks that
occur as or within the body of a function member or anonymous function are nested within the local
variable declaration space declared by those functions for their parameters. Thus, it is an error to
have, for example, a method with a local variable and a parameter of the same name.

• Each block or switch_block creates a separate declaration space for labels. Names are introduced
into this declaration space through labeled_statements, and the names are referenced through
goto_statements. The label declaration space of a block includes any nested blocks. Thus, within a
nested block it is not possible to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order
is not significant for the declaration and use of namespaces, constants, methods, properties, events,
indexers, operators, instance constructors, finalizers, static constructors, and types. Declaration order is
significant in the following ways:

• Declaration order for field declarations determines the order in which their initializers (if any) are
executed (§14.5.6.2, §14.5.6.3).

• Local variables shall be defined before they are used (§7.7).

• Declaration order for enum member declarations (§18.4) is significant when constant_expression
values are omitted.

Example: The declaration space of a namespace is “open ended”, and two namespace declarations
with the same fully qualified name contribute to the same declaration space. For example

namespace Megacorp.Data
{
 class Customer
 {
 ...
 }
}

namespace Megacorp.Data
{
 class Order

Chapter 7 Basic concepts

45

 {
 ...
 }
}

The two namespace declarations above contribute to the same declaration space, in this case
declaring two classes with the fully qualified names Megacorp.Data.Customer and
Megacorp.Data.Order. Because the two declarations contribute to the same declaration space, it
would have caused a compile-time error if each contained a declaration of a class with the same
name.

end example

Note: As specified above, the declaration space of a block includes any nested blocks. Thus, in the
following example, the F and G methods result in a compile-time error because the name i is
declared in the outer block and cannot be redeclared in the inner block. However, the H and
I methods are valid since the two i’s are declared in separate non-nested blocks.

class A
{
 void F()
 {
 int i = 0;
 if (true)
 {
 int i = 1;
 }
 }

 void G()
 {
 if (true)
 {
 int i = 0;
 }
 int i = 1;
 }

 void H()
 {
 if (true)
 {
 int i = 0;
 }
 if (true)
 {
 int i = 1;
 }
 }

 void I()
 {
 for (int i = 0; i < 10; i++)
 {
 H();
 }

ECMA-334

46

 for (int i = 0; i < 10; i++)
 {
 H();
 }
 }
}

end note

7.4 Members

7.4.1 General

Namespaces and types have members.

Note: The members of an entity are generally available through the use of a qualified name that
starts with a reference to the entity, followed by a “.” token, followed by the name of the member.
end note

Members of a type are either declared in the type declaration or inherited from the base class of the type.
When a type inherits from a base class, all members of the base class, except instance constructors,
finalizers, and static constructors become members of the derived type. The declared accessibility of a
base class member does not control whether the member is inherited—inheritance extends to any
member that isn’t an instance constructor, static constructor, or finalizer.

Note: However, an inherited member might not be accessible in a derived type, for example because
of its declared accessibility (§7.5.2). end note

7.4.2 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

7.4.3 Struct members

The members of a struct are the members declared in the struct and the members inherited from the
struct’s direct base class System.ValueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple
type (§8.3.5).

7.4.4 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members
inherited from the enumeration’s direct base class System.Enum and the indirect base classes
System.ValueType and object.

Chapter 7 Basic concepts

47

7.4.5 Class members

The members of a class are the members declared in the class and the members inherited from the base
class (except for class object which has no base class). The members inherited from the base class
include the constants, fields, methods, properties, events, indexers, operators, and types of the base class,
but not the instance constructors, finalizers, and static constructors of the base class. Base class members
are inherited without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, finalizers, static constructors, and types.

The members of object (§8.2.3) and string (§8.2.5) correspond directly to the members of the class
types they alias.

7.4.6 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface.

Note: The members in class object are not, strictly speaking, members of any interface (§17.4).
However, the members in class object are available via member lookup in any interface type
(§11.5). end note

7.4.7 Array members

The members of an array are the members inherited from class System.Array.

7.4.8 Delegate members

A delegate inherits members from class System.Delegate. Additionally, it contains a method named
Invoke with the same return type and formal parameter list specified in its declaration (§19.2). An
invocation of this method shall behave identically to a delegate invocation (§19.6) on the same delegate
instance.

An implementation may provide additional members, either through inheritance or directly in the
delegate itself.

7.5 Member access

7.5.1 General

Declarations of members allow control over member access. The accessibility of a member is established
by the declared accessibility (§7.5.2) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Access to a member is
permitted when the textual location in which the access takes place is included in the accessibility domain
(§7.5.3) of the member.

7.5.2 Declared accessibility

The declared accessibility of a member can be one of the following:

• Public, which is selected by including a public modifier in the member declaration. The intuitive
meaning of public is “access not limited”.

ECMA-334

48

• Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class”.

• Internal, which is selected by including an internal modifier in the member declaration. The
intuitive meaning of internal is “access limited to this assembly”.

• Protected internal, which is selected by including both a protected and an internal modifier in the
member declaration. The intuitive meaning of protected internal is “accessible within this
assembly as well as types derived from the containing class”.

• Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access
modifiers, the context in which the declaration takes place determines the default declared accessibility.

• Namespaces implicitly have public declared accessibility. No access modifiers are allowed on
namespace declarations.

• Types declared directly in compilation units or namespaces (as opposed to within other types) can
have public or internal declared accessibility and default to internal declared accessibility.

• Class members can have any of the five kinds of declared accessibility and default to private
declared accessibility.
Note: A type declared as a member of a class can have any of the five kinds of declared accessibility,
whereas a type declared as a member of a namespace can have only public or internal declared
accessibility. end note

• Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility because structs are implicitly sealed. Struct members introduced in a
struct (that is, not inherited by that struct) cannot have protected or protected internal
declared accessibility.
Note: A type declared as a member of a struct can have public, internal, or private declared
accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility. end note

• Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

• Enumeration members implicitly have public declared accessibility. No access modifiers are
allowed on enumeration member declarations.

7.5.3 Accessibility domains

The accessibility domain of a member consists of the (possibly disjoint) sections of program text in
which access to the member is permitted. For purposes of defining the accessibility domain of a member,
a member is said to be top-level if it is not declared within a type, and a member is said to be nested if it is
declared within another type. Furthermore, the program text of a program is defined as all text contained
in all compilation units of the program, and the program text of a type is defined as all text contained in
the type_declarations of that type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

Chapter 7 Basic concepts

49

The accessibility domain of a top-level unbound type T (§8.4.4) that is declared in a program P is defined
as follows:

• If the declared accessibility of T is public, the accessibility domain of T is the program text of P and
any program that references P.

• If the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

Note: From these definitions, it follows that the accessibility domain of a top-level unbound type is
always at least the program text of the program in which that type is declared. end note

The accessibility domain for a constructed type T<A1, ..., Ae> is the intersection of the accessibility
domain of the unbound generic type T and the accessibility domains of the type arguments A1, ..., Ae.

The accessibility domain of a nested member M declared in a type T within a program P, is defined as
follows (noting that M itself might possibly be a type):

• If the declared accessibility of M is public, the accessibility domain of M is the accessibility domain
of T.

• If the declared accessibility of M is protected internal, let D be the union of the program text of P
and the program text of any type derived from T, which is declared outside P. The accessibility
domain of M is the intersection of the accessibility domain of T with D.

• If the declared accessibility of M is protected, let D be the union of the program text of Tand the
program text of any type derived from T. The accessibility domain of M is the intersection of the
accessibility domain of T with D.

• If the declared accessibility of M is internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

• If the declared accessibility of M is private, the accessibility domain of M is the program text of T.

Note: From these definitions it follows that the accessibility domain of a nested member is always at
least the program text of the type in which the member is declared. Furthermore, it follows that the
accessibility domain of a member is never more inclusive than the accessibility domain of the type
in which the member is declared. end note

Note: In intuitive terms, when a type or member M is accessed, the following steps are evaluated to
ensure that the access is permitted:

• First, if M is declared within a type (as opposed to a compilation unit or a namespace), a
compile-time error occurs if that type is not accessible.

• Then, if M is public, the access is permitted.

• Otherwise, if M is protected internal, the access is permitted if it occurs within the program
in which M is declared, or if it occurs within a class derived from the class in which M is
declared and takes place through the derived class type (§7.5.4).

• Otherwise, if M is protected, the access is permitted if it occurs within the class in which M is
declared, or if it occurs within a class derived from the class in which M is declared and takes
place through the derived class type (§7.5.4).

• Otherwise, if M is internal, the access is permitted if it occurs within the program in which M is
declared.

• Otherwise, if M is private, the access is permitted if it occurs within the type in which M is
declared.

ECMA-334

50

• Otherwise, the type or member is inaccessible, and a compile-time error occurs. end note

Example: In the following code

public class A
{
 public static int X;
 internal static int Y;
 private static int Z;
}

internal class B
{
 public static int X;
 internal static int Y;
 private static int Z;

 public class C
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }

 private class D
 {
 public static int X;
 internal static int Y;
 private static int Z;
 }
}

the classes and members have the following accessibility domains:

• The accessibility domain of A and A.X is unlimited.

• The accessibility domain of A.Y, B, B.X, B.Y, B.C, B.C.X, and B.C.Y is the program text of the
containing program.

• The accessibility domain of A.Z is the program text of A.

• The accessibility domain of B.Z and B.D is the program text of B, including the program text of
B.C and B.D.

• The accessibility domain of B.C.Z is the program text of B.C.

• The accessibility domain of B.D.X and B.D.Y is the program text of B, including the program
text of B.C and B.D.

• The accessibility domain of B.D.Z is the program text of B.D. As the example illustrates, the
accessibility domain of a member is never larger than that of a containing type. For example,
even though all X members have public declared accessibility, all but A.X have accessibility
domains that are constrained by a containing type.

end example

Chapter 7 Basic concepts

51

As described in §7.4, all members of a base class, except for instance constructors, finalizers, and static
constructors, are inherited by derived types. This includes even private members of a base class.
However, the accessibility domain of a private member includes only the program text of the type in
which the member is declared.

Example: In the following code

class A
{
 int x;

 static void F(B b)
 {
 b.x = 1; // Ok
 }
}

class B : A
{
 static void F(B b)
 {
 b.x = 1; // Error, x not accessible
 }
}

the B class inherits the private member x from the A class. Because the member is private, it is only
accessible within the class_body of A. Thus, the access to b.x succeeds in the A.F method, but fails in
the B.F method.

end example

7.5.4 Protected access

When a protected instance member is accessed outside the program text of the class in which it is
declared, and when a protected internal instance member is accessed outside the program text of the
program in which it is declared, the access shall take place within a class declaration that derives from the
class in which it is declared. Furthermore, the access is required to take place through an instance of that
derived class type or a class type constructed from it. This restriction prevents one derived class from
accessing protected members of other derived classes, even when the members are inherited from the
same base class.

Let B be a base class that declares a protected instance member M, and let D be a class that derives from B.
Within the class_body of D, access to M can take one of the following forms:

• An unqualified type_name or primary_expression of the form M.

• A primary_expression of the form E.M, provided the type of E is T or a class derived from T, where T is
the class D, or a class type constructed from D.

• A primary_expression of the form base.M.

• A primary_expression of the form base[argument_list].

In addition to these forms of access, a derived class can access a protected instance constructor of a base
class in a constructor_initializer (§14.11.2).

Example: In the following code

ECMA-334

52

public class A
{
 protected int x;

 static void F(A a, B b)
 {
 a.x = 1; // Ok
 b.x = 1; // Ok
 }
}

public class B : A
{
 static void F(A a, B b)
 {
 a.x = 1; // Error, must access through instance of B
 b.x = 1; // Ok
 }
}

within A, it is possible to access x through instances of both A and B, since in either case the access
takes place through an instance of A or a class derived from A. However, within B, it is not possible to
access x through an instance of A, since A does not derive from B.

end example

Example:

class C<T>
{
 protected T x;
}

class D<T> : C<T>
{
 static void F()
 {
 D<T> dt = new D<T>();
 D<int> di = new D<int>();
 D<string> ds = new D<string>();
 dt.x = default(T);
 di.x = 123;
 ds.x = "test";
 }
}

Here, the three assignments to x are permitted because they all take place through instances of class
types constructed from the generic type.

end example

Note: The accessibility domain (§7.5.3) of a protected member declared in a generic class includes
the program text of all class declarations derived from any type constructed from that generic class.
In the example:

class C<T>
{
 protected static T x;

Chapter 7 Basic concepts

53

}

class D : C<string>
{
 static void Main()
 {
 C<int>.x = 5;
 }
}

the reference to protected member C<int>.x in D is valid even though the class D derives from
C<string>. end note

7.5.5 Accessibility constraints

Several constructs in the C# language require a type to be at least as accessible as a member or another
type. A type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a
superset of the accessibility domain of M. In other words, T is at least as accessible as M if T is accessible in
all contexts in which M is accessible.

The following accessibility constraints exist:

• The direct base class of a class type shall be at least as accessible as the class type itself.

• The explicit base interfaces of an interface type shall be at least as accessible as the interface type
itself.

• The return type and parameter types of a delegate type shall be at least as accessible as the delegate
type itself.

• The type of a constant shall be at least as accessible as the constant itself.

• The type of a field shall be at least as accessible as the field itself.

• The return type and parameter types of a method shall be at least as accessible as the method itself.

• The type of a property shall be at least as accessible as the property itself.

• The type of an event shall be at least as accessible as the event itself.

• The type and parameter types of an indexer shall be at least as accessible as the indexer itself.

• The return type and parameter types of an operator shall be at least as accessible as the operator
itself.

• The parameter types of an instance constructor shall be at least as accessible as the instance
constructor itself.

• An interface or class type constraint on a type parameter shall be at least as accessible as the
member which declares the constraint.

Example: In the following code

class A {...}
public class B: A {...}

the B class results in a compile-time error because A is not at least as accessible as B.

end example

Example: Likewise, in the following code

ECMA-334

54

class A {...}

public class B
{
 A F() {...}
 internal A G() {...}
 public A H() {...}
}

the H method in B results in a compile-time error because the return type A is not at least as
accessible as the method.

end example

7.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

• The signature of a method consists of the name of the method, the number of type parameters, and
the type and parameter-passing mode (value, reference, or output) of each of its formal parameters,
considered in the order left to right. For these purposes, any type parameter of the method that
occurs in the type of a formal parameter is identified not by its name, but by its ordinal position in
the type parameter list of the method. The signature of a method specifically does not include the
return type, parameter names, type parameter names, type parameter constraints, the params or
this parameter modifiers, nor whether parameters are required or optional.

• The signature of an instance constructor consists of the type and parameter-passing mode (value,
reference, or output) of each of its formal parameters, considered in the order left to right. The
signature of an instance constructor specifically does not include the params modifier that may be
specified for the right-most parameter.

• The signature of an indexer consists of the type of each of its formal parameters, considered in the
order left to right. The signature of an indexer specifically does not include the element type, nor
does it include the params modifier that may be specified for the right-most parameter.

• The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not
include the result type.

• The signature of a conversion operator consists of the source type and the target type. The implicit
or explicit classification of a conversion operator is not part of the signature.

• Two signatures of the same member kind (method, instance constructor, indexer or operator) are
considered to be the same signatures if they have the same name, number of type parameters,
number of parameters, and parameter-passing modes, and an identity conversion exists between
the types of their corresponding parameters (§10.2.2).

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

• Overloading of methods permits a class, struct, or interface to declare multiple methods with the
same name, provided their signatures are unique within that class, struct, or interface.

• Overloading of instance constructors permits a class or struct to declare multiple instance
constructors, provided their signatures are unique within that class or struct.

Chapter 7 Basic concepts

55

• Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided
their signatures are unique within that class, struct, or interface.

• Overloading of operators permits a class or struct to declare multiple operators with the same
name, provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members declared in a
single type cannot differ in signature solely by ref and out. A compile-time error occurs if two members
are declared in the same type with signatures that would be the same if all parameters in both methods
with out modifiers were changed to ref modifiers. For other purposes of signature matching (e.g., hiding
or overriding), ref and out are considered part of the signature and do not match each other.

Note: This restriction is to allow C# programs to be easily translated to run on the Common
Language Infrastructure (CLI), which does not provide a way to define methods that differ solely in
ref and out. end note

The types object and dynamic are not distinguished when comparing signatures. Therefore members
declared in a single type whose signatures differ only by replacing object with dynamic are not allowed.

Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest
{
 void F(); // F()
 void F(int x); // F(int)
 void F(ref int x); // F(ref int)
 void F(out int x); // F(out int) error
 void F(object o); // F(object)
 void F(dynamic d); // error.
 void F(int x, int y); // F(int, int)
 int F(string s); // F(string)
 int F(int x); // F(int) error
 void F(string[] a); // F(string[])
 void F(params string[] a); // F(string[]) error
 void F<S>(S s); // F<0>(0)
 void F<T>(T t); // F<0>(0) error
 void F<S,T>(S s); // F<0,1>(0)
 void F<T,S>(S s); // F<0,1>(1) ok
}

Note that any ref and out parameter modifiers (§14.6.2) are part of a signature. Thus, F(int),
F(ref int), and F(out int) are all unique signatures. However, F(ref int) and F(out int)
cannot be declared within the same interface because their signatures differ solely by ref and out.
Also, note that the return type and the params modifier are not part of a signature, so it is not
possible to overload solely based on return type or on the inclusion or exclusion of the params
modifier. As such, the declarations of the methods F(int) and F(params string[]) identified
above, result in a compile-time error.

end example

ECMA-334

56

7.7 Scopes

7.7.1 General

The scope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare
the meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by
§7.3 that within a nested block it is not possible to declare a local variable or local constant with the same
name as a local variable or local constant in an enclosing block.) The name from the outer scope is then
said to be hidden in the region of program text covered by the inner scope, and access to the outer name
is only possible by qualifying the name.

• The scope of a namespace member declared by a namespace_member_declaration (§13.6) with no
enclosing namespace_declaration is the entire program text.

• The scope of a namespace member declared by a namespace_member_declaration within a
namespace_declaration whose fully qualified name is N, is the namespace_body of every
namespace_declaration whose fully qualified name is N or starts with N, followed by a period.

• The scope of a name defined by an extern_alias_directive (§13.4) extends over the using_directives,
global_attributes and namespace_member_declarations of its immediately containing
compilation_unit or namespace_body. An extern_alias_directive does not contribute any new
members to the underlying declaration space. In other words, an extern_alias_directive is not
transitive, but, rather, affects only the compilation_unit or namespace_body in which it occurs.

• The scope of a name defined or imported by a using_directive (§13.5) extends over the
global_attributes and namespace_member_declarations of the compilation_unit or namespace_body in
which the using_directive occurs. A using_directive may make zero or more namespace or type
names available within a particular compilation_unit or namespace_body, but does not contribute
any new members to the underlying declaration space. In other words, a using_directive is not
transitive but rather affects only the compilation_unit or namespace_body in which it occurs.

• The scope of a type parameter declared by a type_parameter_list on a class_declaration (§14.2) is the
class_base, type_parameter_constraints_clauses, and class_body of that class_declaration.

Note: Unlike members of a class, this scope does not extend to derived classes. end note

• The scope of a type parameter declared by a type_parameter_list on a struct_declaration (§15.2) is
the struct_interfaces, type_parameter_constraints_clauses, and struct_body of that struct_declaration.

• The scope of a type parameter declared by a type_parameter_list on an interface_declaration (§17.2)
is the interface_base, type_parameter_constraints_clauses, and interface_body of that
interface_declaration.

• The scope of a type parameter declared by a type_parameter_list on a delegate_declaration (§19.2) is
the return_type, formal_parameter_list, and type_parameter_constraints_clauses of that
delegate_declaration.

• The scope of a type parameter declared by a type_parameter_list on a method_declaration (§14.6.1)
is the method_declaration.

• The scope of a member declared by a class_member_declaration (§14.3.1) is the class_body in which
the declaration occurs. In addition, the scope of a class member extends to the class_body of those
derived classes that are included in the accessibility domain (§7.5.3) of the member.

Chapter 7 Basic concepts

57

• The scope of a member declared by a struct_member_declaration (§15.3) is the struct_body in which
the declaration occurs.

• The scope of a member declared by an enum_member_declaration (§18.4) is the enum_body in which
the declaration occurs.

• The scope of a parameter declared in a method_declaration (§14.6) is the method_body of that
method_declaration.

• The scope of a parameter declared in an indexer_declaration (§14.9) is the accessor_declarations of
that indexer_declaration.

• The scope of a parameter declared in an operator_declaration (§14.10) is the block of that
operator_declaration.

• The scope of a parameter declared in a constructor_declaration (§14.11) is the constructor_initializer
and block of that constructor_declaration.

• The scope of a parameter declared in a lambda_expression (§11.16) is the lambda_expression_body of
that lambda_expression.

• The scope of a parameter declared in an anonymous_method_expression (§11.16) is the block of that
anonymous_method_expression.

• The scope of a label declared in a labeled_statement (§12.5) is the block in which the declaration
occurs.

• The scope of a local variable declared in a local_variable_declaration (§12.6.2) is the block in which
the declaration occurs.

• The scope of a local variable declared in a switch_block of a switch statement (§12.8.3) is the
switch_block.

• The scope of a local variable declared in a for_initializer of a for statement (§12.9.4) is the
for_initializer, the for_condition, the for_iterator, and the contained statement of the for statement.

• The scope of a local constant declared in a local_constant_declaration (§12.6.3) is the block in which
the declaration occurs. It is a compile-time error to refer to a local constant in a textual position that
precedes its constant_declarator.

• The scope of a variable declared as part of a foreach_statement, using_statement, lock_statement or
query_expression is determined by the expansion of the given construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the
member in a textual position that precedes the declaration of the member.

Example:

class A
{
 void F()
 {
 i = 1;
 }

 int i = 0;
}

Here, it is valid for F to refer to i before it is declared.

ECMA-334

58

end example

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual
position that precedes the local_variable_declarator of the local variable.

Example:

class A
{
 int i = 0;

 void F()
 {
 i = 1; // Error, use precedes declaration
 int i;
 i = 2;
 }

 void G()
 {
 int j = (j = 1); // Valid
 }

 void H()
 {
 int a = 1, b = ++a; // Valid
 }
}

In the F method above, the first assignment to i specifically does not refer to the field declared in
the outer scope. Rather, it refers to the local variable and it results in a compile-time error because
it textually precedes the declaration of the variable. In the G method, the use of j in the initializer for
the declaration of j is valid because the use does not precede the local_variable_declarator. In the
H method, a subsequent local_variable_declarator correctly refers to a local variable declared in an
earlier local_variable_declarator within the same local_variable_declaration.

end example

Note: The scoping rules for local variables and local constants are designed to guarantee that the
meaning of a name used in an expression context is always the same within a block. If the scope of a
local variable were to extend only from its declaration to the end of the block, then in the example
above, the first assignment would assign to the instance variable and the second assignment would
assign to the local variable, possibly leading to compile-time errors if the statements of the block
were later to be rearranged.)

The meaning of a name within a block may differ based on the context in which the name is used. In
the example

using System;

class A {}

class Test
{
 static void Main()
 {
 string A = "hello, world";

Chapter 7 Basic concepts

59

 string s = A; // expression context
 Type t = typeof(A); // type context
 Console.WriteLine(s); // writes "hello, world"
 Console.WriteLine(t); // writes "A"
 }
}

the name A is used in an expression context to refer to the local variable A and in a type context to
refer to the class A. end note

7.7.2 Name hiding

7.7.2.1 General

The scope of an entity typically encompasses more program text than the declaration space of the entity.
In particular, the scope of an entity may include declarations that introduce new declaration spaces
containing entities of the same name. Such declarations cause the original entity to become hidden.
Conversely, an entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance.
The characteristics of the two types of hiding are described in the following subclauses.

7.7.2.2 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as
a result of nesting types within classes or structs, and as a result of parameter, local variable, and local
constant declarations.

Example: In the following code

class A
{
 int i = 0;
 void F()
 {
 int i = 1;
 }

 void G()
 {
 i = 1;
 }
}

within the F method, the instance variable i is hidden by the local variable i, but within the
G method, i still refers to the instance variable.

end example

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name.

Example: In the following code

class Outer
{
 static void F(int i) {}
 static void F(string s) {}

ECMA-334

60

 class Inner
 {
 static void F(long l) {}

 void G()
 {
 F(1); // Invokes Outer.Inner.F
 F("Hello"); // Error
 }
 }
}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the
inner declaration. For the same reason, the call F("Hello") results in a compile-time error.

end example

7.7.2.3 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited
from base classes. This type of name hiding takes one of the following forms:

• A constant, field, property, event, or type introduced in a class or struct hides all base class members
with the same name.

• A method introduced in a class or struct hides all non-method base class members with the same
name, and all base class methods with the same signature (§7.6).

• An indexer introduced in a class or struct hides all base class indexers with the same signature
(§7.6) .

The rules governing operator declarations (§14.10) make it impossible for a derived class to declare an
operator with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding a visible name from an inherited scope causes a
warning to be reported.

Example: In the following code

class Base
{
 public void F() {}
}

class Derived : Base
{
 public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is
specifically not an error, since that would preclude separate evolution of base classes. For example,
the above situation might have come about because a later version of Base introduced an F method
that wasn’t present in an earlier version of the class.

end example

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

Example:

Chapter 7 Basic concepts

61

class Base
{
 public void F() {}
}

class Derived : Base
{
 public new void F() {}
}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the
inherited member.

end example

A declaration of a new member hides an inherited member only within the scope of the new member.

Example:

class Base
{
 public static void F() {}
}

class Derived : Base
{
 private new static void F() {} // Hides Base.F in Derived only
}

class MoreDerived : Derived
{
 static void G()
 {
 F(); // Invokes Base.F
 }
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but
since the new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the
call F() in MoreDerived.G is valid and will invoke Base.F.

end example

7.8 Namespace and type names

7.8.1 General

Several contexts in a C# program require a namespace_name or a type_name to be specified.

namespace_name
 : namespace_or_type_name
 ;

type_name
 : namespace_or_type_name
 ;

ECMA-334

62

namespace_or_type_name
 : identifier type_argument_list?
 | namespace_or_type_name '.' identifier type_argument_list?
 | qualified_alias_member
 ;

A namespace_name is a namespace_or_type_name that refers to a namespace.

Following resolution as described below, the namespace_or_type_name of a namespace_name shall refer to
a namespace, or otherwise a compile-time error occurs. No type arguments (§8.4.2) can be present in a
namespace_name (only types can have type arguments).

A type_name is a namespace_or_type_name that refers to a type. Following resolution as described below,
the namespace_or_type_name of a type_name shall refer to a type, or otherwise a compile-time error
occurs.

If the namespace_or_type_name is a qualified_alias_member its meaning is as described in §13.8.1.
Otherwise, a namespace_or_type_name has one of four forms:

• I

• I<A1, ..., Ax>

• N.I

• N.I<A1, ..., Ax>

where I is a single identifier, N is a namespace_or_type_name and <A1, ..., Ax> is an optional
type_argument_list. When no type_argument_list is specified, consider x to be zero.

The meaning of a namespace_or_type_name is determined as follows:

• If the namespace_or_type_name is a qualified_alias_member, the meaning is as specified in §13.8.1.

• Otherwise, if the namespace_or_type_name is of the form I or of the form I<A1, ..., Ax>:

o If x is zero and the namespace_or_type_name appears within a generic method declaration
(§14.6) but outside the attributes of its method-header, and if that declaration includes a type
parameter (§14.2.3) with name I, then the namespace_or_type_name refers to that type
parameter.

o Otherwise, if the namespace_or_type_name appears within a type declaration, then for each
instance type T (§14.3.2), starting with the instance type of that type declaration and continuing
with the instance type of each enclosing class or struct declaration (if any):

• If x is zero and the declaration of T includes a type parameter with name I, then the
namespace_or_type_name refers to that type parameter.

• Otherwise, if the namespace_or_type_name appears within the body of the type declaration,
and T or any of its base types contain a nested accessible type having name I and x type
parameters, then the namespace_or_type_name refers to that type constructed with the given
type arguments. If there is more than one such type, the type declared within the more
derived type is selected.
Note: Non-type members (constants, fields, methods, properties, indexers, operators,
instance constructors, finalizers, and static constructors) and type members with a different
number of type parameters are ignored when determining the meaning of the
namespace_or_type_name. end note

Chapter 7 Basic concepts

63

o Otherwise, for each namespace N, starting with the namespace in which the
namespace_or_type_name occurs, continuing with each enclosing namespace (if any), and ending
with the global namespace, the following steps are evaluated until an entity is located:

• If x is zero and I is the name of a namespace in N, then:

o If the location where the namespace_or_type_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with a namespace or type, then the
namespace_or_type_name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace_or_type_name refers to the namespace named I in N.

• Otherwise, if N contains an accessible type having name I and x type parameters, then:

o If x is zero and the location where the namespace_or_type_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with a
namespace or type, then the namespace_or_type_name is ambiguous and a compile-time
error occurs.

o Otherwise, the namespace_or_type_name refers to the type constructed with the given
type arguments.

• Otherwise, if the location where the namespace_or_type_name occurs is enclosed by a
namespace declaration for N:

o If x is zero and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with an imported namespace or type,
then the namespace_or_type_name refers to that namespace or type.

o Otherwise, if the namespaces imported by the using_namespace_directives of the
namespace declaration contain exactly one type having name I and x type parameters,
then the namespace_or_type_name refers to that type constructed with the given type
arguments.

o Otherwise, if the namespaces imported by the using_namespace_directives of the
namespace declaration contain more than one type having name I and x type
parameters, then the namespace_or_type_name is ambiguous and an error occurs.

o Otherwise, the namespace_or_type_name is undefined and a compile-time error occurs.

• Otherwise, the namespace_or_type_name is of the form N.I or of the form N.I<A1, ..., Ax>. N is first
resolved as a namespace_or_type_name. If the resolution of N is not successful, a compile-time error
occurs. Otherwise, N.I or N.I<A1, ..., Ax> is resolved as follows:

o If x is zero and N refers to a namespace and N contains a nested namespace with name I, then the
namespace_or_type_name refers to that nested namespace.

o Otherwise, if N refers to a namespace and N contains an accessible type having name I and x type
parameters, then the namespace_or_type_name refers to that type constructed with the given
type arguments.

o Otherwise, if N refers to a (possibly constructed) class or struct type and N or any of its base
classes contain a nested accessible type having name I and x type parameters, then the
namespace_or_type_name refers to that type constructed with the given type arguments. If there
is more than one such type, the type declared within the more derived type is selected.

ECMA-334

64

Note: If the meaning of N.I is being determined as part of resolving the base class specification
of N then the direct base class of N is considered to be object (§14.2.4.2). end note

o Otherwise, N.I is an invalid namespace_or_type_name, and a compile-time error occurs.

A namespace_or_type_name is permitted to reference a static class (§14.2.2.4) only if

• The namespace_or_type_name is the T in a namespace_or_type_name of the form T.I, or

• The namespace_or_type_name is the T in a typeof_expression (§11.7.16) of the form typeof(T)

7.8.2 Unqualified names

Every namespace declaration and type declaration has an unqualified name determined as follows:

• For a namespace declaration, the unqualified name is the qualified_identifier specified in the
declaration.

• For a type declaration with no type_parameter_list, the unqualified name is the identifier specified in
the declaration.

• For a type declaration with K type parameters, the unqualified name is the identifier specified in the
declaration, followed by the generic_dimension_specifier (§11.7.16) for K type parameters.

7.8.3 Fully qualified names

Every namespace and type declaration has a fully qualified name, which uniquely identifies the
namespace or type declaration amongst all others within the program. The fully qualified name of a
namespace or type declaration with unqualified name N is determined as follows:

• If N is a member of the global namespace, its fully qualified name is N.

• Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the namespace or
type declaration in which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiers and
generic_dimension_specifiers that lead to N, starting from the global namespace. Because every member of
a namespace or type shall have a unique name, it follows that the fully qualified name of a namespace or
type declaration is always unique. It is a compile-time error for the same fully qualified name to refer to
two distinct entities. In particular:

• It is an error for both a namespace declaration and a type declaration to have the same fully
qualified name.

• It is an error for two different kinds of type declarations to have the same fully qualified name (for
example, if both a struct and class declaration have the same fully qualified name).

• It is an error for a type declaration without the partial modifier to have the same fully qualified
name as another type declaration (§14.2.7).

Example: The example below shows several namespace and type declarations along with their
associated fully qualified names.

class A {} // A
namespace X // X
{
 class B // X.B
 {
 class C {} // X.B.C

Chapter 7 Basic concepts

65

 }
 namespace Y // X.Y
 {
 class D {} // X.Y.D
 }
}
namespace X.Y // X.Y
{
 class E {} // X.Y.E
 class G<T> // X.Y.G<>
 {
 class H {} // X.Y.G<>.H
 }
 class G<S,T> // X.Y.G<,>
 {
 class H<U> {} // X.Y.G<,>.H<>
 }
}

end example

7.9 Automatic memory management
C# employs automatic memory management, which frees developers from manually allocating and
freeing the memory occupied by objects. Automatic memory management policies are implemented by a
garbage collector. The memory management life cycle of an object is as follows:

1. When the object is created, memory is allocated for it, the constructor is run, and the object is
considered live.

2. If neither the object nor any of its instance fields can be accessed by any possible continuation of
execution, other than the running of finalizers, the object is considered no longer in use and it
becomes eligible for finalization.
Note: The C# compiler and the garbage collector might choose to analyze code to determine which
references to an object might be used in the future. For instance, if a local variable that is in scope is
the only existing reference to an object, but that local variable is never referred to in any possible
continuation of execution from the current execution point in the procedure, the garbage collector
might (but is not required to) treat the object as no longer in use. end note

3. Once the object is eligible for finalization, at some unspecified later time the finalizer (§14.13) (if
any) for the object is run. Under normal circumstances the finalizer for the object is run once only,
though implementation-specific APIs may allow this behavior to be overridden.

4. Once the finalizer for an object is run, if neither the object nor any of its instance fields can be
accessed by any possible continuation of execution, including the running of finalizers, the object is
considered inaccessible and the object becomes eligible for collection.
Note: An object which could previously not be accessed may become accessible again due to its
finalizer. An example of this is provided below. end note

5. Finally, at some time after the object becomes eligible for collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make
memory management decisions, such as where in memory to locate a newly created object, when to
relocate an object, and when an object is no longer in use or inaccessible.

ECMA-334

66

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector might implement a wide range of memory management policies. C# specifies neither a time
constraint within that span, nor an order in which finalizers are run. Whether or not finalizers are run as
part of application termination is implementation-specific (§7.2).

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, finalizers to be run (or not run), and so
forth.

Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and
run finalizers, a conforming implementation might produce output that differs from that shown by
the following code. The program

using System;
class A
{
 ~A()
 {
 Console.WriteLine("Finalize instance of A");
 }
}

class B
{
 object Ref;
 public B(object o)
 {
 Ref = o;
 }

 ~B()
 {
 Console.WriteLine("Finalize instance of B");
 }
}

class Test
{
 static void Main()
 {
 B b = new B(new A());
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

creates an instance of class A and an instance of class B. These objects become eligible for garbage
collection when the variable b is assigned the value null, since after this time it is impossible for any
user-written code to access them. The output could be either

Finalize instance of A
Finalize instance of B

or

Chapter 7 Basic concepts

67

Finalize instance of B
Finalize instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligible for finalization” and “eligible for collection” can be
important. For example,

using System;
class A
{
 ~A()
 {
 Console.WriteLine("Finalize instance of A");
 }

 public void F()
 {
 Console.WriteLine("A.F");
 Test.RefA = this;
 }
}

class B
{
 public A Ref;

 ~B()
 {
 Console.WriteLine("Finalize instance of B");
 Ref.F();
 }
}

class Test
{
 public static A RefA;
 public static B RefB;

 static void Main()
 {
 RefB = new B();
 RefA = new A();
 RefB.Ref = RefA;
 RefB = null;
 RefA = null;
 // A and B now eligible for finalization
 GC.Collect();
 GC.WaitForPendingFinalizers();
 // B now eligible for collection, but A is not
 if (RefA != null)
 {
 Console.WriteLine("RefA is not null");
 }
 }
}

ECMA-334

68

In the above program, if the garbage collector chooses to run the finalizer of A before the finalizer of
B, then the output of this program might be:

Finalize instance of A
Finalize instance of B
A.F
RefA is not null

Note that although the instance of A was not in use and A’s finalizer was run, it is still possible for
methods of A (in this case, F) to be called from another finalizer. Also, note that running of a finalizer
might cause an object to become usable from the mainline program again. In this case, the running
of B’s finalizer caused an instance of A that was previously not in use, to become accessible from the
live reference Test.RefA. After the call to WaitForPendingFinalizers, the instance of B is eligible
for collection, but the instance of A is not, because of the reference Test.RefA.

end example

7.10 Execution order
Execution of a C# program proceeds such that the side effects of each executing thread are preserved at
critical execution points. A side effect is defined as a read or write of a volatile field, a write to a non-
volatile variable, a write to an external resource, and the throwing of an exception. The critical execution
points at which the order of these side effects shall be preserved are references to volatile fields (§14.5.4),
lock statements (§12.13), and thread creation and termination. The execution environment is free to
change the order of execution of a C# program, subject to the following constraints:

• Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

• Initialization ordering rules are preserved (§14.5.5, §14.5.6).

• The ordering of side effects is preserved with respect to volatile reads and writes (§14.5.4).
Additionally, the execution environment need not evaluate part of an expression if it can deduce
that that expression’s value is not used and that no needed side effects are produced (including any
caused by calling a method or accessing a volatile field). When program execution is interrupted by
an asynchronous event (such as an exception thrown by another thread), it is not guaranteed that
the observable side effects are visible in the original program order.

Chapter 8 Types

69

8. Types

8.1 General
The types of the C# language are divided into two main categories: reference types and value types. Both
value types and reference types may be generic types, which take one or more type parameters. Type
parameters can designate both value types and reference types.

type
 : reference_type
 | value_type
 | type_parameter
 | pointer_type // unsafe code support
 ;

pointer_type (§22.3) is available only in unsafe code (§22).

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to their data, the latter being known as objects.
With reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the
other.

Note: When a variable is a ref or out parameter, it does not have its own storage but references the
storage of another variable. In this case, the ref or out variable is effectively an alias for another
variable and not a distinct variable. end note

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from the object class type, and object is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values as type object. Values of
value types are treated as objects by performing boxing and unboxing operations (§8.3.12).

For convenience, throughout this specification, some library type names are written without using their
full name qualification. Refer to §C.5 for more information.

8.2 Reference types

8.2.1 General

A reference type is a class type, an interface type, an array type, a delegate type, or the dynamic type.

reference_type
 : class_type
 | interface_type
 | array_type
 | delegate_type
 | 'dynamic'
 ;

class_type

ECMA-334

70

 : type_name
 | 'object'
 | 'string'
 ;

interface_type
 : type_name
 ;

array_type
 : non_array_type rank_specifier+
 ;

non_array_type
 : value_type
 | class_type
 | interface_type
 | delegate_type
 | 'dynamic'
 | type_parameter
 | pointer_type // unsafe code support
 ;

rank_specifier
 : '[' ','* ']'
 ;

delegate_type
 : type_name
 ;

pointer_type is available only in unsafe code (§22.3).

A reference type value is a reference to an instance of the type, the latter known as an object. The special
value null is compatible with all reference types and indicates the absence of an instance.

8.2.2 Class types

A class type defines a data structure that contains data members (constants and fields), function
members (methods, properties, events, indexers, operators, instance constructors, finalizers, and static
constructors), and nested types. Class types support inheritance, a mechanism whereby derived classes
can extend and specialize base classes. Instances of class types are created using
object_creation_expressions (§11.7.15.2).

Class types are described in §14.

Certain predefined class types have special meaning in the C# language, as described in the table below.

Class type Description

System.Object The ultimate base class of all other types. See §8.2.3.

System.String The string type of the C# language. See §8.2.5.

System.ValueType The base class of all value types. See §8.3.2.

System.Enum The base class of all enum types. See §18.5.

Chapter 8 Types

71

System.Array The base class of all array types. See §16.2.2.

System.Delegate The base class of all delegate types. See §19.1.

System.Exception The base class of all exception types. See §20.3.

8.2.3 The object type

The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The keyword object is simply an alias for the predefined class System.Object.

8.2.4 The dynamic type

The dynamic type, like object, can reference any object. When operations are applied to expressions of
type dynamic, their resolution is deferred until the program is run. Thus, if the operation cannot
legitimately be applied to the referenced object, no error is given during compilation. Instead, an
exception will be thrown when resolution of the operation fails at run-time.

The dynamic type is further described in §8.7, and dynamic binding in §11.3.1.

8.2.5 The string type

The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (§6.4.5.6).

The keyword string is simply an alias for the predefined class System.String.

8.2.6 Interface types

An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interface types are described in §17.

8.2.7 Array types

An array is a data structure that contains zero or more variables, which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in §16.

8.2.8 Delegate types

A delegate is a data structure that refers to one or more methods. For instance methods, it also refers to
their corresponding object instances.

Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function
pointer can only reference static functions, a delegate can reference both static and instance
methods. In the latter case, the delegate stores not only a reference to the method’s entry point, but
also a reference to the object instance on which to invoke the method. end note

Delegate types are described in §19.

ECMA-334

72

8.3 Value types

8.3.1 General

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types
called the simple types. The simple types are identified through keywords.

value_type
 : non_nullable_value_type
 | nullable_value_type
 ;

non_nullable_value_type
 : struct_type
 | enum_type
 ;

struct_type
 : type_name
 | simple_type
 ;

simple_type
 : numeric_type
 | 'bool'
 ;

numeric_type
 : integral_type
 | floating_point_type
 | 'decimal'
 ;

integral_type
 : 'sbyte'
 | 'byte'
 | 'short'
 | 'ushort'
 | 'int'
 | 'uint'
 | 'long'
 | 'ulong'
 | 'char'
 ;

floating_point_type
 : 'float'
 | 'double'
 ;

enum_type
 : type_name
 ;

nullable_value_type

Chapter 8 Types

73

 : non_nullable_value_type '?'
 ;

Unlike a variable of a reference type, a variable of a value type can contain the value null only if the value
type is a nullable value type (§8.3.11). For every non-nullable value type there is a corresponding nullable
value type denoting the same set of values plus the value null.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by
the reference.

8.3.2 The System.ValueType type

All value types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object. It is not possible for any type to derive from a value type, and value types are thus implicitly
sealed (§14.2.2.3).

Note that System.ValueType is not itself a value_type. Rather, it is a class_type from which all value_types
are automatically derived.

8.3.3 Default constructors

All value types implicitly declare a public parameterless instance constructor called the default
constructor. The default constructor returns a zero-initialized instance known as the default value for
the value type:

• For all simple_types, the default value is the value produced by a bit pattern of all zeros:

o For sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is 0.

o For char, the default value is '\x0000'.

o For float, the default value is 0.0f.

o For double, the default value is 0.0d.

o For decimal, the default value is 0m (that is, value zero with scale 0).

o For bool, the default value is false.

o For an enum_type E, the default value is 0, converted to the type E.

• For a struct_type, the default value is the value produced by setting all value type fields to their
default value and all reference type fields to null.

• For a nullable_value_type the default value is an instance for which the HasValue property is false.
The default value is also known as the null value of the nullable value type. Attempting to read the
Value property of such a value causes an exception of type System.InvalidOperationException to
be thrown (§8.3.11).

Like any other instance constructor, the default constructor of a value type is invoked using the new
operator.

Note: For efficiency reasons, this requirement is not intended to actually have the implementation
generate a constructor call. For value types, the default value expression (§11.7.19) produces the
same result as using the default constructor. end note

Example: In the code below, variables i, j and k are all initialized to zero.

ECMA-334

74

class A
{
 void F()
 {
 int i = 0;
 int j = new int();
 int k = default(int);
 }
}

end example

Because every value type implicitly has a public parameterless instance constructor, it is not possible for
a struct type to contain an explicit declaration of a parameterless constructor. A struct type is however
permitted to declare parameterized instance constructors (§15.4.9).

8.3.4 Struct types

A struct type is a value type that can declare constants, fields, methods, properties, events, indexers,
operators, instance constructors, static constructors, and nested types. The declaration of struct types is
described in §15.

8.3.5 Simple types

C# provides a set of predefined struct types called the simple types. The simple types are identified
through keywords, but these keywords are simply aliases for predefined struct types in the System
namespace, as described in the table below.

Keyword Aliased type

sbyte System.SByte

byte System.Byte

short System.Int16

ushort System.UInt16

int System.Int32

uint System.UInt32

long System.Int64

ulong System.UInt64

char System.Char

float System.Single

double System.Double

bool System.Boolean

decimal System.Decimal

Because a simple type aliases a struct type, every simple type has members.

Example: int has the members declared in System.Int32 and the members inherited from
System.Object, and the following statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

Chapter 8 Types

75

end example

Note: The simple types differ from other struct types in that they permit certain additional
operations:

• Most simple types permit values to be created by writing literals (§6.4.5), although C# makes
no provision for literals of struct types in general. Example: 123 is a literal of type int and 'a'
is a literal of type char. end example

• When the operands of an expression are all simple type constants, it is possible for the
compiler to evaluate the expression at compile-time. Such an expression is known as a
constant_expression (§11.20). Expressions involving operators defined by other struct types
are not considered to be constant expressions

• Through const declarations, it is possible to declare constants of the simple types (§14.4). It is
not possible to have constants of other struct types, but a similar effect is provided by static
readonly fields.

• Conversions involving simple types can participate in evaluation of conversion operators
defined by other struct types, but a user-defined conversion operator can never participate in
evaluation of another user-defined conversion operator (§10.5.3).

end note.

8.3.6 Integral types

C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and char. The integral
types have the following sizes and ranges of values:

• The sbyte type represents signed 8-bit integers with values from -128 to 127, inclusive.

• The byte type represents unsigned 8-bit integers with values from 0 to 255, inclusive.

• The short type represents signed 16-bit integers with values from -32768 to 32767, inclusive.

• The ushort type represents unsigned 16-bit integers with values from 0 to 65535, inclusive.

• The int type represents signed 32-bit integers with values from -2147483648 to 2147483647,
inclusive.

• The uint type represents unsigned 32-bit integers with values from 0 to 4294967295, inclusive.

• The long type represents signed 64-bit integers with values from -9223372036854775808 to
9223372036854775807, inclusive.

• The ulong type represents unsigned 64-bit integers with values from 0 to 18446744073709551615,
inclusive.

• The char type represents unsigned 16-bit integers with values from 0 to 65535, inclusive. The set of
possible values for the char type corresponds to the Unicode character set.
Note: Although char has the same representation as ushort, not all operations permitted on one
type are permitted on the other. end note

All signed integral types are represented using two’s complement format.

The integral_type unary and binary operators always operate with signed 32-bit precision, unsigned 32-
bit precision, signed 64-bit precision, or unsigned 64-bit precision, as detailed in §11.4.7.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

ECMA-334

76

• There are no predefined implicit conversions from other types to the char type. In particular, even
though the byte and ushort types have ranges of values that are fully representable using the char
type, implicit conversions from sbyte, byte, or ushort to char do not exist.

• Constants of the char type shall be written as character_literals or as integer_literals in combination
with a cast to type char.

Example: (char)10 is the same as '\x000A'. end example

The checked and unchecked operators and statements are used to control overflow checking for integral-
type arithmetic operations and conversions (§11.7.18). In a checked context, an overflow produces a
compile-time error or causes a System.OverflowException to be thrown. In an unchecked context,
overflows are ignored and any high-order bits that do not fit in the destination type are discarded.

8.3.7 Floating-point types

C# supports two floating-point types: float and double. The float and double types are represented
using the 32-bit single-precision and 64-bit double-precision IEC 60559 formats, which provide the
following sets of values:

• Positive zero and negative zero. In most situations, positive zero and negative zero behave
identically as the simple value zero, but certain operations distinguish between the two (§11.9.3).

• Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-
zero number by zero.
Example:
1.0 / 0.0 yields positive infinity, and –1.0 / 0.0 yields negative infinity.
end example

• The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

• The finite set of non-zero values of the form s × m × 2ᵉ, where s is 1 or −1, and m and e are
determined by the particular floating-point type: For float, 0 < m < 2²⁴ and −149 ≤ e ≤ 104, and for
double, 0 < m < 2⁵³ and −1075 ≤ e ≤ 970. Denormalized floating-point numbers are considered valid
non-zero values. C# neither requires nor forbids that a conforming implementation support
denormalized floating-point numbers.

The float type can represent values ranging from approximately 1.5 × 10⁻⁴⁵ to 3.4 × 10³⁸ with a
precision of 7 digits.

The double type can represent values ranging from approximately 5.0 × 10⁻³²⁴ to 1.7 × 10³⁰⁸ with a
precision of 15-16 digits.

If either operand of a binary operator is a floating-point type then standard numeric promotions are
applied, as detailed in §11.4.7, and the operation is performed with float or double precision.

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

• The result of a floating-point operation is rounded to the nearest representable value in the
destination format.

• If the magnitude of the result of a floating-point operation is too small for the destination format,
the result of the operation becomes positive zero or negative zero.

Chapter 8 Types

77

• If the magnitude of the result of a floating-point operation is too large for the destination format, the
result of the operation becomes positive infinity or negative infinity.

• If a floating-point operation is invalid, the result of the operation becomes NaN.

• If one or both operands of a floating-point operation is NaN, the result of the operation becomes
NaN.

Floating-point operations may be performed with higher precision than the result type of the operation.
To force a value of a floating-point type to the exact precision of its type, an explicit cast (§11.8.7) can be
used.

Example: Some hardware architectures support an “extended” or “long double” floating-point type
with greater range and precision than the double type, and implicitly perform all floating-point
operations using this higher precision type. Only at excessive cost in performance can such
hardware architectures be made to perform floating-point operations with less precision, and rather
than require an implementation to forfeit both performance and precision, C# allows a higher
precision type to be used for all floating-point operations. Other than delivering more precise
results, this rarely has any measurable effects. However, in expressions of the form x * y / z,
where the multiplication produces a result that is outside the double range, but the subsequent
division brings the temporary result back into the double range, the fact that the expression is
evaluated in a higher range format can cause a finite result to be produced instead of an infinity. end
example

8.3.8 The Decimal type

The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values including those in the range at least -7.9 × 10⁻²⁸ to 7.9 × 10²⁸, with at least 28-digit
precision.

The finite set of values of type decimal are of the form (–1)ᵛ × c × 10⁻ᵉ, where the sign v is 0 or 1, the
coefficient c is given by 0 ≤ c < Cmax, and the scale e is such that Emin ≤ e ≤ Emax, where Cmax is at least 1
× 10²⁸, Emin ≤ 0, and Emax ≥ 28. The decimal type does not necessarily support signed zeros, infinities, or
NaN’s.

A decimal is represented as an integer scaled by a power of ten. For decimals with an absolute value less
than 1.0m, the value is exact to at least the 28th decimal place. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to at least 28 digits. Contrary to the float and double data
types, decimal fractional numbers such as 0.1 can be represented exactly in the decimal representation.
In the float and double representations, such numbers often have non-terminating binary expansions,
making those representations more prone to round-off errors.

If either operand of a binary operator is of decimal type then standard numeric promotions are applied,
as detailed in §11.4.7, and the operation is performed with double precision.

The result of an operation on values of type decimal is that which would result from calculating an exact
result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results
are rounded to the nearest representable value, and, when a result is equally close to two representable
values, to the value that has an even number in the least significant digit position (this is known as
“banker’s rounding”). That is, results are exact to at least the 28th decimal place. Note that rounding may
produce a zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the decimal format,
a System.OverflowException is thrown.

ECMA-334

78

The decimal type has greater precision but may have a smaller range than the floating-point types. Thus,
conversions from the floating-point types to decimal might produce overflow exceptions, and
conversions from decimal to the floating-point types might cause loss of precision or overflow exceptions.
For these reasons, no implicit conversions exist between the floating-point types and decimal, and
without explicit casts, a compile-time error occurs when floating-point and decimal operands are directly
mixed in the same expression.

8.3.9 The Bool type

The bool type represents Boolean logical quantities. The possible values of type bool are true and false.

No standard conversions exist between bool and other value types. In particular, the bool type is distinct
and separate from the integral types, a bool value cannot be used in place of an integral value, and vice
versa.

Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be
converted to the Boolean value false, and a non-zero integral or floating-point value, or a non-null
pointer can be converted to the Boolean value true. In C#, such conversions are accomplished by
explicitly comparing an integral or floating-point value to zero, or by explicitly comparing an object
reference to null. end note

8.3.10 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying
type, which shall be byte, sbyte, short, ushort, int, uint, long or ulong. The set of values of the
enumeration type is the same as the set of values of the underlying type. Values of the enumeration type
are not restricted to the values of the named constants. Enumeration types are defined through
enumeration declarations (§18.2).

8.3.11 Nullable value types

A nullable value type can represent all values of its underlying type plus an additional null value. A
nullable value type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

Conversely, a non-nullable value type is any value type other than System.Nullable<T> and its
shorthand T? (for any T), plus any type parameter that is constrained to be a non-nullable value type (that
is, any type parameter with a value type constraint (§14.2.5)). The System.Nullable<T> type specifies the
value type constraint for T, which means that the underlying type of a nullable value type can be any non-
nullable value type. The underlying type of a nullable value type cannot be a nullable value type or a
reference type. For example, int?? and string? are invalid types.

An instance of a nullable value type T? has two public read-only properties:

• A HasValue property of type bool

• A Value property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains a known value
and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an undefined value.
Attempting to read the Value of a null instance causes a System.InvalidOperationException to be
thrown. The process of accessing the Value property of a nullable instance is referred to as unwrapping.

Chapter 8 Types

79

In addition to the default constructor, every nullable value type T? has a public constructor with a single
parameter of type T. Given a value x of type T, a constructor invocation of the form

new T?(x)

creates a non-null instance of T? for which the Value property is x. The process of creating a non-null
instance of a nullable value type for a given value is referred to as wrapping.

Implicit conversions are available from the null literal to T? (§10.2.7) and from T to T? (§10.2.6).

The nullable type T? implements no interfaces (§17). In particular, this means it does not implement any
interface that the underlying type T does.

8.3.12 Boxing and unboxing

The concept of boxing and unboxing provide a bridge between value_types and reference_types by
permitting any value of a value_type to be converted to and from type object. Boxing and unboxing
enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

Boxing is described in more detail in §10.2.9 and unboxing is described in §10.3.6.

8.4 Constructed types

8.4.1 General

A generic type declaration, by itself, denotes an unbound generic type that is used as a “blueprint” to
form many different types, by way of applying type arguments. The type arguments are written within
angle brackets (< and >) immediately following the name of the generic type. A type that includes at least
one type argument is called a constructed type. A constructed type can be used in most places in the
language in which a type name can appear. An unbound generic type can only be used within a
typeof_expression (§11.7.16).

Constructed types can also be used in expressions as simple names (§11.7.4) or when accessing a member
(§11.7.6).

When a namespace_or_type_name is evaluated, only generic types with the correct number of type
parameters are considered. Thus, it is possible to use the same identifier to identify different types, as
long as the types have different numbers of type parameters. This is useful when mixing generic and non-
generic classes in the same program.

Example:

namespace Widgets
{
 class Queue {...}
 class Queue<TElement> {...}
}

namespace MyApplication
{
 using Widgets;

 class X
 {
 Queue q1; // Non-generic Widgets.Queue

ECMA-334

80

 Queue<int> q2; // Generic Widgets.Queue
 }
}

end example

The detailed rules for name lookup in the namespace_or_type_name productions is described in §7.8. The
resolution of ambiguities in these productions is described in §6.2.5. A type_name might identify a
constructed type even though it doesn’t specify type parameters directly. This can occur where a type is
nested within a generic class declaration, and the instance type of the containing declaration is implicitly
used for name lookup (§14.3.9.7).

Example:

class Outer<T>
{
 public class Inner {...}

 public Inner i; // Type of i is Outer<T>.Inner
}

end example

A non-enum constructed type shall not be used as an unmanaged_type (§8.8).

8.4.2 Type arguments

Each argument in a type argument list is simply a type.

type_argument_list
 : '<' type_arguments '>'
 ;

type_arguments
 : type_argument (',' type_argument)*
 ;

type_argument
 : type
 ;

A type_argument shall not be a pointer type (§22). Each type argument shall satisfy any constraints on the
corresponding type parameter (§14.2.5).

8.4.3 Open and closed types

All types can be classified as either open types or closed types. An open type is a type that involves type
parameters. More specifically:

• A type parameter defines an open type.

• An array type is an open type if and only if its element type is an open type.

• A constructed type is an open type if and only if one or more of its type arguments is an open type. A
constructed nested type is an open type if and only if one or more of its type arguments or the type
arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

Chapter 8 Types

81

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed types, and open types occur only during compile-
time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other
closed constructed types. Since an open type does not exist at run-time, there are no static variables
associated with an open type. Two closed constructed types are the same type if they are constructed
from the same unbound generic type, and their corresponding type arguments are the same type.

8.4.4 Bound and unbound types

The term unbound type refers to a non-generic type or an unbound generic type. The term bound type
refers to a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound generic type is not itself
a type, and cannot be used as the type of a variable, argument or return value, or as a base type. The only
construct in which an unbound generic type can be referenced is the typeof expression (§11.7.16).

8.4.5 Satisfying constraints

Whenever a constructed type or generic method is referenced, the supplied type arguments are checked
against the type parameter constraints declared on the generic type or method (§14.2.5). For each where
clause, the type argument A that corresponds to the named type parameter is checked against each
constraint as follows:

• If the constraint is a class type, an interface type, or a type parameter, let C represent that
constraint with the supplied type arguments substituted for any type parameters that appear in the
constraint. To satisfy the constraint, it shall be the case that type A is convertible to type C by one of
the following:

o An identity conversion (§10.2.2)

o An implicit reference conversion (§10.2.8)

o A boxing conversion (§10.2.9), provided that type A is a non-nullable value type.

o An implicit reference, boxing or type parameter conversion from a type parameter A to C.

• If the constraint is the reference type constraint (class), the type A shall satisfy one of the following:

o A is an interface type, class type, delegate type, array type or the dynamic type.
Note: System.ValueType and System.Enum are reference types that satisfy this constraint. end
note

o A is a type parameter that is known to be a reference type (§8.2).

• If the constraint is the value type constraint (struct), the type A shall satisfy one of the following:

o A is a struct type or enum type, but not a nullable value type.
Note: System.ValueType and System.Enum are reference types that do not satisfy this constraint.
end note

o A is a type parameter having the value type constraint (§14.2.5).

• If the constraint is the constructor constraint new(), the type A shall not be abstract and shall have
a public parameterless constructor. This is satisfied if one of the following is true:

ECMA-334

82

o A is a value type, since all value types have a public default constructor (§8.3.3).

o A is a type parameter having the constructor constraint (§14.2.5).

o A is a type parameter having the value type constraint (§14.2.5).

o A is a class that is not abstract and contains an explicitly declared public constructor with no
parameters.

o A is not abstract and has a default constructor (§14.11.5).

A compile-time error occurs if one or more of a type parameter’s constraints are not satisfied by the given
type arguments.

Since type parameters are not inherited, constraints are never inherited either.

Example: In the following, D needs to specify the constraint on its type parameter T so that T satisfies
the constraint imposed by the base class B<T>. In contrast, class E need not specify a constraint,
because List<T> implements IEnumerable for any T.

class B<T> where T: IEnumerable {...}
class D<T> : B<T> where T: IEnumerable {...}
class E<T> : B<List<T>> {...}

end example

8.5 Type parameters
A type parameter is an identifier designating a value type or reference type that the parameter is bound
to at run-time.

type_parameter
 : identifier
 ;

Since a type parameter can be instantiated with many different type arguments, type parameters have
slightly different operations and restrictions than other types.

Note: These include:

• A type parameter cannot be used directly to declare a base class (§14.2.4.2) or interface
(§17.2.4).

• The rules for member lookup on type parameters depend on the constraints, if any, applied to
the type parameter. They are detailed in §11.5.

• The available conversions for a type parameter depend on the constraints, if any, applied to
the type parameter. They are detailed in §10.2.12 and §10.3.8.

• The literal null cannot be converted to a type given by a type parameter, except if the type
parameter is known to be a reference type (§10.2.12). However, a default expression
(§11.7.19) can be used instead. In addition, a value with a type given by a type parameter can
be compared with null using == and != (§11.11.7) unless the type parameter has the value
type constraint.

• A new expression (§11.7.15.2) can only be used with a type parameter if the type parameter is
constrained by a constructor_constraint or the value type constraint (§14.2.5).

• A type parameter cannot be used anywhere within an attribute.

Chapter 8 Types

83

• A type parameter cannot be used in a member access (§11.7.6) or type name (§7.8) to identify
a static member or a nested type.

• A type parameter cannot be used as an unmanaged_type (§8.8).

end note

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is
bound to a run-time type that was specified by supplying a type argument to the generic type declaration.
Thus, the type of a variable declared with a type parameter will, at run-time, be a closed constructed type
§8.4.3. The run-time execution of all statements and expressions involving type parameters uses the type
that was supplied as the type argument for that parameter.

8.6 Expression tree types
Expression trees permit lambda expressions to be represented as data structures instead of executable
code. Expression trees are values of expression tree types of the form
System.Linq.Expressions.Expression<TDelegate>, where TDelegate is any delegate type. For the
remainder of this specification we will refer to these types using the shorthand Expression<TDelegate>.

If a conversion exists from a lambda expression to a delegate type D, a conversion also exists to the
expression tree type Expression<TDelegate>. Whereas the conversion of a lambda expression to a
delegate type generates a delegate that references executable code for the lambda expression, conversion
to an expression tree type creates an expression tree representation of the lambda expression. More
details of this conversion are provided in §10.7.3.

Example: The following program represents a lambda expression both as executable code and as an
expression tree. Because a conversion exists to Func<int,int>, a conversion also exists to
Expression<Func<int,int>>:

Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => x + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1, and the
expression tree exp references a data structure that describes the expression x => x + 1.

end example

Expression<TDelegate> provides an instance method Compile which produces a delegate of type
TDelegate:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed. Thus, given the
definitions above, del and del2 are equivalent, and the following two statements will have the same
effect:

int i1 = del(1);
int i2 = del2(1);

After executing this code, i1 and i2 will both have the value 2.

The API surface provided by Expression<TDelegate> is implementation-specific beyond the requirement
for a Compile method described above.

Note: While the details of the API provided for expression trees are implementation-specific, it is
expected that an implementation will:

ECMA-334

84

• Enable code to inspect and respond to the structure of an expression tree created as the result
of a conversion from a lambda expression

• Enable expression trees to be created programatically within user code

end note

8.7 The dynamic type
The type dynamic uses dynamic binding, as described in detail in §11.3.2, as opposed to static binding
which is used by all other types.

dynamic is considered identical to object except in the following respects:

• Operations on expressions of type dynamic can be dynamically bound (§11.3.3).

• Type inference (§11.6.3) will prefer dynamic over object if both are candidates.

• dynamic cannot be used as

o the type in an object_creation_expression (§11.7.15.2)

o a predefined_type in a member_access (§11.7.6.1)

o the operand of the typeof operator

o an attribute argument

o a constraint

o an extension method type

o any part of a type argument within struct_interfaces (§15.2.4) or interface_type_list (§14.2.4.1).

Because of this equivalence, the following holds:

• There is an implicit identity conversion between object and dynamic, and between constructed
types that are the same when replacing dynamic with object.

• Implicit and explicit conversions to and from object also apply to and from dynamic.

• Signatures that are the same when replacing dynamic with object are considered the same
signature.

• The type dynamic is indistinguishable from object at run-time.

• An expression of the type dynamic is referred to as a dynamic expression.

8.8 Unmanaged types
unmanaged_type
 : value_type
 | pointer_type // unsafe code support
 ;

An unmanaged_type is any type that isn’t a reference_type, a type_parameter, or a constructed type, and
contains no fields whose type is not an unmanaged_type. In other words, an unmanaged_type is one of the
following:

• sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.

Chapter 8 Types

85

• Any enum_type.

• Any user-defined struct_type that is not a constructed type and contains fields of unmanaged_types
only.

• In unsafe code (§22.2), any pointer_type (§22.3).

Chapter 9 Variables

87

9. Variables

9.1 General
Variables represent storage locations. Every variable has a type that determines what values can be
stored in the variable. C# is a type-safe language, and the C# compiler guarantees that values stored in
variables are always of the appropriate type. The value of a variable can be changed through assignment
or through use of the ++ and -- operators.

A variable shall be definitely assigned (§9.4) before its value can be obtained.

As described in the following subclauses, variables are either initially assigned or initially unassigned.
An initially assigned variable has a well-defined initial value and is always considered definitely assigned.
An initially unassigned variable has no initial value. For an initially unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable shall occur in every possible
execution path leading to that location.

9.2 Variable categories

9.2.1 General

C# defines seven categories of variables: static variables, instance variables, array elements, value
parameters, reference parameters, output parameters, and local variables. The subclauses that follow
describe each of these categories.

Example: In the following code

class A
{
 public static int x;
 int y;

 void F(int[] v, int a, ref int b, out int c)
 {
 int i = 1;
 c = a + b++;
 }
}

x is a static variable, y is an instance variable, v[0] is an array element, a is a value parameter, b is a
reference parameter, c is an output parameter, and i is a local variable.

end example

9.2.2 Static variables

A field declared with the static modifier is a static variable. A static variable comes into existence before
execution of the static constructor (§14.12) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

The initial value of a static variable is the default value (§9.3) of the variable’s type.

ECMA-334

88

For the purposes of definite assignment checking, a static variable is considered initially assigned.

9.2.3 Instance variables

9.2.3.1 General

A field declared without the static modifier is an instance variable.

9.2.3.2 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that class is created, and
ceases to exist when there are no references to that instance and the instance’s finalizer (if any) has
executed.

The initial value of an instance variable of a class is the default value (§9.3) of the variable’s type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially
assigned.

9.2.3.3 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comes into existence or ceases to exist, so too do the
instance variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance
variables, and when a struct variable is considered initially unassigned, its instance variables are likewise
unassigned.

9.2.4 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initial value of each of the elements of an array is the default value (§9.3) of the type of the array
elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

9.2.5 Value parameters

A parameter declared without a ref or out modifier is a value parameter.

A value parameter comes into existence upon invocation of the function member (method, instance
constructor, accessor, or operator) or anonymous function to which the parameter belongs, and is
initialized with the value of the argument given in the invocation. A value parameter normally ceases to
exist when execution of the function body completes. However, if the value parameter is captured by an
anonymous function (§11.16.6.2), its lifetime extends at least until the delegate or expression tree created
from that anonymous function is eligible for garbage collection.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

9.2.6 Reference parameters

A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents
the same storage location as the variable given as the argument in the function member or anonymous

Chapter 9 Variables

89

function invocation. Thus, the value of a reference parameter is always the same as the underlying
variable.

The following definite assignment rules apply to reference parameters.

Note: The rules for output parameters are different, and are described in (§9.2.7). end note

• A variable shall be definitely assigned (§9.4) before it can be passed as a reference parameter in a
function member or delegate invocation.

• Within a function member or anonymous function, a reference parameter is considered initially
assigned.

For a struct type, within an instance method or instance accessor (§11.2.1) or instance constructor with
a constructor initializer, the this keyword behaves exactly as a reference parameter of the struct type
(§11.7.12).

9.2.7 Output parameters

A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the function member or delegate
invocation. Thus, the value of an output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters.

Note: The rules for reference parameters are different, and are described in (§9.2.6). end note

• A variable need not be definitely assigned before it can be passed as an output parameter in a
function member or delegate invocation.

• Following the normal completion of a function member or delegate invocation, each variable that
was passed as an output parameter is considered assigned in that execution path.

• Within a function member or anonymous function, an output parameter is considered initially
unassigned.

• Every output parameter of a function member or anonymous function shall be definitely assigned
(§9.4) before the function member or anonymous function returns normally.

Within an instance constructor of a struct type, the this keyword behaves exactly as an output or
reference parameter of the struct type, depending on whether the constructor declaration includes a
constructor initializer (§11.7.12).

9.2.8 Local variables

A local variable is declared by a local_variable_declaration, foreach_statement, or specific_catch_clause of
a try_statement. For a foreach_statement, the local variable is an iteration variable (§12.9.5). For a
specific_catch_clause, the local variable is an exception variable (§12.11). A local variable declared by a
foreach_statement or specific_catch_clause is considered initially assigned.

A local_variable_declaration can occur in a block, a for_statement, a switch_block, or a using_statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to
be reserved for it. This lifetime extends from entry into the scope with which it is associated, at least until
execution of that scope ends in some way. (Entering an enclosed block, calling a method, or yielding a
value from an iterator block suspends, but does not end, execution of the current scope.) If the local
variable is captured by an anonymous function (§11.16.6.2), its lifetime extends at least until the delegate

ECMA-334

90

or expression tree created from the anonymous function, along with any other objects that come to
reference the captured variable, are eligible for garbage collection. If the parent scope is entered
recursively or iteratively, a new instance of the local variable is created each time, and its
local_variable_initializer, if any, is evaluated each time.

Note: A local variable is instantiated each time its scope is entered. This behavior is visible to user
code containing anonymous methods. end note

Note: The lifetime of an iteration variable (§12.9.5) declared by a foreach_statement is a single
iteration of that statement. Each iteration creates a new variable. end note

Note: The actual lifetime of a local variable is implementation-dependent. For example, a compiler
might statically determine that a local variable in a block is only used for a small portion of that
block. Using this analysis, the compiler could generate code that results in the variable’s storage
having a shorter lifetime than its containing block.

The storage referred to by a local reference variable is reclaimed independently of the lifetime of
that local reference variable (§7.9).

end note

A local variable introduced by a local_variable_declaration is not automatically initialized and thus has no
default value. Such a local variable is considered initially unassigned.

Note: A local_variable_declaration that includes a local_variable_initializer is still initially unassigned.
Execution of the declaration behaves exactly like an assignment to the variable (§9.4.4.5). It is
possible to use a variable without executing its local_variable_initializer; e.g., within the initializer
expression itself or by using a goto_statement to bypass the initialization:

goto L;

int x = 1; // never executed

L: x += 1; // error: x not definitely assigned

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a
textual position that precedes its local_variable_declarator.

end note

9.3 Default values
The following categories of variables are automatically initialized to their default values:

• Static variables.

• Instance variables of class instances.

• Array elements.

The default value of a variable depends on the type of the variable and is determined as follows:

• For a variable of a value_type, the default value is the same as the value computed by the
value_type’s default constructor (§8.3.3).

• For a variable of a reference_type, the default value is null.

Chapter 9 Variables

91

Note: Initialization to default values is typically done by having the memory manager or garbage
collector initialize memory to all-bits-zero before it is allocated for use. For this reason, it is
convenient to use all-bits-zero to represent the null reference. end note

9.4 Definite assignment

9.4.1 General

At a given location in the executable code of a function member or an anonymous function, a variable is
said to be definitely assigned if the compiler can prove, by a particular static flow analysis (§9.4.4), that
the variable has been automatically initialized or has been the target of at least one assignment.

Note: Informally stated, the rules of definite assignment are:

• An initially assigned variable (§9.4.2) is always considered definitely assigned.

• An initially unassigned variable (§9.4.3) is considered definitely assigned at a given location if
all possible execution paths leading to that location contain at least one of the following:

o A simple assignment (§11.18.2) in which the variable is the left operand.

o An invocation expression (§11.7.8) or object creation expression (§11.7.15.2 that passes
the variable as an output parameter.

o For a local variable, a local variable declaration for the variable (§12.6.2) that includes a
variable initializer.

The formal specification underlying the above informal rules is described in §9.4.2, §9.4.3, and
§9.4.4.

end note

The definite assignment states of instance variables of a struct_type variable are tracked individually as
well as collectively. In additional to the rules above, the following rules apply to struct_type variables and
their instance variables:

• An instance variable is considered definitely assigned if its containing struct_type variable is
considered definitely assigned.

• A struct_type variable is considered definitely assigned if each of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

• A variable shall be definitely assigned at each location where its value is obtained.
Note: This ensures that undefined values never occur. end note
 The occurrence of a variable in an expression is considered to obtain the value of the variable,
except when

o the variable is the left operand of a simple assignment,

o the variable is passed as an output parameter, or

o the variable is a struct_type variable and occurs as the left operand of a member access.

• A variable shall be definitely assigned at each location where it is passed as a reference parameter.
Note: This ensures that the function member being invoked can consider the reference parameter
initially assigned. end note

ECMA-334

92

• All output parameters of a function member shall be definitely assigned at each location where the
function member returns (through a return statement or through execution reaching the end of the
function member body).
Note: This ensures that function members do not return undefined values in output parameters,
thus enabling the compiler to consider a function member invocation that takes a variable as an
output parameter equivalent to an assignment to the variable. end note

• The this variable of a struct_type instance constructor shall be definitely assigned at each location
where that instance constructor returns.

9.4.2 Initially assigned variables

The following categories of variables are classified as initially assigned:

• Static variables.

• Instance variables of class instances.

• Instance variables of initially assigned struct variables.

• Array elements.

• Value parameters.

• Reference parameters.

• Variables declared in a catch clause or a foreach statement.

9.4.3 Initially unassigned variables

The following categories of variables are classified as initially unassigned:

• Instance variables of initially unassigned struct variables.

• Output parameters, including the this variable of struct instance constructors without a
constructor initializer.

• Local variables, except those declared in a catch clause or a foreach statement.

9.4.4 Precise rules for determining definite assignment

9.4.4.1 General

In order to determine that each used variable is definitely assigned, the compiler shall use a process that
is equivalent to the one described in this subclause.

The compiler processes the body of each function member that has one or more initially unassigned
variables. For each initially unassigned variable v, the compiler determines a definite assignment state
for v at each of the following points in the function member:

• At the beginning of each statement

• At the end point (§12.2) of each statement

• On each arc which transfers control to another statement or to the end point of a statement

• At the beginning of each expression

• At the end of each expression

The definite assignment state of v can be either:

Chapter 9 Variables

93

• Definitely assigned. This indicates that on all possible control flows to this point, v has been
assigned a value.

• Not definitely assigned. For the state of a variable at the end of an expression of type bool, the state
of a variable that isn’t definitely assigned might (but doesn’t necessarily) fall into one of the
following sub-states:

o Definitely assigned after true expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as true, but is not necessarily assigned if the Boolean expression
evaluated as false.

o Definitely assigned after false expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as false, but is not necessarily assigned if the Boolean expression
evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

9.4.4.2 General rules for statements

• v is not definitely assigned at the beginning of a function member body.

• The definite assignment state of v at the beginning of any other statement is determined by checking
the definite assignment state of v on all control flow transfers that target the beginning of that
statement. If (and only if) v is definitely assigned on all such control flow transfers, then v is
definitely assigned at the beginning of the statement. The set of possible control flow transfers is
determined in the same way as for checking statement reachability (§12.2).

• The definite assignment state of v at the end point of a block, checked, unchecked, if, while, do, for,
foreach, lock, using, or switch statement is determined by checking the definite assignment state
of v on all control flow transfers that target the end point of that statement. If v is definitely assigned
on all such control flow transfers, then v is definitely assigned at the end point of the statement.
Otherwise, v is not definitely assigned at the end point of the statement. The set of possible control
flow transfers is determined in the same way as for checking statement reachability (§12.2).

Note: Because there are no control paths to an unreachable statement, v is definitely assigned at the
beginning of any unreachable statement. end note

9.4.4.3 Block statements, checked, and unchecked statements

The definite assignment state of v on the control transfer to the first statement of the statement list in the
block (or to the end point of the block, if the statement list is empty) is the same as the definite
assignment statement of v before the block, checked, or unchecked statement.

9.4.4.4 Expression statements

For an expression statement stmt that consists of the expression expr:

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v if definitely assigned at the end of expr, it is definitely assigned at the end point of stmt;
otherwise, it is not definitely assigned at the end point of stmt.

9.4.4.5 Declaration statements

• If stmt is a declaration statement without initializers, then v has the same definite assignment state
at the end point of stmt as at the beginning of stmt.

ECMA-334

94

• If stmt is a declaration statement with initializers, then the definite assignment state for v is
determined as if stmt were a statement list, with one assignment statement for each declaration
with an initializer (in the order of declaration).

9.4.4.6 If statements

For an if statement stmt of the form:

if (expr) then_stmt else else_stmt

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to then_stmt and to either else_stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to then_stmt, and not definitely assigned on the control flow
transfer to either else_stmt or to the end-point of stmt if there is no else clause.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to else_stmt, and not definitely assigned on the control flow
transfer to then_stmt. It is definitely assigned at the end-point of stmt if and only if it is definitely
assigned at the end-point of then_stmt.

• Otherwise, v is considered not definitely assigned on the control flow transfer to either the
then_stmt or else_stmt, or to the end-point of stmt if there is no else clause.

9.4.4.7 Switch statements

In a switch statement stmt with a controlling expression expr:

• The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

• The definite assignment state of v on the control flow transfer to a reachable switch block statement
list is the same as the definite assignment state of v at the end of expr.

9.4.4.8 While statements

For a while statement stmt of the form:

while (expr) while_body

• v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to while_body and to the end point of stmt.

• If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to while_body, but not definitely assigned at the end-point of
stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to while_body.

9.4.4.9 Do statements

For a do statement stmt of the form:

do do_body while (expr) ;

Chapter 9 Variables

95

• v has the same definite assignment state on the control flow transfer from the beginning of stmt to
do_body as at the beginning of stmt.

• v has the same definite assignment state at the beginning of expr as at the end point of do_body.

• If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to the end point of stmt.

• If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to do_body.

9.4.4.10 For statements

Definite assignment checking for a for statement of the form:

for (for_initializer ; for_condition ; for_iterator) embedded_statement

is done as if the statement were written:

{
 «for_initializer» ;
 while («for_condition»)
 {
 «embedded_statement» ;
 LLoop: «for_iterator» ;
 }
}

with continue statements that target the for statement being translated to goto statements targeting the
label LLoop. If the for_condition is omitted from the for statement, then evaluation of definite assignment
proceeds as if for_condition were replaced with true in the above expansion.

9.4.4.11 Break, continue, and goto statements

The definite assignment state of v on the control flow transfer caused by a break, continue, or goto
statement is the same as the definite assignment state of v at the beginning of the statement.

9.4.4.12 Throw statements

For a statement stmt of the form

throw expr ;

the definite assignment state of v at the beginning of expr is the same as the definite assignment state of v
at the beginning of stmt.

9.4.4.13 Return statements

For a statement stmt of the form

return expr ;

• The definite assignment state of v at the beginning of expr is the same as the definite assignment
state of v at the beginning of stmt.

• If v is an output parameter, then it shall be definitely assigned either:

o after expr

o or at the end of the finally block of a try-finally or try-catch-finally that encloses the
return statement.

ECMA-334

96

For a statement stmt of the form:

return ;

• If v is an output parameter, then it shall be definitely assigned either:

o before stmt

o or at the end of the finally block of a try-finally or try-catch-finally that encloses the
return statement.

9.4.4.14 Try-catch statements

For a statement stmt of the form:

try «try_block»
catch (...) «catch_block_1»
...
catch (...) «catch_block_n»

• The definite assignment state of v at the beginning of try_block is the same as the definite
assignment state of v at the beginning of stmt.

• The definite assignment state of v at the beginning of catch_block_i (for any i) is the same as the
definite assignment state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is
definitely assigned at the end-point of try_block and every catch_block_i (for every i from 1 to n).

9.4.4.15 Try-finally statements

For a try statement stmt of the form:

try try_block finally finally_block

• The definite assignment state of v at the beginning of try_block is the same as the definite
assignment state of v at the beginning of stmt.

• The definite assignment state of v at the beginning of finally_block is the same as the definite
assignment state of v at the beginning of stmt.

• The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) at
least one of the following is true:

o v is definitely assigned at the end-point of try_block

o v is definitely assigned at the end-point of finally_block

If a control flow transfer (such as a goto statement) is made that begins within try_block, and ends outside
of try_block, then v is also considered definitely assigned on that control flow transfer if v is definitely
assigned at the end-point of finally_block. (This is not an only if—if v is definitely assigned for another
reason on this control flow transfer, then it is still considered definitely assigned.)

9.4.4.16 Try-catch-finally statements

Definite assignment analysis for a try-catch-finally statement of the form:

try «try_block»
catch (...) «catch_block_1»
...
catch (...) «catch_block_n»
finally «finally_block»

Chapter 9 Variables

97

is done as if the statement were a try-finally statement enclosing a try-catch statement:

try
{
 try «try_block»
 catch (...) «catch_block_1»
 ...
 catch (...) «catch_block_n»
}
finally «finally_block»

Example: The following example demonstrates how the different blocks of a try statement (§12.11)
affect definite assignment.

class A
{
 static void F()
 {
 int i, j;
 try
 {
 goto LABEL;
 // neither i nor j definitely assigned
 i = 1;
 // i definitely assigned
 }
 catch
 {
 // neither i nor j definitely assigned
 i = 3;
 // i definitely assigned
 }
 finally
 {
 // neither i nor j definitely assigned
 j = 5;
 // j definitely assigned
 }
 // i and j definitely assigned
 LABEL:
 // j definitely assigned
 }
}

end example

9.4.4.17 Foreach statements

For a foreach statement stmt of the form:

foreach (type identifier in expr) embedded_statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

• The definite assignment state of v on the control flow transfer to embedded_statement or to the end
point of stmt is the same as the state of v at the end of expr.

ECMA-334

98

9.4.4.18 Using statements

For a using statement stmt of the form:

using (resource_acquisition) embedded_statement

• The definite assignment state of v at the beginning of resource_acquisition is the same as the state of
v at the beginning of stmt.

• The definite assignment state of v on the control flow transfer to embedded_statement is the same as
the state of v at the end of resource_acquisition.

9.4.4.19 Lock statements

For a lock statement stmt of the form:

lock (expr) embedded_statement

• The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

• The definite assignment state of v on the control flow transfer to embedded_statement is the same as
the state of v at the end of expr.

9.4.4.20 Yield statements

For a yield return statement stmt of the form:

yield return expr ;

• The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

• The definite assignment state of v at the end of stmt is the same as the state of v at the end of expr.

A yield break statement has no effect on the definite assignment state.

9.4.4.21 General rules for constant expressions

The following applies to any constant expression, and takes priority over any rules from the following
sections that might apply:

For a constant expression with value true:

• If v is definitely assigned before the expression, then v is definitely assigned after the expression.

• Otherwise v is “definitely assigned after false expression” after the expression.

Example:

int x;
if (true) {}
else
{
 Console.WriteLine(x);
}

end example

For a constant expression with value false:

• If v is definitely assigned before the expression, then v is definitely assigned after the expression.

• Otherwise v is “definitely assigned after true expression” after the expression.

Chapter 9 Variables

99

Example:

int x;
if (false)
{
 Console.WriteLine(x);
}

end example

For all other constant expressions, the definite assignment state of v after the expression is the same as
the definite assignment state of v before the expression.

9.4.4.22 General rules for simple expressions

The following rule applies to these kinds of expressions: literals (§11.7.2), simple names (§11.7.4),
member access expressions (§11.7.6), non-indexed base access expressions (§11.7.13), typeof
expressions (§11.7.16), default value expressions (§11.7.19), and nameof expressions (§11.7.20).

• The definite assignment state of v at the end of such an expression is the same as the definite
assignment state of v at the beginning of the expression.

9.4.4.23 General rules for expressions with embedded expressions

The following rules apply to these kinds of expressions: parenthesized expressions (§11.7.5), element
access expressions (§11.7.10), base access expressions with indexing (§11.7.13), increment and
decrement expressions (§11.7.14, §11.8.6), cast expressions (§11.8.7), unary +, -, ~, * expressions, binary
+, -, *, /, %, <<, >>, <, <=, >, >=, ==, !=, is, as, &, |, ^ expressions (§11.9, §11.10, §11.11, §11.12), compound
assignment expressions (§11.18.3), checked and unchecked expressions (§11.7.18), array and delegate
creation expressions (§11.7.15) , and await expressions (§11.8.8).

Each of these expressions has one or more subexpressions that are unconditionally evaluated in a fixed
order.

Example: The binary % operator evaluates the left hand side of the operator, then the right hand side.
An indexing operation evaluates the indexed expression, and then evaluates each of the index
expressions, in order from left to right. end example

For an expression expr, which has subexpressions expr₁, expr₂, …, exprₓ, evaluated in that order:

• The definite assignment state of v at the beginning of expr₁ is the same as the definite assignment
state at the beginning of expr.

• The definite assignment state of v at the beginning of exprᵢ (i greater than one) is the same as the
definite assignment state at the end of exprᵢ₋₁.

• The definite assignment state of v at the end of expr is the same as the definite assignment state at
the end of exprₓ.

9.4.4.24 Invocation expressions and object creation expressions

If the method to be invoked is a partial method that has no implementing partial method declaration, or is
a conditional method for which the call is omitted (§21.5.3.2), then the definite assignment state of v after
the invocation is the same as the definite assignment state of v before the invocation. Otherwise the
following rules apply:

For an invocation expression expr of the form:

primary_expression (arg₁, arg₂, … , argₓ)

ECMA-334

100

or an object creation expression expr of the form:

new type (arg₁, arg₂, … , argₓ)

• For an invocation expression, the definite assignment state of v before primary_expression is the
same as the state of v before expr.

• For an invocation expression, the definite assignment state of v before arg₁ is the same as the state
of v after primary_expression.

• For an object creation expression, the definite assignment state of v before arg₁ is the same as the
state of v before expr.

• For each argument argᵢ, the definite assignment state of v after argᵢ is determined by the normal
expression rules, ignoring any ref or out modifiers.

• For each argument argᵢ for any i greater than one, the definite assignment state of v before argᵢ is
the same as the state of v after argᵢ₋₁.

• If the variable v is passed as an out argument (i.e., an argument of the form “out v”) in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise, the state of v after expr is
the same as the state of v after argₓ.

• For array initializers (§11.7.15.5), object initializers (§11.7.15.3), collection initializers (§11.7.15.4)
and anonymous object initializers (§11.7.15.7), the definite assignment state is determined by the
expansion that these constructs are defined in terms of.

9.4.4.25 Simple assignment expressions

For an expression expr of the form:

w = expr_rhs

• The definite assignment state of v before w is the same as the definite assignment state of v before
expr.

• The definite assignment state of v before expr_rhs is the same as the definite assignment state of v
after w.

• If w is the same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, if the assignment occurs within the instance constructor of a struct type, and w is a
property access designating an automatically implemented property P on the instance being
constructed and v is the hidden backing field of P, then the definite assignment state of v after expr is
definitely assigned. Otherwise, the definite assignment state of v after expr is the same as the
definite assignment state of v after expr_rhs.

Example: In the following code

class A
{
 static void F(int[] arr)
 {
 int x;
 arr[x = 1] = x; // ok
 }
}

the variable x is considered definitely assigned after arr[x = 1] is evaluated as the left hand side of
the second simple assignment.

Chapter 9 Variables

101

end example

9.4.4.26 && expressions

For an expression expr of the form:

expr_first && expr_second

• The definite assignment state of v before expr_first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr_second is definitely assigned if and only if the state of
v after expr_first is either definitely assigned or “definitely assigned after true expression”.
Otherwise, it is not definitely assigned.

• The definite assignment state of v after expr is determined by:

o If the state of v after expr_first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after
expr_first is “definitely assigned after false expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned or “definitely assigned after
true expression”, then the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr_first is “definitely assigned after false expression”, and the
state of v after expr_second is “definitely assigned after false expression”, then the state of v after
expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

class A
{
 static void F(int x, int y)
 {
 int i;
 if (x >= 0 && (i = y) >= 0)
 {
 // i definitely assigned
 }
 else
 {
 // i not definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method F, the variable i is definitely assigned
in the first embedded statement because execution of the expression (i = y) always precedes
execution of this embedded statement. In contrast, the variable i is not definitely assigned in the
second embedded statement, since x >= 0 might have tested false, resulting in the variable i’s being
unassigned.

ECMA-334

102

end example

9.4.4.27 || expressions

For an expression expr of the form:

expr_first || expr_second

• The definite assignment state of v before expr_first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr_second is definitely assigned if and only if the state of
v after expr_first is either definitely assigned or “definitely assigned after true expression”.
Otherwise, it is not definitely assigned.

• The definite assignment statement of v after expr is determined by:

o If the state of v after expr_first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after
expr_first is “definitely assigned after true expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned or “definitely assigned after
false expression”, then the state of v after expr is “definitely assigned after false expression”.

o Otherwise, if the state of v after expr_first is “definitely assigned after true expression”, and the
state of v after expr_ second is “definitely assigned after true expression”, then the state of v after
expr is “definitely assigned after true expression”.

o Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

class A
{
 static void G(int x, int y)
 {
 int i;
 if (x >= 0 || (i = y) >= 0)
 {
 // i not definitely assigned
 }
 else
 {
 // i definitely assigned
 }
 // i not definitely assigned
 }
}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method G, the variable i is definitely assigned
in the second embedded statement because execution of the expression (i = y) always precedes
execution of this embedded statement. In contrast, the variable i is not definitely assigned in the
first embedded statement, since x >= 0 might have tested true, resulting in the variable i’s being
unassigned.

Chapter 9 Variables

103

end example

9.4.4.28 ! expressions

For an expression expr of the form:

! expr_operand

• The definite assignment state of v before expr_operand is the same as the definite assignment state
of v before expr.

• The definite assignment state of v after expr is determined by:

o If the state of v after expr_operand is definitely assigned, then the state of v after expr is
definitely assigned.

o Otherwise, if the state of v after expr_operand is “definitely assigned after false expression”, then
the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr_operand is “definitely assigned after true expression”, then
the state of v after expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

9.4.4.29 ?? expressions

For an expression expr of the form:

expr_first ?? expr_second

• The definite assignment state of v before expr_first is the same as the definite assignment state of v
before expr.

• The definite assignment state of v before expr_second is the same as the definite assignment state of
v after expr_first.

• The definite assignment statement of v after expr is determined by:

o If expr_first is a constant expression (§11.20) with value null, then the state of v after expr is the
same as the state of v after expr_second.

o Otherwise, the state of v after expr is the same as the definite assignment state of v after
expr_first.

9.4.4.30 ?: expressions

For an expression expr of the form:

expr_cond ? expr_true : expr_false

• The definite assignment state of v before expr_cond is the same as the state of v before expr.

• The definite assignment state of v before expr_true is definitely assigned if the state of v after
expr_cond is definitely assigned or “definitely assigned after true expression”.

• The definite assignment state of v before expr_false is definitely assigned if the state of v after
expr_cond is definitely assigned or “definitely assigned after false expression”.

• The definite assignment state of v after expr is determined by:

o If expr_cond is a constant expression (§11.20) with value true then the state of v after expr is the
same as the state of v after expr_true.

ECMA-334

104

o Otherwise, if expr_cond is a constant expression (§11.20) with value false then the state of v
after expr is the same as the state of v after expr_false.

o Otherwise, if the state of v after expr_true is definitely assigned and the state of v after expr_false
is definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, the state of v after expr is not definitely assigned.

9.4.4.31 Anonymous functions

For a lambda_expression or anonymous_method_expression expr with a body (either block or expression)
body:

• The definite assignment state of a parameter is the same as for a parameter of a named method
(§9.2.6, §9.2.7).

• The definite assignment state of an outer variable v before body is the same as the state of v before
expr. That is, definite assignment state of outer variables is inherited from the context of the
anonymous function.

• The definite assignment state of an outer variable v after expr is the same as the state of v before
expr.

Example: The example

delegate bool Filter(int i);
void F()
{
 int max;
 // Error, max is not definitely assigned
 Filter f = (int n) => n < max;
 max = 5;
 DoWork(f);
}

generates a compile-time error since max is not definitely assigned where the anonymous function
is declared.

end example

Example: The example

delegate void D();
void F()
{
 int n;
 D d = () => { n = 1; };
 d();
 // Error, n is not definitely assigned
 Console.WriteLine(n);
}

also generates a compile-time error since the assignment to n in the anonymous function has no
affect on the definite assignment state of n outside the anonymous function.

end example

Chapter 9 Variables

105

9.5 Variable references
A variable_reference is an expression that is classified as a variable. A variable_reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value.

variable_reference
 : expression
 ;

Note: In C and C++, a variable_reference is known as an lvalue. end note

9.6 Atomicity of variable references
Reads and writes of the following data types shall be atomic: bool, char, byte, sbyte, short, ushort, uint,
int, float, and reference types. In addition, reads and writes of enum types with an underlying type in
the previous list shall also be atomic. Reads and writes of other types, including long, ulong, double, and
decimal, as well as user-defined types, need not be atomic. Aside from the library functions designed for
that purpose, there is no guarantee of atomic read-modify-write, such as in the case of increment or
decrement.

Chapter 10 Conversions

107

10. Conversions

10.1 General
A conversion causes an expression to be converted to, or treated as being of, a particular type; in the
former case a conversion may involve a change in representation. Conversions can be implicit or explicit,
and this determines whether an explicit cast is required.

Example: For instance, the conversion from type int to type long is implicit, so expressions of type
int can implicitly be treated as type long. The opposite conversion, from type long to type int, is
explicit and so an explicit cast is required.

int a = 123;
long b = a; // implicit conversion from int to long
int c = (int) b; // explicit conversion from long to int

end example

Some conversions are defined by the language. Programs may also define their own conversions (§10.5).

Some conversions in the language are defined from expressions to types, others from types to types. A
conversion from a type applies to all expressions that have that type.

Example:

enum Color { Red, Blue, Green }
Color c0 = 0; // The expression 0 converts implicitly to enum types
Color c1 = (Color)1; // other int expressions need explicit conversion
String x = null; // Conversion from null expression (no type) to String
Func<int, int> square = x => x * x; // Conversion from lambda expression to delegate
type

end example

10.2 Implicit conversions

10.2.1 General

The following conversions are classified as implicit conversions:

• Identity conversions

• Implicit numeric conversions

• Implicit enumeration conversions

• Implicit interpolated string conversions

• Implicit reference conversions

• Boxing conversions

• Implicit dynamic conversions

ECMA-334

108

• Implicit type parameter conversions

• Implicit constant expression conversions

• User-defined implicit conversions

• Anonymous function conversions

• Method group conversions

• Null literal conversions

• Implicit nullable conversions

• Lifted user-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§11.6.6),
cast expressions (§11.8.7), and assignments (§11.18).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown.

Note: Properly designed user-defined implicit conversions should exhibit these characteristics as
well. end note

For the purposes of conversion, the types object and dynamic are considered equivalent.

However, dynamic conversions (§10.2.10 and §10.3.7) apply only to expressions of type dynamic (§8.2.4).

10.2.2 Identity conversion

An identity conversion converts from any type to the same type. One reason this conversion exists is so
that a type T or an expression of type T can be said to be convertible to T itself.

Because object and dynamic are considered equivalent there is an identity conversion between object
and dynamic, and between constructed types that are the same when replacing all occurrences of dynamic
with object.

In most cases, an identity conversion has no effect at runtime. However, since floating point operations
may be performed at higher precision than prescribed by their type (§8.3.7), assignment of their results
may result in a loss of precision, and explicit casts are guaranteed to reduce precision to what is
prescribed by the type (§11.8.7).

10.2.3 Implicit numeric conversions

The implicit numeric conversions are:

• From sbyte to short, int, long, float, double, or decimal.

• From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.

• From short to int, long, float, double, or decimal.

• From ushort to int, uint, long, ulong, float, double, or decimal.

• From int to long, float, double, or decimal.

• From uint to long, ulong, float, double, or decimal.

• From long to float, double, or decimal.

• From ulong to float, double, or decimal.

Chapter 10 Conversions

109

• From char to ushort, int, uint, long, ulong, float, double, or decimal.

• From float to double.

Conversions from int, uint, long or ulong to float and from long or ulong to double may cause a loss of
precision, but will never cause a loss of magnitude. The other implicit numeric conversions never lose any
information.

There are no predefined implicit conversions to the char type, so values of the other integral types do not
automatically convert to the char type.

10.2.4 Implicit enumeration conversions

An implicit enumeration conversion permits a constant_expression (§11.20) with any integer type and the
value zero to be converted to any enum_type and to any nullable_value_type whose underlying type is an
enum_type. In the latter case the conversion is evaluated by converting to the underlying enum_type and
wrapping the result (§8.3.11).

10.2.5 Implicit interpolated string conversions

An implicit interpolated string conversion permits an interpolated_string_expression (§11.7.3) to be
converted to System.IFormattable or System.FormattableString (which implements
System.IFormattable). When this conversion is applied, a string value is not composed from the
interpolated string. Instead an instance of System.FormattableString is created, as further described in
§11.7.3.

10.2.6 Implicit nullable conversions

The implicit nullable conversions are those nullable conversions (§10.6.1) derived from implicit
predefined conversions.

10.2.7 Null literal conversions

An implicit conversion exists from the null literal to any reference type or nullable value type. This
conversion produces a null reference if the target type is a reference type, or the null value (§8.3.11) of
the given nullable value type.

10.2.8 Implicit reference conversions

The implicit reference conversions are:

• From any reference_type to object and dynamic.

• From any class_type S to any class_type T, provided S is derived from T.

• From any class_type S to any interface_type T, provided S implements T.

• From any interface_type S to any interface_type T, provided S is derived from T.

• From an array_type S with an element type Si to an array_type T with an element type Ti, provided
all of the following are true:

o S and T differ only in element type. In other words, S and T have the same number of
dimensions.

o An implicit reference conversion exists from Si to Ti.

ECMA-334

110

• From a single-dimensional array type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and their base interfaces, provided that there is
an implicit identity or reference conversion from S to T.

• From any array_type to System.Array and the interfaces it implements.

• From any delegate_type to System.Delegate and the interfaces it implements.

• From the null literal (§6.4.5.7) to any reference-type.

• From any reference_type to a reference_type T if it has an implicit identity or reference conversion to
a reference_type T0 and T0 has an identity conversion to T.

• From any reference_type to an interface or delegate type T if it has an implicit identity or reference
conversion to an interface or delegate type T0 and T0 is variance-convertible (§17.2.3.3) to T.

• Implicit conversions involving type parameters that are known to be reference types. See §10.2.12
for more details on implicit conversions involving type parameters.

The implicit reference conversions are those conversions between reference_types that can be proven to
always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted.

Note: In other words, while a reference conversion can change the type of the reference, it never
changes the type or value of the object being referred to. end note

10.2.9 Boxing conversions

A boxing conversion permits a value_type to be implicitly converted to a reference_type. The following
boxing conversions exist:

• From any value_type to the type object.

• From any value_type to the type System.ValueType.

• From any enum_type to the type System.Enum.

• From any non_nullable_value_type to any interface_type implemented by the non_nullable_value_type.

• From any non_nullable_value_type to any interface_type I such that there is a boxing conversion
from the non_nullable_value_type to another interface_type I0, and I0 has an identity conversion to I.

• From any non_nullable_value_type to any interface_type I such that there is a boxing conversion
from the non_nullable_value_type to another interface_type I0, and I0 is variance-convertible
(§17.2.3.3) to I.

• From any nullable_value_type to any reference_type where there is a boxing conversion from the
underlying type of the nullable_value_type to the reference_type.

• From a type parameter that is not known to be a reference type to any type such that the conversion
is permitted by §10.2.12.

Boxing a value of a non-nullable-value-type consists of allocating an object instance and copying the value
into that instance.

Boxing a value of a nullable_value_type produces a null reference if it is the null value (HasValue is false),
or the result of unwrapping and boxing the underlying value otherwise.

Chapter 10 Conversions

111

Note: The process of boxing may be imagined in terms of the existence of a boxing class for every
value type. For example, consider a struct S implementing an interface I, with a boxing class called
S_Boxing.

interface I
{
 void M();
}

struct S : I
{
 public void M() { ... }
}

sealed class S_Boxing : I
{
 S value;

 public S_Boxing(S value)
 {
 this.value = value;
 }

 public void M()
 {
 value.M();
 }
}

Boxing a value v of type S now consists of executing the expression new S_Boxing(v) and returning
the resulting instance as a value of the target type of the conversion. Thus, the statements

S s = new S();
object box = s;

can be thought of as similar to:

S s = new S();
object box = new S_Boxing(s);

The imagined boxing type described above does not actually exist. Instead, a boxed value of type S
has the runtime type S, and a runtime type check using the is operator with a value type as the right
operand tests whether the left operand is a boxed version of the right operand. For example,

int i = 123;
object box = i;
if (box is int) {
 Console.Write("Box contains an int");
}

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a
conversion of a reference_type to type object, in which the value continues to reference the same
instance and simply is regarded as the less derived type object. For example, given the declaration

struct Point
{

ECMA-334

112

 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

the following statements

Point p = new Point(10, 10);
object box = p;
p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the
assignment of p to box causes the value of p to be copied. Had Point been declared a class instead,
the value 20 would be output because p and box would reference the same instance.

The analogy of a boxing class should not be used as more than a helpful tool for picturing how
boxing works conceptually. There are numerous subtle differences between the behavior described
by this specification and the behavior that would result from boxing being implemented in precisely
this manner.

end note

10.2.10 Implicit dynamic conversions

An implicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion
is dynamically bound §11.3.3, which means that an implicit conversion will be sought at run-time from
the run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

This implicit conversion seemingly violates the advice in the beginning of §10.2 that an implicit
conversion should never cause an exception. However, it is not the conversion itself, but the finding of the
conversion that causes the exception. The risk of run-time exceptions is inherent in the use of dynamic
binding. If dynamic binding of the conversion is not desired, the expression can be first converted to
object, and then to the desired type.

Example: The following illustrates implicit dynamic conversions:

object o = "object";
dynamic d = "dynamic";
string s1 = o; // Fails at compile-time – no conversion exists
string s2 = d; // Compiles and succeeds at run-time
int i = d; // Compiles but fails at run-time – no conversion exists

The assignments to s2 and i both employ implicit dynamic conversions, where the binding of the
operations is suspended until run-time. At run-time, implicit conversions are sought from the run-
time type of d(string) to the target type. A conversion is found to string but not to int.

end example

10.2.11 Implicit constant expression conversions

An implicit constant expression conversion permits the following conversions:

Chapter 10 Conversions

113

• A constant_expression (§11.20) of type int can be converted to type sbyte, byte, short, ushort,
uint, or ulong, provided the value of the constant_expression is within the range of the destination
type.

• A constant_expression of type long can be converted to type ulong, provided the value of the
constant_expression is not negative.

10.2.12 Implicit conversions involving type parameters

For a type_parameter T that is known to be a reference type (§14.2.5), the following implicit reference
conversions (§10.2.8) exist:

• From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.

• From T to an interface_type I in T’s effective interface set and from T to any base interface of I.

• From T to a type parameter U provided that T depends on U (§14.2.5).
Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will
always be a reference type, even if U is not known to be a reference type at compile-time. end note

• From the null literal (§6.4.5.7) to T.

For a type_parameter T that is not known to be a reference type §14.2.5, the following conversions
involving T are considered to be boxing conversions (§10.2.9) at compile-time. At run-time, if T is a value
type, the conversion is executed as a boxing conversion. At run-time, if T is a reference type, the
conversion is executed as an implicit reference conversion or identity conversion.

• From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.
Note: C will be one of the types System.Object, System.ValueType, or System.Enum (otherwise T
would be known to be a reference type). end note

• From T to an interface_type I in T’s effective interface set and from T to any base interface of I.

For a type_parameter T that is not known to be a reference type, there is an implicit conversion from T to a
type parameter U provided T depends on U. At run-time, if T is a value type and U is a reference type, the
conversion is executed as a boxing conversion. At run-time, if both T and U are value types, then T and U
are necessarily the same type and no conversion is performed. At run-time, if T is a reference type, then U
is necessarily also a reference type and the conversion is executed as an implicit reference conversion or
identity conversion (§14.2.5).

The following further implicit conversions exist for a given type parameter T:

• From T to a reference type S if it has an implicit conversion to a reference type S0 and S0 has an
identity conversion to S. At run-time, the conversion is executed the same way as the conversion
to S0.

• From T to an interface type I if it has an implicit conversion to an interface type I0, and I0 is
variance-convertible to I (§17.2.3.3). At run-time, if T is a value type, the conversion is executed as a
boxing conversion. Otherwise, the conversion is executed as an implicit reference conversion or
identity conversion.

In all cases, the rules ensure that a conversion is executed as a boxing conversion if and only if at run-time
the conversion is from a value type to a reference type.

ECMA-334

114

10.2.13 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by
execution of a user-defined implicit conversion operator, followed by another optional standard implicit
conversion. The exact rules for evaluating user-defined implicit conversions are described in §10.5.4.

10.2.14 Anonymous function conversions and method group conversions

Anonymous functions and method groups do not have types in and of themselves, but they may be
implicitly converted to delegate types. Additionally, some lambda expressions may be implicitly
converted to expression tree types. Anonymous function conversions are described in more detail in
§10.7 and method group conversions in §10.8.

10.3 Explicit conversions

10.3.1 General

The following conversions are classified as explicit conversions:

• All implicit conversions

• Explicit numeric conversions

• Explicit enumeration conversions

• Explicit nullable conversions

• Explicit reference conversions

• Explicit interface conversions

• Unboxing conversions

• Explicit type parameter conversions

• Explicit dynamic conversions

• User-defined explicit conversions

Explicit conversions can occur in cast expressions (§11.8.7).

The set of explicit conversions includes all implicit conversions.

Note: This, for example, allows an explicit cast to be used when an implicit conversion to the same
type exists, in order to force the selection of a particular method overload. end note

The explicit conversions that are not implicit conversions are conversions that cannot be proven always
to succeed, conversions that are known possibly to lose information, and conversions across domains of
types sufficiently different to merit explicit notation.

10.3.2 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric_type to another numeric_type for
which an implicit numeric conversion (§10.2.3) does not already exist:

• From sbyte to byte, ushort, uint, ulong, or char.

• From byte to sbyte or char.

• From short to sbyte, byte, ushort, uint, ulong, or char.

Chapter 10 Conversions

115

• From ushort to sbyte, byte, short, or char.

• From int to sbyte, byte, short, ushort, uint, ulong, or char.

• From uint to sbyte, byte, short, ushort, int, or char.

• From long to sbyte, byte, short, ushort, int, uint, ulong, or char.

• From ulong to sbyte, byte, short, ushort, int, uint, long, or char.

• From char to sbyte, byte, or short.

• From float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

• From double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.

• From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always
possible to convert from any numeric_type to any other numeric_type using a cast expression (§11.8.7).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

• For a conversion from an integral type to another integral type, the processing depends on the
overflow checking context (§11.7.18) in which the conversion takes place:

o In a checked context, the conversion succeeds if the value of the source operand is within the
range of the destination type, but throws a System.OverflowException if the value of the source
operand is outside the range of the destination type.

o In an unchecked context, the conversion always succeeds, and proceeds as follows.

• If the source type is larger than the destination type, then the source value is truncated by
discarding its “extra” most significant bits. The result is then treated as a value of the
destination type.

• If the source type is the same size as the destination type, then the source value is treated as
a value of the destination type

• For a conversion from decimal to an integral type, the source value is rounded towards zero to the
nearest integral value, and this integral value becomes the result of the conversion. If the resulting
integral value is outside the range of the destination type, a System.OverflowException is thrown.

• For a conversion from float or double to an integral type, the processing depends on the overflow-
checking context (§11.7.18) in which the conversion takes place:

o In a checked context, the conversion proceeds as follows:

• If the value of the operand is NaN or infinite, a System.OverflowException is thrown.

• Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

• Otherwise, a System.OverflowException is thrown.

o In an unchecked context, the conversion always succeeds, and proceeds as follows.

• If the value of the operand is NaN or infinite, the result of the conversion is an unspecified
value of the destination type.

ECMA-334

116

• Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

• Otherwise, the result of the conversion is an unspecified value of the destination type.

• For a conversion from double to float, the double value is rounded to the nearest float value. If
the double value is too small to represent as a float, the result becomes zero with the same sign as
the value. If the magnitude of the double value is too large to represent as a float, the result
becomes infinity with the same sign as the value. If the double value is NaN, the result is also NaN.

• For a conversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number if required (§8.3.8).

o If the source value is too small to represent as a decimal, the result becomes zero, preserving
the sign of the original value if decimal supports signed zero values.

o If the source value’s magnitude is too large to represent as a decimal, or that value is infinity,
the result is infinity preserving the sign of the original value, if the decimal representation
supports infinities; otherwise a System.OverflowException is thrown.

o If the source value is NaN, the result is NaN if the decimal representation supports NaNs;
otherwise a System.OverflowException is thrown.

• For a conversion from decimal to float or double, the decimal value is rounded to the nearest
double or float value. If the source value’s magnitude is too large to represent in the target type, or
that value is infinity, the result is infinity preserving the sign of the original value. If the source value
is NaN, the result is NaN. While this conversion may lose precision, it never causes an exception to
be thrown.

Note: The decimal type is not required to support infinities or NaN values but may do so; its range
may be smaller than the range of float and double, but is not guaranteed to be. For decimal
representations without infinities or NaN values, and with a range smaller than float, the result of a
conversion from decimal to either float or double will never be infinity or NaN. end note

10.3.3 Explicit enumeration conversions

The explicit enumeration conversions are:

• From sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal to any
enum_type.

• From any enum_type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or
decimal.

• From any enum_type to any other enum_type.

An explicit enumeration conversion between two types is processed by treating any participating
enum_type as the underlying type of that enum_type, and then performing an implicit or explicit numeric
conversion between the resulting types.

Example: Given an enum_type E with and underlying type of int, a conversion from E to byte is
processed as an explicit numeric conversion (§10.3.2) from int to byte, and a conversion from byte
to E is processed as an implicit numeric conversion (§10.2.3) from byte to int. end example

Chapter 10 Conversions

117

10.3.4 Explicit nullable conversions

The explicit nullable conversions are those nullable conversions (§10.6.1) derived from explicit and
implicit predefined conversions.

10.3.5 Explicit reference conversions

The explicit reference conversions are:

• From object and dynamic to any other reference_type.

• From any class_type S to any class_type T, provided S is a base class of T.

• From any class_type S to any interface_type T, provided S is not sealed and provided S does not
implement T.

• From any interface_type S to any class_type T, provided T is not sealed or provided T implements S.

• From any interface_type S to any interface_type T, provided S is not derived from T.

• From an array_type S with an element type Si to an array_type T with an element type Ti, provided
all of the following are true:

o S and T differ only in element type. In other words, S and T have the same number of
dimensions.

o An explicit reference conversion exists from Si to Ti.

• From System.Array and the interfaces it implements, to any array_type.

• From a single-dimensional array_type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and its base interfaces, provided that there is an
identity conversion or explicit reference conversion from S to T.

• From System.Collections.Generic.IList<S>, System.Collections.Generic.IReadOnlyList<S>,
and their base interfaces to a single-dimensional array type T[], provided that there is an identity
conversion or explicit reference conversion from S to T.

• From System.Delegate and the interfaces it implements to any delegate_type.

• From a reference type S to a reference type T if it has an explicit reference conversion from S to a
reference type T0 and T0 and there is an identity conversion from T0 to T.

• From a reference type S to an interface or delegate type T if it there is an explicit reference
conversion from S to an interface or delegate type T0 and either T0 is variance-convertible to T or T is
variance-convertible to T0 §17.2.3.3.

• From D<S1...Sv> to D<T1...Tv> where D<X1...Xv> is a generic delegate type, D<S1...Sv> is not
compatible with or identical to D<T1...Tv>, and for each type parameter Xi of D the following holds:

o If Xi is invariant, then Si is identical to Ti.

o If Xi is covariant, then there is an identity conversion, implicit reference conversion or explicit
reference conversion from Si to Ti.

o If Xi is contravariant, then Si and Ti are either identical or both reference types.

• Explicit conversions involving type parameters that are known to be reference types. For more
details on explicit conversions involving type parameters, see §10.3.8.

ECMA-334

118

The explicit reference conversions are those conversions between reference_types that require run-time
checks to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand shall be null,
or the type of the object referenced by the source operand shall be a type that can be converted to the
destination type by an implicit reference conversion (§10.2.8). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Note: Reference conversions, implicit or explicit, never change the value of the reference itself
(§8.2.1), only its type; neither does it change the type or value of the object being referenced. end
note

10.3.6 Unboxing conversions

An unboxing conversion permits a reference_type to be explicitly converted to a value_type. The following
unboxing conversions exist:

• From the type object to any value_type.

• From the type System.ValueType to any value_type.

• From the type System.Enum to any enum_type.

• From any interface_type to any non-nullable_value_type that implements the interface_type.

• From any interface_type I to any non_nullable_value_type where there is an unboxing conversion
from an interface_type I0 to the non_nullable_value-type and an identity conversion from I to I0.

• From any interface_type I to any non_nullable_value_type where there is an unboxing conversion
from an interface_type I0 to the non_nullable_value_type and either either I0 is variance_convertible
to I or I is variance-convertible to I0 (§17.2.3.3).

• From any reference_type to any nullable_value_type where there is an unboxing conversion from
reference_type to the underlying non_nullable_value_type of the nullable_value_type.

• From a type parameter which is not known to be a value type to any type such that the conversion is
permitted by §10.3.8.

An unboxing operation to a non_nullable_value_type consists of first checking that the object instance is a
boxed value of the given non_nullable_value_type, and then copying the value out of the instance.

Unboxing to a nullable_value_type produces the null value of the nullable_value_type if the source operand
is null, or the wrapped result of unboxing the object instance to the underlying type of the
nullable_value_type otherwise.

Note: Referring to the imaginary boxing class described in §10.2.9, an unboxing conversion of an
object box to a value_type S consists of executing the expression ((S_Boxing)box).value. Thus, the
statements

object box = new S();
S s = (S)box;

conceptually correspond to

object box = new S_Boxing(new S());
S s = ((S_Boxing)box).value;

end note

Chapter 10 Conversions

119

For an unboxing conversion to a given non_nullable_value_type to succeed at run-time, the value of the
source operand shall be a reference to a boxed value of that non_nullable_value_type. If the source operand
is null a System.NullReferenceException is thrown. If the source operand is a reference to an
incompatible object, a System.InvalidCastException is thrown.

For an unboxing conversion to a given nullable_value_type to succeed at run-time, the value of the source
operand shall be either null or a reference to a boxed value of the underlying non_nullable_value_type of
the nullable_value_type. If the source operand is a reference to an incompatible object, a
System.InvalidCastException is thrown.

10.3.7 Explicit dynamic conversions

An explicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion is
dynamically bound (§11.3.3), which means that an explicit conversion will be sought at run-time from the
run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first converted to object, and
then to the desired type.

Example: Assume the following class is defined:

class C
{
 int i;

 public C(int i)
 {
 this.i = i;
 }

 public static explicit operator C(string s)
 {
 return new C(int.Parse(s));
 }
}

The following illustrates explicit dynamic conversions:

object o = "1";
dynamic d = "2";
var c1 = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user defined conversion succeeds

The best conversion of o to C is found at compile-time to be an explicit reference conversion. This
fails at run-time, because "1" is not in fact a C. The conversion of d to C however, as an explicit
dynamic conversion, is suspended to run-time, where a user defined conversion from the run-time
type of d (string) to C is found, and succeeds.

end example

10.3.8 Explicit conversions involving type parameters

For a type_parameter T that is known to be a reference type (§14.2.5), the following explicit reference
conversions (§10.3.5) exist:

• From the effective base class C of T to T and from any base class of C to T.

• From any interface_type to T.

ECMA-334

120

• From T to any interface_type I provided there isn’t already an implicit reference conversion from T
to I.

• From a type_parameter U to T provided that T depends on U (§14.2.5).
Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will
always be a reference type, even if U is not known to be a reference type at compile-time. end note

For a type_parameter T that is not known to be a reference type (§14.2.5), the following conversions
involving T are considered to be unboxing conversions (§10.3.6) at compile-time. At run-time, if T is a
value type, the conversion is executed as an unboxing conversion. At run-time, if T is a reference type, the
conversion is executed as an explicit reference conversion or identity conversion.

• From the effective base class C of T to T and from any base class of C to T.
Note: C will be one of the types System.Object, System.ValueType, or System.Enum (otherwise T
would be known to be a reference type). end note

• From any interface_type to T.

For a type_parameter T that is not known to be a reference type (§14.2.5), the following explicit
conversions exist:

• From T to any interface_type I provided there is not already an implicit conversion from T to I. This
conversion consists of an implicit boxing conversion (§10.2.9) from T to object followed by an
explicit reference conversion from object to I. At run-time, if T is a value type, the conversion is
executed as a boxing conversion followed by an explicit reference conversion. At run-time, if T is a
reference type, the conversion is executed as an explicit reference conversion.

• From a type parameter U to T provided that T depends on U (§14.2.5). At run-time, if T is a value type
and U is a reference type, the conversion is executed as an unboxing conversion. At run-time, if both
T and U are value types, then T and U are necessarily the same type and no conversion is performed.
At run-time, if T is a reference type, then U is necessarily also a reference type and the conversion is
executed as an explicit reference conversion or identity conversion.

In all cases, the rules ensure that a conversion is executed as an unboxing conversion if and only if at run-
time the conversion is from a reference type to a value type.

The above rules do not permit a direct explicit conversion from an unconstrained type parameter to a
non-interface type, which might be surprising. The reason for this rule is to prevent confusion and make
the semantics of such conversions clear.

Example: Consider the following declaration:

class X<T>
{
 public static long F(T t)
 {
 return (long)t; // Error
 }
}

If the direct explicit conversion of t to long were permitted, one might easily expect that
X<int>.F(7) would return 7L. However, it would not, because the standard numeric conversions
are only considered when the types are known to be numeric at binding-time. In order to make the
semantics clear, the above example must instead be written:

class X<T>
{

Chapter 10 Conversions

121

 public static long F(T t)
 {
 return (long)(object)t; // Ok, but will only work when T is long
 }
}

This code will now compile but executing X<int>.F(7) would then throw an exception at run-time,
since a boxed int cannot be converted directly to a long.

end example

10.3.9 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by
execution of a user-defined implicit or explicit conversion operator, followed by another optional
standard explicit conversion. The exact rules for evaluating user-defined explicit conversions are
described in §10.5.5.

10.4 Standard conversions

10.4.1 General

The standard conversions are those pre-defined conversions that can occur as part of a user-defined
conversion.

10.4.2 Standard implicit conversions

The following implicit conversions are classified as standard implicit conversions:

• Identity conversions (§10.2.2)

• Implicit numeric conversions (§10.2.3)

• Implicit nullable conversions (§10.2.6)

• Null literal conversions (§10.2.7)

• Implicit reference conversions (§10.2.8)

• Boxing conversions (§10.2.9)

• Implicit constant expression conversions (§10.2.11)

• Implicit conversions involving type parameters (§10.2.12)

The standard implicit conversions specifically exclude user-defined implicit conversions.

10.4.3 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists.

Note: In other words, if a standard implicit conversion exists from a type A to a type B, then a
standard explicit conversion exists from type A to type B and from type B to type A. end note

ECMA-334

122

10.5 User-defined conversions

10.5.1 General

C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions.
User-defined conversions are introduced by declaring conversion operators (§14.10.4) in class and struct
types.

10.5.2 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to
redefine an already existing implicit or explicit conversion.

For a given source type S and target type T, if S or T are nullable value types, let S0 and T0 refer to their
underlying types, otherwise S0 and T0 are equal to S and T respectively. A class or struct is permitted to
declare a conversion from a source type S to a target type T only if all of the following are true:

• S0 and T0 are different types.

• Either S0 or T0 is the class or struct type in which the operator declaration takes place.

• Neither S0 nor T0 is an interface_type.

• Excluding user-defined conversions, a conversion does not exist from S to T or from T to S.

The restrictions that apply to user-defined conversions are specified in §14.10.4.

10.5.3 Evaluation of user-defined conversions

A user-defined conversion converts a source expression, which may have a source type, to another type,
called the target type. Evaluation of a user-defined conversion centers on finding the most-specific user-
defined conversion operator for the source expression and target type. This determination is broken into
several steps:

• Finding the set of classes and structs from which user-defined conversion operators will be
considered. This set consists of the source type and its base classes, if the source type exists, along
with the target type and its base classes. For this purpose it is assumed that only classes and structs
can declare user-defined operators, and that non-class types have no base classes. Also, if either the
source or target type is a nullable-value-type, their underlying type is used instead.

• From that set of types, determining which user-defined and lifted conversion operators are
applicable. For a conversion operator to be applicable, it shall be possible to perform a standard
conversion (§10.4) from the source expression to the operand type of the operator, and it shall be
possible to perform a standard conversion from the result type of the operator to the target type.

• From the set of applicable user-defined operators, determining which operator is unambiguously
the most-specific. In general terms, the most-specific operator is the operator whose operand type
is “closest” to the source expression and whose result type is “closest” to the target type. User-
defined conversion operators are preferred over lifted conversion operators. The exact rules for
establishing the most-specific user-defined conversion operator are defined in the following
subclauses.

Once a most-specific user-defined conversion operator has been identified, the actual execution of the
user-defined conversion involves up to three steps:

• First, if required, performing a standard conversion from the source expression to the operand type
of the user-defined or lifted conversion operator.

Chapter 10 Conversions

123

• Next, invoking the user-defined or lifted conversion operator to perform the conversion.

• Finally, if required, performing a standard conversion from the result type of the user-defined
conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined or lifted conversion
operator. In other words, a conversion from type S to type T will never first execute a user-defined
conversion from S to X and then execute a user-defined conversion from X to T.

• Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the
following subclauses. The definitions make use of the following terms:

• If a standard implicit conversion (§10.4.2) exists from a type A to a type B, and if neither A nor B are
interface_type s, then A is said to be encompassed by B, and B is said to encompass A.

• If a standard implicit conversion (§10.4.2) exists from an expression E to a type B, and if neither B
nor the type of E (if it has one) are interface_type s, then E is said to be encompassed by B, and B is
said to encompass E.

• The most-encompassing type in a set of types is the one type that encompasses all other types in
the set. If no single type encompasses all other types, then the set has no most-encompassing type.
In more intuitive terms, the most-encompassing type is the “largest” type in the set—the one type to
which each of the other types can be implicitly converted.

• The most-encompassed type in a set of types is the one type that is encompassed by all other types
in the set. If no single type is encompassed by all other types, then the set has no most-encompassed
type. In more intuitive terms, the most-encompassed type is the “smallest” type in the set—the one
type that can be implicitly converted to each of the other types.

10.5.4 User-defined implicit conversions

A user-defined implicit conversion from an expression E to a type T is processed as follows:

• Determine the types S, S0 and T0.

o If E has a type, let S be that type.

o If S or T are nullable value types, let Si and Ti be their underlying types, otherwise let Si and Ti
be S and T, respectively.

o If Si or Ti are type parameters, let S0 and T0 be their effective base classes, otherwise let S0 and T0
be Sx and Ti, respectively.

• Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of S0 (if S0 exists and is a class or struct), the base classes of S0 (if S0 exists and is a class),
and T0 (if T0 is a class or struct). A type is added to the set D only if an identity conversion to another
type already included in the set doesn’t exist.

• Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the
user-defined and lifted implicit conversion operators declared by the classes or structs in D that
convert from a type encompassing E to a type encompassed by T. If U is empty, the conversion is
undefined and a compile-time error occurs.

o If S exists and any of the operators in U convert from S, then Sx is S.

o Otherwise, Sx is the most-encompassed type in the combined set of source types of the
operators in U. If exactly one most-encompassed type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

ECMA-334

124

• Find the most-specific target type, Tx, of the operators in U:

o If any of the operators in U convert to T, then Tx is T.

o Otherwise, Tx is the most-encompassing type in the combined set of target types of the
operators in U. If exactly one most-encompassing type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

• Find the most-specific conversion operator:

o If U contains exactly one user-defined conversion operator that converts from Sx to Tx, then this
is the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from Sx to Tx, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.

• Finally, apply the conversion:

o If E does not already have the type Sx, then a standard implicit conversion from E to Sx is
performed.

o The most-specific conversion operator is invoked to convert from Sx to Tx.

o If Tx is not T, then a standard implicit conversion from Tx to T is performed.

A user-defined implicit conversion from a type S to a type T exists if a user-defined implicit conversion
exists from a variable of type S to T.

10.5.5 User-defined explicit conversions

A user-defined explicit conversion from an expression E to a type T is processed as follows:

• Determine the types S, S0 and T0.

o If E has a type, let S be that type.

o If S or T are nullable value types, let Si and Ti be their underlying types, otherwise let Si and Ti
be S and T, respectively.

o If Si or Ti are type parameters, let S0 and T0 be their effective base classes, otherwise let S0 and T0
be Si and Ti, respectively.

• Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of S0 (if S0 exists and is a class or struct), the base classes of S0 (if S0 exists and is a class), T0
(if T0 is a class or struct), and the base classes of T0 (if T0 is a class). A type is added to the set D only if
an identity conversion to another type already included in the set doesn’t exist.

• Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the
user-defined and lifted implicit or explicit conversion operators declared by the classes or structs
in D that convert from a type encompassing E or encompassed by S (if it exists) to a type
encompassing or encompassed by T. If U is empty, the conversion is undefined and a compile-time
error occurs.

• Find the most-specific source type, Sx, of the operators in U:

o If S exists and any of the operators in U convert from S, then Sx is S.

o Otherwise, if any of the operators in U convert from types that encompass E, then Sx is the most-
encompassed type in the combined set of source types of those operators. If no most-

Chapter 10 Conversions

125

encompassed type can be found, then the conversion is ambiguous and a compile-time error
occurs.

o Otherwise, Sx is the most-encompassing type in the combined set of source types of the
operators in U. If exactly one most-encompassing type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

• Find the most-specific target type, Tx, of the operators in U:

o If any of the operators in U convert to T, then Tx is T.

o Otherwise, if any of the operators in U convert to types that are encompassed by T, then Tx is the
most-encompassing type in the combined set of target types of those operators. If exactly one
most-encompassing type cannot be found, then the conversion is ambiguous and a compile-time
error occurs.

o Otherwise, Tx is the most-encompassed type in the combined set of target types of the operators
in U. If no most-encompassed type can be found, then the conversion is ambiguous and a
compile-time error occurs.

• Find the most-specific conversion operator:

o If U contains exactly one user-defined conversion operator that converts from Sx to Tx, then this
is the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from Sx to Tx, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.

• Finally, apply the conversion:

o If E does not already have the type Sx, then a standard explicit conversion from E to Sx is
performed.

o The most-specific user-defined conversion operator is invoked to convert from Sx to Tx.

o If Tx is not T, then a standard explicit conversion from Tx to T is performed.

A user-defined explicit conversion from a type S to a type T exists if a user-defined explicit conversion
exists from a variable of type S to T.

10.6 Conversions involving nullable types

10.6.1 Nullable Conversions

Nullable conversions permit predefined conversions that operate on non-nullable value types to also be
used with nullable forms of those types. For each of the predefined implicit or explicit conversions that
convert from a non-nullable value type S to a non-nullable value type T (§10.2.2, §10.2.3, §10.2.4,
§10.2.11, §10.3.2 and §10.3.3), the following nullable conversions exist:

• An implicit or explicit conversion from S? to T?

• An implicit or explicit conversion from S to T?

• An explicit conversion from S? to T.

A nullable conversion is itself classified as an implicit or explicit conversion.

ECMA-334

126

Certain nullable conversions are classified as standard conversions and can occur as part of a user-
defined conversion. Specifically, all implicit nullable conversions are classified as standard implicit
conversions (§10.4.2), and those explicit nullable conversions that satisfy the requirements of §10.4.3 are
classified as standard explicit conversions.

Evaluation of a nullable conversion based on an underlying conversion from S to T proceeds as follows:

• If the nullable conversion is from S? to T?:

o If the source value is null (HasValue property is false), the result is the null value of type T?.

o Otherwise, the conversion is evaluated as an unwrapping from S? to S, followed by the
underlying conversion from S to T, followed by a wrapping from T to T?.

• If the nullable conversion is from S to T?, the conversion is evaluated as the underlying conversion
from S to T followed by a wrapping from T to T?.

• If the nullable conversion is from S? to T, the conversion is evaluated as an unwrapping from S? to S
followed by the underlying conversion from S to T.

10.6.2 Lifted conversions

Given a user-defined conversion operator that converts from a non-nullable value type S to a non-nullable
value type T, a lifted conversion operator exists that converts from S? to T?. This lifted conversion
operator performs an unwrapping from S? to S followed by the user-defined conversion from S to T
followed by a wrapping from T to T?, except that a null valued S? converts directly to a null valued T?. A
lifted conversion operator has the same implicit or explicit classification as its underlying user-defined
conversion operator.

10.7 Anonymous function conversions

10.7.1 General

An anonymous_method_expression or lambda_expression is classified as an anonymous function (§11.16).
The expression does not have a type, but can be implicitly converted to a compatible delegate type. Some
lambda expressions may also be implicitly converted to a compatible expression tree type.

For the purpose of brevity, this subclause uses the short form for the task types Task and Task<T>
(§14.15.1).

Specifically, an anonymous function F is compatible with a delegate type D provided:

• If F contains an anonymous_function_signature, then D and F have the same number of parameters.

• If F does not contain an anonymous_function_signature, then D may have zero or more parameters of
any type, as long as no parameter of D has the out parameter modifier.

• If F has an explicitly typed parameter list, each parameter in D has the same type and modifiers as
the corresponding parameter in F.

• If F has an implicitly typed parameter list, D has no ref or out parameters.

• If the body of F is an expression, and either D has a void return type or F is async and D has the return
type Task, then when each parameter of F is given the type of the corresponding parameter in D, the
body of F is a valid expression (w.r.t §11) that would be permitted as a statement_expression (§12.7).

Chapter 10 Conversions

127

• If the body of F is a block, and either D has a void return type or F is async and D has the return type
Task, then when each parameter of F is given the type of the corresponding parameter in D, the body
of F is a valid block (w.r.t §12.3) in which no return statement specifies an expression.

• If the body of F is an expression, and either F is non-async and D has a non-void return type T, or F is
async and D has a return type Task<T>, then when each parameter of F is given the type of the
corresponding parameter in D, the body of F is a valid expression (w.r.t §11) that is implicitly
convertible to T.

• If the body of F is a block, and either F is non-async and D has a non-void return type T, or F is async
and D has a return type Task<T>, then when each parameter of F is given the type of the
corresponding parameter in D, the body of F is a valid block (w.r.t §12.3) with a non-reachable end
point in which each return statement specifies an expression that is implicitly convertible to T.

Example: The following examples illustrate these rules:

delegate void D(int x);
D d1 = delegate { }; // Ok
D d2 = delegate() { }; // Error, signature mismatch
D d3 = delegate(long x) { }; // Error, signature mismatch
D d4 = delegate(int x) { }; // Ok
D d5 = delegate(int x) { return; }; // Ok
D d6 = delegate(int x) { return x; }; // Error, return type mismatch

delegate void E(out int x);
E e1 = delegate { }; // Error, E has an out parameter
E e2 = delegate(out int x) { x = 1; }; // Ok
E e3 = delegate(ref int x) { x = 1; }; // Error, signature mismatch

delegate int P(params int[] a);
P p1 = delegate { }; // Error, end of block reachable
P p2 = delegate { return; }; // Error, return type mismatch
P p3 = delegate { return 1; }; // Ok
P p4 = delegate { return "Hello"; }; // Error, return type mismatch
P p5 = delegate(int[] a) // Ok
{
 return a[0];
};
P p6 = delegate(params int[] a) // Error, params modifier
{
 return a[0];
};
P p7 = delegate(int[] a) // Error, return type mismatch
{
 if (a.Length > 0) return a[0];
 return "Hello";
};

delegate object Q(params int[] a);
Q q1 = delegate(int[] a) // Ok
{
 if (a.Length > 0) return a[0];
 return "Hello";
};

end example

ECMA-334

128

Example: The examples that follow use a generic delegate type Func<A,R> that represents a function
that takes an argument of type A and returns a value of type R:

delegate R Func<A,R>(A arg);

In the assignments

Func<int,int> f1 = x => x + 1; // Ok
Func<int,double> f2 = x => x + 1; // Ok
Func<double,int> f3 = x => x + 1; // Error
Func<int, Task<int>> f4 = async x => x + 1; // Ok

the parameter and return types of each anonymous function are determined from the type of the
variable to which the anonymous function is assigned.

The first assignment successfully converts the anonymous function to the delegate type
Func<int,int> because, when x is given type int, x + 1 is a valid expression that is implicitly
convertible to type int.

Likewise, the second assignment successfully converts the anonymous function to the delegate type
Func<int,double> because the result of x + 1 (of type int) is implicitly convertible to type double.

However, the third assignment is a compile-time error because, when x is given type double, the
result of x + 1 (of type double) is not implicitly convertible to type int.

The fourth assignment successfully converts the anonymous async function to the delegate type
Func<int, Task<int>> because the result of x + 1 (of type int) is implicitly convertible to the
effective return type int of the async lambda, which has a return type Task<int>.

end example

A lambda expression F is compatible with an expression tree type Expression<D> if F is compatible with
the delegate type D. This does not apply to anonymous methods, only lambda expressions.

Anonymous functions may influence overload resolution, and participate in type inference. See §11.6 for
further details.

10.7.2 Evaluation of anonymous function conversions to delegate types

Conversion of an anonymous function to a delegate type produces a delegate instance that references the
anonymous function and the (possibly empty) set of captured outer variables that are active at the time of
the evaluation. When the delegate is invoked, the body of the anonymous function is executed. The code
in the body is executed using the set of captured outer variables referenced by the delegate. A
delegate_creation_expression (§11.7.15.6) can be used as an alternate syntax for converting an anonymous
method to a delegate type.

The invocation list of a delegate produced from an anonymous function contains a single entry. The exact
target object and target method of the delegate are unspecified. In particular, it is unspecified whether the
target object of the delegate is null, the this value of the enclosing function member, or some other
object.

Conversions of semantically identical anonymous functions with the same (possibly empty) set of
captured outer variable instances to the same delegate types are permitted (but not required) to return
the same delegate instance. The term semantically identical is used here to mean that execution of the
anonymous functions will, in all cases, produce the same effects given the same arguments. This rule
permits code such as the following to be optimized.

Chapter 10 Conversions

129

delegate double Function(double x);

class Test
{
 static double[] Apply(double[] a, Function f)
 {
 double[] result = new double[a.Length];
 for (int i = 0; i < a.Length; i++)
 {
 result[i] = f(a[i]);
 }
 return result;
 }

 static void F(double[] a, double[] b)
 {
 a = Apply(a, (double x) => Math.Sin(x));
 b = Apply(b, (double y) => Math.Sin(y));
 ...
 }
}

Since the two anonymous function delegates have the same (empty) set of captured outer variables, and
since the anonymous functions are semantically identical, the compiler is permitted to have the delegates
refer to the same target method. Indeed, the compiler is permitted to return the very same delegate
instance from both anonymous function expressions.

10.7.3 Evaluation of lambda expression conversions to expression tree types

Conversion of a lambda expression to an expression tree type produces an expression tree (§8.6). More
precisely, evaluation of the lambda expression conversion produces an object structure that represents
the structure of the lambda expression itself.

Not every lambda expression can be converted to expression tree types. The conversion to a compatible
delegate type always exists, but it may fail at compile-time for implementation-specific reasons.

Note: Common reasons for a lambda expression to fail to convert to an expression tree type include:

• It has a block body

• It has the async modifier

• It contains an assignment operator

• It contains an out or ref parameter

• It contains a dynamically bound expression

end note

10.8 Method group conversions
An implicit conversion exists from a method group (§11.2) to a compatible delegate type (§19.4). If D is a
delegate type, and E is an expression that is classified as a method group, then D is compatible with E if
and only if E contains at least one method that is applicable in its normal form (§11.6.4.2) to any argument
list (§11.6.2) having types and modifiers matching the parameter types and modifiers of D, as described in
the following.

ECMA-334

130

The compile-time application of the conversion from a method group E to a delegate type D is described in
the following. Note that the existence of an implicit conversion from E to D does not guarantee that the
compile-time application of the conversion will succeed without error.

• A single method M is selected corresponding to a method invocation (§11.7.8.2) of the form E(A),
with the following modifications:

o The argument list A is a list of expressions, each classified as a variable and with the type and
modifier (ref or out) of the corresponding parameter in the formal_parameter_list of D —
excepting parameters of type dynamic, where the corresponding expression has the type object
instead of dynamic.

o The candidate methods considered are only those methods that are applicable in their normal
form and do not omit any optional parameters (§11.6.4.2). Thus, candidate methods are ignored
if they are applicable only in their expanded form, or if one or more of their optional parameters
do not have a corresponding parameter in D.

• A conversion is considered to exist if the algorithm of §11.7.8.2 produces a single best method M
having the same number of parameters as D.

• Even if the conversion exists, a compile-time error occurs if the selected method M is not compatible
(§19.4) with the delegate type D.

• If the selected method M is an instance method, the instance expression associated with E
determines the target object of the delegate.

• If the selected method M is an extension method which is denoted by means of a member access on
an instance expression, that instance expression determines the target object of the delegate.

• The result of the conversion is a value of type D, namely a delegate that refers to the selected
method and target object.

Example: The following demonstrates method group conversions:

delegate string D1(object o);
delegate object D2(string s);
delegate object D3();
delegate string D4(object o, params object[] a);
delegate string D5(int i);
class Test
{
 static string F(object o) {...}

 static void G()
 {
 D1 d1 = F; // Ok
 D2 d2 = F; // Ok
 D3 d3 = F; // Error – not applicable
 D4 d4 = F; // Error – not applicable in normal form
 D5 d5 = F; // Error – applicable but not compatible
 }
}

The assignment to d1 implicitly converts the method group F to a value of type D1.

The assignment to d2 shows how it is possible to create a delegate to a method that has less derived
(contravariant) parameter types and a more derived (covariant) return type.

Chapter 10 Conversions

131

The assignment to d3 shows how no conversion exists if the method is not applicable.

The assignment to d4 shows how the method must be applicable in its normal form.

The assignment to d5 shows how parameter and return types of the delegate and method are
allowed to differ only for reference types.

end example

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a
particular conversion.

Example: Thus, the example

object obj = new EventHandler(myDialog.OkClick);

could instead be written

object obj = (EventHandler)myDialog.OkClick;

end example

A method group conversion can refer to a generic method, either by explicitly specifying type arguments
within E, or via type inference (§11.6.3). If type inference is used, the parameter types of the delegate are
used as argument types in the inference process. The return type of the delegate is not used for inference.
Whether the type arguments are specified or inferred, they are part of the method group conversion
process; these are the type arguments used to invoke the target method when the resulting delegate is
invoked.

Example:

delegate int D(string s, int i);
delegate int E();

class X
{
 public static T F<T>(string s, T t) {...}
 public static T G<T>() {...}

 static void Main()
 {
 D d1 = F<int>; // Ok, type argument given explicitly
 D d2 = F; // Ok, int inferred as type argument
 E e1 = G<int>; // Ok, type argument given explicitly
 E e2 = G; // Error, cannot infer from return type
 }
}

end example

Method groups may influence overload resolution, and participate in type inference. See §11.6 for further
details.

The run-time evaluation of a method group conversion proceeds as follows:

• If the method selected at compile-time is an instance method, or it is an extension method which is
accessed as an instance method, the target object of the delegate is determined from the instance
expression associated with E:

ECMA-334

132

o The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

o If the instance expression is of a reference_type, the value computed by the instance expression
becomes the target object. If the selected method is an instance method and the target object is
null, a System.NullReferenceException is thrown and no further steps are executed.

o If the instance expression is of a value_type, a boxing operation (§10.2.9) is performed to convert
the value to an object, and this object becomes the target object.

• Otherwise, the selected method is part of a static method call, and the target object of the delegate is
null.

• A delegate instance of delegate type D is obtained with a reference to the method that was
determined at compile-time and a reference to the target object computed above, as follows:

• The conversion is permitted (but not required) to use an existing delegate instance that already
contains these references.

• If an existing instance was not reused, a new one is created (§19.5). If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown. Otherwise the
instance is initialized with the given references.

Chapter 11 Expressions

133

11. Expressions

11.1 General
An expression is a sequence of operators and operands. This clause defines the syntax, order of evaluation
of operands and operators, and meaning of expressions.

11.2 Expression classifications

11.2.1 General

The result of an expression is classified as one of the following:

• A value. Every value has an associated type.

• A variable. Every variable has an associated type, namely the declared type of the variable.

• A null literal. An expression with this classification can be implicitly converted to a reference type or
nullable value type.

• An anonymous function. An expression with this classification can be implicitly converted to a
compatible delegate type or expression tree type.

• A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor of
an instance property access is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12).

• An indexer access. Every indexer access has an associated type, namely the element type of the
indexer. Furthermore, an indexer access has an associated instance expression and an associated
argument list. When an accessor of an indexer access is invoked, the result of evaluating the
instance expression becomes the instance represented by this (§11.7.12), and the result of
evaluating the argument list becomes the parameter list of the invocation.

• Nothing. This occurs when the expression is an invocation of a method with a return type of void.
An expression classified as nothing is only valid in the context of a statement_expression (§12.7) or
as the body of a lambda_expression (§11.16).

For expressions which occur as subexpressions of larger expressions, with the noted restrictions, the
result can also be classified as one of the following:

• A namespace. An expression with this classification can only appear as the left-hand side of a
member_access (§11.7.6). In any other context, an expression classified as a namespace causes a
compile-time error.

• A type. An expression with this classification can only appear as the left-hand side of a
member_access (§11.7.6). In any other context, an expression classified as a type causes a compile-
time error.

• A method group, which is a set of overloaded methods resulting from a member lookup (§11.5). A
method group may have an associated instance expression and an associated type argument list.

ECMA-334

134

When an instance method is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12). A method group is permitted in an invocation_expression
(§11.7.8) or a delegate_creation_expression (§11.7.15.6), and can be implicitly converted to a
compatible delegate type (§10.8). In any other context, an expression classified as a method group
causes a compile-time error.

• An event access. Every event access has an associated type, namely the type of the event.
Furthermore, an event access may have an associated instance expression. An event access may
appear as the left-hand operand of the += and -= operators (§11.18.4). In any other context, an
expression classified as an event access causes a compile-time error. When an accessor of an
instance event access is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12).

A property access or indexer access is always reclassified as a value by performing an invocation of the
get_accessor or the set_accessor. The particular accessor is determined by the context of the property or
indexer access: If the access is the target of an assignment, the set_accessor is invoked to assign a new
value (§11.18.2). Otherwise, the get_accessor is invoked to obtain the current value (§11.2.2).

An instance accessor is a property access on an instance, an event access on an instance, or an indexer
access.

11.2.2 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In
such cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-
time error occurs. However, if the expression denotes a property access, an indexer access, or a variable,
the value of the property, indexer, or variable is implicitly substituted:

• The value of a variable is simply the value currently stored in the storage location identified by the
variable. A variable shall be considered definitely assigned (§9.4) before its value can be obtained,
or otherwise a compile-time error occurs.

• The value of a property access expression is obtained by invoking the get_accessor of the property. If
the property has no get_accessor, a compile-time error occurs. Otherwise, a function member
invocation (§11.6.6) is performed, and the result of the invocation becomes the value of the
property access expression.

• The value of an indexer access expression is obtained by invoking the get_accessor of the indexer. If
the indexer has no get_accessor, a compile-time error occurs. Otherwise, a function member
invocation (§11.6.6) is performed with the argument list associated with the indexer access
expression, and the result of the invocation becomes the value of the indexer access expression.

11.3 Static and Dynamic Binding

11.3.1 General

Binding is the process of determining what an operation refers to, based on the type or value of
expressions (arguments, operands, receivers). For instance, the binding of a method call is determined
based on the type of the receiver and arguments. The binding of an operator is determined based on the
type of its operands.

In C# the binding of an operation is usually determined at compile-time, based on the compile-time type
of its subexpressions. Likewise, if an expression contains an error, the error is detected and reported by
the compiler. This approach is known as static binding.

Chapter 11 Expressions

135

However, if an expression is a dynamic expression (i.e., has the type dynamic) this indicates that any
binding that it participates in should be based on its run-time type rather than the type it has at compile-
time. The binding of such an operation is therefore deferred until the time where the operation is to be
executed during the running of the program. This is referred to as dynamic binding.

When an operation is dynamically bound, little or no checking is performed by the compiler. Instead if the
run-time binding fails, errors are reported as exceptions at run-time.

The following operations in C# are subject to binding:

• Member access: e.M

• Method invocation: e.M(e1,...,ev)

• Delegate invocation: e(e1,...,ev)

• Element access: e[e1,...,ev]

• Object creation: new C(e1,...,ev)

• Overloaded unary operators: +, -, !, ~, ++, --, true, false

• Overloaded binary operators: +, -, *, /, %, &, &&, |, ||, ??, ^, <<, >>, ==, !=, >, <, >=, <=

• Assignment operators: =, +=, -=, *=, /=, %=, &=, |=, ^=, <<=, >>=

• Implicit and explicit conversions

When no dynamic expressions are involved, C# defaults to static binding, which means that the compile-
time types of subexpressions are used in the selection process. However, when one of the subexpressions
in the operations listed above is a dynamic expression, the operation is instead dynamically bound.

11.3.2 Binding-time

Static binding takes place at compile-time, whereas dynamic binding takes place at run-time. In the
following subclauses, the term binding-time refers to either compile-time or run-time, depending on
when the binding takes place.

Example: The following illustrates the notions of static and dynamic binding and of binding-time:

object o = 5;
dynamic d = 5;
Console.WriteLine(5); // static binding to Console.WriteLine(int)
Console.WriteLine(o); // static binding to Console.WriteLine(object)
Console.WriteLine(d); // dynamic binding to Console.WriteLine(int)

The first two calls are statically bound: the overload of Console.WriteLine is picked based on the
compile-time type of their argument. Thus, the binding-time is compile-time.

The third call is dynamically bound: the overload of Console.WriteLine is picked based on the run-
time type of its argument. This happens because the argument is a dynamic expression – its
compile-time type is dynamic. Thus, the binding-time for the third call is run-time.

end example

11.3.3 Dynamic binding

This subclause is informative.

Dynamic binding allows C# programs to interact with dynamic objects, i.e., objects that do not follow the
normal rules of the C# type system. Dynamic objects may be objects from other programming languages

ECMA-334

136

with different types systems, or they may be objects that are programmatically setup to implement their
own binding semantics for different operations.

The mechanism by which a dynamic object implements its own semantics is implementation-defined. A
given interface – again implementation-defined – is implemented by dynamic objects to signal to the
C# run-time that they have special semantics. Thus, whenever operations on a dynamic object are
dynamically bound, their own binding semantics, rather than those of C# as specified in this specification,
take over.

While the purpose of dynamic binding is to allow interoperation with dynamic objects, C# allows dynamic
binding on all objects, whether they are dynamic or not. This allows for a smoother integration of
dynamic objects, as the results of operations on them may not themselves be dynamic objects, but are still
of a type unknown to the programmer at compile-time. Also, dynamic binding can help eliminate error-
prone reflection-based code even when no objects involved are dynamic objects.

11.3.4 Types of subexpressions

When an operation is statically bound, the type of a subexpression (e.g., a receiver, and argument, an
index or an operand) is always considered to be the compile-time type of that expression.

When an operation is dynamically bound, the type of a subexpression is determined in different ways
depending on the compile-time type of the subexpression:

• A subexpression of compile-time type dynamic is considered to have the type of the actual value
that the expression evaluates to at run-time

• A subexpression whose compile-time type is a type parameter is considered to have the type which
the type parameter is bound to at run-time

• Otherwise, the subexpression is considered to have its compile-time type.

11.4 Operators

11.4.1 General

Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands.

Example: Examples of operators include +, -, *, /, and new. Examples of operands include literals,
fields, local variables, and expressions. end example

There are three kinds of operators:

• Unary operators. The unary operators take one operand and use either prefix notation (such as –x)
or postfix notation (such as x++).

• Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

• Ternary operator. Only one ternary operator, ?:, exists; it takes three operands and uses infix
notation (c ? x : y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of
the operators (§11.4.2).

Operands in an expression are evaluated from left to right.

Chapter 11 Expressions

137

Example: In F(i) + G(i++) * H(i), method F is called using the old value of i, then method G is
called with the old value of i, and, finally, method H is called with the new value of i. This is separate
from and unrelated to operator precedence. end example

Certain operators can be overloaded. Operator overloading (§11.4.3) permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a user-defined
class or struct type.

11.4.2 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators controls the order in
which the individual operators are evaluated.

Note: For example, the expression x + y * z is evaluated as x + (y * z) because the * operator
has higher precedence than the binary + operator. end note

The precedence of an operator is established by the definition of its associated grammar production.

Note: For example, an additive_expression consists of a sequence of multiplicative_expressions
separated by + or - operators, thus giving the + and - operators lower precedence than the *, /, and
% operators. end note

Note: The following table summarizes all operators in order of precedence from highest to lowest:

Subclause Category Operators

§11.7 Primary x.y x?.y f(x) a[x] a?[x] x++ x-- new typeof
default checked unchecked delegate

§11.8 Unary + - ! ~ ++x --x (T)x await x

§11.9 Multiplicative * / %

§11.9 Additive + -

§11.10 Shift << >>

§11.11 Relational and type-
testing

< > <= >= is as

§11.11 Equality == !=

§11.12 Logical AND &

§11.12 Logical XOR ^

§11.12 Logical OR |

§11.13 Conditional AND &&

§11.13 Conditional OR ||

§11.14 Null coalescing ??

§11.15 Conditional ?:

§11.18 and
§11.16

Assignment and lambda
expression

= *= /= %= += -= <<= >>= &= ^= |= =>

end note

When an operand occurs between two operators with the same precedence, the associativity of the
operators controls the order in which the operations are performed:

ECMA-334

138

• Except for the assignment operators and the null coalescing operator, all binary operators are left-
associative, meaning that operations are performed from left to right.
Example: x + y + z is evaluated as (x + y) + z. end example

• The assignment operators, the null coalescing operator and the conditional operator (?:) are right-
associative, meaning that operations are performed from right to left.
Example: x = y = z is evaluated as x = (y = z). end example

Precedence and associativity can be controlled using parentheses.

Example: x + y * z first multiplies y by z and then adds the result to x, but (x + y) * z first adds x
and y and then multiplies the result by z. end example

11.4.3 Operator overloading

All unary and binary operators have predefined implementations. In addition, user-defined
implementations can be introduced by including operator declarations (§14.10) in classes and structs.
User-defined operator implementations always take precedence over predefined operator
implementations: Only when no applicable user-defined operator implementations exist will the
predefined operator implementations be considered, as described in §11.4.4 and §11.4.5.

The overloadable unary operators are:

+ - ! ~ ++ -- true false

Note: Although true and false are not used explicitly in expressions (and therefore are not
included in the precedence table in §11.4.2), they are considered operators because they are
invoked in several expression contexts: Boolean expressions (§11.21) and expressions involving the
conditional (§11.15) and conditional logical operators (§11.13). end note

The overloadable binary operators are:

+ - * / % & | ^ << >> == != > < <= >=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the =, &&, ||, ??, ?:, =>, checked, unchecked, new, typeof, default, as, and
is operators.

When a binary operator is overloaded, the corresponding compound assignment operator, if any, is also
implicitly overloaded.

Example: An overload of operator * is also an overload of operator *=. This is described further
in §11.18. end example

The assignment operator itself (=) cannot be overloaded. An assignment always performs a simple store
of a value into a variable (§11.18.2).

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (§10.5).

Note: User-defined conversions do not affect the behavior of the is or as operators. end note

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing
is supported through indexers (§14.9).

In expressions, operators are referenced using operator notation, and in declarations, operators are
referenced using functional notation. The following table shows the relationship between operator and
functional notations for unary and binary operators. In the first entry, «op» denotes any overloadable
unary prefix operator. In the second entry, «op» denotes the unary postfix ++ and -- operators. In the
third entry, «op» denotes any overloadable binary operator.

Chapter 11 Expressions

139

Note: For an example of overloading the ++ and -- operators see §14.10.2. end note

Operator notation Functional notation

«op» x operator «op»(x)

x «op» operator «op»(x)

x «op» y operator «op»(x, y)

User-defined operator declarations always require at least one of the parameters to be of the class or
struct type that contains the operator declaration.

Note: Thus, it is not possible for a user-defined operator to have the same signature as a predefined
operator. end note

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.

Example: The / operator is always a binary operator, always has the precedence level specified in
§11.4.2, and is always left-associative. end example

Note: While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are strongly
discouraged. For example, an implementation of operator == should compare the two operands for
equality and return an appropriate bool result. end note

The descriptions of individual operators in §11.8 through §11.18 specify the predefined implementations
of the operators and any additional rules that apply to each operator. The descriptions make use of the
terms unary operator overload resolution, binary operator overload resolution, numeric promotion,
and lifted operator definitions of which are found in the following subclauses.

11.4.4 Unary operator overload resolution

An operation of the form «op» x or x «op», where «op» is an overloadable unary operator, and x is an
expression of type X, is processed as follows:

• The set of candidate user-defined operators provided by X for the operation operator «op»(x) is
determined using the rules of §11.4.6.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator «op» implementations,
including their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. The predefined
operators provided by an enum or delegate type are only included in this set when the binding-time
type—or the underlying type if it is a nullable type—of either operand is the enum or delegate type.

• The overload resolution rules of §11.6.4 are applied to the set of candidate operators to select the
best operator with respect to the argument list (x), and this operator becomes the result of the
overload resolution process. If overload resolution fails to select a single best operator, a binding-
time error occurs.

11.4.5 Binary operator overload resolution

An operation of the form x «op» y, where «op» is an overloadable binary operator, x is an expression of
type X, and y is an expression of type Y, is processed as follows:

• The set of candidate user-defined operators provided by X and Y for the operation operator
«op»(x, y) is determined. The set consists of the union of the candidate operators provided by X

ECMA-334

140

and the candidate operators provided by Y, each determined using the rules of §11.4.6. For the
combined set, candidates are merged as follows:

o If X and Y are the same type, or if X and Y are derived from a common base type, then shared
candidate operators only occur in the combined set once.

o If there is an identity conversion between X and Y, an operator «op»Y provided by Y has the same
return type as an «op»X provided by X and the operand types of «op»Y have an identity
conversion to the corresponding operand types of «op»X then only «op»X occurs in the set.

• If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator «op» implementations,
including their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. For predefined
enum and delegate operators, the only operators considered are those provided by an enum or
delegate type that is the binding-time type of one of the operands.

• The overload resolution rules of §11.6.4 are applied to the set of candidate operators to select the
best operator with respect to the argument list (x, y), and this operator becomes the result of the
overload resolution process. If overload resolution fails to select a single best operator, a binding-
time error occurs.

11.4.6 Candidate user-defined operators

Given a type T and an operation operator «op»(A), where «op» is an overloadable operator and A is an
argument list, the set of candidate user-defined operators provided by T for operator «op»(A) is
determined as follows:

• Determine the type T0. If T is a nullable value type, T0 is its underlying type; otherwise, T0 is equal
to T.

• For all operator «op» declarations in T0 and all lifted forms of such operators, if at least one
operator is applicable (§11.6.4.2) with respect to the argument list A, then the set of candidate
operators consists of all such applicable operators in T0.

• Otherwise, if T0 is object, the set of candidate operators is empty.

• Otherwise, the set of candidate operators provided by T0 is the set of candidate operators provided
by the direct base class of T0, or the effective base class of T0 if T0 is a type parameter.

11.4.7 Numeric promotions

11.4.7.1 General

This subclause is informative.

§11.4.7 and its subclauses are a summary of the combined effect of:

• the rules for implicit numeric conversions (§10.2.3);

• the rules for better conversion (§11.6.4.6); and

• the available arithmetic (§11.9), relational (§11.11), and integral logical (§11.12.2) operators.

Numeric promotion consists of automatically performing certain implicit conversions of the operands of
the predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but
rather an effect of applying overload resolution to the predefined operators. Numeric promotion

Chapter 11 Expressions

141

specifically does not affect evaluation of user-defined operators, although user-defined operators can be
implemented to exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);
float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (§11.6.4) are applied to this set of operators, the effect is to select the first
of the operators for which implicit conversions exist from the operand types.

Example: For the operation b * s, where b is a byte and s is a short, overload resolution selects
operator *(int, int) as the best operator. Thus, the effect is that b and s are converted to int,
and the type of the result is int. Likewise, for the operation i * d, where i is an int and d is a
double, overload resolution selects operator *(double, double) as the best operator. end
example

End of informative text.

11.4.7.2 Unary numeric promotions

This subclause is informative.

Unary numeric promotion occurs for the operands of the predefined +, –, and ~ unary operators. Unary
numeric promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char to
type int. Additionally, for the unary – operator, unary numeric promotion converts operands of type uint
to type long.

End of informative text.

11.4.7.3 Binary numeric promotions

This subclause is informative.

Binary numeric promotion occurs for the operands of the predefined +, –, *, /, %, &, |, ^, ==, !=, >, <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also becomes the result type of the operation. Binary
numeric promotion consists of applying the following rules, in the order they appear here:

• If either operand is of type decimal, the other operand is converted to type decimal, or a binding-
time error occurs if the other operand is of type float or double.

• Otherwise, if either operand is of type double, the other operand is converted to type double.

• Otherwise, if either operand is of type float, the other operand is converted to type float.

• Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or a
binding-time error occurs if the other operand is of type sbyte, short, int, or long.

• Otherwise, if either operand is of type long, the other operand is converted to type long.

• Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int,
both operands are converted to type long.

• Otherwise, if either operand is of type uint, the other operand is converted to type uint.

ECMA-334

142

• Otherwise, both operands are converted to type int.

Note: The first rule disallows any operations that mix the decimal type with the double and float
types. The rule follows from the fact that there are no implicit conversions between the decimal
type and the double and float types. end note

Note: Also note that it is not possible for an operand to be of type ulong when the other operand is
of a signed integral type. The reason is that no integral type exists that can represent the full range
of ulong as well as the signed integral types. end note

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

Example: In the following code

decimal AddPercent(decimal x, double percent) => x * (1.0 + percent / 100.0);

a binding-time error occurs because a decimal cannot be multiplied by a double. The error is
resolved by explicitly converting the second operand to decimal, as follows:

decimal AddPercent(decimal x, double percent) => x * (decimal)(1.0 + percent /
100.0);

end example

End of informative text.

11.4.8 Lifted operators

Lifted operators permit predefined and user-defined operators that operate on non-nullable value types
to also be used with nullable forms of those types. Lifted operators are constructed from predefined and
user-defined operators that meet certain requirements, as described in the following:

• For the unary operators +, ++, -, --, !, and ~, a lifted form of an operator exists if the operand and
result types are both non-nullable value types. The lifted form is constructed by adding a single
? modifier to the operand and result types. The lifted operator produces a null value if the operand
is null. Otherwise, the lifted operator unwraps the operand, applies the underlying operator, and
wraps the result.

• For the binary operators +, -, *, /, %, &, |, ^, <<, and >>, a lifted form of an operator exists if the
operand and result types are all non-nullable value types. The lifted form is constructed by adding a
single ? modifier to each operand and result type. The lifted operator produces a null value if one
or both operands are null (an exception being the & and | operators of the bool? type, as described
in §11.12.5). Otherwise, the lifted operator unwraps the operands, applies the underlying operator,
and wraps the result.

• For the equality operators == and !=, a lifted form of an operator exists if the operand types are both
non-nullable value types and if the result type is bool. The lifted form is constructed by adding a
single ? modifier to each operand type. The lifted operator considers two null values equal, and a
null value unequal to any non-null value. If both operands are non-null, the lifted operator
unwraps the operands and applies the underlying operator to produce the bool result.

• For the relational operators <, >, <=, and >=, a lifted form of an operator exists if the operand types
are both non-nullable value types and if the result type is bool. The lifted form is constructed by
adding a single ? modifier to each operand type. The lifted operator produces the value false if one
or both operands are null. Otherwise, the lifted operator unwraps the operands and applies the
underlying operator to produce the bool result.

Chapter 11 Expressions

143

11.5 Member lookup

11.5.1 General

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup can occur as part of evaluating a simple_name (§11.7.4) or a member_access (§11.7.6) in
an expression. If the simple_name or member_access occurs as the primary_expression of an
invocation_expression (§11.7.8.2), the member is said to be invoked.

If a member is a method or event, or if it is a constant, field or property of either a delegate type (§19) or
the type dynamic (§8.2.4), then the member is said to be invocable.

Member lookup considers not only the name of a member but also the number of type parameters the
member has and whether the member is accessible. For the purposes of member lookup, generic methods
and nested generic types have the number of type parameters indicated in their respective declarations
and all other members have zero type parameters.

A member lookup of a name N with K type arguments in a type T is processed as follows:

• First, a set of accessible members named N is determined:

o If T is a type parameter, then the set is the union of the sets of accessible members named N in
each of the types specified as a primary constraint or secondary constraint (§14.2.5) for T, along
with the set of accessible members named N in object.

o Otherwise, the set consists of all accessible (§7.5) members named N in T, including inherited
members and the accessible members named N in object. If T is a constructed type, the set of
members is obtained by substituting type arguments as described in §14.3.3. Members that
include an override modifier are excluded from the set.

• Next, if K is zero, all nested types whose declarations include type parameters are removed. If K is
not zero, all members with a different number of type parameters are removed. When K is zero,
methods having type parameters are not removed, since the type inference process (§11.6.3) might
be able to infer the type arguments.

• Next, if the member is invoked, all non-invocable members are removed from the set.

• Next, members that are hidden by other members are removed from the set. For every member S.M
in the set, where S is the type in which the member M is declared, the following rules are applied:

o If M is a constant, field, property, event, or enumeration member, then all members declared in a
base type of S are removed from the set.

o If M is a type declaration, then all non-types declared in a base type of S are removed from the
set, and all type declarations with the same number of type parameters as M declared in a base
type of S are removed from the set.

o If M is a method, then all non-method members declared in a base type of S are removed from
the set.

• Next, interface members that are hidden by class members are removed from the set. This step only
has an effect if T is a type parameter and T has both an effective base class other than object and a
non-empty effective interface set (§14.2.5). For every member S.M in the set, where S is the type in
which the member M is declared, the following rules are applied if S is a class declaration other than
object:

ECMA-334

144

o If M is a constant, field, property, event, enumeration member, or type declaration, then all
members declared in an interface declaration are removed from the set.

o If M is a method, then all non-method members declared in an interface declaration are removed
from the set, and all methods with the same signature as M declared in an interface declaration
are removed from the set.

• Finally, having removed hidden members, the result of the lookup is determined:

o If the set consists of a single member that is not a method, then this member is the result of the
lookup.

o Otherwise, if the set contains only methods, then this group of methods is the result of the
lookup.

o Otherwise, the lookup is ambiguous, and a binding-time error occurs.

For member lookups in types other than type parameters and interfaces, and member lookups in
interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effect of the lookup rules is simply that derived members hide base
members with the same name or signature. Such single-inheritance lookups are never ambiguous. The
ambiguities that can possibly arise from member lookups in multiple-inheritance interfaces are described
in §17.4.6.

Note: This phase only accounts for one kind of ambiguity. If the member lookup results in a method
group, further uses of method group may fail due to ambiguity, for example as described in
§11.6.4.1 and §11.6.6.2. end note

11.5.2 Base types

For purposes of member lookup, a type T is considered to have the following base types:

• If T is object or dynamic, then T has no base type.

• If T is an enum_type, the base types of T are the class types System.Enum, System.ValueType, and
object.

• If T is a struct_type, the base types of T are the class types System.ValueType and object.
Note: A nullable_value_type is a struct_type (§8.3.1). end note

• If T is a class_type, the base types of T are the base classes of T, including the class type object.

• If T is an interface_type, the base types of T are the base interfaces of T and the class type object.

• If T is an array_type, the base types of T are the class types System.Array and object.

• If T is a delegate_type, the base types of T are the class types System.Delegate and object.

11.6 Function members

11.6.1 General

Function members are members that contain executable statements. Function members are always
members of types and cannot be members of namespaces. C# defines the following categories of function
members:

• Methods

Chapter 11 Expressions

145

• Properties

• Events

• Indexers

• User-defined operators

• Instance constructors

• Static constructors

• Finalizers

Except for finalizers and static constructors (which cannot be invoked explicitly), the statements
contained in function members are executed through function member invocations. The actual syntax for
writing a function member invocation depends on the particular function member category.

The argument list (§11.6.2) of a function member invocation provides actual values or variable references
for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type arguments to pass
to the method. This process is described in §11.6.3.

Invocations of methods, indexers, operators, and instance constructors employ overload resolution to
determine which of a candidate set of function members to invoke. This process is described in §11.6.4.

Once a particular function member has been identified at binding-time, possibly through overload
resolution, the actual run-time process of invoking the function member is described in §11.6.6.

Note: The following table summarizes the processing that takes place in constructs involving the six
categories of function members that can be explicitly invoked. In the table, e, x, y, and value indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the
simple name of a method, and P is the simple name of a property.

Construct Example Description

Method
invocation

F(x, y) Overload resolution is applied to select the best method F in
the containing class or struct. The method is invoked with the
argument list (x, y). If the method is not static, the instance
expression is this.

T.F(x, y) Overload resolution is applied to select the best method F in
the class or struct T. A binding-time error occurs if the method
is not static. The method is invoked with the argument list
(x, y).

e.F(x, y) Overload resolution is applied to select the best method F in
the class, struct, or interface given by the type of e. A binding-
time error occurs if the method is static. The method is
invoked with the instance expression e and the argument list
(x, y).

Property
access

P The get accessor of the property P in the containing class or
struct is invoked. A compile-time error occurs if P is write-
only. If P is not static, the instance expression is this.

ECMA-334

146

P = value The set accessor of the property P in the containing class or
struct is invoked with the argument list (value). A compile-
time error occurs if P is read-only. If P is not static, the
instance expression is this.

T.P The get accessor of the property P in the class or struct T is
invoked. A compile-time error occurs if P is not static or if P
is write-only.

T.P =
value

The set accessor of the property P in the class or struct T is
invoked with the argument list (value). A compile-time error
occurs if P is not static or if P is read-only.

e.P The get accessor of the property P in the class, struct, or
interface given by the type of E is invoked with the instance
expression e. A binding-time error occurs if P is static or if P
is write-only.

e.P =
value

The set accessor of the property P in the class, struct, or
interface given by the type of E is invoked with the instance
expression e and the argument list (value). A binding-time
error occurs if P is static or if P is read-only.

Event access E +=
value

The add accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

E -=
value

The remove accessor of the event E in the containing class or
struct is invoked. If E is not static, the instance expression is
this.

T.E +=
value

The add accessor of the event E in the class or struct T is
invoked. A binding-time error occurs if E is not static.

T.E -=
value

The remove accessor of the event E in the class or struct T is
invoked. A binding-time error occurs if E is not static.

e.E +=
value

The add accessor of the event E in the class, struct, or interface
given by the type of E is invoked with the instance expression
e. A binding-time error occurs if E is static.

e.E -=
value

The remove accessor of the event E in the class, struct, or
interface given by the type of E is invoked with the instance
expression e. A binding-time error occurs if E is static.

Indexer access e[x, y] Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance
expression e and the argument list (x, y). A binding-time
error occurs if the indexer is write-only.

e[x, y] =
value

Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance
expression e and the argument list (x, y, value). A binding-
time error occurs if the indexer is read-only.

Chapter 11 Expressions

147

Operator
invocation

-x Overload resolution is applied to select the best unary
operator in the class or struct given by the type of x. The
selected operator is invoked with the argument list (x).

x + y Overload resolution is applied to select the best binary
operator in the classes or structs given by the types of x and y.
The selected operator is invoked with the argument list
(x, y).

Instance
constructor
invocation

new T(x,
y)

Overload resolution is applied to select the best instance
constructor in the class or struct T. The instance constructor is
invoked with the argument list (x, y).

11.6.2 Argument lists

11.6.2.1 General

Every function member and delegate invocation includes an argument list, which provides actual values
or variable references for the parameters of the function member. The syntax for specifying the argument
list of a function member invocation depends on the function member category:

• For instance constructors, methods, indexers and delegates, the arguments are specified as an
argument_list, as described below. For indexers, when invoking the set accessor, the argument list
additionally includes the expression specified as the right operand of the assignment operator.
Note: This additional argument is not used for overload resolution, just during invocation of the set
accessor. end note

• For properties, the argument list is empty when invoking the get accessor, and consists of the
expression specified as the right operand of the assignment operator when invoking the set
accessor.

• For events, the argument list consists of the expression specified as the right operand of the += or -
= operator.

• For user-defined operators, the argument list consists of the single operand of the unary operator or
the two operands of the binary operator.

The arguments of properties (§14.7), events (§14.8), and user-defined operators (§14.10) are always
passed as value parameters (§14.6.2.2). The arguments of indexers (§14.9) are always passed as value
parameters (§14.6.2.2) or parameter arrays (§14.6.2.5). Reference and output parameters are not
supported for these categories of function members.

The arguments of an instance constructor, method, indexer, or delegate invocation are specified as an
argument_list:

argument_list
 : argument (',' argument)*
 ;

argument
 : argument_name? argument_value
 ;

argument_name
 : identifier ':'

ECMA-334

148

 ;

argument_value
 : expression
 | 'ref' variable_reference
 | 'out' variable_reference
 ;

An argument_list consists of one or more arguments, separated by commas. Each argument consists of an
optional argument_name followed by an argument_value. An argument with an argument_name is referred
to as a named argument, whereas an argument without an argument_name is a positional argument. It
is an error for a positional argument to appear after a named argument in an argument_list.

The argument_value can take one of the following forms:

• An expression, indicating that the argument is passed as a value parameter (§14.6.2.2).

• The keyword ref followed by a variable_reference (§9.5), indicating that the argument is passed as a
reference parameter (§14.6.2.3). A variable shall be definitely assigned (§9.4) before it can be
passed as a reference parameter.

• The keyword out followed by a variable_reference (§9.5), indicating that the argument is passed as
an output parameter (§14.6.2.4). A variable is considered definitely assigned (§9.4) following a
function member invocation in which the variable is passed as an output parameter.

The form determines the parameter-passing mode of the argument: value, reference, or output,
respectively.

Passing a volatile field (§14.5.4) as a reference parameter or output parameter causes a warning, since
the field may not be treated as volatile by the invoked method.

11.6.2.2 Corresponding parameters

For each argument in an argument list there has to be a corresponding parameter in the function member
or delegate being invoked.

The parameter list used in the following is determined as follows:

• For virtual methods and indexers defined in classes, the parameter list is picked from the first
declaration or override of the function member found when starting with the static type of the
receiver, and searching through its base classes.

• For partial methods, the parameter list of the defining partial method declaration is used.

• For all other function members and delegates there is only a single parameter list, which is the one
used.

The position of an argument or parameter is defined as the number of arguments or parameters
preceding it in the argument list or parameter list.

The corresponding parameters for function member arguments are established as follows:

• Arguments in the argument_list of instance constructors, methods, indexers and delegates:

o A positional argument where a parameter occurs at the same position in the parameter list
corresponds to that parameter, unless the parameter is a parameter array and the function
member is invoked in its expanded form.

Chapter 11 Expressions

149

o A positional argument of a function member with a parameter array invoked in its expanded
form, which occurs at or after the position of the parameter array in the parameter list,
corresponds to an element in the parameter array.

o A named argument corresponds to the parameter of the same name in the parameter list.

o For indexers, when invoking the set accessor, the expression specified as the right operand of
the assignment operator corresponds to the implicit value parameter of the set accessor
declaration.

• For properties, when invoking the get accessor there are no arguments. When invoking the set
accessor, the expression specified as the right operand of the assignment operator corresponds to
the implicit value parameter of the set accessor declaration.

• For user-defined unary operators (including conversions), the single operand corresponds to the
single parameter of the operator declaration.

• For user-defined binary operators, the left operand corresponds to the first parameter, and the right
operand corresponds to the second parameter of the operator declaration.

11.6.2.3 Run-time evaluation of argument lists

During the run-time processing of a function member invocation (§11.6.6), the expressions or variable
references of an argument list are evaluated in order, from left to right, as follows:

• For a value parameter, the argument expression is evaluated and an implicit conversion (§10.2) to
the corresponding parameter type is performed. The resulting value becomes the initial value of the
value parameter in the function member invocation.

• For a reference or output parameter, the variable reference is evaluated and the resulting storage
location becomes the storage location represented by the parameter in the function member
invocation. If the variable reference given as a reference or output parameter is an array element of
a reference_type, a run-time check is performed to ensure that the element type of the array is
identical to the type of the parameter. If this check fails, a System.ArrayTypeMismatchException is
thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter
array (§14.6.2.5). Such function members are invoked either in their normal form or in their expanded
form depending on which is applicable (§11.6.4.2):

• When a function member with a parameter array is invoked in its normal form, the argument given
for the parameter array shall be a single expression that is implicitly convertible (§10.2) to the
parameter array type. In this case, the parameter array acts precisely like a value parameter.

• When a function member with a parameter array is invoked in its expanded form, the invocation
shall specify zero or more positional arguments for the parameter array, where each argument is an
expression that is implicitly convertible (§10.2) to the element type of the parameter array. In this
case, the invocation creates an instance of the parameter array type with a length corresponding to
the number of arguments, initializes the elements of the array instance with the given argument
values, and uses the newly created array instance as the actual argument.

The expressions of an argument list are always evaluated in textual order.

Example: Thus, the example

class Test
{
 static void F(int x, int y = -1, int z = -2) =>

ECMA-334

150

 System.Console.WriteLine($"x = {x}, y = {y}, z = {z}");

 static void Main()
 {
 int i = 0;
 F(i++, i++, i++);
 F(z: i++, x: i++);
 }
}

produces the output

x = 0, y = 1, z = 2
x = 4, y = -1, z = 3

end example

The array co-variance rules (§16.6) permit a value of an array type A[] to be a reference to an instance of
an array type B[], provided an implicit reference conversion exists from B to A. Because of these rules,
when an array element of a reference_type is passed as a reference or output parameter, a run-time check
is required to ensure that the actual element type of the array is identical to that of the parameter.

Example: In the following code

class Test
{
 static void F(ref object x) {...}

 static void Main()
 {
 object[] a = new object[10];
 object[] b = new string[10];
 F(ref a[0]); // Ok
 F(ref b[1]); // ArrayTypeMismatchException
 }
}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown because the
actual element type of b is string and not object.

end example

When a function member with a parameter array is invoked in its expanded form with at least one
expanded argument, the invocation is processed as if an array creation expression with an array
initializer (§11.7.15.5) was inserted around the expanded arguments. An empty array is passed when
there are no arguments for the parameter array; it is unspecified whether the reference passed is to a
newly allocated or existing empty array.

Example: Given the declaration

void F(int x, int y, params object[] args);

the following invocations of the expanded form of the method

F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

Chapter 11 Expressions

151

F(10, 20, new object[] { 30, 40 });
F(10, 20, new object[] { 1, "hello", 3.0 });

end example

When arguments are omitted from a function member with corresponding optional parameters, the
default arguments of the function member declaration are implicitly passed.

Note: Because these are always constant, their evaluation will not impact the evaluation of the
remaining arguments. end note

11.6.3 Type inference

11.6.3.1 General

When a generic method is called without specifying type arguments, a type inference process attempts to
infer type arguments for the call. The presence of type inference allows a more convenient syntax to be
used for calling a generic method, and allows the programmer to avoid specifying redundant type
information.

Example: Given the method declaration:

class Chooser
{
 static Random rand = new Random();

 public static T Choose<T>(T first, T second) => rand.Next(2) == 0 ? first :
second;
}

it is possible to invoke the Choose method without explicitly specifying a type argument:

int i = Chooser.Choose(5, 213); // Calls Choose<int>
string s = Chooser.Choose("apple", "banana"); // Calls Choose<string>

Through type inference, the type arguments int and string are determined from the arguments to
the method.

end example

Type inference occurs as part of the binding-time processing of a method invocation (§11.7.8.2) and takes
place before the overload resolution step of the invocation. When a particular method group is specified
in a method invocation, and no type arguments are specified as part of the method invocation, type
inference is applied to each generic method in the method group. If type inference succeeds, then the
inferred type arguments are used to determine the types of arguments for subsequent overload
resolution. If overload resolution chooses a generic method as the one to invoke, then the inferred type
arguments are used as the type arguments for the invocation. If type inference for a particular method
fails, that method does not participate in overload resolution. The failure of type inference, in and of itself,
does not cause a binding-time error. However, it often leads to a binding-time error when overload
resolution then fails to find any applicable methods.

If each supplied argument does not correspond to exactly one parameter in the method (§11.6.2.2), or
there is a non-optional parameter with no corresponding argument, then inference immediately fails.
Otherwise, assume that the generic method has the following signature:

Te M<X1...Xv>(T1 p1 ... Tx px)

With a method call of the form M(E1 ...Ex) the task of type inference is to find unique type arguments
S1...Sv for each of the type parameters X1...Xv so that the call M<S1...Sv>(E1...Ex) becomes valid.

ECMA-334

152

The process of type inference is described below as an algorithm. A conformant compiler may be
implemented using an alternative approach, provided it reaches the same result in all cases.

During the process of inference each type parameter Xi is either fixed to a particular type Si or unfixed
with an associated set of bounds. Each of the bounds is some type T. Initially each type variable Xi is
unfixed with an empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for more type variables
based on the findings of the previous phase. The first phase makes some initial inferences of bounds,
whereas the second phase fixes type variables to specific types and infers further bounds. The second
phase may have to be repeated a number of times.

Note: Type inference is also used in other contexts including for conversion of method groups
(§11.6.3.14) and finding the best common type of a set of expressions (§11.6.3.15). end note

11.6.3.2 The first phase

For each of the method arguments Ei:

• If Ei is an anonymous function, an explicit parameter type inference (§11.6.3.8) is made from Ei to Ti

• Otherwise, if Ei has a type U and xi is a value parameter (§14.6.2.2) then a lower-bound inference
(§11.6.3.10) is made from U to Ti.

• Otherwise, if Ei has a type U and xi is a reference (§14.6.2.3) or output (§14.6.2.4) parameter then an
exact inference (§11.6.3.9) is made from U to Ti.

• Otherwise, no inference is made for this argument.

11.6.3.3 The second phase

The second phase proceeds as follows:

• All unfixed type variables Xi which do not depend on (§11.6.3.6) any Xe are fixed (§11.6.3.12).

• If no such type variables exist, all unfixed type variables Xi are fixed for which all of the following
hold:

o There is at least one type variable Xe that depends on Xi

o Xi has a non-empty set of bounds

• If no such type variables exist and there are still unfixed type variables, type inference fails.

• Otherwise, if no further unfixed type variables exist, type inference succeeds.

• Otherwise, for all arguments Ei with corresponding parameter type Ti where the output types
(§11.6.3.5) contain unfixed type variables Xe but the input types (§11.6.3.4) do not, an output type
inference (§11.6.3.7) is made from Ei to Ti. Then the second phase is repeated.

11.6.3.4 Input types

If E is a method group or implicitly typed anonymous function and T is a delegate type or expression tree
type then all the parameter types of T are input types of E with type T.

11.6.3.5 Output types

If E is a method group or an anonymous function and T is a delegate type or expression tree type then the
return type of T is an output type of E with type T.

Chapter 11 Expressions

153

11.6.3.6 Dependence

An unfixed type variable Xi depends directly on an unfixed type variable Xe if for some argument Ev with
type Tv Xe occurs in an input type of Ev with type Tv and Xi occurs in an output type of Ev with type Tv.

Xe depends on Xi if Xe depends directly on Xi or if Xi depends directly on Xv and Xv depends on Xe. Thus
“depends on” is the transitive but not reflexive closure of “depends directly on”.

11.6.3.7 Output type inferences

An output type inference is made from an expression E to a type T in the following way:

• If E is an anonymous function with inferred return type U (§11.6.3.13) and T is a delegate type or
expression tree type with return type Tx, then a lower-bound inference (§11.6.3.10) is made from U
to Tx.

• Otherwise, if E is a method group and T is a delegate type or expression tree type with parameter
types T1...Tv and return type Tx, and overload resolution of E with the types T1...Tv yields a single
method with return type U, then a lower-bound inference is made from U to Tx.

• Otherwise, if E is an expression with type U, then a lower-bound inference is made from U to T.

• Otherwise, no inferences are made.

11.6.3.8 Explicit parameter type inferences

An explicit parameter type inference is made from an expression E to a type T in the following way:

• If E is an explicitly typed anonymous function with parameter types U1...Uv and T is a delegate type
or expression tree type with parameter types V1...Vv then for each Ui an exact inference (§11.6.3.9)
is made from Ui to the corresponding Vi.

11.6.3.9 Exact inferences

An exact inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of exact bounds for Xi.

• Otherwise, sets V1...Ve and U1...Ue are determined by checking if any of the following cases apply:

o V is an array type V1[...] and U is an array type U1[...] of the same rank

o V is the type V1? and U is the type U1

o V is a constructed type C<V1...Ve> and U is a constructed type C<U1...Ue>If any of these cases
apply then an exact inference is made from each Ui to the corresponding Vi.

• Otherwise, no inferences are made.

11.6.3.10 Lower-bound inferences

A lower-bound inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of lower bounds for Xi.

• Otherwise, if V is the type V1? and U is the type U1? then a lower bound inference is made from U1
to V1.

• Otherwise, sets U1...Ue and V1...Ve are determined by checking if any of the following cases apply:

o V is an array type V1[...]and U is an array type U1[...]of the same rank

ECMA-334

154

o V is one of IEnumerable<V1>, ICollection<V1>, IReadOnlyList<V1>>, IReadOnlyCollection<V1>
or IList<V1> and U is a single-dimensional array type U1[]

o V is a constructed class, struct, interface or delegate type C<V1...Ve> and there is a unique
type C<U1...Ue> such that U (or, if U is a type parameter, its effective base class or any member of
its effective interface set) is identical to, inherits from (directly or indirectly), or implements
(directly or indirectly) C<U1...Ue>.

o (The “uniqueness” restriction means that in the case interface C<T>{} class U: C<X>, C<Y>{},
then no inference is made when inferring from U to C<T> because U1 could be X or Y.)If any of
these cases apply then an inference is made from each Ui to the corresponding Vi as follows:

o If Ui is not known to be a reference type then an exact inference is made

o Otherwise, if U is an array type then a lower-bound inference is made

o Otherwise, if V is C<V1...Ve> then inference depends on the i-th type parameter of C:

• If it is covariant then a lower-bound inference is made.

• If it is contravariant then an upper-bound inference is made.

• If it is invariant then an exact inference is made.

• Otherwise, no inferences are made.

11.6.3.11 Upper-bound inferences

An upper-bound inference from a type U to a type V is made as follows:

• If V is one of the unfixed Xi then U is added to the set of upper bounds for Xi.

• Otherwise, sets V1...Ve and U1...Ue are determined by checking if any of the following cases apply:

o U is an array type U1[...]and V is an array type V1[...]of the same rank

o U is one of IEnumerable<Ue>, ICollection<Ue>, IReadOnlyList<Ue>, IReadOnlyCollection<Ue>
or IList<Ue> and V is a single-dimensional array type Ve[]

o U is the type U1? and V is the type V1?

o U is constructed class, struct, interface or delegate type C<U1...Ue> and V is a class, struct,
interface or delegate type which is identical to, inherits from (directly or indirectly), or
implements (directly or indirectly) a unique type C<V1...Ve>

o (The “uniqueness” restriction means that if we have interface C<T>{} class V<Z>: C<X<Z>>,
C<Y<Z>>{}, then no inference is made when inferring from C<U1> to V<Q>. Inferences are not
made from U1 to either X<Q> or Y<Q>.)If any of these cases apply then an inference is made from
each Ui to the corresponding Vi as follows:

o If Ui is not known to be a reference type then an exact inference is made

o Otherwise, if V is an array type then an upper-bound inference is made

o Otherwise, if U is C<U1...Ue> then inference depends on the i-th type parameter of C:

• If it is covariant then an upper-bound inference is made.

• If it is contravariant then a lower-bound inference is made.

• If it is invariant then an exact inference is made.

Chapter 11 Expressions

155

• Otherwise, no inferences are made.

11.6.3.12 Fixing

An unfixed type variable Xi with a set of bounds is fixed as follows:

• The set of candidate types Ue starts out as the set of all types in the set of bounds for Xi.

• We then examine each bound for Xi in turn: For each exact bound U of Xi all types Ue that are not
identical to U are removed from the candidate set. For each lower bound U of Xi all types Ue to which
there is not an implicit conversion from U are removed from the candidate set. For each upper-
bound U of Xi all types Ue from which there is not an implicit conversion to U are removed from the
candidate set.

• If among the remaining candidate types Ue there is a unique type V to which there is an implicit
conversion from all the other candidate types, then Xi is fixed to V.

• Otherwise, type inference fails.

11.6.3.13 Inferred return type

The inferred return type of an anonymous function F is used during type inference and overload
resolution. The inferred return type can only be determined for an anonymous function where all
parameter types are known, either because they are explicitly given, provided through an anonymous
function conversion or inferred during type inference on an enclosing generic method invocation.

The inferred effective return type is determined as follows:

• If the body of F is an expression that has a type, then the inferred effective return type of F is the type
of that expression.

• If the body of F is a block and the set of expressions in the block’s return statements has a best
common type T (§11.6.3.15), then the inferred effective return type of F is T.

• Otherwise, an effective return type cannot be inferred for F.

The inferred return type is determined as follows:

• If F is async and the body of F is either an expression classified as nothing (§11.2), or a block where
no return statements have expressions, the inferred return type is System.Threading.Tasks.Task.

• If F is async and has an inferred effective return type T, the inferred return type is
System.Threading.Tasks.Task<T>.

• If F is non-async and has an inferred effective return type T, the inferred return type is T.

• Otherwise, a return type cannot be inferred for F.

Example: As an example of type inference involving anonymous functions, consider the Select
extension method declared in the System.Linq.Enumerable class:

namespace System.Linq
{
 public static class Enumerable
 {
 public static IEnumerable<TResult> Select<TSource,TResult>(
 this IEnumerable<TSource> source,
 Func<TSource,TResult> selector)
 {
 foreach (TSource element in source)

ECMA-334

156

 {
 yield return selector(element);
 }
 }
 }
}

Assuming the System.Linq namespace was imported with a using namespace directive, and given a
class Customer with a Name property of type string, the Select method can be used to select the
names of a list of customers:

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

The extension method invocation (§11.7.8.3) of Select is processed by rewriting the invocation to a
static method invocation:

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Since type arguments were not explicitly specified, type inference is used to infer the type
arguments. First, the customers argument is related to the source parameter, inferring TSource to
be Customer. Then, using the anonymous function type inference process described above, c is given
type Customer, and the expression c.Name is related to the return type of the selector parameter,
inferring TResult to be string. Thus, the invocation is equivalent to

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)

and the result is of type IEnumerable<string>.

The following example demonstrates how anonymous function type inference allows type
information to “flow” between arguments in a generic method invocation. Given the method:

static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2)
{
 return f2(f1(value));
}

Type inference for the invocation:

double seconds = F("1:15:30", s => TimeSpan.Parse(s), t => t.TotalSeconds);

proceeds as follows: First, the argument “1:15:30” is related to the value parameter, inferring X to be
string. Then, the parameter of the first anonymous function, s, is given the inferred type string, and
the expression TimeSpan.Parse(s) is related to the return type of f1, inferring Y to be
System.TimeSpan. Finally, the parameter of the second anonymous function, t, is given the inferred
type System.TimeSpan, and the expression t.TotalSeconds is related to the return type of f2,
inferring Z to be double. Thus, the result of the invocation is of type double.

end example

11.6.3.14 Type inference for conversion of method groups

Similar to calls of generic methods, type inference shall also be applied when a method group M containing
a generic method is converted to a given delegate type D (§10.8). Given a method

Te M<X1...Xv>(T1 x1 ... Te xe)

and the method group M being assigned to the delegate type D the task of type inference is to find type
arguments S1...Sv so that the expression:

M<S1...Sv>

Chapter 11 Expressions

157

becomes compatible (§19.2) with D.

Unlike the type inference algorithm for generic method calls, in this case, there are only argument types,
no argument expressions. In particular, there are no anonymous functions and hence no need for multiple
phases of inference.

Instead, all Xi are considered unfixed, and a lower-bound inference is made from each argument type Ue of D
to the corresponding parameter type Te of M. If for any of the Xi no bounds were found, type inference fails.
Otherwise, all Xi are fixed to corresponding Si, which are the result of type inference.

11.6.3.15 Finding the best common type of a set of expressions

In some cases, a common type needs to be inferred for a set of expressions. In particular, the element
types of implicitly typed arrays and the return types of anonymous functions with block bodies are found
in this way.

The best common type for a set of expressions E1...Ev is determined as follows:

• A new unfixed type variable X is introduced.

• For each expression Ei an output type inference (§11.6.3.7) is performed from it to X.

• X is fixed (§11.6.3.12), if possible, and the resulting type is the best common type.

• Otherwise inference fails.

Note: Intuitively this inference is equivalent to calling a method void M<X>(X x1 ... X xv) with the
Ei as arguments and inferring X. end note

11.6.4 Overload resolution

11.6.4.1 General

Overload resolution is a binding-time mechanism for selecting the best function member to invoke given
an argument list and a set of candidate function members. Overload resolution selects the function
member to invoke in the following distinct contexts within C#:

• Invocation of a method named in an invocation_expression (§11.7.8).

• Invocation of an instance constructor named in an object_creation_expression (§11.7.15.2).

• Invocation of an indexer accessor through an element_access (§11.7.10).

• Invocation of a predefined or user-defined operator referenced in an expression (§11.4.4 and
§11.4.5).

Each of these contexts defines the set of candidate function members and the list of arguments in its own
unique way. For instance, the set of candidates for a method invocation does not include methods marked
override (§11.5), and methods in a base class are not candidates if any method in a derived class is
applicable (§11.7.8.2).

Once the candidate function members and the argument list have been identified, the selection of the best
function member is the same in all cases:

• First, the set of candidate function members is reduced to those function members that are
applicable with respect to the given argument list (§11.6.4.2). If this reduced set is empty, a
compile-time error occurs.

• Then, the best function member from the set of applicable candidate function members is located. If
the set contains only one function member, then that function member is the best function member.

ECMA-334

158

Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is
compared to all other function members using the rules in §11.6.4.3. If there is not exactly one
function member that is better than all other function members, then the function member
invocation is ambiguous and a binding-time error occurs.

The following subclauses define the exact meanings of the terms applicable function member and better
function member.

11.6.4.2 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when
all of the following are true:

• Each argument in A corresponds to a parameter in the function member declaration as described in
§11.6.2.2, at most one argument corresponds to each parameter, and any parameter to which no
argument corresponds is an optional parameter.

• For each argument in A, the parameter-passing mode of the argument is identical to the parameter-
passing mode of the corresponding parameter, and

o for a value parameter or a parameter array, an implicit conversion (§10.2) exists from the
argument expression to the type of the corresponding parameter, or

o for a ref or out parameter, there is an identity conversion between the type of the argument
expression and the type of the corresponding parameter

For a function member that includes a parameter array, if the function member is applicable by the above
rules, it is said to be applicable in its normal form. If a function member that includes a parameter array
is not applicable in its normal form, the function member might instead be applicable in its expanded
form:

• The expanded form is constructed by replacing the parameter array in the function member
declaration with zero or more value parameters of the element type of the parameter array such
that the number of arguments in the argument list A matches the total number of parameters. If A
has fewer arguments than the number of fixed parameters in the function member declaration, the
expanded form of the function member cannot be constructed and is thus not applicable.

• Otherwise, the expanded form is applicable if for each argument in A the parameter-passing mode of
the argument is identical to the parameter-passing mode of the corresponding parameter, and

o for a fixed value parameter or a value parameter created by the expansion, an implicit
conversion (§10.2) exists from the argument expression to the type of the corresponding
parameter, or

o for a ref or out parameter, the type of the argument expression is identical to the type of the
corresponding parameter.

11.6.4.3 Better function member

For the purposes of determining the better function member, a stripped-down argument list A is
constructed containing just the argument expressions themselves in the order they appear in the original
argument list.

Parameter lists for each of the candidate function members are constructed in the following way:

• The expanded form is used if the function member was applicable only in the expanded form.

Chapter 11 Expressions

159

• Optional parameters with no corresponding arguments are removed from the parameter list

• The parameters are reordered so that they occur at the same position as the corresponding
argument in the argument list.

Given an argument list A with a set of argument expressions {E1, E2, ..., Ev} and two applicable
function members Mv and Mx with parameter types {P1, P2, ..., Pv} and {Q1, Q2, ..., Qv}, Mv is defined
to be a better function member than Mx if

• for each argument, the implicit conversion from Ev to Qv is not better than the implicit conversion
from Ev to Pv, and

• for at least one argument, the conversion from Ev to Pv is better than the conversion from Ev to Qv.

In case the parameter type sequences {P1, P2, ..., Pv} and {Q1, Q2, ..., Qv} are equivalent (i.e.,
each Pi has an identity conversion to the corresponding Qi), the following tie-breaking rules are applied,
in order, to determine the better function member.

• If Mi is a non-generic method and Me is a generic method, then Mi is better than Me.

• Otherwise, if Mi is applicable in its normal form and Me has a params array and is applicable only in
its expanded form, then Mi is better than Me.

• Otherwise, if both methods have params arrays and are applicable only in their expanded forms,
and if the params array of Mi has fewer elements than the params array of Me, then Mi is better
than Me.

• Otherwise, if Mv has more specific parameter types than Mx, then Mv is better than Mx. Let {R1, R2,
..., Rn} and {S1, S2, ..., Sn} represent the uninstantiated and unexpanded parameter types
of Mv and Mx. Mv’s parameter types are more specific than Mxs if, for each parameter, Rx is not less
specific than Sx, and, for at least one parameter, Rx is more specific than Sx:

o A type parameter is less specific than a non-type parameter.

o Recursively, a constructed type is more specific than another constructed type (with the same
number of type arguments) if at least one type argument is more specific and no type argument
is less specific than the corresponding type argument in the other.

o An array type is more specific than another array type (with the same number of dimensions) if
the element type of the first is more specific than the element type of the second.

• Otherwise if one member is a non-lifted operator and the other is a lifted operator, the non-lifted
one is better.

• If neither function member was found to be better, and all parameters of Mv have a corresponding
argument whereas default arguments need to be substituted for at least one optional parameter
in Mx, then Mv is better than Mx. Otherwise, no function member is better.

11.6.4.4 Better conversion from expression

Given an implicit conversion C1 that converts from an expression E to a type T1, and an implicit conversion
C2 that converts from an expression E to a type T2, C1 is a better conversion than C2 if one of the following
holds:

• E exactly matches T1 and E does not exactly match T2 (§11.6.4.5)

• E exactly matches both or neither of T1 and T2, and T1 is a better conversion target than T2 (§11.6.4.6)

ECMA-334

160

• E is a method group (§11.2), T₁ is compatible (§19.4) with the single best method from the method
group for conversion C₁, and T₂ is not compatible with the single best method from the method
group for conversion C₂

11.6.4.5 Exactly matching expression

Given an expression E and a type T, E exactly matches T if one of the following holds:

• E has a type S, and an identity conversion exists from S to T

• E is an anonymous function, T is either a delegate type D or an expression tree type Expression<D>
and one of the following holds:

o An inferred return type X exists for E in the context of the parameter list of D (§11.6.3.12), and an
identity conversion exists from X to the return type of D

o Either E is non-async and D has a return type Y or E is async and D has a return type Task<Y>,
and one of the following holds:

• The body of E is an expression that exactly matches Y

• The body of E is a block where every return statement returns an expression that exactly
matches Y

11.6.4.6 Better conversion target

Given two types T1 and T2, T1 is a better conversion target than T2 if one of the following holds:

• An implicit conversion from T1 to T2 exists and no implicit conversion from T₂ to T₁ exists

• T1 is Task<S1>, T2 is Task<S2>, and S1 is a better conversion target than S2

• T1 is S1 or S1? where S1 is a signed integral type, and T2 is S2 or S2? where S2 is an unsigned integral
type. Specifically:

o S1 is sbyte and S2 is byte, ushort, uint, or ulong

o S1 is short and S2 is ushort, uint, or ulong

o S1 is int and S2 is uint, or ulong

o S1 is long and S2 is ulong

11.6.4.7 Overloading in generic classes

Note: While signatures as declared shall be unique (§8.6), it is possible that substitution of type
arguments results in identical signatures. In such a situation, overload resolution will pick the most
specific (§11.6.4.3) of the original signatures (before substitution of type arguments), if it exists, and
otherwise report an error. end note

Example: The following examples show overloads that are valid and invalid according to this rule:

interface I1<T> {...}
interface I2<T> {...}

class G1<U>
{
 int F1(U u); // Overload resulotion for G<int>.F1
 int F1(int i); // will pick non-generic
 void F2(I1<U> a); // Valid overload
 void F2(I2<U> a);

Chapter 11 Expressions

161

}

class G2<U,V>
{
 void F3(U u, V v); // Valid, but overload resolution for
 void F3(V v, U u); // G2<int,int>.F3 will fail
 void F4(U u, I1<V> v); // Valid, but overload resolution for
 void F4(I1<V> v, U u); // G2<I1<int>,int>.F4 will fail
 void F5(U u1, I1<V> v2); // Valid overload
 void F5(V v1, U u2);
 void F6(ref U u); // valid overload
 void F6(out V v);
}

end example

11.6.5 Compile-time checking of dynamic member invocation

Even though overload resolution of a dynamically bound operation takes place at run-time, it is
sometimes possible at compile-time to know the list of function members from which an overload will be
chosen:

• For a delegate invocation (§11.7.8.4), the list is a single function member with the same parameter
list as the delegate_type of the invocation

• For a method invocation (§11.7.8.2) on a type, or on a value whose static type is not dynamic, the set
of accessible methods in the method group is known at compile-time.

• For an object creation expression (§11.7.15.2) the set of accessible constructors in the type is
known at compile-time.

• For an indexer access (§11.7.10.3) the set of accessible indexers in the receiver is known at compile-
time.

In these cases a limited compile-time check is performed on each member in the known set of function
members, to see if it can be known for certain never to be invoked at run-time. For each function
member F a modified parameter and argument list are constructed:

• First, if F is a generic method and type arguments were provided, then those are substituted for the
type parameters in the parameter list. However, if type arguments were not provided, no such
substitution happens.

• Then, any parameter whose type is open (i.e., contains a type parameter; see §8.4.3) is elided, along
with its corresponding parameter(s).

For F to pass the check, all of the following shall hold:

• The modified parameter list for F is applicable to the modified argument list in terms of §11.6.4.2.

• All constructed types in the modified parameter list satisfy their constraints (§8.4.5).

• If the type parameters of F were substituted in the step above, their constraints are satisfied.

• If F is a static method, the method group shall not have resulted from a member_access whose
receiver is known at compile-time to be a variable or value.

• If F is an instance method, the method group shall not have resulted from a member_access whose
receiver is known at compile-time to be a type.

ECMA-334

162

If no candidate passes this test, a compile-time error occurs.

11.6.6 Function member invocation

11.6.6.1 General

This subclause describes the process that takes place at run-time to invoke a particular function member.
It is assumed that a binding-time process has already determined the particular member to invoke,
possibly by applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

• Static function members. These are static methods, static property accessors, and user-defined
operators. Static function members are always non-virtual.

• Instance function members. These are instance methods, instance constructors, instance property
accessors, and indexer accessors. Instance function members are either non-virtual or virtual, and
are always invoked on a particular instance. The instance is computed by an instance expression,
and it becomes accessible within the function member as this (§11.7.12). For an instance
constructor, the instance expression is taken to be the newly allocated object.

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

• If M is a static function member:

o The argument list is evaluated as described in §11.6.2.

o M is invoked.

• Otherwise, if the type of E is a value-type V, and M is declared or overridden in V:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed. For an
instance constructor, this evaluation consists of allocating storage (typically from an execution
stack) for the new object. In this case E is classified as a variable.

o If E is not classified as a variable, then a temporary local variable of E’s type is created and the
value of E is assigned to that variable. E is then reclassified as a reference to that temporary local
variable. The temporary variable is accessible as this within M, but not in any other way. Thus,
only when E is a true variable is it possible for the caller to observe the changes that M makes to
this.

o The argument list is evaluated as described in §11.6.2.

o M is invoked. The variable referenced by E becomes the variable referenced by this.

• Otherwise:

o E is evaluated. If this evaluation causes an exception, then no further steps are executed.

o The argument list is evaluated as described in §11.6.2.

o If the type of E is a value_type, a boxing conversion (§10.2.9) is performed to convert E to
a class_type, and E is considered to be of that class_type in the following steps. If the value_type is
an enum_type, the class_type is System.Enum; otherwise, it is System.ValueType.

o The value of E is checked to be valid. If the value of E is null, a System.NullReferenceException
is thrown and no further steps are executed.

o The function member implementation to invoke is determined:

Chapter 11 Expressions

163

• If the binding-time type of E is an interface, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the interface mapping rules (§17.6.5) to
determine the implementation of M provided by the run-time type of the instance referenced
by E.

• Otherwise, if M is a virtual function member, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the rules for determining the most derived
implementation (§14.6.4) of M with respect to the run-time type of the instance referenced
by E.

• Otherwise, M is a non-virtual function member, and the function member to invoke is M itself.

o The function member implementation determined in the step above is invoked. The object
referenced by E becomes the object referenced by this.

The result of the invocation of an instance constructor (§11.7.15.2) is the value created. The result of the
invocation of any other function member is the value, if any, returned (§12.10.5) from its body.

11.6.6.2 Invocations on boxed instances

A function member implemented in a value_type can be invoked through a boxed instance of that
value_type in the following situations:

• When the function member is an override of a method inherited from type class_type and is invoked
through an instance expression of that class_type.
Note: The class_type will always be one of System.Object, System.ValueType or System.Enum. end
note

• When the function member is an implementation of an interface function member and is invoked
through an instance expression of an interface_type.

• When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value_type, and this
variable becomes the variable referenced by this within the function member invocation.

Note: In particular, this means that when a function member is invoked on a boxed instance, it is
possible for the function member to modify the value contained in the boxed instance. end note

11.7 Primary expressions

11.7.1 General

Primary expressions include the simplest forms of expressions.

primary_expression
 : primary_no_array_creation_expression
 | array_creation_expression
 ;

primary_no_array_creation_expression
 : literal
 | interpolated_string_expression
 | simple_name

ECMA-334

164

 | parenthesized_expression
 | member_access
 | null_conditional_member_access
 | invocation_expression
 | element_access
 | null_conditional_element_access
 | this_access
 | base_access
 | post_increment_expression
 | post_decrement_expression
 | object_creation_expression
 | delegate_creation_expression
 | anonymous_object_creation_expression
 | typeof_expression
 | sizeof_expression
 | checked_expression
 | unchecked_expression
 | default_value_expression
 | nameof_expression
 | anonymous_method_expression
 | pointer_member_access // unsafe code support
 | pointer_element_access // unsafe code support
 ;

Note: These grammar rules are not ANTLR-ready as they are part of a set of mutually left-recursive
rules (primary_expression, primary_no_array_creation_expression, member_access,
invocation_expression, element_access, post_increment_expression,
post_decrement_expression, pointer_member_access and pointer_element_access) which
ANTLR does not handle. Standard techniques can be used to transform the grammar to remove the
mutual left-recursion. This has not been done as not all parsing strategies require it (e.g. an LALR
parser would not) and doing so would obfuscate the structure and description.

pointer_member_access (§22.6.3) and pointer_element_access (§22.6.4) are only available in unsafe code
(§22).

Primary expressions are divided between array_creation_expressions and
primary_no_array_creation_expressions. Treating array_creation_expression in this way, rather than listing
it along with the other simple expression forms, enables the grammar to disallow potentially confusing
code such as

object o = new int[3][1];

which would otherwise be interpreted as

object o = (new int[3])[1];

11.7.2 Literals

A primary_expression that consists of a literal (§6.4.5) is classified as a value.

11.7.3 Interpolated string expressions

An interpolated_string_expression consists of a $ character immediately followed by text within "
characters. Within the quoted text there are zero or more interpolations delimited by { and } characters,
each of which encloses an expression and optional formatting specifications.

Chapter 11 Expressions

165

Interpolated string expressions have two forms; regular (interpolated_regular_string_expression) and
verbatim (interpolated_verbatim_string_expression); which are lexically similar to, but differ semantically
from, the two forms of string literals (§6.4.5.6).

interpolated_string_expression
 : interpolated_regular_string_expression
 | interpolated_verbatim_string_expression
 ;

// interpolated regular string expressions

interpolated_regular_string_expression
 : Interpolated_Regular_String_Start Interpolated_Regular_String_Mid?
 ('{' regular_interpolation '}' Interpolated_Regular_String_Mid?)*
 Interpolated_Regular_String_End
 ;

regular_interpolation
 : expression (',' interpolation_minimum_width)? Regular_Interpolation_Format?
 ;

interpolation_minimum_width
 : constant_expression
 ;

Interpolated_Regular_String_Start
 : '$"'
 ;

// the following three lexical rules are context sensitive, see details below

Interpolated_Regular_String_Mid
 : Interpolated_Regular_String_Element+
 ;

Regular_Interpolation_Format
 : ':' Interpolated_Regular_String_Element+
 ;

Interpolated_Regular_String_End
 : '"'
 ;

fragment Interpolated_Regular_String_Element
 : Interpolated_Regular_String_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Regular_String_Character
 // Any character except " (U+0022), \\ (U+005C),
 // { (U+007B), } (U+007D), and New_Line_Character.

ECMA-334

166

 : ~["\\{}\u000D\u000A\u0085\u2028\u2029]
 ;

// interpolated verbatim string expressions

interpolated_verbatim_string_expression
 : Interpolated_Verbatim_String_Start Interpolated_Verbatim_String_Mid?
 ('{' verbatim_interpolation '}' Interpolated_Verbatim_String_Mid?)*
 Interpolated_Verbatim_String_End
 ;

verbatim_interpolation
 : expression (',' interpolation_minimum_width)? Verbatim_Interpolation_Format?
 ;

Interpolated_Verbatim_String_Start
 : '$@"'
 ;

// the following three lexical rules are context sensitive, see details below

Interpolated_Verbatim_String_Mid
 : Interpolated_Verbatim_String_Element+
 ;

Verbatim_Interpolation_Format
 : ':' Interpolated_Verbatim_String_Element+
 ;

Interpolated_Verbatim_String_End
 : '"'
 ;

fragment Interpolated_Verbatim_String_Element
 : Interpolated_Verbatim_String_Character
 | Quote_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Verbatim_String_Character
 : ~["{}] // Any character except " (U+0022), { (U+007B) and } (U+007D)
 ;

// lexical fragments used by both regular and verbatim interpolated strings

fragment Open_Brace_Escape_Sequence
 : '{{'
 ;

fragment Close_Brace_Escape_Sequence
 : '}}'
 ;

Six of the lexical rules defined above are context sensitive as follows:

Chapter 11 Expressions

167

Rule Contextual Requirements

Interpolated_Regular_String_Mid Only recognised after an
Interpolated_Regular_String_Start, between any following
interpolations, and before the corresponding
Interpolated_Regular_String_End.

Regular_Interpolation_Format Only recognised within a regular_interpolation and when
the starting colon (:) is not nested within any kind of
bracket (parentheses/braces/square).

Interpolated_Regular_String_End Only recognised after an Interpolated_Regular_String_Start
and only if any intervening tokens are either
Interpolated_Regular_String_Mids or tokens that can be
part of regular_interpolations, including tokens for any
interpolated_regular_string_expressions contained within
such interpolations.

Interpolated_Verbatim_String_Mid
Verbatim_Interpolation_Format
Interpolated_Verbatim_String_End

Recognition of these three rules follows that of the
corresponding rules above with each mentioned regular
grammar rule replaced by the corresponding verbatim
one.

Note: The above rules are context sensitive as their definitions overlap with those of other tokens in
the language. end note

Note: The above grammar is not ANTLR-ready due to the context sensitive lexical rules. As with
other lexer generators ANTLR supports context sensitive lexical rules, for example using its lexical
modes, but this is an implementation detail and therefore not part of this Standard. end note

An interpolated_string_expression is classified as a value. If it is immediately converted to
System.IFormattable or System.FormattableString with an implicit interpolated string conversion
(§10.2.5), the interpolated string expression has that type. Otherwise, it has the type string.

Note: The differences between the possible types an interpolated_string_expression may be
determined from the documentation for System.String (§C.2) and System.FormattableString
(§C.3). end note

The meaning of an interpolation, both regular_interpolation and verbatim_interpolation, is to format the
value of the expression as a string either according to the format specified by the
Regular_Interpolation_Format or Verbatim_Interpolation_Format, or according to a default format for the
type of expression. The formatted string is then modified by the interpolation_minimum_width, if any, to
produce the final string to be interpolated into the interpolated_string_expression.

Note: How the default format for a type is determined is detailed in the documentation for
System.String (§C.2) and System.FormattableString (§C.3). Descriptions of standard formats,
which are identical for Regular_Interpolation_Format and Verbatim_Interpolation_Format, may be
found in the documentation for System.IFormattable (§C.4) and in other types in the standard
library (§C). end note

In an interpolation_minimum_width the constant_expression shall have an implicit conversion to int. Let
the field width be the absolute value of this constant_expression and the alignment be the sign (positive or
negative) of the value of this constant_expression:

ECMA-334

168

• If the value of field width is less than or equal to the length of the formatted string the formatted
string is not modified.

• Otherwise the formatted string is padded with white space characters so that its length is equal to
field width:

o If the alignment is positive the formatted string is right-aligned by prepending the padding,

o Otherwise it is left-aligned by appending the padding.

The overall meaning of an interpolated_string_expression, including the above formatting and padding of
interpolations, is defined by a conversion of the expression to a method invocation: if the type of the
expression is System.IFormattable or System.FormattableString that method is
System.Runtime.CompilerServices.FormattableStringFactory.Create (§C.3) which returns a value of
type System.FormattableString; otherwise the type must be string and the method is string.Format
(§C.2) which returns a value of type string.

In both cases, the argument list of the call consists of a format string literal with format specifications for
each interpolation, and an argument for each expression corresponding to the format specifications.

The format string literal is constructed as follows, where N is the number of interpolations in the
interpolated_string_expression. The format string literal consists of, in order:

• The characters of the Interpolated_Regular_String_Start or Interpolated_Verbatim_String_Start

• The characters of the Interpolated_Regular_String_Mid or Interpolated_Verbatim_String_Mid, if any

• Then if N ≥ 1 for each number I from 0 to N-1:

o A placeholder specification:

• A left brace ({) character

• The decimal representation of I

• Then, if the corresponding regular_interpolation or verbatim_interpolation has a
interpolation_minimum_width, a comma (,) followed by the decimal representation of the
value of the constant_expression

• The characters of the Regular_Interpolation_Format or Verbatim_Interpolation_Format, if
any, of the corresponding regular_interpolation or verbatim_interpolation

• A right brace (}) character

o The characters of the Interpolated_Regular_String_Mid or Interpolated_Verbatim_String_Mid
immediately following the corresponding interpolation, if any

• Finally the characters of the Interpolated_Regular_String_End or Interpolated_Verbatim_String_End.

The subsequent arguments are the expressions from the interpolations, if any, in order.

When an interpolated_string_expression contains multiple interpolations, the expressions in those
interpolations are evaluated in textual order from the left to right.

Example:

This example uses the following format specification features:

• the X format specification which formats integers as uppercase hexadecimal,

• the default format for a string value is the value itself,

Chapter 11 Expressions

169

• positive alignment values that right-justify within the specified minimum field width,

• negative alignment values that left-justify within the specified minimum field width,

• defined constants for the interpolation_minimum_width, and

• that {{ and }} are formatted as { and } respectively.

Given:

string text = "red";
int number = 14;
const int width = -4;

Then:

Interpolated String Expression Equivalent Meaning As string Value

$"{text}" string.Format("{0}", text) "red"

$"{{text}}" string.Format("{{text}}) "{text}"

$"{ text , 4 }" string.Format("{0,4}", text) " red"

$"{ text , width }" string.Format("{0,-4}", text) "red "

$"{number:X}" string.Format("{0:X}", number) "E"

$"{text + '?'} {number % 3}" string.Format("{0} {1}", text + '?',
number % 3)

"red? 2"

$"{text + $"[{number}]"}" string.Format("{0}", text +
string.Format("[{0}]", number))

"red[14]"

$"{(number==0?"Zero":"Non-
zero")}"

string.Format("{0}",
(number==0?"Zero":"Non-zero"))

"Non-
zero"

end example

11.7.4 Simple names

A simple_name consists of an identifier, optionally followed by a type argument list:

simple_name
 : identifier type_argument_list?
 ;

A simple_name is either of the form I or of the form I<A1, ..., Ae>, where I is a single identifier and
I<A1, ..., Ae> is an optional type_argument_list. When no type_argument_list is specified, consider e to
be zero. The simple_name is evaluated and classified as follows:

• If e is zero and the simple_name appears within a block and if the block’s (or an enclosing block’s)
local variable declaration space (§7.3) contains a local variable, parameter or constant with name I,
then the simple_name refers to that local variable, parameter or constant and is classified as a
variable or value.

• If e is zero and the simple_name appears within a generic method declaration but outside the
attributes of its method_header, and if that declaration includes a type parameter with name I, then
the simple_name refers to that type parameter.

• Otherwise, for each instance type T (§14.3.2), starting with the instance type of the immediately
enclosing type declaration and continuing with the instance type of each enclosing class or struct
declaration (if any):

ECMA-334

170

o If e is zero and the declaration of T includes a type parameter with name I, then the simple_name
refers to that type parameter.

o Otherwise, if a member lookup (§11.5) of I in T with e type arguments produces a match:

• If T is the instance type of the immediately enclosing class or struct type and the lookup
identifies one or more methods, the result is a method group with an associated instance
expression of this. If a type argument list was specified, it is used in calling a generic
method (§11.7.8.2).

• Otherwise, if T is the instance type of the immediately enclosing class or struct type, if the
lookup identifies an instance member, and if the reference occurs within the block of an
instance constructor, an instance method, or an instance accessor (§11.2.1), the result is the
same as a member access (§11.7.6) of the form this.I. This can only happen when e is zero.

• Otherwise, the result is the same as a member access (§11.7.6) of the form T.I or T.I<A1,
..., Ae>.

• Otherwise, for each namespace N, starting with the namespace in which the simple_name occurs,
continuing with each enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated until an entity is located:

o If e is zero and I is the name of a namespace in N, then:

• If the location where the simple_name occurs is enclosed by a namespace declaration for N
and the namespace declaration contains an extern_alias_directive or using_alias_directive
that associates the name I with a namespace or type, then the simple_name is ambiguous
and a compile-time error occurs.

• Otherwise, the simple_name refers to the namespace named I in N.

o Otherwise, if N contains an accessible type having name I and e type parameters, then:

• If e is zero and the location where the simple_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with a namespace or type, then the
simple_name is ambiguous and a compile-time error occurs.

• Otherwise, the namespace_or_type_name refers to the type constructed with the given type
arguments.

o Otherwise, if the location where the simple_name occurs is enclosed by a namespace declaration
for N:

• If e is zero and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with an imported namespace or type, then
the simple_name refers to that namespace or type.

• Otherwise, if the namespaces imported by the using_namespace_directives of the namespace
declaration contain exactly one type having name I and e type parameters, then the
simple_name refers to that type constructed with the given type arguments.

• Otherwise, if the namespaces imported by the using_namespace_directives of the namespace
declaration contain more than one type having name I and e type parameters, then the
simple_name is ambiguous and a compile-time error occurs.
Note: This entire step is exactly parallel to the corresponding step in the processing of a
namespace_or_type_name (§7.8). end note

Chapter 11 Expressions

171

• Otherwise, the simple_name is undefined and a compile-time error occurs.

11.7.5 Parenthesized expressions

A parenthesized_expression consists of an expression enclosed in parentheses.

parenthesized_expression
 : '(' expression ')'
 ;

A parenthesized_expression is evaluated by evaluating the expression within the parentheses. If the
expression within the parentheses denotes a namespace or type, a compile-time error occurs. Otherwise,
the result of the parenthesized_expression is the result of the evaluation of the contained expression.

11.7.6 Member access

11.7.6.1 General

A member_access consists of a primary_expression, a predefined_type, or a qualified_alias_member, followed
by a “.” token, followed by an identifier, optionally followed by a type_argument_list.

member_access
 : primary_expression '.' identifier type_argument_list?
 | predefined_type '.' identifier type_argument_list?
 | qualified_alias_member '.' identifier type_argument_list?
 ;

predefined_type
 : 'bool' | 'byte' | 'char' | 'decimal' | 'double' | 'float' | 'int' |
'long'
 | 'object' | 'sbyte' | 'short' | 'string' | 'uint' | 'ulong' | 'ushort'
 ;

The qualified_alias_member production is defined in §13.8.

A member_access is either of the form E.I or of the form E.I<A1, ..., Ae>, where E is a
primary_expression, predefined_type or qualified_alias_member, I is a single identifier, and <A1, ..., Ae>
is an optional type_argument_list. When no type_argument_list is specified, consider e to be zero.

A member_access with a primary_expression of type dynamic is dynamically bound (§11.3.3). In this case,
the compiler classifies the member access as a property access of type dynamic. The rules below to
determine the meaning of the member_access are then applied at run-time, using the run-time type
instead of the compile-time type of the primary_expression. If this run-time classification leads to a
method group, then the member access shall be the primary_expression of an invocation_expression.

The member_access is evaluated and classified as follows:

• If e is zero and E is a namespace and E contains a nested namespace with name I, then the result is
that namespace.

• Otherwise, if E is a namespace and E contains an accessible type having name I and K type
parameters, then the result is that type constructed with the given type arguments.

• If E is classified as a type, if E is not a type parameter, and if a member lookup (§11.5) of I in E with K
type parameters produces a match, then E.I is evaluated and classified as follows:
Note: When the result of such a member lookup is a method group and K is zero, the method group
can contain methods having type parameters. This allows such methods to be considered for type
argument inferencing. end note

ECMA-334

172

o If I identifies a type, then the result is that type constructed with any given type arguments.

o If I identifies one or more methods, then the result is a method group with no associated
instance expression.

o If I identifies a static property, then the result is a property access with no associated instance
expression.

o If I identifies a static field:

• If the field is readonly and the reference occurs outside the static constructor of the class or
struct in which the field is declared, then the result is a value, namely the value of the static
field I in E.

• Otherwise, the result is a variable, namely the static field I in E.

o If I identifies a static event:

• If the reference occurs within the class or struct in which the event is declared, and the
event was declared without event_accessor_declarations (§14.8.1), then E.I is processed
exactly as if I were a static field.

• Otherwise, the result is an event access with no associated instance expression.

o If I identifies a constant, then the result is a value, namely the value of that constant.

o If I identifies an enumeration member, then the result is a value, namely the value of that
enumeration member.

o Otherwise, E.I is an invalid member reference, and a compile-time error occurs.

• If E is a property access, indexer access, variable, or value, the type of which is T, and a member
lookup (§11.5) of I in T with K type arguments produces a match, then E.I is evaluated and
classified as follows:

o First, if E is a property or indexer access, then the value of the property or indexer access is
obtained (§11.2.2) and E is reclassified as a value.

o If I identifies one or more methods, then the result is a method group with an associated
instance expression of E.

o If I identifies an instance property, then the result is a property access with an associated
instance expression of E and an associated type that is the type of the property. If T is a class
type, the associated type is picked from the first declaration or override of the property found
when starting with T, and searching through its base classes.

o If T is a class_type and I identifies an instance field of that class_type:

• If the value of E is null, then a System.NullReferenceException is thrown.

• Otherwise, if the field is readonly and the reference occurs outside an instance constructor
of the class in which the field is declared, then the result is a value, namely the value of the
field I in the object referenced by E.

• Otherwise, the result is a variable, namely the field I in the object referenced by E.

o If T is a struct_type and I identifies an instance field of that struct_type:

Chapter 11 Expressions

173

• If E is a value, or if the field is readonly and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value, namely the
value of the field I in the struct instance given by E.

• Otherwise, the result is a variable, namely the field I in the struct instance given by E.

o If I identifies an instance event:

• If the reference occurs within the class or struct in which the event is declared, and the
event was declared without event_accessor_declarations (§14.8.1), and the reference does
not occur as the left-hand side of a += or -= operator, then E.I is processed exactly as if I
was an instance field.

• Otherwise, the result is an event access with an associated instance expression of E.

• Otherwise, an attempt is made to process E.I as an extension method invocation (§11.7.8.3). If this
fails, E.I is an invalid member reference, and a binding-time error occurs.

11.7.6.2 Identical simple names and type names

In a member access of the form E.I, if E is a single identifier, and if the meaning of E as a simple_name
(§11.7.4) is a constant, field, property, local variable, or parameter with the same type as the meaning of E
as a type_name (§7.8.1), then both possible meanings of E are permitted. The member lookup of E.I is
never ambiguous, since I shall necessarily be a member of the type E in both cases. In other words, the
rule simply permits access to the static members and nested types of E where a compile-time error would
otherwise have occurred.

Example:

struct Color
{
 public static readonly Color White = new Color(...);
 public static readonly Color Black = new Color(...);
 public Color Complement() {...}
}

class A
{
 public Color Color; // Field Color of type Color

 void F()
 {
 Color = Color.Black; // Refers to Color.Black static member
 Color = Color.Complement(); // Invokes Complement() on Color fld
 }

 static void G()
 {
 Color c = Color.White; // Refers to Color.White static member
 }
}

Within the A class, those occurrences of the Color identifier that reference the Color type are
delimited by **, and those that reference the Color field are not.

end example

ECMA-334

174

11.7.7 Null Conditional Member Access

A null_conditional_member_access is a conditional version of member_access (§11.7.6) and it is a binding
time error if the result type is void. For a null conditional expression where the result type may be void
see (§11.7.9).

A null_conditional_member_access consists of a primary_expression followed by the two tokens “?” and “.”,
followed by an identifier with an optional type_argument_list, followed by zero or more
dependent_accesses.

null_conditional_member_access
 : primary_expression '?' '.' identifier type_argument_list? dependent_access*
 ;

dependent_access
 : '.' identifier type_argument_list? // member access
 | '[' argument_list ']' // element access
 | '(' argument_list? ')' // invocation
 ;

null_conditional_projection_initializer
 : primary_expression '?' '.' identifier type_argument_list?
 ;

A null_conditional_member_access expression E is of the form P?.A. Let T be the type of the expression
P.A. The meaning of E is determined as follows:

• If T is a type parameter that is not known to be a reference type or a non-nullable value type, a
compile-time error occurs.

• If T is a non-nullable value type, then the type of E is T?, and the meaning of E is the same as the
meaning of:

((object)P == null) ? (T?)null : P.A

Except that P is evaluated only once.

• Otherwise the type of E is T, and the meaning of E is the same as the meaning of:

((object)P == null) ? null : P.A

Except that P is evaluated only once.

Note: In an expression of the form:

P?.A₀?.A₁

then if P evaluates to null neither A0 or A1 are evaluated. The same is true if an expression is a
sequence of null_conditional_member_access or null_conditional_element_access §11.7.11 operations.

end note

A null_conditional_projection_initializer is a restriction of null_conditional_member_access and has the
same semantics. It only occurs as a projection initializer in an anonymous object creation expression
(§11.7.15.7).

11.7.8 Invocation expressions

11.7.8.1 General

An invocation_expression is used to invoke a method.

Chapter 11 Expressions

175

invocation_expression
 : primary_expression '(' argument_list? ')'
 ;

An invocation_expression is dynamically bound (§11.3.3) if at least one of the following holds:

• The primary_expression has compile-time type dynamic.

• At least one argument of the optional argument_list has compile-time type dynamic.

In this case, the compiler classifies the invocation_expression as a value of type dynamic. The rules below
to determine the meaning of the invocation_expression are then applied at run-time, using the run-time
type instead of the compile-time type of those of the primary_expression and arguments that have the
compile-time type dynamic. If the primary_expression does not have compile-time type dynamic, then the
method invocation undergoes a limited compile-time check as described in §11.6.5.

The primary_expression of an invocation_expression shall be a method group or a value of a delegate_type.
If the primary_expression is a method group, the invocation_expression is a method invocation (§11.7.8.2).
If the primary_expression is a value of a delegate_type, the invocation_expression is a delegate invocation
(§11.7.8.4). If the primary_expression is neither a method group nor a value of a delegate_type, a binding-
time error occurs.

The optional argument_list (§11.6.2) provides values or variable references for the parameters of the
method.

The result of evaluating an invocation_expression is classified as follows:

• If the invocation_expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing is permitted only in the context of a statement_expression
(§12.7) or as the body of a lambda_expression (§11.16). Otherwise a binding-time error occurs.

• Otherwise, the result is a value, with an associated type of the return type of the method or delegate
after any type argument substitutions (§11.7.8.2) have been performed. If the invocation is of an
instance method, and the receiver is of a class type T, the associated type is picked from the first
declaration or override of the method found when starting with T and searching through its base
classes.

11.7.8.2 Method invocations

For a method invocation, the primary_expression of the invocation_expression shall be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose
a specific method to invoke. In the latter case, determination of the specific method to invoke is based on
the context provided by the types of the arguments in the argument_list.

The binding-time processing of a method invocation of the form M(A), where M is a method group
(possibly including a type_argument_list), and A is an optional argument_list, consists of the following
steps:

• The set of candidate methods for the method invocation is constructed. For each method F
associated with the method group M:

o If F is non-generic, F is a candidate when:

• M has no type argument list, and

• F is applicable with respect to A (§11.6.4.2).

o If F is generic and M has no type argument list, F is a candidate when:

ECMA-334

176

• Type inference (§11.6.3) succeeds, inferring a list of type arguments for the call, and

• Once the inferred type arguments are substituted for the corresponding method type
parameters, all constructed types in the parameter list of F satisfy their constraints (§8.4.5),
and the parameter list of F is applicable with respect to A (§11.6.4.2)

o If F is generic and M includes a type argument list, F is a candidate when:

• F has the same number of method type parameters as were supplied in the type argument
list, and

• Once the type arguments are substituted for the corresponding method type parameters, all
constructed types in the parameter list of F satisfy their constraints (§8.4.5), and the
parameter list of F is applicable with respect to A (§11.6.4.2).

• The set of candidate methods is reduced to contain only methods from the most derived types: For
each method C.F in the set, where C is the type in which the method F is declared, all methods
declared in a base type of C are removed from the set. Furthermore, if C is a class type other than
object, all methods declared in an interface type are removed from the set.
Note: This latter rule only has an effect when the method group was the result of a member lookup
on a type parameter having an effective base class other than object and a non-empty effective
interface set. end note

• If the resulting set of candidate methods is empty, then further processing along the following steps
are abandoned, and instead an attempt is made to process the invocation as an extension method
invocation (§11.7.8.3). If this fails, then no applicable methods exist, and a binding-time error
occurs.

• The best method of the set of candidate methods is identified using the overload resolution rules of
§11.6.4. If a single best method cannot be identified, the method invocation is ambiguous, and a
binding-time error occurs. When performing overload resolution, the parameters of a generic
method are considered after substituting the type arguments (supplied or inferred) for the
corresponding method type parameters.

• Final validation of the chosen best method is performed:

o The method is validated in the context of the method group: If the best method is a static
method, the method group shall have resulted from a simple_name or a member_access through
a type. If the best method is an instance method, the method group shall have resulted from a
simple_name, a member_access through a variable or value, or a base_access. If neither of these
requirements is true, a binding-time error occurs.

o If the best method is a generic method, the type arguments (supplied or inferred) are checked
against the constraints (§8.4.5) declared on the generic method. If any type argument does not
satisfy the corresponding constraint(s) on the type parameter, a binding-time error occurs.

Once a method has been selected and validated at binding-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §11.6.6.

Note: The intuitive effect of the resolution rules described above is as follows: To locate the
particular method invoked by a method invocation, start with the type indicated by the method
invocation and proceed up the inheritance chain until at least one applicable, accessible, non-
override method declaration is found. Then perform type inference and overload resolution on the
set of applicable, accessible, non-override methods declared in that type and invoke the method
thus selected. If no method was found, try instead to process the invocation as an extension-method
invocation. end note

Chapter 11 Expressions

177

11.7.8.3 Extension method invocations

In a method invocation (§11.6.6.2) of one of the forms

«expr» . «identifier» ()
«expr» . «identifier» («args»)
«expr» . «identifier» < «typeargs» > ()
«expr» . «identifier» < «typeargs» > («args»)

if the normal processing of the invocation finds no applicable methods, an attempt is made to process the
construct as an extension method invocation. If «expr» or any of the «args» has compile-time type
dynamic, extension methods will not apply.

The objective is to find the best type_name C, so that the corresponding static method invocation can take
place:

C . «identifier» («expr»)
C . «identifier» («expr» , «args»)
C . «identifier» < «typeargs» > («expr»)
C . «identifier» < «typeargs» > («expr» , «args»)

An extension method Ci.Me is eligible if:

• Ci is a non-generic, non-nested class

• The name of Me is identifier

• Me is accessible and applicable when applied to the arguments as a static method as shown above

• An implicit identity, reference or boxing conversion exists from expr to the type of the first
parameter of Me.

The search for C proceeds as follows:

• Starting with the closest enclosing namespace declaration, continuing with each enclosing
namespace declaration, and ending with the containing compilation unit, successive attempts are
made to find a candidate set of extension methods:

o If the given namespace or compilation unit directly contains non-generic type declarations Ci
with eligible extension methods Me, then the set of those extension methods is the candidate set.

o If namespaces imported by using namespace directives in the given namespace or compilation
unit directly contain non-generic type declarations Ci with eligible extension methods Me, then
the set of those extension methods is the candidate set.

• If no candidate set is found in any enclosing namespace declaration or compilation unit, a compile-
time error occurs.

• Otherwise, overload resolution is applied to the candidate set as described in §11.6.4. If no single
best method is found, a compile-time error occurs.

• C is the type within which the best method is declared as an extension method.

Using C as a target, the method call is then processed as a static method invocation (§11.6.6).

Note: Unlike an instance method invocation, no exception is thrown when expr evaluates to a null
reference. Instead, this null value is passed to the extension method as it would be via a regular
static method invocation. It is up to the extension method implementation to decide how to respond
to such a call. end note

ECMA-334

178

The preceding rules mean that instance methods take precedence over extension methods, that extension
methods available in inner namespace declarations take precedence over extension methods available in
outer namespace declarations, and that extension methods declared directly in a namespace take
precedence over extension methods imported into that same namespace with a using namespace
directive.

Example:

public static class E
{
 public static void F(this object obj, int i) { }
 public static void F(this object obj, string s) { }
}

class A { }

class B
{
 public void F(int i) { }
}

class C
{
 public void F(object obj) { }
}

class X
{
 static void Test(A a, B b, C c)
 {
 a.F(1); // E.F(object, int)
 a.F("hello"); // E.F(object, string)
 b.F(1); // B.F(int)
 b.F("hello"); // E.F(object, string)
 c.F(1); // C.F(object)
 c.F("hello"); // C.F(object)
 }
}

In the example, B’s method takes precedence over the first extension method, and C’s method takes
precedence over both extension methods.

public static class C
{
 public static void F(this int i) => Console.WriteLine($"C.F({i})");
 public static void G(this int i) => Console.WriteLine($"C.G({i})");
 public static void H(this int i) => Console.WriteLine($"C.H({i})");
}

namespace N1
{
 public static class D
 {
 public static void F(this int i) => Console.WriteLine($"D.F({i})");
 public static void G(this int i) => Console.WriteLine($"D.G({i})");
 }

Chapter 11 Expressions

179

}

namespace N2
{
 using N1;

 public static class E
 {
 public static void F(this int i) => Console.WriteLine($"E.F({i})");
 }

 class Test
 {
 static void Main(string[] args)
 {
 1.F();
 2.G();
 3.H();
 }
 }
}

The output of this example is:

E.F(1)
D.G(2)
C.H(3)

D.G takes precendece over C.G, and E.F takes precedence over both D.F and C.F.

end example

11.7.8.4 Delegate invocations

For a delegate invocation, the primary_expression of the invocation_expression shall be a value of a
delegate_type. Furthermore, considering the delegate_type to be a function member with the same
parameter list as the delegate_type, the delegate_type shall be applicable (§11.6.4.2) with respect to the
argument_list of the invocation_expression.

The run-time processing of a delegate invocation of the form D(A), where D is a primary_expression of a
delegate_type and A is an optional argument_list, consists of the following steps:

• D is evaluated. If this evaluation causes an exception, no further steps are executed.

• The argument list A is evaluated. If this evaluation causes an exception, no further steps are
executed.

• The value of D is checked to be valid. If the value of D is null, a System.NullReferenceException is
thrown and no further steps are executed.

• Otherwise, D is a reference to a delegate instance. Function member invocations (§11.6.6) are
performed on each of the callable entities in the invocation list of the delegate. For callable entities
consisting of an instance and instance method, the instance for the invocation is the instance
contained in the callable entity.

See §19.6 for details of multiple invocation lists without parameters.

ECMA-334

180

11.7.9 Null Conditional Invocation Expression

A null_conditional_invocation_expression is syntactically either a null_conditional_member_access (§11.7.7)
or null_conditional_element_access (§11.7.11) where the final dependent_access is an invocation
expression (§11.7.8).

A null_conditional_invocation_expression occurs within the context of a statement_expression (§12.7),
anonymous_function_body (§11.16.1), or method_body (§14.6.1).

Unlike the syntactically equivalent null_conditional_member_access or null_conditional_element_access, a
null_conditional_invocation_expression may be classified as nothing.

null_conditional_invocation_expression
 : null_conditional_member_access '(' argument_list? ')'
 | null_conditional_element_access '(' argument_list? ')'
 ;

A null_conditional_invocation_expression expression E is of the form P?A; where A is the remainder of the
syntactically equivalent null_conditional_member_access or null_conditional_element_access, A will
therefore start with . or [. Let PA signify the concatention of P and A.

When E occurs as a statement_expression the meaning of E is the same as the meaning of the statement:

if ((object)P != null) PA

except that P is evaluated only once.

When E occurs as a anonymous_function_body or method_body the meaning of E depends on its
classification:

• If E is classified as nothing then its meaning is the same as the meaning of the block:

{ if ((object)P != null) PA; }

except that P is evaluated only once.

• Otherwise the meaning of E is the same as the meaning of the block:

{ return E; }

and in turn the meaning of this block depends on whether E is syntactically equivalent to a
null_conditional_member_access (§11.7.7) or null_conditional_element_access (§11.7.11).

11.7.10 Element access

11.7.10.1 General

An element_access consists of a primary_no_array_creation_expression, followed by a “[” token, followed by
an argument_list, followed by a “]” token. The argument_list consists of one or more arguments, separated
by commas.

element_access
 : primary_no_array_creation_expression '[' argument_list ']'
 ;

The argument_list of an element_access is not allowed to contain ref or out arguments.

An element_access is dynamically bound (§11.3.3) if at least one of the following holds:

• The primary_no_array_creation_expression has compile-time type dynamic.

Chapter 11 Expressions

181

• At least one expression of the argument_list has compile-time type dynamic and the
primary_no_array_creation_expression does not have an array type.

In this case, the compiler classifies the element_access as a value of type dynamic. The rules below to
determine the meaning of the element_access are then applied at run-time, using the run-time type
instead of the compile-time type of those of the primary_no_array_creation_expression and argument_list
expressions which have the compile-time type dynamic. If the primary_no_array_creation_expression does
not have compile-time type dynamic, then the element access undergoes a limited compile-time check as
described in §11.6.5.

If the primary_no_array_creation_expression of an element_access is a value of an array_type, the
element_access is an array access (§11.7.10.2). Otherwise, the primary_no_array_creation_expression shall
be a variable or value of a class, struct, or interface type that has one or more indexer members, in which
case the element_access is an indexer access (§11.7.10.3).

11.7.10.2 Array access

For an array access, the primary_no_array_creation_expression of the element_access shall be a value of an
array_type. Furthermore, the argument_list of an array access is not allowed to contain named arguments.
The number of expressions in the argument_list shall be the same as the rank of the array_type, and each
expression shall be of type int, uint, long, or ulong, or shall be implicitly convertible to one or more of
these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array
element selected by the value(s) of the expression(s) in the argument_list.

The run-time processing of an array access of the form P[A], where P is a
primary_no_array_creation_expression of an array_type and A is an argument_list, consists of the following
steps:

• P is evaluated. If this evaluation causes an exception, no further steps are executed.

• The index expressions of the argument_list are evaluated in order, from left to right. Following
evaluation of each index expression, an implicit conversion (§10.2) to one of the following types is
performed: int, uint, long, ulong. The first type in this list for which an implicit conversion exists is
chosen. For instance, if the index expression is of type short then an implicit conversion to int is
performed, since implicit conversions from short to int and from short to long are possible. If
evaluation of an index expression or the subsequent implicit conversion causes an exception, then
no further index expressions are evaluated and no further steps are executed.

• The value of P is checked to be valid. If the value of P is null, a System.NullReferenceException is
thrown and no further steps are executed.

• The value of each expression in the argument_list is checked against the actual bounds of each
dimension of the array instance referenced by P. If one or more values are out of range, a
System.IndexOutOfRangeException is thrown and no further steps are executed.

• The location of the array element given by the index expression(s) is computed, and this location
becomes the result of the array access.

11.7.10.3 Indexer access

For an indexer access, the primary_no_array_creation_expression of the element_access shall be a variable
or value of a class, struct, or interface type, and this type shall implement one or more indexers that are
applicable with respect to the argument_list of the element_access.

ECMA-334

182

The binding-time processing of an indexer access of the form P[A], where P is a
primary_no_array_creation_expression of a class, struct, or interface type T, and A is an argument_list,
consists of the following steps:

• The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a
base type of T that are not override declarations and are accessible in the current context (§7.5).

• The set is reduced to those indexers that are applicable and not hidden by other indexers. The
following rules are applied to each indexer S.I in the set, where S is the type in which the indexer I
is declared:

o If I is not applicable with respect to A (§11.6.4.2), then I is removed from the set.

o If I is applicable with respect to A (§11.6.4.2), then all indexers declared in a base type of S are
removed from the set.

o If I is applicable with respect to A (§11.6.4.2) and S is a class type other than object, all indexers
declared in an interface are removed from the set.

• If the resulting set of candidate indexers is empty, then no applicable indexers exist, and a binding-
time error occurs.

• The best indexer of the set of candidate indexers is identified using the overload resolution rules of
§11.6.4. If a single best indexer cannot be identified, the indexer access is ambiguous, and a binding-
time error occurs.

• The index expressions of the argument_list are evaluated in order, from left to right. The result of
processing the indexer access is an expression classified as an indexer access. The indexer access
expression references the indexer determined in the step above, and has an associated instance
expression of P and an associated argument list of A, and an associated type that is the type of the
indexer. If T is a class type, the associated type is picked from the first declaration or override of the
indexer found when starting with T and searching through its base classes.

Depending on the context in which it is used, an indexer access causes invocation of either the
get_accessor or the set_accessor of the indexer. If the indexer access is the target of an assignment, the
set_accessor is invoked to assign a new value (§11.18.2). In all other cases, the get_accessor is invoked to
obtain the current value (§11.2.2).

11.7.11 Null Conditional Element Access

A null_conditional_element_access consists of a primary_no_array_creation_expression followed by the two
tokens “?” and “[”, followed by an argument_list, followed by a “]” token, followed by zero or more
dependent_accesses.

null_conditional_element_access
 : primary_no_array_creation_expression '?' '[' argument_list ']'
dependent_access*
 ;

A null_conditional_element_access is a conditional version of element_access (§11.7.10) and it is a binding
time error if the result type is void. For a null conditional expression where the result type may be void
see (§11.7.9).

A null_conditional_element_access expression E is of the form P?[A]B; where B are the dependent_accesses,
if any. Let T be the type of the expression P[A]B. The meaning of E is determined as follows:

Chapter 11 Expressions

183

• If T is a type parameter that is not known to be a reference type or a non-nullable value type, a
compile-time error occurs.

• If T is a non-nullable value type, then the type of E is T?, and the meaning of E is the same as the
meaning of:

((object)P == null) ? (T?)null : P[A]B

Except that P is evaluated only once.

• Otherwise the type of E is T, and the meaning of E is the same as the meaning of:

((object)P == null) ? null : P[A]B

Except that P is evaluated only once.

Note: In an expression of the form:

P?[A₀]?[A₁]

if P evaluates to null neither A0 or A1 are evaluated. The same is true if an expression is a sequence
of null_conditional_element_access or null_conditional_member_access §11.7.7 operations.

end note

11.7.12 This access

A this_access consists of the keyword this.

this_access
 : 'this'
 ;

A this_access is permitted only in the block of an instance constructor, an instance method, an instance
accessor (§11.2.1), or a finalizer. It has one of the following meanings:

• When this is used in a primary_expression within an instance constructor of a class, it is classified as
a value. The type of the value is the instance type (§14.3.2) of the class within which the usage
occurs, and the value is a reference to the object being constructed.

• When this is used in a primary_expression within an instance method or instance accessor of a
class, it is classified as a value. The type of the value is the instance type (§14.3.2) of the class within
which the usage occurs, and the value is a reference to the object for which the method or accessor
was invoked.

• When this is used in a primary_expression within an instance constructor of a struct, it is classified
as a variable. The type of the variable is the instance type (§14.3.2) of the struct within which the
usage occurs, and the variable represents the struct being constructed.

o If the constructor declaration has no constructor initializer, the this variable behaves exactly
the same as an out parameter of the struct type. In particular, this means that the variable shall
be definitely assigned in every execution path of the instance constructor.

o Otherwise, the this variable behaves exactly the same as a ref parameter of the struct type. In
particular, this means that the variable is considered initially assigned.

• When this is used in a primary_expression within an instance method or instance accessor of a
struct, it is classified as a variable. The type of the variable is the instance type (§14.3.2) of the struct
within which the usage occurs.

ECMA-334

184

o If the method or accessor is not an iterator (§14.14) or async function (§14.15), the this
variable represents the struct for which the method or accessor was invoked, and behaves
exactly the same as a ref parameter of the struct type.

o If the method or accessor is an iterator or async function, the this variable represents a copy of
the struct for which the method or accessor was invoked, and behaves exactly the same as a
value parameter of the struct type.

Use of this in a primary_expression in a context other than the ones listed above is a compile-time error.
In particular, it is not possible to refer to this in a static method, a static property accessor, or in a
variable_initializer of a field declaration.

11.7.13 Base access

A base_access consists of the keyword base followed by either a “.” token and an identifier and optional
type_argument_list or an argument_list enclosed in square brackets:

base_access
 : 'base' '.' identifier type_argument_list?
 | 'base' '[' argument_list ']'
 ;

A base_access is used to access base class members that are hidden by similarly named members in the
current class or struct. A base_access is permitted only in the block of an instance constructor, an instance
method, an instance accessor (§11.2.1), or a finalizer. When base.I occurs in a class or struct, I shall
denote a member of the base class of that class or struct. Likewise, when base[E] occurs in a class, an
applicable indexer shall exist in the base class.

At binding-time, base_access expressions of the form base.I and base[E] are evaluated exactly as if they
were written ((B)this).I and ((B)this)[E], where B is the base class of the class or struct in which the
construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this is viewed as
an instance of the base class.

When a base_access references a virtual function member (a method, property, or indexer), the
determination of which function member to invoke at run-time (§11.6.6) is changed. The function
member that is invoked is determined by finding the most derived implementation (§14.6.4) of the
function member with respect to B (instead of with respect to the run-time type of this, as would be usual
in a non-base access). Thus, within an override of a virtual function member, a base_access can be used to
invoke the inherited implementation of the function member. If the function member referenced by a
base_access is abstract, a binding-time error occurs.

Note: Unlike this, base is not an expression in itself. It is a keyword only used in the context of a
base_access or a constructor_initializer (§14.11.2). end note

11.7.14 Postfix increment and decrement operators

post_increment_expression
 : primary_expression '++'
 ;

post_decrement_expression
 : primary_expression '--'
 ;

Chapter 11 Expressions

185

The operand of a postfix increment or decrement operation shall be an expression classified as a variable,
a property access, or an indexer access. The result of the operation is a value of the same type as the
operand.

If the primary_expression has the compile-time type dynamic then the operator is dynamically bound
(§11.3.3), the post_increment_expression or post_decrement_expression has the compile-time type dynamic
and the following rules are applied at run-time using the run-time type of the primary_expression.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property
or indexer shall have both a get and a set accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (§11.4.4) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint, long,
ulong, char, float, double, decimal, and any enum type. The predefined ++ operators return the value
produced by adding 1 to the operand, and the predefined -- operators return the value produced by
subtracting 1 from the operand. In a checked context, if the result of this addition or subtraction is outside
the range of the result type and the result type is an integral type or enum type, a
System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator to the type of
the primary_expression, otherwise a compile-time error occurs.

The run-time processing of a postfix increment or decrement operation of the form x++ or x-- consists of
the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o The value of x is saved.

o The saved value of x is converted to the operand type of the selected operator and the operator
is invoked with this value as its argument.

o The value returned by the operator is converted to the type of X and stored in the location given
by the earlier evaluation of x.

o The saved value of x becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent get and set accessor
invocations.

o The get accessor of x is invoked and the returned value is saved.

o The saved value of x is converted to the operand type of the selected operator and the operator
is invoked with this value as its argument.

o The value returned by the operator is converted to the type of x and the set accessor of x is
invoked with this value as its value argument.

o The saved value of x becomes the result of the operation.

The ++ and -- operators also support prefix notation (§11.8.6). Typically, the result of x++ or x-- is the
value of X before the operation, whereas the result of ++x or --x is the value of X after the operation. In
either case, x itself has the same value after the operation.

ECMA-334

186

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

11.7.15 The new operator

11.7.15.1 General

The new operator is used to create new instances of types.

There are three forms of new expressions:

• Object creation expressions and anonymous object creation expressions are used to create new
instances of class types and value types.

• Array creation expressions are used to create new instances of array types.

• Delegate creation expressions are used to obtain instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in
which they reside, and no allocations occur when new is used to create instances of value types.

Note: Delegate creation expressions do not always create new instances. When the expression is
processed in the same way as a method group conversion (§10.8) or an anonymous function
conversion (§10.7) this may result in an existing delegate instance being reused. end note

11.7.15.2 Object creation expressions

An object_creation_expression is used to create a new instance of a class_type or a value_type.

object_creation_expression
 : 'new' type '(' argument_list? ')' object_or_collection_initializer?
 | 'new' type object_or_collection_initializer
 ;

object_or_collection_initializer
 : object_initializer
 | collection_initializer
 ;

The type of an object_creation_expression shall be a class_type, a value_type, or a type_parameter. The type
cannot be an abstract or static class_type.

The optional argument_list (§11.6.2) is permitted only if the type is a class_type or a struct_type.

An object creation expression can omit the constructor argument list and enclosing parentheses provided
it includes an object initializer or collection initializer. Omitting the constructor argument list and
enclosing parentheses is equivalent to specifying an empty argument list.

Processing of an object creation expression that includes an object initializer or collection initializer
consists of first processing the instance constructor and then processing the member or element
initializations specified by the object initializer (§11.7.15.3) or collection initializer (§11.7.15.4).

If any of the arguments in the optional argument_list has the compile-time type dynamic then the
object_creation_expression is dynamically bound (§11.3.3) and the following rules are applied at run-time
using the run-time type of those arguments of the argument_list that have the compile-time type dynamic.
However, the object creation undergoes a limited compile-time check as described in §11.6.5.

Chapter 11 Expressions

187

The binding-time processing of an object_creation_expression of the form new T(A), where T is a
class_type, or a value_type, and A is an optional argument_list, consists of the following steps:

• If T is a value_type and A is not present:

o The object_creation_expression is a default constructor invocation. The result of the
object_creation_expression is a value of type T, namely the default value for T as defined in §8.3.3.

• Otherwise, if T is a type_parameter and A is not present:

o If no value type constraint or constructor constraint (§14.2.5) has been specified for T, a
binding-time error occurs.

o The result of the object_creation_expression is a value of the run-time type that the type
parameter has been bound to, namely the result of invoking the default constructor of that type.
The run-time type may be a reference type or a value type.

• Otherwise, if T is a class_type or a struct_type:

o If T is an abstract or static class_type, a compile-time error occurs.

o The instance constructor to invoke is determined using the overload resolution rules of §11.6.4.
The set of candidate instance constructors consists of all accessible instance constructors
declared in T, which are applicable with respect to A (§11.6.4.2). If the set of candidate instance
constructors is empty, or if a single best instance constructor cannot be identified, a binding-
time error occurs.

o The result of the object_creation_expression is a value of type T, namely the value produced by
invoking the instance constructor determined in the step above.

o Otherwise, the object_creation_expression is invalid, and a binding-time error occurs.

Even if the object_creation_expression is dynamically bound, the compile-time type is still T.

The run-time processing of an object_creation_expression of the form new T(A), where T is class_type or a
struct_type and A is an optional argument_list, consists of the following steps:

• If T is a class_type:

o A new instance of class T is allocated. If there is not enough memory available to allocate the
new instance, a System.OutOfMemoryException is thrown and no further steps are executed.

o All fields of the new instance are initialized to their default values (§9.3).

o The instance constructor is invoked according to the rules of function member invocation
(§11.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

• If T is a struct_type:

o An instance of type T is created by allocating a temporary local variable. Since an instance
constructor of a struct_type is required to definitely assign a value to each field of the instance
being created, no initialization of the temporary variable is necessary.

o The instance constructor is invoked according to the rules of function member invocation
(§11.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

11.7.15.3 Object initializers

An object initializer specifies values for zero or more fields, properties, or indexed elements of an object.

ECMA-334

188

object_initializer
 : '{' member_initializer_list? '}'
 | '{' member_initializer_list ',' '}'
 ;

member_initializer_list
 : member_initializer (',' member_initializer)*
 ;

member_initializer
 : initializer_target '=' initializer_value
 ;

initializer_target
 : identifier
 | '[' argument_list ']'
 ;

initializer_value
 : expression
 | object_or_collection_initializer
 ;

An object initializer consists of a sequence of member initializers, enclosed by { and } tokens and
separated by commas. Each member_initializer shall designate a target for the initialization. An identifier
shall name an accessible field or property of the object being initialized, whereas an argument_list
enclosed in square brackets shall specify arguments for an accessible indexer on the object being
initialized. It is an error for an object initializer to include more than one member initializer for the same
field or property.

Note: While an object initializer is not permitted to set the same field or property more than once,
there are no such restrictions for indexers. An object initializer may contain multiple initializer
targets referring to indexers, and may even use the same indexer arguments multiple times. end
note

Each initializer_target is followed by an equals sign and either an expression, an object initializer or a
collection initializer. It is not possible for expressions within the object initializer to refer to the newly
created object it is initializing.

A member initializer that specifies an expression after the equals sign is processed in the same way as an
assignment (§11.18.2) to the target.

A member initializer that specifies an object initializer after the equals sign is a nested object initializer,
i.e., an initialization of an embedded object. Instead of assigning a new value to the field or property, the
assignments in the nested object initializer are treated as assignments to members of the field or
property. Nested object initializers cannot be applied to properties with a value type, or to read-only
fields with a value type.

A member initializer that specifies a collection initializer after the equals sign is an initialization of an
embedded collection. Instead of assigning a new collection to the target field, property, or indexer, the
elements given in the initializer are added to the collection referenced by the target. The target shall be of
a collection type that satisfies the requirements specified in §11.7.15.4.

When an initializer target refers to an indexer, the arguments to the indexer shall always be evaluated
exactly once. Thus, even if the arguments end up never getting used (e.g., because of an empty nested
initializer), they are evaluated for their side effects.

Chapter 11 Expressions

189

Example: The following class represents a point with two coordinates:

public class Point
{
 public int X { get; set; }
 public int Y { get; set; }
}

An instance of Point can be created and initialized as follows:

Point a = new Point { X = 0, Y = 1 };

which has the same effect as

Point __a = new Point();
__a.X = 0;
__a.Y = 1;
Point a = __a;

where __a is an otherwise invisible and inaccessible temporary variable. The following class
represents a rectangle created from two points:

public class Rectangle
{
 public Point P1 { get; set; }
 public Point P2 { get; set; }
}

An instance of Rectangle can be created and initialized as follows:

Rectangle r = new Rectangle
{
 P1 = new Point { X = 0, Y = 1 },
 P2 = new Point { X = 2, Y = 3 }
};

which has the same effect as

Rectangle __r = new Rectangle();
Point __p1 = new Point();
__p1.X = 0;
__p1.Y = 1;
__r.P1 = __p1;
Point __p2 = new Point();
__p2.X = 2;
__p2.Y = 3;
__r.P2 = __p2;
Rectangle r = __r;

where __r, __p1 and __p2 are temporary variables that are otherwise invisible and inaccessible.

If Rectangle’s constructor allocates the two embedded Point instances

public class Rectangle
{
 public Point P1 { get; } = new Point();
 public Point P2 { get; } = new Point();
}

the following construct can be used to initialize the embedded Point instances instead of assigning
new instances:

ECMA-334

190

Rectangle r = new Rectangle
{
 P1 = { X = 0, Y = 1 },
 P2 = { X = 2, Y = 3 }
};

which has the same effect as

Rectangle __r = new Rectangle();
__r.P1.X = 0;
__r.P1.Y = 1;
__r.P2.X = 2;
__r.P2.Y = 3;
Rectangle r = __r;

end example

11.7.15.4 Collection initializers

A collection initializer specifies the elements of a collection.

collection_initializer
 : '{' element_initializer_list '}'
 | '{' element_initializer_list ',' '}'
 ;

element_initializer_list
 : element_initializer (',' element_initializer)*
 ;

element_initializer
 : non_assignment_expression
 | '{' expression_list '}'
 ;

expression_list
 : expression
 | expression_list ',' expression
 ;

A collection initializer consists of a sequence of element initializers, enclosed by { and } tokens and
separated by commas. Each element initializer specifies an element to be added to the collection object
being initialized, and consists of a list of expressions enclosed by { and } tokens and separated by
commas. A single-expression element initializer can be written without braces, but cannot then be an
assignment expression, to avoid ambiguity with member initializers. The non_assignment_expression
production is defined in §11.19.

Example: The following is an example of an object creation expression that includes a collection
initializer:

List<int> digits = new List<int> { 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

end example

The collection object to which a collection initializer is applied shall be of a type that implements
System.Collections.IEnumerable or a compile-time error occurs. For each specified element in order,
normal member lookup is applied to find a member named Add. If the result of the member lookup is not a
method group, a compile-time error occurs. Otherwise, overload resolution is applied with the expression

Chapter 11 Expressions

191

list of the element initializer as the argument list, and the collection initializer invokes the resulting
method. Thus, the collection object shall contain an applicable instance or extension method with the
name Add for each element initializer.

Example:The following class represents a contact with a name and a list of phone numbers:

public class Contact
{
 public string Name { get; set; }
 public List<string> PhoneNumbers { get; } = new List<string>();
}

A List<Contact> can be created and initialized as follows:

var contacts = new List<Contact>
{
 new Contact
 {
 Name = "Chris Smith",
 PhoneNumbers = { "206-555-0101", "425-882-8080" }
 },
 new Contact
 {
 Name = "Bob Harris",
 PhoneNumbers = { "650-555-0199" }
 }
};

which has the same effect as

var __clist = new List<Contact>();
Contact __c1 = new Contact();
__c1.Name = "Chris Smith";
__c1.PhoneNumbers.Add("206-555-0101");
__c1.PhoneNumbers.Add("425-882-8080");
__clist.Add(__c1);
Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
__c2.PhoneNumbers.Add("650-555-0199");
__clist.Add(__c2);
var contacts = __clist;

where __clist, __c1 and __c2 are temporary variables that are otherwise invisible and
inaccessible.

end example

11.7.15.5 Array creation expressions

An array_creation_expression is used to create a new instance of an array_type.

array_creation_expression
 : 'new' non_array_type '[' expression_list ']' rank_specifier*
array_initializer?
 | 'new' array_type array_initializer
 | 'new' rank_specifier array_initializer
 ;

ECMA-334

192

An array creation expression of the first form allocates an array instance of the type that results from
deleting each of the individual expressions from the expression list.

Example: The array creation expression new int[10,20] produces an array instance of type int[,],
and the array creation expression new int[10][,] produces an array instance of type int[][,].
end example

Each expression in the expression list shall be of type int, uint, long, or ulong, or implicitly convertible to
one or more of these types. The value of each expression determines the length of the corresponding
dimension in the newly allocated array instance. Since the length of an array dimension shall be
nonnegative, it is a compile-time error to have a constant expression with a negative value, in the
expression list.

Except in an unsafe context (§22.2), the layout of arrays is unspecified.

If an array creation expression of the first form includes an array initializer, each expression in the
expression list shall be a constant and the rank and dimension lengths specified by the expression list
shall match those of the array initializer.

In an array creation expression of the second or third form, the rank of the specified array type or rank
specifier shall match that of the array initializer. The individual dimension lengths are inferred from the
number of elements in each of the corresponding nesting levels of the array initializer. Thus, the
expression

new int[,] {{0, 1}, {2, 3}, {4, 5}}

exactly corresponds to

new int[3, 2] {{0, 1}, {2, 3}, {4, 5}}

An array creation expression of the third form is referred to as an implicitly typed array-creation
expression. It is similar to the second form, except that the element type of the array is not explicitly
given, but determined as the best common type (§11.6.3.15) of the set of expressions in the array
initializer. For a multidimensional array, i.e., one where the rank_specifier contains at least one comma,
this set comprises all expressions found in nested array_initializers.

Array initializers are described further in §16.7.

The result of evaluating an array creation expression is classified as a value, namely a reference to the
newly allocated array instance. The run-time processing of an array creation expression consists of the
following steps:

• The dimension length expressions of the expression_list are evaluated in order, from left to right.
Following evaluation of each expression, an implicit conversion (§10.2) to one of the following types
is performed: int, uint, long, ulong. The first type in this list for which an implicit conversion exists
is chosen. If evaluation of an expression or the subsequent implicit conversion causes an exception,
then no further expressions are evaluated and no further steps are executed.

• The computed values for the dimension lengths are validated, as follows: If one or more of the
values are less than zero, a System.OverflowException is thrown and no further steps are executed.

• An array instance with the given dimension lengths is allocated. If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown and no further
steps are executed.

• All elements of the new array instance are initialized to their default values (§9.3).

Chapter 11 Expressions

193

• If the array creation expression contains an array initializer, then each expression in the array
initializer is evaluated and assigned to its corresponding array element. The evaluations and
assignments are performed in the order the expressions are written in the array initializer—in
other words, elements are initialized in increasing index order, with the rightmost dimension
increasing first. If evaluation of a given expression or the subsequent assignment to the
corresponding array element causes an exception, then no further elements are initialized (and the
remaining elements will thus have their default values).

An array creation expression permits instantiation of an array with elements of an array type, but the
elements of such an array shall be manually initialized.

Example: The statement

int[][] a = new int[100][];

creates a single-dimensional array with 100 elements of type int[]. The initial value of each
element is null. It is not possible for the same array creation expression to also instantiate the sub-
arrays, and the statement

int[][] a = new int[100][5]; // Error

results in a compile-time error. Instantiation of the sub-arrays can instead be performed manually,
as in

int[][] a = new int[100][];
for (int i = 0; i < 100; i++)
{
 a[i] = new int[5];
}

end example

Note: When an array of arrays has a “rectangular” shape, that is when the sub-arrays are all of the
same length, it is more efficient to use a multi-dimensional array. In the example above,
instantiation of the array of arrays creates 101 objects—one outer array and 100 sub-arrays. In
contrast,

int[,] = new int[100, 5];

creates only a single object, a two-dimensional array, and accomplishes the allocation in a single
statement.

end note

Example: The following are examples of implicitly typed array creation expressions:

var a = new[] { 1, 10, 100, 1000 }; // int[]
var b = new[] { 1, 1.5, 2, 2.5 }; // double[]
var c = new[,] { { "hello", null }, { "world", "!" } }; // string[,]
var d = new[] { 1, "one", 2, "two" }; // Error

The last expression causes a compile-time error because neither int nor string is implicitly
convertible to the other, and so there is no best common type. An explicitly typed array creation
expression must be used in this case, for example specifying the type to be object[]. Alternatively,
one of the elements can be cast to a common base type, which would then become the inferred
element type.

end example

ECMA-334

194

Implicitly typed array creation expressions can be combined with anonymous object initializers
(§11.7.15.7) to create anonymously typed data structures.

Example:

var contacts = new[]
{
 new
 {
 Name = "Chris Smith",
 PhoneNumbers = new[] { "206-555-0101", "425-882-8080" }
 },
 new
 {
 Name = "Bob Harris",
 PhoneNumbers = new[] { "650-555-0199" }
 }
};

end example

11.7.15.6 Delegate creation expressions

A delegate_creation_expression is used to obtain an instance of a delegate_type.

delegate_creation_expression
 : 'new' delegate_type '(' expression ')'
 ;

The argument of a delegate creation expression shall be a method group, an anonymous function, or a
value of either the compile-time type dynamic or a delegate_type. If the argument is a method group, it
identifies the method and, for an instance method, the object for which to create a delegate. If the
argument is an anonymous function it directly defines the parameters and method body of the delegate
target. If the argument is a value it identifies a delegate instance of which to create a copy.

If the expression has the compile-time type dynamic, the delegate_creation_expression is dynamically
bound (§11.7.15.6), and the rules below are applied at run-time using the run-time type of the expression.
Otherwise, the rules are applied at compile-time.

The binding-time processing of a delegate_creation_expression of the form new D(E), where D is a
delegate_type and E is an expression, consists of the following steps:

• If E is a method group, the delegate creation expression is processed in the same way as a method
group conversion (§10.8) from E to D.

• If E is an anonymous function, the delegate creation expression is processed in the same way as an
anonymous function conversion (§10.7) from E to D.

• If E is a value, E shall be compatible (§19.2) with D, and the result is a reference to a newly created
delegate with a single-entry invocation list that invokes E.

The run-time processing of a delegate_creation_expression of the form new D(E), where D is a
delegate_type and E is an expression, consists of the following steps:

• If E is a method group, the delegate creation expression is evaluated as a method group conversion
(§10.8) from E to D.

• If E is an anonymous function, the delegate creation is evaluated as an anonymous function
conversion from E to D (§10.7).

Chapter 11 Expressions

195

• If E is a value of a delegate_type:

o E is evaluated. If this evaluation causes an exception, no further steps are executed.

o If the value of E is null, a System.NullReferenceException is thrown and no further steps are
executed.

o A new instance of the delegate type D is allocated. If there is not enough memory available to
allocate the new instance, a System.OutOfMemoryException is thrown and no further steps are
executed.

o The new delegate instance is initialized with a single-entry invocation list that invokes E.

The invocation list of a delegate is determined when the delegate is instantiated and then remains
constant for the entire lifetime of the delegate. In other words, it is not possible to change the target
callable entities of a delegate once it has been created.

Note: Remember, when two delegates are combined or one is removed from another, a new
delegate results; no existing delegate has its content changed. end note

It is not possible to create a delegate that refers to a property, indexer, user-defined operator, instance
constructor, finalizer, or static constructor.

Example: As described above, when a delegate is created from a method group, the formal
parameter list and return type of the delegate determine which of the overloaded methods to select.
In the example

delegate double DoubleFunc(double x);

class A
{
 DoubleFunc f = new DoubleFunc(Square);

 static float Square(float x) => x * x;
 static double Square(double x) => x * x;
}

the A.f field is initialized with a delegate that refers to the second Square method because that
method exactly matches the formal parameter list and return type of DoubleFunc. Had the second
Square method not been present, a compile-time error would have occurred.

end example

11.7.15.7 Anonymous object creation expressions

An anonymous_object_creation_expression is used to create an object of an anonymous type.

anonymous_object_creation_expression
 : 'new' anonymous_object_initializer
 ;

anonymous_object_initializer
 : '{' member_declarator_list? '}'
 | '{' member_declarator_list ',' '}'
 ;

member_declarator_list
 : member_declarator (',' member_declarator)*
 ;

ECMA-334

196

member_declarator
 : simple_name
 | member_access
 | null_conditional_projection_initializer
 | base_access
 | identifier '=' expression
 ;

An anonymous object initializer declares an anonymous type and returns an instance of that type. An
anonymous type is a nameless class type that inherits directly from object. The members of an
anonymous type are a sequence of read-only properties inferred from the anonymous object initializer
used to create an instance of the type. Specifically, an anonymous object initializer of the form

new { p₁ = e₁ , p₂ = e₂ , … pᵥ = eᵥ }

declares an anonymous type of the form

class __Anonymous1
{
 private readonly «T1» «f1»;
 private readonly «T2» «f2»;
 ...
 private readonly «Tn» «fn»;

 public __Anonymous1(«T1» «a1», «T2» «a2»,..., «Tn» «an»)
 {
 «f1» = «a1»;
 «f2» = «a2»;
 ...
 «fn» = «an»;
 }

 public «T1» «p1» { get { return «f1»; } }
 public «T2» «p2» { get { return «f2»; } }
 ...
 public «Tn» «pn» { get { return «fn»; } }
 public override bool Equals(object __o) { ... }
 public override int GetHashCode() { ... }
}

where each «Tx» is the type of the corresponding expression «ex». The expression used in a
member_declarator shall have a type. Thus, it is a compile-time error for an expression in a
member_declarator to be null or an anonymous function. It is also a compile-time error for the expression
to have a pointer type (§22.3).

The names of an anonymous type and of the parameter to its Equals method are automatically generated
by the compiler and cannot be referenced in program text.

Within the same program, two anonymous object initializers that specify a sequence of properties of the
same names and compile-time types in the same order will produce instances of the same anonymous
type.

Example: In the example

var p1 = new { Name = "Lawnmower", Price = 495.00 };
var p2 = new { Name = "Shovel", Price = 26.95 };
p1 = p2;

Chapter 11 Expressions

197

the assignment on the last line is permitted because p1 and p2 are of the same anonymous type.

end example

The Equals and GetHashcode methods on anonymous types override the methods inherited from object,
and are defined in terms of the Equals and GetHashcode of the properties, so that two instances of the
same anonymous type are equal if and only if all their properties are equal.

A member declarator can be abbreviated to a simple name (§11.7.4), a member access (§11.7.6), a null
conditional projection initializer §11.7.7 or a base access (§11.7.13). This is called a projection initializer
and is shorthand for a declaration of and assignment to a property with the same name. Specifically,
member declarators of the forms

«identifier», «expr» . «identifier» and «expr» ? . «identifier»

are precisely equivalent to the following, respectively:

«identifer» = «identifier», «identifier» = «expr» . «identifier» and «identifier» = «expr» ?
. «identifier»

Thus, in a projection initializer the identifier selects both the value and the field or property to which the
value is assigned. Intuitively, a projection initializer projects not just a value, but also the name of the
value.

11.7.16 The typeof operator

The typeof operator is used to obtain the System.Type object for a type.

typeof_expression
 : 'typeof' '(' type ')'
 | 'typeof' '(' unbound_type_name ')'
 | 'typeof' '(' 'void' ')'
 ;

unbound_type_name
 : identifier generic_dimension_specifier?
 | identifier '::' identifier generic_dimension_specifier?
 | unbound_type_name '.' identifier generic_dimension_specifier?
 ;

generic_dimension_specifier
 : '<' comma* '>'
 ;

comma
 : ','
 ;

The first form of typeof_expression consists of a typeof keyword followed by a parenthesized type. The
result of an expression of this form is the System.Type object for the indicated type. There is only one
System.Type object for any given type. This means that for a type T, typeof(T) == typeof(T) is always
true. The type cannot be dynamic.

The second form of typeof_expression consists of a typeof keyword followed by a parenthesized
unbound_type_name.

ECMA-334

198

Note: An unbound_type_name is very similar to a type_name (§7.8) except that an
unbound_type_name contains generic_dimension_specifiers where a type_name contains
type_argument_lists. end note

When the operand of a typeof_expression is a sequence of tokens that satisfies the grammars of both
unbound_type_name and type_name, namely when it contains neither a generic_dimension_specifier nor a
type_argument_list, the sequence of tokens is considered to be a type_name. The meaning of an
unbound_type_name is determined as follows:

• Convert the sequence of tokens to a type_name by replacing each generic_dimension_specifier with a
type_argument_list having the same number of commas and the keyword object as each
type_argument.

• Evaluate the resulting type_name, while ignoring all type parameter constraints.

• The unbound_type_name resolves to the unbound generic type associated with the resulting
constructed type (§8.4).

The result of the typeof_expression is the System.Type object for the resulting unbound generic type.

The third form of typeof_expression consists of a typeof keyword followed by a parenthesized void
keyword. The result of an expression of this form is the System.Type object that represents the absence of
a type. The type object returned by typeof(void) is distinct from the type object returned for any type.

Note: This special type object is useful in class libraries that allow reflection onto methods in the
language, where those methods wish to have a way to represent the return type of any method,
including void methods, with an instance of System.Type. end note

The typeof operator can be used on a type parameter. The result is the System.Type object for the run-
time type that was bound to the type parameter. The typeof operator can also be used on a constructed
type or an unbound generic type (§8.4.4). The System.Type object for an unbound generic type is not the
same as the System.Type object of the instance type (§14.3.2). The instance type is always a closed
constructed type at run-time so its System.Type object depends on the run-time type arguments in use.
The unbound generic type, on the other hand, has no type arguments, and yields the
same System.Type object regardless of runtime type arguments.

Example: The example

using System;
class X<T>
{
 public static void PrintTypes()
 {
 Type[] t =
 {
 typeof(int),
 typeof(System.Int32),
 typeof(string),
 typeof(double[]),
 typeof(void),
 typeof(T),
 typeof(X<T>),
 typeof(X<X<T>>),
 typeof(X<>)
 };
 for (int i = 0; i < t.Length; i++)
 {

Chapter 11 Expressions

199

 Console.WriteLine(t[i]);
 }
 }
}

class Test
{
 static void Main()
 {
 X<int>.PrintTypes();
 }
}

produces the following output:

System.Int32
System.Int32
System.String
System.Double[]
System.Void
System.Int32
X`1[System.Int32]
X`1[X`1[System.Int32]]
X`1[T]

Note that int and System.Int32 are the same type. The result of typeof(X<>) does not depend on
the type argument but the result of typeof(X<T>) does.

end example

11.7.17 The sizeof operator

The sizeof operator returns the number of 8-bit bytes occupied by a variable of a given type. The type
specified as an operand to sizeof shall be an unmanaged_type (§8.8).

sizeof_expression
 : 'sizeof' '(' unmanaged_type ')'
 ;

For certain predefined types the sizeof operator yields a constant int value as shown in the table below:

Expression Result

sizeof(sbyte) 1

sizeof(byte) 1

sizeof(short) 2

sizeof(ushort) 2

sizeof(int) 4

sizeof(uint) 4

sizeof(long) 8

sizeof(ulong) 8

sizeof(char) 2

sizeof(float) 4

ECMA-334

200

sizeof(double) 8

sizeof(bool) 1

sizeof(decimal) 16

For an enum type T, the result of the expression sizeof(T) is a constant value equal to the size of its
underlying type, as given above. For all other operand types, the sizeof operator is specified in §22.6.9.

11.7.18 The checked and unchecked operators

The checked and unchecked operators are used to control the overflow-checking context for integral-type
arithmetic operations and conversions.

checked_expression
 : 'checked' '(' expression ')'
 ;

unchecked_expression
 : 'unchecked' '(' expression ')'
 ;

The checked operator evaluates the contained expression in a checked context, and the unchecked
operator evaluates the contained expression in an unchecked context. A checked_expression or
unchecked_expression corresponds exactly to a parenthesized_expression (§11.7.5), except that the
contained expression is evaluated in the given overflow checking context.

The overflow checking context can also be controlled through the checked and unchecked statements
(§12.12).

The following operations are affected by the overflow checking context established by the checked and
unchecked operators and statements:

• The predefined ++ and -- operators (§11.7.14 and §11.8.6), when the operand is of an integral or
enum type.

• The predefined - unary operator (§11.8.3), when the operand is of an integral type.

• The predefined +, -, \, and / binary operators (§11.9), when both operands are of integral or enum
types.

• Explicit numeric conversions (§10.3.2) from one integral or enumtype to another integral or enum
type, or from float or double to an integral or enum type.

When one of the above operations produces a result that is too large to represent in the destination type,
the context in which the operation is performed controls the resulting behavior:

• In a checked context, if the operation is a constant expression (§11.20), a compile-time error occurs.
Otherwise, when the operation is performed at run-time, a System.OverflowException is thrown.

• In an unchecked context, the result is truncated by discarding any high-order bits that do not fit in
the destination type.

For non-constant expressions (§11.20) (expressions that are evaluated at run-time) that are not enclosed
by any checked or unchecked operators or statements, the default overflow checking context is
unchecked, unless external factors (such as compiler switches and execution environment configuration)
call for checked evaluation.

Chapter 11 Expressions

201

For constant expressions (§11.20) (expressions that can be fully evaluated at compile-time), the default
overflow checking context is always checked. Unless a constant expression is explicitly placed in an
unchecked context, overflows that occur during the compile-time evaluation of the expression always
cause compile-time errors.

The body of an anonymous function is not affected by checked or unchecked contexts in which the
anonymous function occurs.

Example: In the following code

class Test
{
 static readonly int x = 1000000;
 static readonly int y = 1000000;

 static int F() => checked(x * y); // Throws OverflowException
 static int G() => unchecked(x * y); // Returns -727379968
 static int H() => x * y; // Depends on default
}

no compile-time errors are reported since neither of the expressions can be evaluated at compile-
time. At run-time, the F method throws a System.OverflowException, and the G method returns –
727379968 (the lower 32 bits of the out-of-range result). The behavior of the H method depends on
the default overflow-checking context for the compilation, but it is either the same as F or the same
as G.

end example

Example: In the following code

class Test
{
 const int x = 1000000;
 const int y = 1000000;

 static int F() => checked(x * y); // Compile-time error, overflow
 static int G() => unchecked(x * y); // Returns -727379968
 static int H() => x * y; // Compile-time error, overflow
}

the overflows that occur when evaluating the constant expressions in F and H cause compile-time
errors to be reported because the expressions are evaluated in a checked context. An overflow also
occurs when evaluating the constant expression in G, but since the evaluation takes place in an
unchecked context, the overflow is not reported.

end example

The checked and unchecked operators only affect the overflow checking context for those operations that
are textually contained within the “(” and “)” tokens. The operators have no effect on function members
that are invoked as a result of evaluating the contained expression.

Example: In the following code

class Test
{
 static int Multiply(int x, int y) => x * y;

ECMA-334

202

 static int F() => checked(Multiply(1000000, 1000000));
}

the use of checked in F does not affect the evaluation of x * y in Multiply, so x * y is evaluated in
the default overflow checking context.

end example

The unchecked operator is convenient when writing constants of the signed integral types in hexadecimal
notation.

Example:

class Test
{
 public const int AllBits = unchecked((int)0xFFFFFFFF);
 public const int HighBit = unchecked((int)0x80000000);
}

Both of the hexadecimal constants above are of type uint. Because the constants are outside the int
range, without the unchecked operator, the casts to int would produce compile-time errors.

end example

Note: The checked and unchecked operators and statements allow programmers to control certain
aspects of some numeric calculations. However, the behavior of some numeric operators depends
on their operands’ data types. For example, multiplying two decimals always results in an exception
on overflow even within an explicitly unchecked construct. Similarly, multiplying two floats never
results in an exception on overflow even within an explicitly checked construct. In addition, other
operators are never affected by the mode of checking, whether default or explicit. end note

11.7.19 Default value expressions

A default value expression is used to obtain the default value (§9.3) of a type. Typically a default value
expression is used for type parameters, since it might not be known if the type parameter is a value type
or a reference type. (No conversion exists from the null literal (§6.4.5.7) to a type parameter unless the
type parameter is known to be a reference type (§8.2).)

default_value_expression
 : 'default' '(' type ')'
 ;

If the type in a default_value_expression evaluates at run-time to a reference type, the result is null
converted to that type. If the type in a default_value_expression evaluates at run-time to a value type, the
result is the value type’s default value (§8.3.3).

A default_value_expression is a constant expression (§11.20) if type is a reference type or a type parameter
that is known to be a reference type (§8.2). In addition, a default_value_expression is a constant expression
if the type is one of the following value types: sbyte, byte, short, ushort, int, uint, long, ulong, char,
float, double, decimal, bool, or any enumeration type.

11.7.20 Nameof expressions

A nameof_expression is used to obtain the name of a program entity as a constant string.

nameof_expression
 : 'nameof' '(' named_entity ')'
 ;

Chapter 11 Expressions

203

named_entity
 : named_entity_target ('.' identifier type_argument_list?)*
 ;

named_entity_target
 : simple_name
 | 'this'
 | 'base'
 | predefined_type
 | qualified_alias_member
 ;

Because nameof is not a keyword, a nameof_expression is always syntactically ambiguous with an
invocation of the simple name nameof. For compatibility reasons, if a name lookup (§11.7.4) of the name
nameof succeeds, the expression is treated as an invocation_expression — regardless of whether the
invocation is valid. Otherwise it is a nameof_expression.

Simple name and member access lookups are performed on the named_entity at compile time, following
the rules described in §11.7.4 and §11.7.6. However, where the lookup described in §11.7.4 and §11.7.6
results in an error because an instance member was found in a static context, a nameof_expression
produces no such error.

It is a compile-time error for a named_entity designating a method group to have a type_argument_list. It is
a compile time error for a named_entity_target to have the type dynamic.

A nameof_expression is a constant expression of type string, and has no effect at runtime. Specifically, its
named_entity is not evaluated, and is ignored for the purposes of definite assignment analysis (§9.4.4.22).
Its value is the last identifier of the named_entity before the optional final type_argument_list, transformed
in the following way:

• The prefix “@”, if used, is removed.

• Each unicode_escape_sequence is transformed into its corresponding Unicode character.

• Any formatting_characters are removed.

These are the same transformations applied in §6.4.3 when testing equality between identifiers.

Example: The following illustrates the results of various nameof expressions, assuming a generic
type List<T> declared within the System.Collections.Generic namespace:

using System.Collections.Generic;

using TestAlias = System.String;

class Program
{
 static void Main()
 {
 var point = (x: 3, y: 4);

 string n1 = nameof(System); // "System"
 string n2 = nameof(System.Collections.Generic); // "Generic"
 string n3 = nameof(point); // "point"
 string n4 = nameof(point.x); // "x"
 string n5 = nameof(Program); // "Program"
 string n6 = nameof(System.Int32); // "Int32"

ECMA-334

204

 string n7 = nameof(TestAlias); // "TestAlias"
 string n8 = nameof(List<int>); // "List"
 string n9 = nameof(Program.InstanceMethod); // "InstanceMethod"
 string n10 = nameof(Program.GenericMethod); // "GenericMethod"
 string n11 = nameof(Program.NestedClass); // "NestedClass"

 // Invalid
 // string x1 = nameof(List<>); // Empty type argument list
 // string x2 = nameof(List<T>); // T is not in scope
 // string x3 = nameof(GenericMethod<>); // Empty type argument list
 // string x4 = nameof(GenericMethod<T>); // T is not in scope
 // string x5 = nameof(int); // Keywords not permitted
 // string x6 = nameof(GenericMethod<Program>); // Type arguments not
permitted
 // for method group
 }

 void InstanceMethod() { }

 void GenericMethod<T>()
 {
 string n1 = nameof(List<T>); // "List"
 string n2 = nameof(T); // "T"
 }

 class NestedClass { }
}

Potentially surprising parts of this example are the resolution of
nameof(System.Collections.Generic) to just “Generic” instead of the full namespace, and of
nameof(TestAlias) to “TestAlias” rather than “String”. end example

11.7.21 Anonymous method expressions

An anonymous_method_expression is one of two ways of defining an anonymous function. These are
further described in §11.16.

11.8 Unary operators

11.8.1 General

The +, -, !, ~, ++, --, cast, and await operators are called the unary operators.

unary_expression
 : primary_expression
 | '+' unary_expression
 | '-' unary_expression
 | '!' unary_expression
 | '~' unary_expression
 | pre_increment_expression
 | pre_decrement_expression
 | cast_expression
 | await_expression
 | pointer_indirection_expression // unsafe code support

Chapter 11 Expressions

205

 | addressof_expression // unsafe code support
 ;

pointer_indirection_expression (§22.6.2) and addressof_expression (§22.6.5) are available only in unsafe
code (§22).

If the operand of a unary_expression has the compile-time type dynamic, it is dynamically bound (§11.3.3).
In this case, the compile-time type of the unary_expression is dynamic, and the resolution described below
will take place at run-time using the run-time type of the operand.

11.8.2 Unary plus operator

For an operation of the form +x, unary operator overload resolution (§11.4.4) is applied to select a
specific operator implementation. The operand is converted to the parameter type of the selected
operator, and the type of the result is the return type of the operator. The predefined unary plus
operators are:

int operator +(int x);
uint operator +(uint x);
long operator +(long x);
ulong operator +(ulong x);
float operator +(float x);
double operator +(double x);
decimal operator +(decimal x);

For each of these operators, the result is simply the value of the operand.

Lifted (§11.4.8) forms of the unlifted predefined unary plus operators defined above are also predefined.

11.8.3 Unary minus operator

For an operation of the form –x, unary operator overload resolution (§11.4.4) is applied to select a
specific operator implementation. The operand is converted to the parameter type of the selected
operator, and the type of the result is the return type of the operator. The predefined unary minus
operators are:

• Integer negation:

int operator –(int x);
long operator –(long x);

The result is computed by subtracting X from zero. If the value of X is the smallest representable
value of the operand type (−2³¹ for int or −2⁶³ for long), then the mathematical negation of X is not
representable within the operand type. If this occurs within a checked context, a
System.OverflowException is thrown; if it occurs within an unchecked context, the result is the
value of the operand and the overflow is not reported.

If the operand of the negation operator is of type uint, it is converted to type long, and the type of
the result is long. An exception is the rule that permits the int value −2147483648 (−2³¹) to be
written as a decimal integer literal (§6.4.5.3).

If the operand of the negation operator is of type ulong, a compile-time error occurs. An exception is
the rule that permits the long value −9223372036854775808 (−2⁶³) to be written as a decimal
integer literal (§6.4.5.3)

• Floating-point negation:

ECMA-334

206

float operator –(float x);
double operator –(double x);

The result is the value of X with its sign inverted. If x is NaN, the result is also NaN.

• Decimal negation:

decimal operator –(decimal x);

The result is computed by subtracting X from zero. Decimal negation is equivalent to using the
unary minus operator of type System.Decimal.

Lifted (§11.4.8) forms of the unlifted predefined unary minus operators defined above are also
predefined.

11.8.4 Logical negation operator

For an operation of the form !x, unary operator overload resolution (§11.4.4) is applied to select a
specific operator implementation. The operand is converted to the parameter type of the selected
operator, and the type of the result is the return type of the operator. Only one predefined logical negation
operator exists:

bool operator !(bool x);

This operator computes the logical negation of the operand: If the operand is true, the result is false. If
the operand is false, the result is true.

Lifted (§11.4.8) forms of the unlifted predefined logical negation operator defined above are also
predefined.

11.8.5 Bitwise complement operator

For an operation of the form ~x, unary operator overload resolution (§11.4.4) is applied to select a
specific operator implementation. The operand is converted to the parameter type of the selected
operator, and the type of the result is the return type of the operator. The predefined bitwise complement
operators are:

int operator ~(int x);
uint operator ~(uint x);
long operator ~(long x);
ulong operator ~(ulong x);

For each of these operators, the result of the operation is the bitwise complement of x.

Every enumeration type E implicitly provides the following bitwise complement operator:

E operator ~(E x);

The result of evaluating ~x, where X is an expression of an enumeration type E with an underlying type U,
is exactly the same as evaluating (E)(~(U)x), except that the conversion to E is always performed as if in
an unchecked context (§11.7.18).

Lifted (§11.4.8) forms of the unlifted predefined bitwise complement operators defined above are also
predefined.

11.8.6 Prefix increment and decrement operators

pre_increment_expression
 : '++' unary_expression
 ;

Chapter 11 Expressions

207

pre_decrement_expression
 : '--' unary_expression
 ;

The operand of a prefix increment or decrement operation shall be an expression classified as a variable,
a property access, or an indexer access. The result of the operation is a value of the same type as the
operand.

If the operand of a prefix increment or decrement operation is a property or indexer access, the property
or indexer shall have both a get and a set accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (§11.4.4) is applied to select a specific operator implementation.
Predefined ++ and -- operators exist for the following types: sbyte, byte, short, ushort, int, uint, long,
ulong, char, float, double, decimal, and any enum type. The predefined ++ operators return the value
produced by adding 1 to the operand, and the predefined -- operators return the value produced by
subtracting 1 from the operand. In a checked context, if the result of this addition or subtraction is outside
the range of the result type and the result type is an integral type or enum type, a
System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator to the type of
the unary_expression, otherwise a compile-time error occurs.

The run-time processing of a prefix increment or decrement operation of the form ++x or --x consists of
the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o The value of x is converted to the operand type of the selected operator and the operator is
invoked with this value as its argument.

o The value returned by the operator is converted to the type of x. The resulting value is stored in
the location given by the evaluation of x.

o and becomes the result of the operation.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent get and set accessor
invocations.

o The get accessor of X is invoked.

o The value returned by the get accessor is converted to the operand type of the selected operator
and operator is invoked with this value as its argument.

o The value returned by the operator is converted to the type of x. The set accessor of X is invoked
with this value as its value argument.

o This value also becomes the result of the operation.

The ++ and -- operators also support postfix notation (§11.7.14). Typically, the result of x++ or x-- is the
value of X before the operation, whereas the result of ++x or --x is the value of X after the operation. In
either case, x itself has the same value after the operation.

An operator ++ or operator -- implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

ECMA-334

208

Lifted (§11.4.8) forms of the unlifted predefined prefix increment and decrement operators defined above
are also predefined.

11.8.7 Cast expressions

A cast_expression is used to convert explicitly an expression to a given type.

cast_expression
 : '(' type ')' unary_expression
 ;

A cast_expression of the form (T)E, where T is a type and E is a unary_expression, performs an explicit
conversion (§10.3) of the value of E to type T. If no explicit conversion exists from E to T, a binding-time
error occurs. Otherwise, the result is the value produced by the explicit conversion. The result is always
classified as a value, even if E denotes a variable.

The grammar for a cast_expression leads to certain syntactic ambiguities.

Example: The expression (x)–y could either be interpreted as a cast_expression (a cast of –y to
type x) or as an additive_expression combined with a parenthesized_expression (which computes the
value x – y). end example

To resolve cast_expression ambiguities, the following rule exists: A sequence of one or more tokens (§6.4)
enclosed in parentheses is considered the start of a cast_expression only if at least one of the following are
true:

• The sequence of tokens is correct grammar for a type, but not for an expression.

• The sequence of tokens is correct grammar for a type, and the token immediately following the
closing parentheses is the token “~”, the token “!”, the token “(”, an identifier (§6.4.3), a literal
(§6.4.5), or any keyword (§6.4.4) except as and is.

The term “correct grammar” above means only that the sequence of tokens shall conform to the particular
grammatical production. It specifically does not consider the actual meaning of any constituent
identifiers.

Example: If x and y are identifiers, then x.y is correct grammar for a type, even if x.y doesn’t
actually denote a type. end example

Note: From the disambiguation rule, it follows that, if x and y are identifiers, (x)y, (x)(y), and (x)(-
y) are cast_expressions, but (x)-y is not, even if x identifies a type. However, if x is a keyword that
identifies a predefined type (such as int), then all four forms are cast_expressions (because such a
keyword could not possibly be an expression by itself). end note

11.8.8 Await expressions

11.8.8.1 General

The await operator is used to suspend evaluation of the enclosing async function until the asynchronous
operation represented by the operand has completed.

await_expression
 : 'await' unary_expression
 ;

An await_expression is only allowed in the body of an async function (§14.15). Within the nearest
enclosing async function, an await_expression shall not occur in these places:

• Inside a nested (non-async) anonymous function

Chapter 11 Expressions

209

• Inside the block of a lock_statement

• In an anonymous function conversion to an expression tree type (§10.7.3)

• In an unsafe context

Note: An await_expression cannot occur in most places within a query_expression, because those are
syntactically transformed to use non-async lambda expressions. end note

Inside an async function, await shall not be used as an available_identifier although the verbatim
identifier @await may be used. There is therefore no syntactic ambiguity between await_expressions and
various expressions involving identifiers. Outside of async functions, await acts as a normal identifier.

The operand of an await_expression is called the task. It represents an asynchronous operation that may
or may not be complete at the time the await_expression is evaluated. The purpose of the await operator
is to suspend execution of the enclosing async function until the awaited task is complete, and then obtain
its outcome.

11.8.8.2 Awaitable expressions

The task of an await_expression is required to be awaitable. An expression t is awaitable if one of the
following holds:

• t is of compile-time type dynamic

• t has an accessible instance or extension method called GetAwaiter with no parameters and no type
parameters, and a return type A for which all of the following hold:

o A implements the interface System.Runtime.CompilerServices.INotifyCompletion (hereafter
known as INotifyCompletion for brevity)

o A has an accessible, readable instance property IsCompleted of type bool

o A has an accessible instance method GetResult with no parameters and no type parameters

The purpose of the GetAwaiter method is to obtain an awaiter for the task. The type A is called the
awaiter type for the await expression.

The purpose of the IsCompleted property is to determine if the task is already complete. If so, there is no
need to suspend evaluation.

The purpose of the INotifyCompletion.OnCompleted method is to sign up a “continuation” to the task;
i.e., a delegate (of type System.Action) that will be invoked once the task is complete.

The purpose of the GetResult method is to obtain the outcome of the task once it is complete. This
outcome may be successful completion, possibly with a result value, or it may be an exception which is
thrown by the GetResult method.

11.8.8.3 Classification of await expressions

The expression await t is classified the same way as the expression (t).GetAwaiter().GetResult().
Thus, if the return type of GetResult is void, the await_expression is classified as nothing. If it has a non-
void return type T, the await_expression is classified as a value of type T.

11.8.8.4 Run-time evaluation of await expressions

At run-time, the expression await t is evaluated as follows:

• An awaiter a is obtained by evaluating the expression (t).GetAwaiter().

• A bool b is obtained by evaluating the expression (a).IsCompleted.

ECMA-334

210

• If b is false then evaluation depends on whether a implements the interface
System.Runtime.CompilerServices.ICriticalNotifyCompletion (hereafter known as
ICriticalNotifyCompletion for brevity). This check is done at binding time; i.e., at run-time if a has
the compile-time type dynamic, and at compile-time otherwise. Let r denote the resumption
delegate (§14.15):

o If a does not implement ICriticalNotifyCompletion, then the expression ((a) as
INotifyCompletion).OnCompleted(r) is evaluated.

o If a does implement ICriticalNotifyCompletion, then the expression ((a) as
ICriticalNotifyCompletion).UnsafeOnCompleted(r) is evaluated.

o Evaluation is then suspended, and control is returned to the current caller of the async function.

• Either immediately after (if b was true), or upon later invocation of the resumption delegate (if b
was false), the expression (a).GetResult() is evaluated. If it returns a value, that value is the
result of the await_expression. Otherwise, the result is nothing.

An awaiter’s implementation of the interface methods INotifyCompletion.OnCompleted and
ICriticalNotifyCompletion.UnsafeOnCompleted should cause the delegate r to be invoked at most
once. Otherwise, the behavior of the enclosing async function is undefined.

11.9 Arithmetic operators

11.9.1 General

The *, /, %, +, and – operators are called the arithmetic operators.

multiplicative_expression
 : unary_expression
 | multiplicative_expression '*' unary_expression
 | multiplicative_expression '/' unary_expression
 | multiplicative_expression '%' unary_expression
 ;

additive_expression
 : multiplicative_expression
 | additive_expression '+' multiplicative_expression
 | additive_expression '-' multiplicative_expression
 ;

If an operand of an arithmetic operator has the compile-time type dynamic, then the expression is
dynamically bound (§11.3.3). In this case, the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that
have the compile-time type dynamic.

11.9.2 Multiplication operator

For an operation of the form x * y, binary operator overload resolution (§11.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined multiplication operators are listed below. The operators all compute the product of x
and y.

• Integer multiplication:

Chapter 11 Expressions

211

int operator *(int x, int y);
uint operator *(uint x, uint y);
long operator *(long x, long y);
ulong operator *(ulong x, ulong y);

In a checked context, if the product is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

• Floating-point multiplication:

float operator *(float x, float y);
double operator *(double x, double y);

The product is computed according to the rules of IEC 60559 arithmetic. The following table lists
the results of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the
table, x and y are positive finite values. z is the result of x * y, rounded to the nearest representable
value. If the magnitude of the result is too large for the destination type, z is infinity. Because of
rounding, z may be zero even though neither x nor y is zero.

 +y -y +0 -0 +∞ -∞ NaN

+x +z -z +0 -0 +∞ -∞ NaN

-x -z +z -0 +0 -∞ +∞ NaN

+0 +0 -0 +0 -0 NaN NaN NaN

-0 -0 +0 -0 +0 NaN NaN NaN

+∞ +∞ -∞ NaN NaN +∞ -∞ NaN

-∞ -∞ +∞ NaN NaN -∞ +∞ NaN

NaN NaN NaN NaN NaN NaN NaN NaN

(Except were otherwise noted, in the floating-point tables in §11.9.2–§11.9.6 the use of “+” means
the value is positive; the use of “-” means the value is negative; and the lack of a sign means the
value may be positive or negative or has no sign (NaN).)

• Decimal multiplication:

decimal operator *(decimal x, decimal y);

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. Because of rounding, the result may be zero even though
neither operand is zero. The scale of the result, before any rounding, is the sum of the scales of the
two operands. Decimal multiplication is equivalent to using the multiplication operator of type
System.Decimal.

Lifted (§11.4.8) forms of the unlifted predefined multiplication operators defined above are also
predefined.

11.9.3 Division operator

For an operation of the form x / y, binary operator overload resolution (§11.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined division operators are listed below. The operators all compute the quotient of x and y.

ECMA-334

212

• Integer division:

int operator /(int x, int y);
uint operator /(uint x, uint y);
long operator /(long x, long y);
ulong operator /(ulong x, ulong y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown.

The division rounds the result towards zero. Thus the absolute value of the result is the largest
possible integer that is less than or equal to the absolute value of the quotient of the two operands.
The result is zero or positive when the two operands have the same sign and zero or negative when
the two operands have opposite signs.

If the left operand is the smallest representable int or long value and the right operand is –1, an
overflow occurs. In a checked context, this causes a System.ArithmeticException (or a subclass
thereof) to be thrown. In an unchecked context, it is implementation-defined as to whether a
System.ArithmeticException (or a subclass thereof) is thrown or the overflow goes unreported
with the resulting value being that of the left operand.

• Floating-point division:

float operator /(float x, float y);
double operator /(double x, double y);

The quotient is computed according to the rules of IEC 60559 arithmetic. The following table lists
the results of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the
table, x and y are positive finite values. z is the result of x / y, rounded to the nearest representable
value.

 +y -y +0 -0 +∞ -∞ NaN

+x +z -z +∞ -∞ +0 -0 NaN

-x -z +z -∞ +∞ -0 +0 NaN

+0 +0 -0 NaN NaN +0 -0 NaN

-0 -0 +0 NaN NaN -0 +0 NaN

+∞ +∞ -∞ +∞ -∞ NaN NaN NaN

-∞ -∞ +∞ -∞ +∞ NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal division:

decimal operator /(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. If the
magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. Because of rounding, the result may be zero even though the
first operand is not zero. The scale of the result, before any rounding, is the closest scale to the
preferred scale that will preserve a result equal to the exact result. The preferred scale is the scale
of x less the scale of y.

Decimal division is equivalent to using the division operator of type System.Decimal.

Lifted (§11.4.8) forms of the unlifted predefined division operators defined above are also predefined.

Chapter 11 Expressions

213

11.9.4 Remainder operator

For an operation of the form x % y, binary operator overload resolution (§11.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined remainder operators are listed below. The operators all compute the remainder of the
division between x and y.

• Integer remainder:

int operator %(int x, int y);
uint operator %(uint x, uint y);
long operator %(long x, long y);
ulong operator %(ulong x, ulong y);

The result of x % y is the value produced by x – (x / y) * y. If y is zero, a
System.DivideByZeroException is thrown.

If the left operand is the smallest int or long value and the right operand is –1, a
System.OverflowException is thrown if and only if x / y would throw an exception.

• Floating-point remainder:

float operator %(float x, float y);
double operator %(double x, double y);

The following table lists the results of all possible combinations of nonzero finite values, zeros,
infinities, and NaNs. In the table, x and y are positive finite values. z is the result of x % y and is
computed as x – n * y, where n is the largest possible integer that is less than or equal to x / y.
This method of computing the remainder is analogous to that used for integer operands, but differs
from the IEC 60559 definition (in which n is the integer closest to x / y).

 +y -y +0 -0 +∞ -∞ NaN

+x +z +z NaN NaN +x +x NaN

-x -z -z NaN NaN -x -x NaN

+0 +0 +0 NaN NaN +0 +0 NaN

-0 -0 -0 NaN NaN -0 -0 NaN

+∞ NaN NaN NaN NaN NaN NaN NaN

-∞ NaN NaN NaN NaN NaN NaN NaN

NaN NaN NaN NaN NaN NaN NaN NaN

• Decimal remainder:

decimal operator %(decimal x, decimal y);

If the value of the right operand is zero, a System.DivideByZeroException is thrown. It is
implementation-defined when a System.ArithmeticException (or a subclass thereof) is thrown. A
conforming implementation shall not throw an exception for x % y in any case where x / y does
not throw an exception. The scale of the result, before any rounding, is the larger of the scales of the
two operands, and the sign of the result, if non-zero, is the same as that of x.

Decimal remainder is equivalent to using the remainder operator of type System.Decimal.

ECMA-334

214

Note: These rules ensure that for all types, the result never has the opposite sign of the left operand.
end note

Lifted (§11.4.8) forms of the unlifted predefined remainder operators defined above are also predefined.

11.9.5 Addition operator

For an operation of the form x + y, binary operator overload resolution (§11.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined addition operators are listed below. For numeric and enumeration types, the predefined
addition operators compute the sum of the two operands. When one or both operands are of type string,
the predefined addition operators concatenate the string representation of the operands.

• Integer addition:

int operator +(int x, int y);
uint operator +(uint x, uint y);
long operator +(long x, long y);
ulong operator +(ulong x, ulong y

In a checked context, if the sum is outside the range of the result type, a System.OverflowException
is thrown. In an unchecked context, overflows are not reported and any significant high-order bits
outside the range of the result type are discarded.

• Floating-point addition:

float operator +(float x, float y);
double operator +(double x, double y);

The sum is computed according to the rules of IEC 60559 arithmetic. The following table lists the
results of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the table,
x and y are nonzero finite values, and z is the result of x + y,. If x and y have the same magnitude
but opposite signs, z is positive zero. If x + y is too large to represent in the destination type, z is an
infinity with the same sign as x + y.

 y +0 -0 +∞ -∞ NaN

x z x x +∞ -∞ NaN

+0 y +0 +0 +∞ -∞ NaN

-0 y +0 -0 +∞ -∞ NaN

+∞ +∞ +∞ +∞ +∞ NaN NaN

-∞ -∞ -∞ -∞ NaN -∞ NaN

NaN NaN NaN NaN NaN NaN NaN

• Decimal addition:

decimal operator +(decimal x, decimal y);

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. The scale of the result, before any rounding, is the larger of
the scales of the two operands.

Decimal addition is equivalent to using the addition operator of type System.Decimal.

Chapter 11 Expressions

215

• Enumeration addition. Every enumeration type implicitly provides the following predefined
operators, where E is the enum type, and U is the underlying type of E:

E operator +(E x, U y);
E operator +(U x, E y);

At run-time these operators are evaluated exactly as (E)((U)x + (U)y).

• String concatenation:

string operator +(string x, string y);
string operator +(string x, object y);
string operator +(object x, string y);

These overloads of the binary + operator perform string concatenation. If an operand of string
concatenation is null, an empty string is substituted. Otherwise, any non-string operand is
converted to its string representation by invoking the virtual ToString method inherited from type
object. If ToString returns null, an empty string is substituted.

Example:

using System;
class Test
{
 static void Main()
 {
 string s = null;
 Console.WriteLine("s = >" + s + "<"); // Displays s = ><

 int i = 1;
 Console.WriteLine("i = " + i); // Displays i = 1

 float f = 1.2300E+15F;
 Console.WriteLine("f = " + f); // Displays f = 1.23E+15

 decimal d = 2.900m;
 Console.WriteLine("d = " + d); // Displays d = 2.900
 }
}

The output shown in the comments is the typical result on a US-English system. The precise output
might depend on the regional settings of the execution environment. The string-concatenation
operator itself behaves the same way in each case, but the ToString methods implicitly called
during execution might be affected by regional settings.

end example

The result of the string concatenation operator is a string that consists of the characters of the left
operand followed by the characters of the right operand. The string concatenation operator never
returns a null value. A System.OutOfMemoryException may be thrown if there is not enough
memory available to allocate the resulting string.

• Delegate combination. Every delegate type implicitly provides the following predefined operator,
where D is the delegate type:

D operator +(D x, D y);

If the first operand is null, the result of the operation is the value of the second operand (even if
that is also null). Otherwise, if the second operand is null, then the result of the operation is the

ECMA-334

216

value of the first operand. Otherwise, the result of the operation is a new delegate instance whose
invocation list consists of the elements in the invocation list of the first operand, followed by the
elements in the invocation list of the second operand. That is, the invocation list of the resulting
delegate is the concatenation of the invocation lists of the two operands.

Note: For examples of delegate combination, see §11.9.6 and §19.6. Since System.Delegate is not a
delegate type, operator + is not defined for it. end note

Lifted (§11.4.8) forms of the unlifted predefined addition operators defined above are also predefined.

11.9.6 Subtraction operator

For an operation of the form x – y, binary operator overload resolution (§11.4.5) is applied to select a
specific operator implementation. The operands are converted to the parameter types of the selected
operator, and the type of the result is the return type of the operator.

The predefined subtraction operators are listed below. The operators all subtract y from x.

• Integer subtraction:

int operator –(int x, int y);
uint operator –(uint x, uint y);
long operator –(long x, long y);
ulong operator –(ulong x, ulong y

In a checked context, if the difference is outside the range of the result type, a
System.OverflowException is thrown. In an unchecked context, overflows are not reported and any
significant high-order bits outside the range of the result type are discarded.

• Floating-point subtraction:

float operator –(float x, float y);
double operator –(double x, double y);

The difference is computed according to the rules of IEC 60559 arithmetic. The following table lists
the results of all possible combinations of nonzero finite values, zeros, infinities, and NaNs. In the
table, x and y are nonzero finite values, and z is the result of x – y. If x and y are equal, z is positive
zero. If x – y is too large to represent in the destination type, z is an infinity with the same sign as
x – y.

 y +0 -0 +∞ -∞ NaN

x z x x -∞ +∞ NaN

+0 -y +0 +0 -∞ +∞ NaN

-0 -y -0 +0 -∞ +∞ NaN

+∞ +∞ +∞ +∞ NaN +∞ NaN

-∞ -∞ -∞ -∞ -∞ NaN NaN

NaN NaN NaN NaN NaN NaN NaN

(In the above table the -y entries denote the negation of y, not that the value is negative.)

• Decimal subtraction:

decimal operator –(decimal x, decimal y);

Chapter 11 Expressions

217

If the magnitude of the resulting value is too large to represent in the decimal format, a
System.OverflowException is thrown. The scale of the result, before any rounding, is the larger of
the scales of the two operands.

Decimal subtraction is equivalent to using the subtraction operator of type System.Decimal.

• Enumeration subtraction. Every enumeration type implicitly provides the following predefined
operator, where E is the enum type, and U is the underlying type of E:

U operator –(E x, E y);

This operator is evaluated exactly as (U)((U)x – (U)y). In other words, the operator computes the
difference between the ordinal values of x and y, and the type of the result is the underlying type of
the enumeration.

E operator –(E x, U y);

This operator is evaluated exactly as (E)((U)x – y). In other words, the operator subtracts a value
from the underlying type of the enumeration, yielding a value of the enumeration.

• Delegate removal. Every delegate type implicitly provides the following predefined operator, where
D is the delegate type:

D operator –(D x, D y);

The semantics are as follows:

o If the first operand is null, the result of the operation is null.

o Otherwise, if the second operand is null, then the result of the operation is the value of the first
operand.

o Otherwise, both operands represent non-empty invocation lists (§19.2).

• If the lists compare equal, as determined by the delegate equality operator (§11.11.9), the
result of the operation is null.

• Otherwise, the result of the operation is a new invocation list consisting of the first
operand’s list with the second operand’s entries removed from it, provided the second
operand’s list is a sublist of the first’s. (To determine sublist equality, corresponding entries
are compared as for the delegate equality operator.) If the second operand’s list matches
multiple sublists of contiguous entries in the first operand’s list, the last matching sublist of
contiguous entries is removed.

• Otherwise, the result of the operation is the value of the left operand.

Neither of the operands’ lists (if any) is changed in the process.

Example:

delegate void D(int x);

class C
{
 public static void M1(int i) { /* ... */ }
 public static void M2(int i) { /* ... */ }
}

class Test
{

ECMA-334

218

 static void Main()
 {
 D cd1 = new D(C.M1);
 D cd2 = new D(C.M2);
 D delList = null;

 delList = null - cd1; // null
 delList = (cd1 + cd2 + cd2 + cd1) - null; // M1 + M2 + M2 +
M1
 delList = (cd1 + cd2 + cd2 + cd1) - cd1; // M1 + M2 + M2
 delList = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd2); // M2 + M1
 delList = (cd1 + cd2 + cd2 + cd1) - (cd2 + cd2); // M1 + M1
 delList = (cd1 + cd2 + cd2 + cd1) - (cd2 + cd1); // M1 + M2
 delList = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd1); // M1 + M2 + M2 +
M1
 delList = (cd1 + cd2 + cd2 + cd1) - (cd1 + cd2 + cd2 + cd1); // null
 }
}

end example

Lifted (§11.4.8) forms of the unlifted predefined subtraction operators defined above are also predefined.

11.10 Shift operators
The << and >> operators are used to perform bit-shifting operations.

shift_expression
 : additive_expression
 | shift_expression '<<' additive_expression
 | shift_expression right_shift additive_expression
 ;

If an operand of a shift_expression has the compile-time type dynamic, then the expression is dynamically
bound (§11.3.3). In this case, the compile-time type of the expression is dynamic, and the resolution
described below will take place at run-time using the run-time type of those operands that have the
compile-time type dynamic.

For an operation of the form x << count or x >> count, binary operator overload resolution (§11.4.5) is
applied to select a specific operator implementation. The operands are converted to the parameter types
of the selected operator, and the type of the result is the return type of the operator.

When declaring an overloaded shift operator, the type of the first operand shall always be the class or
struct containing the operator declaration, and the type of the second operand shall always be int.

The predefined shift operators are listed below.

• Shift left:

int operator <<(int x, int count);
uint operator <<(uint x, int count);
long operator <<(long x, int count);
ulong operator <<(ulong x, int count);

The << operator shifts x left by a number of bits computed as described below.

The high-order bits outside the range of the result type of x are discarded, the remaining bits are
shifted left, and the low-order empty bit positions are set to zero.

Chapter 11 Expressions

219

• Shift right:

int operator >>(int x, int count);
uint operator >>(uint x, int count);
long operator >>(long x, int count);
ulong operator >>(ulong x, int count);

The >> operator shifts x right by a number of bits computed as described below.

When x is of type int or long, the low-order bits of x are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zero if x is non-negative and set to one if x is
negative.

When x is of type uint or ulong, the low-order bits of x are discarded, the remaining bits are shifted
right, and the high-order empty bit positions are set to zero.

For the predefined operators, the number of bits to shift is computed as follows:

• When the type of x is int or uint, the shift count is given by the low-order five bits of count. In other
words, the shift count is computed from count & 0x1F.

• When the type of x is long or ulong, the shift count is given by the low-order six bits of count. In
other words, the shift count is computed from count & 0x3F.

If the resulting shift count is zero, the shift operators simply return the value of x.

Shift operations never cause overflows and produce the same results in checked and unchecked contexts.

When the left operand of the >> operator is of a signed integral type, the operator performs an arithmetic
shift right wherein the value of the most significant bit (the sign bit) of the operand is propagated to the
high-order empty bit positions. When the left operand of the >> operator is of an unsigned integral type,
the operator performs a logical shift right wherein high-order empty bit positions are always set to zero.
To perform the opposite operation of that inferred from the operand type, explicit casts can be used.

Example: If x is a variable of type int, the operation unchecked ((int)((uint)x >> y)) performs a
logical shift right of x. end example

Lifted (§11.4.8) forms of the unlifted predefined shift operators defined above are also predefined.

11.11 Relational and type-testing operators

11.11.1 General

The ==, !=, <, >, <=, >=, is, and as operators are called the relational and type-testing operators.

relational_expression
 : shift_expression
 | relational_expression '<' shift_expression
 | relational_expression '>' shift_expression
 | relational_expression '<=' shift_expression
 | relational_expression '>=' shift_expression
 | relational_expression 'is' type
 | relational_expression 'as' type
 ;

equality_expression
 : relational_expression
 | equality_expression '==' relational_expression

ECMA-334

220

 | equality_expression '!=' relational_expression
 ;

The is operator is described in §11.11.11 and the as operator is described in §11.11.12.

The ==, !=, <, >, <= and >= operators are comparison operators.

If an operand of a comparison operator has the compile-time type dynamic, then the expression is
dynamically bound (§11.3.3). In this case the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that
have the compile-time type dynamic.

For an operation of the form x «op» y, where «op» is a comparison operator, overload resolution
(§11.4.5) is applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of the operator. If
both operands of an equality_expression are the null literal, then overload resolution is not performed
and the expression evaluates to a constant value of true or false according to whether the operator is ==
or !=.

The predefined comparison operators are described in the following subclauses. All predefined
comparison operators return a result of type bool, as described in the following table.

Operation Result

x == y true if x is equal to y, false otherwise

x != y true if x is not equal to y, false otherwise

x < y true if x is less than y, false otherwise

x > y true if x is greater than y, false otherwise

x <= y true if x is less than or equal to y, false otherwise

x >= y true if x is greater than or equal to y, false otherwise

11.11.2 Integer comparison operators

The predefined integer comparison operators are:

bool operator ==(int x, int y);
bool operator ==(uint x, uint y);
bool operator ==(long x, long y);
bool operator ==(ulong x, ulong y);

bool operator !=(int x, int y);
bool operator !=(uint x, uint y);
bool operator !=(long x, long y);
bool operator !=(ulong x, ulong y);

bool operator <(int x, int y);
bool operator <(uint x, uint y);
bool operator <(long x, long y);
bool operator <(ulong x, ulong y);

bool operator >(int x, int y);
bool operator >(uint x, uint y);
bool operator >(long x, long y);

Chapter 11 Expressions

221

bool operator >(ulong x, ulong y);

bool operator <=(int x, int y);
bool operator <=(uint x, uint y);
bool operator <=(long x, long y);
bool operator <=(ulong x, ulong y);

bool operator >=(int x, int y);
bool operator >=(uint x, uint y);
bool operator >=(long x, long y);
bool operator >=(ulong x, ulong y);

Each of these operators compares the numeric values of the two integer operands and returns a bool
value that indicates whether the particular relation is true or false.

Lifted (§11.4.8) forms of the unlifted predefined integer comparison operators defined above are also
predefined.

11.11.3 Floating-point comparison operators

The predefined floating-point comparison operators are:

bool operator ==(float x, float y);
bool operator ==(double x, double y);

bool operator !=(float x, float y);
bool operator !=(double x, double y);

bool operator <(float x, float y);
bool operator <(double x, double y);

bool operator >(float x, float y);
bool operator >(double x, double y);

bool operator <=(float x, float y);
bool operator <=(double x, double y);

bool operator >=(float x, float y);
bool operator >=(double x, double y);

The operators compare the operands according to the rules of the IEC 60559 standard:

If either operand is NaN, the result is false for all operators except !=, for which the result is true. For
any two operands, x != y always produces the same result as !(x == y). However, when one or both
operands are NaN, the <, >, <=, and >= operators do not produce the same results as the logical negation of
the opposite operator.

Example: If either of x and y is NaN, then x < y is false, but !(x >= y) is true. end example

When neither operand is NaN, the operators compare the values of the two floating-point operands with
respect to the ordering

–∞ < –max < ... < –min < –0.0 == +0.0 < +min < ... < +max < +∞

where min and max are the smallest and largest positive finite values that can be represented in the given
floating-point format. Notable effects of this ordering are:

• Negative and positive zeros are considered equal.

ECMA-334

222

• A negative infinity is considered less than all other values, but equal to another negative infinity.

• A positive infinity is considered greater than all other values, but equal to another positive infinity.

Lifted (§11.4.8) forms of the unlifted predefined floating-point comparison operators defined above are
also predefined.

11.11.4 Decimal comparison operators

The predefined decimal comparison operators are:

bool operator ==(decimal x, decimal y);
bool operator !=(decimal x, decimal y);
bool operator <(decimal x, decimal y);
bool operator >(decimal x, decimal y);
bool operator <=(decimal x, decimal y);
bool operator >=(decimal x, decimal y);

Each of these operators compares the numeric values of the two decimal operands and returns a bool
value that indicates whether the particular relation is true or false. Each decimal comparison is
equivalent to using the corresponding relational or equality operator of type System.Decimal.

Lifted (§11.4.8) forms of the unlifted predefined decimal comparison operators defined above are also
predefined.

11.11.5 Boolean equality operators

The predefined Boolean equality operators are:

bool operator ==(bool x, bool y);
bool operator !=(bool x, bool y);

The result of == is true if both x and y are true or if both x and y are false. Otherwise, the result is false.

The result of != is false if both x and y are true or if both x and y are false. Otherwise, the result is true.
When the operands are of type bool, the != operator produces the same result as the ^ operator.

Lifted (§11.4.8) forms of the unlifted predefined Boolean equality operators defined above are also
predefined.

11.11.6 Enumeration comparison operators

Every enumeration type implicitly provides the following predefined comparison operators

bool operator ==(E x, E y);
bool operator !=(E x, E y);

bool operator <(E x, E y);
bool operator >(E x, E y);
bool operator <=(E x, E y);
bool operator >=(E x, E y);

The result of evaluating x «op» y, where x and y are expressions of an enumeration type E with an
underlying type U, and «op» is one of the comparison operators, is exactly the same as evaluating
((U)x) «op» ((U)y). In other words, the enumeration type comparison operators simply compare the
underlying integral values of the two operands.

Lifted (§11.4.8) forms of the unlifted predefined enumeration comparison operators defined above are
also predefined.

Chapter 11 Expressions

223

11.11.7 Reference type equality operators

Every class type C implicitly provides the following predefined reference type equality operators:

bool operator ==(C x, C y);
bool operator !=(C x, C y);

unless predefined equality operators otherwise exist for C (for example, when C is string or
System.Delegate).

The operators return the result of comparing the two references for equality or non-equality.
operator == returns true if and only if x and y refer to the same instance or are both null, while
operator != returns true if and only if operator == with the same operands would return false.

In addition to normal applicability rules (§11.6.4.2), the predefined reference type equality operators
require one of the following in order to be applicable:

• Both operands are a value of a type known to be a reference_type or the literal null. Furthermore, an
identity or explicit reference conversion (§10.3.5) exists from either operand to the type of the
other operand.

• One operand is the literal null, and the other operand is a value of type T where T is a
type_parameter that is not known to be a value type, and does not have the value type constraint.

o If at runtime T is a non-nullable value type, the result of == is false and the result of != is true.

o If at runtime T is a nullable value type, the result is computed from the HasValue property of the
operand, as described in (§11.11.10).

o If at runtime T is a reference type, the result is true if the operand is null, and false otherwise.

Unless one of these conditions is true, a binding-time error occurs.

Note: Notable implications of these rules are:

• It is a binding-time error to use the predefined reference type equality operators to compare
two references that are known to be different at binding-time. For example, if the binding-
time types of the operands are two class types, and if neither derives from the other, then it
would be impossible for the two operands to reference the same object. Thus, the operation is
considered a binding-time error.

• The predefined reference type equality operators do not permit value type operands to be
compared (except when type parameters are compared to null, which is handled specially).

• Operands of predefined reference type equality operators are never boxed. It would be
meaningless to perform such boxing operations, since references to the newly allocated boxed
instances would necessarily differ from all other references.

For an operation of the form x == y or x != y, if any applicable user-defined operator == or
operator != exists, the operator overload resolution rules (§11.4.5) will select that operator
instead of the predefined reference type equality operator. It is always possible to select the
predefined reference type equality operator by explicitly casting one or both of the operands to type
object.

end note

Example: The following example checks whether an argument of an unconstrained type parameter
type is null.

ECMA-334

224

class C<T>
{
 void F(T x)
 {
 if (x == null)
 {
 throw new ArgumentNullException();
 }
 ...
 }
}

The x == null construct is permitted even though T could represent a non-nullable value type, and
the result is simply defined to be false when T is a non-nullable value type.

end example

For an operation of the form x == y or x != y, if any applicable operator == or operator != exists, the
operator overload resolution (§11.4.5) rules will select that operator instead of the predefined reference
type equality operator.

Note: It is always possible to select the predefined reference type equality operator by explicitly
casting both of the operands to type object. end note

Example: The example

using System;
class Test
{
 static void Main()
 {
 string s = "Test";
 string t = string.Copy(s);
 Console.WriteLine(s == t);
 Console.WriteLine((object)s == t);
 Console.WriteLine(s == (object)t);
 Console.WriteLine((object)s == (object)t);
 }
}

produces the output

True
False
False
False

The s and t variables refer to two distinct string instances containing the same characters. The first
comparison outputs True because the predefined string equality operator (§11.11.8) is selected
when both operands are of type string. The remaining comparisons all output False because the
overload of operator == in the string type is not applicable when either operand has a binding-
time type of object.

Note that the above technique is not meaningful for value types. The example

class Test
{
 static void Main()
 {

Chapter 11 Expressions

225

 int i = 123;
 int j = 123;
 System.Console.WriteLine((object)i == (object)j);
 }
}

outputs False because the casts create references to two separate instances of boxed int values.

end example

11.11.8 String equality operators

The predefined string equality operators are:

bool operator ==(string x, string y);
bool operator !=(string x, string y);

Two string values are considered equal when one of the following is true:

• Both values are null.

• Both values are non-null references to string instances that have identical lengths and identical
characters in each character position.

The string equality operators compare string values rather than string references. When two separate
string instances contain the exact same sequence of characters, the values of the strings are equal, but the
references are different.

Note: As described in §11.11.7, the reference type equality operators can be used to compare string
references instead of string values. end note

11.11.9 Delegate equality operators

The predefined delegate equality operators are:

bool operator ==(System.Delegate x, System.Delegate y);
bool operator !=(System.Delegate x, System.Delegate y);

Two delegate instances are considered equal as follows:

• If either of the delegate instances is null, they are equal if and only if both are null.

• If the delegates have different run-time type, they are never equal.

• If both of the delegate instances have an invocation list (§19.2), those instances are equal if and only
if their invocation lists are the same length, and each entry in one’s invocation list is equal (as
defined below) to the corresponding entry, in order, in the other’s invocation list.

The following rules govern the equality of invocation list entries:

• If two invocation list entries both refer to the same static method then the entries are equal.

• If two invocation list entries both refer to the same non-static method on the same target object (as
defined by the reference equality operators) then the entries are equal.

• Invocation list entries produced from evaluation of semantically identical anonymous functions
(§11.16) with the same (possibly empty) set of captured outer variable instances are permitted (but
not required) to be equal.

ECMA-334

226

If operator overload resolution resolves to either delegate equality operator, and the binding-time types
of both operands are delegate types as described in §19 rather than System.Delegate, and there is no
identity conversion between the binding-type operand types, a binding-time error occurs.

Note: This rule prevents comparisons which can never consider non-null values as equal due to
being references to instances of different types of delegates. end note

11.11.10 Equality operators between nullable value types and the null literal

The == and != operators permit one operand to be a value of a nullable value type and the other to be the
null literal, even if no predefined or user-defined operator (in unlifted or lifted form) exists for the
operation.

For an operation of one of the forms

x == null null == x x != null null != x

where x is an expression of a nullable value type, if operator overload resolution (§11.4.5) fails to find an
applicable operator, the result is instead computed from the HasValue property of x. Specifically, the first
two forms are translated into !x.HasValue, and the last two forms are translated into x.HasValue.

11.11.11 The is operator

The is operator is used to check if the run-time type of an object is compatible with a given type. The
check is performed at runtime. The result of the operation E is T, where E is an expression and T is a type
other than dynamic, is a Boolean value indicating whether E is non-null and can successfully be converted
to type T by a reference conversion, a boxing conversion, an unboxing conversion, a wrapping conversion,
or an unwrapping conversion.

The operation is evaluated as follows:

1. If E is an anonymous function, a compile-time error occurs

2. If E is a method group or the null literal, of if the value of E is null, the result is false.

3. Otherwise:

4. Let R be the runtime type of E.

5. Let D be derived from R as follows:

6. If R is a nullable value type, D is the underlying type of R.

7. Otherwise, D is R.

8. The result depends on D and T as follows:

9. If T is a reference type, the result is true if:

o D and T are the same type,

o D is a reference type and an implicit reference conversion from D to T exists, or

o Either: D is a value type and a boxing conversion from D to T exists.Or: D is a value type and T is
an interface type implemented by D.

10. If T is a nullable value type, the result is true if D is the underlying type of T.

11. If T is a non-nullable value type, the result is true if D and T are the same type.

12. Otherwise, the result is false.

Chapter 11 Expressions

227

User defined conversions are not considered by the is operator.

Note: As the is operator is evaluated at runtime, all type arguments have been substituted and there
are no open types (§8.4.3) to consider. end note

Note: The is operator can be understood in terms of compile-time types and conversions as follows,
where C is the compile-time type of E:

• If the compile-time type of e is the same as T, or if an implicit reference conversion (§10.2.8),
boxing conversion (§10.2.9), wrapping conversion (§10.6), or an explicit unwrapping
conversion (§10.6) exists from the compile-time type of E to T:

o If C is of a non-nullable value type, the result of the operation is true.

o Otherwise, the result of the operation is equivalent to evaluating E != null.

• Otherwise, if an explicit reference conversion (§10.3.5) or unboxing conversion (§10.3.6)
exists from C to T, or if C or T is an open type (§8.4.3), then runtime checks as above must be
peformed.

• Otherwise, no reference, boxing, wrapping, or unwrapping conversion of E to type T is
possible, and the result of the operation is false. A compiler may implement optimisations
based on the compile-time type.

end note

11.11.12 The as operator

The as operator is used to explicitly convert a value to a given reference type or nullable value type.
Unlike a cast expression (§11.8.7), the as operator never throws an exception. Instead, if the indicated
conversion is not possible, the resulting value is null.

In an operation of the form E as T, E shall be an expression and T shall be a reference type, a type
parameter known to be a reference type, or a nullable value type. Furthermore, at least one of the
following shall be true, or otherwise a compile-time error occurs:

• An identity (§10.2.2), implicit nullable (§10.2.6), implicit reference (§10.2.8), boxing (§10.2.9),
explicit nullable (§10.3.4), explicit reference (§10.3.5), or wrapping (§8.3.11) conversion exists
from E to T.

• The type of E or T is an open type.

• E is the null literal.

If the compile-time type of E is not dynamic, the operation E as T produces the same result as

E is T ? (T)(E) : (T)null

except that E is only evaluated once. The compiler can be expected to optimize E as T to perform at most
one runtime type check as opposed to the two runtime type checks implied by the expansion above.

If the compile-time type of E is dynamic, unlike the cast operator the a operator is not dynamically bound
(§11.3.3). Therefore the expansion in this case is:

E is T ? (T)(object)(E) : (T)null

Note that some conversions, such as user defined conversions, are not possible with the as operator and
should instead be performed using cast expressions.

Example: In the example

ECMA-334

228

class X
{
 public string F(object o)
 {
 return o as string; // OK, string is a reference type
 }

 public T G<T>(object o)
 where T : Attribute
 {
 return o as T; // Ok, T has a class constraint
 }

 public U H<U>(object o)
 {
 return o as U; // Error, U is unconstrained
 }
}

the type parameter T of G is known to be a reference type, because it has the class constraint. The
type parameter U of H is not however; hence the use of the as operator in H is disallowed.

end example

11.12 Logical operators

11.12.1 General

The &, ^, and | operators are called the logical operators.

and_expression
 : equality_expression
 | and_expression '&' equality_expression
 ;

exclusive_or_expression
 : and_expression
 | exclusive_or_expression '^' and_expression
 ;

inclusive_or_expression
 : exclusive_or_expression
 | inclusive_or_expression '|' exclusive_or_expression
 ;

If an operand of a logical operator has the compile-time type dynamic, then the expression is dynamically
bound (§11.3.3). In this case the compile-time type of the expression is dynamic, and the resolution
described below will take place at run-time using the run-time type of those operands that have the
compile-time type dynamic.

For an operation of the form x «op» y, where «op» is one of the logical operators, overload resolution
(§11.4.5) is applied to select a specific operator implementation. The operands are converted to the
parameter types of the selected operator, and the type of the result is the return type of the operator.

The predefined logical operators are described in the following subclauses.

Chapter 11 Expressions

229

11.12.2 Integer logical operators

The predefined integer logical operators are:

int operator &(int x, int y);
uint operator &(uint x, uint y);
long operator &(long x, long y);
ulong operator &(ulong x, ulong y);

int operator |(int x, int y);
uint operator |(uint x, uint y);
long operator |(long x, long y);
ulong operator |(ulong x, ulong y);

int operator ^(int x, int y);
uint operator ^(uint x, uint y);
long operator ^(long x, long y);
ulong operator ^(ulong x, ulong y);

The & operator computes the bitwise logical AND of the two operands, the | operator computes the
bitwise logical OR of the two operands, and the ^ operator computes the bitwise logical exclusive OR of
the two operands. No overflows are possible from these operations.

Lifted (§11.4.8) forms of the unlifted predefined integer logical operators defined above are also
predefined.

11.12.3 Enumeration logical operators

Every enumeration type E implicitly provides the following predefined logical operators:

E operator &(E x, E y);
E operator |(E x, E y);
E operator ^(E x, E y);

The result of evaluating x «op» y, where x and y are expressions of an enumeration type E with an
underlying type U, and «op» is one of the logical operators, is exactly the same as evaluating
(E)((U)x «op» (U)y). In other words, the enumeration type logical operators simply perform the logical
operation on the underlying type of the two operands.

Lifted (§11.4.8) forms of the unlifted predefined enumeration logical operators defined above are also
predefined.

11.12.4 Boolean logical operators

The predefined Boolean logical operators are:

bool operator &(bool x, bool y);
bool operator |(bool x, bool y);
bool operator ^(bool x, bool y);

The result of x & y is true if both x and y are true. Otherwise, the result is false.

The result of x | y is true if either x or y is true. Otherwise, the result is false.

The result of x ^ y is true if x is true and y is false, or x is false and y is true. Otherwise, the result is
false. When the operands are of type bool, the ^ operator computes the same result as the != operator.

ECMA-334

230

11.12.5 Nullable Boolean & and | operators

The nullable Boolean type bool? can represent three values, true, false, and null.

As with the other binary operators, lifted forms of the logical operators & and | (§11.12.4) are also pre-
defined:

bool? operator &(bool? x, bool? y);
bool? operator |(bool? x, bool? y);

The semantics of the lifted & and | operators are defined by the following table:

x y x & y x | y

true true true true

true false false true

true null null true

false true false true

false false false false

false null false null

null true null true

null false false null

null null null null

Note: The bool? type is conceptually similar to the three-valued type used for Boolean expressions
in SQL. The table above follows the same semantics as SQL, whereas applying the rules of §11.4.8 to
the & and | operators would not. The rules of §11.4.8 already provide SQL-like semantics for the
lifted ^ operator. end note

11.13 Conditional logical operators

11.13.1 General

The && and || operators are called the conditional logical operators. They are also called the “short-
circuiting” logical operators.

conditional_and_expression
 : inclusive_or_expression
 | conditional_and_expression '&&' inclusive_or_expression
 ;

conditional_or_expression
 : conditional_and_expression
 | conditional_or_expression '||' conditional_and_expression
 ;

The && and || operators are conditional versions of the & and | operators:

• The operation x && y corresponds to the operation x & y, except that y is evaluated only if x is not
false.

• The operation x || y corresponds to the operation x | y, except that y is evaluated only if x is not
true.

Chapter 11 Expressions

231

Note: The reason that short circuiting uses the ‘not true’ and ‘not false’ conditions is to enable user-
defined conditional operators to define when short circuiting applies. User-defined types could be in
a state where operator true returns false and operator false returns false. In those cases,
neither && nor || would short circuit. end note

If an operand of a conditional logical operator has the compile-time type dynamic, then the expression is
dynamically bound (§11.3.3). In this case the compile-time type of the expression is dynamic, and the
resolution described below will take place at run-time using the run-time type of those operands that
have the compile-time type dynamic.

An operation of the form x && y or x || y is processed by applying overload resolution (§11.4.5) as if the
operation was written x & y or x | y. Then,

• If overload resolution fails to find a single best operator, or if overload resolution selects one of the
predefined integer logical operators or nullable Boolean logical operators (§11.12.5), a binding-time
error occurs.

• Otherwise, if the selected operator is one of the predefined Boolean logical operators (§11.12.4), the
operation is processed as described in §11.13.2.

• Otherwise, the selected operator is a user-defined operator, and the operation is processed as
described in §11.13.3.

It is not possible to directly overload the conditional logical operators. However, because the conditional
logical operators are evaluated in terms of the regular logical operators, overloads of the regular logical
operators are, with certain restrictions, also considered overloads of the conditional logical operators.
This is described further in §11.13.3.

11.13.2 Boolean conditional logical operators

When the operands of && or || are of type bool, or when the operands are of types that do not define an
applicable operator & or operator |, but do define implicit conversions to bool, the operation is
processed as follows:

• The operation x && y is evaluated as x ? y : false. In other words, x is first evaluated and
converted to type bool. Then, if x is true, y is evaluated and converted to type bool, and this
becomes the result of the operation. Otherwise, the result of the operation is false.

• The operation x || y is evaluated as x ? true : y. In other words, x is first evaluated and
converted to type bool. Then, if x is true, the result of the operation is true. Otherwise, y is
evaluated and converted to type bool, and this becomes the result of the operation.

11.13.3 User-defined conditional logical operators

When the operands of && or || are of types that declare an applicable user-defined operator & or
operator |, both of the following shall be true, where T is the type in which the selected operator is
declared:

• The return type and the type of each parameter of the selected operator shall be T. In other words,
the operator shall compute the logical AND or the logical OR of two operands of type T, and shall
return a result of type T.

• T shall contain declarations of operator true and operator false.

ECMA-334

232

A binding-time error occurs if either of these requirements is not satisfied. Otherwise, the && or ||
operation is evaluated by combining the user-defined operator true or operator false with the
selected user-defined operator:

• The operation x && y is evaluated as T.false(x) ? x : T.&(x, y), where T.false(x) is an
invocation of the operator false declared in T, and T.&(x, y) is an invocation of the selected
operator &. In other words, x is first evaluated and operator false is invoked on the result to
determine if x is definitely false. Then, if x is definitely false, the result of the operation is the value
previously computed for x. Otherwise, y is evaluated, and the selected operator & is invoked on the
value previously computed for x and the value computed for y to produce the result of the
operation.

• The operation x || y is evaluated as T.true(x) ? x : T.|(x, y), where T.true(x) is an
invocation of the operator true declared in T, and T.|(x, y) is an invocation of the selected
operator |. In other words, x is first evaluated and operator true is invoked on the result to
determine if x is definitely true. Then, if x is definitely true, the result of the operation is the value
previously computed for x. Otherwise, y is evaluated, and the selected operator | is invoked on the
value previously computed for x and the value computed for y to produce the result of the
operation.

In either of these operations, the expression given by x is only evaluated once, and the expression given
by y is either not evaluated or evaluated exactly once.

11.14 The null coalescing operator
The ?? operator is called the null coalescing operator.

null_coalescing_expression
 : conditional_or_expression
 | conditional_or_expression '??' null_coalescing_expression
 ;

In a null coalescing expression of the form a ?? b, if a is non-null, the result is a; otherwise, the result
is b. The operation evaluates b only if a is null.

The null coalescing operator is right-associative, meaning that operations are grouped from right to left.

Example: An expression of the form a ?? b ?? c is evaluated as a ?? (b ?? c). In general terms, an
expression of the form E1 ?? E2 ?? ... ?? EN returns the first of the operands that is non-null, or
null if all operands are null. end example

The type of the expression a ?? b depends on which implicit conversions are available on the operands.
In order of preference, the type of a ?? b is A0, A, or B, where A is the type of a (provided that a has a type),
B is the type of b(provided that b has a type), and A0 is the underlying type of A if A is a nullable value type,
or A otherwise. Specifically, a ?? b is processed as follows:

• If A exists and is not a nullable value type or a reference type, a compile-time error occurs.

• Otherwise, if A exists and b is a dynamic expression, the result type is dynamic. At run-time, a is first
evaluated. If a is not null, a is converted to dynamic, and this becomes the result. Otherwise, b is
evaluated, and this becomes the result.

• Otherwise, if A exists and is a nullable value type and an implicit conversion exists from b to A0, the
result type is A0. At run-time, a is first evaluated. If a is not null, a is unwrapped to type A0, and this
becomes the result. Otherwise, b is evaluated and converted to type A0, and this becomes the result.

Chapter 11 Expressions

233

• Otherwise, if A exists and an implicit conversion exists from b to A, the result type is A. At run-time, a
is first evaluated. If a is not null, a becomes the result. Otherwise, b is evaluated and converted to
type A, and this becomes the result.

• Otherwise, if A exists and is a nullable value type, b has a type B and an implicit conversion exists
from A0 to B, the result type is B. At run-time, a is first evaluated. If a is not null, a is unwrapped to
type A0 and converted to type B, and this becomes the result. Otherwise, b is evaluated and becomes
the result.

• Otherwise, if b has a type B and an implicit conversion exists from a to B, the result type is B. At run-
time, a is first evaluated. If a is not null, a is converted to type B, and this becomes the result.
Otherwise, b is evaluated and becomes the result.

Otherwise, a and b are incompatible, and a compile-time error occurs.

11.15 Conditional operator
The ?: operator is called the conditional operator. It is at times also called the ternary operator.

conditional_expression
 : null_coalescing_expression
 | null_coalescing_expression '?' expression ':' expression
 ;

A conditional expression of the form b ? x : y first evaluates the condition b. Then, if b is true, x is
evaluated and becomes the result of the operation. Otherwise, y is evaluated and becomes the result of
the operation. A conditional expression never evaluates both x and y.

The conditional operator is right-associative, meaning that operations are grouped from right to left.

Example: An expression of the form a ? b : c ? d : e is evaluated as a ? b : (c ? d : e). end
example

The first operand of the ?: operator shall be an expression that can be implicitly converted to bool, or an
expression of a type that implements operator true. If neither of these requirements is satisfied, a
compile-time error occurs.

The second and third operands, x and y, of the ?: operator control the type of the conditional expression.

• If x has type X and y has type Y then,

o If X and Y are the same type, then this is the type of the conditional expression.

o Otherwise, if an implicit conversion (§10.2) exists from X to Y, but not from Y to X, then Y is the
type of the conditional expression.

o Otherwise, if an implicit enumeration conversion (§10.2.4) exists from X to Y, then Y is the type
of the conditional expression.

o Otherwise, if an implicit enumeration conversion (§10.2.4) exists from Y to X, then X is the type
of the conditional expression.

o Otherwise, if an implicit conversion (§10.2) exists from Y to X, but not from X to Y, then X is the
type of the conditional expression.

o Otherwise, no expression type can be determined, and a compile-time error occurs.

• If only one of x and y has a type, and both x and y are implicitly convertible to that type, then that is
the type of the conditional expression.

ECMA-334

234

• Otherwise, no expression type can be determined, and a compile-time error occurs.

The run-time processing of a conditional expression of the form b ? x : y consists of the following steps:

• First, b is evaluated, and the bool value of b is determined:

o If an implicit conversion from the type of b to bool exists, then this implicit conversion is
performed to produce a bool value.

o Otherwise, the operator true defined by the type of b is invoked to produce a bool value.

• If the bool value produced by the step above is true, then x is evaluated and converted to the type
of the conditional expression, and this becomes the result of the conditional expression.

• Otherwise, y is evaluated and converted to the type of the conditional expression, and this becomes
the result of the conditional expression.

11.16 Anonymous function expressions

11.16.1 General

An anonymous function is an expression that represents an “in-line” method definition. An anonymous
function does not have a value or type in and of itself, but is convertible to a compatible delegate or
expression-tree type. The evaluation of an anonymous-function conversion depends on the target type of
the conversion: If it is a delegate type, the conversion evaluates to a delegate value referencing the
method that the anonymous function defines. If it is an expression-tree type, the conversion evaluates to
an expression tree that represents the structure of the method as an object structure.

Note: For historical reasons, there are two syntactic flavors of anonymous functions, namely
lambda_expressions and anonymous_method_expressions. For almost all purposes,
lambda_expressions are more concise and expressive than anonymous_method_expressions, which
remain in the language for backwards compatibility.

lambda_expression
 : 'async'? anonymous_function_signature '=>' anonymous_function_body
 ;

anonymous_method_expression
 : 'async'? 'delegate' explicit_anonymous_function_signature? block
 ;

anonymous_function_signature
 : explicit_anonymous_function_signature
 | implicit_anonymous_function_signature
 ;

explicit_anonymous_function_signature
 : '(' explicit_anonymous_function_parameter_list? ')'
 ;

explicit_anonymous_function_parameter_list
 : explicit_anonymous_function_parameter (','
explicit_anonymous_function_parameter)*
 ;

explicit_anonymous_function_parameter

Chapter 11 Expressions

235

 : anonymous_function_parameter_modifier? type identifier
 ;

anonymous_function_parameter_modifier
 : 'ref'
 | 'out'
 ;

implicit_anonymous_function_signature
 : '(' implicit_anonymous_function_parameter_list? ')'
 | implicit_anonymous_function_parameter
 ;

implicit_anonymous_function_parameter_list
 : implicit_anonymous_function_parameter (','
implicit_anonymous_function_parameter)*
 ;

implicit_anonymous_function_parameter
 : identifier
 ;

anonymous_function_body
 : null_conditional_invocation_expression
 | expression
 | block
 ;

When recognising an anonymous_function_body if both the null_conditional_invocation_expression and
expression alternatives are applicable then the former shall be chosen.

Note: The overlapping of, and priority between, alternatives here is solely for descriptive
convenience; the grammar rules could be elaborated to remove the overlap. ANTLR, and other
grammar systems, adopt the same convenience and so anonymous_function_body has the specified
semantics automatically.

The => operator has the same precedence as assignment (=) and is right-associative.

An anonymous function with the async modifier is an async function and follows the rules described in
§14.15.

The parameters of an anonymous function in the form of a lambda_expression can be explicitly or
implicitly typed. In an explicitly typed parameter list, the type of each parameter is explicitly stated. In an
implicitly typed parameter list, the types of the parameters are inferred from the context in which the
anonymous function occurs—specifically, when the anonymous function is converted to a compatible
delegate type or expression tree type, that type provides the parameter types (§10.7).

In a lambda_expression with a single, implicitly typed parameter, the parentheses may be omitted from
the parameter list. In other words, an anonymous function of the form

(«param») => «expr»

can be abbreviated to

«param» => «expr»

ECMA-334

236

The parameter list of an anonymous function in the form of an anonymous_method_expression is optional.
If given, the parameters shall be explicitly typed. If not, the anonymous function is convertible to a
delegate with any parameter list not containing out parameters.

A block body of an anonymous function is always reachable (§12.2).

Example: Some examples of anonymous functions follow below:

x => x + 1 // Implicitly typed, expression body
x => { return x + 1; } // Implicitly typed, block body
(int x) => x + 1 // Explicitly typed, expression body
(int x) => { return x + 1; } // Explicitly typed, block body
(x, y) => x * y // Multiple parameters
() => Console.WriteLine() // No parameters
async (t1,t2) => await t1 + await t2 // Async
delegate (int x) { return x + 1; } // Anonymous method expression
delegate { return 1 + 1; } // Parameter list omitted

end example

The behavior of lambda_expressions and anonymous_method_expressions is the same except for the
following points:

• anonymous_method_expressions permit the parameter list to be omitted entirely, yielding
convertibility to delegate types of any list of value parameters.

• lambda_expressions permit parameter types to be omitted and inferred whereas
anonymous_method_expressions require parameter types to be explicitly stated.

• The body of a lambda_expression can be an expression or a block whereas the body of an
anonymous_method_expression shall be a block.

• Only lambda_expressions have conversions to compatible expression tree types (§8.6).

11.16.2 Anonymous function signatures

The anonymous_function_signature of an anonymous function defines the names and optionally the types
of the formal parameters for the anonymous function. The scope of the parameters of the anonymous
function is the anonymous_function_body (§7.7). Together with the parameter list (if given) the
anonymous-method-body constitutes a declaration space (§7.3). It is thus a compile-time error for the
name of a parameter of the anonymous function to match the name of a local variable, local constant or
parameter whose scope includes the anonymous_method_expression or lambda_expression.

If an anonymous function has an explicit_anonymous_function_signature, then the set of compatible
delegate types and expression tree types is restricted to those that have the same parameter types and
modifiers in the same order (§10.7). In contrast to method group conversions (§10.8), contra-variance of
anonymous function parameter types is not supported. If an anonymous function does not have an
anonymous_function_signature, then the set of compatible delegate types and expression tree types is
restricted to those that have no out parameters.

Note that an anonymous_function_signature cannot include attributes or a parameter array. Nevertheless,
an anonymous_function_signature may be compatible with a delegate type whose parameter list contains a
parameter array.

Note also that conversion to an expression tree type, even if compatible, may still fail at compile-time
(§8.6).

Chapter 11 Expressions

237

11.16.3 Anonymous function bodies

The body (expression or block) of an anonymous function is subject to the following rules:

• If the anonymous function includes a signature, the parameters specified in the signature are
available in the body. If the anonymous function has no signature it can be converted to a delegate
type or expression type having parameters (§10.7), but the parameters cannot be accessed in the
body.

• Except for ref or out parameters specified in the signature (if any) of the nearest enclosing
anonymous function, it is a compile-time error for the body to access a ref or out parameter.

• When the type of this is a struct type, it is a compile-time error for the body to access this. This is
true whether the access is explicit (as in this.x) or implicit (as in x where x is an instance member
of the struct). This rule simply prohibits such access and does not affect whether member lookup
results in a member of the struct.

• The body has access to the outer variables (§11.16.6) of the anonymous function. Access of an outer
variable will reference the instance of the variable that is active at the time the lambda_expression or
anonymous_method_expression is evaluated (§11.16.7).

• It is a compile-time error for the body to contain a goto statement, a break statement, or a continue
statement whose target is outside the body or within the body of a contained anonymous function.

• A return statement in the body returns control from an invocation of the nearest enclosing
anonymous function, not from the enclosing function member.

It is explicitly unspecified whether there is any way to execute the block of an anonymous function other
than through evaluation and invocation of the lambda_expression or anonymous_method_expression. In
particular, the compiler may choose to implement an anonymous function by synthesizing one or more
named methods or types. The names of any such synthesized elements shall be of a form reserved for
compiler use (§6.4.3).

11.16.4 Overload resolution

Anonymous functions in an argument list participate in type inference and overload resolution. Refer to
§11.6.3 and §11.6.4 for the exact rules.

Example: The following example illustrates the effect of anonymous functions on overload
resolution.

class ItemList<T> : List<T>
{
 public int Sum(Func<T, int> selector)
 {
 int sum = 0;
 foreach (T item in this)
 {
 sum += selector(item);
 }
 return sum;
 }

 public double Sum(Func<T, double> selector)
 {
 double sum = 0;
 foreach (T item in this)

ECMA-334

238

 {
 sum += selector(item);
 }
 return sum;
 }
}

The ItemList<T> class has two Sum methods. Each takes a selector argument, which extracts the
value to sum over from a list item. The extracted value can be either an int or a double and the
resulting sum is likewise either an int or a double.

The Sum methods could for example be used to compute sums from a list of detail lines in an order.

class Detail
{
 public int UnitCount;
 public double UnitPrice;
 ...
}

void ComputeSums()
{
 ItemList<Detail> orderDetails = GetOrderDetails(...);
 int totalUnits = orderDetails.Sum(d => d.UnitCount);
 double orderTotal = orderDetails.Sum(d => d.UnitPrice * d.UnitCount);
 ...
}

In the first invocation of orderDetails.Sum, both Sum methods are applicable because the
anonymous function d => d.UnitCount is compatible with both Func<Detail,int> and
Func<Detail,double>. However, overload resolution picks the first Sum method because the
conversion to Func<Detail,int> is better than the conversion to Func<Detail,double>.

In the second invocation of orderDetails.Sum, only the second Sum method is applicable because
the anonymous function d => d.UnitPrice * d.UnitCount produces a value of type double. Thus,
overload resolution picks the second Sum method for that invocation.

end example

11.16.5 Anonymous functions and dynamic binding

An anonymous function cannot be a receiver, argument, or operand of a dynamically bound operation.

11.16.6 Outer variables

11.16.6.1 General

Any local variable, value parameter, or parameter array whose scope includes the lambda_expression or
anonymous_method_expression is called an outer variable of the anonymous function. In an instance
function member of a class, the this value is considered a value parameter and is an outer variable of any
anonymous function contained within the function member.

11.16.6.2 Captured outer variables

When an outer variable is referenced by an anonymous function, the outer variable is said to have been
captured by the anonymous function. Ordinarily, the lifetime of a local variable is limited to execution of
the block or statement with which it is associated (§9.2.8). However, the lifetime of a captured outer

Chapter 11 Expressions

239

variable is extended at least until the delegate or expression tree created from the anonymous function
becomes eligible for garbage collection.

Example: In the example

using System;

delegate int D();

class Test
{
 static D F()
 {
 int x = 0;
 D result = () => ++x;
 return result;
 }

 static void Main()
 {
 D d = F();
 Console.WriteLine(d());
 Console.WriteLine(d());
 Console.WriteLine(d());
 }
}

the local variable x is captured by the anonymous function, and the lifetime of x is extended at least
until the delegate returned from F becomes eligible for garbage collection. Since each invocation of
the anonymous function operates on the same instance of x, the output of the example is:

1
2
3

end example

When a local variable or a value parameter is captured by an anonymous function, the local variable or
parameter is no longer considered to be a fixed variable (§22.4), but is instead considered to be a
moveable variable. However, captured outer variables cannot be used in a fixed statement (§22.7), so the
address of a captured outer variable cannot be taken.

Note: Unlike an uncaptured variable, a captured local variable can be simultaneously exposed to
multiple threads of execution. end note

11.16.6.3 Instantiation of local variables

A local variable is considered to be instantiated when execution enters the scope of the variable.

Example: For example, when the following method is invoked, the local variable x is instantiated and
initialized three times—once for each iteration of the loop.

static void F()
{
 for (int i = 0; i < 3; i++)
 {
 int x = i * 2 + 1;
 ...

ECMA-334

240

 }
}

However, moving the declaration of x outside the loop results in a single instantiation of x:

static void F()
{
 int x;
 for (int i = 0; i < 3; i++)
 {
 x = i * 2 + 1;
 ...
 }
}

end example

When not captured, there is no way to observe exactly how often a local variable is instantiated—because
the lifetimes of the instantiations are disjoint, it is possible for each instantation to simply use the same
storage location. However, when an anonymous function captures a local variable, the effects of
instantiation become apparent.

Example: The example

using System;
delegate void D();
class Test
{
 static D[] F()
 {
 D[] result = new D[3];
 for (int i = 0; i < 3; i++)
 {
 int x = i * 2 + 1;
 result[i] = () => Console.WriteLine(x);
 }
 return result;
 }

 static void Main()
 {
 foreach (D d in F())
 {
 d();
 }
 }
}

produces the output:

1
3
5

However, when the declaration of x is moved outside the loop:

static D[] F()
{
 D[] result = new D[3];

Chapter 11 Expressions

241

 int x;
 for (int i = 0; i < 3; i++)
 {
 x = i * 2 + 1;
 result[i] = () => Console.WriteLine(x);
 }
 return result;
}

the output is:

5
5
5

Note that the compiler is permitted (but not required) to optimize the three instantiations into a
single delegate instance (§10.7.2).

end example

If a for-loop declares an iteration variable, that variable itself is considered to be declared outside of the
loop.

Example: Thus, if the example is changed to capture the iteration variable itself:

static D[] F()
{
 D[] result = new D[3];
 for (int i = 0; i < 3; i++)
 {
 result[i] = () => Console.WriteLine(i);
 }
 return result;
}

only one instance of the iteration variable is captured, which produces the output:

3
3
3

end example

It is possible for anonymous function delegates to share some captured variables yet have separate
instances of others.

Example: For example, if F is changed to

static D[] F()
{
 D[] result = new D[3];
 int x = 0;
 for (int i = 0; i < 3; i++)
 {
 int y = 0;
 result[i] = () => Console.WriteLine($"{++x} {++y}");
 }
 return result;
}

ECMA-334

242

the three delegates capture the same instance of x but separate instances of y, and the output is:

1 1
2 1
3 1

end example

Separate anonymous functions can capture the same instance of an outer variable.

Example: In the example:

using System;

delegate void Setter(int value);
delegate int Getter();

class Test
{
 static void Main()
 {
 int x = 0;
 Setter s = (int value) => x = value;
 Getter g = () => x;
 s(5);
 Console.WriteLine(g());
 s(10);
 Console.WriteLine(g());
 }
}

the two anonymous functions capture the same instance of the local variable x, and they can thus
“communicate” through that variable. The output of the example is:

5
10

end example

11.16.7 Evaluation of anonymous function expressions

An anonymous function F shall always be converted to a delegate type D or an expression-tree type E,
either directly or through the execution of a delegate creation expression new D(F). This conversion
determines the result of the anonymous function, as described in §10.7.

11.16.8 Implementation Example

This subclause is informative.

This subclause describes a possible implementation of anonymous function conversions in terms of other
C# constructs. The implementation described here is based on the same principles used by a commercial
C# compiler, but it is by no means a mandated implementation, nor is it the only one possible. It only
briefly mentions conversions to expression trees, as their exact semantics are outside the scope of this
specification.

The remainder of this subclause gives several examples of code that contains anonymous functions with
different characteristics. For each example, a corresponding translation to code that uses only other

Chapter 11 Expressions

243

C# constructs is provided. In the examples, the identifier D is assumed by represent the following delegate
type:

public delegate void D();

The simplest form of an anonymous function is one that captures no outer variables:

class Test
{
 static void F()
 {
 D d = () => Console.WriteLine("test");
 }
}

This can be translated to a delegate instantiation that references a compiler generated static method in
which the code of the anonymous function is placed:

class Test
{
 static void F()
 {
 D d = new D(__Method1);
 }

 static void __Method1()
 {
 Console.WriteLine("test");
 }
}

In the following example, the anonymous function references instance members of this:

class Test
{
 int x;

 void F()
 {
 D d = () => Console.WriteLine(x);
 }
}

This can be translated to a compiler generated instance method containing the code of the anonymous
function:

class Test
{
 int x;

 void F()
 {
 D d = new D(__Method1);
 }

 void __Method1()
 {
 Console.WriteLine(x);

ECMA-334

244

 }
}

In this example, the anonymous function captures a local variable:

class Test
{
 void F()
 {
 int y = 123;
 D d = () => Console.WriteLine(y);
 }
}

The lifetime of the local variable must now be extended to at least the lifetime of the anonymous function
delegate. This can be achieved by “hoisting” the local variable into a field of a compiler-generated class.
Instantiation of the local variable (§11.16.6.3) then corresponds to creating an instance of the compiler
generated class, and accessing the local variable corresponds to accessing a field in the instance of the
compiler generated class. Furthermore, the anonymous function becomes an instance method of the
compiler-generated class:

class Test
{
 void F()
 {
 __Locals1 __locals1 = new __Locals1();
 __locals1.y = 123;
 D d = new D(__locals1.__Method1);
 }

 class __Locals1
 {
 public int y;

 public void __Method1()
 {
 Console.WriteLine(y);
 }
 }
}

Finally, the following anonymous function captures this as well as two local variables with different
lifetimes:

class Test
{
 int x;

 void F()
 {
 int y = 123;
 for (int i = 0; i < 10; i++)
 {
 int z = i * 2;
 D d = () => Console.WriteLine(x + y + z);
 }

Chapter 11 Expressions

245

 }
}

Here, a compiler-generated class is created for each block in which locals are captured such that the locals
in the different blocks can have independent lifetimes. An instance of __Locals2, the compiler generated
class for the inner block, contains the local variable z and a field that references an instance of __Locals1.
An instance of __Locals1, the compiler generated class for the outer block, contains the local variable y
and a field that references this of the enclosing function member. With these data structures, it is
possible to reach all captured outer variables through an instance of __Local2, and the code of the
anonymous function can thus be implemented as an instance method of that class.

class Test
{
 void F()
 {
 __Locals1 __locals1 = new __Locals1();
 __locals1.__this = this;
 __locals1.y = 123;
 for (int i = 0; i < 10; i++)
 {
 __Locals2 __locals2 = new __Locals2();
 __locals2.__locals1 = __locals1;
 __locals2.z = i * 2;
 D d = new D(__locals2.__Method1);
 }
 }

 class __Locals1
 {
 public Test __this;
 public int y;
 }

 class __Locals2
 {
 public __Locals1 __locals1;
 public int z;

 public void __Method1()
 {
 Console.WriteLine(__locals1.__this.x + __locals1.y + z);
 }
 }
}

The same technique applied here to capture local variables can also be used when converting anonymous
functions to expression trees: references to the compiler-generated objects can be stored in the
expression tree, and access to the local variables can be represented as field accesses on these objects.
The advantage of this approach is that it allows the “lifted” local variables to be shared between delegates
and expression trees.

End of informative text.

ECMA-334

246

11.17 Query expressions

11.17.1 General

Query expressions provide a language-integrated syntax for queries that is similar to relational and
hierarchical query languages such as SQL and XQuery.

query_expression
 : from_clause query_body
 ;

from_clause
 : 'from' type? identifier 'in' expression
 ;

query_body
 : query_body_clauses? select_or_group_clause query_continuation?
 ;

query_body_clauses
 : query_body_clause
 | query_body_clauses query_body_clause
 ;

query_body_clause
 : from_clause
 | let_clause
 | where_clause
 | join_clause
 | join_into_clause
 | orderby_clause
 ;

let_clause
 : 'let' identifier '=' expression
 ;

where_clause
 : 'where' boolean_expression
 ;

join_clause
 : 'join' type? identifier 'in' expression 'on' expression 'equals' expression
 ;

join_into_clause
 : 'join' type? identifier 'in' expression 'on' expression 'equals' expression
 'into' identifier
 ;

orderby_clause
 : 'orderby' orderings
 ;

orderings

Chapter 11 Expressions

247

 : ordering (',' ordering)*
 ;

ordering
 : expression ordering_direction?
 ;

ordering_direction
 : 'ascending'
 | 'descending'
 ;

select_or_group_clause
 : select_clause
 | group_clause
 ;

select_clause
 : 'select' expression
 ;

group_clause
 : 'group' expression 'by' expression
 ;

query_continuation
 : 'into' identifier query_body
 ;

A query expression begins with a from clause and ends with either a select or group clause. The initial
from clause may be followed by zero or more from, let, where, join or orderby clauses. Each from clause
is a generator introducing a range variable that ranges over the elements of a sequence. Each let clause
introduces a range variable representing a value computed by means of previous range variables. Each
where clause is a filter that excludes items from the result. Each join clause compares specified keys of
the source sequence with keys of another sequence, yielding matching pairs. Each orderby clause
reorders items according to specified criteria.The final select or group clause specifies the shape of the
result in terms of the range variables. Finally, an into clause can be used to “splice” queries by treating
the results of one query as a generator in a subsequent query.

11.17.2 Ambiguities in query expressions

Query expressions use a number of contextual keywords (§6.4.4): ascending, by, descending, equals,
from, group, into, join, let, on, orderby, select and where.

To avoid ambiguities that could arise from the use of these identifiers both as keywords and simple
names these identifiers are considered keywords anywhere within a query expression, unless they are
prefixed with “@” (§6.4.4) in which case they are considered identifiers. For this purpose, a query
expression is any expression that starts with “from identifier” followed by any token except “;”, “=” or “,”.

11.17.3 Query expression translation

11.17.3.1 General

The C# language does not specify the execution semantics of query expressions. Rather, query
expressions are translated into invocations of methods that adhere to the query-expression pattern

ECMA-334

248

(§11.17.4). Specifically, query expressions are translated into invocations of methods named Where,
Select, SelectMany, Join, GroupJoin, OrderBy, OrderByDescending, ThenBy, ThenByDescending, GroupBy,
and Cast. These methods are expected to have particular signatures and return types, as described in
§11.17.4. These methods may be instance methods of the object being queried or extension methods that
are external to the object. These methods implement the actual execution of the query.

The translation from query expressions to method invocations is a syntactic mapping that occurs before
any type binding or overload resolution has been performed. Following translation of query expressions,
the resulting method invocations are processed as regular method invocations, and this may in turn
uncover compile time errors. These error conditions include, but are not limited to, methods that do not
exist, arguments of the wrong types, and generic methods where type inference fails.

A query expression is processed by repeatedly applying the following translations until no further
reductions are possible. The translations are listed in order of application: each section assumes that the
translations in the preceding sections have been performed exhaustively, and once exhausted, a section
will not later be revisited in the processing of the same query expression.

It is a compile time error for a query expression to include an assignment to a range variable, or the use of
a range variable as an argument for a ref or out parameter.

Certain translations inject range variables with transparent identifiers denoted by *. These are described
further in §11.17.3.8.

11.17.3.2 select and group … by clauses with continuations

A query expression with a group clause using a property Prop of y and a query body Q containing a
continuation in the form:

from «y» in S group «y» by «y».Prop into «x» Q

is translated into:

from «x» in (from «y» in S group «y» by «y».Prop) Q

The translations in the following sections assume that queries have no into continuations.

Example: The example:

from c in customers
group c by c.Country into g
select new { Country = g.Key, CustCount = g.Count() }

is translated into:

from g in
 (from c in customers
 group c by c.Country)
select new { Country = g.Key, CustCount = g.Count() }

the final translation of which is:

customers.
GroupBy(c => c.Country).
Select(g => new { Country = g.Key, CustCount = g.Count() })

end example

11.17.3.3 Explicit range variable types

A from clause that explicitly specifies a range variable type

from «T» «x» in «e»

Chapter 11 Expressions

249

is translated into

from «x» in («e») . Cast < «T» > ()

A join clause that explicitly specifies a range variable type

join «T» «x» in «e» on «k1» equals «k2»

is translated into

join «x» in («e») . Cast < «T» > () on «k1» equals «k2»

The translations in the following sections assume that queries have no explicit range variable types.

Example: The example

from Customer c in customers
where c.City == "London"
select c

is translated into

from c in (customers).Cast<Customer>()
where c.City == "London"
select c

the final translation of which is

customers.
Cast<Customer>().
Where(c => c.City == "London")

end example

Note: Explicit range variable types are useful for querying collections that implement the non-
generic IEnumerable interface, but not the generic IEnumerable<T> interface. In the example above,
this would be the case if customers were of type ArrayList. end note

11.17.3.4 Degenerate query expressions

A query expression of the form

from «x» in «e» select «x»

is translated into

(«e») . Select («x» => «x»)

Example: The example

from c in customers
select c

is translated into

(customers).Select(c => c)

end example

A degenerate query expression is one that trivially selects the elements of the source.

Note: Later phases of the translation (§11.17.3.6 and §11.17.3.7) remove degenerate queries
introduced by other translation steps by replacing them with their source. It is important, however,
to ensure that the result of a query expression is never the source object itself. Otherwise, returning
the result of such a query might inadvertently expose private data (e.g., an element array) to a

ECMA-334

250

caller. Therefore this step protects degenerate queries written directly in source code by explicitly
calling Select on the source. It is then up to the implementers of Select and other query operators
to ensure that these methods never return the source object itself. end note

11.17.3.5 From, let, where, join and orderby clauses

A query expression with a second from clause followed by a select clause

from «x1» in «e1»
from «x2» in «e2»
select «v»

is translated into

(«e1») . SelectMany(«x1» => «e2» , («x1» , «x2») => «v»)

Example: The example

from c in customers
from o in c.Orders
select new { c.Name, o.OrderID, o.Total }

is translated into

(customers).
SelectMany(c => c.Orders,
(c,o) => new { c.Name, o.OrderID, o.Total }
)

end example

A query expression with a second from clause followed by a query body Q containing a non-empty set of
query body clauses:

from «x1» in «e1»
from «x2» in «e2»
Q

is translated into

from * in («e1») . SelectMany(«x1» => «e2» , («x1» , «x2») => new { «x1» ,
«x2» })
Q

Example: The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

is translated into

from * in (customers).
 SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.OrderID, o.Total }

the final translation of which is

customers.
SelectMany(c => c.Orders, (c,o) => new { c, o }).

Chapter 11 Expressions

251

OrderByDescending(x => x.o.Total).
Select(x => new { x.c.Name, x.o.OrderID, x.o.Total })

where x is a compiler generated identifier that is otherwise invisible and inaccessible.

end example

A let expression along with its preceding from clause:

from «x» in «e»
let «y» = «f»
...

is translated into

from * in («e») . Select («x» => new { «x» , «y» = «f» })
...

Example: The example

from o in orders
let t = o.Details.Sum(d => d.UnitPrice * d.Quantity)
where t >= 1000
select new { o.OrderID, Total = t }

is translated into

from * in (orders).Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice *
d.Quantity) })
where t >= 1000
select new { o.OrderID, Total = t }

the final translation of which is

orders
 .Select(o => new { o, t = o.Details.Sum(d => d.UnitPrice * d.Quantity) })
 .Where(x => x.t >= 1000)
 .Select(x => new { x.o.OrderID, Total = x.t })

where x is a compiler generated identifier that is otherwise invisible and inaccessible.

end example

A where expression along with its preceding from clause:

from «x» in «e»
where «f»
...

is translated into

from «x» in («e») . Where («x» => «f»)
...

A join clause immediately followed by a select clause

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2»
select «v»

is translated into

(«e1») . Join(«e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «x2») => «v»)

Example: The example

ECMA-334

252

from c in customersh
join o in orders on c.CustomerID equals o.CustomerID
select new { c.Name, o.OrderDate, o.Total }

is translated into

(customers).Join(
 orders,
 c => c.CustomerID, o => o.CustomerID,
 (c, o) => new { c.Name, o.OrderDate, o.Total })

end example

A join clause followed by a query body clause:

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2»
...

is translated into

from * in («e1») . Join(
«e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «x2») => new { «x1» , «x2» })
...

A join-into clause immediately followed by a select clause

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2» into «g»
select «v»

is translated into

(«e1») . GroupJoin(«e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «g») => «v»)

A join into clause followed by a query body clause

from «x1» in «e1»
join «x2» in «e2» on «k1» equals «k2» into *g»
...

is translated into

from * in («e1») . GroupJoin(
 «e2» , «x1» => «k1» , «x2» => «k2» , («x1» , «g») => new { «x1» , «g» })
...

Example: The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID into co
let n = co.Count()
where n >= 10
select new { c.Name, OrderCount = n }

is translated into

from * in (customers).GroupJoin(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, co) => new { c, co })
let n = co.Count()

Chapter 11 Expressions

253

where n >= 10
select new { c.Name, OrderCount = n }

the final translation of which is

customers
 .GroupJoin(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, co) => new { c, co })
 .Select(x => new { x, n = x.co.Count() })
 .Where(y => y.n >= 10)
 .Select(y => new { y.x.c.Name, OrderCount = y.n })

where x and y are compiler generated identifiers that are otherwise invisible and inaccessible.

end example

An orderby clause and its preceding from clause:

from «x» in «e»
orderby «k1» , «k2» , ... , «kn»
...

is translated into

from «x» in («e») .
OrderBy («x» => «k1») .
ThenBy («x» => «k2») .
... .
ThenBy («x» => «kn»)
...

If an ordering clause specifies a descending direction indicator, an invocation of OrderByDescending or
ThenByDescending is produced instead.

Example: The example

from o in orders
orderby o.Customer.Name, o.Total descending
select o

has the final translation

(orders)
 .OrderBy(o => o.Customer.Name)
 .ThenByDescending(o => o.Total)

end example

The following translations assume that there are no let, where, join or orderby clauses, and no more
than the one initial from clause in each query expression.

11.17.3.6 Select clauses

A query expression of the form

from «x» in «e» select «v»

is translated into

(«e») . Select («x» => «v»)

ECMA-334

254

except when «v» is the identifier «x», the translation is simply

(«e»)

Example: The example

from c in customers.Where(c => c.City == "London")
select c

is simply translated into

(customers).Where(c => c.City == "London")

end example

11.17.3.7 Group clauses

A group clause

from «x» in «e» group «v» by «k»

is translated into

(«e») . GroupBy («x» => «k» , «x» => «v»)

except when «v» is the identifier «x», the translation is

(«e») . GroupBy («x» => «k»)

Example: The example

from c in customers
group c.Name by c.Country

is translated into

(customers).GroupBy(c => c.Country, c => c.Name)

end example

11.17.3.8 Transparent identifiers

Certain translations inject range variables with transparent identifiers denoted by *. Transparent
identifiers exist only as an intermediate step in the query-expression translation process.

When a query translation injects a transparent identifier, further translation steps propagate the
transparent identifier into anonymous functions and anonymous object initializers. In those contexts,
transparent identifiers have the following behavior:

• When a transparent identifier occurs as a parameter in an anonymous function, the members of the
associated anonymous type are automatically in scope in the body of the anonymous function.

• When a member with a transparent identifier is in scope, the members of that member are in scope
as well.

• When a transparent identifier occurs as a member declarator in an anonymous object initializer, it
introduces a member with a transparent identifier.

In the translation steps described above, transparent identifiers are always introduced together with
anonymous types, with the intent of capturing multiple range variables as members of a single object. An
implementation of C# is permitted to use a different mechanism than anonymous types to group together
multiple range variables. The following translation examples assume that anonymous types are used, and
shows one possible translation of transparent identifiers.

Chapter 11 Expressions

255

Example: The example

from c in customers
from o in c.Orders
orderby o.Total descending
select new { c.Name, o.Total }

is translated into

from * in (customers).SelectMany(c => c.Orders, (c,o) => new { c, o })
orderby o.Total descending
select new { c.Name, o.Total }

which is further translated into

customers
 .SelectMany(c => c.Orders, (c,o) => new { c, o })
 .OrderByDescending(* => o.Total)
 .Select(* => new { c.Name, o.Total })

which, when transparent identifiers are erased, is equivalent to

customers
 .SelectMany(c => c.Orders, (c,o) => new { c, o })
 .OrderByDescending(x => x.o.Total)
 .Select(x => new { x.c.Name, x.o.Total })

where x is a compiler generated identifier that is otherwise invisible and inaccessible.

The example

from c in customers
join o in orders on c.CustomerID equals o.CustomerID
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

is translated into

from * in (customers).Join(
 orders,
 c => c.CustomerID,
 o => o.CustomerID,
 (c, o) => new { c, o })
join d in details on o.OrderID equals d.OrderID
join p in products on d.ProductID equals p.ProductID
select new { c.Name, o.OrderDate, p.ProductName }

which is further reduced to

customers
 .Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o })
 .Join(details, * => o.OrderID, d => d.OrderID, (*, d) => new { *, d })
 .Join(products, * => d.ProductID, p => p.ProductID,
 (*, p) => new { c.Name, o.OrderDate, p.ProductName })

the final translation of which is

customers
 .Join(orders, c => c.CustomerID, o => o.CustomerID, (c, o) => new { c, o })
 .Join(details, x => x.o.OrderID, d => d.OrderID, (x, d) => new { x, d })

ECMA-334

256

 .Join(products, y => y.d.ProductID, p => p.ProductID,
 (y, p) => new { y.x.c.Name, y.x.o.OrderDate, p.ProductName })

where x and y are compiler-generated identifiers that are otherwise invisible and inaccessible. end
example

11.17.4 The query-expression pattern

The Query-expression pattern establishes a pattern of methods that types can implement to support
query expressions.

A generic type C<T> supports the query-expression-pattern if its public member methods and the publicly
accessible extension methods could be replaced by the following class definition. The members and
accessible extenson methods is referred to as the “shape” of a generic type C<T>. A generic type is used in
order to illustrate the proper relationships between parameter and return types, but it is possible to
implement the pattern for non-generic types as well.

delegate R Func<T1,T2,R>(T1 arg1, T2 arg2);

class C
{
 public C<T> Cast<T>();
}

class C<T> : C
{
 public C<T> Where(Func<T,bool> predicate);
 public C<U> Select<U>(Func<T,U> selector);
 public C<V> SelectMany<U,V>(Func<T,C<U>> selector, Func<T,U,V> resultSelector);
 public C<V> Join<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,U,V> resultSelector);
 public C<V> GroupJoin<U,K,V>(C<U> inner, Func<T,K> outerKeySelector,
 Func<U,K> innerKeySelector, Func<T,C<U>,V> resultSelector);
 public O<T> OrderBy<K>(Func<T,K> keySelector);
 public O<T> OrderByDescending<K>(Func<T,K> keySelector);
 public C<G<K,T>> GroupBy<K>(Func<T,K> keySelector);
 public C<G<K,E>> GroupBy<K,E>(Func<T,K> keySelector, Func<T,E>
elementSelector);
}

class O<T> : C<T>
{
 public O<T> ThenBy<K>(Func<T,K> keySelector);
 public O<T> ThenByDescending<K>(Func<T,K> keySelector);
}

class G<K,T> : C<T>
{
 public K Key { get; }
}

The methods above use the generic delegate types Func<T1, R> and Func<T1, T2, R>, but they could
equally well have used other delegate or expression-tree types with the same relationships in parameter
and return types.

Chapter 11 Expressions

257

Note: The recommended relationship between C<T> and O<T> that ensures that the ThenBy and
ThenByDescending methods are available only on the result of an OrderBy or OrderByDescending.
end note

Note: The recommended shape of the result of GroupBy—a sequence of sequences, where each inner
sequence has an additional Key property. end note

Note: Because query expressions are translated to method invocations by means of a syntactic
mapping, types have considerable flexibility in how they implement any or all of the query-
expression pattern. For example, the methods of the pattern can be implemented as instance
methods or as extension methods because the two have the same invocation syntax, and the
methods can request delegates or expression trees because anonymous functions are convertible to
both. Types implementing only some of the query expression pattern support only query expression
translations that map to the methods that type supports. end note

Note: The System.Linq namespace provides an implementation of the query-expression pattern for
any type that implements the System.Collections.Generic.IEnumerable<T> interface. end note

11.18 Assignment operators

11.18.1 General

The assignment operators assign a new value to a variable, a property, an event, or an indexer element.

assignment
 : unary_expression assignment_operator expression
 ;

assignment_operator
 : '=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<='
 | right_shift_assignment
 ;

The left operand of an assignment shall be an expression classified as a variable, a property access, an
indexer access, or an event access.

The = operator is called the simple assignment operator. It assigns the value of the right operand to the
variable, property, or indexer element given by the left operand. The left operand of the simple
assignment operator shall not be an event access (except as described in §14.8.2). The simple assignment
operator is described in §11.18.2.

The assignment operators other than the = operator are called the compound assignment operators.
These operators perform the indicated operation on the two operands, and then assign the resulting
value to the variable, property, or indexer element given by the left operand. The compound assignment
operators are described in §11.18.3.

The += and -= operators with an event access expression as the left operand are called the event
assignment operators. No other assignment operator is valid with an event access as the left operand.
The event assignment operators are described in §11.18.4.

The assignment operators are right-associative, meaning that operations are grouped from right to left.

Example: An expression of the form a = b = c is evaluated as a = (b = c). end example

ECMA-334

258

11.18.2 Simple assignment

The = operator is called the simple assignment operator.

If the left operand of a simple assignment is of the form E.P or E[Ei] where E has the compile-time type
dynamic, then the assignment is dynamically bound (§11.3.3). In this case, the compile-time type of the
assignment expression is dynamic, and the resolution described below will take place at run-time based
on the run-time type of E. If the left operand is of the form E[Ei] where at least one element of Ei has the
compile-time type dynamic, and the compile-time type of E is not an array, the resulting indexer access is
dynamically bound, but with limited compile-time checking (§11.6.5).

In a simple assignment, the right operand shall be an expression that is implicitly convertible to the type
of the left operand. The operation assigns the value of the right operand to the variable, property, or
indexer element given by the left operand.

The result of a simple assignment expression is the value assigned to the left operand. The result has the
same type as the left operand, and is always classified as a value.

If the left operand is a property or indexer access, the property or indexer shall have an accessible set
accessor. If this is not the case, a binding-time error occurs.

The run-time processing of a simple assignment of the form x = y consists of the following steps:

• If x is classified as a variable:

o x is evaluated to produce the variable.

o y is evaluated and, if required, converted to the type of x through an implicit conversion (§10.2).

o If the variable given by x is an array element of a reference_type, a run-time check is performed
to ensure that the value computed for y is compatible with the array instance of which x is an
element. The check succeeds if y is null, or if an implicit reference conversion (§10.2.8) exists
from the type of the instance referenced by y to the actual element type of the array instance
containing x. Otherwise, a System.ArrayTypeMismatchException is thrown.

o The value resulting from the evaluation and conversion of y is stored into the location given by
the evaluation of x.

• If x is classified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent set accessor
invocation.

o y is evaluated and, if required, converted to the type of x through an implicit conversion (§10.2).

o The set accessor of x is invoked with the value computed for y as its value argument.

Note: if the compile time type of x is dynamic and there is an implicit conversion from the compile
time type of y to dynamic, no runtime resolution is required. end note

Note: The array co-variance rules (§16.6) permit a value of an array type A[] to be a reference to an
instance of an array type B[], provided an implicit reference conversion exists from B to A. Because
of these rules, assignment to an array element of a reference_type requires a run-time check to
ensure that the value being assigned is compatible with the array instance. In the example

string[] sa = new string[10];
object[] oa = sa;
oa[0] = null; // OK

Chapter 11 Expressions

259

oa[1] = "Hello"; // OK
oa[2] = new ArrayList(); // ArrayTypeMismatchException

the last assignment causes a System.ArrayTypeMismatchException to be thrown because a
reference to an ArrayList cannot be stored in an element of a string[].

end note

When a property or indexer declared in a struct_type is the target of an assignment, the instance
expression associated with the property or indexer access shall be classified as a variable. If the instance
expression is classified as a value, a binding-time error occurs.

Note: Because of §11.7.6, the same rule also applies to fields. end note

Example: Given the declarations:

struct Point
{
 int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }

 public int X
 {
 get { return x; }
 set { x = value; }
 }

 public int Y {
 get { return y; }
 set { y = value; }
 }
}

struct Rectangle
{
 Point a, b;

 public Rectangle(Point a, Point b)
 {
 this.a = a;
 this.b = b;
 }

 public Point A
 {
 get { return a; }
 set { a = value; }
 }

 public Point B
 {
 get { return b; }

ECMA-334

260

 set { b = value; }
 }
}

in the example

Point p = new Point();
p.X = 100;
p.Y = 100;
Rectangle r = new Rectangle();
r.A = new Point(10, 10);
r.B = p;

the assignments to p.X, p.Y, r.A, and r.B are permitted because p and r are variables. However, in
the example

Rectangle r = new Rectangle();
r.A.X = 10;
r.A.Y = 10;
r.B.X = 100;
r.B.Y = 100;

the assignments are all invalid, since r.A and r.B are not variables.

end example

11.18.3 Compound assignment

If the left operand of a compound assignment is of the form E.P or E[Ei] where E has the compile-time
type dynamic, then the assignment is dynamically bound (§11.3.3). In this case, the compile-time type of
the assignment expression is dynamic, and the resolution described below will take place at run-time
based on the run-time type of E. If the left operand is of the form E[Ei] where at least one element of Ei
has the compile-time type dynamic, and the compile-time type of E is not an array, the resulting indexer
access is dynamically bound, but with limited compile-time checking (§11.6.5).

An operation of the form x «op»= y is processed by applying binary operator overload resolution
(§11.4.5) as if the operation was written x «op» y. Then,

• If the return type of the selected operator is implicitly convertible to the type of x, the operation is
evaluated as x = x «op» y, except that x is evaluated only once.

• Otherwise, if the selected operator is a predefined operator, if the return type of the selected
operator is explicitly convertible to the type of x , and if y is implicitly convertible to the type of x or
the operator is a shift operator, then the operation is evaluated as x = (T)(x «op» y), where T is
the type of x, except that x is evaluated only once.

• Otherwise, the compound assignment is invalid, and a binding-time error occurs.

The term “evaluated only once” means that in the evaluation of x «op» y, the results of any constituent
expressions of x are temporarily saved and then reused when performing the assignment to x.

Example: In the assignment A()[B()] += C(), where A is a method returning int[], and B and C are
methods returning int, the methods are invoked only once, in the order A, B, C. end example

When the left operand of a compound assignment is a property access or indexer access, the property or
indexer shall have both a get accessor and a set accessor. If this is not the case, a binding-time error
occurs.

Chapter 11 Expressions

261

The second rule above permits x «op»= y to be evaluated as x = (T)(x «op» y) in certain contexts. The
rule exists such that the predefined operators can be used as compound operators when the left operand
is of type sbyte, byte, short, ushort, or char. Even when both arguments are of one of those types, the
predefined operators produce a result of type int, as described in §11.4.7.3. Thus, without a cast it would
not be possible to assign the result to the left operand.

The intuitive effect of the rule for predefined operators is simply that x «op»= y is permitted if both of
x «op» y and x = y are permitted.

Example: In the following code

byte b = 0;
char ch = '\0';
int i = 0;
b += 1; // OK
b += 1000; // Error, b = 1000 not permitted
b += i; // Error, b = i not permitted
b += (byte)i; // OK
ch += 1; // Error, ch = 1 not permitted
ch += (char)1; // OK

the intuitive reason for each error is that a corresponding simple assignment would also have been
an error.

end example

Note: This also means that compound assignment operations support lifted operators. Since a
compound assignment x «op»= y is evaluated as either x = x «op» y or x = (T)(x «op» y), the
rules of evaluation implicitly cover lifted operators. end note

11.18.4 Event assignment

If the left operand of a += or -= operator is classified as an event access, then the expression is evaluated
as follows:

• The instance expression, if any, of the event access is evaluated.

• The right operand of the += or -= operator is evaluated, and, if required, converted to the type of the
left operand through an implicit conversion (§10.2).

• An event accessor of the event is invoked, with an argument list consisting of the value computed in
the previous step. If the operator was +=, the add accessor is invoked; if the operator was -=, the
remove accessor is invoked.

An event assignment expression does not yield a value. Thus, an event assignment expression is valid only
in the context of a statement_expression (§12.7).

11.19 Expression
An expression is either a non_assignment_expression or an assignment.

expression
 : non_assignment_expression
 | assignment
 ;

non_assignment_expression

ECMA-334

262

 : conditional_expression
 | lambda_expression
 | query_expression
 ;

11.20 Constant expressions
A constant expression is an expression that shall be fully evaluated at compile-time.

constant_expression
 : expression
 ;

A constant expression may be either a value type or a reference type. If a constant expression is a value
type, it must be one of the following types: sbyte, byte, short, ushort, int, uint, long, ulong, char, float,
double, decimal, bool, or any enumeration type. If a constant expression is a reference type, it must be
the string type, a default value expression (§11.7.19) for some reference type, or the value of the
expression must be null.

Only the following constructs are permitted in constant expressions:

• Literals (including the null literal).

• References to const members of class and struct types.

• References to members of enumeration types.

• References to const parameters or local variables

• Parenthesized subexpressions, which are themselves constant expressions.

• Cast expressions.

• checked and unchecked expressions.

• nameof expressions

• The predefined +, –, !, and ~ unary operators.

• The predefined +, –, *, /, %, <<, >>, &, |, ^, &&, ||, ==, !=, <, >, <=, and >= binary operators.

• The ?: conditional operator.

• sizeof expressions, provided the unmanaged-type is one of the types specified in §22.6.9 for which
sizeof returns a constant value.

• Default value expressions, provided the type is one of the types listed above.

The following conversions are permitted in constant expressions:

• Identity conversions

• Numeric conversions

• Enumeration conversions

• Constant expression conversions

• Implicit and explicit reference conversions, provided the source of the conversions is a constant
expression that evaluates to the null value.

Chapter 11 Expressions

263

Note: Other conversions including boxing, unboxing, and implicit reference conversions of non-null
values are not permitted in constant expressions. end note

Example: In the following code

class C
{
 const object i = 5; // error: boxing conversion not permitted
 const object str = "hello"; // error: implicit reference conversion
}

the initialization of i is an error because a boxing conversion is required. The initialization of str is
an error because an implicit reference conversion from a non-null value is required.

end example

Whenever an expression fulfills the requirements listed above, the expression is evaluated at compile-
time. This is true even if the expression is a subexpression of a larger expression that contains non-
constant constructs.

The compile-time evaluation of constant expressions uses the same rules as run-time evaluation of non-
constant expressions, except that where run-time evaluation would have thrown an exception, compile-
time evaluation causes a compile-time error to occur.

Unless a constant expression is explicitly placed in an unchecked context, overflows that occur in integral-
type arithmetic operations and conversions during the compile-time evaluation of the expression always
cause compile-time errors (§11.7.18).

Constant expressions are required in the contexts listed below and this is indicated in the grammar by
using constant_expression. In these contexts, a compile-time error occurs if an expression cannot be fully
evaluated at compile-time.

• Constant declarations (§14.4)

• Enumeration member declarations (§18.4)

• Default arguments of formal parameter lists (§14.6.2)

• case labels of a switch statement (§12.8.3).

• goto case statements (§12.10.4)

• Dimension lengths in an array creation expression (§11.7.15.5) that includes an initializer.

• Attributes (§21)

An implicit constant expression conversion (§10.2.11) permits a constant expression of type int to be
converted to sbyte, byte, short, ushort, uint, or ulong, provided the value of the constant expression is
within the range of the destination type.

11.21 Boolean expressions
A boolean_expression is an expression that yields a result of type bool; either directly or through
application of operator true in certain contexts as specified in the following:

boolean_expression
 : expression
 ;

ECMA-334

264

The controlling conditional expression of an if_statement (§12.8.2), while_statement (§12.9.2),
do_statement (§12.9.3), or for_statement (§12.9.4) is a boolean_expression. The controlling conditional
expression of the ?: operator (§11.15) follows the same rules as a boolean_expression, but for reasons of
operator precedence is classified as a null_coalescing_expression.

A boolean_expression E is required to be able to produce a value of type bool, as follows:

• If E is implicitly convertible to bool then at run-time that implicit conversion is applied.

• Otherwise, unary operator overload resolution (§11.4.4) is used to find a unique best
implementation of operator true on E, and that implementation is applied at run-time.

• If no such operator is found, a binding-time error occurs.

Chapter 12 Statements

265

12. Statements

12.1 General
C# provides a variety of statements.

Note: Most of these statements will be familiar to developers who have programmed in C and C++.
end note

statement
 : labeled_statement
 | declaration_statement
 | embedded_statement
 ;

embedded_statement
 : block
 | empty_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | try_statement
 | checked_statement
 | unchecked_statement
 | lock_statement
 | using_statement
 | yield_statement
 | unsafe_statement // unsafe code support
 | fixed_statement // unsafe code support
 ;

unsafe_statement (§22.2) and fixed_statement (§22.7) are only available in unsafe code (§22).

The embedded_statement nonterminal is used for statements that appear within other statements. The
use of embedded_statement rather than statement excludes the use of declaration statements and labeled
statements in these contexts.

Example: The code

void F(bool b)
{
 if (b)
 int i = 44;
}

results in a compile-time error because an if statement requires an embedded_statement rather
than a statement for its if branch. If this code were permitted, then the variable i would be
declared, but it could never be used. Note, however, that by placing i’s declaration in a block, the
example is valid.

end example

ECMA-334

266

12.2 End points and reachability
Every statement has an end point. In intuitive terms, the end point of a statement is the location that
immediately follows the statement. The execution rules for composite statements (statements that
contain embedded statements) specify the action that is taken when control reaches the end point of an
embedded statement.

Example: When control reaches the end point of a statement in a block, control is transferred to the
next statement in the block. end example

If a statement can possibly be reached by execution, the statement is said to be reachable. Conversely, if
there is no possibility that a statement will be executed, the statement is said to be unreachable.

Example: In the following code

void F()
{
 Console.WriteLine("reachable");
 goto Label;
 Console.WriteLine("unreachable");
 Label:
 Console.WriteLine("reachable");
}

the second invocation of Console.WriteLine is unreachable because there is no possibility that the
statement will be executed.

end example

A warning is reported if a statement other than throw_statement, block, or empty_statement is
unreachable. It is specifically not an error for a statement to be unreachable.

Note: To determine whether a particular statement or end point is reachable, the compiler performs
flow analysis according to the reachability rules defined for each statement. The flow analysis takes
into account the values of constant expressions (§11.20) that control the behavior of statements,
but the possible values of non-constant expressions are not considered. In other words, for
purposes of control flow analysis, a non-constant expression of a given type is considered to have
any possible value of that type.

In the example

void F()
{
 const int i = 1;
 if (i == 2)
 Console.WriteLine("unreachable");
}

the Boolean expression of the if statement is a constant expression because both operands of the
== operator are constants. As the constant expression is evaluated at compile-time, producing the
value false, the Console.WriteLine invocation is considered unreachable. However, if i is changed
to be a local variable

void F()
{
 int i = 1;
 if (i == 2)

Chapter 12 Statements

267

 Console.WriteLine("reachable");
}

the Console.WriteLine invocation is considered reachable, even though, in reality, it will never be
executed.

end note

The block of a function member or an anonymous function is always considered reachable. By
successively evaluating the reachability rules of each statement in a block, the reachability of any given
statement can be determined.

Example: In the following code

void F(int x)
{
 Console.WriteLine("start");
 if (x < 0)
 Console.WriteLine("negative");
}

the reachability of the second Console.WriteLine is determined as follows:

• The first Console.WriteLine expression statement is reachable because the block of the
F method is reachable (§12.3).

• The end point of the first Console.WriteLine expression statement is reachable because that
statement is reachable (§12.7 and §12.3).

• The if statement is reachable because the end point of the first Console.WriteLine
expression statement is reachable (§12.7 and §12.3).

• The second Console.WriteLine expression statement is reachable because the Boolean
expression of the if statement does not have the constant value false.

end example

There are two situations in which it is a compile-time error for the end point of a statement to be
reachable:

• Because the switch statement does not permit a switch section to “fall through” to the next switch
section, it is a compile-time error for the end point of the statement list of a switch section to be
reachable. If this error occurs, it is typically an indication that a break statement is missing.

• It is a compile-time error for the end point of the block of a function member or an anonymous
function that computes a value to be reachable. If this error occurs, it typically is an indication that a
return statement is missing (§12.10.5).

12.3 Blocks

12.3.1 General

A block permits multiple statements to be written in contexts where a single statement is allowed.

block
 : '{' statement_list? '}'
 ;

ECMA-334

268

A block consists of an optional statement_list (§12.3.2), enclosed in braces. If the statement list is omitted,
the block is said to be empty.

A block may contain declaration statements (§12.6). The scope of a local variable or constant declared in a
block is the block.

A block is executed as follows:

• If the block is empty, control is transferred to the end point of the block.

• If the block is not empty, control is transferred to the statement list. When and if control reaches the
end point of the statement list, control is transferred to the end point of the block.

The statement list of a block is reachable if the block itself is reachable.

The end point of a block is reachable if the block is empty or if the end point of the statement list is
reachable.

A block that contains one or more yield statements (§12.15) is called an iterator block. Iterator blocks
are used to implement function members as iterators (§14.14). Some additional restrictions apply to
iterator blocks:

• It is a compile-time error for a return statement to appear in an iterator block (but yield return
statements are permitted).

• It is a compile-time error for an iterator block to contain an unsafe context (§22.2). An iterator block
always defines a safe context, even when its declaration is nested in an unsafe context.

12.3.2 Statement lists

A statement list consists of one or more statements written in sequence. Statement lists occur in blocks
(§12.3) and in switch_blocks (§12.8.3).

statement_list
 : statement+
 ;

A statement list is executed by transferring control to the first statement. When and if control reaches the
end point of a statement, control is transferred to the next statement. When and if control reaches the end
point of the last statement, control is transferred to the end point of the statement list.

A statement in a statement list is reachable if at least one of the following is true:

• The statement is the first statement and the statement list itself is reachable.

• The end point of the preceding statement is reachable.

• The statement is a labeled statement and the label is referenced by a reachable goto statement.

The end point of a statement list is reachable if the end point of the last statement in the list is reachable.

12.4 The empty statement
An empty_statement does nothing.

empty_statement
 : ';'
 ;

Chapter 12 Statements

269

An empty statement is used when there are no operations to perform in a context where a statement is
required.

Execution of an empty statement simply transfers control to the end point of the statement. Thus, the end
point of an empty statement is reachable if the empty statement is reachable.

Example: An empty statement can be used when writing a while statement with a null body:

bool ProcessMessage() {...}
void ProcessMessages()
{
 while (ProcessMessage())
 ;
}

Also, an empty statement can be used to declare a label just before the closing “}” of a block:

void F()
{
 ...
 if (done)
 {
 goto exit;
 }
 ...
 exit:
 ;
}

end example

12.5 Labeled statements
A labeled_statement permits a statement to be prefixed by a label. Labeled statements are permitted in
blocks, but are not permitted as embedded statements.

labeled_statement
 : identifier ':' statement
 ;

A labeled statement declares a label with the name given by the identifier. The scope of a label is the
whole block in which the label is declared, including any nested blocks. It is a compile-time error for two
labels with the same name to have overlapping scopes.

A label can be referenced from goto statements (§12.10.4) within the scope of the label.

Note: This means that goto statements can transfer control within blocks and out of blocks, but
never into blocks. end note

Labels have their own declaration space and do not interfere with other identifiers.

Example: The example

int F(int x)
{
 if (x >= 0)
 {
 goto x;
 }

ECMA-334

270

 x = -x;
 x:
 return x;
}

is valid and uses the name x as both a parameter and a label.

end example

Execution of a labeled statement corresponds exactly to execution of the statement following the label.

In addition to the reachability provided by normal flow of control, a labeled statement is reachable if the
label is referenced by a reachable goto statement, unless the goto statement is inside the try block or a
catch block of a try_statement that includes a finally block whose end point is unreachable, and the
labeled statement is outside the try_statement.

12.6 Declaration statements

12.6.1 General

A declaration_statement declares a local variable or constant. Declaration statements are permitted in
blocks, but are not permitted as embedded statements.

declaration_statement
 : local_variable_declaration ';'
 | local_constant_declaration ';'
 ;

12.6.2 Local variable declarations

A local_variable_declaration declares one or more local variables.

local_variable_declaration
 : local_variable_type local_variable_declarators
 ;

local_variable_type
 : type
 | 'var'
 ;

local_variable_declarators
 : local_variable_declarator
 | local_variable_declarators ',' local_variable_declarator
 ;

local_variable_declarator
 : identifier
 | identifier '=' local_variable_initializer
 ;

local_variable_initializer
 : expression
 | array_initializer
 | stackalloc_initializer // unsafe code support
 ;

Chapter 12 Statements

271

stackalloc_initializer (§22.9) is only available in unsafe code (§22).

The local_variable_type of a local_variable_declaration either directly specifies the type of the variables
introduced by the declaration, or indicates with the identifier var that the type should be inferred based
on an initializer. The type is followed by a list of local_variable_declarators, each of which introduces a
new variable. A local_variable_declarator consists of an identifier that names the variable, optionally
followed by an “=” token and a local_variable_initializer that gives the initial value of the variable.

In the context of a local variable declaration, the identifier var acts as a contextual keyword (§6.4.4).When
the local_variable_type is specified as var and no type named var is in scope, the declaration is an
implicitly typed local variable declaration, whose type is inferred from the type of the associated
initializer expression. Implicitly typed local variable declarations are subject to the following restrictions:

• The local_variable_declaration cannot include multiple local_variable_declarators.

• The local_variable_declarator shall include a local_variable_initializer.

• The local_variable_initializer shall be an expression.

• The initializer expression shall have a compile-time type.

• The initializer expression cannot refer to the declared variable itself

Example: The following are incorrect implicitly typed local variable declarations:

var x; // Error, no initializer to infer type from
var y = {1, 2, 3}; // Error, array initializer not permitted
var z = null; // Error, null does not have a type
var u = x => x + 1; // Error, anonymous functions do not have a type
var v = v++; // Error, initializer cannot refer to v itself

end example

The value of a local variable is obtained in an expression using a simple_name (§11.7.4). A local variable
shall be definitely assigned (§9.4) at each location where its value is obtained.

The scope of a local variable declared in a local_variable_declaration is the block in which the declaration
occurs. It is an error to refer to a local variable in a textual position that precedes the
local_variable_declarator of the local variable. Within the scope of a local variable, it is a compile-time
error to declare another local variable or constant with the same name.

A local variable declaration that declares multiple variables is equivalent to multiple declarations of single
variables with the same type. Furthermore, a variable initializer in a local variable declaration
corresponds exactly to an assignment statement that is inserted immediately after the declaration.

Example: The example

void F()
{
 int x = 1, y, z = x * 2;
}

corresponds exactly to

void F()
{
 int x; x = 1;
 int y;
 int z; z = x * 2;
}

ECMA-334

272

end example

In an implicitly typed local variable declaration, the type of the local variable being declared is taken to be
the same as the type of the expression used to initialize the variable.

Example:

var i = 5;
var s = "Hello";
var d = 1.0;
var numbers = new int[] {1, 2, 3};
var orders = new Dictionary<int,Order>();

The implicitly typed local variable declarations above are precisely equivalent to the following
explicitly typed declarations:

int i = 5;
string s = "Hello";
double d = 1.0;
int[] numbers = new int[] {1, 2, 3};
Dictionary<int,Order> orders = new Dictionary<int,Order>();

end example

12.6.3 Local constant declarations

A local_constant_declaration declares one or more local constants.

local_constant_declaration
 : 'const' type constant_declarators
 ;

constant_declarators
 : constant_declarator (',' constant_declarator)*
 ;

constant_declarator
 : identifier '=' constant_expression
 ;

The type of a local_constant_declaration specifies the type of the constants introduced by the declaration.
The type is followed by a list of constant_declarators, each of which introduces a new constant. A
constant_declarator consists of an identifier that names the constant, followed by an “=” token, followed by
a constant_expression (§11.20) that gives the value of the constant.

The type and constant_expression of a local constant declaration shall follow the same rules as those of a
constant member declaration (§14.4).

The value of a local constant is obtained in an expression using a simple_name (§11.7.4).

The scope of a local constant is the block in which the declaration occurs. It is an error to refer to a local
constant in a textual position that precedes the end of its constant_declarator. Within the scope of a local
constant, it is a compile-time error to declare another local variable or constant with the same name.

A local constant declaration that declares multiple constants is equivalent to multiple declarations of
single constants with the same type.

Chapter 12 Statements

273

12.7 Expression statements
An expression_statement evaluates a given expression. The value computed by the expression, if any, is
discarded.

expression_statement
 : statement_expression ';'
 ;

statement_expression
 : null_conditional_invocation_expression
 | invocation_expression
 | object_creation_expression
 | assignment
 | post_increment_expression
 | post_decrement_expression
 | pre_increment_expression
 | pre_decrement_expression
 | await_expression
 ;

Not all expressions are permitted as statements.

Note: In particular, expressions such as x + y and x == 1, that merely compute a value (which will
be discarded), are not permitted as statements. end note

Execution of an expression_statement evaluates the contained expression and then transfers control to the
end point of the expression_statement. The end point of an expression_statement is reachable if that
expression_statement is reachable.

12.8 Selection statements

12.8.1 General

Selection statements select one of a number of possible statements for execution based on the value of
some expression.

selection_statement
 : if_statement
 | switch_statement
 ;

12.8.2 The if statement

The if statement selects a statement for execution based on the value of a Boolean expression.

if_statement
 : 'if' '(' boolean_expression ')' embedded_statement
 | 'if' '(' boolean_expression ')' embedded_statement 'else' embedded_statement
 ;

An else part is associated with the lexically nearest preceding if that is allowed by the syntax.

Example: Thus, an if statement of the form

if (x) if (y) F(); else G();

is equivalent to

ECMA-334

274

if (x)
{
 if (y)
 {
 F();
 }
 else
 {
 G();
 }
}

end example

An if statement is executed as follows:

• The boolean_expression (§11.21) is evaluated.

• If the Boolean expression yields true, control is transferred to the first embedded statement. When
and if control reaches the end point of that statement, control is transferred to the end point of the
if statement.

• If the Boolean expression yields false and if an else part is present, control is transferred to the
second embedded statement. When and if control reaches the end point of that statement, control is
transferred to the end point of the if statement.

• If the Boolean expression yields false and if an else part is not present, control is transferred to the
end point of the if statement.

The first embedded statement of an if statement is reachable if the if statement is reachable and the
Boolean expression does not have the constant value false.

The second embedded statement of an if statement, if present, is reachable if the if statement is
reachable and the Boolean expression does not have the constant value true.

The end point of an if statement is reachable if the end point of at least one of its embedded statements is
reachable. In addition, the end point of an if statement with no else part is reachable if the if statement
is reachable and the Boolean expression does not have the constant value true.

12.8.3 The switch statement

The switch statement selects for execution a statement list having an associated switch label that
corresponds to the value of the switch expression.

switch_statement
 : 'switch' '(' expression ')' switch_block
 ;

switch_block
 : '{' switch_section* '}'
 ;

switch_section
 : switch_label+ statement_list
 ;

switch_label
 : 'case' constant_expression ':'

Chapter 12 Statements

275

 | 'default' ':'
 ;

A switch_statement consists of the keyword switch, followed by a parenthesized expression (called the
switch expression), followed by a switch_block. The switch_block consists of zero or more switch_sections,
enclosed in braces. Each switch_section consists of one or more switch_labels followed by a statement_list
(§12.3.2).

The governing type of a switch statement is established by the switch expression.

• If the type of the switch expression is sbyte, byte, short, ushort, int, uint, long, ulong, char, bool,
string, or an enum_type, or if it is the nullable value type corresponding to one of these types, then
that is the governing type of the switch statement.

• Otherwise, exactly one user-defined implicit conversion shall exist from the type of the switch
expression to one of the following possible governing types: sbyte, byte, short, ushort, int, uint,
long, ulong, char, string, or, a nullable value type corresponding to one of those types.

• Otherwise, a compile-time error occurs.

The constant expression of each case label shall denote a value of a type that is implicitly convertible
(§10.2) to the governing type of the switch statement. A compile-time error occurs if two or more case
labels in the same switch statement specify the same constant value.

There can be at most one default label in a switch statement.

A switch statement is executed as follows:

• The switch expression is evaluated and converted to the governing type.

• If one of the constants specified in a case label in the same switch statement is equal to the value of
the switch expression, control is transferred to the statement list following the matched case label.

• If none of the constants specified in case labels in the same switch statement is equal to the value of
the switch expression, and if a default label is present, control is transferred to the statement list
following the default label.

• If none of the constants specified in case labels in the same switch statement is equal to the value of
the switch expression, and if no default label is present, control is transferred to the end point of
the switch statement.

If the end point of the statement list of a switch section is reachable, a compile-time error occurs. This is
known as the “no fall through” rule.

Example: The example

switch (i)
{
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 default:
 CaseOthers();
 break;
}

ECMA-334

276

is valid because no switch section has a reachable end point. Unlike C and C++, execution of a switch
section is not permitted to “fall through” to the next switch section, and the example

switch (i)
{
 case 0:
 CaseZero();
 case 1:
 CaseZeroOrOne();
 default:
 CaseAny();
}

results in a compile-time error. When execution of a switch section is to be followed by execution of
another switch section, an explicit goto case or goto default statement shall be used:

switch (i)
{
 case 0:
 CaseZero();
 goto case 1;
 case 1:
 CaseZeroOrOne();
 goto default;
 default:
 CaseAny();
 break;
}

end example

Multiple labels are permitted in a switch_section.

Example: The example

switch (i)
{
 case 0:
 CaseZero();
 break;
 case 1:
 CaseOne();
 break;
 case 2:
 default:
 CaseTwo();
 break;
}

is valid. The example does not violate the “no fall through” rule because the labels case 2: and
default: are part of the same switch_section.

end example

Note: The “no fall through” rule prevents a common class of bugs that occur in C and C++ when
break statements are accidentally omitted. For example, the sections of the switch statement above
can be reversed without affecting the behavior of the statement:

Chapter 12 Statements

277

switch (i)
{
 default:
 CaseAny();
 break;
 case 1:
 CaseZeroOrOne();
 goto default;
 case 0:
 CaseZero();
 goto case 1;
}

end note

Note: The statement list of a switch section typically ends in a break, goto case, or goto default
statement, but any construct that renders the end point of the statement list unreachable is
permitted. For example, a while statement controlled by the Boolean expression true is known to
never reach its end point. Likewise, a throw or return statement always transfers control elsewhere
and never reaches its end point. Thus, the following example is valid:

switch (i)
{
 case 0:
 while (true)
 {
 F();
 }
 case 1:
 throw new ArgumentException();
 case 2:
 return;
}

end note

Example: The governing type of a switch statement can be the type string. For example:

void DoCommand(string command)
{
 switch (command.ToLower())
 {
 case "run":
 DoRun();
 break;
 case "save":
 DoSave();
 break;
 case "quit":
 DoQuit();
 break;
 default:
 InvalidCommand(command);
 break;
 }
}

ECMA-334

278

end example

Note: Like the string equality operators (§11.11.8), the switch statement is case sensitive and will
execute a given switch section only if the switch expression string exactly matches a case label
constant. end note When the governing type of a switch statement is string or a nullable value type,
the value null is permitted as a case label constant.

The statement_lists of a switch_block may contain declaration statements (§12.6). The scope of a local
variable or constant declared in a switch block is the switch block.

The statement list of a given switch section is reachable if the switch statement is reachable and at least
one of the following is true:

• The switch expression is a non-constant value.

• The switch expression is a constant value that matches a case label in the switch section.

• The switch expression is a constant value that doesn’t match any case label, and the switch section
contains the default label.

• A switch label of the switch section is referenced by a reachable goto case or goto default
statement.

The end point of a switch statement is reachable if at least one of the following is true:

• The switch statement contains a reachable break statement that exits the switch statement.

• The switch statement is reachable, the switch expression is a non-constant value, and no default
label is present.

• The switch statement is reachable, the switch expression is a constant value that doesn’t match any
case label, and no default label is present.

12.9 Iteration statements

12.9.1 General

Iteration statements repeatedly execute an embedded statement.

iteration_statement
 : while_statement
 | do_statement
 | for_statement
 | foreach_statement
 ;

12.9.2 The while statement

The while statement conditionally executes an embedded statement zero or more times.

while_statement
 : 'while' '(' boolean_expression ')' embedded_statement
 ;

A while statement is executed as follows:

• The boolean_expression (§11.21) is evaluated.

Chapter 12 Statements

279

• If the Boolean expression yields true, control is transferred to the embedded statement. When and
if control reaches the end point of the embedded statement (possibly from execution of a continue
statement), control is transferred to the beginning of the while statement.

• If the Boolean expression yields false, control is transferred to the end point of the while
statement.

Within the embedded statement of a while statement, a break statement (§12.10.2) may be used to
transfer control to the end point of the while statement (thus ending iteration of the embedded
statement), and a continue statement (§12.10.3) may be used to transfer control to the end point of the
embedded statement (thus performing another iteration of the while statement).

The embedded statement of a while statement is reachable if the while statement is reachable and the
Boolean expression does not have the constant value false.

The end point of a while statement is reachable if at least one of the following is true:

• The while statement contains a reachable break statement that exits the while statement.

• The while statement is reachable and the Boolean expression does not have the constant value
true.

12.9.3 The do statement

The do statement conditionally executes an embedded statement one or more times.

do_statement
 : 'do' embedded_statement 'while' '(' boolean_expression ')' ';'
 ;

A do statement is executed as follows:

• Control is transferred to the embedded statement.

• When and if control reaches the end point of the embedded statement (possibly from execution of a
continue statement), the boolean_expression (§11.21) is evaluated. If the Boolean expression yields
true, control is transferred to the beginning of the do statement. Otherwise, control is transferred to
the end point of the do statement.

Within the embedded statement of a do statement, a break statement (§12.10.2) may be used to transfer
control to the end point of the do statement (thus ending iteration of the embedded statement), and a
continue statement (§12.10.3) may be used to transfer control to the end point of the embedded
statement (thus performing another iteration of the do statement).

The embedded statement of a do statement is reachable if the do statement is reachable.

The end point of a do statement is reachable if at least one of the following is true:

• The do statement contains a reachable break statement that exits the do statement.

• The end point of the embedded statement is reachable and the Boolean expression does not have
the constant value true.

12.9.4 The for statement

The for statement evaluates a sequence of initialization expressions and then, while a condition is true,
repeatedly executes an embedded statement and evaluates a sequence of iteration expressions.

ECMA-334

280

for_statement
 : 'for' '(' for_initializer? ';' for_condition? ';' for_iterator? ')'
embedded_statement
 ;

for_initializer
 : local_variable_declaration
 | statement_expression_list
 ;

for_condition
 : boolean_expression
 ;

for_iterator
 : statement_expression_list
 ;

statement_expression_list
 : statement_expression (',' statement_expression)*
 ;

The for_initializer, if present, consists of either a local_variable_declaration (§12.6.2) or a list of
statement_expressions (§12.7) separated by commas. The scope of a local variable declared by a
for_initializer starts at the local_variable_declarator for the variable and extends to the end of the
embedded statement. The scope includes the for_condition and the for_iterator.

The for_condition, if present, shall be a boolean_expression (§11.21).

The for_iterator, if present, consists of a list of statement_expressions (§12.7) separated by commas.

A for statement is executed as follows:

• If a for_initializer is present, the variable initializers or statement expressions are executed in the
order they are written. This step is only performed once.

• If a for_condition is present, it is evaluated.

• If the for_condition is not present or if the evaluation yields true, control is transferred to the
embedded statement. When and if control reaches the end point of the embedded statement
(possibly from execution of a continue statement), the expressions of the for_iterator, if any, are
evaluated in sequence, and then another iteration is performed, starting with evaluation of the
for_condition in the step above.

• If the for_condition is present and the evaluation yields false, control is transferred to the end point
of the for statement.

Within the embedded statement of a for statement, a break statement (§12.10.2) may be used to transfer
control to the end point of the for statement (thus ending iteration of the embedded statement), and a
continue statement (§12.10.3) may be used to transfer control to the end point of the embedded
statement (thus executing the for_iterator and performing another iteration of the for statement, starting
with the for_condition).

The embedded statement of a for statement is reachable if one of the following is true:

• The for statement is reachable and no for_condition is present.

Chapter 12 Statements

281

• The for statement is reachable and a for_condition is present and does not have the constant value
false.

The end point of a for statement is reachable if at least one of the following is true:

• The for statement contains a reachable break statement that exits the for statement.

• The for statement is reachable and a for_condition is present and does not have the constant value
true.

12.9.5 The foreach statement

The foreach statement enumerates the elements of a collection, executing an embedded statement for
each element of the collection.

foreach_statement
 : 'foreach' '(' local_variable_type identifier 'in' expression ')'
embedded_statement
 ;

The local_variable_type and identifier of a foreach statement declare the iteration variable of the
statement. If the var identifier is given as the local_variable_type, and no type named var is in scope, the
iteration variable is said to be an implicitly typed iteration variable, and its type is taken to be the
iteration type of the foreach statement, as specified below. The iteration variable corresponds to a read-
only local variable with a scope that extends over the embedded statement. During execution of a foreach
statement, the iteration variable represents the collection element for which an iteration is currently
being performed. A compile-time error occurs if the embedded statement attempts to modify the iteration
variable (via assignment or the ++ and -- operators) or pass the iteration variable as a ref or out
parameter.

In the following, for brevity, IEnumerable, IEnumerator, IEnumerable<T> and IEnumerator<T> refer to the
corresponding types in the namespaces System.Collections and System.Collections.Generic.

The compile-time processing of a foreach statement first determines the collection type, enumerator
type and iteration type of the expression. This determination proceeds as follows:

• If the type X of expression is an array type then there is an implicit reference conversion from X to
the IEnumerable interface (since System.Array implements this interface). The collection type is the
IEnumerable interface, the enumerator type is the IEnumerator interface and the iteration type is
the element type of the array type X.

• If the type X of expression is dynamic then there is an implicit conversion from expression to the
IEnumerable interface (§10.2.10). The collection type is the IEnumerable interface and the
enumerator type is the IEnumerator interface. If the var identifier is given as the local_variable_type
then the iteration type is dynamic, otherwise it is object.

• Otherwise, determine whether the type X has an appropriate GetEnumerator method:

o Perform member lookup on the type X with identifier GetEnumerator and no type arguments. If
the member lookup does not produce a match, or it produces an ambiguity, or produces a match
that is not a method group, check for an enumerable interface as described below. It is
recommended that a warning be issued if member lookup produces anything except a method
group or no match.

o Perform overload resolution using the resulting method group and an empty argument list. If
overload resolution results in no applicable methods, results in an ambiguity, or results in a
single best method but that method is either static or not public, check for an enumerable

ECMA-334

282

interface as described below. It is recommended that a warning be issued if overload resolution
produces anything except an unambiguous public instance method or no applicable methods.

o If the return type E of the GetEnumerator method is not a class, struct or interface type, an error
is produced and no further steps are taken.

o Member lookup is performed on E with the identifier Current and no type arguments. If the
member lookup produces no match, the result is an error, or the result is anything except a
public instance property that permits reading, an error is produced and no further steps are
taken.

o Member lookup is performed on E with the identifier MoveNext and no type arguments. If the
member lookup produces no match, the result is an error, or the result is anything except a
method group, an error is produced and no further steps are taken.

o Overload resolution is performed on the method group with an empty argument list. If overload
resolution results in no applicable methods, results in an ambiguity, or results in a single best
method but that method is either static or not public, or its return type is not bool, an error is
produced and no further steps are taken.

o The collection type is X, the enumerator type is E, and the iteration type is the type of the
Current property.

• Otherwise, check for an enumerable interface:

o If among all the types Ti for which there is an implicit conversion from X to IEnumerable<i>,
there is a unique type T such that T is not dynamic and for all the other Ti there is an implicit
conversion from IEnumerable<T> to IEnumerable<Ti>, then the collection type is the interface
IEnumerable<T>, the enumerator type is the interface IEnumerator<T>, and the iteration type
is T.

o Otherwise, if there is more than one such type T, then an error is produced and no further steps
are taken.

o Otherwise, if there is an implicit conversion from X to the System.Collections.IEnumerable
interface, then the collection type is this interface, the enumerator type is the interface
System.Collections.IEnumerator, and the iteration type is object.

o Otherwise, an error is produced and no further steps are taken.

The above steps, if successful, unambiguously produce a collection type C, enumerator type E and
iteration type T. A foreach statement of the form

foreach (V v in x) «embedded_statement»

is then expanded to:

{
 E e = ((C)(x)).GetEnumerator();
 try
 {
 while (e.MoveNext())
 {
 V v = (V)(T)e.Current;
 «embedded_statement»
 }
 }
 finally

Chapter 12 Statements

283

 {
 ... // Dispose e
 }
}

The variable e is not visible to or accessible to the expression x or the embedded statement or any other
source code of the program. The variable v is read-only in the embedded statement. If there is not an
explicit conversion (§10.3) from T (the iteration type) to V (the local_variable_type in the foreach
statement), an error is produced and no further steps are taken.

Note: If x has the value null, a System.NullReferenceException is thrown at run-time. end note

An implementation is permitted to implement a given foreach_statement differently; e.g., for performance
reasons, as long as the behavior is consistent with the above expansion.

The placement of v inside the while loop is important for how it is captured (§11.16.6.2) by any
anonymous function occurring in the embedded_statement.

Example:

int[] values = { 7, 9, 13 };
Action f = null;
foreach (var value in values)
{
 if (f == null)
 {
 f = () => Console.WriteLine("First value: " + value);
 }
}
f();

If v in the expanded form were declared outside of the while loop, it would be shared among all
iterations, and its value after the for loop would be the final value, 13, which is what the invocation
of f would print. Instead, because each iteration has its own variable v, the one captured by f in the
first iteration will continue to hold the value 7, which is what will be printed. (Note that earlier
versions of C# declared v outside of the while loop.)

end example

The body of the finally block is constructed according to the following steps:

• If there is an implicit conversion from E to the System.IDisposable interface, then

o If E is a non-nullable value type then the finally clause is expanded to the semantic equivalent
of:

finally
{
 ((System.IDisposable)e).Dispose();
}

o Otherwise the finally clause is expanded to the semantic equivalent of:

finally
{
 System.IDisposable d = e as System.IDisposable;
 if (d != null)
 {
 d.Dispose();

ECMA-334

284

 }
}

except that if E is a value type, or a type parameter instantiated to a value type, then the
conversion of e to System.IDisposable shall not cause boxing to occur.

• Otherwise, if E is a sealed type, the finally clause is expanded to an empty block:

finally {}

• Otherwise, the finally clause is expanded to:

finally
{
 System.IDisposable d = e as System.IDisposable;
 if (d != null)
 {
 d.Dispose();
 }
}

The local variable d is not visible to or accessible to any user code. In particular, it does not conflict with
any other variable whose scope includes the finally block.

The order in which foreach traverses the elements of an array, is as follows: For single-dimensional
arrays elements are traversed in increasing index order, starting with index 0 and ending with index
Length – 1. For multi-dimensional arrays, elements are traversed such that the indices of the rightmost
dimension are increased first, then the next left dimension, and so on to the left.

Example: The following example prints out each value in a two-dimensional array, in element order:

using System;
class Test
{
 static void Main()
 {
 double[,] values =
 {
 {1.2, 2.3, 3.4, 4.5},
 {5.6, 6.7, 7.8, 8.9}
 };
 foreach (double elementValue in values)
 {
 Console.Write("${elementValue} ");
 }
 Console.WriteLine();
 }
}

The output produced is as follows:

1.2 2.3 3.4 4.5 5.6 6.7 7.8 8.9

end example

Example: In the following example

int[] numbers = { 1, 3, 5, 7, 9 };
foreach (var n in numbers)
{

Chapter 12 Statements

285

 Console.WriteLine(n);
}

the type of n is inferred to be int, the iteration type of numbers.

end example

12.10 Jump statements

12.10.1 General

Jump statements unconditionally transfer control.

jump_statement
 : break_statement
 | continue_statement
 | goto_statement
 | return_statement
 | throw_statement
 ;

The location to which a jump statement transfers control is called the target of the jump statement.

When a jump statement occurs within a block, and the target of that jump statement is outside that block,
the jump statement is said to exit the block. While a jump statement can transfer control out of a block, it
can never transfer control into a block.

Execution of jump statements is complicated by the presence of intervening try statements. In the
absence of such try statements, a jump statement unconditionally transfers control from the jump
statement to its target. In the presence of such intervening try statements, execution is more complex. If
the jump statement exits one or more try blocks with associated finally blocks, control is initially
transferred to the finally block of the innermost try statement. When and if control reaches the end
point of a finally block, control is transferred to the finally block of the next enclosing try statement.
This process is repeated until the finally blocks of all intervening try statements have been executed.

Example: In the following code

using System;
class Test
{
 static void Main()
 {
 while (true)
 {
 try
 {
 try
 {
 Console.WriteLine("Before break");
 break;
 }
 finally
 {
 Console.WriteLine("Innermost finally block");
 }
 }

ECMA-334

286

 finally
 {
 Console.WriteLine("Outermost finally block");
 }
 }
 Console.WriteLine("After break");
 }
}

the finally blocks associated with two try statements are executed before control is transferred to
the target of the jump statement. The output produced is as follows:

Before break
Innermost finally block
Outermost finally block
After break

end example

12.10.2 The break statement

The break statement exits the nearest enclosing switch, while, do, for, or foreach statement.

break_statement
 : 'break' ';'
 ;

The target of a break statement is the end point of the nearest enclosing switch, while, do, for, or
foreach statement. If a break statement is not enclosed by a switch, while, do, for, or foreach statement,
a compile-time error occurs.

When multiple switch, while, do, for, or foreach statements are nested within each other, a break
statement applies only to the innermost statement. To transfer control across multiple nesting levels, a
goto statement (§12.10.4) shall be used.

A break statement cannot exit a finally block (§12.11). When a break statement occurs within a finally
block, the target of the break statement shall be within the same finally block; otherwise a compile-time
error occurs.

A break statement is executed as follows:

• If the break statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control
reaches the end point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all intervening try
statements have been executed.

• Control is transferred to the target of the break statement.

Because a break statement unconditionally transfers control elsewhere, the end point of a break
statement is never reachable.

12.10.3 The continue statement

The continue statement starts a new iteration of the nearest enclosing while, do, for, or foreach
statement.

Chapter 12 Statements

287

continue_statement
 : 'continue' ';'
 ;

The target of a continue statement is the end point of the embedded statement of the nearest enclosing
while, do, for, or foreach statement. If a continue statement is not enclosed by a while, do, for, or
foreach statement, a compile-time error occurs.

When multiple while, do, for, or foreach statements are nested within each other, a continue statement
applies only to the innermost statement. To transfer control across multiple nesting levels, a goto
statement (§12.10.4) shall be used.

A continue statement cannot exit a finally block (§12.11). When a continue statement occurs within a
finally block, the target of the continue statement shall be within the same finally block; otherwise a
compile-time error occurs.

A continue statement is executed as follows:

• If the continue statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control
reaches the end point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all intervening try
statements have been executed.

• Control is transferred to the target of the continue statement.

Because a continue statement unconditionally transfers control elsewhere, the end point of a continue
statement is never reachable.

12.10.4 The goto statement

The goto statement transfers control to a statement that is marked by a label.

goto_statement
 : 'goto' identifier ';'
 | 'goto' 'case' constant_expression ';'
 | 'goto' 'default' ';'
 ;

The target of a goto identifier statement is the labeled statement with the given label. If a label with the
given name does not exist in the current function member, or if the goto statement is not within the scope
of the label, a compile-time error occurs.

Note: This rule permits the use of a goto statement to transfer control out of a nested scope, but not
into a nested scope. In the example

using System;

class Test
{
 static void Main(string[] args)
 {
 string[,] table =
 {
 {"Red", "Blue", "Green"},
 {"Monday", "Wednesday", "Friday"}
 };
 foreach (string str in args)

ECMA-334

288

 {
 int row, colm;
 for (row = 0; row <= 1; ++row)
 {
 for (colm = 0; colm <= 2; ++colm)
 {
 if (str == table[row,colm])
 {
 goto done;
 }
 }
 }
 Console.WriteLine($"{str} not found");
 continue;
 done:
 Console.WriteLine($"Found {str} at [{row}][{colm}]");
 }
 }
}

a goto statement is used to transfer control out of a nested scope.

end note

The target of a goto case statement is the statement list in the immediately enclosing switch statement
(§12.8.3) which contains acase label with the given constant value. If the goto case statement is not
enclosed by a switch statement, if the constant_expression is not implicitly convertible (§10.2) to the
governing type of the nearest enclosing switch statement, or if the nearest enclosing switch statement
does not contain a case label with the given constant value, a compile-time error occurs.

The target of a goto default statement is the statement list in the immediately enclosing switch
statement (§12.8.3), which contains a default label. If the goto default statement is not enclosed by a
switch statement, or if the nearest enclosing switch statement does not contain a default label, a
compile-time error occurs.

A goto statement cannot exit a finally block (§12.11). When a goto statement occurs within a finally
block, the target of the goto statement shall be within the same finally block, or otherwise a compile-
time error occurs.

A goto statement is executed as follows:

• If the goto statement exits one or more try blocks with associated finally blocks, control is
initially transferred to the finally block of the innermost try statement. When and if control
reaches the end point of a finally block, control is transferred to the finally block of the next
enclosing try statement. This process is repeated until the finally blocks of all intervening try
statements have been executed.

• Control is transferred to the target of the goto statement.

Because a goto statement unconditionally transfers control elsewhere, the end point of a goto statement
is never reachable.

12.10.5 The return statement

The return statement returns control to the current caller of the function member in which the return
statement appears.

Chapter 12 Statements

289

return_statement
 : 'return' expression? ';'
 ;

A function member is said to compute a value if it is a method with a non-void result type (§14.6.11), the
get accessor of a property or indexer, or a user-defined operator. Function members that do not compute
a value are methods with the effective return type void, set accessors of properties and indexers, add and
remove accessors of event, instance constructors, static constructors and finalizers.

Within a function member, a return statement with no expression can only be used if the function
member does not compute a value. Within a function member, a return statement with an expression can
only be used if the function member computes a value. Where the return statement includes an
expression, an implicit conversion (§10.2) shall exist from the type of the expression to the effective
return type of the containing function member.

return statements can also be used in the body of anonymous function expressions (§11.16), and
participate in determining which conversions exist for those functions (§10.7.1).

It is a compile-time error for a return statement to appear in a finally block (§12.11).

A return statement is executed as follows:

• If the return statement specifies an expression, the expression is evaluated and its value is
converted to the effective return type of the containing function by an implicit conversion. The
result of the conversion becomes the result value produced by the function.

• If the return statement is enclosed by one or more try or catch blocks with associated finally
blocks, control is initially transferred to the finally block of the innermost try statement. When
and if control reaches the end point of a finally block, control is transferred to the finally block of
the next enclosing try statement. This process is repeated until the finally blocks of all enclosing
try statements have been executed.

• If the containing function is not an async function, control is returned to the caller of the containing
function along with the result value, if any.

• If the containing function is an async function, control is returned to the current caller, and the
result value, if any, is recorded in the return task as described in (§14.15.2).

Because a return statement unconditionally transfers control elsewhere, the end point of a return
statement is never reachable.

12.10.6 The throw statement

The throw statement throws an exception.

throw_statement
 : 'throw' expression? ';'
 ;

A throw statement with an expression throws an exception produced by evaluating the expression. The
expression shall be implicitly convertible to System.Exception, and the result of evaluating the
expression is converted to System.Exception before being thrown. If the result of the conversion is null,
a System.NullReferenceException is thrown instead.

A throw statement with no expression can be used only in a catch block, in which case, that statement re-
throws the exception that is currently being handled by that catch block.

ECMA-334

290

Because a throw statement unconditionally transfers control elsewhere, the end point of a throw
statement is never reachable.

When an exception is thrown, control is transferred to the first catch clause in an enclosing try statement
that can handle the exception. The process that takes place from the point of the exception being thrown
to the point of transferring control to a suitable exception handler is known as exception propagation.
Propagation of an exception consists of repeatedly evaluating the following steps until a catch clause that
matches the exception is found. In this description, the throw point is initially the location at which the
exception is thrown.

• In the current function member, each try statement that encloses the throw point is examined. For
each statement S, starting with the innermost try statement and ending with the outermost try
statement, the following steps are evaluated:

o If the try block of S encloses the throw point and if S has one or more catch clauses, the catch
clauses are examined in order of appearance to locate a suitable handler for the exception. The
first catch clause that specifies an exception type T (or a type parameter that at run-time
denotes an exception type T) such that the run-time type of E derives from T is considered a
match. If the clause contains an exception filter, the exception object is assigned to the exception
variable, and the exception filter is evaluated. When a catch clause contains an exception filter,
that catch clause is considered a match if the exception filter evaluates to true. A general catch
(§12.11) clause is considered a match for any exception type. If a matching catch clause is
located, the exception propagation is completed by transferring control to the block of that
catch clause.

o Otherwise, if the try block or a catch block of S encloses the throw point and if S has a finally
block, control is transferred to the finally block. If the finally block throws another
exception, processing of the current exception is terminated. Otherwise, when control reaches
the end point of the finally block, processing of the current exception is continued.

• If an exception handler was not located in the current function invocation, the function invocation is
terminated, and one of the following occurs:

o If the current function is non-async, the steps above are repeated for the caller of the function
with a throw point corresponding to the statement from which the function member was
invoked.

o If the current function is async and task-returning, the exception is recorded in the return task,
which is put into a faulted or cancelled state as described in §14.15.2.

o If the current function is async and void-returning, the synchronization context of the current
thread is notified as described in §14.15.3.

• If the exception processing terminates all function member invocations in the current thread,
indicating that the thread has no handler for the exception, then the thread is itself terminated. The
impact of such termination is implementation-defined.

12.11 The try statement
The try statement provides a mechanism for catching exceptions that occur during execution of a block.
Furthermore, the try statement provides the ability to specify a block of code that is always executed
when control leaves the try statement.

try_statement
 : 'try' block catch_clauses

Chapter 12 Statements

291

 | 'try' block catch_clauses* finally_clause
 ;

catch_clauses
 : specific_catch_clause+
 | specific_catch_clause* general_catch_clause
 ;

specific_catch_clause
 : 'catch' exception_specifier exception_filter? block
 | 'catch' exception_filter block
 ;

exception_specifier
 : '(' type identifier? ')'
 ;

exception_filter
 : 'when' '(' boolean_expression ')'
 ;

general_catch_clause
 : 'catch' block
 ;

finally_clause
 : 'finally' block
 ;

A try_statement consists of the keyword try followed by a block, then zero or more catch_clauses, then an
optional finally_clause. There must be at least one catch_clause or a finally_clause.

In an exception_specifier the type, or its effective base class if it is a type_parameter, shall be
System.Exception or a type that derives from it.

When a catch clause specifies both a class_type and an identifier, an exception variable of the given name
and type is declared. The exception variable corresponds to a local variable with a scope that extends
over the catch block. During execution of the exception_filter and catch block, the exception variable
represents the exception currently being handled. For purposes of definite assignment checking, the
exception variable is considered definitely assigned in its entire scope.

Unless a catch clause includes an exception variable name, it is impossible to access the exception object
in the filter and catch block.

A catch clause that specifies neither an exception type nor an exception variable name is called a general
catch clause. A try statement can only have one general catch clause, and, if one is present, it shall be the
last catch clause.

Note: Some programming languages might support exceptions that are not representable as an
object derived from System.Exception, although such exceptions could never be generated by
C# code. A general catch clause might be used to catch such exceptions. Thus, a general catch
clause is semantically different from one that specifies the type System.Exception, in that the
former might also catch exceptions from other languages. end note

ECMA-334

292

In order to locate a handler for an exception, catch clauses are examined in lexical order. If a catch clause
specifies a type but no exception filter, it is a compile-time error for a later catch clause of the same try
statement to specify a type that is the same as, or is derived from, that type.

Note: Without this restriction, it would be possible to write unreachable catch clauses. end note

Within a catch block, a throw statement (§12.10.6) with no expression can be used to re-throw the
exception that was caught by the catch block. Assignments to an exception variable do not alter the
exception that is re-thrown.

Example: In the following code

using System;

class Test
{
 static void F()
 {
 try
 {
 G();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception in F: " + e.Message);
 e = new Exception("F");
 throw; // re-throw
 }
 }

 static void G() => throw new Exception("G");

 static void Main()
 {
 try
 {
 F();
 }
 catch (Exception e)
 {
 Console.WriteLine("Exception in Main: " + e.Message);
 }
 }
}

the method F catches an exception, writes some diagnostic information to the console, alters the
exception variable, and re-throws the exception. The exception that is re-thrown is the original
exception, so the output produced is:

Exception in F: G
Exception in Main: G

If the first catch block had thrown e instead of rethrowing the current exception, the output
produced would be as follows:

Exception in F: G
Exception in Main: F

Chapter 12 Statements

293

end example

It is a compile-time error for a break, continue, or goto statement to transfer control out of a finally
block. When a break, continue, or goto statement occurs in a finally block, the target of the statement
shall be within the same finally block, or otherwise a compile-time error occurs.

It is a compile-time error for a return statement to occur in a finally block.

When execution reaches atry statement, control is transferred to the try block. If control reaches the end
point of the try block without an exception being propagated, control is transferred to the finally block
if one exists. If no finally block exists, control is transferred to the end point of the try statement.

If an exception has been propagated, the catch clauses, if any, are examined in lexical order seeking the
first match for the exception. The search for a matching catch clause continues with all enclosing blocks
as described in §12.10.6. A catch clause is a match if the exception type matches any exception_specifier
and any exception_filter is true. A catch clause without an exception_specifier matches any exception type.
The exception type matches the exception_specifier when the exception_specifier specifies the exception
type or a base type of the exception type. If the clause contains an exception filter, the exception object is
assigned to the exception variable, and the exception filter is evaluated.

If an exception has been propagated and a matching catch clause is found, control is transferred to the
first matching catch block. If control reaches the end point of the catch block without an exception being
propagated, control is transferred to the finally block if one exists. If no finally block exists, control is
transferred to the end point of the try statement. If an exception has been propagated from the catch
block, control transfers to the finally block if one exists. The exception is propagated to the next
enclosing try statement.

If an exception has been propagated, and no matching catch clause is found, control transfers to the
finally block, if it exists. The exception is propagated to the next enclosing try statement.

The statements of a finally block are always executed when control leaves a try statement. This is true
whether the control transfer occurs as a result of normal execution, as a result of executing a break,
continue, goto, or return statement, or as a result of propagating an exception out of the try statement. If
control reaches the end point of the finally block without an exception being propagated, control is
transferred to the end point of the try statement.

If an exception is thrown during execution of a finally block, and is not caught within the same finally
block,the exception is propagated to the next enclosing try statement. If another exception was in the
process of being propagated, that exception is lost. The process of propagating an exception is discussed
further in the description of the throw statement (§12.10.6).

Example: In the following code

using System;

public class Test
{
 static void Main()
 {
 try
 {
 Method();
 }
 catch (Exception ex) when (ExceptionFilter(ex))
 {
 Console.WriteLine("Catch");

ECMA-334

294

 }

 bool ExceptionFilter(Exception ex)
 {
 Console.WriteLine("Filter");
 return true;
 }
 }

 static void Method()
 {
 try
 {
 throw new ArgumentException();
 }
 finally
 {
 Console.WriteLine("Finally");
 }
 }
}

the method Method throws an exception. The first action is to examine the enclosing catch clauses,
executing any exception filters. Then, the finally clause in Method executes before control transfers
to the enclosing matching catch clause. The resulting output is:

Filter
Finally
Catch

end example

The try block of a try statement is reachable if the try statement is reachable.

A catch block of a try statement is reachable if the try statement is reachable.

The finally block of a try statement is reachable if the try statement is reachable.

The end point of a try statement is reachable if both of the following are true:

• The end point of the try block is reachable or the end point of at least one catch block is reachable.

• If a finally block is present, the end point of the finally block is reachable.

12.12 The checked and unchecked statements
The checked and unchecked statements are used to control the overflow-checking context for integral-
type arithmetic operations and conversions.

checked_statement
 : 'checked' block
 ;

unchecked_statement
 : 'unchecked' block
 ;

Chapter 12 Statements

295

The checked statement causes all expressions in the block to be evaluated in a checked context, and the
unchecked statement causes all expressions in the block to be evaluated in an unchecked context.

The checked and unchecked statements are precisely equivalent to the checked and unchecked operators
(§11.7.18), except that they operate on blocks instead of expressions.

12.13 The lock statement
The lock statement obtains the mutual-exclusion lock for a given object, executes a statement, and then
releases the lock.

lock_statement
 : 'lock' '(' expression ')' embedded_statement
 ;

The expression of a lock statement shall denote a value of a type known to be a reference. No implicit
boxing conversion (§10.2.9) is ever performed for the expression of a lock statement, and thus it is a
compile-time error for the expression to denote a value of a value_type.

A lock statement of the form

lock (x) …

where x is an expression of a reference_type, is precisely equivalent to:

bool __lockWasTaken = false;
try
{
 System.Threading.Monitor.Enter(x, ref __lockWasTaken);
 ...
}
finally
{
 if (__lockWasTaken)
 {
 System.Threading.Monitor.Exit(x);
 }
}

except that x is only evaluated once.

While a mutual-exclusion lock is held, code executing in the same execution thread can also obtain and
release the lock. However, code executing in other threads is blocked from obtaining the lock until the
lock is released.

12.14 The using statement
The using statement obtains one or more resources, executes a statement, and then disposes of the
resource.

using_statement
 : 'using' '(' resource_acquisition ')' embedded_statement
 ;

resource_acquisition
 : local_variable_declaration

ECMA-334

296

 | expression
 ;

A resource is a class or struct that implements the System.IDisposable interface, which includes a single
parameterless method named Dispose. Code that is using a resource can call Dispose to indicate that the
resource is no longer needed.

If the form of resource_acquisition is local_variable_declaration then the type of the
local_variable_declaration shall be either dynamic or a type that can be implicitly converted to
System.IDisposable. If the form of resource_acquisition is expression then this expression shall be
implicitly convertible to System.IDisposable.

Local variables declared in a resource_acquisition are read-only, and shall include an initializer. A compile-
time error occurs if the embedded statement attempts to modify these local variables (via assignment or
the ++ and -- operators), take the address of them, or pass them as ref or out parameters.

A using statement is translated into three parts: acquisition, usage, and disposal. Usage of the resource is
implicitly enclosed in a try statement that includes a finally clause. This finally clause disposes of the
resource. If a null resource is acquired, then no call to Dispose is made, and no exception is thrown. If the
resource is of type dynamic it is dynamically converted through an implicit dynamic conversion
(§10.2.10) to IDisposable during acquisition in order to ensure that the conversion is successful before
the usage and disposal.

A using statement of the form

using (ResourceType resource = «expression») «statement»

corresponds to one of three possible expansions. When ResourceType is a non-nullable value type or a
type parameter with the value type constraint (§14.2.5), the expansion is semantically equivalent to

{
 ResourceType resource = «expression»;
 try
 {
 «statement»;
 }
 finally
 {
 ((IDisposable)resource).Dispose();
 }
}

except that the cast of resource to System.IDisposable shall not cause boxing to occur.

Otherwise, when ResourceType is dynamic, the expansion is

{
 ResourceType resource = «expression»;
 IDisposable d = resource;
 try
 {
 «statement»;
 }
 finally
 {
 if (d != null)
 {
 d.Dispose();

Chapter 12 Statements

297

 }
 }
}

Otherwise, the expansion is

{
 ResourceType resource = «expression»;
 try
 {
 «statement»;
 }
 finally
 {
 IDisposable d = (IDisposable)resource;
 if (d != null)
 {
 d.Dispose();
 }
 }
}

In any expansion, the resource variable is read-only in the embedded statement, and the d variable is
inaccessible in, and invisible to, the embedded statement.

An implementation is permitted to implement a given using_statement differently, e.g., for performance
reasons, as long as the behavior is consistent with the above expansion.

A using statement of the form:

using («expression») «statement»

has the same three possible expansions. In this case ResourceType is implicitly the compile-time type of
the expression, if it has one. Otherwise the interface IDisposable itself is used as the ResourceType. The
resource variable is inaccessible in, and invisible to, the embedded statement.

When a resource_acquisition takes the form of a local_variable_declaration, it is possible to acquire
multiple resources of a given type. A using statement of the form

using (ResourceType r1 = e1, r2 = e2, ..., rN = eN) «statement»

is precisely equivalent to a sequence of nested using statements:

using (ResourceType r1 = e1)
using (ResourceType r2 = e2)
...
using (ResourceType rN = eN)
«statement»

Example: The example below creates a file named log.txt and writes two lines of text to the file. The
example then opens that same file for reading and copies the contained lines of text to the console.

using System;
using System.IO;

class Test
{
 static void Main()
 {
 using (TextWriter w = File.CreateText("log.txt"))

ECMA-334

298

 {
 w.WriteLine("This is line one");
 w.WriteLine("This is line two");
 }
 using (TextReader r = File.OpenText("log.txt"))
 {
 string s;
 while ((s = r.ReadLine()) != null)
 {
 Console.WriteLine(s);
 }
 }
 }
}

Since the TextWriter and TextReader classes implement the IDisposable interface, the example
can use using statements to ensure that the underlying file is properly closed following the write or
read operations.

end example

12.15 The yield statement
The yield statement is used in an iterator block (§12.3) to yield a value to the enumerator object
(§14.14.5) or enumerable object (§14.14.6) of an iterator or to signal the end of the iteration.

yield_statement
 : 'yield' 'return' expression ';'
 | 'yield' 'break' ';'
 ;

yield is a contextual keyword (§6.4.4) and has special meaning only when used immediately before a
return or break keyword.

There are several restrictions on where a yield statement can appear, as described in the following.

• It is a compile-time error for a yield statement (of either form) to appear outside a method_body,
operator_body, or accessor_body.

• It is a compile-time error for a yield statement (of either form) to appear inside an anonymous
function.

• It is a compile-time error for a yield statement (of either form) to appear in the finally clause of a
try statement.

• It is a compile-time error for a yield return statement to appear anywhere in a try statement that
contains any catch_clauses.

Example: The following example shows some valid and invalid uses of yield statements.

delegate IEnumerable<int> D();

IEnumerator<int> GetEnumerator()
{
 try
 {
 yield return 1; // Ok
 yield break; // Ok

Chapter 12 Statements

299

 }
 finally
 {
 yield return 2; // Error, yield in finally
 yield break; // Error, yield in finally
 }
 try
 {
 yield return 3; // Error, yield return in try/catch
 yield break; // Ok
 }
 catch
 {
 yield return 4; // Error, yield return in try/catch
 yield break; // Ok
 }
 D d = delegate
 {
 yield return 5; // Error, yield in an anonymous function
 };
}

int MyMethod()
{
 yield return 1; // Error, wrong return type for an iterator block
}

end example

An implicit conversion (§10.2) shall exist from the type of the expression in the yield return statement
to the yield type (§14.14.4) of the iterator.

A yield return statement is executed as follows:

• The expression given in the statement is evaluated, implicitly converted to the yield type, and
assigned to the Current property of the enumerator object.

• Execution of the iterator block is suspended. If the yield return statement is within one or more
try blocks, the associated finally blocks are not executed at this time.

• The MoveNext method of the enumerator object returns true to its caller, indicating that the
enumerator object successfully advanced to the next item.

The next call to the enumerator object’s MoveNext method resumes execution of the iterator block from
where it was last suspended.

A yield break statement is executed as follows:

• If the yield break statement is enclosed by one or more try blocks with associated finally blocks,
control is initially transferred to the finally block of the innermost try statement. When and if
control reaches the end point of a finally block, control is transferred to the finally block of the
next enclosing try statement. This process is repeated until the finally blocks of all enclosing try
statements have been executed.

• Control is returned to the caller of the iterator block. This is either the MoveNext method or Dispose
method of the enumerator object.

ECMA-334

300

Because a yield break statement unconditionally transfers control elsewhere, the end point of a yield
break statement is never reachable.

Chapter 13 Namespaces

301

13. Namespaces

13.1 General
C# programs are organized using namespaces. Namespaces are used both as an “internal” organization
system for a program, and as an “external” organization system—a way of presenting program elements
that are exposed to other programs.

Using directives (§13.5) are provided to facilitate the use of namespaces.

13.2 Compilation units
A compilation_unit consists of zero or more extern_alias_directives followed by zero or more
using_directives followed by zero or more global_attributes followed by zero or more
namespace_member_declarations. The compilation_unit defines the overall structure of the input.

compilation_unit
 : extern_alias_directive* using_directive* global_attributes?
 namespace_member_declaration*
 ;

A C# program consists of one or more compilation units. When a C# program is compiled, all of the
compilation units are processed together. Thus, compilation units can depend on each other, possibly in a
circular fashion.

The extern_alias_directives of a compilation unit affect the using_directives, global_attributes and
namespace_member_declarations of that compilation unit, but have no effect on other compilation units.

The using_directives of a compilation unit affect the global_attributes and namespace_member_declarations
of that compilation unit, but have no effect on other compilation units.

The global_attributes (§21.3) of a compilation unit permit the specification of attributes for the target
assembly and module. Assemblies and modules act as physical containers for types. An assembly may
consist of several physically separate modules.

The namespace_member_declarations of each compilation unit of a program contribute members to a
single declaration space called the global namespace.

Example:

File A.cs:
 class A {}
File B.cs:
 class B {}

The two compilation units contribute to the single global namespace, in this case declaring two
classes with the fully qualified names A and B. Because the two compilation units contribute to the
same declaration space, it would have been an error if each contained a declaration of a member
with the same name.

end example

ECMA-334

302

13.3 Namespace declarations
A namespace_declaration consists of the keyword namespace, followed by a namespace name and body,
optionally followed by a semicolon.

namespace_declaration
 : 'namespace' qualified_identifier namespace_body ';'?
 ;

qualified_identifier
 : identifier ('.' identifier)*
 ;

namespace_body
 : '{' extern_alias_directive* using_directive* namespace_member_declaration*
'}'
 ;

A namespace_declaration may occur as a top-level declaration in a compilation_unit or as a member
declaration within another namespace_declaration. When a namespace_declaration occurs as a top-level
declaration in a compilation_unit, the namespace becomes a member of the global namespace. When a
namespace_declaration occurs within another namespace_declaration, the inner namespace becomes a
member of the outer namespace. In either case, the name of a namespace shall be unique within the
containing namespace.

Namespaces are implicitly public and the declaration of a namespace cannot include any access
modifiers.

Within a namespace_body, the optional using_directives import the names of other namespaces, types and
members, allowing them to be referenced directly instead of through qualified names. The optional
namespace_member_declarations contribute members to the declaration space of the namespace. Note
that all using_directives must appear before any member declarations.

The qualified_identifier of a namespace_declaration may be a single identifier or a sequence of identifiers
separated by “.” tokens. The latter form permits a program to define a nested namespace without
lexically nesting several namespace declarations.

Example:

namespace N1.N2
{
 class A {}
 class B {}
}

is semantically equivalent to

namespace N1
{
 namespace N2
 {
 class A {}
 class B {}
 }
}

end example

Chapter 13 Namespaces

303

Namespaces are open-ended, and two namespace declarations with the same fully qualified name (§7.8.2)
contribute to the same declaration space (§7.3).

Example: In the following code

namespace N1.N2
{
 class A {}
}

namespace N1.N2
{
 class B {}
}

the two namespace declarations above contribute to the same declaration space, in this case
declaring two classes with the fully qualified names N1.N2.A and N1.N2.B. Because the two
declarations contribute to the same declaration space, it would have been an error if each contained
a declaration of a member with the same name.

end example

13.4 Extern alias directives
An extern_alias_directive introduces an identifier that serves as an alias for a namespace. The specification
of the aliased namespace is external to the source code of the program and applies also to nested
namespaces of the aliased namespace.

extern_alias_directive
 : 'extern' 'alias' identifier ';'
 ;

The scope of an extern_alias_directive extends over the using_directives, global_attributes and
namespace_member_declarations of its immediately containing compilation_unit or namespace_body.

Within a compilation unit or namespace body that contains an extern_alias_directive, the identifier
introduced by the extern_alias_directive can be used to reference the aliased namespace. It is a compile-
time error for the identifier to be the word global.

The alias introduced by an extern_alias_directive is very similar to the alias introduced by a
using_alias_directive. See §13.5.2 for more detailed discussion of extern_alias_directives and
using_alias_directives.

alias is a contextual keyword (§6.4.4) and only has special meaning when it immediately follows the
extern keyword in an extern_alias_directive.

An error occurs if a program declares an extern alias for which no external definition is provided.

Example: The following program declares and uses two extern aliases, X and Y, each of which
represent the root of a distinct namespace hierarchy:

extern alias X;
extern alias Y;

class Test
{
 X::N.A a;
 X::N.B b1;

ECMA-334

304

 Y::N.B b2;
 Y::N.C c;
}

The program declares the existence of the extern aliases X and Y, but the actual definitions of the
aliases are external to the program. The identically named N.B classes can now be referenced as
X.N.B and Y.N.B, or, using the namespace alias qualifier, X::N.B and Y::N.B. end example

13.5 Using directives

13.5.1 General

Using directives facilitate the use of namespaces and types defined in other namespaces. Using directives
impact the name resolution process of namespace_or_type_names (§7.8) and simple_names (§11.7.4), but
unlike declarations, using_directives do not contribute new members to the underlying declaration spaces
of the compilation units or namespaces within which they are used.

using_directive
 : using_alias_directive
 | using_namespace_directive
 | using_static_directive
 ;

A using_alias_directive (§13.5.2) introduces an alias for a namespace or type.

A using_namespace_directive (§13.5.3) imports the type members of a namespace.

A using_static_directive (§13.5.4) imports the nested types and static members of a type.

The scope of a using_directive extends over the namespace_member_declarations of its immediately
containing compilation unit or namespace body. The scope of a using_directive specifically does not
include its peer using_directives. Thus, peer using_directives do not affect each other, and the order in
which they are written is insignificant. In contrast, the scope of an extern_alias_directive includes the
using_directives defined in the same compilation unit or namespace body.

13.5.2 Using alias directives

A using_alias_directive introduces an identifier that serves as an alias for a namespace or type within the
immediately enclosing compilation unit or namespace body.

using_alias_directive
 : 'using' identifier '=' namespace_or_type_name ';'
 ;

Within global attributes and member declarations in a compilation unit or namespace body that contains
a using_alias_directive, the identifier introduced by the using_alias_directive can be used to reference the
given namespace or type.

Example:

namespace N1.N2
{
 class A {}
}
namespace N3
{
 using A = N1.N2.A;

Chapter 13 Namespaces

305

 class B: A {}
}

Above, within member declarations in the N3 namespace, A is an alias for N1.N2.A, and thus class
N3.B derives from class N1.N2.A. The same effect can be obtained by creating an alias R for N1.N2
and then referencing R.A:

namespace N3
{
 using R = N1.N2;

 class B : R.A {}
}

end example

Within using directives, global attributes and member declarations in a compilation unit or namespace
body that contains an extern_alias_directive, the identifier introduced by the extern_alias_directive can be
used to reference the associated namespace.

Example: For example:

namespace N1
{
 extern alias N2;

 class B : N2::A {}
}

Above, within member declarations in the N1 namespace, N2 is an alias for some namespace whose
definition is external to the source code of the program. Class N1.B derives from class N2.A. The
same effect can be obtained by creating an alias A for N2.A and then referencing A:

namespace N1
{
 extern alias N2;

 using A = N2::A;

 class B : A {}
}

end example

An extern_alias_directive or using_alias_directive makes an alias available within a particular compilation
unit or namespace body, but it does not contribute any new members to the underlying declaration space.
In other words, an alias directive is not transitive, but, rather, affects only the compilation unit or
namespace body in which it occurs.

Example: In the following code

namespace N3
{
 extern alias R1;

 using R2 = N1.N2;
}

ECMA-334

306

namespace N3
{
 class B : R1::A, R2.I {} // Error, R1 and R2 unknown
}

the scopes of the alias directives that introduce R1 and R2 only extend to member declarations in the
namespace body in which they are contained, so R1 and R2 are unknown in the second namespace
declaration. However, placing the alias directives in the containing compilation unit causes the alias
to become available within both namespace declarations:

extern alias R1;

using R2 = N1.N2;

namespace N3
{
 class B : R1::A, R2.I {}
}

namespace N3
{
 class C : R1::A, R2.I {}
}

end example

Each extern_alias_directive or using_alias_directive in a compilation_unit or namespace_body contributes a
name to the alias declaration space (§7.3) of the immediately enclosing compilation_unit or
namespace_body. The identifier of the alias directive shall be unique within the corresponding alias
declaration space. The alias identifier need not be unique within the global declaration space or the
declaration space of the corresponding namespace.

Example:

extern alias A;
extern alias B;

using A = N1.N2; // Error: alias A already exists

class B {} // Ok

The using alias named A causes an error since there is already an alias named A in the same
compilation unit. The class named B does not conflict with the extern alias named B since these
names are added to distinct declaration spaces. The former is added to the global declaration space
and the latter is added to the alias declaration space for this compilation unit.

When an alias name matches the name of a member of a namespace, usage of either must be
appropriately qualified:

namespace N1.N2
{
 class B {}
}

namespace N3
{
 class A {}

Chapter 13 Namespaces

307

 class B : A {}
}

namespace N3
{
 using A = N1.N2;
 using B = N1.N2.B;

 class W : B {} // Error: B is ambiguous
 class X : A.B {} // Error: A is ambiguous
 class Y : A::B {} // Ok: uses N1.N2.B
 class Z : N3.B {} // Ok: uses N3.B
}

In the second namespace body for N3, unqualified use of B results in an error, since N3 contains a
member named B and the namespace body that also declares an alias with name B; likewise for A.
The class N3.B can be referenced as N3.B or global::N3.B. The alias A can be used in a qualified-
alias-member (§13.8), such as A::B. The alias B is essentially useless. It cannot be used in a
qualified_alias_member since only namespace aliases can be used in a qualified_alias_member and B
aliases a type.

end example

Just like regular members, names introduced by alias_directives are hidden by similarly named members
in nested scopes.

Example: In the following code

using R = N1.N2;

namespace N3
{
 class R {}
 class B: R.A {} // Error, R has no member A
}

the reference to R.A in the declaration of B causes a compile-time error because R refers to N3.R, not
N1.N2.

end example

The order in which extern_alias_directives are written has no significance. Likewise, the order in which
using_alias_directives are written has no significance, but all using_alias_directives must come after all
extern_alias_directives in the same compilation unit or namespace body. Resolution of the
namespace_or_type_name referenced by a using_alias_directive is not affected by the using_alias_directive
itself or by other using_directives in the immediately containing compilation unit or namespace body, but
may be affected by extern_alias_directives in the immediately containing compilation unit or namespace
body. In other words, the namespace_or_type_name of a using_alias_directive is resolved as if the
immediately containing compilation unit or namespace body had no using_directives but has the correct
set of extern_alias_directives.

Example: In the following code

namespace N1.N2 {}

namespace N3
{

ECMA-334

308

 extern alias E;

 using R1 = E::N; // OK
 using R2 = N1; // OK
 using R3 = N1.N2; // OK
 using R4 = R2.N2; // Error, R2 unknown
}

the last using_alias_directive results in a compile-time error because it is not affected by the
previous using_alias_directive. The first using_alias_directive does not result in an error since the
scope of the extern alias E includes the using_alias_directive.

end example

A using_alias_directive can create an alias for any namespace or type, including the namespace within
which it appears and any namespace or type nested within that namespace.

Accessing a namespace or type through an alias yields exactly the same result as accessing that
namespace or type through its declared name.

Example: Given

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using R1 = N1;
 using R2 = N1.N2;

 class B
 {
 N1.N2.A a; // refers to N1.N2.A
 R1.N2.A b; // refers to N1.N2.A
 R2.A c; // refers to N1.N2.A
 }
}

the names N1.N2.A, R1.N2.A, and R2.A are equivalent and all refer to the class declaration whose
fully qualified name is N1.N2.A.

end example

Although each part of a partial type (§14.2.7) is declared within the same namespace, the parts are
typically written within different namespace declarations. Thus, different extern_alias_directives and
using_directives can be present for each part. When interpreting simple names (§11.7.4) within one part,
only the extern_alias_directives and using_directives of the namespace bodies and compilation unit
enclosing that part are considered. This may result in the same identifier having different meanings in
different parts.

Example:

namespace N
{
 using List = System.Collections.ArrayList;

Chapter 13 Namespaces

309

 partial class A
 {
 List x; // x has type System.Collections.ArrayList
 }
}

namespace N
{
 using List = Widgets.LinkedList;

 partial class A
 {
 List y; // y has type Widgets.LinkedList
 }
}

end example

Using aliases can name a closed constructed type, but cannot name an unbound generic type declaration
without supplying type arguments.

Example:

namespace N1
{
 class A<T>
 {
 class B {}
 }
}

namespace N2
{
 using W = N1.A; // Error, cannot name unbound generic type
 using X = N1.A.B; // Error, cannot name unbound generic type
 using Y = N1.A<int>; // Ok, can name closed constructed type
 using Z<T> = N1.A<T>; // Error, using alias cannot have type parameters
}

end example

13.5.3 Using namespace directives

A using_namespace_directive imports the types contained in a namespace into the immediately enclosing
compilation unit or namespace body, enabling the identifier of each type to be used without qualification.

using_namespace_directive
 : 'using' namespace_name ';'
 ;

Within member declarations in a compilation unit or namespace body that contains a
using_namespace_directive, the types contained in the given namespace can be referenced directly.

Example:

namespace N1.N2
{
 class A {}
}

ECMA-334

310

namespace N3
{
 using N1.N2;

 class B : A {}
}

Above, within member declarations in the N3 namespace, the type members of N1.N2 are directly
available, and thus class N3.B derives from class N1.N2.A.

end example

A using_namespace_directive imports the types contained in the given namespace, but specifically does
not import nested namespaces.

Example: In the following code

namespace N1.N2
{
 class A {}
}

namespace N3
{
 using N1;
 class B : N2.A {} // Error, N2 unknown
}

the using_namespace_directive imports the types contained in N1, but not the namespaces nested
in N1. Thus, the reference to N2.A in the declaration of B results in a compile-time error because no
members named N2 are in scope.

end example

Unlike a using_alias_directive, a using_namespace_directive may import types whose identifiers are already
defined within the enclosing compilation unit or namespace body. In effect, names imported by a
using_namespace_directive are hidden by similarly named members in the enclosing compilation unit or
namespace body.

Example:

namespace N1.N2
{
 class A {}
 class B {}
}

namespace N3
{
 using N1.N2;
 class A {}
}

Here, within member declarations in the N3 namespace, A refers to N3.A rather than N1.N2.A.

end example

Chapter 13 Namespaces

311

Because names may be ambiguous when more than one imported namespace introduces the same type
name, a using_alias_directive is useful to disambiguate the reference.

Example: In the following code

namespace N1
{
 class A {}
}

namespace N2
{
 class A {}
}

namespace N3
{
 using N1;
 using N2;

 class B : A {} // Error, A is ambiguous
}

both N1 and N2 contain a member A, and because N3 imports both, referencing A in N3 is a compile-
time error. In this situation, the conflict can be resolved either through qualification of references
to A, or by introducing a using_alias_directive that picks a particular A. For example:

namespace N3
{
 using N1;
 using N2;
 using A = N1.A;

 class B : A {} // A means N1.A
}

end example

Furthermore, when more than one namespace or type imported by using_namespace_directives or
using_static_directives in the same compilation unit or namespace body contain types or members by the
same name, references to that name as a simple_name are considered ambiguous.

Example:

namespace N1
{
 class A {}
}

class C
{
 public static int A;
}

namespace N2
{
 using N1;
 using static C;

ECMA-334

312

 class B
 {
 void M()
 {
 A a = new A(); // Ok, A is unambiguous as a type-name
 A.Equals(2); // Error, A is ambiguous as a simple-name
 }
 }
}

N1 contains a type member A, and C contains a static field A, and because N2 imports both,
referencing A as a simple_name is ambiguous and a compile-time error.

end example

Like a using_alias_directive, a using_namespace_directive does not contribute any new members to the
underlying declaration space of the compilation unit or namespace, but, rather, affects only the
compilation unit or namespace body in which it appears.

The namespace_name referenced by a using_namespace_directive is resolved in the same way as the
namespace_or_type_name referenced by a using_alias_directive. Thus, using_namespace_directives in the
same compilation unit or namespace body do not affect each other and can be written in any order.

13.5.4 Using static directives

A using_static_directive imports the nested types and static members contained directly in a type
declaration into the immediately enclosing compilation unit or namespace body, enabling the identifier of
each member and type to be used without qualification.

using_static_directive
 : 'using' 'static' type_name ';'
 ;

Within member declarations in a compilation unit or namespace body that contains a
using_static_directive, the accessible nested types and static members (except extension methods)
contained directly in the declaration of the given type can be referenced directly.

Example:

namespace N1
{
 class A
 {
 public class B {}
 public static B M() => new B();
 }
}

namespace N2
{
 using static N1.A;

 class C
 {
 void N()
 {

Chapter 13 Namespaces

313

 B b = M();
 }
 }
}

In the preceding code, within member declarations in the N2 namespace, the static members and
nested types of N1.A are directly available, and thus the method N is able to reference both the B and
M members of N1.A.

end example

A using_static_directive specifically does not import extension methods directly as static methods, but
makes them available for extension method invocation (§11.7.8.3).

Example:

namespace N1
{
 static class A
 {
 public static void M(this string s){}
 }
}

namespace N2
{
 using static N1.A;

 class B
 {
 void N()
 {
 M("A"); // Error, M unknown
 "B".M(); // Ok, M known as extension method
 N1.A.M("C"); // Ok, fully qualified
 }
 }
}

the using_static_directive imports the extension method M contained in N1.A, but only as an
extension method. Thus, the first reference to M in the body of B.N results in a compile-time error
because no members named M are in scope.

end example

A using_static_directive only imports members and types declared directly in the given type, not members
and types declared in base classes.

Example:

namespace N1
{
 static class A
 {
 public static void M(string s){}
 }

 static class B : A

ECMA-334

314

 {
 public static void M2(string s){}
 }
}

namespace N2
{
 using static N1.B;

 class C
 {
 void N()
 {
 M2("B"); // OK, calls B.M2
 M("C"); // Error. M unknown
 }
 }
}

the using_static_directive imports the method M2 contained in N1.B, but does not import the method
M contained in N1.A. Thus, the reference to M in the body of C.N results in a compile-time error
because no members named M are in scope. Developers must add a second using static directive
to specify that the methods in N1.A should also be imported.

end example

Ambiguities between multiple using_namespace_directives and using_static_directives are discussed in
§13.5.3.

13.6 Namespace member declarations
A namespace_member_declaration is either a namespace_declaration (§13.3) or a type_declaration (§13.7).

namespace_member_declaration
 : namespace_declaration
 | type_declaration
 ;

A compilation unit or a namespace body can contain namespace_member_declarations, and such
declarations contribute new members to the underlying declaration space of the containing compilation
unit or namespace body.

13.7 Type declarations
A type_declaration is a class_declaration (§14.2), a struct_declaration (§15.2), an interface_declaration
(§17.2), an enum_declaration (§18.2), or a delegate_declaration (§19.2).

type_declaration
 : class_declaration
 | struct_declaration
 | interface_declaration
 | enum_declaration
 | delegate_declaration
 ;

Chapter 13 Namespaces

315

A type_declaration can occur as a top-level declaration in a compilation unit or as a member declaration
within a namespace, class, or struct.

When a type declaration for a type T occurs as a top-level declaration in a compilation unit, the fully
qualified name (§7.8.2) of the type declaration is the same as the unqualified name of the declaration
(§7.8.2). When a type declaration for a type T occurs within a namespace, class, or struct declaration, the
fully qualified name (§7.8.3) of the type declarationis S.N, where S is the fully qualified name of the
containing namespace, class, or struct declaration, and N is the unqualified name of the declaration.

A type declared within a class or struct is called a nested type (§14.3.9).

The permitted access modifiers and the default access for a type declaration depend on the context in
which the declaration takes place (§7.5.2):

• Types declared in compilation units or namespaces can have public or internal access. The default
is internal access.

• Types declared in classes can have public, protected internal, protected, internal, or private
access. The default is private access.

• Types declared in structs can have public, internal, or private access. The default is private
access.

13.8 Qualified alias member

13.8.1 General

The namespace alias qualifier :: makes it possible to guarantee that type name lookups are unaffected
by the introduction of new types and members. The namespace alias qualifier always appears between
two identifiers referred to as the left-hand and right-hand identifiers. Unlike the regular . qualifier, the
left-hand identifier of the :: qualifier is looked up only as an extern or using alias.

A qualified_alias_member provides explicit access to the global namespace and to extern or using aliases
that are potentially hidden by other entities.

qualified_alias_member
 : identifier '::' identifier type_argument_list?
 ;

A qualified_alias_member can be used as a namespace_or_type_name (§7.8) or as the left operand in a
member_access (§11.7.6).

A qualified_alias_member consists of two identifiers, referred to as the left-hand and right-hand
identifiers, seperated by the :: token and optionally followed by a type_argument_list. When the left-hand
identifier is global then the global namespace is searched for the right-hand identifier. For any other left-
hand identifier, that identifier is looked up as an extern or using alias (§13.4 and §13.5.2). A compile-time
error occurs if there is no such alias or the alias references a type. If the alias references a namespace then
that namespace is searched for the right-hand identifier.

A qualified_alias_member has one of two forms:

• N::I<A1, ..., Ae>, where N and I represent identifiers, and <A1, ..., Ae> is a type argument list.
(e is always at least one.)

• N::I, where N and I represent identifiers. (In this case, e is considered to be zero.)

Using this notation, the meaning of a qualified_alias_member is determined as follows:

ECMA-334

316

• If N is the identifier global, then the global namespace is searched for I:

o If the global namespace contains a namespace named I and e is zero, then the
qualified_alias_member refers to that namespace.

o Otherwise, if the global namespace contains a non-generic type named I and e is zero, then the
qualified_alias_member refers to that type.

o Otherwise, if the global namespace contains a type named I that has e type parameters, then the
qualified_alias_member refers to that type constructed with the given type arguments.

o Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

• Otherwise, starting with the namespace declaration (§13.3) immediately containing the
qualified_alias_member (if any), continuing with each enclosing namespace declaration (if any), and
ending with the compilation unit containing the qualified_alias_member, the following steps are
evaluated until an entity is located:

o If the namespace declaration or compilation unit contains a using_alias_directive that associates
N with a type, then the qualified_alias_member is undefined and a compile-time error occurs.

o Otherwise, if the namespace declaration or compilation unit contains an extern_alias_directive or
using_alias_directive that associates N with a namespace, then:

• If the namespace associated with N contains a namespace named I and e is zero, then the
qualified_alias_member refers to that namespace.

• Otherwise, if the namespace associated with N contains a non-generic type named I and e is
zero, then the qualified_alias_member refers to that type.

• Otherwise, if the namespace associated with N contains a type named I that has e type
parameters, then the qualified_alias_member refers to that type constructed with the given
type arguments.

• Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

• Otherwise, the qualified_alias_member is undefined and a compile-time error occurs.

Example: In the code:

using S = System.Net.Sockets;

class A
{
 public static int x;
}

class C
{
 public void F(int A, object S)
 {
 // Use global::A.x instead of A.x
 global::A.x += A;
 // Use S::Socket instead of S.Socket
 S::Socket s = S as S::Socket;
 }
}

Chapter 13 Namespaces

317

the class A is referenced with global::A and the type System.Net.Sockets.Socket is referenced
with S::Socket. Using A.x and S.Socket instead would have caused compile-time errors because A
and S would have resolved to the parameters.

end example

Note: The identifier global has special meaning only when used as the left-hand identifier of a
qualified_alias_name. It is not a keyword and it is not itself an alias; it is a contextual keyword
(§6.4.4). In the code:

class A { }

class C
{
 global.A x; // Error: global is not defined
 global::A y; // Valid: References A in the global namespace
}

using global.A causes a compile-time error since there is no entity named global in scope. If some
entity named global were in scope, then global in global.A would have resolved to that entity.

Using global as the left-hand identifier of a qualified_alias_member always causes a lookup in the
global namespace, even if there is a using alias named global. In the code:

using global = MyGlobalTypes;

class A { }

class C
{
 global.A x; // Valid: References MyGlobalTypes.A
 global::A y; // Valid: References A in the global namespace
}

global.A resolves to MyGlobalTypes.A and global::A resolves to class A in the global namespace.

end note

13.8.2 Uniqueness of aliases

Each compilation unit and namespace body has a separate declaration space for extern aliases and using
aliases. Thus, while the name of an extern alias or using alias shall be unique within the set of extern
aliases and using aliases declared in the immediately containing compilation unit or namespace body, an
alias is permitted to have the same name as a type or namespace as long as it is used only with the
:: qualifier.

Example: In the following:

namespace N
{
 public class A {}
 public class B {}
}

namespace N
{
 using A = System.IO;

ECMA-334

318

 class X
 {
 A.Stream s1; // Error, A is ambiguous
 A::Stream s2; // Ok
 }
}

the name A has two possible meanings in the second namespace body because both the class A and
the using alias A are in scope. For this reason, use of A in the qualified name A.Stream is ambiguous
and causes a compile-time error to occur. However, use of A with the :: qualifier is not an error
because A is looked up only as a namespace alias.

end example

Chapter 14 Classes

319

14. Classes

14.1 General
A class is a data structure that may contain data members (constants and fields), function members
(methods, properties, events, indexers, operators, instance constructors, finalizers, and static
constructors), and nested types. Class types support inheritance, a mechanism whereby a derived class
can extend and specialize a base class.

14.2 Class declarations

14.2.1 General

A class_declaration is a type_declaration (§13.7) that declares a new class.

class_declaration
 : attributes? class_modifier* 'partial'? 'class' identifier type_parameter_list?
 class_base? type_parameter_constraints_clause* class_body ';'?
 ;

A class_declaration consists of an optional set of attributes (§21), followed by an optional set of
class_modifiers (§14.2.2), followed by an optional partial modifier (§14.2.7), followed by the keyword
class and an identifier that names the class, followed by an optional type_parameter_list (§14.2.3),
followed by an optional class_base specification (§14.2.4), followed by an optional set of
type_parameter_constraints_clauses (§14.2.5), followed by a class_body (§14.2.6), optionally followed by a
semicolon.

A class declaration shall not supply a type_parameter_constraints_clauses unless it also supplies a
type_parameter_list.

A class declaration that supplies a type_parameter_list is a generic class declaration. Additionally, any
class nested inside a generic class declaration or a generic struct declaration is itself a generic class
declaration, since type arguments for the containing type shall be supplied to create a constructed type
(§8.4).

14.2.2 Class modifiers

14.2.2.1 General

A class_declaration may optionally include a sequence of class modifiers:

class_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'abstract'
 | 'sealed'
 | 'static'

ECMA-334

320

 | unsafe_modifier // unsafe code support
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in a class declaration.

The new modifier is permitted on nested classes. It specifies that the class hides an inherited member by
the same name, as described in §14.3.5. It is a compile-time error for the new modifier to appear on a class
declaration that is not a nested class declaration.

The public, protected, internal, and private modifiers control the accessibility of the class. Depending
on the context in which the class declaration occurs, some of these modifiers might not be permitted
(§7.5.2).

When a partial type declaration (§14.2.7) includes an accessibility specification (via the public,
protected, internal, and private modifiers), that specification shall agree with all other parts that
include an accessibility specification. If no part of a partial type includes an accessibility specification, the
type is given the appropriate default accessibility (§7.5.2).

The abstract, sealed, and static modifiers are discussed in the following subclauses.

14.2.2.2 Abstract classes

The abstract modifier is used to indicate that a class is incomplete and that it is intended to be used only
as a base class. An abstract class differs from a non-abstract class in the following ways:

• An abstract class cannot be instantiated directly, and it is a compile-time error to use the new
operator on an abstract class. While it is possible to have variables and values whose compile-time
types are abstract, such variables and values will necessarily either be null or contain references to
instances of non-abstract classes derived from the abstract types.

• An abstract class is permitted (but not required) to contain abstract members.

• An abstract class cannot be sealed.

When a non-abstract class is derived from an abstract class, the non-abstract class shall include actual
implementations of all inherited abstract members, thereby overriding those abstract members.

Example: In the following code

abstract class A
{
 public abstract void F();
}

abstract class B : A
{
 public void G() {}
}

class C : B
{
 public override void F()
 {
 // Actual implementation of F
 }
}

Chapter 14 Classes

321

the abstract class A introduces an abstract method F. Class B introduces an additional method G, but
since it doesn’t provide an implementation of F, B shall also be declared abstract. Class C overrides F
and provides an actual implementation. Since there are no abstract members in C, C is permitted
(but not required) to be non-abstract.

end example

If one or more parts of a partial type declaration (§14.2.7) of a class include the abstract modifier, the
class is abstract. Otherwise, the class is non-abstract.

14.2.2.3 Sealed classes

The sealed modifier is used to prevent derivation from a class. A compile-time error occurs if a sealed
class is specified as the base class of another class.

A sealed class cannot also be an abstract class.

Note: The sealed modifier is primarily used to prevent unintended derivation, but it also enables
certain run-time optimizations. In particular, because a sealed class is known to never have any
derived classes, it is possible to transform virtual function member invocations on sealed class
instances into non-virtual invocations. end note

If one or more parts of a partial type declaration (§14.2.7) of a class include the sealed modifier, the class
is sealed. Otherwise, the class is unsealed.

14.2.2.4 Static classes

14.2.2.4.1 General

The static modifier is used to mark the class being declared as a static class. A static class shall not be
instantiated, shall not be used as a type and shall contain only static members. Only a static class can
contain declarations of extension methods (§14.6.10).

A static class declaration is subject to the following restrictions:

• A static class shall not include a sealed or abstract modifier. (However, since a static class cannot
be instantiated or derived from, it behaves as if it was both sealed and abstract.)

• A static class shall not include a class_base specification (§14.2.4) and cannot explicitly specify a
base class or a list of implemented interfaces. A static class implicitly inherits from type object.

• A static class shall only contain static members (§14.3.8).
Note: All constants and nested types are classified as static members. end note

• A static class shall not have members with protected or protected internal declared accessibility.

It is a compile-time error to violate any of these restrictions.

A static class has no instance constructors. It is not possible to declare an instance constructor in a static
class, and no default instance constructor (§14.11.5) is provided for a static class.

The members of a static class are not automatically static, and the member declarations shall explicitly
include a static modifier (except for constants and nested types). When a class is nested within a static
outer class, the nested class is not a static class unless it explicitly includes a static modifier.

If one or more parts of a partial type declaration (§14.2.7) of a class include the static modifier, the class
is static. Otherwise, the class is not static.

ECMA-334

322

14.2.2.4.2 Referencing static class types

A namespace_or_type_name (§7.8) is permitted to reference a static class if

• The namespace_or_type_name is the T in a namespace_or_type_name of the form T.I, or

• The namespace_or_type-name is the T in a typeof_expression (§11.7.16) of the form typeof(T).

A primary_expression (§11.7) is permitted to reference a static class if

• The primary_expression is the E in a member_access (§11.7.6) of the form E.I.

In any other context, it is a compile-time error to reference a static class.

Note: For example, it is an error for a static class to be used as a base class, a constituent type
(§14.3.7) of a member, a generic type argument, or a type parameter constraint. Likewise, a static
class cannot be used in an array type, a pointer type, a new expression, a cast expression, an is
expression, an as expression, a sizeof expression, or a default value expression. end note

14.2.3 Type parameters

A type parameter is a simple identifier that denotes a placeholder for a type argument supplied to create a
constructed type. By constrast, a type argument (§8.4.2) is the type that is substituted for the type
parameter when a constructed type is created.

type_parameter_list
 : '<' type_parameters '>'
 ;

type_parameters
 : attributes? type_parameter
 | type_parameters ',' attributes? type_parameter
 ;

type_parameter is defined in §8.5.

Each type parameter in a class declaration defines a name in the declaration space (§7.3) of that class.
Thus, it cannot have the same name as another type parameter of that class or a member declared in that
class. A type parameter cannot have the same name as the type itself.

Two partial generic type declarations (in the same program) contribute to the same unbound generic
type if they have the same fully qualified name (which includes a generic_dimension_specifier (§11.7.16)
for the number of type parameters) (§7.8.3). Two such partial type declarations shall specify the same
name for each type parameter, in order.

14.2.4 Class base specification

14.2.4.1 General

A class declaration may include a class_base specification, which defines the direct base class of the class
and the interfaces (§17) directly implemented by the class.

class_base
 : ':' class_type
 | ':' interface_type_list
 | ':' class_type ',' interface_type_list
 ;

interface_type_list

Chapter 14 Classes

323

 : interface_type (',' interface_type)*
 ;

14.2.4.2 Base classes

When a class_type is included in the class_base, it specifies the direct base class of the class being declared.
If a non-partial class declaration has no class_base, or if the class_base lists only interface types, the direct
base class is assumed to be object. When a partial class declaration includes a base class specification,
that base class specification shall reference the same type as all other parts of that partial type that
include a base class specification. If no part of a partial class includes a base class specification, the base
class is object. A class inherits members from its direct base class, as described in §14.3.4.

Example: In the following code

class A {}
class B : A {}

Class A is said to be the direct base class of B, and B is said to be derived from A. Since A does not
explicitly specify a direct base class, its direct base class is implicitly object.

end example

For a constructed class type, including a nested type declared within a generic type declaration
(§14.3.9.7), if a base class is specified in the generic class declaration, the base class of the constructed
type is obtained by substituting, for each type_parameter in the base class declaration, the corresponding
type_argument of the constructed type.

Example: Given the generic class declarations

class B<U,V> {...}
class G<T> : B<string,T[]> {...}

the base class of the constructed type G<int> would be B<string,int[]>.

end example

The base class specified in a class declaration can be a constructed class type (§8.4). A base class cannot
be a type parameter on its own (§8.5), though it can involve the type parameters that are in scope.

Example:

class Base<T> {}
class Extend : Base<int> // Valid, non-constructed class with constructed base
class
class Extend<V> : V {} // Error, type parameter used as base class
class Extend<V> : Base<V> {} // Valid, type parameter used as type argument for base
class

end example

The direct base class of a class type shall be at least as accessible as the class type itself (§7.5.5). For
example, it is a compile-time error for a public class to derive from a private or internal class.

The direct base class of a class type shall not be any of the following types: System.Array,
System.Delegate, System.Enum, or System.ValueType. Furthermore, a generic class declaration shall not
use System.Attribute as a direct or indirect base class (§21.2.1).

In determining the meaning of the direct base class specification A of a class B, the direct base class of B is
temporarily assumed to be object, which ensures that the meaning of a base class specification cannot
recursively depend on itself.

ECMA-334

324

Example: The following

class X<T>
{
 public class Y{}
}

class Z : X<Z.Y> {}

is in error since in the base class specification X<Z.Y> the direct base class of Z is considered to be
object, and hence (by the rules of §7.8) Z is not considered to have a member Y.

end example

The base classes of a class are the direct base class and its base classes. In other words, the set of base
classes is the transitive closure of the direct base class relationship.

Example: In the following:

class A {...}
class B<T> : A {...}
class C<T> : B<IComparable<T>> {...}
class D<T> : C<T[]> {...}

the base classes of D<int> are C<int[]>, B<IComparable<int[]>>, A, and object.

end example

Except for class object, every class has exactly one direct base class. The object class has no direct base
class and is the ultimate base class of all other classes.

It is a compile-time error for a class to depend on itself. For the purpose of this rule, a class directly
depends on its direct base class (if any) and directly depends on the nearest enclosing class within which
it is nested (if any). Given this definition, the complete set of classes upon which a class depends is the
transitive closure of the directly depends on relationship.

Example: The example

class A: A {}

is erroneous because the class depends on itself. Likewise, the example

class A : B {}
class B : C {}
class C : A {}

is in error because the classes circularly depend on themselves. Finally, the example

class A : B.C {}
class B : A
{
 public class C {}
}

results in a compile-time error because A depends on B.C (its direct base class), which depends on B
(its immediately enclosing class), which circularly depends on A.

end example

A class does not depend on the classes that are nested within it.

Example: In the following code

Chapter 14 Classes

325

class A
{
 class B : A {}
}

B depends on A (because A is both its direct base class and its immediately enclosing class), but A
does not depend on B (since B is neither a base class nor an enclosing class of A). Thus, the example
is valid.

end example

It is not possible to derive from a sealed class.

Example: In the following code

sealed class A {}
class B : A {} // Error, cannot derive from a sealed class

Class B is in error because it attempts to derive from the sealed class A.

end example

14.2.4.3 Interface implementations

A class_base specification may include a list of interface types, in which case the class is said to implement
the given interface types. For a constructed class type, including a nested type declared within a generic
type declaration (§14.3.9.7), each implemented interface type is obtained by substituting, for each
type_parameter in the given interface, the corresponding type_argument of the constructed type.

The set of interfaces for a type declared in multiple parts (§14.2.7) is the union of the interfaces specified
on each part. A particular interface can only be named once on each part, but multiple parts can name the
same base interface(s). There shall only be one implementation of each member of any given interface.

Example: In the following:

partial class C : IA, IB {...}
partial class C : IC {...}
partial class C : IA, IB {...}

the set of base interfaces for class C is IA, IB, and IC.

end example

Typically, each part provides an implementation of the interface(s) declared on that part; however, this is
not a requirement. A part can provide the implementation for an interface declared on a different part.

Example:

partial class X
{
 int IComparable.CompareTo(object o) {...}
}

partial class X : IComparable
{
 ...
}

end example

ECMA-334

326

The base interfaces specified in a class declaration can be constructed interface types (§8.4, §17.2). A base
interface cannot be a type parameter on its own, though it can involve the type parameters that are in
scope.

Example: The following code illustrates how a class can implement and extend constructed types:

class C<U, V> {}
interface I1<V> {}
class D : C<string, int>, I1<string> {}
class E<T> : C<int, T>, I1<T> {}

end example

Interface implementations are discussed further in §17.6.

14.2.5 Type parameter constraints

Generic type and method declarations can optionally specify type parameter constraints by including
type_parameter_constraints_clauses.

type_parameter_constraints_clauses
 : type_parameter_constraints_clause
 | type_parameter_constraints_clauses type_parameter_constraints_clause
 ;

type_parameter_constraints_clause
 : 'where' type_parameter ':' type_parameter_constraints
 ;

type_parameter_constraints
 : primary_constraint
 | secondary_constraints
 | constructor_constraint
 | primary_constraint ',' secondary_constraints
 | primary_constraint ',' constructor_constraint
 | secondary_constraints ',' constructor_constraint
 | primary_constraint ',' secondary_constraints ',' constructor_constraint
 ;

primary_constraint
 : class_type
 | 'class'
 | 'struct'
 ;

secondary_constraints
 : interface_type
 | type_parameter
 | secondary_constraints ',' interface_type
 | secondary_constraints ',' type_parameter
 ;

constructor_constraint
 : 'new' '(' ')'
 ;

Chapter 14 Classes

327

Each type_parameter_constraints_clause consists of the token where, followed by the name of a type
parameter, followed by a colon and the list of constraints for that type parameter. There can be at most
one where clause for each type parameter, and the where clauses can be listed in any order. Like the get
and set tokens in a property accessor, the where token is not a keyword.

The list of constraints given in a where clause can include any of the following components, in this order: a
single primary constraint, one or more secondary constraints, and the constructor constraint, new().

A primary constraint can be a class type or the reference type constraint class or the value type
constraint struct. A secondary constraint can be a type_parameter or interface_type.

The reference type constraint specifies that a type argument used for the type parameter shall be a
reference type. All class types, interface types, delegate types, array types, and type parameters known to
be a reference type (as defined below) satisfy this constraint.

The value type constraint specifies that a type argument used for the type parameter shall be a non-
nullable value type. All non-nullable struct types, enum types, and type parameters having the value type
constraint satisfy this constraint. Note that although classified as a value type, a nullable value type
(§8.3.11) does not satisfy the value type constraint. A type parameter having the value type constraint
shall not also have the constructor_constraint, although it may be used as a type argument for another
type parameter with a constructor_constraint.

Note: The System.Nullable<T> type specifies the non-nullable value type constraint for T. Thus,
recursively constructed types of the forms T?? and Nullable<Nullable<T>> are prohibited. end note

Pointer types are never allowed to be type arguments and are not considered to satisfy either the
reference type or value type constraints.

If a constraint is a class type, an interface type, or a type parameter, that type specifies a minimal “base
type” that every type argument used for that type parameter shall support. Whenever a constructed type
or generic method is used, the type argument is checked against the constraints on the type parameter at
compile-time. The type argument supplied shall satisfy the conditions described in §8.4.5.

A class_type constraint shall satisfy the following rules:

• The type shall be a class type.

• The type shall not be sealed.

• The type shall not be one of the following types: System.Array, System.Delegate, System.Enum, or
System.ValueType.

• The type shall not be object.

• At most one constraint for a given type parameter may be a class type.

A type specified as an interface_type constraint shall satisfy the following rules:

• The type shall be an interface type.

• A type shall not be specified more than once in a given where clause.

In either case, the constraint may involve any of the type parameters of the associated type or method
declaration as part of a constructed type, and may involve the type being declared.

Any class or interface type specified as a type parameter constraint shall be at least as accessible (§7.5.5)
as the generic type or method being declared.

A type specified as a type_parameter constraint shall satisfy the following rules:

ECMA-334

328

• The type shall be a type parameter.

• A type shall not be specified more than once in a given where clause.

In addition there shall be no cycles in the dependency graph of type parameters, where dependency is a
transitive relation defined by:

• If a type parameter T is used as a constraint for type parameter S then S depends on T.

• If a type parameter S depends on a type parameter T and T depends on a type parameter U then S
depends on U.

Given this relation, it is a compile-time error for a type parameter to depend on itself (directly or
indirectly).

Any constraints shall be consistent among dependent type parameters. If type parameter S depends on
type parameter T then:

• T shall not have the value type constraint. Otherwise, T is effectively sealed so S would be forced to
be the same type as T, eliminating the need for two type parameters.

• If S has the value type constraint then T shall not have a class_type constraint.

• If S has a class_type constraint A and T has a class_type constraint B then there shall be an identity
conversion or implicit reference conversion from A to B or an implicit reference conversion from B
to A.

• If S also depends on type parameter U and U has a class_type constraint A and T has a class_type
constraint B then there shall be an identity conversion or implicit reference conversion from A to B
or an implicit reference conversion from B to A.

It is valid for S to have the value type constraint and T to have the reference type constraint. Effectively
this limits T to the types System.Object, System.ValueType, System.Enum, and any interface type.

If the where clause for a type parameter includes a constructor constraint (which has the form new()), it is
possible to use the new operator to create instances of the type (§11.7.15.2). Any type argument used for a
type parameter with a constructor constraint shall be a value type, a non-abstract class having a public
parameterless constructor, or a type parameter having the value type constraint or constructor
constraint.

It is a compile-time error for type_parameter_constraints having a primary_constraint of struct to also
have a constructor_constraint.

Example: The following are examples of constraints:

interface IPrintable
{
 void Print();
}

interface IComparable<T>
{
 int CompareTo(T value);
}

interface IKeyProvider<T>
{
 T GetKey();
}

Chapter 14 Classes

329

class Printer<T> where T : IPrintable {...}
class SortedList<T> where T : IComparable<T> {...}

class Dictionary<K,V>
 where K : IComparable<K>
 where V : IPrintable, IKeyProvider<K>, new()
{
 ...
}

The following example is in error because it causes a circularity in the dependency graph of the type
parameters:

class Circular<S,T>
 where S: T
 where T: S // Error, circularity in dependency graph
{
 ...
}

The following examples illustrate additional invalid situations:

class Sealed<S,T>
 where S : T
 where T : struct // Error, `T` is sealed
{
 ...
}

class A {...}
class B {...}

class Incompat<S,T>
 where S : A, T
 where T : B // Error, incompatible class-type constraints
{
 ...
}

class StructWithClass<S,T,U>
 where S : struct, T
 where T : U
 where U : A // Error, A incompatible with struct
{
 ...
}

end example

The dynamic erasure of a type C is type Cx constructed as follows:

• If C is a nested type Outer.Inner then Cx is a nested type Outerx.Innerx.

• If C Cxis a constructed type G<A1, ..., An> with type arguments A1, ..., An then Cx is the
constructed type G<A1x, ..., Anx>.

• If C is an array type E[] then Cx is the array type Ex[].

ECMA-334

330

• If C is a pointer type E* then Cx is the pointer type Ex*.

• If C is dynamic then Cx is object.

• Otherwise, Cx is C.

The effective base class of a type parameter T is defined as follows:

Let R be a set of types such that:

• For each constraint of T that is a type parameter, R contains its effective base class.

• For each constraint of T that is a struct type, R contains System.ValueType.

• For each constraint of T that is an enumeration type, R contains System.Enum.

• For each constraint of T that is a delegate type, R contains its dynamic erasure.

• For each constraint of T that is an array type, R contains System.Array.

• For each constraint of T that is a class type, R contains its dynamic erasure.

Then

• If T has the value type constraint, its effective base class is System.ValueType.

• Otherwise, if R is empty then the effective base class is object.

• Otherwise, the effective base class of T is the most-encompassed type (§10.5.3) of set R. If the set has
no encompassed type, the effective base class of T is object. The consistency rules ensure that the
most-encompassed type exists.

If the type parameter is a method type parameter whose constraints are inherited from the base method
the effective base class is calculated after type substitution.

These rules ensure that the effective base class is always a class_type.

The effective interface set of a type parameter T is defined as follows:

• If T has no secondary_constraints, its effective interface set is empty.

• If T has interface_type constraints but no type_parameter constraints, its effective interface set is the
set of dynamic erasures of its interface_type constraints.

• If T has no interface_type constraints but has type_parameter constraints, its effective interface set is
the union of the effective interface sets of its type_parameter constraints.

• If T has both interface_type constraints and type_parameter constraints, its effective interface set is
the union of the set of dynamic erasures of its interface_type constraints and the effective interface
sets of its type_parameter constraints.

A type parameter is known to be a reference type if it has the reference type constraint or its effective base
class is not object or System.ValueType.

Values of a constrained type parameter type can be used to access the instance members implied by the
constraints.

Example: In the following:

interface IPrintable
{
 void Print();
}

Chapter 14 Classes

331

class Printer<T> where T : IPrintable
{
 void PrintOne(T x) => x.Print();
}

the methods of IPrintable can be invoked directly on x because T is constrained to always
implement IPrintable.

end example

When a partial generic type declaration includes constraints, the constraints shall agree with all other
parts that include constraints. Specifically, each part that includes constraints shall have constraints for
the same set of type parameters, and for each type parameter, the sets of primary, secondary, and
constructor constraints shall be equivalent. Two sets of constraints are equivalent if they contain the
same members. If no part of a partial generic type specifies type parameter constraints, the type
parameters are considered unconstrained.

Example:

partial class Map<K,V>
 where K : IComparable<K>
 where V : IKeyProvider<K>, new()
{
 ...
}

partial class Map<K,V>
 where V : IKeyProvider<K>, new()
 where K : IComparable<K>
{
 ...
}

partial class Map<K,V>
{
 ...
}

is correct because those parts that include constraints (the first two) effectively specify the same set
of primary, secondary, and constructor constraints for the same set of type parameters,
respectively.

end example

14.2.6 Class body

The class_body of a class defines the members of that class.

class_body
 : '{' class_member_declaration* '}'
 ;

14.2.7 Partial declarations

The modifier partial is used when defining a class, struct, or interface type in multiple parts. The
partial modifier is a contextual keyword (§6.4.4) and only has special meaning immediately before one
of the keywords class, struct, or interface.

ECMA-334

332

Each part of a partial type declaration shall include a partial modifier and shall be declared in the same
namespace or containing type as the other parts. The partial modifier indicates that additional parts of
the type declaration might exist elsewhere, but the existence of such additional parts is not a
requirement; it is valid for the only declaration of a type to include the partial modifier.

All parts of a partial type shall be compiled together such that the parts can be merged at compile-time.
Partial types specifically do not allow already compiled types to be extended.

Nested types can be declared in multiple parts by using the partial modifier. Typically, the containing
type is declared using partial as well, and each part of the nested type is declared in a different part of
the containing type.

Example: The following partial class is implemented in two parts, which reside in different
compilation units. The first part is machine generated by a database-mapping tool while the second
part is manually authored:

public partial class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

 public Customer()
 {
 ...
 }
}

public partial class Customer
{
 public void SubmitOrder(Order orderSubmitted) => orders.Add(orderSubmitted);

 public bool HasOutstandingOrders() => orders.Count > 0;
}

When the two parts above are compiled together, the resulting code behaves as if the class had been
written as a single unit, as follows:

public class Customer
{
 private int id;
 private string name;
 private string address;
 private List<Order> orders;

 public Customer()
 {
 ...
 }

 public void SubmitOrder(Order orderSubmitted) => orders.Add(orderSubmitted);

 public bool HasOutstandingOrders() => orders.Count > 0;
}

end example

Chapter 14 Classes

333

The handling of attributes specified on the type or type parameters of different parts of a partial
declaration is discussed in §21.3.

14.3 Class members

14.3.1 General

The members of a class consist of the members introduced by its class_member_declarations and the
members inherited from the direct base class.

class_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | finalizer_declaration
 | static_constructor_declaration
 | type_declaration
 ;

The members of a class are divided into the following categories:

• Constants, which represent constant values associated with the class (§14.4).

• Fields, which are the variables of the class (§14.5).

• Methods, which implement the computations and actions that can be performed by the class
(§14.6).

• Properties, which define named characteristics and the actions associated with reading and writing
those characteristics (§14.7).

• Events, which define notifications that can be generated by the class (§14.8).

• Indexers, which permit instances of the class to be indexed in the same way (syntactically) as arrays
(§14.9).

• Operators, which define the expression operators that can be applied to instances of the class
(§14.10).

• Instance constructors, which implement the actions required to initialize instances of the class
(§14.11)

• Finalizers, which implement the actions to be performed before instances of the class are
permanently discarded (§14.13).

• Static constructors, which implement the actions required to initialize the class itself (§14.12).

• Types, which represent the types that are local to the class (§13.7).

A class_declaration creates a new declaration space (§7.3), and the type_parameters and the
class_member_declarations immediately contained by the class_declaration introduce new members into
this declaration space. The following rules apply to class_member_declarations:

ECMA-334

334

• Instance constructors, finalizers, and static constructors shall have the same name as the
immediately enclosing class. All other members shall have names that differ from the name of the
immediately enclosing class.

• The name of a type parameter in the type_parameter_list of a class declaration shall differ from the
names of all other type parameters in the same type_parameter_list and shall differ from the name of
the class and the names of all members of the class.

• The name of a type shall differ from the names of all non-type members declared in the same class.
If two or more type declarations share the same fully qualified name, the declarations shall have the
partial modifier (§14.2.7) and these declarations combine to define a single type.

Note: Since the fully qualified name of a type declaration encodes the number of type parameters,
two distinct types may share the same name as long as they have different number of type
parameters. end note

• The name of a constant, field, property, or event shall differ from the names of all other members
declared in the same class.

• The name of a method shall differ from the names of all other non-methods declared in the same
class. In addition, the signature (§7.6) of a method shall differ from the signatures of all other
methods declared in the same class, and two methods declared in the same class shall not have
signatures that differ solely by ref and out.

• The signature of an instance constructor shall differ from the signatures of all other instance
constructors declared in the same class, and two constructors declared in the same class shall not
have signatures that differ solely by ref and out.

• The signature of an indexer shall differ from the signatures of all other indexers declared in the
same class.

• The signature of an operator shall differ from the signatures of all other operators declared in the
same class.

The inherited members of a class (§14.3.4) are not part of the declaration space of a class.

Note: Thus, a derived class is allowed to declare a member with the same name or signature as an
inherited member (which in effect hides the inherited member). end note

The set of members of a type declared in multiple parts (§14.2.7) is the union of the members declared in
each part. The bodies of all parts of the type declaration share the same declaration space (§7.3), and the
scope of each member (§7.7) extends to the bodies of all the parts. The accessibility domain of any
member always includes all the parts of the enclosing type; a private member declared in one part is
freely accessible from another part. It is a compile-time error to declare the same member in more than
one part of the type, unless that member is a type having the partial modifier.

Example:

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int y;
 }
}

Chapter 14 Classes

335

partial class A
{
 int x; // Error, cannot declare x more than once

 partial class Inner // Ok, Inner is a partial type
 {
 int z;
 }
}

end example

Field initialization order can be significant within C# code, and some guarantees are provided, as defined
in §14.5.6.1. Otherwise, the ordering of members within a type is rarely significant, but may be significant
when interfacing with other languages and environments. In these cases, the ordering of members within
a type declared in multiple parts is undefined.

14.3.2 The instance type

Each class declaration has an associated instance type. For a generic class declaration, the instance type
is formed by creating a constructed type (§8.4) from the type declaration, with each of the supplied type
arguments being the corresponding type parameter. Since the instance type uses the type parameters, it
can only be used where the type parameters are in scope; that is, inside the class declaration. The instance
type is the type of this for code written inside the class declaration. For non-generic classes, the instance
type is simply the declared class.

Example: The following shows several class declarations along with their instance types:

class A<T> // instance type: A<T>
{
 class B {} // instance type: A<T>.B
 class C<U> {} // instance type: A<T>.C<U>
}
class D {} // instance type: D

end example

14.3.3 Members of constructed types

The non-inherited members of a constructed type are obtained by substituting, for each type_parameter
in the member declaration, the corresponding type_argument of the constructed type. The substitution
process is based on the semantic meaning of type declarations, and is not simply textual substitution.

Example: Given the generic class declaration

class Gen<T,U>
{
 public T[,] a;
 public void G(int i, T t, Gen<U,T> gt) {...}
 public U Prop { get {...} set {...} }
 public int H(double d) {...}
}

the constructed type Gen<int[],IComparable<string>> has the following members:

public int[,][] a;
public void G(int i, int[] t, Gen<IComparable<string>,int[]> gt) {...}

ECMA-334

336

public IComparable<string> Prop { get {...} set {...} }
public int H(double d) {...}

The type of the member a in the generic class declaration Gen is “two-dimensional array of T”, so the
type of the member a in the constructed type above is “two-dimensional array of single-dimensional
array of int”, or int[,][].

end example

Within instance function members, the type of this is the instance type (§14.3.2) of the containing
declaration.

All members of a generic class can use type parameters from any enclosing class, either directly or as part
of a constructed type. When a particular closed constructed type (§8.4.3) is used at run-time, each use of a
type parameter is replaced with the type argument supplied to the constructed type.

Example:

class C<V>
{
 public V f1;
 public C<V> f2 = null;

 public C(V x)
 {
 this.f1 = x;
 this.f2 = this;
 }
}

class Application
{
 static void Main()
 {
 C<int> x1 = new C<int>(1);
 Console.WriteLine(x1.f1); // Prints 1

 C<double> x2 = new C<double>(3.1415);
 Console.WriteLine(x2.f1); // Prints 3.1415
 }
}

end example

14.3.4 Inheritance

A class inherits the members of its direct base class. Inheritance means that a class implicitly contains all
members of its direct base class, except for the instance constructors, finalizers, and static constructors of
the base class. Some important aspects of inheritance are:

• Inheritance is transitive. If C is derived from B, and B is derived from A, then C inherits the members
declared in B as well as the members declared in A.

• A derived class extends its direct base class. A derived class can add new members to those it
inherits, but it cannot remove the definition of an inherited member.

Chapter 14 Classes

337

• Instance constructors, finalizers, and static constructors are not inherited, but all other members
are, regardless of their declared accessibility (§7.5). However, depending on their declared
accessibility, inherited members might not be accessible in a derived class.

• A derived class can hide (§7.7.2.3) inherited members by declaring new members with the same
name or signature. However, hiding an inherited member does not remove that member—it merely
makes that member inaccessible directly through the derived class.

• An instance of a class contains a set of all instance fields declared in the class and its base classes,
and an implicit conversion (§10.2.8) exists from a derived class type to any of its base class types.
Thus, a reference to an instance of some derived class can be treated as a reference to an instance of
any of its base classes.

• A class can declare virtual methods, properties, indexers, and events, and derived classes can
override the implementation of these function members. This enables classes to exhibit
polymorphic behavior wherein the actions performed by a function member invocation vary
depending on the run-time type of the instance through which that function member is invoked.

The inherited members of a constructed class type are the members of the immediate base class type
(§14.2.4.2), which is found by substituting the type arguments of the constructed type for each
occurrence of the corresponding type parameters in the base_class_specification. These members, in turn,
are transformed by substituting, for each type_parameter in the member declaration, the corresponding
type_argument of the base_class_specification.

Example:

class B<U>
{
 public U F(long index) {...}
}

class D<T> : B<T[]>
{
 public T G(string s) {...}
}

In the code above, the constructed type D<int> has a non-inherited member public int G(string s)
obtained by substituting the type argument int for the type parameter T. D<int> also has an
inherited member from the class declaration B. This inherited member is determined by first
determining the base class type B<int[]> of D<int> by substituting int for T in the base class
specification B<T[]>. Then, as a type argument to B, int[] is substituted for U in public U F(long
index), yielding the inherited member public int[] F(long index).

end example

14.3.5 The new modifier

A class_member_declaration is permitted to declare a member with the same name or signature as an
inherited member. When this occurs, the derived class member is said to hide the base class member. See
§7.7.2.3 for a precise specification of when a member hides an inherited member.

An inherited member M is considered to be available if M is accessible and there is no other inherited
accessible member N that already hides M. Implicitly hiding an inherited member is not considered an
error, but it does cause the compiler to issue a warning unless the declaration of the derived class
member includes a new modifier to explicitly indicate that the derived member is intended to hide the

ECMA-334

338

base member. If one or more parts of a partial declaration (§14.2.7) of a nested type include the new
modifier, no warning is issued if the nested type hides an available inherited member.

If a new modifier is included in a declaration that doesn’t hide an available inherited member, a warning to
that effect is issued.

14.3.6 Access modifiers

A class_member_declaration can have any one of the five possible kinds of declared accessibility (§7.5.2):
public, protected internal, protected, internal, or private. Except for the protected internal
combination, it is a compile-time error to specify more than one access modifier. When a
class_member_declaration does not include any access modifiers, private is assumed.

14.3.7 Constituent types

Types that are used in the declaration of a member are called the constituent types of that member.
Possible constituent types are the type of a constant, field, property, event, or indexer, the return type of a
method or operator, and the parameter types of a method, indexer, operator, or instance constructor. The
constituent types of a member shall be at least as accessible as that member itself (§7.5.5).

14.3.8 Static and instance members

Members of a class are either static members or instance members.

Note: Generally speaking, it is useful to think of static members as belonging to classes and instance
members as belonging to objects (instances of classes). end note

When a field, method, property, event, operator, or constructor declaration includes a static modifier, it
declares a static member. In addition, a constant or type declaration implicitly declares a static member.
Static members have the following characteristics:

• When a static member M is referenced in a member_access (§11.7.6) of the form E.M, E shall denote a
type that has a member M. It is a compile-time error for E to denote an instance.

• A static field in a non-generic class identifies exactly one storage location. No matter how many
instances of a non-generic class are created, there is only ever one copy of a static field. Each distinct
closed constructed type (§8.4.3) has its own set of static fields, regardless of the number of
instances of the closed constructed type.

• A static function member (method, property, event, operator, or constructor) does not operate on a
specific instance, and it is a compile-time error to refer to this in such a function member.

When a field, method, property, event, indexer, constructor, or finalizer declaration does not include a
static modifier, it declares an instance member. (An instance member is sometimes called a non-static
member.) Instance members have the following characteristics:

• When an instance member M is referenced in a member_access (§11.7.6) of the form E.M, E shall
denote an instance of a type that has a member M. It is a binding-time error for E to denote a type.

• Every instance of a class contains a separate set of all instance fields of the class.

• An instance function member (method, property, indexer, instance constructor, or finalizer)
operates on a given instance of the class, and this instance can be accessed as this (§11.7.12).

Example: The following example illustrates the rules for accessing static and instance members:

class Test
{

Chapter 14 Classes

339

 int x;
 static int y;
 void F()
 {
 x = 1; // Ok, same as this.x = 1
 y = 1; // Ok, same as Test.y = 1
 }

 static void G()
 {
 x = 1; // Error, cannot access this.x
 y = 1; // Ok, same as Test.y = 1
 }

 static void Main()
 {
 Test t = new Test();
 t.x = 1; // Ok
 t.y = 1; // Error, cannot access static member through instance
 Test.x = 1; // Error, cannot access instance member through type
 Test.y = 1; // Ok
 }
}

The F method shows that in an instance function member, a simple_name (§11.7.4) can be used to
access both instance members and static members. The G method shows that in a static function
member, it is a compile-time error to access an instance member through a simple_name. The Main
method shows that in a member_access (§11.7.6), instance members shall be accessed through
instances, and static members shall be accessed through types.

end example

14.3.9 Nested types

14.3.9.1 General

A type declared within a class or struct is called a nested type. A type that is declared within a
compilation unit or namespace is called a non-nested type.

Example: In the following example:

using System;

class A
{
 class B
 {
 static void F()
 {
 Console.WriteLine("A.B.F");
 }
 }
}

class B is a nested type because it is declared within class A, and class A is a non-nested type because
it is declared within a compilation unit.

ECMA-334

340

end example

14.3.9.2 Fully qualified name

The fully qualified name (§7.8.3) for a nested type declarationis S.N where S is the fully qualified name of
the type declarationin which type N is declared and N is the unqualified name (§7.8.2) of the nested type
declaration (including any generic_dimension_specifier (§11.7.16)).

14.3.9.3 Declared accessibility

Non-nested types can have public or internal declared accessibility and have internal declared
accessibility by default. Nested types can have these forms of declared accessibility too, plus one or more
additional forms of declared accessibility, depending on whether the containing type is a class or struct:

• A nested type that is declared in a class can have any of five forms of declared accessibility (public,
protected internal, protected, internal, or private) and, like other class members, defaults to
private declared accessibility.

• A nested type that is declared in a struct can have any of three forms of declared accessibility
(public, internal, or private) and, like other struct members, defaults to private declared
accessibility.

Example: The example

public class List
{
 // Private data structure
 private class Node
 {
 public object Data;
 public Node Next;

 public Node(object data, Node next)
 {
 this.Data = data;
 this.Next = next;
 }
 }

 private Node first = null;
 private Node last = null;

 // Public interface
 public void AddToFront(object o) {...}
 public void AddToBack(object o) {...}
 public object RemoveFromFront() {...}
 public object RemoveFromBack() {...}
 public int Count { get {...} }
}

declares a private nested class Node.

end example

14.3.9.4 Hiding

A nested type may hide (§7.7.2.2) a base member. The new modifier (§14.3.5) is permitted on nested type
declarations so that hiding can be expressed explicitly.

Chapter 14 Classes

341

Example: The example

using System;
class Base
{
 public static void M()
 {
 Console.WriteLine("Base.M");
 }
}

class Derived: Base
{
 public new class M
 {
 public static void F()
 {
 Console.WriteLine("Derived.M.F");
 }
 }
}

class Test
{
 static void Main()
 {
 Derived.M.F();
 }
}

shows a nested class M that hides the method M defined in Base.

end example

14.3.9.5 this access

A nested type and its containing type do not have a special relationship with regard to this_access
(§11.7.12). Specifically, this within a nested type cannot be used to refer to instance members of the
containing type. In cases where a nested type needs access to the instance members of its containing type,
access can be provided by providing the this for the instance of the containing type as a constructor
argument for the nested type.

Example: The following example

using System;

class C
{
 int i = 123;
 public void F()
 {
 Nested n = new Nested(this);
 n.G();
 }

 public class Nested
 {

ECMA-334

342

 C this_c;

 public Nested(C c)
 {
 this_c = c;
 }

 public void G()
 {
 Console.WriteLine(this_c.i);
 }
 }
}

class Test
{
 static void Main()
 {
 C c = new C();
 c.F();
 }
}

shows this technique. An instance of C creates an instance of Nested, and passes its own this to
Nested’s constructor in order to provide subsequent access to C’s instance members.

end example

14.3.9.6 Access to private and protected members of the containing type

A nested type has access to all of the members that are accessible to its containing type, including
members of the containing type that have private and protected declared accessibility.

Example: The example

using System;

class C
{
 private static void F() => Console.WriteLine("C.F");

 public class Nested
 {
 public static void G() => F();
 }
}

class Test
{
 static void Main() => C.Nested.G();
}

shows a class C that contains a nested class Nested. Within Nested, the method G calls the static
method F defined in C, and F has private declared accessibility.

end example

A nested type also may access protected members defined in a base type of its containing type.

Chapter 14 Classes

343

Example: In the following code

using System;
class Base
{
 protected void F() => Console.WriteLine("Base.F");
}

class Derived: Base
{
 public class Nested
 {
 public void G()
 {
 Derived d = new Derived();
 d.F(); // ok
 }
 }
}

class Test
{
 static void Main()
 {
 Derived.Nested n = new Derived.Nested();
 n.G();
 }
}

the nested class Derived.Nested accesses the protected method F defined in Derived’s base class,
Base, by calling through an instance of Derived.

end example

14.3.9.7 Nested types in generic classes

A generic class declaration may contain nested type declarations. The type parameters of the enclosing
class may be used within the nested types. A nested type declaration may contain additional type
parameters that apply only to the nested type.

Every type declaration contained within a generic class declaration is implicitly a generic type
declaration. When writing a reference to a type nested within a generic type, the containing constructed
type, including its type arguments, shall be named. However, from within the outer class, the nested type
may be used without qualification; the instance type of the outer class may be implicitly used when
constructing the nested type.

Example: The following shows three different correct ways to refer to a constructed type created
from Inner; the first two are equivalent:

class Outer<T>
{
 class Inner<U>
 {
 public static void F(T t, U u) {...}
 }

 static void F(T t)

ECMA-334

344

 {
 Outer<T>.Inner<string>.F(t, "abc"); // These two statements have
 Inner<string>.F(t, "abc"); // the same effect
 Outer<int>.Inner<string>.F(3, "abc"); // This type is different
 Outer.Inner<string>.F(t, "abc"); // Error, Outer needs type arg
 }
}

end example

Although it is bad programming style, a type parameter in a nested type can hide a member or type
parameter declared in the outer type.

Example:

class Outer<T>
{
 class Inner<T> // Valid, hides Outer's T
 {
 public T t; // Refers to Inner's T
 }
}

end example

14.3.10 Reserved member names

14.3.10.1 General

To facilitate the underlying C# run-time implementation, for each source member declaration that is a
property, event, or indexer, the implementation shall reserve two method signatures based on the kind of
the member declaration, its name, and its type (§14.3.10.2, §14.3.10.3, §14.3.10.4). It is a compile-time
error for a program to declare a member whose signature matches a signature reserved by a member
declared in the same scope, even if the underlying run-time implementation does not make use of these
reservations.

The reserved names do not introduce declarations, thus they do not participate in member lookup.
However, a declaration’s associated reserved method signatures do participate in inheritance (§14.3.4),
and can be hidden with the new modifier (§14.3.5).

Note: The reservation of these names serves three purposes:

1. To allow the underlying implementation to use an ordinary identifier as a method name for
get or set access to the C# language feature.

2. To allow other languages to interoperate using an ordinary identifier as a method name for
get or set access to the C# language feature.

3. To help ensure that the source accepted by one conforming compiler is accepted by another,
by making the specifics of reserved member names consistent across all C# implementations.

end note

The declaration of a finalizer (§14.13) also causes a signature to be reserved (§14.3.10.5).

14.3.10.2 Member names reserved for properties

For a property P (§14.7) of type T, the following signatures are reserved:

Chapter 14 Classes

345

T get_P();
void set_P(T value);

Both signatures are reserved, even if the property is read-only or write-only.

Example: In the following code

using System;
class A
{
 public int P
 {
 get => 123;
 }
}

class B : A
{
 public new int get_P() => 456;

 public new void set_P(int value)
 {
 }
}

class Test
{
 static void Main()
 {
 B b = new B();
 A a = b;
 Console.WriteLine(a.P);
 Console.WriteLine(b.P);
 Console.WriteLine(b.get_P());
 }
}

A class A defines a read-only property P, thus reserving signatures for get_P and set_P methods. A
class B derives from A and hides both of these reserved signatures. The example produces the
output:

123
123
456

end example

14.3.10.3 Member names reserved for events

For an event E (§14.8) of delegate type T, the following signatures are reserved:

void add_E(T handler);
void remove_E(T handler);

14.3.10.4 Member names reserved for indexers

For an indexer (§14.9) of type T with parameter-list L, the following signatures are reserved:

T get_Item(L);
void set_Item(L, T value);

ECMA-334

346

Both signatures are reserved, even if the indexer is read-only or write-only.

Furthermore the member name Item is reserved.

14.3.10.5 Member names reserved for finalizers

For a class containing a finalizer (§14.13), the following signature is reserved:

void Finalize();

14.4 Constants
A constant is a class member that represents a constant value: a value that can be computed at compile-
time. A constant_declaration introduces one or more constants of a given type.

constant_declaration
 : attributes? constant_modifier* 'const' type constant_declarators ';'
 ;

constant_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

A constant_declaration may include a set of attributes (§21), a new modifier (§14.3.5), and a valid
combination of the four access modifiers (§14.3.6). The attributes and modifiers apply to all of the
members declared by the constant_declaration. Even though constants are considered static members, a
constant_declaration neither requires nor allows a static modifier. It is an error for the same modifier to
appear multiple times in a constant declaration.

The type of a constant_declaration specifies the type of the members introduced by the declaration. The
type is followed by a list of constant_declarators (§12.6.3), each of which introduces a new member. A
constant_declarator consists of an identifier that names the member, followed by an “=” token, followed by
a constant_expression (§11.20) that gives the value of the member.

The type specified in a constant declaration shall be sbyte, byte, short, ushort, int, uint, long, ulong,
char, float, double, decimal, bool, string, an enum_type, or a reference_type. Each constant_expression
shall yield a value of the target type or of a type that can be converted to the target type by an implicit
conversion (§10.2).

The type of a constant shall be at least as accessible as the constant itself (§7.5.5).

The value of a constant is obtained in an expression using a simple_name (§11.7.4) or a member_access
(§11.7.6).

A constant can itself participate in a constant_expression. Thus, a constant may be used in any construct
that requires a constant_expression.

Note: Examples of such constructs include case labels, goto case statements, enum member
declarations, attributes, and other constant declarations. end note

Note: As described in §11.20, a constant_expression is an expression that can be fully evaluated at
compile-time. Since the only way to create a non-null value of a reference_type other than string is

Chapter 14 Classes

347

to apply the new operator, and since the new operator is not permitted in a constant_expression, the
only possible value for constants of reference_types other than string is null. end note

When a symbolic name for a constant value is desired, but when the type of that value is not permitted in
a constant declaration, or when the value cannot be computed at compile-time by a constant_expression, a
readonly field (§14.5.3) may be used instead.

Note: The versioning semantics of const and readonly differ (§14.5.3.3). end note

A constant declaration that declares multiple constants is equivalent to multiple declarations of single
constants with the same attributes, modifiers, and type.

Example:

class A
{
 public const double X = 1.0, Y = 2.0, Z = 3.0;
}

is equivalent to

class A
{
 public const double X = 1.0;
 public const double Y = 2.0;
 public const double Z = 3.0;
}

end example

Constants are permitted to depend on other constants within the same program as long as the
dependencies are not of a circular nature. The compiler automatically arranges to evaluate the constant
declarations in the appropriate order.

Example: In the following code

class A
{
 public const int X = B.Z + 1;
 public const int Y = 10;
}

class B
{
 public const int Z = A.Y + 1;
}

the compiler first evaluates A.Y, then evaluates B.Z, and finally evaluates A.X, producing the
values 10, 11, and 12.

end example

Constant declarations may depend on constants from other programs, but such dependencies are only
possible in one direction.

Example: Referring to the example above, if A and B were declared in separate programs, it would be
possible for A.X to depend on B.Z, but B.Z could then not simultaneously depend on A.Y. end
example

ECMA-334

348

14.5 Fields

14.5.1 General

A field is a member that represents a variable associated with an object or class. A field_declaration
introduces one or more fields of a given type.

field_declaration
 : attributes? field_modifier* type variable_declarators ';'
 ;

field_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'readonly'
 | 'volatile'
 | unsafe_modifier // unsafe code support
 ;

variable_declarators
 : variable_declarator (',' variable_declarator)*
 ;

variable_declarator
 : identifier ('=' variable_initializer)?
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A field_declaration may include a set of attributes (§21), a new modifier (§14.3.5), a valid combination of
the four access modifiers (§14.3.6), and a static modifier (§14.5.2). In addition, a field_declaration may
include a readonly modifier (§14.5.3) or a volatile modifier (§14.5.4), but not both. The attributes and
modifiers apply to all of the members declared by the field_declaration. It is an error for the same modifier
to appear multiple times in a field_declaration.

The type of a field_declaration specifies the type of the members introduced by the declaration. The type is
followed by a list of variable_declarators, each of which introduces a new member. A variable_declarator
consists of an identifier that names that member, optionally followed by an “=” token and a
variable_initializer (§14.5.6) that gives the initial value of that member.

The type of a field shall be at least as accessible as the field itself (§7.5.5).

The value of a field is obtained in an expression using a simple_name (§11.7.4), a member_access (§11.7.6)
or a base_access (§11.7.13). The value of a non-readonly field is modified using an assignment (§11.18).
The value of a non-readonly field can be both obtained and modified using postfix increment and
decrement operators (§11.7.14) and prefix increment and decrement operators (§11.8.6).

A field declaration that declares multiple fields is equivalent to multiple declarations of single fields with
the same attributes, modifiers, and type.

Example:

Chapter 14 Classes

349

class A
{
 public static int X = 1, Y, Z = 100;
}

is equivalent to

class A
{
 public static int X = 1;
 public static int Y;
 public static int Z = 100;
}

end example

14.5.2 Static and instance fields

When a field declaration includes a static modifier, the fields introduced by the declaration are static
fields. When no static modifier is present, the fields introduced by the declaration are instance fields.
Static fields and instance fields are two of the several kinds of variables (§9) supported by C#, and at
times they are referred to as static variables and instance variables, respectively.

As explained in §14.3.8, each instance of a class contains a complete set of the instance fields of the class,
while there is only one set of static fields for each non-generic class or closed constructed type, regardless
of the number of instances of the class or closed constructed type.

14.5.3 Readonly fields

14.5.3.1 General

When a field_declaration includes a readonly modifier, the fields introduced by the declaration are
readonly fields. Direct assignments to readonly fields can only occur as part of that declaration or in an
instance constructor or static constructor in the same class. (A readonly field can be assigned to multiple
times in these contexts.) Specifically, direct assignments to a readonly field are permitted only in the
following contexts:

• In the variable_declarator that introduces the field (by including a variable_initializer in the
declaration).

• For an instance field, in the instance constructors of the class that contains the field declaration; for
a static field, in the static constructor of the class that contains the field declaration. These are also
the only contexts in which it is valid to pass a readonly field as an out or ref parameter.

Attempting to assign to a readonly field or pass it as an out or ref parameter in any other context is a
compile-time error.

14.5.3.2 Using static readonly fields for constants

A static readonly field is useful when a symbolic name for a constant value is desired, but when the type of
the value is not permitted in a const declaration, or when the value cannot be computed at compile-time.

Example: In the following code

public class Color
{
 public static readonly Color Black = new Color(0, 0, 0);
 public static readonly Color White = new Color(255, 255, 255);

ECMA-334

350

 public static readonly Color Red = new Color(255, 0, 0);
 public static readonly Color Green = new Color(0, 255, 0);
 public static readonly Color Blue = new Color(0, 0, 255);

 private byte red, green, blue;

 public Color(byte r, byte g, byte b)
 {
 red = r;
 green = g;
 blue = b;
 }
}

the Black, White, Red, Green, and Blue members cannot be declared as const members because their
values cannot be computed at compile-time. However, declaring them static readonly instead has
much the same effect.

end example

14.5.3.3 Versioning of constants and static readonly fields

Constants and readonly fields have different binary versioning semantics. When an expression references
a constant, the value of the constant is obtained at compile-time, but when an expression references a
readonly field, the value of the field is not obtained until run-time.

Example: Consider an application that consists of two separate programs:

namespace Program1
{
 public class Utils
 {
 public static readonly int x = 1;
 }
}

and

using System;

namespace Program2
{
 class Test
 {
 static void Main()
 {
 Console.WriteLine(Program1.Utils.X);
 }
 }
}

The Program1 and Program2 namespaces denote two programs that are compiled separately.
Because Program1.Utils.X is declared as a static readonly field, the value output by the
Console.WriteLine statement is not known at compile-time, but rather is obtained at run-time.
Thus, if the value of X is changed and Program1 is recompiled, the Console.WriteLine statement will
output the new value even if Program2 isn’t recompiled. However, had X been a constant, the value

Chapter 14 Classes

351

of X would have been obtained at the time Program2 was compiled, and would remain unaffected by
changes in Program1 until Program2 is recompiled.

end example

14.5.4 Volatile fields

When a field_declaration includes a volatile modifier, the fields introduced by that declaration are
volatile fields. For non-volatile fields, optimization techniques that reorder instructions can lead to
unexpected and unpredictable results in multi-threaded programs that access fields without
synchronization such as that provided by the lock_statement (§12.13). These optimizations can be
performed by the compiler, by the run-time system, or by hardware. For volatile fields, such reordering
optimizations are restricted:

• A read of a volatile field is called a volatile read. A volatile read has “acquire semantics”; that is, it is
guaranteed to occur prior to any references to memory that occur after it in the instruction
sequence.

• A write of a volatile field is called a volatile write. A volatile write has “release semantics”; that is, it
is guaranteed to happen after any memory references prior to the write instruction in the
instruction sequence.

These restrictions ensure that all threads will observe volatile writes performed by any other thread in
the order in which they were performed. A conforming implementation is not required to provide a single
total ordering of volatile writes as seen from all threads of execution. The type of a volatile field shall be
one of the following:

• A reference_type.

• A type_parameter that is known to be a reference type (§14.2.5).

• The type byte, sbyte, short, ushort, int, uint, char, float, bool, System.IntPtr, or
System.UIntPtr.

• An enum_type having an enum_base type of byte, sbyte, short, ushort, int, or uint.

Example: The example

using System;
using System.Threading;

class Test
{
 public static int result;
 public static volatile bool finished;

 static void Thread2()
 {
 result = 143;
 finished = true;
 }

 static void Main()
 {
 finished = false;

 // Run Thread2() in a new thread

ECMA-334

352

 new Thread(new ThreadStart(Thread2)).Start();

 // Wait for Thread2() to signal that it has a result by setting finished to
true.
 for (;;)
 {
 if (finished)
 {
 Console.WriteLine($"result = {result}");
 return;
 }
 }
 }
}

produces the output:

result = 143

In this example, the method Main starts a new thread that runs the method Thread2. This method
stores a value into a non-volatile field called result, then stores true in the volatile field finished.
The main thread waits for the field finished to be set to true, then reads the field result. Since
finished has been declared volatile, the main thread shall read the value 143 from the field
result. If the field finished had not been declared volatile, then it would be permissible for the
store to result to be visible to the main thread after the store to finished, and hence for the main
thread to read the value 0 from the field result. Declaring finished as a volatile field prevents
any such inconsistency.

end example

14.5.5 Field initialization

The initial value of a field, whether it be a static field or an instance field, is the default value (§9.3) of the
field’s type. It is not possible to observe the value of a field before this default initialization has occurred,
and a field is thus never “uninitialized”.

Example: The example

using System;

class Test
{
 static bool b;
 int i;

 static void Main()
 {
 Test t = new Test();
 Console.WriteLine($"b = {b}, i = {t.i}");
 }
}

produces the output

b = False, i = 0

because b and i are both automatically initialized to default values.

Chapter 14 Classes

353

end example

14.5.6 Variable initializers

14.5.6.1 General

Field declarations may include variable_initializers. For static fields, variable initializers correspond to
assignment statements that are executed during class initialization. For instance fields, variable
initializers correspond to assignment statements that are executed when an instance of the class is
created.

Example: The example

using System;

class Test
{
 static double x = Math.Sqrt(2.0);
 int i = 100;
 string s = "Hello";

 static void Main()
 {
 Test a = new Test();
 Console.WriteLine($"x = {x}, i = {a.i}, s = {a.s}");
 }
}

produces the output

x = 1.4142135623731, i = 100, s = Hello

because an assignment to x occurs when static field initializers execute and assignments to i and s
occur when the instance field initializers execute.

end example

The default value initialization described in §14.5.5 occurs for all fields, including fields that have variable
initializers. Thus, when a class is initialized, all static fields in that class are first initialized to their default
values, and then the static field initializers are executed in textual order. Likewise, when an instance of a
class is created, all instance fields in that instance are first initialized to their default values, and then the
instance field initializers are executed in textual order. When there are field declarations in multiple
partial type declarations for the same type, the order of the parts is unspecified. However, within each
part the field initializers are executed in order.

It is possible for static fields with variable initializers to be observed in their default value state.

Example: However, this is strongly discouraged as a matter of style. The example

using System;

class Test
{
 static int a = b + 1;
 static int b = a + 1;

 static void Main()
 {

ECMA-334

354

 Console.WriteLine($"a = {a}, b = {b}");
 }
}

exhibits this behavior. Despite the circular definitions of a and b, the program is valid. It results in
the output

a = 1, b = 2

because the static fields a and b are initialized to 0 (the default value for int) before their initializers
are executed. When the initializer for a runs, the value of b is zero, and so a is initialized to 1. When
the initializer for b runs, the value of a is already 1, and so b is initialized to 2.

end example

14.5.6.2 Static field initialization

The static field variable initializers of a class correspond to a sequence of assignments that are executed
in the textual order in which they appear in the class declaration (§14.5.6.1). Within a partial class, the
meaning of “textual order” is specified by §14.5.6.1. If a static constructor (§14.12) exists in the class,
execution of the static field initializers occurs immediately prior to executing that static constructor.
Otherwise, the static field initializers are executed at an implementation-dependent time prior to the first
use of a static field of that class.

Example: The example

using System;

class Test
{
 static void Main()
 {
 Console.WriteLine($"{B.Y} {A.X}");
 }

 public static int F(string s)
 {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 public static int X = Test.F("Init A");
}

class B
{
 public static int Y = Test.F("Init B");
}

might produce either the output:

Init A
Init B
1 1

or the output:

Chapter 14 Classes

355

Init B
Init A
1 1

because the execution of X’s initializer and Y’s initializer could occur in either order; they are only
constrained to occur before the references to those fields. However, in the example:

using System;

class Test
{
 static void Main()
 {
 Console.WriteLine($"{B.Y} {A.X}");
 }

 public static int F(string s)
 {
 Console.WriteLine(s);
 return 1;
 }
}

class A
{
 static A() {}
 public static int X = Test.F("Init A");
}

class B
{
 static B() {}
 public static int Y = Test.F("Init B");
}

the output shall be:

Init B
Init A
1 1

because the rules for when static constructors execute (as defined in §14.12) provide that B’s static
constructor (and hence B’s static field initializers) shall run before A’s static constructor and field
initializers.

end example

14.5.6.3 Instance field initialization

The instance field variable initializers of a class correspond to a sequence of assignments that are
executed immediately upon entry to any one of the instance constructors (§14.11.3) of that class. Within a
partial class, the meaning of “textual order” is specified by §14.5.6.1. The variable initializers are executed
in the textual order in which they appear in the class declaration (§14.5.6.1). The class instance creation
and initialization process is described further in §14.11.

A variable initializer for an instance field cannot reference the instance being created. Thus, it is a
compile-time error to reference this in a variable initializer, as it is a compile-time error for a variable
initializer to reference any instance member through a simple_name.

ECMA-334

356

Example: In the following code

class A
{
 int x = 1;
 int y = x + 1; // Error, reference to instance member of this
}

the variable initializer for y results in a compile-time error because it references a member of the
instance being created.

end example

14.6 Methods

14.6.1 General

A method is a member that implements a computation or action that can be performed by an object or
class. Methods are declared using method_declarations:

method_declaration
 : method_header method_body
 ;

method_header
 : attributes? method_modifier* 'partial'? return_type member_name
type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause*
 ;

method_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | 'async'
 | unsafe_modifier // unsafe code support
 ;

return_type
 : type
 | 'void'
 ;

member_name
 : identifier
 | interface_type '.' identifier
 ;

Chapter 14 Classes

357

method_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 | ';'
 ;

Grammar notes:

• unsafe_modifier (§22.2) is only available in unsafe code (§22).

• when recognising a method_body if both the null_conditional_invocation_expression and expression
alternatives are applicable then the former shall be chosen.

Note: The overlapping of, and priority between, alternatives here is solely for descriptive
convenience; the grammar rules could be elaborated to remove the overlap. ANTLR, and other
grammar systems, adopt the same convenience and so method_body has the specified semantics
automatically.

A method_declaration may include a set of attributes (§21) and a valid combination of the four access
modifiers (§14.3.6), the new (§14.3.5), static (§14.6.3), virtual (§14.6.4), override (§14.6.5), sealed
(§14.6.6), abstract (§14.6.7), extern (§14.6.8) and async (§14.15) modifiers.

A declaration has a valid combination of modifiers if all of the following are true:

• The declaration includes a valid combination of access modifiers (§14.3.6).

• The declaration does not include the same modifier multiple times.

• The declaration includes at most one of the following modifiers: static, virtual, and override.

• The declaration includes at most one of the following modifiers: new and override.

• If the declaration includes the abstract modifier, then the declaration does not include any of the
following modifiers: static, virtual, sealed, or extern.

• If the declaration includes the private modifier, then the declaration does not include any of the
following modifiers: virtual, override, or abstract.

• If the declaration includes the sealed modifier, then the declaration also includes the override
modifier.

• If the declaration includes the partial modifier, then it does not include any of the following
modifiers: new, public, protected, internal, private, virtual, sealed, override, abstract, or
extern.

The return_type of a method declaration specifies the type of the value computed and returned by the
method. The return_type is void if the method does not return a value. If the declaration includes the
partial modifier, then the return type shall be void (§14.6.9). If the declaration includes the async
modifier then the return type shall be void or a task type (§14.15.1).

A generic method is a method whose declaration includes a type_parameter_list. This specifies the type
parameters for the method. The optional type_parameter_constraints_clauses specify the constraints for
the type parameters. A method_declaration shall not have type_parameter_constraints_clauses unless it
also has a type_parameter_list. A method_declaration for an explicit interface member implementation
shall not have any type_parameter_constraints_clauses. A generic method_declaration for an explicit
interface member implementation inherits any constraints from the constraints on the interface method.

ECMA-334

358

Similarly, a method declaration with the override modifier shall not have any
type_parameter_constraints_clauses and the constraints of the method’s type parameters are inherited
from the virtual method being overridden.The member_name specifies the name of the method. Unless the
method is an explicit interface member implementation (§17.6.2), the member_name is simply an
identifier. For an explicit interface member implementation, the member_name consists of an
interface_type followed by a “.” and an identifier. In this case, the declaration shall include no modifiers
other than (possibly) extern or async.

The optional formal_parameter_list specifies the parameters of the method (§14.6.2).

The return_type and each of the types referenced in the formal_parameter_list of a method shall be at least
as accessible as the method itself (§7.5.5).

The method_body is either a semicolon, a block body or an expression body. A block body consists of a
block, which specifies the statements to execute when the method is invoked. An expression body consists
of =>, followed by a null_conditional_invocation_expression or expression, followed by a semicolon, and
denotes a single expression to perform when the method is invoked.

For abstract and extern methods, the method_body consists simply of a semicolon. For partial methods the
method_body may consist of either a semicolon, a block body or an expression body. For all other
methods, the method_body is either a block body or an expression body.

If the method_body consists of a semicolon, the declaration shall not include the async modifier.

The name, the number of type parameters, and the formal parameter list of a method define the signature
(§7.6) of the method. Specifically, the signature of a method consists of its name, the number of its type
parameters, and the number, parameter_mode_modifiers (§14.6.2.1), and types of its formal parameters.
The return type is not part of a method’s signature, nor are the names of the formal parameters, the
names of the type parameters, or the constraints. When a formal parameter type references a type
parameter of the method, the ordinal position of the type parameter (not the name of the type parameter)
is used for type equivalence.

The name of a method shall differ from the names of all other non-methods declared in the same class. In
addition, the signature of a method shall differ from the signatures of all other methods declared in the
same class, and two methods declared in the same class may not have signatures that differ solely by ref
and out.

The method’s type_parameters are in scope throughout the method_declaration, and can be used to form
types throughout that scope in return_type, method_body, and type_parameter_constraints_clauses but not
in attributes.

All formal parameters and type parameters shall have different names.

14.6.2 Method parameters

14.6.2.1 General

The parameters of a method, if any, are declared by the method’s formal_parameter_list.

formal_parameter_list
 : fixed_parameters
 | fixed_parameters ',' parameter_array
 | parameter_array
 ;

fixed_parameters
 : fixed_parameter (',' fixed_parameter)*

Chapter 14 Classes

359

 ;

fixed_parameter
 : attributes? parameter_modifier? type identifier default_argument?
 ;

default_argument
 : '=' expression
 ;

parameter_modifier
 : parameter_mode_modifier
 | 'this'
 ;

parameter_mode_modifier
 : 'ref'
 | 'out'
 ;

parameter_array
 : attributes? 'params' array_type identifier
 ;

The formal parameter list consists of one or more comma-separated parameters of which only the last
may be a parameter_array.

A fixed_parameter consists of an optional set of attributes (§21); an optional ref, out, or this modifier; a
type; an identifier; and an optional default_argument. Each fixed_parameter declares a parameter of the
given type with the given name. The this modifier designates the method as an extension method and is
only allowed on the first parameter of a static method in a non-generic, non-nested static class. Extension
methods are further described in §14.6.10. A fixed_parameter with a default_argument is known as an
optional parameter, whereas a fixed_parameter without a default_argument is a required parameter. A
required parameter may not appear after an optional parameter in a formal_parameter_list.

A parameter with a ref, out or this modifier cannot have a default_argument. The expression in a
default_argument shall be one of the following:

• a constant_expression

• an expression of the form new S() where S is a value type

• an expression of the form default(S) where S is a value type

The expression shall be implicitly convertible by an identity or nullable conversion to the type of the
parameter.

If optional parameters occur in an implementing partial method declaration (§14.6.9), an explicit
interface member implementation (§17.6.2), a single-parameter indexer declaration (§14.9), or in an
operator declaration (§14.10.1) the compiler should give a warning, since these members can never be
invoked in a way that permits arguments to be omitted.

A parameter_array consists of an optional set of attributes (§21), a params modifier, an array_type, and an
identifier. A parameter array declares a single parameter of the given array type with the given name. The
array_type of a parameter array shall be a single-dimensional array type (§16.2). In a method invocation,
a parameter array permits either a single argument of the given array type to be specified, or it permits

ECMA-334

360

zero or more arguments of the array element type to be specified. Parameter arrays are described further
in §14.6.2.5.

A parameter_array may occur after an optional parameter, but cannot have a default value – the omission
of arguments for a parameter_array would instead result in the creation of an empty array.

Example: The following illustrates different kinds of parameters:

public void M(
 ref int i,
 decimal d,
 bool b = false,
 bool? n = false,
 string s = "Hello",
 object o = null,
 T t = default(T),
 params int[] a
) { }

In the formal_parameter_list for M, i is a required ref parameter, d is a required value parameter, b,
s, o and t are optional value parameters and a is a parameter array.

end example

A method declaration creates a separate declaration space (§7.3) for parameters and type parameters.
Names are introduced into this declaration space by the type parameter list and the formal parameter list
of the method. The body of the method, if any, is considered to be nested within this declaration space. It
is an error for two members of a method declaration space to have the same name. It is an error for the
method declaration space and the local variable declaration space of a nested declaration space to contain
elements with the same name.

A method invocation (§11.7.8.2) creates a copy, specific to that invocation, of the formal parameters and
local variables of the method, and the argument list of the invocation assigns values or variable references
to the newly created formal parameters. Within the block of a method, formal parameters can be
referenced by their identifiers in simple_name expressions (§11.7.4).

There are four kinds of formal parameters:

• Value parameters, which are declared without any modifiers.

• Reference parameters, which are declared with the ref modifier.

• Output parameters, which are declared with the out modifier.

• Parameter arrays, which are declared with the params modifier.

Note: As described in §7.6, the ref and out modifiers are part of a method’s signature, but the
params modifier is not.

14.6.2.2 Value parameters

A parameter declared with no modifiers is a value parameter. A value parameter corresponds to a local
variable that gets its initial value from the corresponding argument supplied in the method invocation.

When a formal parameter is a value parameter, the corresponding argument in a method invocation shall
be an expression that is implicitly convertible (§10.2) to the formal parameter type.

Chapter 14 Classes

361

A method is permitted to assign new values to a value parameter. Such assignments only affect the local
storage location represented by the value parameter—they have no effect on the actual argument given in
the method invocation.

14.6.2.3 Reference parameters

A parameter declared with a ref modifier is a reference parameter. Unlike a value parameter, a reference
parameter does not create a new storage location. Instead, a reference parameter represents the same
storage location as the variable given as the argument in the method invocation.

When a formal parameter is a reference parameter, the corresponding argument in a method invocation
shall consist of the keyword ref followed by a variable_reference (§9.5) of the same type as the formal
parameter. A variable shall be definitely assigned before it can be passed as a reference parameter.

Within a method, a reference parameter is always considered definitely assigned.

A method declared as an iterator (§14.14) may not have reference parameters.

Example: The example

using System;

class Test
{
 static void Swap(ref int x, ref int y)
 {
 int temp = x;
 x = y;
 y = temp;
 }

 static void Main()
 {
 int i = 1, j = 2;
 Swap(ref i, ref j);
 Console.WriteLine($"i = {i}, j = {j}");
 }
}

produces the output

i = 2, j = 1

For the invocation of Swap in Main, x represents i and y represents j. Thus, the invocation has the
effect of swapping the values of i and j.

end example

In a method that takes reference parameters, it is possible for multiple names to represent the same
storage location.

Example: In the following code

class A
{
 string s;
 void F(ref string a, ref string b)
 {
 s = "One";
 a = "Two";

ECMA-334

362

 b = "Three";
 }

 void G()
 {
 F(ref s, ref s);
 }
}

the invocation of F in G passes a reference to s for both a and b. Thus, for that invocation, the
names s, a, and b all refer to the same storage location, and the three assignments all modify the
instance field s.

end example

14.6.2.4 Output parameters

A parameter declared with an out modifier is an output parameter. Similar to a reference parameter, an
output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the method invocation.

When a formal parameter is an output parameter, the corresponding argument in a method invocation
shall consist of the keyword out followed by a variable_reference (§9.5) of the same type as the formal
parameter. A variable need not be definitely assigned before it can be passed as an output parameter, but
following an invocation where a variable was passed as an output parameter, the variable is considered
definitely assigned.

Within a method, just like a local variable, an output parameter is initially considered unassigned and
shall be definitely assigned before its value is used.

Every output parameter of a method shall be definitely assigned before the method returns.

A method declared as a partial method (§14.6.9) or an iterator (§14.14) may not have output parameters.

Output parameters are typically used in methods that produce multiple return values.

Example:

using System;
class Test
{
 static void SplitPath(string path, out string dir, out string name)
 {
 int i = path.Length;
 while (i > 0)
 {
 char ch = path[i – 1];
 if (ch == '\\' || ch == '/' || ch == ':')
 {
 break;
 }
 i--;
 }
 dir = path.Substring(0, i);
 name = path.Substring(i);
 }

 static void Main()

Chapter 14 Classes

363

 {
 string dir, name;
 SplitPath("c:\\\Windows\\\\System\\\\hello.txt", out dir, out name);
 Console.WriteLine(dir);
 Console.WriteLine(name);
 }
}

The example produces the output:

c:\Windows\System\
hello.txt

Note that the dir and name variables can be unassigned before they are passed to SplitPath, and
that they are considered definitely assigned following the call.

end example

14.6.2.5 Parameter arrays

A parameter declared with a params modifier is a parameter array. If a formal parameter list includes a
parameter array, it shall be the last parameter in the list and it shall be of a single-dimensional array type.

Example: The types string[] and string[][] can be used as the type of a parameter array, but the
type string[,] can not. end example

It is not possible to combine the params modifier with the modifiers ref and out.

A parameter array permits arguments to be specified in one of two ways in a method invocation:

• The argument given for a parameter array can be a single expression that is implicitly convertible
(§10.2) to the parameter array type. In this case, the parameter array acts precisely like a value
parameter.

• Alternatively, the invocation can specify zero or more arguments for the parameter array, where
each argument is an expression that is implicitly convertible (§10.2) to the element type of the
parameter array. In this case, the invocation creates an instance of the parameter array type with a
length corresponding to the number of arguments, initializes the elements of the array instance
with the given argument values, and uses the newly created array instance as the actual argument.

Except for allowing a variable number of arguments in an invocation, a parameter array is precisely
equivalent to a value parameter (§14.6.2.2) of the same type.

Example: The example

using System;
class Test
{
 static void F(params int[] args)
 {
 Console.Write($"Array contains {args.Length} elements:");
 foreach (int i in args)
 {
 Console.Write($" {i}");
 }
 Console.WriteLine();
 }

 static void Main()

ECMA-334

364

 {
 int[] arr = {1, 2, 3};
 F(arr);
 F(10, 20, 30, 40);
 F();
 }
}

produces the output

Array contains 3 elements: 1 2 3
Array contains 4 elements: 10 20 30 40
Array contains 0 elements:

The first invocation of F simply passes the array arr as a value parameter. The second invocation of
F automatically creates a four-element int[] with the given element values and passes that array
instance as a value parameter. Likewise, the third invocation of F creates a zero-element int[] and
passes that instance as a value parameter. The second and third invocations are precisely equivalent
to writing:

F(new int[] {10, 20, 30, 40});
F(new int[] {});

end example

When performing overload resolution, a method with a parameter array might be applicable, either in its
normal form or in its expanded form (§11.6.4.2). The expanded form of a method is available only if the
normal form of the method is not applicable and only if an applicable method with the same signature as
the expanded form is not already declared in the same type.

Example: The example

using System;
class Test
{
 static void F(params object[] a) => Console.WriteLine("F(object[])");
 static void F() => Console.WriteLine("F()");>
 static void F(object a0, object a1) => Console.WriteLine("F(object,object)");

 static void Main()
 {
 F();
 F(1);
 F(1, 2);
 F(1, 2, 3);
 F(1, 2, 3, 4);
 }
}

produces the output

F();
F(object[]);
F(object,object);
F(object[]);
F(object[]);

In the example, two of the possible expanded forms of the method with a parameter array are
already included in the class as regular methods. These expanded forms are therefore not

Chapter 14 Classes

365

considered when performing overload resolution, and the first and third method invocations thus
select the regular methods. When a class declares a method with a parameter array, it is not
uncommon to also include some of the expanded forms as regular methods. By doing so, it is
possible to avoid the allocation of an array instance that occurs when an expanded form of a method
with a parameter array is invoked.

end example

An array is a reference type, so the value passed for a parameter array can be null.

Example: The example:

using System;

class Test
{
 void F(params string[] array) => Console.WriteLine(array == null);

 static void Main()
 {
 F(null);
 F((string) null);
 }
}

produces the output:

True
False

The second invocation produces False as it is equivalent to F(new string[] { null }) and passes
an array containing a single null reference.

end example

When the type of a parameter array is object[], a potential ambiguity arises between the normal form of
the method and the expanded form for a single object parameter. The reason for the ambiguity is that an
object[] is itself implicitly convertible to type object. The ambiguity presents no problem, however,
since it can be resolved by inserting a cast if needed.

Example: The example

using System;

class Test
{
 static void F(params object[] args)
 {
 foreach (object o in args)
 {
 Console.Write(o.GetType().FullName);
 Console.Write(" ");
 }
 Console.WriteLine();
 }

 static void Main()
 {

ECMA-334

366

 object[] a = {1, "Hello", 123.456};
 object o = a;
 F(a);
 F((object)a);
 F(o);
 F((object[])o);
 }
}

produces the output

System.Int32 System.String System.Double
System.Object[]
System.Object[]
System.Int32 System.String System.Double

In the first and last invocations of F, the normal form of F is applicable because an implicit
conversion exists from the argument type to the parameter type (both are of type object[]). Thus,
overload resolution selects the normal form of F, and the argument is passed as a regular value
parameter. In the second and third invocations, the normal form of F is not applicable because no
implicit conversion exists from the argument type to the parameter type (type object cannot be
implicitly converted to type object[]). However, the expanded form of F is applicable, so it is
selected by overload resolution. As a result, a one-element object[] is created by the invocation,
and the single element of the array is initialized with the given argument value (which itself is a
reference to an object[]).

end example

14.6.3 Static and instance methods

When a method declaration includes a static modifier, that method is said to be a static method. When
no static modifier is present, the method is said to be an instance method.

A static method does not operate on a specific instance, and it is a compile-time error to refer to this in a
static method.

An instance method operates on a given instance of a class, and that instance can be accessed as this
(§11.7.12).

The differences between static and instance members are discussed further in §14.3.8.

14.6.4 Virtual methods

When an instance method declaration includes a virtual modifier, that method is said to be a virtual
method. When no virtual modifier is present, the method is said to be a non-virtual method.

The implementation of a non-virtual method is invariant: The implementation is the same whether the
method is invoked on an instance of the class in which it is declared or an instance of a derived class. In
contrast, the implementation of a virtual method can be superseded by derived classes. The process of
superseding the implementation of an inherited virtual method is known as overriding that method
(§14.6.5).

In a virtual method invocation, the run-time type of the instance for which that invocation takes place
determines the actual method implementation to invoke. In a non-virtual method invocation, the
compile-time type of the instance is the determining factor. In precise terms, when a method named N is
invoked with an argument list A on an instance with a compile-time type C and a run-time type R (where R
is either C or a class derived from C), the invocation is processed as follows:

Chapter 14 Classes

367

• At binding-time, overload resolution is applied to C, N, and A, to select a specific method M from the
set of methods declared in and inherited by C. This is described in §11.7.8.2.

• Then at run-time:

o If M is a non-virtual method, M is invoked.

o Otherwise, M is a virtual method, and the most derived implementation of M with respect to R is
invoked.

For every virtual method declared in or inherited by a class, there exists a most derived implementation
of the method with respect to that class. The most derived implementation of a virtual method M with
respect to a class R is determined as follows:

• If R contains the introducing virtual declaration of M, then this is the most derived implementation
of M with respect to R.

• Otherwise, if R contains an override of M, then this is the most derived implementation of M with
respect to R.

• Otherwise, the most derived implementation of M with respect to R is the same as the most derived
implementation of M with respect to the direct base class of R.

Example: The following example illustrates the differences between virtual and non-virtual
methods:

using System;

class A
{
 public void F() => Console.WriteLine("A.F");
 public virtual void G() => Console.WriteLine("A.G");
}

class B : A
{
 public new void F() => Console.WriteLine("B.F");
 public override void G() => Console.WriteLine("B.G");
}

class Test
{
 static void Main()
 {
 B b = new B();
 A a = b;
 a.F();
 b.F();
 a.G();
 b.G();
 }
}

In the example, A introduces a non-virtual method F and a virtual method G. The class B introduces a
new non-virtual method F, thus hiding the inherited F, and also overrides the inherited method G.
The example produces the output:

ECMA-334

368

A.F
B.F
B.G
B.G

Notice that the statement a.G() invokes B.G, not A.G. This is because the run-time type of the
instance (which is B), not the compile-time type of the instance (which is A), determines the actual
method implementation to invoke.

end example

Because methods are allowed to hide inherited methods, it is possible for a class to contain several virtual
methods with the same signature. This does not present an ambiguity problem, since all but the most
derived method are hidden.

Example: In the following code

using System;

class A
{
 public virtual void F() => Console.WriteLine("A.F");
}

class B : A
{
 public override void F() => Console.WriteLine("B.F");
}

class C : B
{
 public new virtual void F() => Console.WriteLine("C.F");
}

class D : C
{
 public override void F() => Console.WriteLine("D.F");
}

class Test
{
 static void Main()
 {
 D d = new D();
 A a = d;
 B b = d;
 C c = d;
 a.F();
 b.F();
 c.F();
 d.F();
 }
}

the C and D classes contain two virtual methods with the same signature: The one introduced by A
and the one introduced by C. The method introduced by C hides the method inherited from A. Thus,

Chapter 14 Classes

369

the override declaration in D overrides the method introduced by C, and it is not possible for D to
override the method introduced by A. The example produces the output:

B.F
B.F
D.F
D.F

Note that it is possible to invoke the hidden virtual method by accessing an instance of D through a
less derived type in which the method is not hidden.

end example

14.6.5 Override methods

When an instance method declaration includes an override modifier, the method is said to be an
override method. An override method overrides an inherited virtual method with the same signature.
Whereas a virtual method declaration introduces a new method, an override method declaration
specializes an existing inherited virtual method by providing a new implementation of that method.

The method overridden by an override declaration is known as the overridden base method For an
override method M declared in a class C, the overridden base method is determined by examining each
base class of C, starting with the direct base class of C and continuing with each successive direct base
class, until in a given base class type at least one accessible method is located which has the same
signature as M after substitution of type arguments. For the purposes of locating the overridden base
method, a method is considered accessible if it is public, if it is protected, if it is protected internal, or
if it is internal and declared in the same program as C.

A compile-time error occurs unless all of the following are true for an override declaration:

• An overridden base method can be located as described above.

• There is exactly one such overridden base method. This restriction has effect only if the base class
type is a constructed type where the substitution of type arguments makes the signature of two
methods the same.

• The overridden base method is a virtual, abstract, or override method. In other words, the
overridden base method cannot be static or non-virtual.

• The overridden base method is not a sealed method.

• There is an identity conversion between the return type of the overridden base method and the
override method.

• The override declaration and the overridden base method have the same declared accessibility. In
other words, an override declaration cannot change the accessibility of the virtual method.
However, if the overridden base method is protected internal and it is declared in a different
assembly than the assembly containing the override declaration then the override declaration’s
declared accessibility shall be protected.

• The override declaration does not specify any type_parameter_constraints_clauses. Instead, the
constraints are inherited from the overridden base method. Constraints that are type parameters in
the overridden method may be replaced by type arguments in the inherited constraint. This can
lead to constraints that are not valid when explicitly specified, such as value types or sealed types.

Example: The following demonstrates how the overriding rules work for generic classes:

ECMA-334

370

abstract class C<T>
{
 public virtual T F() {...}
 public virtual C<T> G() {...}
 public virtual void H(C<T> x) {...}
}

class D : C<string>
{
 public override string F() {...} // Ok
 public override C<string> G() {...} // Ok
 public override void H(C<T> x) {...} // Error, should be C<string>
}

class E<T,U> : C<U>
{
 public override U F() {...} // Ok
 public override C<U> G() {...} // Ok
 public override void H(C<T> x) {...} // Error, should be C<U>
}

end example

An override declaration can access the overridden base method using a base_access (§11.7.13).

Example: In the following code

class A
{
 int x;

 public virtual void PrintFields() => Console.WriteLine($"x = {x}");
}

class B : A
{
 int y;

 public override void PrintFields()
 {
 base.PrintFields();
 Console.WriteLine($"y = {y}");
 }
}

the base.PrintFields() invocation in B invokes the PrintFields method declared in A. A base_access
disables the virtual invocation mechanism and simply treats the base method as a non-virtual
method. Had the invocation in B been written ((A)this).PrintFields(), it would recursively
invoke the PrintFields method declared in B, not the one declared in A, since PrintFields is virtual
and the run-time type of ((A)this) is B.

end example

Only by including an override modifier can a method override another method. In all other cases, a
method with the same signature as an inherited method simply hides the inherited method.

Example: In the following code

Chapter 14 Classes

371

class A
{
 public virtual void F() {}
}

class B : A
{
 public virtual void F() {} // Warning, hiding inherited F()
}

the F method in B does not include an override modifier and therefore does not override the
F method in A. Rather, the F method in B hides the method in A, and a warning is reported because
the declaration does not include a new modifier.

end example

Example: In the following code

class A
{
 public virtual void F() {}
}

class B : A
{
 private new void F() {} // Hides A.F within body of B
}

class C : B
{
 public override void F() {} // Ok, overrides A.F
}

the F method in B hides the virtual F method inherited from A. Since the new F in B has private
access, its scope only includes the class body of B and does not extend to C. Therefore, the
declaration of F in C is permitted to override the F inherited from A.

end example

14.6.6 Sealed methods

When an instance method declaration includes a sealed modifier, that method is said to be a sealed
method. A sealed method overrides an inherited virtual method with the same signature. A sealed
method shall also be marked with the override modifier. Use of the sealed modifier prevents a derived
class from further overriding the method.

Example: The example

using System;

class A
{
 public virtual void F() => Console.WriteLine("A.F");
 public virtual void G() => Console.WriteLine("A.G");
}

class B : A
{

ECMA-334

372

 public sealed override void F() => Console.WriteLine("B.F");
 public override void G() => Console.WriteLine("B.G");
}

class C : B
{
 public override void G() => Console.WriteLine("C.G");
}

the class B provides two override methods: an F method that has the sealed modifier and a
G method that does not. B’s use of the sealed modifier prevents C from further overriding F.

end example

14.6.7 Abstract methods

When an instance method declaration includes an abstract modifier, that method is said to be an
abstract method. Although an abstract method is implicitly also a virtual method, it cannot have the
modifier virtual.

An abstract method declaration introduces a new virtual method but does not provide an implementation
of that method. Instead, non-abstract derived classes are required to provide their own implementation
by overriding that method. Because an abstract method provides no actual implementation, the
method_body of an abstract method simply consists of a semicolon.

Abstract method declarations are only permitted in abstract classes (§14.2.2.2).

Example: In the following code

public abstract class Shape
{
 public abstract void Paint(Graphics g, Rectangle r);
}

public class Ellipse : Shape
{
 public override void Paint(Graphics g, Rectangle r) => g.DrawEllipse(r);
}

public class Box : Shape
{
 public override void Paint(Graphics g, Rectangle r) => g.DrawRect(r);
}

the Shape class defines the abstract notion of a geometrical shape object that can paint itself. The
Paint method is abstract because there is no meaningful default implementation. The Ellipse and
Box classes are concrete Shape implementations. Because these classes are non-abstract, they are
required to override the Paint method and provide an actual implementation.

end example

It is a compile-time error for a base_access (§11.7.13) to reference an abstract method.

Example: In the following code

abstract class A
{
 public abstract void F();
}

Chapter 14 Classes

373

class B : A
{
 // Error, base.F is abstract
 public override void F() => base.F();
}

a compile-time error is reported for the base.F() invocation because it references an abstract
method.

end example

An abstract method declaration is permitted to override a virtual method. This allows an abstract class to
force re-implementation of the method in derived classes, and makes the original implementation of the
method unavailable.

Example: In the following code

using System;
class A
{
 public virtual void F() => Console.WriteLine("A.F");
}

abstract class B: A
{
 public abstract override void F();
}

class C : B
{
 public override void F() => Console.WriteLine("C.F");
}

class A declares a virtual method, class B overrides this method with an abstract method, and class C
overrides the abstract method to provide its own implementation.

end example

14.6.8 External methods

When a method declaration includes an extern modifier, the method is said to be an external method.
External methods are implemented externally, typically using a language other than C#. Because an
external method declaration provides no actual implementation, the method_body of an external method
simply consists of a semicolon. An external method shall not be generic.

The mechanism by which linkage to an external method is achieved, is implementation-defined.

Example: The following example demonstrates the use of the extern modifier and the DllImport
attribute:

using System.Text;
using System.Security.Permissions;
using System.Runtime.InteropServices;

class Path
{
 [DllImport("kernel32", SetLastError=true)]

ECMA-334

374

 static extern bool CreateDirectory(string name, SecurityAttribute sa);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool RemoveDirectory(string name);

 [DllImport("kernel32", SetLastError=true)]
 static extern `int` GetCurrentDirectory(int bufSize, StringBuilder buf);

 [DllImport("kernel32", SetLastError=true)]
 static extern bool SetCurrentDirectory(string name);
}

end example

14.6.9 Partial methods

When a method declaration includes a partial modifier, that method is said to be a partial method.
Partial methods may only be declared as members of partial types (§14.2.7), and are subject to a number
of restrictions.

Partial methods may be defined in one part of a type declaration and implemented in another. The
implementation is optional; if no part implements the partial method, the partial method declaration and
all calls to it are removed from the type declaration resulting from the combination of the parts.

Partial methods shall not define access modifiers; they are implicitly private. Their return type shall be
void, and their parameters shall not have the out modifier. The identifier partial is recognized as a
contextual keyword (§6.4.4) in a method declaration only if it appears immediately before the void
keyword. A partial method cannot explicitly implement interface methods.

There are two kinds of partial method declarations: If the body of the method declaration is a semicolon,
the declaration is said to be a defining partial method declaration. If the body is given as a block, the
declaration is said to be an implementing partial method declaration. Across the parts of a type
declaration, there may be only one defining partial method declaration with a given signature, and there
may be only one implementing partial method declaration with a given signature. If an implementing
partial method declaration is given, a corresponding defining partial method declaration shall exist, and
the declarations shall match as specified in the following:

• The declarations shall have the same modifiers (although not necessarily in the same order),
method name, number of type parameters and number of parameters.

• Corresponding parameters in the declarations shall have the same modifiers (although not
necessarily in the same order) and the same types (modulo differences in type parameter names).

• Corresponding type parameters in the declarations shall have the same constraints (modulo
differences in type parameter names).

An implementing partial method declaration can appear in the same part as the corresponding defining
partial method declaration.

Only a defining partial method participates in overload resolution. Thus, whether or not an implementing
declaration is given, invocation expressions may resolve to invocations of the partial method. Because a
partial method always returns void, such invocation expressions will always be expression statements.
Furthermore, because a partial method is implicitly private, such statements will always occur within
one of the parts of the type declaration within which the partial method is declared.

Note: The definition of matching defining and implementing partial method declarations does not
require parameter names to match. This can produce surprising, albeit well defined, behaviour when

Chapter 14 Classes

375

named arguments (§11.6.2.1) are used. For example, given the defining partial method declaration
for M:

partial class P
{
 static partial void M(int x);
}

Then the implementing partial method declaration and invocation in other file:

partial class P
{
 static void Caller() => M(y: 0);
 static partial void M(int y) {}
}

is invalid as the invocation uses the argument name from the implementing and not the defining
partial method declaration.

end note

If no part of a partial type declaration contains an implementing declaration for a given partial method,
any expression statement invoking it is simply removed from the combined type declaration. Thus the
invocation expression, including any subexpressions, has no effect at run-time. The partial method itself is
also removed and will not be a member of the combined type declaration.

If an implementing declaration exists for a given partial method, the invocations of the partial methods
are retained. The partial method gives rise to a method declaration similar to the implementing partial
method declaration except for the following:

• The partial modifier is not included.

• The attributes in the resulting method declaration are the combined attributes of the defining and
the implementing partial method declaration in unspecified order. Duplicates are not removed.

• The attributes on the parameters of the resulting method declaration are the combined attributes of
the corresponding parameters of the defining and the implementing partial method declaration in
unspecified order. Duplicates are not removed.

If a defining declaration but not an implementing declaration is given for a partial method M, the following
restrictions apply:

• It is a compile-time error to create a delegate from M (§11.7.15.6).

• It is a compile-time error to refer to M inside an anonymous function that is converted to an
expression tree type (§8.6).

• Expressions occurring as part of an invocation of M do not affect the definite assignment state (§9.4),
which can potentially lead to compile-time errors.

• M cannot be the entry point for an application (§7.1).

Partial methods are useful for allowing one part of a type declaration to customize the behavior of
another part, e.g., one that is generated by a tool. Consider the following partial class declaration:

partial class Customer
{
 string name;

 public string Name

ECMA-334

376

 {
 get => name;
 set
 {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }
 }

 partial void OnNameChanging(string newName);
 partial void OnNameChanged();
}

If this class is compiled without any other parts, the defining partial method declarations and their
invocations will be removed, and the resulting combined class declaration will be equivalent to the
following:

class Customer
{
 string name;

 public string Name
 {
 get => name;
 set => name = value;
 }
}

Assume that another part is given, however, which provides implementing declarations of the partial
methods:

partial class Customer
{
 partial void OnNameChanging(string newName) =>
 Console.WriteLine($"Changing {name} to {newName}");

 partial void OnNameChanged() =>
 Console.WriteLine($"Changed to {name}");
}

Then the resulting combined class declaration will be equivalent to the following:

class Customer
{
 string name;

 public string Name
 {
 get => name;
 set
 {
 OnNameChanging(value);
 name = value;
 OnNameChanged();
 }
 }

Chapter 14 Classes

377

 void OnNameChanging(string newName) =>
 Console.WriteLine($"Changing {name} to {newName}");

 void OnNameChanged() =>
 Console.WriteLine($"Changed to {name}");
}

14.6.10 Extension methods

When the first parameter of a method includes the this modifier, that method is said to be an extension
method. Extension methods shall only be declared in non-generic, non-nested static classes. The first
parameter of an extension method may have no modifiers other than this, and the parameter type may
not be a pointer type.

Example: The following is an example of a static class that declares two extension methods:

public static class Extensions
{
 public static int ToInt32(this string s) => Int32.Parse(s);

 public static T[] Slice<T>(this T[] source, int index, int count)
 {
 if (index < 0 || count < 0 || source.Length – index < count)
 {
 throw new ArgumentException();
 }
 T[] result = new T[count];
 Array.Copy(source, index, result, 0, count);
 return result;
 }
}

end example

An extension method is a regular static method. In addition, where its enclosing static class is in scope, an
extension method may be invoked using instance method invocation syntax (§11.7.8.3), using the receiver
expression as the first argument.

Example: The following program uses the extension methods declared above:

static class Program
{
 static void Main()
 {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in strings.Slice(1, 2))
 {
 Console.WriteLine(s.ToInt32());
 }
 }
}

The Slice method is available on the string[], and the ToInt32 method is available on string,
because they have been declared as extension methods. The meaning of the program is the same as
the following, using ordinary static method calls:

ECMA-334

378

static class Program
{
 static void Main()
 {
 string[] strings = { "1", "22", "333", "4444" };
 foreach (string s in Extensions.Slice(strings, 1, 2))
 {
 Console.WriteLine(Extensions.ToInt32(s));
 }
 }
}

end example

14.6.11 Method body

The method_body of a method declaration consists of either a block body, an expression body or a
semicolon.

Abstract and external method declarations do not provide a method implementation, so their method
bodies simply consist of a semicolon. For any other method, the method body is a block (§12.3) that
contains the statements to execute when that method is invoked.

The effective return type of a method is void if the return type is void, or if the method is async and the
return type is System.Threading.Tasks.Task. Otherwise, the effective return type of a non-async method
is its return type, and the effective return type of an async method with return type
System.Threading.Tasks.Task<T> is T.

When the effective return type of a method is void and the method has a block body, return statements
(§12.10.5) in the block shall not specify an expression. If execution of the block of a void method
completes normally (that is, control flows off the end of the method body), that method simply returns to
its caller.

When the effective return type of a method is void and the method has an expression body, the
expression E shall be a statement_expression, and the body is exactly equivalent to a statment body of the
form { E; }.

When the effective return type of a method is not void and the method has a block body, each return
statement in that method’s body shall specify an expression that is implicitly convertible to the effective
return type. The endpoint of the method body of a value-returning method shall not be reachable. In other
words, in a value-returning method with a block body, control is not permitted to flow off the end of the
method body.

When the effective return type of a method is not void and the method has an expression body, E, the
expression shall be implicitly convertible to the effective return type, and the body is exactly equivalent to
a block body of the form { return E; }.

Example: In the following code

class A
{
 public int F() {} // Error, return value required

 public int G()
 {
 return 1;
 }

Chapter 14 Classes

379

 public int H(bool b)
 {
 if (b)
 {
 return 1;
 }
 else
 {
 return 0;
 }
 }

 public int I(bool b) => b ? 1 : 0;
}

the value-returning F method results in a compile-time error because control can flow off the end of
the method body. The G and H methods are correct because all possible execution paths end in a
return statement that specifies a return value. The I method is correct, because its body is
equivalent to a block with just a single return statement in it.

end example

14.7 Properties

14.7.1 General

A property is a member that provides access to a characteristic of an object or a class. Examples of
properties include the length of a string, the size of a font, the caption of a window, the name of a
customer, and so on. Properties are a natural extension of fields—both are named members with
associated types, and the syntax for accessing fields and properties is the same. However, unlike fields,
properties do not denote storage locations. Instead, properties have accessors that specify the statements
to be executed when their values are read or written. Properties thus provide a mechanism for
associating actions with the reading and writing of an object’s characteristics; furthermore, they permit
such characteristics to be computed.

Properties are declared using property_declarations:

property_declaration
 : attributes? property_modifier* type member_name property_body
 ;

property_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support

ECMA-334

380

 ;

property_body
 : '{' accessor_declarations '}' property_initializer?
 | '=>' expression ';'
 ;

property_initializer
 : '=' variable_initializer ';'
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A property_declaration may include a set of attributes (§21) and a valid combination of the four access
modifiers (§14.3.6), the new (§14.3.5), static (§14.7.2), virtual (§14.6.4, §14.7.6), override (§14.6.5,
§14.7.6), sealed (§14.6.6), abstract (§14.6.7, §14.7.6), and extern (§14.6.8) modifiers.

Property declarations are subject to the same rules as method declarations (§14.6) with regard to valid
combinations of modifiers.

The type of a property declaration specifies the type of the property introduced by the declaration, and
the member_name (§14.6.1) specifies the name of the property. Unless the property is an explicit interface
member implementation, the member_name is simply an identifier. For an explicit interface member
implementation (§17.6.2), the member_name consists of an interface_type followed by a “.” and an
identifier.

The type of a property shall be at least as accessible as the property itself (§7.5.5).

A property_body may either consist of an accessor body or an expression body. In an accessor body,
accessor_declarations, which shall be enclosed in “{” and “}” tokens, declare the accessors (§14.7.3) of the
property. The accessors specify the executable statements associated with reading and writing the
property.

An expression body consisting of => followed by an expression E and a semicolon is exactly equivalent to
the statement body { get { return E; } }, and can therefore only be used to specify read-only
properties where the result of the get accessor is given by a single expression.

A property_initializer may only be given for an automatically implemented property (§14.7.4), and causes
the initialization of the underlying field of such properties with the value given by the expression.

Even though the syntax for accessing a property is the same as that for a field, a property is not classified
as a variable. Thus, it is not possible to pass a property as a ref or out argument.

When a property declaration includes an extern modifier, the property is said to be an external
property. Because an external property declaration provides no actual implementation, each of its
accessor_declarations consists of a semicolon.

14.7.2 Static and instance properties

When a property declaration includes a static modifier, the property is said to be a static property.
When no static modifier is present, the property is said to be an instance property.

A static property is not associated with a specific instance, and it is a compile-time error to refer to this
in the accessors of a static property.

An instance property is associated with a given instance of a class, and that instance can be accessed as
this (§11.7.12) in the accessors of that property.

Chapter 14 Classes

381

The differences between static and instance members are discussed further in §14.3.8.

14.7.3 Accessors

The accessor_declarations of a property specify the executable statements associated with reading and
writing that property.

accessor_declarations
 : get_accessor_declaration set_accessor_declaration?
 | set_accessor_declaration get_accessor_declaration?
 ;

get_accessor_declaration
 : attributes? accessor_modifier? 'get' accessor_body
 ;

set_accessor_declaration
 : attributes? accessor_modifier? 'set' accessor_body
 ;

accessor_modifier
 : 'protected'
 | 'internal'
 | 'private'
 | 'protected' 'internal'
 | 'internal' 'protected'
 ;

accessor_body
 : block
 | ';'
 ;

The accessor declarations consist of a get_accessor_declaration, a set_accessor_declaration, or both. Each
accessor declaration consists of optional attributes, an optional accessor_modifier, the token get or set,
followed by an accessor_body.

The use of accessor_modifiers is governed by the following restrictions:

• An accessor_modifier shall not be used in an interface or in an explicit interface member
implementation.

• For a property or indexer that has no override modifier, an accessor_modifier is permitted only if
the property or indexer has both a get and set accessor, and then is permitted only on one of those
accessors.

• For a property or indexer that includes an override modifier, an accessor shall match the
accessor_modifier, if any, of the accessor being overridden.

• The accessor_modifier shall declare an accessibility that is strictly more restrictive than the declared
accessibility of the property or indexer itself. To be precise:

o If the property or indexer has a declared accessibility of public, the accessor_modifier may be
either protected internal, internal, protected, or private.

o If the property or indexer has a declared accessibility of protected internal, the
accessor_modifier may be either internal, protected, or private.

ECMA-334

382

o If the property or indexer has a declared accessibility of internal or protected, the
accessor_modifier shall be private.

o If the property or indexer has a declared accessibility of private, no accessor_modifier may be
used.

For abstract and extern properties, the accessor_body for each accessor specified is simply a semicolon.
A non-abstract, non-extern property may also have the accessor_body for all accessors specified be a
semicolon, in which case it is an automatically implemented property (§14.7.4). An automatically
implemented property shall have at least a get accessor. For the accessors of any other non-abstract, non-
extern property, the accessor_body is a block that specifies the statements to be executed when the
corresponding accessor is invoked.

A get accessor corresponds to a parameterless method with a return value of the property type. Except as
the target of an assignment, when a property is referenced in an expression, the get accessor of the
property is invoked to compute the value of the property (§11.2.2). The body of a get accessor shall
conform to the rules for value-returning methods described in §14.6.11. In particular, all return
statements in the body of a get accessor shall specify an expression that is implicitly convertible to the
property type. Furthermore, the endpoint of a get accessor shall not be reachable.

A set accessor corresponds to a method with a single value parameter of the property type and a void
return type. The implicit parameter of a set accessor is always named value. When a property is
referenced as the target of an assignment (§11.18), or as the operand of ++ or –- (§11.7.14, §11.8.6), the
set accessor is invoked with an argument that provides the new value (§11.18.2). The body of a set
accessor shall conform to the rules for void methods described in §14.6.11. In particular, return
statements in the set accessor body are not permitted to specify an expression. Since a set accessor
implicitly has a parameter named value, it is a compile-time error for a local variable or constant
declaration in a set accessor to have that name.

Based on the presence or absence of the get and set accessors, a property is classified as follows:

• A property that includes both a get accessor and a set accessor is said to be a read-write property.

• A property that has only a get accessor is said to be a read-only property. It is a compile-time error
for a read-only property to be the target of an assignment.

• A property that has only a set accessor is said to be a write-only property. Except as the target of an
assignment, it is a compile-time error to reference a write-only property in an expression.

Note: The pre- and postfix ++ and -- operators and compound assignment operators cannot be
applied to write-only properties, since these operators read the old value of their operand before
they write the new one. end note

Example: In the following code

public class Button : Control
{
 private string caption;

 public string Caption
 {
 get => caption;
 set
 {
 if (caption != value)
 {
 caption = value;

Chapter 14 Classes

383

 Repaint();
 }
 }
 }

 public override void Paint(Graphics g, Rectangle r)
 {
 // Painting code goes here
 }
}

the Button control declares a public Caption property. The get accessor of the Caption property
returns the string stored in the private caption field. The set accessor checks if the new value is
different from the current value, and if so, it stores the new value and repaints the control.
Properties often follow the pattern shown above: The get accessor simply returns a value stored in a
private field, and the set accessor modifies that private field and then performs any additional
actions required to update fully the state of the object. Given the Button class above, the following is
an example of use of the Caption property:

Button okButton = new Button();
okButton.Caption = "OK"; // Invokes set accessor
string s = okButton.Caption; // Invokes get accessor

Here, the set accessor is invoked by assigning a value to the property, and the get accessor is
invoked by referencing the property in an expression.

end example

The get and set accessors of a property are not distinct members, and it is not possible to declare the
accessors of a property separately.

Example: The example

class A
{
 private string name;

 // Error, duplicate member name
 public string Name
 {
 get => name;
 }

 // Error, duplicate member name
 public string Name
 {
 set => name = value;
 }
}

does not declare a single read-write property. Rather, it declares two properties with the same
name, one read-only and one write-only. Since two members declared in the same class cannot have
the same name, the example causes a compile-time error to occur.

end example

When a derived class declares a property by the same name as an inherited property, the derived
property hides the inherited property with respect to both reading and writing.

ECMA-334

384

Example: In the following code

class A
{
 public int P
 {
 set {...}
 }
}

class B : A
{
 public new int P
 {
 get {...}
 }
}

the P property in B hides the P property in A with respect to both reading and writing. Thus, in the
statements

B b = new B();
b.P = 1; // Error, B.P is read-only
((A)b).P = 1; // Ok, reference to A.P

the assignment to b.P causes a compile-time error to be reported, since the read-only P property in
B hides the write-only P property in A. Note, however, that a cast can be used to access the hidden
P property.

end example

Unlike public fields, properties provide a separation between an object’s internal state and its public
interface.

Example: Consider the following code, which uses a Point struct to represent a location:

class Label
{
 private int x, y;
 private string caption;

 public Label(int x, int y, string caption)
 {
 this.x = x;
 this.y = y;
 this.caption = caption;
 }

 public int X => x;
 public int Y => y;
 public Point Location => new Point(x, y);
 public string Caption => caption;
}

Here, the Label class uses two int fields, x and y, to store its location. The location is publicly
exposed both as an X and a Y property and as a Location property of type Point. If, in a future
version of Label, it becomes more convenient to store the location as a Point internally, the change
can be made without affecting the public interface of the class:

Chapter 14 Classes

385

class Label
{
 private Point location;
 private string caption;

 public Label(int x, int y, string caption)
 {
 this.location = new Point(x, y);
 this.caption = caption;
 }

 public int X => location.x;
 public int Y => location.y;
 public Point Location => location;
 public string Caption => caption;
}

Had x and y instead been public readonly fields, it would have been impossible to make such a
change to the Label class.

end example

Note: Exposing state through properties is not necessarily any less efficient than exposing fields
directly. In particular, when a property is non-virtual and contains only a small amount of code, the
execution environment might replace calls to accessors with the actual code of the accessors. This
process is known as inlining, and it makes property access as efficient as field access, yet preserves
the increased flexibility of properties. end note

Example: Since invoking a get accessor is conceptually equivalent to reading the value of a field, it is
considered bad programming style for get accessors to have observable side-effects. In the example

class Counter
{
 private int next;

 public int Next => next++;
}

the value of the Next property depends on the number of times the property has previously been
accessed. Thus, accessing the property produces an observable side effect, and the property should
be implemented as a method instead.

The “no side-effects” convention for get accessors doesn’t mean that get accessors should always be
written simply to return values stored in fields. Indeed, get accessors often compute the value of a
property by accessing multiple fields or invoking methods. However, a properly designed get
accessor performs no actions that cause observable changes in the state of the object.

end example

Properties can be used to delay initialization of a resource until the moment it is first referenced.

Example:

using System.IO;
public class Console
{
 private static TextReader reader;
 private static TextWriter writer;

ECMA-334

386

 private static TextWriter error;

 public static TextReader In
 {
 get
 {
 if (reader == null)
 {
 reader = new StreamReader(Console.OpenStandardInput());
 }
 return reader;
 }
 }

 public static TextWriter Out
 {
 get
 {
 if (writer == null)
 {
 writer = new StreamWriter(Console.OpenStandardOutput());
 }
 return writer;
 }
 }

 public static TextWriter Error
 {
 get
 {
 if (error == null)
 {
 error = new StreamWriter(Console.OpenStandardError());
 }
 return error;
 }
 }
...
}

The Console class contains three properties, In, Out, and Error, that represent the standard input,
output, and error devices, respectively. By exposing these members as properties, the Console class
can delay their initialization until they are actually used. For example, upon first referencing the Out
property, as in

Console.Out.WriteLine("hello, world");

the underlying TextWriter for the output device is created. However, if the application makes no
reference to the In and Error properties, then no objects are created for those devices.

end example

Chapter 14 Classes

387

14.7.4 Automatically implemented properties

An automatically implemented property (or auto-property for short), is a non-abstract, non-extern
property with semicolon-only accessor bodies. Auto-properties shall have a get accessor and may
optionally have a set accessor.

When a property is specified as an automatically implemented property, a hidden backing field is
automatically available for the property, and the accessors are implemented to read from and write to
that backing field. The hidden backing field is inaccessible, it can be read and written only through the
automatically implemented property accessors, even within the containing type. If the auto-property has
no set accessor, the backing field is considered readonly (§14.5.3). Just like a readonly field, a read-only
auto-property may also be assigned to in the body of a constructor of the enclosing class. Such an
assignment assigns directly to the read-only backing field of the property.

An auto-property may optionally have a property_initializer, which is applied directly to the backing field
as a variable_initializer (§16.7).

Example:

public class Point
{
 public int X { get; set; } // Automatically implemented
 public int Y { get; set; } // Automatically implemented
}

is equivalent to the following declaration:

public class Point
{
 private int x;
 private int y;

 public int X { get { return x; } set { x = value; } }
 public int Y { get { return y; } set { y = value; } }
}

end example

Example: In the following

public class ReadOnlyPoint
{
 public int X { get; }
 public int Y { get; }

 public ReadOnlyPoint(int x, int y)
 {
 X = x;
 Y = y;
 }
}

is equivalent to the following declaration:

public class ReadOnlyPoint
{
 private readonly int __x;
 private readonly int __y;
 public int X { get { return __x; } }

ECMA-334

388

 public int Y { get { return __y; } }

 public ReadOnlyPoint(int x, int y)
 {
 __x = x;
 __y = y;
 }
}

The assignments to the read-only field are valid, because they occur within the constructor.

end example

14.7.5 Accessibility

If an accessor has an accessor_modifier, the accessibility domain (§7.5.3) of the accessor is determined
using the declared accessibility of the accessor_modifier. If an accessor does not have an accessor_modifier,
the accessibility domain of the accessor is determined from the declared accessibility of the property or
indexer.

The presence of an accessor_modifier never affects member lookup (§11.5) or overload resolution
(§11.6.4). The modifiers on the property or indexer always determine which property or indexer is bound
to, regardless of the context of the access.

Once a particular property or indexer has been selected, the accessibility domains of the specific
accessors involved are used to determine if that usage is valid:

• If the usage is as a value (§11.2.2), the get accessor shall exist and be accessible.

• If the usage is as the target of a simple assignment (§11.18.2), the set accessor shall exist and be
accessible.

• If the usage is as the target of compound assignment (§11.18.3), or as the target of the ++ or --
operators (§11.7.14, §11.8.6), both the get accessors and the set accessor shall exist and be
accessible.

Example: In the following example, the property A.Text is hidden by the property B.Text, even in
contexts where only the set accessor is called. In contrast, the property B.Count is not accessible to
class M, so the accessible property A.Count is used instead.

class A
{
 public string Text
 {
 get => "hello";
 set { }
 }

 public int Count
 {
 get => 5;
 set { }
 }
}

class B : A
{

Chapter 14 Classes

389

 private string text = "goodbye";
 private int count = 0;

 public new string Text
 {
 get => text;
 protected set => text = value;
 }

 protected new int Count
 {
 get => count;
 set => count = value;
 }
}

class M
{
 static void Main()
 {
 B b = new B();
 b.Count = 12; // Calls A.Count set accessor
 int i = b.Count; // Calls A.Count get accessor
 b.Text = "howdy"; // Error, B.Text set accessor not accessible
 string s = b.Text; // Calls B.Text get accessor
 }
}

end example

An accessor that is used to implement an interface shall not have an accessor_modifier. If only one
accessor is used to implement an interface, the other accessor may be declared with an accessor_modifier:

Example:

public interface I
{
 string Prop { get; }
}

public class C: I
{
 public Prop
 {
 get => "April"; // Must not have a modifier here
 internal set {...} // Ok, because I.Prop has no set accessor
 }
}

end example

14.7.6 Virtual, sealed, override, and abstract accessors

A virtual property declaration specifies that the accessors of the property are virtual. The virtual
modifier applies to all non-private accessors of a property. When an accessor of a virtual property has the
private accessor_modifier, the private accessor is implicitly not virtual.

ECMA-334

390

An abstract property declaration specifies that the accessors of the property are virtual, but does not
provide an actual implementation of the accessors. Instead, non-abstract derived classes are required to
provide their own implementation for the accessors by overriding the property. Because an accessor for
an abstract property declaration provides no actual implementation, its accessor_body simply consists of a
semicolon. An abstract property shall not have a private accessor.

A property declaration that includes both the abstract and override modifiers specifies that the
property is abstract and overrides a base property. The accessors of such a property are also abstract.

Abstract property declarations are only permitted in abstract classes (§14.2.2.2). The accessors of an
inherited virtual property can be overridden in a derived class by including a property declaration that
specifies an override directive. This is known as an overriding property declaration. An overriding
property declaration does not declare a new property. Instead, it simply specializes the implementations
of the accessors of an existing virtual property.

The override declaration and the overridden base property are required to have the same declared
accessibility. In other words, an override declaration may not change the accessibility of the base
property. However, if the overridden base property is protected internal and it is declared in a different
assembly than the assembly containing the override declaration then the override declaration’s declared
accessibility shall be protected. If the inherited property has only a single accessor (i.e., if the inherited
property is read-only or write-only), the overriding property shall include only that accessor. If the
inherited property includes both accessors (i.e., if the inherited property is read-write), the overriding
property can include either a single accessor or both accessors. There shall be an identity conversion
between the type of the overriding and the inherited property.

An overriding property declaration may include the sealed modifier. Use of this modifier prevents a
derived class from further overriding the property. The accessors of a sealed property are also sealed.

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract
accessors behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules
described in §14.6.4, §14.6.5, §14.6.6, and §14.6.7 apply as if accessors were methods of a corresponding
form:

• A get accessor corresponds to a parameterless method with a return value of the property type and
the same modifiers as the containing property.

• A set accessor corresponds to a method with a single value parameter of the property type, a void
return type, and the same modifiers as the containing property.

Example: In the following code

abstract class A
{
 int y;

 public virtual int X
 {
 get => 0;
 }

 public virtual int Y
 {
 get => y;
 set => y = value;
 }

Chapter 14 Classes

391

 public abstract int Z { get; set; }
}

X is a virtual read-only property, Y is a virtual read-write property, and Z is an abstract read-write
property. Because Z is abstract, the containing class A shall also be declared abstract.

A class that derives from A is shown below:

class B : A
{
 int z;

 public override int X
 {
 get => base.X + 1;
 }

 public override int Y
 {
 set => base.Y = value < 0 ? 0: value;
 }

 public override int Z
 {
 get => z;
 set => z = value;
 }
}

Here, the declarations of X, Y, and Z are overriding property declarations. Each property declaration
exactly matches the accessibility modifiers, type, and name of the corresponding inherited property.
The get accessor of X and the set accessor of Y use the base keyword to access the inherited
accessors. The declaration of Z overrides both abstract accessors—thus, there are no outstanding
abstract function members in B, and B is permitted to be a non-abstract class.

end example

When a property is declared as an override, any overridden accessors shall be accessible to the overriding
code. In addition, the declared accessibility of both the property or indexer itself, and of the accessors,
shall match that of the overridden member and accessors.

Example:

public class B
{
 public virtual int P
 {
 get {...}
 protected set {...}
 }
}

public class D: B
{
 public override int P
 {
 get {...} // Must not have a modifier here

ECMA-334

392

 protected set {...} // Must specify protected here
 }
}

end example

14.8 Events

14.8.1 General

An event is a member that enables an object or class to provide notifications. Clients can attach
executable code for events by supplying event handlers.

Events are declared using event_declarations:

event_declaration
 : attributes? event_modifier* 'event' type variable_declarators ';'
 | attributes? event_modifier* 'event' type member_name '{'
event_accessor_declarations '}'
 ;

event_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

event_accessor_declarations
 : add_accessor_declaration remove_accessor_declaration
 | remove_accessor_declaration add_accessor_declaration
 ;

add_accessor_declaration
 : attributes? 'add' block
 ;

remove_accessor_declaration
 : attributes? 'remove' block
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

An event_declaration may include a set of attributes (§21) and a valid combination of the four access
modifiers (§14.3.6), the new (§14.3.5), static (§14.6.3, §14.8.4), virtual (§14.6.4, §14.8.5), override
(§14.6.5, §14.8.5), sealed (§14.6.6), abstract (§14.6.7, §14.8.5), and extern (§14.6.8) modifiers.

Chapter 14 Classes

393

Event declarations are subject to the same rules as method declarations (§14.6) with regard to valid
combinations of modifiers.

The type of an event declaration shall be a delegate_type (§8.2.8), and that delegate_type shall be at least as
accessible as the event itself (§7.5.5).

An event declaration can include event_accessor_declarations. However, if it does not, for non-extern, non-
abstract events, the compiler shall supply them automatically (§14.8.2); for extern events, the accessors
are provided externally.

An event declaration that omits event_accessor_declarations defines one or more events—one for each of
the variable_declarators. The attributes and modifiers apply to all of the members declared by such an
event_declaration.

It is a compile-time error for an event_declaration to include both the abstract modifier and
event_accessor_declarations.

When an event declaration includes an extern modifier, the event is said to be an external event. Because
an external event declaration provides no actual implementation, it is an error for it to include both the
extern modifier and event_accessor_declarations.

It is a compile-time error for a variable_declarator of an event declaration with an abstract or external
modifier to include a variable_initializer.

An event can be used as the left-hand operand of the += and -= operators. These operators are used,
respectively, to attach event handlers to, or to remove event handlers from an event, and the access
modifiers of the event control the contexts in which such operations are permitted.

The only operations that are permitted on an event by code that is outside the type in which that event is
declared, are += and -=. Therefore, while such code can add and remove handlers for an event, it cannot
directly obtain or modify the underlying list of event handlers.

In an operation of the form x += y or x –= y, when x is an event the result of the operation has type void
(§11.18.4) (as opposed to having the type of x, with the value of x after the assignment, as for other the +=
and -= operators defined on non-event types). This prevents external code from indirectly examining the
underlying delegate of an event.

Example: The following example shows how event handlers are attached to instances of the Button
class:

public delegate void EventHandler(object sender, EventArgs e);

public class Button : Control
{
 public event EventHandler Click;
}

public class LoginDialog : Form
{
 Button okButton;
 Button cancelButton;

 public LoginDialog()
 {
 okButton = new Button(...);
 okButton.Click += new EventHandler(OkButtonClick);
 cancelButton = new Button(...);

ECMA-334

394

 cancelButton.Click += new EventHandler(CancelButtonClick);
 }

 void OkButtonClick(object sender, EventArgs e)
 {
 // Handle okButton.Click event
 }

 void CancelButtonClick(object sender, EventArgs e)
 {
 // Handle cancelButton.Click event
 }
}

Here, the LoginDialog instance constructor creates two Button instances and attaches event
handlers to the Click events.

end example

14.8.2 Field-like events

Within the program text of the class or struct that contains the declaration of an event, certain events can
be used like fields. To be used in this way, an event shall not be abstract or extern, and shall not explicitly
include event_accessor_declarations. Such an event can be used in any context that permits a field. The
field contains a delegate (§19), which refers to the list of event handlers that have been added to the
event. If no event handlers have been added, the field contains null.

Example: In the following code

public delegate void EventHandler(object sender, EventArgs e);

public class Button : Control
{
 public event EventHandler Click;

 protected void OnClick(EventArgs e)
 {
 EventHandler handler = Click;
 if (handler != null)
 {
 handler(this, e);
 }
 }

 public void Reset() => Click = null;
}

Click is used as a field within the Button class. As the example demonstrates, the field can be
examined, modified, and used in delegate invocation expressions. The OnClick method in the
Button class “raises” the Click event. The notion of raising an event is precisely equivalent to
invoking the delegate represented by the event—thus, there are no special language constructs for
raising events. Note that the delegate invocation is preceded by a check that ensures the delegate is
non-null and that the check is made on a local copy to ensure thread safety.

Outside the declaration of the Button class, the Click member can only be used on the left-hand
side of the += and –= operators, as in

Chapter 14 Classes

395

b.Click += new EventHandler(...);

which appends a delegate to the invocation list of the Click event, and

Click –= new EventHandler(...);

which removes a delegate from the invocation list of the Click event.

end example

When compiling a field-like event, the compiler automatically creates storage to hold the delegate, and
creates accessors for the event that add or remove event handlers to the delegate field. The addition and
removal operations are thread safe, and may (but are not required to) be done while holding the lock
(§9.4.4.19) in the containing object for an instance event, or the type object (§11.7.15.7) for a static
event.

Note: Thus, an instance event declaration of the form:

class X
{
 public event D Ev;
}

shall be compiled to something equivalent to:

class X
{
 private D __Ev; // field to hold the delegate

 public event D Ev
 {
 add
 {
 /* Add the delegate in a thread safe way */
 }
 remove
 {
 /* Remove the delegate in a thread safe way */
 }
 }
}

Within the class X, references to Ev on the left-hand side of the += and –= operators cause the add
and remove accessors to be invoked. All other references to Ev are compiled to reference the hidden
field __Ev instead (§11.7.6). The name “__Ev” is arbitrary; the hidden field could have any name or
no name at all.

end note

14.8.3 Event accessors

Note: Event declarations typically omit event_accessor_declarations, as in the Button example above.
For example, they might be included if the storage cost of one field per event is not acceptable. In
such cases, a class can include event_accessor_declarations and use a private mechanism for storing
the list of event handlers. end note

The event_accessor_declarations of an event specify the executable statements associated with adding and
removing event handlers.

ECMA-334

396

The accessor declarations consist of an add_accessor_declaration and a remove_accessor_declaration. Each
accessor declaration consists of the token add or remove followed by a block. The block associated with an
add_accessor_declaration specifies the statements to execute when an event handler is added, and the
block associated with a remove_accessor_declaration specifies the statements to execute when an event
handler is removed.

Each add_accessor_declaration and remove_accessor_declaration corresponds to a method with a single
value parameter of the event type, and a void return type. The implicit parameter of an event accessor is
named value. When an event is used in an event assignment, the appropriate event accessor is used.
Specifically, if the assignment operator is += then the add accessor is used, and if the assignment operator
is –= then the remove accessor is used. In either case, the right-hand operand of the assignment operator
is used as the argument to the event accessor. The block of an add_accessor_declaration or a
remove_accessor_declaration shall conform to the rules for void methods described in §14.6.9. In
particular, return statements in such a block are not permitted to specify an expression.

Since an event accessor implicitly has a parameter named value, it is a compile-time error for a local
variable or constant declared in an event accessor to have that name.

Example: In the following code

class Control: Component
{
 // Unique keys for events
 static readonly object mouseDownEventKey = new object();
 static readonly object mouseUpEventKey = new object();

 // Return event handler associated with key
 protected Delegate GetEventHandler(object key) {...}

 // Add event handler associated with key
 protected void AddEventHandler(object key, Delegate handler) {...}

 // Remove event handler associated with key
 protected void RemoveEventHandler(object key, Delegate handler) {...}

 // MouseDown event
 public event MouseEventHandler MouseDown
 {
 add { AddEventHandler(mouseDownEventKey, value); }
 remove { RemoveEventHandler(mouseDownEventKey, value); }
 }

 // MouseUp event
 public event MouseEventHandler MouseUp
 {
 add { AddEventHandler(mouseUpEventKey, value); }
 remove { RemoveEventHandler(mouseUpEventKey, value); }
 }

 // Invoke the MouseUp event
 protected void OnMouseUp(MouseEventArgs args)
 {
 MouseEventHandler handler;
 handler = (MouseEventHandler)GetEventHandler(mouseUpEventKey);
 if (handler != null)

Chapter 14 Classes

397

 {
 handler(this, args);
 }
 }
}

the Control class implements an internal storage mechanism for events. The AddEventHandler
method associates a delegate value with a key, the GetEventHandler method returns the delegate
currently associated with a key, and the RemoveEventHandler method removes a delegate as an
event handler for the specified event. Presumably, the underlying storage mechanism is designed
such that there is no cost for associating a null delegate value with a key, and thus unhandled events
consume no storage.

end example

14.8.4 Static and instance events

When an event declaration includes a static modifier, the event is said to be a static event. When no
static modifier is present, the event is said to be an instance event.

A static event is not associated with a specific instance, and it is a compile-time error to refer to this in
the accessors of a static event.

An instance event is associated with a given instance of a class, and this instance can be accessed as this
(§11.7.12) in the accessors of that event.

The differences between static and instance members are discussed further in §14.3.8.

14.8.5 Virtual, sealed, override, and abstract accessors

A virtual event declaration specifies that the accessors of that event are virtual. The virtual modifier
applies to both accessors of an event.

An abstract event declaration specifies that the accessors of the event are virtual, but does not provide an
actual implementation of the accessors. Instead, non-abstract derived classes are required to provide
their own implementation for the accessors by overriding the event. Because an accessor for an abstract
event declaration provides no actual implementation, it shall not provide event_accessor_declarations.

An event declaration that includes both the abstract and override modifiers specifies that the event is
abstract and overrides a base event. The accessors of such an event are also abstract.

Abstract event declarations are only permitted in abstract classes (§14.2.2.2).

The accessors of an inherited virtual event can be overridden in a derived class by including an event
declaration that specifies an override modifier. This is known as an overriding event declaration. An
overriding event declaration does not declare a new event. Instead, it simply specializes the
implementations of the accessors of an existing virtual event.

An overriding event declaration shall specify the exact same accessibility modifiers and name as the
overridden event, there shall be an identity conversion between the type of the overriding and the
overridden event, and both the add and remove accessors shall be specified within the declaration.

An overriding event declaration can include the sealed modifier. Use of this modifier prevents a derived
class from further overriding the event. The accessors of a sealed event are also sealed.

It is a compile-time error for an overriding event declaration to include a new modifier.

ECMA-334

398

Except for differences in declaration and invocation syntax, virtual, sealed, override, and abstract
accessors behave exactly like virtual, sealed, override and abstract methods. Specifically, the rules
described in §14.6.4, §14.6.5, §14.6.6, and §14.6.7 apply as if accessors were methods of a corresponding
form. Each accessor corresponds to a method with a single value parameter of the event type, a void
return type, and the same modifiers as the containing event.

14.9 Indexers
An indexer is a member that enables an object to be indexed in the same way as an array. Indexers are
declared using indexer_declarations:

indexer_declaration
 : attributes? indexer_modifier* indexer_declarator indexer_body
 ;

indexer_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

indexer_declarator
 : type 'this' '[' formal_parameter_list ']'
 | type interface_type '.' 'this' '[' formal_parameter_list ']'
 ;

indexer_body
 : '{' accessor_declarations '}'
 | '=>' expression ';'
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

An indexer_declaration may include a set of attributes (§21) and a valid combination of the four access
modifiers (§14.3.6), the new (§14.3.5), virtual (§14.6.4), override (§14.6.5), sealed (§14.6.6), abstract
(§14.6.7), and extern (§14.6.8) modifiers.

Indexer declarations are subject to the same rules as method declarations (§14.6) with regard to valid
combinations of modifiers, with the one exception being that the static modifier is not permitted on an
indexer declaration.

The modifiers virtual, override, and abstract are mutually exclusive except in one case. The abstract
and override modifiers may be used together so that an abstract indexer can override a virtual one.

The type of an indexer declaration specifies the element type of the indexer introduced by the declaration.

Note: As indexers are designed to be used in array element-like contexts, the term element type as
defined for an array is also used with an indexer. end note

Chapter 14 Classes

399

Unless the indexer is an explicit interface member implementation, the type is followed by the keyword
this. For an explicit interface member implementation, the type is followed by an interface_type, a “.”, and
the keyword this. Unlike other members, indexers do not have user-defined names.

The formal_parameter_list specifies the parameters of the indexer. The formal parameter list of an indexer
corresponds to that of a method (§14.6.2), except that at least one parameter shall be specified, and that
the this, ref, and out parameter modifiers are not permitted.

The type of an indexer and each of the types referenced in the formal_parameter_list shall be at least as
accessible as the indexer itself (§7.5.5).

An indexer_body may either consist of an accessor body (§14.7.1) or an expression body (§14.6.1). In an
accessor body, accessor_declarations, which shall be enclosed in “{” and “}” tokens, declare the accessors
(§14.7.3) of the indexer. The accessors specify the executable statements associated with reading and
writing indexer elements.

Based on the presence or absence of get and set accessors, an indexer is classified as follows:

• An indexer that includes both a get accessor and a set accessor is said to be a read-write indexer.

• An indexer that has only a get accessor is said to be a read-only indexer. It is a compile-time error
for a read-only indexer to be the target of an assignment.

• An indexer that has only a set accessor is said to be a write-only indexer. Except as the target of an
assignment, it is a compile-time error to reference a write-only indexer in an expression.

An expression body consisting of “=>” followed by an expression E and a semicolon is exactly equivalent
to the block body { get { return E; } }, and can therefore only be used to specify read-only indexers
where the result of the get accessor is given by a single expression.

Even though the syntax for accessing an indexer element is the same as that for an array element, an
indexer element is not classified as a variable. Thus, it is not possible to pass an indexer element as a ref
or out argument.

The formal_parameter_list of an indexer defines the signature (§7.6) of the indexer. Specifically, the
signature of an indexer consists of the number and types of its formal parameters. The element type and
names of the formal parameters are not part of an indexer’s signature.

The signature of an indexer shall differ from the signatures of all other indexers declared in the same
class.

Indexers and properties are very similar in concept, but differ in the following ways:

• A property is identified by its name, whereas an indexer is identified by its signature.

• A property is accessed through a simple_name (§11.7.4) or a member_access (§11.7.6), whereas an
indexer element is accessed through an element_access (§11.7.10.3).

• A property can be a static member, whereas an indexer is always an instance member.

• A get accessor of a property corresponds to a method with no parameters, whereas a get accessor
of an indexer corresponds to a method with the same formal parameter list as the indexer.

• A set accessor of a property corresponds to a method with a single parameter named value,
whereas a set accessor of an indexer corresponds to a method with the same formal parameter list
as the indexer, plus an additional parameter named value.

• It is a compile-time error for an indexer accessor to declare a local variable or local constant with
the same name as an indexer parameter.

ECMA-334

400

• In an overriding property declaration, the inherited property is accessed using the syntax base.P,
where P is the property name. In an overriding indexer declaration, the inherited indexer is
accessed using the syntax base[E], where E is a comma-separated list of expressions.

• There is no concept of an “automatically implemented indexer”. It is an error to have a non-abstract,
non-external indexer with semicolon accessors.

Aside from these differences, all rules defined in §14.7.3 and §14.7.4 apply to indexer accessors as well as
to property accessors.

When an indexer declaration includes an extern modifier, the indexer is said to be an external indexer.
Because an external indexer declaration provides no actual implementation, each of its
accessor_declarations consists of a semicolon.

Example: The example below declares a BitArray class that implements an indexer for accessing the
individual bits in the bit array.

using System;
class BitArray
{
 int[] bits;
 int length;

 public BitArray(int length)
 {
 if (length < 0)
 {
 throw new ArgumentException();
 }
 bits = new int[((length - 1) >> 5) + 1];
 this.length = length;
 }

 public int Length => length;

 public bool this[int index]
 {
 get
 {
 if (index < 0 || index >= length)
 {
 throw new IndexOutOfRangeException();
 }
 return (bits[index >> 5] & 1 << index) != 0;
 }
 set
 {
 if (index < 0 || index >= length)
 {
 throw new IndexOutOfRangeException();
 }
 if (value)
 {
 bits[index >> 5] |= 1 << index;
 }
 else

Chapter 14 Classes

401

 {
 bits[index >> 5] &= ~(1 << index);
 }
 }
 }
}

An instance of the BitArray class consumes substantially less memory than a corresponding bool[]
(since each value of the former occupies only one bit instead of the latter’s one byte), but it permits
the same operations as a bool[].

The following CountPrimes class uses a BitArray and the classical “sieve” algorithm to compute the
number of primes between 2 and a given maximum:

class CountPrimes
{
 static int Count(int max)
 {
 BitArray flags = new BitArray(max + 1);
 int count = 0;
 for (int i = 2; i <= max; i++)
 {
 if (!flags[i])
 {
 for (int j = i * 2; j <= max; j += i)
 {
 flags[j] = true;
 }
 count++;
 }
 }
 return count;
 }

 static void Main(string[] args)
 {
 int max = int.Parse(args[0]);
 int count = Count(max);
 Console.WriteLine($"Found {count} primes between 2 and {max}");
 }
}

Note that the syntax for accessing elements of the BitArray is precisely the same as for a bool[].

end example

Example: The following example shows a 26×10 grid class that has an indexer with two parameters.
The first parameter is required to be an upper- or lowercase letter in the range A–Z, and the second
is required to be an integer in the range 0–9.

using System;
class Grid
{
 const int NumRows = 26;
 const int NumCols = 10;
 int[,] cells = new int[NumRows, NumCols];

ECMA-334

402

 public int this[char row, int col]
 {
 get
 {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z')
 {
 throw new ArgumentOutOfRangeException("row");
 }
 if (col < 0 || col >= NumCols)
 {
 throw new ArgumentOutOfRangeException ("col");
 }
 return cells[row - 'A', col];
 }
 set
 {
 row = Char.ToUpper(row);
 if (row < 'A' || row > 'Z')
 {
 throw new ArgumentOutOfRangeException ("row");
 }
 if (col < 0 || col >= NumCols)
 {
 throw new ArgumentOutOfRangeException ("col");
 }
 cells[row - 'A', col] = value;
 }
 }
}

end example

14.10 Operators

14.10.1 General

An operator is a member that defines the meaning of an expression operator that can be applied to
instances of the class. Operators are declared using operator_declarations:

operator_declaration
 : attributes? operator_modifier+ operator_declarator operator_body
 ;

operator_modifier
 : 'public'
 | 'static'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

operator_declarator
 : unary_operator_declarator
 | binary_operator_declarator

Chapter 14 Classes

403

 | conversion_operator_declarator
 ;

unary_operator_declarator
 : type 'operator' overloadable_unary_operator '(' fixed_parameter ')'
 ;

overloadable_unary_operator
 : '+' | '-' | '!' | '~' | '++' | '--' | 'true' | 'false'
 ;

binary_operator_declarator
 : type 'operator' overloadable_binary_operator '(' fixed_parameter ','
fixed_parameter ')'
 ;

overloadable_binary_operator
 : '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | '==' | '!=' | '>' | '<' | '>=' | '<='
 ;

conversion_operator_declarator
 : 'implicit' 'operator' type '(' fixed_parameter ')'
 | 'explicit' 'operator' type '(' fixed_parameter ')'
 ;

operator_body
 : block
 | '=>' expression ';'
 | ';'
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

There are three categories of overloadable operators: Unary operators (§14.10.2), binary operators
(§14.10.3), and conversion operators (§14.10.4).

The operator_body is either a semicolon, a block body (§14.6.1) or an expression body (§14.6.1). A block
body consists of a block, which specifies the statements to execute when the operator is invoked. The
block shall conform to the rules for value-returning methods described in §14.6.11. An expression body
consists of => followed by an expression and a semicolon, and denotes a single expression to perform
when the operator is invoked.

For extern operators, the operator_body consists simply of a semicolon. For all other operators, the
operator_body is either a block body or an expression body.

The following rules apply to all operator declarations:

• An operator declaration shall include both a public and a static modifier.

• The parameter(s) of an operator shall have no modifiers.

• The signature of an operator (§14.10.2, §14.10.3, §14.10.4) shall differ from the signatures of all
other operators declared in the same class.

ECMA-334

404

• All types referenced in an operator declaration shall be at least as accessible as the operator itself
(§7.5.5).

• It is an error for the same modifier to appear multiple times in an operator declaration.

Each operator category imposes additional restrictions, as described in the following subclauses.

Like other members, operators declared in a base class are inherited by derived classes. Because operator
declarations always require the class or struct in which the operator is declared to participate in the
signature of the operator, it is not possible for an operator declared in a derived class to hide an operator
declared in a base class. Thus, the new modifier is never required, and therefore never permitted, in an
operator declaration.

Additional information on unary and binary operators can be found in §11.4.

Additional information on conversion operators can be found in §10.5.

14.10.2 Unary operators

The following rules apply to unary operator declarations, where T denotes the instance type of the class
or struct that contains the operator declaration:

• A unary +, -, !, or ~ operator shall take a single parameter of type T or T? and can return any type.

• A unary ++ or -- operator shall take a single parameter of type T or T? and shall return that same
type or a type derived from it.

• A unary true or false operator shall take a single parameter of type T or T? and shall return type
bool.

The signature of a unary operator consists of the operator token (+, -, !, ~, ++, --, true, or false) and the
type of the single formal parameter. The return type is not part of a unary operator’s signature, nor is the
name of the formal parameter.

The true and false unary operators require pair-wise declaration. A compile-time error occurs if a class
declares one of these operators without also declaring the other. The true and false operators are
described further in §11.21.

Example: The following example shows an implementation and subsequent usage of operator++ for
an integer vector class:

public class IntVector
{
 public IntVector(int length) {...}
 public int Length { ... } // Read-only property
 public int this[int index] { ... } // Read-write indexer

 public static IntVector operator++(IntVector iv)
 {
 IntVector temp = new IntVector(iv.Length);
 for (int i = 0; i < iv.Length; i++)
 {
 temp[i] = iv[i] + 1;
 }
 return temp;
 }
}

Chapter 14 Classes

405

class Test
{
 static void Main()
 {
 IntVector iv1 = new IntVector(4); // Vector of 4 x 0
 IntVector iv2;
 iv2 = iv1++; // iv2 contains 4 x 0, iv1 contains 4 x 1
 iv2 = ++iv1; // iv2 contains 4 x 2, iv1 contains 4 x 2
 }
}

Note how the operator method returns the value produced by adding 1 to the operand, just like the
postfix increment and decrement operators (§11.7.14), and the prefix increment and decrement
operators (§11.8.6). Unlike in C++, this method should not modify the value of its operand directly
as this would violate the standard semantics of the postfix increment operator (§11.7.14).

end example

14.10.3 Binary operators

The following rules apply to binary operator declarations, where T denotes the instance type of the class
or struct that contains the operator declaration:

• A binary non-shift operator shall take two parameters, at least one of which shall have type T or T?,
and can return any type.

• A binary << or >> operator (§11.10) shall take two parameters, the first of which shall have type T or
T? and the second of which shall have type int or int?, and can return any type. The signature of a
binary operator consists of the operator token (+, -, *, /, %, &, |, ^, <<, >>, ==, !=, >, <, >=, or <=) and the
types of the two formal parameters. The return type and the names of the formal parameters are
not part of a binary operator’s signature.

Certain binary operators require pair-wise declaration. For every declaration of either operator of a pair,
there shall be a matching declaration of the other operator of the pair. Two operator declarations match if
identity conversions exist between their return types and their corresponding parameter types. The
following operators require pair-wise declaration:

• operator == and operator !=

• operator > and operator <

• operator >= and operator <=

14.10.4 Conversion operators

A conversion operator declaration introduces a user-defined conversion (§10.5), which augments the
pre-defined implicit and explicit conversions.

A conversion operator declaration that includes the implicit keyword introduces a user-defined implicit
conversion. Implicit conversions can occur in a variety of situations, including function member
invocations, cast expressions, and assignments. This is described further in §10.2.

A conversion operator declaration that includes the explicit keyword introduces a user-defined explicit
conversion. Explicit conversions can occur in cast expressions, and are described further in §10.3.

A conversion operator converts from a source type, indicated by the parameter type of the conversion
operator, to a target type, indicated by the return type of the conversion operator.

ECMA-334

406

For a given source type S and target type T, if S or T are nullable value types, let S0 and T0 refer to their
underlying types; otherwise, S0 and T0 are equal to S and T respectively. A class or struct is permitted to
declare a conversion from a source type S to a target type T only if all of the following are true:

• S0 and T0 are different types.

• Either S0 or T0 is the instance type of the class or struct that contains the operator declaration.

• Neither S0 nor T0 is an interface_type.

• Excluding user-defined conversions, a conversion does not exist from S to T or from T to S.

For the purposes of these rules, any type parameters associated with S or T are considered to be unique
types that have no inheritance relationship with other types, and any constraints on those type
parameters are ignored.

Example: In the following:

class C<T> {...}

class D<T> : C<T>
{
 public static implicit operator C<int>(D<T> value) {...} // Ok
 public static implicit operator C<string>(D<T> value) {...} // Ok
 public static implicit operator C<T>(D<T> value) {...} // Error
}

the first two operator declarations are permitted because T and int and string, respectively are
considered unique types with no relationship. However, the third operator is an error because C<T>
is the base class of D<T>.

end example

From the second rule, it follows that a conversion operator shall convert either to or from the class or
struct type in which the operator is declared.

Example: It is possible for a class or struct type C to define a conversion from C to int and from int
to C, but not from int to bool. end example

It is not possible to directly redefine a pre-defined conversion. Thus, conversion operators are not
allowed to convert from or to object because implicit and explicit conversions already exist between
object and all other types. Likewise, neither the source nor the target types of a conversion can be a base
type of the other, since a conversion would then already exist. However, it is possible to declare operators
on generic types that, for particular type arguments, specify conversions that already exist as pre-defined
conversions.

Example:

struct Convertible<T>
{
 public static implicit operator Convertible<T>(T value) {...}
 public static explicit operator T(Convertible<T> value) {...}
}

when type object is specified as a type argument for T, the second operator declares a conversion
that already exists (an implicit, and therefore also an explicit, conversion exists from any type to
type object).

end example

Chapter 14 Classes

407

In cases where a pre-defined conversion exists between two types, any user-defined conversions between
those types are ignored. Specifically:

• If a pre-defined implicit conversion (§10.2) exists from type S to type T, all user-defined conversions
(implicit or explicit) from S to T are ignored.

• If a pre-defined explicit conversion (§10.3) exists from type S to type T, any user-defined explicit
conversions from S to T are ignored. Furthermore:

o If either S or T is an interface type, user-defined implicit conversions from S to T are ignored.

o Otherwise, user-defined implicit conversions from S to T are still considered.

For all types but object, the operators declared by the Convertible<T> type above do not conflict with
pre-defined conversions.

Example:

void F(int i, Convertible<int> n)
{
 i = n; // Error
 i = (int)n; // User-defined explicit conversion
 n = i; // User-defined implicit conversion
 n = (Convertible<int>)i; // User-defined implicit conversion
}

However, for type object, pre-defined conversions hide the user-defined conversions in all cases
but one:

void F(object o, Convertible<object> n)
{
 o = n; // Pre-defined boxing conversion
 o = (object)n; // Pre-defined boxing conversion
 n = o; // User-defined implicit conversion
 n = (Convertible<object>)o; // Pre-defined unboxing conversion
}

end example

User-defined conversions are not allowed to convert from or to interface_types. In particular, this
restriction ensures that no user-defined transformations occur when converting to an interface_type, and
that a conversion to an interface_type succeeds only if the object being converted actually implements
the specified interface_type.

The signature of a conversion operator consists of the source type and the target type. (This is the only
form of member for which the return type participates in the signature.) The implicit or explicit
classification of a conversion operator is not part of the operator’s signature. Thus, a class or struct cannot
declare both an implicit and an explicit conversion operator with the same source and target types.

Note: In general, user-defined implicit conversions should be designed to never throw exceptions
and never lose information. If a user-defined conversion can give rise to exceptions (for example,
because the source argument is out of range) or loss of information (such as discarding high-order
bits), then that conversion should be defined as an explicit conversion. end note

Example: In the following code

using System;
public struct Digit
{

ECMA-334

408

 byte value;

 public Digit(byte value)
 {
 if (value < 0 || value > 9)
 {
 throw new ArgumentException();
 }
 this.value = value;
 }

 public static implicit operator byte(Digit d) => d.value;
 public static explicit operator Digit(byte b) => new Digit(b);
}

the conversion from Digit to byte is implicit because it never throws exceptions or loses
information, but the conversion from byte to Digit is explicit since Digit can only represent a
subset of the possible values of a byte.

end example

14.11 Instance constructors

14.11.1 General

An instance constructor is a member that implements the actions required to initialize an instance of a
class. Instance constructors are declared using constructor_declarations:

constructor_declaration
 : attributes? constructor_modifier* constructor_declarator constructor_body
 ;

constructor_modifier
 : 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

constructor_declarator
 : identifier '(' formal_parameter_list? ')' constructor_initializer?
 ;

constructor_initializer
 : ':' 'base' '(' argument_list? ')'
 | ':' 'this' '(' argument_list? ')'
 ;

constructor_body
 : block
 | ';'
 ;

Chapter 14 Classes

409

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A constructor_declaration may include a set of attributes (§21), a valid combination of the four access
modifiers (§14.3.6), and an extern (§14.6.8) modifier. A constructor declaration is not permitted to
include the same modifier multiple times.

The identifier of a constructor_declarator shall name the class in which the instance constructor is
declared. If any other name is specified, a compile-time error occurs.

The optional formal_parameter_list of an instance constructor is subject to the same rules as the
formal_parameter_list of a method (§14.6). As the this modifier for parameters only applies to extension
methods (§14.6.10), no parameter in a constructor’s formal_parameter_list shall contain the this
modifier. The formal parameter list defines the signature (§7.6) of an instance constructor and governs
the process whereby overload resolution (§11.6.4) selects a particular instance constructor in an
invocation.

Each of the types referenced in the formal_parameter_list of an instance constructor shall be at least as
accessible as the constructor itself (§7.5.5).

The optional constructor_initializer specifies another instance constructor to invoke before executing the
statements given in the constructor_body of this instance constructor. This is described further in
§14.11.2.

When a constructor declaration includes an extern modifier, the constructor is said to be an external
constructor. Because an external constructor declaration provides no actual implementation, its
constructor_body consists of a semicolon. For all other constructors, the constructor_body consists of a
block, which specifies the statements to initialize a new instance of the class. This corresponds exactly to
the block of an instance method with a void return type (§14.6.11).

Instance constructors are not inherited. Thus, a class has no instance constructors other than those
actually declared in the class, with the exception that if a class contains no instance constructor
declarations, a default instance constructor is automatically provided (§14.11.5).

Instance constructors are invoked by object_creation_expressions (§11.7.15.2) and through
constructor_initializers.

14.11.2 Constructor initializers

All instance constructors (except those for class object) implicitly include an invocation of another
instance constructor immediately before the constructor_body. The constructor to implicitly invoke is
determined by the constructor_initializer:

• An instance constructor initializer of the form base(argument_list) (where argument_list is
optional) causes an instance constructor from the direct base class to be invoked. That constructor
is selected using argument_list and the overload resolution rules of §11.6.4. The set of candidate
instance constructors consists of all the accessible instance constructors of the direct base class. If
this set is empty, or if a single best instance constructor cannot be identified, a compile-time error
occurs.

• An instance constructor initializer of the form this(argument_list) (where argument_list is
optional) invokes another instance constructor from the same class. The constructor is selected
using argument_list and the overload resolution rules of §11.6.4. The set of candidate instance
constructors consists of all instance constructors declared in the class itself. If the resulting set of
applicable instance constructors is empty, or if a single best instance constructor cannot be
identified, a compile-time error occurs. If an instance constructor declaration invokes itself through
a chain of one or more constructor initializers, a compile-time error occurs.

ECMA-334

410

If an instance constructor has no constructor initializer, a constructor initializer of the form base() is
implicitly provided.

Note: Thus, an instance constructor declaration of the form

C(...) {...}

is exactly equivalent to

C(...) : base() {...}

end note

The scope of the parameters given by the formal_parameter_list of an instance constructor declaration
includes the constructor initializer of that declaration. Thus, a constructor initializer is permitted to
access the parameters of the constructor.

Example:

class A
{
 public A(int x, int y) {}
}

class B: A
{
 public B(int x, int y) : base(x + y, x - y) {}
}

end example

An instance constructor initializer cannot access the instance being created. Therefore it is a compile-time
error to reference this in an argument expression of the constructor initializer, as it is a compile-time
error for an argument expression to reference any instance member through a simple_name.

14.11.3 Instance variable initializers

When an instance constructor has no constructor initializer, or it has a constructor initializer of the form
base(...), that constructor implicitly performs the initializations specified by the variable_initializers of
the instance fields declared in its class. This corresponds to a sequence of assignments that are executed
immediately upon entry to the constructor and before the implicit invocation of the direct base class
constructor. The variable initializers are executed in the textual order in which they appear in the class
declaration (§14.5.6).

14.11.4 Constructor execution

Variable initializers are transformed into assignment statements, and these assignment statements are
executed before the invocation of the base class instance constructor. This ordering ensures that all
instance fields are initialized by their variable initializers before any statements that have access to that
instance are executed.

Example: Given the following:

using System;
class A
{
 public A()
 {
 PrintFields();

Chapter 14 Classes

411

 }

 public virtual void PrintFields() {}
}
class B: A
{
 int x = 1;
 int y;

 public B()
 {
 y = -1;
 }

 public override void PrintFields() =>
 Console.WriteLine($"x = {x}, y = {y}");
}

when new B() is used to create an instance of B, the following output is produced:

x = 1, y = 0

The value of x is 1 because the variable initializer is executed before the base class instance
constructor is invoked. However, the value of y is 0 (the default value of an int) because the
assignment to y is not executed until after the base class constructor returns. It is useful to think of
instance variable initializers and constructor initializers as statements that are automatically
inserted before the constructor_body. The example

using System;
using System.Collections;

class A
{
 int x = 1, y = -1, count;

 public A()
 {
 count = 0;
 }

 public A(int n)
 {
 count = n;
 }
}

class B : A
{
 double sqrt2 = Math.Sqrt(2.0);
 ArrayList items = new ArrayList(100);
 int max;

 public B(): this(100)
 {
 items.Add("default");
 }

ECMA-334

412

 public B(int n) : base(n – 1)
 {
 max = n;
 }
}

contains several variable initializers; it also contains constructor initializers of both forms (base and
this). The example corresponds to the code shown below, where each comment indicates an
automatically inserted statement (the syntax used for the automatically inserted constructor
invocations isn’t valid, but merely serves to illustrate the mechanism).

using System.Collections;
class A
{
 int x, y, count;
 public A()
 {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = 0;
 }

 public A(int n)
 {
 x = 1; // Variable initializer
 y = -1; // Variable initializer
 object(); // Invoke object() constructor
 count = n;
 }
}

class B : A
{
 double sqrt2;
 ArrayList items;
 int max;
 public B() : this(100)
 {
 B(100); // Invoke B(int) constructor
 items.Add("default");
 }

 public B(int n) : base(n – 1)
 {
 sqrt2 = Math.Sqrt(2.0); // Variable initializer
 items = new ArrayList(100); // Variable initializer
 A(n – 1); // Invoke A(int) constructor
 max = n;
 }
}

end example

Chapter 14 Classes

413

14.11.5 Default constructors

If a class contains no instance constructor declarations, a default instance constructor is automatically
provided. That default constructor simply invokes a constructor of the direct base class, as if it had a
constructor initializer of the form base(). If the class is abstract then the declared accessibility for the
default constructor is protected. Otherwise, the declared accessibility for the default constructor is public.

Note: Thus, the default constructor is always of the form

protected C(): base() {}

or

public C(): base() {}

where C is the name of the class.

end note

If overload resolution is unable to determine a unique best candidate for the base-class constructor
initializer then a compile-time error occurs.

Example: In the following code

class Message
{
 object sender;
 string text;
}

a default constructor is provided because the class contains no instance constructor declarations.
Thus, the example is precisely equivalent to

class Message
{
 object sender;
 string text;

 public Message() : base() {}
}

end example

14.12 Static constructors
A static constructor is a member that implements the actions required to initialize a closed class. Static
constructors are declared using static_constructor_declarations:

static_constructor_declaration
 : attributes? static_constructor_modifiers identifier '(' ')'
static_constructor_body
 ;

static_constructor_modifiers
 : 'static'
 | 'static' 'extern' unsafe_modifier?
 | 'static' unsafe_modifier 'extern'?
 | 'extern' 'static' unsafe_modifier?
 | 'extern' unsafe_modifier 'static'

ECMA-334

414

 | unsafe_modifier 'static' 'extern'?
 | unsafe_modifier 'extern' 'static'
 ;

static_constructor_body
 : block
 | ';'
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A static_constructor_declaration may include a set of attributes (§21) and an extern modifier (§14.6.8).

The identifier of a static_constructor_declaration shall name the class in which the static constructor is
declared. If any other name is specified, a compile-time error occurs.

When a static constructor declaration includes an extern modifier, the static constructor is said to be an
external static constructor. Because an external static constructor declaration provides no actual
implementation, its static_constructor_body consists of a semicolon. For all other static constructor
declarations, the static_constructor_body consists of a block, which specifies the statements to execute in
order to initialize the class. This corresponds exactly to the method_body of a static method with a void
return type (§14.6.11).

Static constructors are not inherited, and cannot be called directly.

The static constructor for a closed class executes at most once in a given application domain. The
execution of a static constructor is triggered by the first of the following events to occur within an
application domain:

• An instance of the class is created.

• Any of the static members of the class are referenced.

If a class contains the Main method (§7.1) in which execution begins, the static constructor for that class
executes before the Main method is called.

To initialize a new closed class type, first a new set of static fields (§14.5.2) for that particular closed type
is created. Each of the static fields is initialized to its default value (§14.5.5). Next, the static field
initializers (§14.5.6.2) are executed for those static fields. Finally, the static constructor is executed.

Example: The example

using System;

class Test
{
 static void Main()
 {
 A.F();
 B.F();
 }
}

class A
{
 static A()
 {
 Console.WriteLine("Init A");

Chapter 14 Classes

415

 }

 public static void F()
 {
 Console.WriteLine("A.F");
 }
}

class B
{
 static B()
 {
 Console.WriteLine("Init B");
 }

 public static void F()
 {
 Console.WriteLine("B.F");
 }
}

must produce the output:

Init A
A.F
Init B
B.F

because the execution of A’s static constructor is triggered by the call to A.F, and the execution of
B’s static constructor is triggered by the call to B.F.

end example

It is possible to construct circular dependencies that allow static fields with variable initializers to be
observed in their default value state.

Example: The example

using System;
class A
{
 public static int X;

 static A()
 {
 X = B.Y + 1;
 }
}

class B
{
 public static int Y = A.X + 1;

 static B() {}

 static void Main()
 {
 Console.WriteLine($"X = {A.X}, Y = {B.Y}");

ECMA-334

416

 }
}

produces the output

X = 1, Y = 2

To execute the Main method, the system first runs the initializer for B.Y, prior to class B’s static
constructor. Y’s initializer causes A’s static constructor to be run because the value of A.X is
referenced. The static constructor of A in turn proceeds to compute the value of X, and in doing so
fetches the default value of Y, which is zero. A.X is thus initialized to 1. The process of running
A’s static field initializers and static constructor then completes, returning to the calculation of the
initial value of Y, the result of which becomes 2.

end example

Because the static constructor is executed exactly once for each closed constructed class type, it is a
convenient place to enforce run-time checks on the type parameter that cannot be checked at compile-
time via constraints (§14.2.5).

Example: The following type uses a static constructor to enforce that the type argument is an enum:

class Gen<T> where T : struct
{
 static Gen()
 {
 if (!typeof(T).IsEnum)
 {
 throw new ArgumentException("T must be an enum");
 }
 }
}

end example

14.13 Finalizers
Note: In an earlier version of this standard, what is now referred to as a “finalizer” was called a
“destructor”. Experience has shown that the term “destructor” caused confusion and often resulted
to incorrect expectations, especially to programmers knowing C++. In C++, a destructor is called in a
determinate manner, whereas, in C#, a finalizer is not. To get determinate behavior from C#, one
should use Dispose. end note

A finalizer is a member that implements the actions required to finalize an instance of a class. A finalizer
is declared using a finalizer_declaration:

finalizer_declaration
 : attributes? '~' identifier '(' ')' finalizer_body
 | attributes? 'extern' unsafe_modifier? '~' identifier '(' ')' finalizer_body
 | attributes? unsafe_modifier 'extern'? '~' identifier '(' ')' finalizer_body
 ;

finalizer_body
 : block
 | ';'
 ;

Chapter 14 Classes

417

unsafe_modifier (§22.2) is only available in unsafe code (§22).

A finalizer_declaration may include a set of attributes (§21).

The identifier of a finalizer_declarator shall name the class in which the finalizer is declared. If any other
name is specified, a compile-time error occurs.

When a finalizer declaration includes an extern modifier, the finalizer is said to be an external finalizer.
Because an external finalizer declaration provides no actual implementation, its finalizer_body consists of
a semicolon. For all other finalizers, the finalizer_body consists of a block, which specifies the statements
to execute in order to finalize an instance of the class. A finalizer_body corresponds exactly to the
method_body of an instance method with a void return type (§14.6.11).

Finalizers are not inherited. Thus, a class has no finalizers other than the one that may be declared in that
class.

Note: Since a finalizer is required to have no parameters, it cannot be overloaded, so a class can
have, at most, one finalizer. end note

Finalizers are invoked automatically, and cannot be invoked explicitly. An instance becomes eligible for
finalization when it is no longer possible for any code to use that instance. Execution of the finalizer for
the instance may occur at any time after the instance becomes eligible for finalization (§7.9). When an
instance is finalized, the finalizers in that instance’s inheritance chain are called, in order, from most
derived to least derived. A finalizer may be executed on any thread. For further discussion of the rules
that govern when and how a finalizer is executed, see §7.9.

Example: The output of the example

using System;
class A
{
 ~A()
 {
 Console.WriteLine("A's finalizer");
 }
}

class B : A
{
 ~B()
 {
 Console.WriteLine("B's finalizer");
 }
}

class Test
{
 static void Main()
 {
 B b = new B();
 b = null;
 GC.Collect();
 GC.WaitForPendingFinalizers();
 }
}

is

ECMA-334

418

B's finalizer
A's finalizer

since finalizers in an inheritance chain are called in order, from most derived to least derived.

end example

Finalizers are implemented by overriding the virtual method Finalize on System.Object. C# programs
are not permitted to override this method or call it (or overrides of it) directly.

Example: For instance, the program

class A
{
 override protected void Finalize() {} // Error
 public void F()
 {
 this.Finalize(); // Error
 }
}

contains two errors.

end example

The compiler behaves as if this method, and overrides of it, do not exist at all.

Example: Thus, this program:

class A
{
 void Finalize() {} // Permitted
}

is valid and the method shown hides System.Object’s Finalize method.

end example

For a discussion of the behavior when an exception is thrown from a finalizer, see §20.4.

14.14 Iterators

14.14.1 General

A function member (§11.6) implemented using an iterator block (§12.3) is called an iterator.

An iterator block may be used as the body of a function member as long as the return type of the
corresponding function member is one of the enumerator interfaces (§14.14.2) or one of the enumerable
interfaces (§14.14.3). It may occur as a method_body, operator_body or accessor_body, whereas events,
instance constructors, static constructors and finalizers may not be implemented as iterators.

When a function member is implemented using an iterator block, it is a compile-time error for the formal
parameter list of the function member to specify any ref or out parameters.

14.14.2 Enumerator interfaces

The enumerator interfaces are the non-generic interface System.Collections.IEnumerator and all
instantiations of the generic interface System.Collections.Generic.IEnumerator<T>. For the sake of

Chapter 14 Classes

419

brevity, in this subclause and its siblings these interfaces are referenced as IEnumerator and
IEnumerator<T>, respectively.

14.14.3 Enumerable interfaces

The enumerable interfaces are the non-generic interface System.Collections.IEnumerable and all
instantiations of the generic interface System.Collections.Generic.IEnumerable<T>. For the sake of
brevity, in this subclause and its siblings these interfaces are referenced as IEnumerable and
IEnumerable<T>, respectively.

14.14.4 Yield type

An iterator produces a sequence of values, all of the same type. This type is called the yield type of the
iterator.

• The yield type of an iterator that returns IEnumerator or IEnumerable is object.

• The yield type of an iterator that returns IEnumerator<T> or IEnumerable<T> is T.

14.14.5 Enumerator objects

14.14.5.1 General

When a function member returning an enumerator interface type is implemented using an iterator block,
invoking the function member does not immediately execute the code in the iterator block. Instead, an
enumerator object is created and returned. This object encapsulates the code specified in the iterator
block, and execution of the code in the iterator block occurs when the enumerator object’s MoveNext
method is invoked. An enumerator object has the following characteristics:

• It implements IEnumerator and IEnumerator<T>, where T is the yield type of the iterator.

• It implements System.IDisposable.

• It is initialized with a copy of the argument values (if any) and instance value passed to the function
member.

• It has four potential states, before, running, suspended, and after, and is initially in the before
state.

An enumerator object is typically an instance of a compiler-generated enumerator class that encapsulates
the code in the iterator block and implements the enumerator interfaces, but other methods of
implementation are possible. If an enumerator class is generated by the compiler, that class will be
nested, directly or indirectly, in the class containing the function member, it will have private
accessibility, and it will have a name reserved for compiler use (§6.4.3).

An enumerator object may implement more interfaces than those specified above.

The following subclauses describe the required behavior of the MoveNext, Current, and Dispose members
of the IEnumerator and IEnumerator<T> interface implementations provided by an enumerator object.

Enumerator objects do not support the IEnumerator.Reset method. Invoking this method causes a
System.NotSupportedException to be thrown.

14.14.5.2 The MoveNext method

The MoveNext method of an enumerator object encapsulates the code of an iterator block. Invoking the
MoveNext method executes code in the iterator block and sets the Current property of the enumerator

ECMA-334

420

object as appropriate. The precise action performed by MoveNext depends on the state of the enumerator
object when MoveNext is invoked:

• If the state of the enumerator object is before, invoking MoveNext:

o Changes the state to running.

o Initializes the parameters (including this) of the iterator block to the argument values and
instance value saved when the enumerator object was initialized.

o Executes the iterator block from the beginning until execution is interrupted (as described
below).

• If the state of the enumerator object is running, the result of invoking MoveNext is unspecified.

• If the state of the enumerator object is suspended, invoking MoveNext:

o Changes the state to running.

o Restores the values of all local variables and parameters (including this) to the values saved
when execution of the iterator block was last suspended.
Note: The contents of any objects referenced by these variables may have changed since the
previous call to MoveNext. end note

o Resumes execution of the iterator block immediately following the yield return statement that
caused the suspension of execution and continues until execution is interrupted (as described
below).

• If the state of the enumerator object is after, invoking MoveNext returns false.

When MoveNext executes the iterator block, execution can be interrupted in four ways: By a yield return
statement, by a yield break statement, by encountering the end of the iterator block, and by an
exception being thrown and propagated out of the iterator block.

• When a yield return statement is encountered (§9.4.4.20):

o The expression given in the statement is evaluated, implicitly converted to the yield type, and
assigned to the Current property of the enumerator object.

o Execution of the iterator body is suspended. The values of all local variables and parameters
(including this) are saved, as is the location of this yield return statement. If the yield
return statement is within one or more try blocks, the associated finally blocks are not
executed at this time.

o The state of the enumerator object is changed to suspended.

o The MoveNext method returns true to its caller, indicating that the iteration successfully
advanced to the next value.

• When a yield break statement is encountered (§9.4.4.20):

o If the yield break statement is within one or more try blocks, the associated finally blocks
are executed.

o The state of the enumerator object is changed to after.

o The MoveNext method returns false to its caller, indicating that the iteration is complete.

• When the end of the iterator body is encountered:

o The state of the enumerator object is changed to after.

Chapter 14 Classes

421

o The MoveNext method returns false to its caller, indicating that the iteration is complete.

• When an exception is thrown and propagated out of the iterator block:

o Appropriate finally blocks in the iterator body will have been executed by the exception
propagation.

o The state of the enumerator object is changed to after.

o The exception propagation continues to the caller of the MoveNext method.

14.14.5.3 The Current property

An enumerator object’s Current property is affected by yield return statements in the iterator block.

When an enumerator object is in the suspended state, the value of Current is the value set by the
previous call to MoveNext. When an enumerator object is in the before, running, or after states, the result
of accessing Current is unspecified.

For an iterator with a yield type other than object, the result of accessing Current through the
enumerator object’s IEnumerable implementation corresponds to accessing Current through the
enumerator object’s IEnumerator<T> implementation and casting the result to object.

14.14.5.4 The Dispose method

The Dispose method is used to clean up the iteration by bringing the enumerator object to the after state.

• If the state of the enumerator object is before, invoking Dispose changes the state to after.

• If the state of the enumerator object is running, the result of invoking Dispose is unspecified.

• If the state of the enumerator object is suspended, invoking Dispose:

o Changes the state to running.

o Executes any finally blocks as if the last executed yield return statement were a yield break
statement. If this causes an exception to be thrown and propagated out of the iterator body, the
state of the enumerator object is set to after and the exception is propagated to the caller of the
Dispose method.

o Changes the state to after.

• If the state of the enumerator object is after, invoking Dispose has no affect.

14.14.6 Enumerable objects

14.14.6.1 General

When a function member returning an enumerable interface type is implemented using an iterator block,
invoking the function member does not immediately execute the code in the iterator block. Instead, an
enumerable object is created and returned. The enumerable object’s GetEnumerator method returns an
enumerator object that encapsulates the code specified in the iterator block, and execution of the code in
the iterator block occurs when the enumerator object’s MoveNext method is invoked. An enumerable
object has the following characteristics:

• It implements IEnumerable and IEnumerable<T>, where T is the yield type of the iterator.

• It is initialized with a copy of the argument values (if any) and instance value passed to the function
member.

ECMA-334

422

An enumerable object is typically an instance of a compiler-generated enumerable class that encapsulates
the code in the iterator block and implements the enumerable interfaces, but other methods of
implementation are possible. If an enumerable class is generated by the compiler, that class will be
nested, directly or indirectly, in the class containing the function member, it will have private
accessibility, and it will have a name reserved for compiler use (§6.4.3).

An enumerable object may implement more interfaces than those specified above.

Note: For example, an enumerable object may also implement IEnumerator and IEnumerator<T>,
enabling it to serve as both an enumerable and an enumerator. Typically, such an implementation
would return its own instance (to save allocations) from the first call to GetEnumerator. Subsequent
invocations of GetEnumerator, if any, would return a new class instance, typically of the same class,
so that calls to different enumerator instances will not affect each other. It cannot return the same
instance even if the previous enumerator has already enumerated past the end of the sequence,
since all future calls to an exhausted enumerator must throw exceptions. end note

14.14.6.2 The GetEnumerator method

An enumerable object provides an implementation of the GetEnumerator methods of the IEnumerable and
IEnumerable<T> interfaces. The two GetEnumerator methods share a common implementation that
acquires and returns an available enumerator object. The enumerator object is initialized with the
argument values and instance value saved when the enumerable object was initialized, but otherwise the
enumerator object functions as described in §14.14.5.

14.15 Async Functions

14.15.1 General

A method (§14.6) or anonymous function (§11.16) with the async modifier is called an async function. In
general, the term async is used to describe any kind of function that has the async modifier.

It is a compile-time error for the formal parameter list of an async function to specify any ref or out
parameters.

The return_type of an async method shall be either void or a task type. The task types are
System.Threading.Tasks.Task and types constructed from System.Threading.Tasks.Task<T>. For the
sake of brevity, in this clause these types are referenced as Task and Task<T>, respectively. An async
method returning a task type is said to be task-returning.

The exact definition of the task types is implementation-defined, but from the language’s point of view, a
task type is in one of the states incomplete, succeeded or faulted. A faulted task records a pertinent
exception. A succeeded Task<T> records a result of type T. Task types are awaitable, and tasks can
therefore be the operands of await expressions (§11.8.8).

An async function has the ability to suspend evaluation by means of await expressions (§11.8.8) in its
body. Evaluation may later be resumed at the point of the suspending await expression by means of a
resumption delegate. The resumption delegate is of type System.Action, and when it is invoked,
evaluation of the async function invocation will resume from the await expression where it left off. The
current caller of an async function invocation is the original caller if the function invocation has never
been suspended or the most recent caller of the resumption delegate otherwise.

Chapter 14 Classes

423

14.15.2 Evaluation of a task-returning async function

Invocation of a task-returning async function causes an instance of the returned task type to be generated.
This is called the return task of the async function. The task is initially in an incomplete state.

The async function body is then evaluated until it is either suspended (by reaching an await expression)
or terminates, at which point control is returned to the caller, along with the return task.

When the body of the async function terminates, the return task is moved out of the incomplete state:

• If the function body terminates as the result of reaching a return statement or the end of the body,
any result value is recorded in the return task, which is put into a succeeded state.

• If the function body terminates as the result of an uncaught exception (§12.10.6) the exception is
recorded in the return task which is put into a faulted state.

14.15.3 Evaluation of a void-returning async function

If the return type of the async function is void, evaluation differs from the above in the following way:
Because no task is returned, the function instead communicates completion and exceptions to the current
thread’s synchronization context. The exact definition of synchronization context is implementation-
dependent, but is a representation of “where” the current thread is running. The synchronization context
is notified when evaluation of a void-returning async function commences, completes successfully, or
causes an uncaught exception to be thrown.

This allows the context to keep track of how many void-returning async functions are running under it,
and to decide how to propagate exceptions coming out of them.

Chapter 15 Structs

425

15. Structs

15.1 General
Structs are similar to classes in that they represent data structures that can contain data members and
function members. However, unlike classes, structs are value types and do not require heap allocation. A
variable of a struct type directly contains the data of the struct, whereas a variable of a class type
contains a reference to the data, the latter known as an object.

Note: Structs are particularly useful for small data structures that have value semantics. Complex
numbers, points in a coordinate system, or key-value pairs in a dictionary are all good examples of
structs. Key to these data structures is that they have few data members, that they do not require
use of inheritance or reference semantics, rather they can be conveniently implemented using value
semantics where assignment copies the value instead of the reference. end note

As described in §8.3.5, the simple types provided by C#, such as int, double, and bool, are, in fact, all
struct types.

15.2 Struct declarations

15.2.1 General

A struct_declaration is a type_declaration (§13.7) that declares a new struct:

struct_declaration
 : attributes? struct_modifier* 'partial'? 'struct' identifier
type_parameter_list?
 struct_interfaces? type_parameter_constraints_clause* struct_body ';'?
 ;

A struct_declaration consists of an optional set of attributes (§21), followed by an optional set of
struct_modifiers (§15.2.2), followed by an optional partial modifier (§14.2.7), followed by the keyword
struct and an identifier that names the struct, followed by an optional type_parameter_list specification
(§14.2.3), followed by an optional struct_interfaces specification (§15.2.4), followed by an optional
type_parameter_constraints-clauses specification (§14.2.5), followed by a struct_body (§15.2.5), optionally
followed by a semicolon.

A struct declaration shall not supply a type_parameter_constraints_clauses unless it also supplies a
type_parameter_list.

A struct declaration that supplies a type_parameter_list is a generic struct declaration. Additionally, any
struct nested inside a generic class declaration or a generic struct declaration is itself a generic struct
declaration, since type arguments for the containing type shall be supplied to create a constructed type
(§8.4).

15.2.2 Struct modifiers

A struct_declaration may optionally include a sequence of struct_modifiers:

ECMA-334

426

struct_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in a struct declaration.

The modifiers of a struct declaration have the same meaning as those of a class declaration (§14.2.2).

15.2.3 Partial modifier

The partial modifier indicates that this struct_declaration is a partial type declaration. Multiple partial
struct declarations with the same name within an enclosing namespace or type declaration combine to
form one struct declaration, following the rules specified in §14.2.7.

15.2.4 Struct interfaces

A struct declaration may include a struct_interfaces specification, in which case the struct is said to
directly implement the given interface types. For a constructed struct type, including a nested type
declared within a generic type declaration (§14.3.9.7), each implemented interface type is obtained by
substituting, for each type_parameter in the given interface, the corresponding type_argument of the
constructed type.

struct_interfaces
 : ':' interface_type_list
 ;

The handling of interfaces on multiple parts of a partial struct declaration (§14.2.7) are discussed further
in §14.2.4.3.

Interface implementations are discussed further in §17.6.

15.2.5 Struct body

The struct_body of a struct defines the members of the struct.

struct_body
 : '{' struct_member_declaration* '}'
 ;

15.3 Struct members
The members of a struct consist of the members introduced by its struct_member_declarations and the
members inherited from the type System.ValueType.

struct_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration

Chapter 15 Structs

427

 | operator_declaration
 | constructor_declaration
 | static_constructor_declaration
 | type_declaration
 | fixed_size_buffer_declaration // unsafe code support
 ;

fixed_size_buffer_declaration (§22.8.2) is only available in unsafe code (§22).

Note: All kinds of class_member_declarations except finalizer_declaration are also
struct_member_declarations. end note

Except for the differences noted in §15.4, the descriptions of class members provided in §14.3 through
§14.12 apply to struct members as well.

15.4 Class and struct differences

15.4.1 General

Structs differ from classes in several important ways:

• Structs are value types (§15.4.2).

• All struct types implicitly inherit from the class System.ValueType (§15.4.3).

• Assignment to a variable of a struct type creates a copy of the value being assigned (§15.4.4).

• The default value of a struct is the value produced by setting all fields to their default value
(§15.4.5).

• Boxing and unboxing operations are used to convert between a struct type and certain reference
types (§15.4.6).

• The meaning of this is different within struct members (§15.4.7).

• Instance field declarations for a struct are not permitted to include variable initializers (§15.4.8).

• A struct is not permitted to declare a parameterless instance constructor (§15.4.9).

• A struct is not permitted to declare a finalizer.

15.4.2 Value semantics

Structs are value types (§8.3) and are said to have value semantics. Classes, on the other hand, are
reference types (§8.2) and are said to have reference semantics.

A variable of a struct type directly contains the data of the struct, whereas a variable of a class type
contains a reference to an object that contains the data. When a struct B contains an instance field of type
A and A is a struct type, it is a compile-time error for A to depend on B or a type constructed from B. A
struct X directly depends on a struct Y if X contains an instance field of type Y. Given this definition, the
complete set of structs upon which a struct depends is the transitive closure of the directly depends on
relationship.

Example:

struct Node
{
 int data;

ECMA-334

428

 Node next; // error, Node directly depends on itself
}

is an error because Node contains an instance field of its own type. Another example

struct A { B b; }
struct B { C c; }
struct C { A a; }

is an error because each of the types A, B, and C depend on each other.

end example

With classes, it is possible for two variables to reference the same object, and thus possible for operations
on one variable to affect the object referenced by the other variable. With structs, the variables each have
their own copy of the data (except in the case of ref and out parameter variables), and it is not possible
for operations on one to affect the other. Furthermore, except when explicitly nullable (§8.3.11), it is not
possible for values of a struct type to be null.

Note: If a struct contains a field of reference type then the contents of the object referenced can be
altered by other operations. However the value of the field itself, i.e., which object it references,
cannot be changed through a mutation of a different struct value. end note

Example: Given the declaration

struct Point
{
 public int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

the code fragment

Point a = new Point(10, 10);
Point b = a;
a.x = 100;
System.Console.WriteLine(b.x);

outputs the value 10. The assignment of a to b creates a copy of the value, and b is thus unaffected by
the assignment to a.x. Had Point instead been declared as a class, the output would be 100 because
a and b would reference the same object.

end example

15.4.3 Inheritance

All struct types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object. A struct declaration may specify a list of implemented interfaces, but it is not possible for a struct
declaration to specify a base class.

Struct types are never abstract and are always implicitly sealed. The abstract and sealed modifiers are
therefore not permitted in a struct declaration.

Since inheritance isn’t supported for structs, the declared accessibility of a struct member cannot be
protected or protected internal.

Chapter 15 Structs

429

Function members in a struct cannot be abstract or virtual, and the override modifier is allowed only to
override methods inherited from System.ValueType.

15.4.4 Assignment

Assignment to a variable of a struct type creates a copy of the value being assigned. This differs from
assignment to a variable of a class type, which copies the reference but not the object identified by the
reference.

Similar to an assignment, when a struct is passed as a value parameter or returned as the result of a
function member, a copy of the struct is created. A struct may be passed by reference to a function
member using a ref or out parameter.

When a property or indexer of a struct is the target of an assignment, the instance expression associated
with the property or indexer access shall be classified as a variable. If the instance expression is
classified as a value, a compile-time error occurs. This is described in further detail in §11.18.2.

15.4.5 Default values

As described in §9.3, several kinds of variables are automatically initialized to their default value when
they are created. For variables of class types and other reference types, this default value is null.
However, since structs are value types that cannot be null, the default value of a struct is the value
produced by setting all value type fields to their default value and all reference type fields to null.

Example: Referring to the Point struct declared above, the example

Point[] a = new Point[100];

initializes each Point in the array to the value produced by setting the x and y fields to zero.

end example

The default value of a struct corresponds to the value returned by the default constructor of the struct
(§8.3.3). Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead,
every struct implicitly has a parameterless instance constructor, which always returns the value that
results from setting all fields to their default values.

Note: Structs should be designed to consider the default initialization state a valid state. In the
example

using System;
struct KeyValuePair
{
 string key;
 string value;

 public KeyValuePair(string key, string value)
 {
 if (key == null || value == null)
 {
 throw new ArgumentException();
 }

 this.key = key;
 this.value = value;
 }
}

ECMA-334

430

the user-defined instance constructor protects against null values only where it is explicitly called.
In cases where a KeyValuePair variable is subject to default value initialization, the key and value
fields will be null, and the struct should be prepared to handle this state.

end note

15.4.6 Boxing and unboxing

A value of a class type can be converted to type object or to an interface type that is implemented by the
class simply by treating the reference as another type at compile-time. Likewise, a value of type object or
a value of an interface type can be converted back to a class type without changing the reference (but, of
course, a run-time type check is required in this case).

Since structs are not reference types, these operations are implemented differently for struct types. When
a value of a struct type is converted to certain reference types (as defined in §10.2.9), a boxing operation
takes place. Likewise, when a value of certain reference types (as defined in §10.3.6) is converted back to
a struct type, an unboxing operation takes place. A key difference from the same operations on class types
is that boxing and unboxing copies the struct value either into or out of the boxed instance.

Note: Thus, following a boxing or unboxing operation, changes made to the unboxed struct are not
reflected in the boxed struct. end note

For further details on boxing and unboxing, see §10.2.9 and §10.3.6.

15.4.7 Meaning of this

The meaning of this in a struct differs from the meaning of this in a class, as described in §11.7.12. When
a struct type overrides a virtual method inherited from System.ValueType (such as Equals, GetHashCode,
or ToString), invocation of the virtual method through an instance of the struct type does not cause
boxing to occur. This is true even when the struct is used as a type parameter and the invocation occurs
through an instance of the type parameter type.

Example:

using System;
struct Counter
{
 int value;
 public override string ToString()
 {
 value++;
 return value.ToString();
 }
}

class Program
{
 static void Test<T>() where T : new()
 {
 T x = new T();
 Console.WriteLine(x.ToString());
 Console.WriteLine(x.ToString());
 console.WriteLine(x.ToString());
 }

Chapter 15 Structs

431

 static void Main() => Test<Counter>();
}

The output of the program is:

1
2
3

Although it is bad style for ToString to have side effects, the example demonstrates that no boxing
occurred for the three invocations of x.ToString().

end example

Similarly, boxing never implicitly occurs when accessing a member on a constrained type parameter
when the member is implemented within the value type. For example, suppose an interface ICounter
contains a method Increment, which can be used to modify a value. If ICounter is used as a constraint, the
implementation of the Increment method is called with a reference to the variable that Increment was
called on, never a boxed copy.

Example:

using System;

interface ICounter
{
 void Increment();
}

struct Counter : ICounter
{
 int value;

 public override string ToString() => value.ToString();

 void ICounter.Increment() => value++;
}

class Program
{
 static void Test<T>() where T : ICounter, new()
 {
 T x = new T();
 Console.WriteLine(x);
 x.Increment(); // Modify x
 Console.WriteLine(x);
 ((ICounter)x).Increment(); // Modify boxed copy of x
 Console.WriteLine(x);
 }

 static void Main() => Test<Counter>();
}

The first call to Increment modifies the value in the variable x. This is not equivalent to the second
call to Increment, which modifies the value in a boxed copy of x. Thus, the output of the program is:

ECMA-334

432

0
1
1

end example

15.4.8 Field initializers

As described in §15.4.5, the default value of a struct consists of the value that results from setting all value
type fields to their default value and all reference type fields to null. For this reason, a struct does not
permit instance field declarations to include variable initializers. This restriction applies only to instance
fields. Static fields of a struct are permitted to include variable initializers.

Example: The following

struct Point
{
 public int x = 1; // Error, initializer not permitted
 public int y = 1; // Error, initializer not permitted
}

is in error because the instance field declarations include variable initializers.

end example

15.4.9 Constructors

Unlike a class, a struct is not permitted to declare a parameterless instance constructor. Instead, every
struct implicitly has a parameterless instance constructor, which always returns the value that results
from setting all value type fields to their default value and all reference type fields to null (§8.3.3). A
struct can declare instance constructors having parameters.

Example:

struct Point
{
 int x, y;

 public Point(int x, int y)
 {
 this.x = x;
 this.y = y;
 }
}

Given the above declaration, the statements

Point p1 = new Point();
Point p2 = new Point(0, 0);

both create a Point with x and y initialized to zero.

end example

A struct instance constructor is not permitted to include a constructor initializer of the form
base(argument_list), where argument_list is optional.

The this parameter of a struct instance constructor corresponds to an out parameter of the struct type.
As such, this shall be definitely assigned (§9.4) at every location where the constructor returns. Similarly,
it cannot be read (even implicitly) in the constructor body before being definitely assigned.

Chapter 15 Structs

433

If the struct instance constructor specifies a constructor initializer, that initializer is considered a definite
assignment to this that occurs prior to the body of the constructor. Therefore, the body itself has no
initialization requirements.

Example: Consider the instance constructor implementation below:

struct Point
{
 int x, y;

 public int X
 {
 set { x = value; }
 }

 public int Y
 {
 set { y = value; }
 }

 public Point(int x, int y)
 {
 X = x; // error, this is not yet definitely assigned
 Y = y; // error, this is not yet definitely assigned
 }
}

No instance function member (including the set accessors for the properties X and Y) can be called
until all fields of the struct being constructed have been definitely assigned. Note, however, that if
Point were a class instead of a struct, the instance constructor implementation would be permitted.
There is one exception to this, and that involves automatically implemented properties (§14.7.4).
The definite assignment rules (§11.18.2) specifically exempt assignment to an auto-property of a
struct type within an instance constructor of that struct type: such an assignment is considered a
definite assignment of the hidden backing field of the auto-property. Thus, the following is allowed:

struct Point
{
 public int X { get; set; }
 public int Y { get; set; }

 public Point(int x, int y)
 {
 X = x; // allowed, definitely assigns backing field
 Y = y; // allowed, definitely assigns backing field
 }
}

end example]

15.4.10 Static constructors

Static constructors for structs follow most of the same rules as for classes. The execution of a static
constructor for a struct type is triggered by the first of the following events to occur within an application
domain:

• A static member of the struct type is referenced.

ECMA-334

434

• An explicitly declared constructor of the struct type is called.

Note: The creation of default values (§15.4.5) of struct types does not trigger the static constructor.
(An example of this is the initial value of elements in an array.) end note

15.4.11 Automatically implemented properties

Automatically implemented properties (§14.7.4) use hidden backing fields, which are only accessible to
the property accessors.

Note: This access restriction means that constructors in structs containing automatically
implemented properties often need an explicit constructor initializer where they would not
otherwise need one, to satisfy the requirement of all fields being definitely assigned before any
function member is invoked or the constructor returns. end note

Chapter 16 Arrays

435

16. Arrays

16.1 General
An array is a data structure that contains a number of variables that are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

An array has a rank that determines the number of indices associated with each array element. The rank
of an array is also referred to as the dimensions of the array. An array with a rank of one is called a single-
dimensional array. An array with a rank greater than one is called a multi-dimensional array. Specific
sized multi-dimensional arrays are often referred to as two-dimensional arrays, three-dimensional
arrays, and so on. Each dimension of an array has an associated length that is an integral number greater
than or equal to zero. The dimension lengths are not part of the type of the array, but rather are
established when an instance of the array type is created at run-time. The length of a dimension
determines the valid range of indices for that dimension: For a dimension of length N, indices can range
from 0 to N – 1 inclusive. The total number of elements in an array is the product of the lengths of each
dimension in the array. If one or more of the dimensions of an array have a length of zero, the array is said
to be empty.

The element type of an array can itself be an array type (§16.2.1). Such arrays of arrays are distinct from
multi-dimensional arrays and can be used to represent “jagged arrays”.

Example:

int[][] pascals =
{
 new int[] {1},
 new int[] {1, 1},
 new int[] {1, 2, 1},
 new int[] {1, 3, 3, 1}
};

end example

Every array type is a reference type (§8.2). The element type of an array can be any type, including value
types and array types.

16.2 Array types

16.2.1 General

The grammar productions for array types are provided in §8.2.1.

An array type is written as a non_array_type followed by one or more rank_specifiers.

A non_array_type is any type that is not itself an array_type.

The rank of an array type is given by the leftmost rank_specifier in the array_type: A rank_specifier
indicates that the array is an array with a rank of one plus the number of “,” tokens in the rank_specifier.

ECMA-334

436

The element type of an array type is the type that results from deleting the leftmost rank_specifier:

• An array type of the form T[R] is an array with rank R and a non-array element type T.

• An array type of the form T[R][R1]...[Rx] is an array with rank R and an element type
T[R1]...[Rx].

In effect, the rank_specifiers are read from left to right before the final non-array element type.

Example: The type in T[][,,][,] is a single-dimensional array of three-dimensional arrays of two-
dimensional arrays of int. end example

At run-time, a value of an array type can be null or a reference to an instance of that array type.

Note: Following the rules of §16.6, the value may also be a reference to a covariant array type. end
note

16.2.2 The System.Array type

The type System.Array is the abstract base type of all array types. An implicit reference conversion
(§10.2.8) exists from any array type to System.Array and to any interface type implemented by
System.Array. An explicit reference conversion (§10.3.5) exists from System.Array and any interface
type implemented by System.Array to any array type. System.Array is not itself an array_type. Rather, it
is a class_type from which all array_types are derived.

At run-time, a value of type System.Array can be null or a reference to an instance of any array type.

16.2.3 Arrays and the generic collection interfaces

A single-dimensional array T[] implements the interface System.Collections.Generic.IList<T> (IList<T>
for short) and its base interfaces. Accordingly, there is an implicit conversion from T[] to IList<T> and its
base interfaces. In addition, if there is an implicit reference conversion from S to T then S[] implements
IList<T> and there is an implicit reference conversion from S[] to IList<T> and its base interfaces
(§10.2.8). If there is an explicit reference conversion from S to T then there is an explicit reference
conversion from S[] to IList<T> and its base interfaces (§10.3.5).

Similarly, a single-dimensional array T[] also implements the interface
System.Collections.Generic.IReadOnlyList<T> (IReadOnlyList<T> for short) and its base interfaces.
Accordingly, there is an implicit conversion from T[] to IReadOnlyList<T> and its base interfaces. In
addition, if there is an implicit reference conversion from S to T then S[] implements IReadOnlyList<T>
and there is an implicit reference conversion from S[] to IReadOnlyList<T> and its base interfaces
(§10.2.8). If there is an explicit reference conversion from S to T then there is an explicit reference
conversion from S[] to IReadOnlyList<T> and its base interfaces (§10.3.5).

Example: For example:

using System.Collections.Generic;

class Test
{
 static void Main()
 {
 string[] sa = new string[5];
 object[] oa1 = new object[5];
 object[] oa2 = sa;

 IList<string> lst1 = sa; // Ok

Chapter 16 Arrays

437

 IList<string> lst2 = oa1; // Error, cast needed
 IList<object> lst3 = sa; // Ok
 IList<object> lst4 = oa1; // Ok

 IList<string> lst5 = (IList<string>)oa1; // Exception
 IList<string> lst6 = (IList<string>)oa2; // Ok

 IReadOnlyList<string> lst7 = sa; // Ok
 IReadOnlyList<string> lst8 = oa1; // Error, cast
needed
 IReadOnlyList<object> lst9 = sa; // Ok
 IReadOnlyList<object> lst10 = oa1; // Ok
 IReadOnlyList<string> lst11 = (IReadOnlyList<string>)oa1; // Exception
 IReadOnlyList<string> lst12 = (IReadOnlyList<string>)oa2; // Ok
 }
}

The assignment lst2 = oa1 generates a compile-time error since the conversion from object[] to
IList<string> is an explicit conversion, not implicit. The cast (IList<string>)oa1 will cause an
exception to be thrown at run-time since oa1 references an object[] and not a string[]. However
the cast (IList<string>)oa2 will not cause an exception to be thrown since oa2 references a
string[].

end example

Whenever there is an implicit or explicit reference conversion from S[] to IList<T>, there is also an
explicit reference conversion from IList<T> and its base interfaces to S[] (§10.3.5).

When an array type S[] implements IList<T>, some of the members of the implemented interface may
throw exceptions. The precise behavior of the implementation of the interface is beyond the scope of this
specification.

16.3 Array creation
Array instances are created by array_creation_expressions (§11.7.15.5) or by field or local variable
declarations that include an array_initializer (§16.7). Array instances can also be created implicitly as part
of evaluating an argument list involving a parameter array (§14.6.2.5).

When an array instance is created, the rank and length of each dimension are established and then remain
constant for the entire lifetime of the instance. In other words, it is not possible to change the rank of an
existing array instance, nor is it possible to resize its dimensions.

An array instance is always of an array type. The System.Array type is an abstract type that cannot be
instantiated.

Elements of arrays created by array_creation_expressions are always initialized to their default value
(§9.3).

16.4 Array element access
Array elements are accessed using element_access expressions (§11.7.10.2) of the form A[I1, I2, ...,
Ix], where A is an expression of an array type and each Ie is an expression of type int, uint, long, ulong,
or can be implicitly converted to one or more of these types. The result of an array element access is a
variable, namely the array element selected by the indices.

ECMA-334

438

The elements of an array can be enumerated using a foreach statement (§12.9.5).

16.5 Array members
Every array type inherits the members declared by the System.Array type.

16.6 Array covariance
For any two reference_types A and B, if an implicit reference conversion (§10.2.8) or explicit reference
conversion (§10.3.5) exists from A to B, then the same reference conversion also exists from the array type
A[R] to the array type B[R], where R is any given rank_specifier (but the same for both array types). This
relationship is known as array covariance. Array covariance, in particular, means that a value of an array
type A[R] might actually be a reference to an instance of an array type B[R], provided an implicit
reference conversion exists from B to A.

Because of array covariance, assignments to elements of reference type arrays include a run-time check
which ensures that the value being assigned to the array element is actually of a permitted type
(§11.18.2).

Example:

class Test
{
 static void Fill(object[] array, int index, int count, object value)
 {
 for (int i = index; i < index + count; i++)
 {
 array[i] = value;
 }
 }

 static void Main()
 {
 string[] strings = new string[100];
 Fill(strings, 0, 100, "Undefined");
 Fill(strings, 0, 10, null);
 Fill(strings, 90, 10, 0);
 }
}

The assignment to array[i] in the Fill method implicitly includes a run-time check, which ensures
that value is either a null reference or a reference to an object of a type that is compatible with the
actual element type of array. In Main, the first two invocations of Fill succeed, but the third
invocation causes a System.ArrayTypeMismatchException to be thrown upon executing the first
assignment to array[i]. The exception occurs because a boxed int cannot be stored in a string
array.

end example

Array covariance specifically does not extend to arrays of value_types. For example, no conversion exists
that permits an int[] to be treated as an object[].

Chapter 16 Arrays

439

16.7 Array initializers
Array initializers may be specified in field declarations (§14.5), local variable declarations (§12.6.2), and
array creation expressions (§11.7.15.5):

array_initializer
 : '{' variable_initializer_list? '}'
 | '{' variable_initializer_list ',' '}'
 ;

variable_initializer_list
 : variable_initializer (',' variable_initializer)*
 ;

variable_initializer
 : expression
 | array_initializer
 ;

An array initializer consists of a sequence of variable initializers, enclosed by “{” and “}” tokens and
separated by “,” tokens. Each variable initializer is an expression or, in the case of a multi-dimensional
array, a nested array initializer.

The context in which an array initializer is used determines the type of the array being initialized. In an
array creation expression, the array type immediately precedes the initializer, or is inferred from the
expressions in the array initializer. In a field or variable declaration, the array type is the type of the field
or variable being declared. When an array initializer is used in a field or variable declaration,

int[] a = {0, 2, 4, 6, 8};

it is simply shorthand for an equivalent array creation expression:

int[] a = new int[] {0, 2, 4, 6, 8};

For a single-dimensional array, the array initializer shall consist of a sequence of expressions, each having
an implicit conversion to the element type of the array (§10.2). The expressions initialize array elements
in increasing order, starting with the element at index zero. The number of expressions in the array
initializer determines the length of the array instance being created.

Example: The array initializer above creates an int[] instance of length 5 and then initializes the
instance with the following values:

a[0] = 0; a[1] = 2; a[2] = 4; a[3] = 6; a[4] = 8;

end example

For a multi-dimensional array, the array initializer shall have as many levels of nesting as there are
dimensions in the array. The outermost nesting level corresponds to the leftmost dimension and the
innermost nesting level corresponds to the rightmost dimension. The length of each dimension of the
array is determined by the number of elements at the corresponding nesting level in the array initializer.
For each nested array initializer, the number of elements shall be the same as the other array initializers
at the same level.

Example: The example:

int[,] b = {{0, 1}, {2, 3}, {4, 5}, {6, 7}, {8, 9}};

creates a two-dimensional array with a length of five for the leftmost dimension and a length of two
for the rightmost dimension:

ECMA-334

440

int[,] b = new int[5, 2];

and then initializes the array instance with the following values:

b[0, 0] = 0; b[0, 1] = 1;
b[1, 0] = 2; b[1, 1] = 3;
b[2, 0] = 4; b[2, 1] = 5;
b[3, 0] = 6; b[3, 1] = 7;
b[4, 0] = 8; b[4, 1] = 9;

end example

If a dimension other than the rightmost is given with length zero, the subsequent dimensions are assumed
to also have length zero.

Example:

int[,] c = {};

creates a two-dimensional array with a length of zero for both the leftmost and the rightmost
dimension:

int[,] c = new int[0, 0];

end example

When an array creation expression includes both explicit dimension lengths and an array initializer, the
lengths shall be constant expressions and the number of elements at each nesting level shall match the
corresponding dimension length.

Example: Here are some examples:

int i = 3;
int[] x = new int[3] {0, 1, 2}; // OK
int[] y = new int[i] {0, 1, 2}; // Error, i not a constant
int[] z = new int[3] {0, 1, 2, 3}; // Error, length/initializer mismatch

Here, the initializer for y results in a compile-time error because the dimension length expression is
not a constant, and the initializer for z results in a compile-time error because the length and the
number of elements in the initializer do not agree.

end example

Note: C# allows a trailing comma at the end of an array_initializer. This syntax provides flexibility in
adding or deleting members from such a list, and simplifies machine generation of such lists. end
note

Chapter 17 Interfaces

441

17. Interfaces

17.1 General
An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interfaces can contain methods, properties, events, and indexers. The interface itself does not provide
implementations for the members that it declares. The interface merely specifies the members that shall
be supplied by classes or structs that implement the interface.

17.2 Interface declarations

17.2.1 General

An interface_declaration is a type_declaration (§13.7) that declares a new interface type.

interface_declaration
 : attributes? interface_modifier* 'partial'? 'interface'
 identifier variant_type_parameter_list? interface_base?
 type_parameter_constraints_clause* interface_body ';'?
 ;

An interface_declaration consists of an optional set of attributes (§21), followed by an optional set of
interface_modifiers (§17.2.2), followed by an optional partial modifier (§14.2.7), followed by the keyword
interface and an identifier that names the interface, followed by an optional variant_type_parameter_list
specification (§17.2.3), followed by an optional interface_base specification (§17.2.4), followed by an
optional type_parameter_constraints_clauses specification (§14.2.5), followed by an interface_body (§17.3),
optionally followed by a semicolon.

An interface declaration shall not supply a type_parameter_constraints_clauses unless it also supplies a
type_parameter_list.

An interface declaration that supplies a type_parameter_list is a generic interface declaration. Additionally,
any interface nested inside a generic class declaration or a generic struct declaration is itself a generic
interface declaration, since type arguments for the containing type shall be supplied to create a
constructed type (§8.4).

17.2.2 Interface modifiers

An interface_declaration may optionally include a sequence of interface modifiers:

interface_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

ECMA-334

442

unsafe_modifier (§22.2) is only available in unsafe code (§22).

It is a compile-time error for the same modifier to appear multiple times in an interface declaration.

The new modifier is only permitted on interfaces defined within a class. It specifies that the interface hides
an inherited member by the same name, as described in §14.3.5.

The public, protected, internal, and private modifiers control the accessibility of the interface.
Depending on the context in which the interface declaration occurs, only some of these modifiers might
be permitted (§7.5.2). When a partial type declaration (§14.2.7) includes an accessibility specification (via
the public, protected, internal, and private modifiers), the rules in §14.2.2 apply.

17.2.3 Variant type parameter lists

17.2.3.1 General

Variant type parameter lists can only occur on interface and delegate types. The difference from ordinary
type_parameter_lists is the optional variance_annotation on each type parameter.

variant_type_parameter_list
 : '<' variant_type_parameters '>'
 ;

variant_type_parameters
 : attributes? variance_annotation? type_parameter
 | variant_type_parameters ',' attributes? variance_annotation? type_parameter
 ;

variance_annotation
 : 'in'
 | 'out'
 ;

If the variance annotation is out, the type parameter is said to be covariant. If the variance annotation is
in, the type parameter is said to be contravariant. If there is no variance annotation, the type parameter
is said to be invariant.

Example: In the following:

interface C<out X, in Y, Z>
{
 X M(Y y);
 Z P { get; set; }
}

X is covariant, Y is contravariant and Z is invariant.

end example

If a generic interface is declared in multiple parts (§14.2.3), each partial declaration shall specify the same
variance for each type parameter.

17.2.3.2 Variance safety

The occurrence of variance annotations in the type parameter list of a type restricts the places where
types can occur within the type declaration.

A type T is output-unsafe if one of the following holds:

• T is a contravariant type parameter

Chapter 17 Interfaces

443

• T is an array type with an output-unsafe element type

• T is an interface or delegate type Si,... Ae constructed from a generic type S<Xi, ... Xe> where
for at least one Ai one of the following holds:

o Xi is covariant or invariant and Ai is output-unsafe.

o Xi is contravariant or invariant and Ai is input-unsafe.

A type T is input-unsafe if one of the following holds:

• T is a covariant type parameter

• T is an array type with an input-unsafe element type

• T is an interface or delegate type S<Ai,... Ae> constructed from a generic type S<Xi, ... Xe>
where for at least one Ai one of the following holds:

o Xi is covariant or invariant and Ai is input-unsafe.

o Xi is contravariant or invariant and Ai is output-unsafe.

Intuitively, an output-unsafe type is prohibited in an output position, and an input-unsafe type is
prohibited in an input position.

A type is output-safe if it is not output-unsafe, and input-safe if it is not input-unsafe.

17.2.3.3 Variance conversion

The purpose of variance annotations is to provide for more lenient (but still type safe) conversions to
interface and delegate types. To this end the definitions of implicit (§10.2) and explicit conversions
(§10.3) make use of the notion of variance-convertibility, which is defined as follows:

A type T<Ai, ..., Av> is variance-convertible to a type T<Bi, ..., Av> if T is either an interface or a
delegate type declared with the variant type parameters T<Xi, ..., Xv>, and for each variant type
parameter Xi one of the following holds:

• Xi is covariant and an implicit reference or identity conversion exists from Ai to Ai

• Xi is contravariant and an implicit reference or identity conversion exists from Bi to Ai

• Xi is invariant and an identity conversion exists from Ai to Bi

17.2.4 Base interfaces

An interface can inherit from zero or more interface types, which are called the explicit base interfaces of
the interface. When an interface has one or more explicit base interfaces, then in the declaration of that
interface, the interface identifier is followed by a colon and a comma-separated list of base interface
types.

interface_base
 : ':' interface_type_list
 ;

The explicit base interfaces can be constructed interface types (§8.4, §17.2). A base interface cannot be a
type parameter on its own, though it can involve the type parameters that are in scope.

For a constructed interface type, the explicit base interfaces are formed by taking the explicit base
interface declarations on the generic type declaration, and substituting, for each type_parameter in the
base interface declaration, the corresponding type_argument of the constructed type.

ECMA-334

444

The explicit base interfaces of an interface shall be at least as accessible as the interface itself (§7.5.5).

Note: For example, it is a compile-time error to specify a private or internal interface in the
interface_base of a public interface. end note

It is a compile-time error for an interface to directly or indirectly inherit from itself.

The base interfaces of an interface are the explicit base interfaces and their base interfaces. In other
words, the set of base interfaces is the complete transitive closure of the explicit base interfaces, their
explicit base interfaces, and so on. An interface inherits all members of its base interfaces.

Example: In the following code

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

interface IComboBox: ITextBox, IListBox {}

the base interfaces of IComboBox are IControl, ITextBox, and IListBox. In other words, the
IComboBox interface above inherits members SetText and SetItems as well as Paint.

end example

Members inherited from a constructed generic type are inherited after type substitution. That is, any
constituent types in the member have the base class declaration’s type parameters replaced with the
corresponding type arguments used in the class_base specification.

Example: In the following code

interface IBase<T>
{
 T[] Combine(T a, T b);
}

interface IDerived : IBase<string[,]>
{
 // Inherited: string[][,] Combine(string[,] a, string[,] b);
}

the interface IDerived inherits the Combine method after the type parameter T is replaced with
string[,].

end example

A class or struct that implements an interface also implicitly implements all of the interface’s base
interfaces.

Chapter 17 Interfaces

445

The handling of interfaces on multiple parts of a partial interface declaration (§14.2.7) are discussed
further in §14.2.4.3.

Every base interface of an interface shall be output-safe (§17.2.3.2).

17.3 Interface body
The interface_body of an interface defines the members of the interface.

interface_body
 : '{' interface_member_declaration* '}'
 ;

17.4 Interface members

17.4.1 General

The members of an interface are the members inherited from the base interfaces and the members
declared by the interface itself.

interface_member_declaration
 : interface_method_declaration
 | interface_property_declaration
 | interface_event_declaration
 | interface_indexer_declaration
 ;

An interface declaration declares zero or more members. The members of an interface shall be methods,
properties, events, or indexers. An interface cannot contain constants, fields, operators, instance
constructors, finalizers, or types, nor can an interface contain static members of any kind.

All interface members implicitly have public access. It is a compile-time error for interface member
declarations to include any modifiers.

An interface_declaration creates a new declaration space (§7.3), and the type parameters and
interface_member_declarations immediately contained by the interface_declaration introduce new
members into this declaration space. The following rules apply to interface_member_declarations:

• The name of a type parameter in the type_parameter_list of an interface declaration shall differ from
the names of all other type parameters in the same type_parameter_list and shall differ from the
names of all members of the interface.

• The name of a method shall differ from the names of all properties and events declared in the same
interface. In addition, the signature (§7.6) of a method shall differ from the signatures of all other
methods declared in the same interface, and two methods declared in the same interface may not
have signatures that differ solely by ref and out.

• The name of a property or event shall differ from the names of all other members declared in the
same interface.

• The signature of an indexer shall differ from the signatures of all other indexers declared in the
same interface.

The inherited members of an interface are specifically not part of the declaration space of the interface.
Thus, an interface is allowed to declare a member with the same name or signature as an inherited
member. When this occurs, the derived interface member is said to hide the base interface member.

ECMA-334

446

Hiding an inherited member is not considered an error, but it does cause the compiler to issue a warning.
To suppress the warning, the declaration of the derived interface member shall include a new modifier to
indicate that the derived member is intended to hide the base member. This topic is discussed further in
§7.7.2.3.

If a new modifier is included in a declaration that doesn’t hide an inherited member, a warning is issued to
that effect. This warning is suppressed by removing the new modifier.

Note: The members in class object are not, strictly speaking, members of any interface (§17.4).
However, the members in class object are available via member lookup in any interface type
(§11.5). end note

The set of members of an interface declared in multiple parts (§14.2.7) is the union of the members
declared in each part. The bodies of all parts of the interface declaration share the same declaration space
(§7.3), and the scope of each member (§7.7) extends to the bodies of all the parts.

17.4.2 Interface methods

Interface methods are declared using interface_method_declarations:

interface_method_declaration
 : attributes? 'new'? return_type identifier type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
 ;

The attributes, return_type, identifier, and formal_parameter_list of an interface method declaration have
the same meaning as those of a method declaration in a class (§14.6). An interface method declaration is
not permitted to specify a method body, and the declaration therefore always ends with a semicolon. An
interface_method_declaration shall not have type_parameter_constraints_clauses unless it also has a
type_parameter_list.

All formal parameter types of an interface method shall be input-safe (§17.2.3.2), and the return type
shall be either void or output-safe. In addition, any output or reference formal parameter types shall also
be output-safe.

Note: Output parameters are required to be input-safe due to common implementation restrictions.
end note

Furthermore, each class type constraint, interface type constraint and type parameter constraint on any
type parameters of the method shall be input-safe.

Furthermore, each class type constraint, interface type constraint and type parameter constraint on any
type parameter of the method shall be input-safe.

These rules ensure that any covariant or contravariant usage of the interface remains typesafe.

Example:

interface I<out T>
{
 void M<U>() where U : T;
}

is ill-formed because the usage of T as a type parameter constraint on U is not input-safe.

Were this restriction not in place it would be possible to violate type safety in the following manner:

class B {}
class D : B {}

Chapter 17 Interfaces

447

class E : B {}
class C : I<D>
{
 public void M<U>() {...}
}

...

I b = new C();
b.M<E>();

This is actually a call to C.M<E>. But that call requires that E derive from D, so type safety would be
violated here.

end example

17.4.3 Interface properties

Interface properties are declared using interface_property_declarations:

interface_property_declaration
 : attributes? 'new'? type identifier '{' interface_accessors '}'
 ;

interface_accessors
 : attributes? 'get' ';'
 | attributes? 'set' ';'
 | attributes? 'get' ';' attributes? 'set' ';'
 | attributes? 'set' ';' attributes? 'get' ';'
 ;

The attributes, type, and identifier of an interface property declaration have the same meaning as those of
a property declaration in a class (§14.7).

The accessors of an interface property declaration correspond to the accessors of a class property
declaration (§14.7.3), except that the accessor body shall always be a semicolon. Thus, the accessors
simply indicate whether the property is read-write, read-only, or write-only.

The type of an interface property shall be output-safe if there is a get accessor, and shall be input-safe if
there is a set accessor.

17.4.4 Interface events

Interface events are declared using interface_event_declarations:

interface_event_declaration
 : attributes? 'new'? 'event' type identifier ';'
 ;

The attributes, type, and identifier of an interface event declaration have the same meaning as those of an
event declaration in a class (§14.8).

The type of an interface event shall be input-safe.

17.4.5 Interface indexers

Interface indexers are declared using interface_indexer_declarations:

interface_indexer_declaration:
 attributes? 'new'? type 'this' '[' formal_parameter_list ']' '{'

ECMA-334

448

interface_accessors '}'
 ;

The attributes, type, and formal_parameter_list of an interface indexer declaration have the same meaning
as those of an indexer declaration in a class (§14.9).

The accessors of an interface indexer declaration correspond to the accessors of a class indexer
declaration (§14.9), except that the accessor body shall always be a semicolon. Thus, the accessors simply
indicate whether the indexer is read-write, read-only, or write-only.

All the formal parameter types of an interface indexer shall be input-safe (§17.2.3.2). In addition, any
output or reference formal parameter types shall also be output-safe.

Note: Output parameters are required to be input-safe due to common implementation restrictions.
end note

The type of an interface indexer shall be output-safe if there is a get accessor, and shall be input-safe if
there is a set accessor.

17.4.6 Interface member access

Interface members are accessed through member access (§11.7.6) and indexer access (§11.7.10.3)
expressions of the form I.M and I[A], where I is an interface type, M is a method, property, or event of
that interface type, and A is an indexer argument list.

For interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero
or one direct base interface), the effects of the member lookup (§11.5), method invocation (§11.7.8.2),
and indexer access (§11.7.10.3) rules are exactly the same as for classes and structs: More derived
members hide less derived members with the same name or signature. However, for multiple-inheritance
interfaces, ambiguities can occur when two or more unrelated base interfaces declare members with the
same name or signature. This subclause shows several examples, some of which lead to ambiguities and
others which don’t. In all cases, explicit casts can be used to resolve the ambiguities.

Example: In the following code

interface IList
{
 int Count { get; set; }
}

interface ICounter
{
 void Count(int i);
}

interface IListCounter : IList, ICounter {}

class C
{
 void Test(IListCounter x)
 {
 x.Count(1); // Error
 x.Count = 1; // Error
 ((IList)x).Count = 1; // Ok, invokes IList.Count.set
 ((ICounter)x).Count(1); // Ok, invokes ICounter.Count
 }
}

Chapter 17 Interfaces

449

the first two statements cause compile-time errors because the member lookup (§11.5) of Count in
IListCounter is ambiguous. As illustrated by the example, the ambiguity is resolved by casting x to
the appropriate base interface type. Such casts have no run-time costs—they merely consist of
viewing the instance as a less derived type at compile-time.

end example

Example: In the following code

interface IInteger
{
 void Add(int i);
}

interface IDouble
{
 void Add(double d);
}

interface INumber : IInteger, IDouble {}

class C
{
 void Test(INumber n)
 {
 n.Add(1); // Invokes IInteger.Add
 n.Add(1.0); // Only IDouble.Add is applicable
 ((IInteger)n).Add(1); // Only IInteger.Add is a candidate
 ((IDouble)n).Add(1); // Only IDouble.Add is a candidate
 }
}

the invocation n.Add(1) selects IInteger.Add by applying overload resolution rules of §11.6.4.
Similarly, the invocation n.Add(1.0) selects IDouble.Add. When explicit casts are inserted, there is
only one candidate method, and thus no ambiguity.

end example

Example: In the following code

interface IBase
{
 void F(int i);
}

interface ILeft : IBase
{
 new void F(int i);
}

interface IRight : IBase
{
 void G();
}

interface IDerived : ILeft, IRight {}

ECMA-334

450

class A
{
 void Test(IDerived d)
 {
 d.F(1); // Invokes ILeft.F
 ((IBase)d).F(1); // Invokes IBase.F
 ((ILeft)d).F(1); // Invokes ILeft.F
 ((IRight)d).F(1); // Invokes IBase.F
 }
}

the IBase.F member is hidden by the ILeft.F member. The invocation d.F(1) thus selects ILeft.F,
even though IBase.F appears to not be hidden in the access path that leads through IRight.

The intuitive rule for hiding in multiple-inheritance interfaces is simply this: If a member is hidden
in any access path, it is hidden in all access paths. Because the access path from IDerived to ILeft
to IBase hides IBase.F, the member is also hidden in the access path from IDerived to IRight to
IBase.

end example

17.5 Qualified interface member names
An interface member is sometimes referred to by its qualified interface member name. The qualified
name of an interface member consists of the name of the interface in which the member is declared,
followed by a dot, followed by the name of the member. The qualified name of a member references the
interface in which the member is declared.

Example: Given the declarations

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

the qualified name of Paint is IControl.Paint and the qualified name of SetText is
ITextBox.SetText. In the example above, it is not possible to refer to Paint as ITextBox.Paint.

end example

When an interface is part of a namespace, a qualified interface member name can include the namespace
name.

Example:

namespace System
{
 public interface ICloneable
 {
 object Clone();
 }
}

Chapter 17 Interfaces

451

Within the System namespace, both ICloneable.Clone and System.ICloneable.Clone are qualified
interface member names for the Clone method.

end example

17.6 Interface implementations

17.6.1 General

Interfaces may be implemented by classes and structs. To indicate that a class or struct directly
implements an interface, the interface is included in the base class list of the class or struct.

Example:

interface ICloneable
{
 object Clone();
}

interface IComparable
{
 int CompareTo(object other);
}

class ListEntry : ICloneable, IComparable
{
 public object Clone() {...}
 public int CompareTo(object other) {...}
}

end example

A class or struct that directly implements an interface also implicitly implements all of the interface’s base
interfaces. This is true even if the class or struct doesn’t explicitly list all base interfaces in the base class
list.

Example:

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

class TextBox : ITextBox
{
 public void Paint() {...}
 public void SetText(string text) {...}
}

Here, class TextBox implements both IControl and ITextBox.

end example

ECMA-334

452

When a class C directly implements an interface, all classes derived from C also implement the interface
implicitly.

The base interfaces specified in a class declaration can be constructed interface types (§8.4, §17.2).

Example: The following code illustrates how a class can implement constructed interface types:

class C<U, V> {}
interface I1<V> {}
class D : C<string, int>, I1<string> {}
class E<T> : C<int, T>, I1<T> {}

end example

The base interfaces of a generic class declaration shall satisfy the uniqueness rule described in §17.6.3.

17.6.2 Explicit interface member implementations

For purposes of implementing interfaces, a class or struct may declare explicit interface member
implementations. An explicit interface member implementation is a method, property, event, or indexer
declaration that references a qualified interface member name.

Example:

interface IList<T>
{
 T[] GetElements();
}

interface IDictionary<K, V>
{
 V this[K key];
 void Add(K key, V value);
}

class List<T> : IList<T>, IDictionary<int, T>
{
 T[] T[] IList<T>. GetElements() {...}
 T IDictionary<int, T>.this[int index] {...}
 void IDictionary<int, T>.Add(int index, T value) {...}
}

Here IDictionary<int,T>.this and IDictionary<int,T>.Add are explicit interface member
implementations.

end example

Example: In some cases, the name of an interface member might not be appropriate for the
implementing class, in which case, the interface member may be implemented using explicit
interface member implementation. A class implementing a file abstraction, for example, would likely
implement a Close member function that has the effect of releasing the file resource, and implement
the Dispose method of the IDisposable interface using explicit interface member implementation:

interface IDisposable
{
 void Dispose();
}

class MyFile : IDisposable

Chapter 17 Interfaces

453

{
 void IDisposable.Dispose() => Close();

 public void Close()
 {
 // Do what's necessary to close the file
 System.GC.SuppressFinalize(this);
 }
}

end example

It is not possible to access an explicit interface member implementation through its qualified interface
member name in a method invocation, property access, event access, or indexer access. An explicit
interface member implementation can only be accessed through an interface instance, and is in that case
referenced simply by its member name.

It is a compile-time error for an explicit interface member implementation to include any modifiers
(§14.6) other than extern or async.

It is a compile-time error for an explicit interface method implementation to include
type_parameter_constraints_clauses. The constraints for a generic explicit interface method
implementation are inherited from the interface method.

Note: Explicit interface member implementations have different accessibility characteristics than
other members. Because explicit interface member implementations are never accessible through a
qualified interface member name in a method invocation or a property access, they are in a sense
private. However, since they can be accessed through the interface, they are in a sense also as public
as the interface in which they are declared. Explicit interface member implementations serve two
primary purposes:

• Because explicit interface member implementations are not accessible through class or struct
instances, they allow interface implementations to be excluded from the public interface of a
class or struct. This is particularly useful when a class or struct implements an internal
interface that is of no interest to a consumer of that class or struct.

• Explicit interface member implementations allow disambiguation of interface members with
the same signature. Without explicit interface member implementations it would be
impossible for a class or struct to have different implementations of interface members with
the same signature and return type, as would it be impossible for a class or struct to have any
implementation at all of interface members with the same signature but with different return
types.

end note

For an explicit interface member implementation to be valid, the class or struct shall name an interface in
its base class list that contains a member whose qualified interface member name, type, number of type
parameters, and parameter types exactly match those of the explicit interface member implementation. If
an interface function member has a parameter array, the corresponding parameter of an associated
explicit interface member implementation is allowed, but not required, to have the params modifier. If the
interface function member does not have a parameter array then an associated explicit interface member
implementation shall not have a parameter array.

Example: Thus, in the following class

class Shape : ICloneable
{

ECMA-334

454

 object ICloneable.Clone() {...}
 int IComparable.CompareTo(object other) {...} // invalid
}

the declaration of IComparable.CompareTo results in a compile-time error because IComparable is
not listed in the base class list of Shape and is not a base interface of ICloneable. Likewise, in the
declarations

class Shape : ICloneable
{
 object ICloneable.Clone() {...}
}

class Ellipse : Shape
{
 object ICloneable.Clone() {...} // invalid
}

the declaration of ICloneable.Clone in Ellipse results in a compile-time error because ICloneable
is not explicitly listed in the base class list of Ellipse.

end example

The qualified interface member name of an explicit interface member implementation shall reference the
interface in which the member was declared.

Example: Thus, in the declarations

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

class TextBox : ITextBox
{
 void IControl.Paint() {...}
 void ITextBox.SetText(string text) {...}
}

the explicit interface member implementation of Paint must be written as IControl.Paint, not
ITextBox.Paint.

end example

17.6.3 Uniqueness of implemented interfaces

The interfaces implemented by a generic type declaration shall remain unique for all possible constructed
types. Without this rule, it would be impossible to determine the correct method to call for certain
constructed types.

Example: Suppose a generic class declaration were permitted to be written as follows:

interface I<T>
{

Chapter 17 Interfaces

455

 void F();
}

class X<U ,V> : I<U>, I<V> // Error: I<U> and I<V> conflict
{
 void I<U>.F() {...}
 void I<V>.F() {...}
}

Were this permitted, it would be impossible to determine which code to execute in the following
case:

I<int> x = new X<int, int>();
x.F();

end example

To determine if the interface list of a generic type declaration is valid, the following steps are performed:

• Let L be the list of interfaces directly specified in a generic class, struct, or interface declaration C.

• Add to L any base interfaces of the interfaces already in L.

• Remove any duplicates from L.

• If any possible constructed type created from C would, after type arguments are substituted into L,
cause two interfaces in L to be identical, then the declaration of C is invalid. Constraint declarations
are not considered when determining all possible constructed types.

Note: In the class declaration X above, the interface list L consists of l<U> and I<V>. The declaration
is invalid because any constructed type with U and V being the same type would cause these two
interfaces to be identical types. end note

It is possible for interfaces specified at different inheritance levels to unify:

interface I<T>
{
 void F();
}

class Base<U> : I<U>
{
 void I<U>.F() {...}
}

class Derived<U, V> : Base<U>, I<V> // Ok
{
 void I<V>.F() {...}
}

This code is valid even though Derived<U,V> implements both I<U> and I<V>. The code

I<int> x = new Derived<int, int>();
x.F();

invokes the method in Derived, since Derived<int,int>' effectively re-implements I<int> (§17.6.7).

ECMA-334

456

17.6.4 Implementation of generic methods

When a generic method implicitly implements an interface method, the constraints given for each method
type parameter shall be equivalent in both declarations (after any interface type parameters are replaced
with the appropriate type arguments), where method type parameters are identified by ordinal positions,
left to right.

Example: In the following code:

interface I<X, Y, Z>
{
 void F<T>(T t) where T : X;
 void G<T>(T t) where T : Y;
 void H<T>(T t) where T : Z
}

class C : I<object, C, string>
{
 public void F<T>(T t) {...} // Ok
 public void G<T>(T t) where T : C {...} // Ok
 public void H<T>(T t) where T : string {...} // Error
}

the method C.F<T> implicitly implements I<object,C,string>.F<T>. In this case, C.F<T> is not
required (nor permitted) to specify the constraint T: object since object is an implicit constraint
on all type parameters. The method C.G<T> implicitly implements I<object,C,string>.G<T>
because the constraints match those in the interface, after the interface type parameters are
replaced with the corresponding type arguments. The constraint for method C.H<T> is an error
because sealed types (string in this case) cannot be used as constraints. Omitting the constraint
would also be an error since constraints of implicit interface method implementations are required
to match. Thus, it is impossible to implicitly implement I<object,C,string>.H<T>. This interface
method can only be implemented using an explicit interface member implementation:

class C : I<object, C, string>
{
 ...
 public void H<U>(U u) where U : class {...}

 void I<object, C, string>.H<T>(T t)
 {
 string s = t; // Ok
 H<T>(t);
 }
}

In this case, the explicit interface member implementation invokes a public method having strictly
weaker constraints. The assignment from t to s is valid since T inherits a constraint of T: string,
even though this constraint is not expressible in source code. end example

Note: When a generic method explicitly implements an interface method no constraints are allowed
on the implementing method (§14.7.1, §17.6.2). end note

Chapter 17 Interfaces

457

17.6.5 Interface mapping

A class or struct shall provide implementations of all members of the interfaces that are listed in the base
class list of the class or struct. The process of locating implementations of interface members in an
implementing class or struct is known as interface mapping.

Interface mapping for a class or struct C locates an implementation for each member of each interface
specified in the base class list of C. The implementation of a particular interface member I.M, where I is
the interface in which the member M is declared, is determined by examining each class or struct S,
starting with C and repeating for each successive base class of C, until a match is located:

• If S contains a declaration of an explicit interface member implementation that matches I and M,
then this member is the implementation of I.M.

• Otherwise, if S contains a declaration of a non-static public member that matches M, then this
member is the implementation of I.M. If more than one member matches, it is unspecified which
member is the implementation of I.M. This situation can only occur if S is a constructed type where
the two members as declared in the generic type have different signatures, but the type arguments
make their signatures identical.

A compile-time error occurs if implementations cannot be located for all members of all interfaces
specified in the base class list of C. The members of an interface include those members that are inherited
from base interfaces.

Members of a constructed interface type are considered to have any type parameters replaced with the
corresponding type arguments as specified in §14.3.3.

Example: For example, given the generic interface declaration:

interface I<T>
{
 T F(int x, T[,] y);
 T this[int y] { get; }
}

the constructed interface I<string[]> has the members:

string[] F(int x, string[,][] y);
string[] this[int y] { get; }

end example

For purposes of interface mapping, a class or struct member A matches an interface member B when:

• A and B are methods, and the name, type, and formal parameter lists of A and B are identical.

• A and B are properties, the name and type of A and B are identical, and A has the same accessors as B
(A is permitted to have additional accessors if it is not an explicit interface member
implementation).

• A and B are events, and the name and type of A and B are identical.

• A and B are indexers, the type and formal parameter lists of A and B are identical, and A has the same
accessors as B (A is permitted to have additional accessors if it is not an explicit interface member
implementation).

Notable implications of the interface-mapping algorithm are:

• Explicit interface member implementations take precedence over other members in the same class
or struct when determining the class or struct member that implements an interface member.

ECMA-334

458

• Neither non-public nor static members participate in interface mapping.

Example: In the following code

interface ICloneable
{
 object Clone();
}

class C : ICloneable
{
 object ICloneable.Clone() {...}
 public object Clone() {...}
}

the ICloneable.Clone member of C becomes the implementation of Clone in ‘ICloneable’ because
explicit interface member implementations take precedence over other members.

end example

If a class or struct implements two or more interfaces containing a member with the same name, type,
and parameter types, it is possible to map each of those interface members onto a single class or struct
member.

Example:

interface IControl
{
 void Paint();
}

interface IForm
{
 void Paint();
}

class Page : IControl, IForm
{
 public void Paint() {...}
}

Here, the Paint methods of both IControl and IForm are mapped onto the Paint method in Page. It
is of course also possible to have separate explicit interface member implementations for the two
methods.

end example

If a class or struct implements an interface that contains hidden members, then some members may need
to be implemented through explicit interface member implementations.

Example:

interface IBase
{
 int P { get; }
}

interface IDerived : IBase
{

Chapter 17 Interfaces

459

 new int P();
}

An implementation of this interface would require at least one explicit interface member
implementation, and would take one of the following forms

class C : IDerived
{
 int IBase.P { get; }
 int IDerived.P() {...}
}
class C : IDerived
{
 public int P { get; }
 int IDerived.P() {...}
}
class C : IDerived
{
 int IBase.P { get; }
 public int P() {...}
}

end example

When a class implements multiple interfaces that have the same base interface, there can be only one
implementation of the base interface.

Example: In the following code

interface IControl
{
 void Paint();
}

interface ITextBox : IControl
{
 void SetText(string text);
}

interface IListBox : IControl
{
 void SetItems(string[] items);
}

class ComboBox : IControl, ITextBox, IListBox
{
 void IControl.Paint() {...}
 void ITextBox.SetText(string text) {...}
 void IListBox.SetItems(string[] items) {...}
}

it is not possible to have separate implementations for the IControl named in the base class list, the
IControl inherited by ITextBox, and the IControl inherited by IListBox. Indeed, there is no notion
of a separate identity for these interfaces. Rather, the implementations of ITextBoxand IListBox
share the same implementation of IControl, and ComboBox is simply considered to implement three
interfaces, IControl, ITextBox, and IListBox.

ECMA-334

460

end example

The members of a base class participate in interface mapping.

Example: In the following code

interface Interface1
{
 void F();
}

class Class1
{
 public void F() {}
 public void G() {}
}

class Class2 : Class1, Interface1
{
 public new void G() {}
}

the method F in Class1 is used in Class2's implementation of Interface1.

end example

17.6.6 Interface implementation inheritance

A class inherits all interface implementations provided by its base classes.

Without explicitly re-implementing an interface, a derived class cannot in any way alter the interface
mappings it inherits from its base classes.

Example: In the declarations

interface IControl
{
 void Paint();
}

class Control : IControl
{
 public void Paint() {...}
}

class TextBox : Control
{
 public new void Paint() {...}
}

the Paint method in TextBox hides the Paint method in Control, but it does not alter the mapping
of Control.Paint onto IControl.Paint, and calls to Paint through class instances and interface
instances will have the following effects

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();

Chapter 17 Interfaces

461

t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes Control.Paint();

end example

However, when an interface method is mapped onto a virtual method in a class, it is possible for derived
classes to override the virtual method and alter the implementation of the interface.

Example: Rewriting the declarations above to

interface IControl
{
 void Paint();
}

class Control : IControl
{
 public virtual void Paint() {...}
}

class TextBox : Control
{
 public override void Paint() {...}
}

the following effects will now be observed

Control c = new Control();
TextBox t = new TextBox();
IControl ic = c;
IControl it = t;
c.Paint(); // invokes Control.Paint();
t.Paint(); // invokes TextBox.Paint();
ic.Paint(); // invokes Control.Paint();
it.Paint(); // invokes TextBox.Paint();

end example

Since explicit interface member implementations cannot be declared virtual, it is not possible to override
an explicit interface member implementation. However, it is perfectly valid for an explicit interface
member implementation to call another method, and that other method can be declared virtual to allow
derived classes to override it.

Example:

interface IControl
{
 void Paint();
}

class Control : IControl
{
 void IControl.Paint() { PaintControl(); }
 protected virtual void PaintControl() {...}
}

class TextBox : Control
{

ECMA-334

462

 protected override void PaintControl() {...}
}

Here, classes derived from Control can specialize the implementation of IControl.Paint by
overriding the PaintControl method.

end example

17.6.7 Interface re-implementation

A class that inherits an interface implementation is permitted to re-implement the interface by including
it in the base class list.

A re-implementation of an interface follows exactly the same interface mapping rules as an initial
implementation of an interface. Thus, the inherited interface mapping has no effect whatsoever on the
interface mapping established for the re-implementation of the interface.

Example: In the declarations

interface IControl
{
 void Paint();
}

class Control : IControl
{
 void IControl.Paint() {...}
}

class MyControl : Control, IControl
{
 public void Paint() {}
}

the fact that Control maps IControl.Paint onto Control.IControl.Paint doesn’t affect the re-
implementation in MyControl, which maps IControl.Paint onto MyControl.Paint.

end example

Inherited public member declarations and inherited explicit interface member declarations participate in
the interface mapping process for re-implemented interfaces.

Example:

interface IMethods
{
 void F();
 void G();
 void H();
 void I();
}

class Base : IMethods
{
 void IMethods.F() {}
 void IMethods.G() {}
 public void H() {}
 public void I() {}
}

Chapter 17 Interfaces

463

class Derived : Base, IMethods
{
 public void F() {}
 void IMethods.H() {}
}

Here, the implementation of IMethods in Derived maps the interface methods onto Derived.F,
Base.IMethods.G, Derived.IMethods.H, and Base.I.

end example

When a class implements an interface, it implicitly also implements all that interface’s base interfaces.
Likewise, a re-implementation of an interface is also implicitly a re-implementation of all of the interface’s
base interfaces.

Example:

interface IBase
{
 void F();
}

interface IDerived : IBase
{
 void G();
}

class C : IDerived
{
 void IBase.F() {...}
 void IDerived.G() {...}
}

class D : C, IDerived
{
 public void F() {...}
 public void G() {...}
}

Here, the re-implementation of IDerived also re-implements IBase, mapping IBase.F onto D.F.

end example

17.6.8 Abstract classes and interfaces

Like a non-abstract class, an abstract class shall provide implementations of all members of the interfaces
that are listed in the base class list of the class. However, an abstract class is permitted to map interface
methods onto abstract methods.

Example:

interface IMethods
{
 void F();
 void G();
}

ECMA-334

464

abstract class C : IMethods
{
 public abstract void F();
 public abstract void G();
 }

Here, the implementation of IMethods maps F and G onto abstract methods, which shall be
overridden in non-abstract classes that derive from C.

end example

Explicit interface member implementations cannot be abstract, but explicit interface member
implementations are of course permitted to call abstract methods.

Example:

interface IMethods
{
 void F();
 void G();
}

abstract class C: IMethods
{
 void IMethods.F() { FF(); }
 void IMethods.G() { GG(); }
 protected abstract void FF();
 protected abstract void GG();
}

Here, non-abstract classes that derive from C would be required to override FF and GG, thus
providing the actual implementation of IMethods.

end example

Chapter 18 Enums

465

18. Enums

18.1 General
An enum type is a distinct value type (§8.3) that declares a set of named constants.

Example: The example

enum Color
{
 Red,
 Green,
 Blue
}

declares an enum type named Color with members Red, Green, and Blue.

end example

18.2 Enum declarations
An enum declaration declares a new enum type. An enum declaration begins with the keyword enum, and
defines the name, accessibility, underlying type, and members of the enum.

enum_declaration
 : attributes? enum_modifier* 'enum' identifier enum_base? enum_body ';'?
 ;

enum_base
 : ':' integral_type
 | ':' integral_type_name
 ;

integral_type_name
 : type_name // Shall resolve to an integral type other than char
 ;

enum_body
 : '{' enum_member_declarations? '}'
 | '{' enum_member_declarations ',' '}'
 ;

Each enum type has a corresponding integral type called the underlying type of the enum type. This
underlying type shall be able to represent all the enumerator values defined in the enumeration. If the
enum_base is present, it explicitly declares the underlying type. The underlying type shall be one of the
integral types (§8.3.6) other than char. The underlying type may be specified either by an integral_type
(§8.3.5), or an integral_type_name. The integral_type_name is resolved in the same way as type_name
(§7.8.1), including taking any using directives (§13.5) into account.

Note: The char type cannot be used as an underlying type, either by keyword or via an
integral_type_name. end note

ECMA-334

466

An enum declaration that does not explicitly declare an underlying type has an underlying type of int.

Example: The example

enum Color: long
{
 Red,
 Green,
 Blue
}

declares an enum with an underlying type of long.

end example

Note: A developer might choose to use an underlying type of long, as in the example, to enable the
use of values that are in the range of long but not in the range of int, or to preserve this option for
the future. end note

Note: C# allows a trailing comma in an enum_body, just like it allows one in an array_initializer
(§16.7). end note

An enum declaration cannot include a type parameter list, but any enum nested inside a generic class
declaration or a generic struct declaration is a generic enum declaration, since type arguments for the
containing type shall be supplied to create a constructed type (§8.4).

18.3 Enum modifiers
An enum_declaration may optionally include a sequence of enum modifiers:

enum_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

It is a compile-time error for the same modifier to appear multiple times in an enum declaration.

The modifiers of an enum declaration have the same meaning as those of a class declaration (§14.2.2).
However, the abstract, and sealed, and static modifiers are not permitted in an enum declaration.
Enums cannot be abstract and do not permit derivation.

18.4 Enum members
The body of an enum type declaration defines zero or more enum members, which are the named
constants of the enum type. No two enum members can have the same name.

enum_member_declarations
 : enum_member_declaration (',' enum_member_declaration)*
 ;

enum_member_declaration
 : attributes? identifier ('=' constant_expression)?
 ;

Chapter 18 Enums

467

Each enum member has an associated constant value. The type of this value is the underlying type for the
containing enum. The constant value for each enum member shall be in the range of the underlying type
for the enum.

Example: The example

enum Color: uint
{
 Red = -1,
 Green = -2,
 Blue = -3
}

results in a compile-time error because the constant values -1, -2, and -3 are not in the range of the
underlying integral type uint.

end example

Multiple enum members may share the same associated value.

Example: The example

enum Color
{
 Red,
 Green,
 Blue,
 Max = Blue
}

shows an enum in which two enum members—Blue and Max—have the same associated value.

end example

The associated value of an enum member is assigned either implicitly or explicitly. If the declaration of
the enum member has a constant_expression initializer, the value of that constant expression, implicitly
converted to the underlying type of the enum, is the associated value of the enum member. If the
declaration of the enum member has no initializer, its associated value is set implicitly, as follows:

• If the enum member is the first enum member declared in the enum type, its associated value is
zero.

• Otherwise, the associated value of the enum member is obtained by increasing the associated value
of the textually preceding enum member by one. This increased value shall be within the range of
values that can be represented by the underlying type, otherwise a compile-time error occurs.

Example: The example

using System;
enum Color
{
 Red,
 Green = 10,
 Blue
}

class Test
{
 static void Main()

ECMA-334

468

 {
 Console.WriteLine(StringFromColor(Color.Red));
 Console.WriteLine(StringFromColor(Color.Green));
 Console.WriteLine(StringFromColor(Color.Blue));
 }

 static string StringFromColor(Color c)
 {
 switch (c)
 {
 case Color.Red:
 return $"Red = {(int) c}";
 case Color.Green:
 return $"Green = {(int) c}";
 case Color.Blue:
 return $"Blue = {(int) c}";
 default:
 return "Invalid color";
 }
 }
}

prints out the enum member names and their associated values. The output is:

Red = 0
Green = 10
Blue = 11

for the following reasons:

• the enum member Red is automatically assigned the value zero (since it has no initializer and
is the first enum member);

• the enum member Green is explicitly given the value 10;

• and the enum member Blue is automatically assigned the value one greater than the member
that textually precedes it.

end example

The associated value of an enum member may not, directly or indirectly, use the value of its own
associated enum member. Other than this circularity restriction, enum member initializers may freely
refer to other enum member initializers, regardless of their textual position. Within an enum member
initializer, values of other enum members are always treated as having the type of their underlying type,
so that casts are not necessary when referring to other enum members.

Example: The example

enum Circular
{
 A = B,
 B
}

results in a compile-time error because the declarations of A and B are circular. A depends on B
explicitly, and B depends on A implicitly.

end example

Chapter 18 Enums

469

Enum members are named and scoped in a manner exactly analogous to fields within classes. The scope
of an enum member is the body of its containing enum type. Within that scope, enum members can be
referred to by their simple name. From all other code, the name of an enum member shall be qualified
with the name of its enum type. Enum members do not have any declared accessibility—an enum
member is accessible if its containing enum type is accessible.

18.5 The System.Enum type
The type System.Enum is the abstract base class of all enum types (this is distinct and different from the
underlying type of the enum type), and the members inherited from System.Enum are available in any
enum type. A boxing conversion (§10.2.9) exists from any enum type to System.Enum, and an unboxing
conversion (§10.3.6) exists from System.Enum to any enum type.

Note that System.Enum is not itself an enum_type. Rather, it is a class_type from which all enum_types are
derived. The type System.Enum inherits from the type System.ValueType (§8.3.2), which, in turn, inherits
from type object. At run-time, a value of type System.Enum can be null or a reference to a boxed value of
any enum type.

18.6 Enum values and operations
Each enum type defines a distinct type; an explicit enumeration conversion (§10.3.3) is required to
convert between an enum type and an integral type, or between two enum types. The set of values of the
enum type is the same as the set of values of the underlying type and is not restricted to the values of the
named constants. Any value of the underlying type of an enum can be cast to the enum type, and is a
distinct valid value of that enum type.

Enum members have the type of their containing enum type (except within other enum member
initializers: see §18.4). The value of an enum member declared in enum type E with associated value v is
(E)v.

The following operators can be used on values of enum types:

• ==, !=, <, >, <=, >= (§11.11.6)

• binary + (§11.9.5)

• binary - (§11.9.6)

• ^, &, | (§11.12.3)

• ~ (§11.8.5)

• ++, -- (§11.7.14 and §11.8.6)

• sizeof (§22.6.9)

Every enum type automatically derives from the class System.Enum (which, in turn, derives from
System.ValueType and object). Thus, inherited methods and properties of this class can be used on
values of an enum type.

Chapter 19 Delegates

471

19. Delegates

19.1 General
A delegate declaration defines a class that is derived from the class System.Delegate. A delegate instance
encapsulates an invocation list, which is a list of one or more methods, each of which is referred to as a
callable entity. For instance methods, a callable entity consists of an instance and a method on that
instance. For static methods, a callable entity consists of just a method. Invoking a delegate instance with
an appropriate set of arguments causes each of the delegate’s callable entities to be invoked with the
given set of arguments.

Note: An interesting and useful property of a delegate instance is that it does not know or care about
the classes of the methods it encapsulates; all that matters is that those methods be compatible
(§19.4) with the delegate’s type. This makes delegates perfectly suited for “anonymous” invocation.
end note

19.2 Delegate declarations
A delegate_declaration is a type_declaration (§13.7) that declares a new delegate type.

delegate_declaration
 : attributes? delegate_modifier* 'delegate' return_type identifier
 variant_type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause* ';'
 ;

delegate_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

unsafe_modifier is defined in §22.2.

It is a compile-time error for the same modifier to appear multiple times in a delegate declaration.

A delegate declaration shall not supply any type_parameter_constraints_clauses unless it also supplies a
variant_type_parameter_list.

A delegate declaration that supplies a variant_type_parameter_list is a generic delegate declaration.
Additionally, any delegate nested inside a generic class declaration or a generic struct declaration is itself
a generic delegate declaration, since type arguments for the containing type shall be supplied to create a
constructed type (§8.4).

The new modifier is only permitted on delegates declared within another type, in which case it specifies
that such a delegate hides an inherited member by the same name, as described in §14.3.5.

ECMA-334

472

The public, protected, internal, and private modifiers control the accessibility of the delegate type.
Depending on the context in which the delegate declaration occurs, some of these modifiers might not be
permitted (§7.5.2).

The delegate’s type name is identifier.

The optional formal_parameter_list specifies the parameters of the delegate, and return_type indicates the
return type of the delegate.

The optional variant_type_parameter_list (§17.2.3) specifies the type parameters to the delegate itself.

The return type of a delegate type shall be either void, or output-safe (§17.2.3.2).

All the formal parameter types of a delegate type shall be input-safe (§17.2.3.2). In addition, any output or
reference parameter types shall also be output-safe.

Note: Output parameters are required to be input-safe due to common implementation restrictions.
end note

Furthermore, each class type constraint, interface type constraint and type parameter constraint on any
type parameters of the delegate shall be input-safe.

Delegate types in C# are name equivalent, not structurally equivalent.

Example:

delegate int D1(int i, double d);
delegate int D2(int c, double d);

The delegate types D1 and D2 are two different types, so they are not interchangeable, despite their
identical signatures.

end example

Like other generic type declarations, type arguments shall be given to create a constructed delegate type.
The parameter types and return type of a constructed delegate type are created by substituting, for each
type parameter in the delegate declaration, the corresponding type argument of the constructed delegate
type.

The only way to declare a delegate type is via a delegate_declaration. Every delegate type is a reference
type that is derived from System.Delegate. The members required for every delegate type are detailed in
§19.3. Delegate types are implicitly sealed, so it is not permissible to derive any type from a delegate
type. It is also not permissible to declare a non-delegate class type deriving from System.Delegate.
System.Delegate is not itself a delegate type; it is a class type from which all delegate types are derived.

19.3 Delegate members
Every delegate type inherits members from the Delegate class as described in §14.3.4. In addition, every
delegate type must provide a non-generic Invoke method whose parameter list matches the
formal_parameter_list in the delegate declaration, and whose return type matches the return_type in the
delegate declaration. The Invoke method shall be at least as accessible as the containing delegate type.
Calling the Invoke method on a delegate type is semantically equivalent to using the delegate invocation
syntax (§19.6) .

Implementations may define additional members in the delegate type.

Chapter 19 Delegates

473

Except for instantiation, any operation that can be applied to a class or class instance can also be applied
to a delegate class or instance, respectively. In particular, it is possible to access members of the
System.Delegate type via the usual member access syntax.

19.4 Delegate compatibility
A method or delegate type M is compatible with a delegate type D if all of the following are true:

• D and M have the same number of parameters, and each parameter in D has the same ref or out
modifiers as the corresponding parameter in M.

• For each value parameter (a parameter with no ref or out modifier), an identity conversion
(§10.2.2) or implicit reference conversion (§10.2.8) exists from the parameter type in D to the
corresponding parameter type in M.

• For each ref or out parameter, the parameter type in D is the same as the parameter type in M.

• An identity or implicit reference conversion exists from the return type of M to the return type of D.

This definition of consistency allows covariance in return type and contravariance in parameter types.

Example:

delegate int D1(int i, double d);
delegate int D2(int c, double d);
delegate object D3(string s);

class A
{
 public static int M1(int a, double b) {...}
}

class B
{
 public static int M1(int f, double g) {...}
 public static void M2(int k, double l) {...}
 public static int M3(int g) {...}
 public static void M4(int g) {...}
 public static object M5(string s) {...}
 public static int[] M6(object o) {...}
}

The methods A.M1 and B.M1 are compatible with both the delegate types D1 and D2, since they have
the same return type and parameter list. The methods B.M2, B.M3, and B.M4 are incompatible with
the delegate types D1 and D2, since they have different return types or parameter lists. The methods
B.M5 and B.M6 are both compatible with delegate type D3.

end example

Example:

delegate bool Predicate<T>(T value);

class X
{
 static bool F(int i) {...}

ECMA-334

474

 static bool G(string s) {...}
}

The method X.F is compatible with the delegate type Predicate<int> and the method X.G is
compatible with the delegate type Predicate<string>.

end example

Note: The intuitive meaning of delegate compatibility is that a method is compatible with a delegate
type if every invocation of the delegate could be replaced with an invocation of the method without
violating type safety, treating optional parameters and parameter arrays as explicit parameters. For
example, in the following code:

delegate void Action<T>(T arg);

class Test
{
 static void Print(object value) => Console.WriteLine(value);

 static void Main()
 {
 Action<string> log = Print;
 log("text");
 }
}

The Print method is compatible with the Action<string> delegate type because any invocation of
an Action<string> delegate would also be a valid invocation of the Print method.

If the signature of the Print method above were changed to Print(object value, bool
prependTimestamp = false) for example, the Print method would no longer be compatible with
Action<string> by the rules of this clause.

end note

19.5 Delegate instantiation
An instance of a delegate is created by a delegate_creation_expression (§11.7.15.6), a conversion to a
delegate type, delegate combination or delegate removal. The newly created delegate instance then refers
to one or more of:

• The static method referenced in the delegate_creation_expression, or

• The target object (which cannot be null) and instance method referenced in the
delegate_creation_expression, or

• Another delegate (§11.7.15.6).

Example:

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public void M2(int i) {...}
}

Chapter 19 Delegates

475

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // Static method
 C t = new C();
 D cd2 = new D(t.M2); // Instance method
 D cd3 = new D(cd2); // Another delegate
 }
}

end example

The set of methods encapsulated by a delegate instance is called an invocation list. When a delegate
instance is created from a single method, it encapsulates that method, and its invocation list contains only
one entry. However, when two non-null delegate instances are combined, their invocation lists are
concatenated—in the order left operand then right operand—to form a new invocation list, which
contains two or more entries.

When a new delegate is created from a single delegate the resultant invocation list has just one entry,
which is the source delegate (§11.7.15.6).

Delegates are combined using the binary + (§11.9.5) and += operators (§11.18.3). A delegate can be
removed from a combination of delegates, using the binary - (§11.9.6) and -= operators (§11.18.3).
Delegates can be compared for equality (§11.11.9).

Example: The following example shows the instantiation of a number of delegates, and their
corresponding invocation lists:

delegate void D(int x);

class C
{
 public static void M1(int i) {...}
 public static void M2(int i) {...}
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1); // M1 - one entry in invocation list
 D cd2 = new D(C.M2); // M2 - one entry
 D cd3 = cd1 + cd2; // M1 + M2 - two entries
 D cd4 = cd3 + cd1; // M1 + M2 + M1 - three entries
 D cd5 = cd4 + cd3; // M1 + M2 + M1 + M1 + M2 - five entries
 D td3 = new D(cd3); // [M1 + M2] - ONE entry in invocation
 // list, which is itself a list of two methods.
 D td4 = td3 + cd1; // [M1 + M2] + M1 - two entries
 D cd6 = cd4 - cd2; // M1 + M1 - two entries in invocation list
 D td6 = td4 - cd2; // [M1 + M2] + M1 - two entries in invocation list,
 // but still three methods called, M2 not removed.
 }
}

ECMA-334

476

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3 is instantiated, it
has an invocation list of two methods, M1 and M2, in that order. cd4’s invocation list contains M1, M2,
and M1, in that order. For cd5, the invocation list contains M1, M2, M1, M1, and M2, in that order.

When cd1 and cd2 are instantiated, they each encapsulate one method. When cd3 is instantiated, it
has an invocation list of two methods, M1 and M2, in that order. cd4s invocation list contains M1, M2,
and M1, in that order. For cd5 the invocation list contains M1, M2, M1, M1, and M2, in that order.

When creating a delegate from another delegate with a delegate_creation_expression the result has
an invocation list with a different structure from the original, but which results in the same methods
being invoked in the same order. When td3 is created from cd3 its invocation list has just one
member, but that member is a list of the methods M1 and M2 and those methods are invoked by td3
in the same order as they are invoked by cd3. Similarly when td4 is instantiated its invocation list
has just two entries but it invokes the three methods M1, M2, and M1, in that order just as cd4 does.

The structure of the invocation list affects delegate subtraction. Delegate cd6, created by subtracting
cd2 (which invokes M2) from cd4 (which invokes M1, M2, and M1) invokes M1 and M1. However
delegate td6, created by subtracting cd2 (which invokes M2) from td4 (which invokes M1, M2, and M1)
still invokes M1, M2 and M1, in that order, as M2 is not a single entry in the list but a member of a
nested list. For more examples of combining (as well as removing) delegates, see §19.6.

end example

Once instantiated, a delegate instance always refers to the same invocation list.

Note: Remember, when two delegates are combined, or one is removed from another, a new
delegate results with its own invocation list; the invocation lists of the delegates combined or
removed remain unchanged. end note

19.6 Delegate invocation
C# provides special syntax for invoking a delegate. When a non-null delegate instance whose invocation
list contains one entry, is invoked, it invokes the one method with the same arguments it was given, and
returns the same value as the referred to method. (See §11.7.8.4 for detailed information on delegate
invocation.) If an exception occurs during the invocation of such a delegate, and that exception is not
caught within the method that was invoked, the search for an exception catch clause continues in the
method that called the delegate, as if that method had directly called the method to which that delegate
referred.

Invocation of a delegate instance whose invocation list contains multiple entries, proceeds by invoking
each of the methods in the invocation list, synchronously, in order. Each method so called is passed the
same set of arguments as was given to the delegate instance. If such a delegate invocation includes
reference parameters (§14.6.2.3), each method invocation will occur with a reference to the same
variable; changes to that variable by one method in the invocation list will be visible to methods further
down the invocation list. If the delegate invocation includes output parameters or a return value, their
final value will come from the invocation of the last delegate in the list. If an exception occurs during
processing of the invocation of such a delegate, and that exception is not caught within the method that
was invoked, the search for an exception catch clause continues in the method that called the delegate,
and any methods further down the invocation list are not invoked.

Attempting to invoke a delegate instance whose value is null results in an exception of type
System.NullReferenceException.

Example: The following example shows how to instantiate, combine, remove, and invoke delegates:

Chapter 19 Delegates

477

using System;

delegate void D(int x);

class C
{
 public static void M1(int i) => Console.WriteLine("C.M1: " + i);

 public static void M2(int i) => Console.WriteLine("C.M2: " + i);

 public void M3(int i) => Console.WriteLine("C.M3: " + i);
}

class Test
{
 static void Main()
 {
 D cd1 = new D(C.M1);
 cd1(-1); // call M1
 D cd2 = new D(C.M2);
 cd2(-2); // call M2
 D cd3 = cd1 + cd2;
 cd3(10); // call M1 then M2
 cd3 += cd1;
 cd3(20); // call M1, M2, then M1
 C c = new C();
 D cd4 = new D(c.M3);
 cd3 += cd4;
 cd3(30); // call M1, M2, M1, then M3
 cd3 -= cd1; // remove last M1
 cd3(40); // call M1, M2, then M3
 cd3 -= cd4;
 cd3(50); // call M1 then M2
 cd3 -= cd2;
 cd3(60); // call M1
 cd3 -= cd2; // impossible removal is benign
 cd3(60); // call M1
 cd3 -= cd1; // invocation list is empty so cd3 is null
 // cd3(70); // System.NullReferenceException thrown
 cd3 -= cd1; // impossible removal is benign
 }
}

As shown in the statement cd3 += cd1;, a delegate can be present in an invocation list multiple
times. In this case, it is simply invoked once per occurrence. In an invocation list such as this, when
that delegate is removed, the last occurrence in the invocation list is the one actually removed.

Immediately prior to the execution of the final statement, cd3 -= cd1;, the delegate cd3 refers to an
empty invocation list. Attempting to remove a delegate from an empty list (or to remove a non-
existent delegate from a non-empty list) is not an error.

The output produced is:

C.M1: -1
C.M2: -2
C.M1: 10

ECMA-334

478

C.M2: 10
C.M1: 20
C.M2: 20
C.M1: 20
C.M1: 30
C.M2: 30
C.M1: 30
C.M3: 30
C.M1: 40
C.M2: 40
C.M3: 40
C.M1: 50
C.M2: 50
C.M1: 60
C.M1: 60

end example

Chapter 20 Exceptions

479

20. Exceptions

20.1 General
Exceptions in C# provide a structured, uniform, and type-safe way of handling both system level and
application-level error conditions.

20.2 Causes of exceptions
Exception can be thrown in two different ways.

• A throw statement (§12.10.6) throws an exception immediately and unconditionally. Control never
reaches the statement immediately following the throw.

• Certain exceptional conditions that arise during the processing of C# statements and expression
cause an exception in certain circumstances when the operation cannot be completed normally. See
§20.5 for a list of the various exceptions that can occur in this way.
Example: An integer division operation (§11.9.3) throws a System.DivideByZeroException if the
denominator is zero. end example

20.3 The System.Exception class
The System.Exception class is the base type of all exceptions. This class has a few notable properties that
all exceptions share:

• Message is a read-only property of type string that contains a human-readable description of the
reason for the exception.

• InnerException is a read-only property of type Exception. If its value is non-null, it refers to the
exception that caused the current exception. (That is, the current exception was raised in a catch
block handling the InnerException.) Otherwise, its value is null, indicating that this exception was
not caused by another exception. The number of exception objects chained together in this manner
can be arbitrary.

The value of these properties can be specified in calls to the instance constructor for System.Exception.

20.4 How exceptions are handled
Exceptions are handled by a try statement (§12.11).

When an exception occurs, the system searches for the nearest catch clause that can handle the exception,
as determined by the run-time type of the exception. First, the current method is searched for a lexically
enclosing try statement, and the associated catch clauses of the try statement are considered in order. If
that fails, the method that called the current method is searched for a lexically enclosing try statement
that encloses the point of the call to the current method. This search continues until a catch clause is
found that can handle the current exception, by naming an exception class that is of the same class, or a
base class, of the run-time type of the exception being thrown. A catch clause that doesn’t name an
exception class can handle any exception.

ECMA-334

480

Once a matching catch clause is found, the system prepares to transfer control to the first statement of
the catch clause. Before execution of the catch clause begins, the system first executes, in order, any
finally clauses that were associated with try statements more nested that than the one that caught the
exception.

If no matching catch clause is found:

• If the search for a matching catch clause reaches a static constructor (§14.12) or static field
initializer, then a System.TypeInitializationException is thrown at the point that triggered the
invocation of the static constructor. The inner exception of the
System.TypeInitializationException contains the exception that was originally thrown.

• Otherwise, if an exception occurs during finalizer execution, and that exception is not caught, then
the behavior is unspecified.

• Otherwise, if the search for matching catch clauses reaches the code that initially started the thread,
then execution of the thread is terminated. The impact of such termination is implementation-
defined.

20.5 Common exception classes
The following exceptions are thrown by certain C# operations.

Exception Type Description

System.ArithmeticException A base class for exceptions that occur during arithmetic
operations, such as System.DivideByZeroException and
System.OverflowException.

System.ArrayTypeMismatchException Thrown when a store into an array fails because the type
of the stored element is incompatible with the type of the
array.

System.DivideByZeroException Thrown when an attempt to divide an integral value by
zero occurs.

System.IndexOutOfRangeException Thrown when an attempt to index an array via an index
that is less than zero or outside the bounds of the array.

System.InvalidCastException Thrown when an explicit conversion from a base type or
interface to a derived type fails at run-time.

System.NullReferenceException Thrown when a null reference is used in a way that
causes the referenced object to be required.

System.OutOfMemoryException Thrown when an attempt to allocate memory (via new)
fails.

System.OverflowException Thrown when an arithmetic operation in a checked
context overflows.

System.StackOverflowException Thrown when the execution stack is exhausted by having
too many pending calls; typically indicative of very deep
or unbounded recursion.

System.TypeInitializationException Thrown when a static constructor or static field
initializer throws an exception, and no catch clause
exists to catch it.

Chapter 21 Attributes

481

21. Attributes

21.1 General
Much of the C# language enables the programmer to specify declarative information about the entities
defined in the program. For example, the accessibility of a method in a class is specified by decorating it
with the method_modifiers public, protected, internal, and private.

C# enables programmers to invent new kinds of declarative information, called attributes. Programmers
can then attach attributes to various program entities, and retrieve attribute information in a run-time
environment.

Note: For instance, a framework might define a HelpAttribute attribute that can be placed on
certain program elements (such as classes and methods) to provide a mapping from those program
elements to their documentation. end note

Attributes are defined through the declaration of attribute classes (§21.2), which can have positional and
named parameters (§21.2.3). Attributes are attached to entities in a C# program using attribute
specifications (§21.3), and can be retrieved at run-time as attribute instances (§21.4).

21.2 Attribute classes

21.2.1 General

A class that derives from the abstract class System.Attribute, whether directly or indirectly, is an
attribute class. The declaration of an attribute class defines a new kind of attribute that can be placed on
program entities. By convention, attribute classes are named with a suffix of Attribute. Uses of an
attribute may either include or omit this suffix.

A generic class declaration shall not use System.Attribute as a direct or indirect base class.

Example:

using System;

public class B : Attribute {}
public class C<T> : B {} // Error – generic cannot be an attribute

end example

21.2.2 Attribute usage

The attribute AttributeUsage (§21.5.2) is used to describe how an attribute class can be used.

AttributeUsage has a positional parameter (§21.2.3) that enables an attribute class to specify the kinds
of program entities on which it can be used.

Example: The example

using System;

[AttributeUsage(AttributeTargets.Class | AttributeTargets.Interface)]

ECMA-334

482

public class SimpleAttribute : Attribute
{
 ...
}

defines an attribute class named SimpleAttribute that can be placed on class_declarations and
interface_declarations only. The example

[Simple] class Class1 {...}
[Simple] interface Interface1 {...}

shows several uses of the Simple attribute. Although this attribute is defined with the name
SimpleAttribute, when this attribute is used, the Attribute suffix may be omitted, resulting in the
short name Simple. Thus, the example above is semantically equivalent to the following

[SimpleAttribute] class Class1 {...}
[SimpleAttribute] interface Interface1 {...}

end example

AttributeUsage has a named parameter (§21.2.3), called AllowMultiple, which indicates whether the
attribute can be specified more than once for a given entity. If AllowMultiple for an attribute class is true,
then that attribute class is a multi-use attribute class, and can be specified more than once on an entity.
If AllowMultiple for an attribute class is false or it is unspecified, then that attribute class is a single-use
attribute class, and can be specified at most once on an entity.

Example: The example

using System;
[AttributeUsage(AttributeTargets.Class, AllowMultiple = true)]
public class AuthorAttribute : Attribute
{
 private string name;
 public AuthorAttribute(string name)
 {
 this.name = name;
 }
 public string Name
 {
 get { return name; }
 }
}

defines a multi-use attribute class named AuthorAttribute. The example

[Author("Brian Kernighan"), Author("Dennis Ritchie")]
class Class1
{
 ...
}

shows a class declaration with two uses of the Author attribute.

end example

AttributeUsage has another named parameter (§21.2.3), called Inherited, which indicates whether the
attribute, when specified on a base class, is also inherited by classes that derive from that base class. If
Inherited for an attribute class is true, then that attribute is inherited. If Inherited for an attribute class
is false then that attribute is not inherited. If it is unspecified, its default value is true.

Chapter 21 Attributes

483

An attribute class X not having an AttributeUsage attribute attached to it, as in

using System;
>
class X : Attribute { ... }

is equivalent to the following:

using System;
[AttributeUsage(
 AttributeTargets.All,
 AllowMultiple = false,
 Inherited = true)
]
class X : Attribute { ... }

21.2.3 Positional and named parameters

Attribute classes can have positional parameters and named parameters. Each public instance
constructor for an attribute class defines a valid sequence of positional parameters for that attribute class.
Each non-static public read-write field and property for an attribute class defines a named parameter for
the attribute class. For a property to define a named parameter, that property shall have both a public get
accessor and a public set accessor.

Example: The example

using System;
[AttributeUsage(AttributeTargets.Class)]
public class HelpAttribute : Attribute
{
 public HelpAttribute(string url) // url is a positional parameter
 {
 ...
 }

 // Topic is a named parameter
 public string Topic
 {
 get;
 set;
 }

 public string Url { get; }
}

defines an attribute class named HelpAttribute that has one positional parameter, url, and one
named parameter, Topic. Although it is non-static and public, the property Url does not define a
named parameter, since it is not read-write.

This attribute class might be used as follows:

[Help("http://www.mycompany.com/.../Class1.htm")]
class Class1
{
}

[Help("http://www.mycompany.com/.../Misc.htm", Topic ="Class2")]
class Class2

ECMA-334

484

{
}

end example

21.2.4 Attribute parameter types

The types of positional and named parameters for an attribute class are limited to the attribute
parameter types, which are:

• One of the following types: bool, byte, char, double, float, int, long, sbyte, short, string, uint,
ulong, ushort.

• The type object.

• The type System.Type.

• Enum types.

• Single-dimensional arrays of the above types.

• A constructor argument or public field that does not have one of these types, shall not be used as a
positional or named parameter in an attribute specification.

21.3 Attribute specification
Attribute specification is the application of a previously defined attribute to a program entity. An
attribute is a piece of additional declarative information that is specified for a program entity. Attributes
can be specified at global scope (to specify attributes on the containing assembly or module) and for
type_declarations (§13.7), class_member_declarations (§14.3), interface_member_declarations (§17.4),
struct_member_declarations (§15.3), enum_member_declarations (§18.2), accessor_declarations (§14.7.3),
event_accessor_declarations (§14.8), elements of formal_parameter_lists (§14.6.2), and elements of
type_parameter_lists (§14.2.3).

Attributes are specified in attribute sections. An attribute section consists of a pair of square brackets,
which surround a comma-separated list of one or more attributes. The order in which attributes are
specified in such a list, and the order in which sections attached to the same program entity are arranged,
is not significant. For instance, the attribute specifications [A][B], [B][A], [A, B], and [B, A] are
equivalent.

global_attributes
 : global_attribute_section+
 ;

global_attribute_section
 : '[' global_attribute_target_specifier attribute_list ']'
 | '[' global_attribute_target_specifier attribute_list ',' ']'
 ;

global_attribute_target_specifier
 : global_attribute_target ':'
 ;

global_attribute_target
 : identifier
 ;

Chapter 21 Attributes

485

attributes
 : attribute_section+
 ;

attribute_section
 : '[' attribute_target_specifier? attribute_list ']'
 | '[' attribute_target_specifier? attribute_list ',' ']'
 ;

attribute_target_specifier
 : attribute_target ':'
 ;

attribute_target
 : identifier
 | keyword
 ;

attribute_list
 : attribute (',' attribute)*
 ;

attribute
 : attribute_name attribute_arguments?
 ;

attribute_name
 : type_name
 ;

attribute_arguments
 : '(' positional_argument_list? ')'
 | '(' positional_argument_list ',' named_argument_list ')'
 | '(' named_argument_list ')'
 ;

positional_argument_list
 : positional_argument (',' positional_argument)*
 ;

positional_argument
 : argument_name? attribute_argument_expression
 ;

named_argument_list
 : named_argument (',' named_argument)*
 ;

named_argument
 : identifier '=' attribute_argument_expression
 ;

attribute_argument_expression

ECMA-334

486

 : expression
 ;

For the production global_attribute_target, and in the text below, identifier shall have a spelling equal to
assembly or module, where equality is that defined in §6.4.3. For the production attribute_target, and in
the text below, identifier shall have a spelling that is not equal to assembly or module, using the same
definition of equality as above.

An attribute consists of an attribute_name and an optional list of positional and named arguments. The
positional arguments (if any) precede the named arguments. A positional argument consists of an
attribute_argument_expression; a named argument consists of a name, followed by an equal sign, followed
by an attribute_argument_expression, which, together, are constrained by the same rules as simple
assignment. The order of named arguments is not significant.

Note: For convenience, a trailing comma is allowed in a global_attribute_section and an
attribute_section, just as one is allowed in an array_initializer (§16.7).

The attribute_name identifies an attribute class.

When an attribute is placed at the global level, a global_attribute_target_specifier is required. When the
global_attribute_target is equal to:

• assembly — the target is the containing assembly

• module — the target is the containing module

No other values for global_attribute_target are allowed.

The standardized attribute_target names are event, field, method, param, property, return, type, and
typevar. These target names shall only be used in the following contexts:

• event — an event.

• field — a field. A field-like event (i.e., one without accessors) can also have an attribute with this
target.

• method — a constructor, finalizer, method, operator, property get and set accessors, indexer get and
set accessors, and event add and remove accessors. A field-like event (i.e., one without accessors)
can also have an attribute with this target.

• param — a property set accessor, an indexer set accessor, event add and remove accessors, and a
parameter in a constructor, method, and operator.

• property — a property and an indexer.

• return — a delegate, method, operator, property get accessor, and indexer get accessor.

• type — a delegate, class, struct, enum, and interface.

• typevar — a type parameter.

Certain contexts permit the specification of an attribute on more than one target. A program can explicitly
specify the target by including an attribute_target_specifier. Without an attribute_target_specifier a default
is applied, but an attribute_target_specifier can be used to affirm or override the default. The contexts are
resolved as follows:

• For an attribute on a delegate declaration the default target is the delegate. Otherwise when the
attribute_target is equal to:

o type — the target is the delegate

Chapter 21 Attributes

487

o return — the target is the return value

• For an attribute on a method declaration the default target is the method. Otherwise when the
attribute_target is equal to:

o method — the target is the method

o return — the target is the return value

• For an attribute on an operator declaration the default target is the operator. Otherwise when the
attribute_target is equal to:

o method — the target is the operator

o return — the target is the return value

• For an attribute on a get accessor declaration for a property or indexer declaration the default
target is the associated method. Otherwise when the attribute_target is equal to:

o method — the target is the associated method

o return — the target is the return value

• For an attribute specified on a set accessor for a property or indexer declaration the default target is
the associated method. Otherwise when the attribute_target is equal to:

o method — the target is the associated method

o param — the target is the lone implicit parameter

• For an attribute specified on an event declaration that omits event_accessor_declarations the default
target is the event declaration. Otherwise when the attribute_target is equal to:

o event — the target is the event declaration

o field — the target is the field

o method — the targets are the methods

• In the case of an event declaration that does not omit event_accessor_declarations the default target
is the method.

o method — the target is the associated method

o param — the target is the lone parameter

In all other contexts, inclusion of an attribute_target_specifier is permitted but unnecessary.

Example: a class declaration may either include or omit the specifier type:

[type: Author("Brian Kernighan")]
class Class1 {}

[Author("Dennis Ritchie")]
class Class2 {}

end example.

An implementation can accept other attribute_targets, the purposes of which are implementation defined.
An implementation that does not recognize such an attribute_target shall issue a warning and ignore the
containing attribute_section.

ECMA-334

488

By convention, attribute classes are named with a suffix of Attribute. An attribute_name can either
include or omit this suffix. Specifically, an attribute_name is resolved as follows:

• If the right-most identifier of the attribute_name is a verbatim identifier (§6.4.3), then the
attribute_name is resolved as a type_name (§7.8). If the result is not a type derived from
System.Attribute, a compile-time error occurs.

• Otherwise,

o The attribute_name is resolved as a type_name (§7.8) except any errors are suppressed. If this
resolution is successful and results in a type derived from System.Attribute then the type is
the result of this step.

o The characters Attribute are appended to the right-most identifier in the attribute_name and
the resulting string of tokens is resolved as a type_name (§7.8) except any errors are
suppressed. If this resolution is successful and results in a type derived from System.Attribute
then the type is the result of this step.

If exactly one of the two steps above results in a type derived from System.Attribute, then that type is
the result of the attribute_name. Otherwise a compile-time error occurs.

Example: If an attribute class is found both with and without this suffix, an ambiguity is present, and
a compile-time error results. If the attribute_name is spelled such that its right-most identifier is a
verbatim identifier (§6.4.3), then only an attribute without a suffix is matched, thus enabling such
an ambiguity to be resolved. The example

using System;
[AttributeUsage(AttributeTargets.All)]
public class Example : Attribute
{}

[AttributeUsage(AttributeTargets.All)]
public class ExampleAttribute : Attribute
{}

[Example] // Error: ambiguity
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Refers to Example
class Class3 {}

[@ExampleAttribute] // Refers to ExampleAttribute
class Class4 {}

shows two attribute classes named Example and ExampleAttribute. The attribute [Example] is
ambiguous, since it could refer to either Example or ExampleAttribute. Using a verbatim identifier
allows the exact intent to be specified in such rare cases. The attribute [ExampleAttribute] is not
ambiguous (although it would be if there was an attribute class named
ExampleAttributeAttribute!). If the declaration for class Example is removed, then both attributes
refer to the attribute class named ExampleAttribute, as follows:

using System;

[AttributeUsage(AttributeTargets.All)]

Chapter 21 Attributes

489

public class ExampleAttribute : Attribute
{}

[Example] // Refers to ExampleAttribute
class Class1 {}

[ExampleAttribute] // Refers to ExampleAttribute
class Class2 {}

[@Example] // Error: no attribute named “Example”
class Class3 {}

end example

It is a compile-time error to use a single-use attribute class more than once on the same entity.

Example: The example

using System;

[AttributeUsage(AttributeTargets.Class)]
public class HelpStringAttribute : Attribute
{
 public HelpStringAttribute(string value)
 {
 Value = value;
 }

 public string Value { get; }
}
[HelpString("Description of Class1")]
[HelpString("Another description of Class1")]
public class Class1 {}

results in a compile-time error because it attempts to use HelpString, which is a single-use
attribute class, more than once on the declaration of Class1.

end example

An expression E is an attribute_argument_expression if all of the following statements are true:

• The type of E is an attribute parameter type (§21.2.4).

• At compile-time, the value of E can be resolved to one of the following:

o A constant value.

o A System.Type object obtained using a typeof_expression (§11.7.16) specifying a non-generic
type, a closed constructed type (§8.4.3), or an unbound generic type (§8.4.4), but not an open
type (§8.4.3).

o A single-dimensional array of attribute_argument_expressions.

Example:

using System;
[AttributeUsage(AttributeTargets.Class | AttributeTargets.Field)]
public class TestAttribute : Attribute
{
 public int P1 { get; set; }

ECMA-334

490

 public Type P2 { get; set; }

 public object P3 { get; set; }
}

[Test(P1 = 1234, P3 = new int[]{1, 3, 5}, P2 = typeof(float))]
class MyClass {}

class C<T> {
 [Test(P2 = typeof(T))] // Error – T not a closed type.
 int x1;

 [Test(P2 = typeof(C<T>))] // Error – C<;T>; not a closed type.
 int x2;

 [Test(P2 = typeof(C<int>))] // Ok
 int x3;

 [Test(P2 = typeof(C<>))] // Ok
 int x4;
}

end example

The attributes of a type declared in multiple parts are determined by combining, in an unspecified order,
the attributes of each of its parts. If the same attribute is placed on multiple parts, it is equivalent to
specifying that attribute multiple times on the type.

Example: The two parts:

[Attr1, Attr2("hello")]
partial class A {}

[Attr3, Attr2("goodbye")]
partial class A {}

are equivalent to the following single declaration:

[Attr1, Attr2("hello"), Attr3, Attr2("goodbye")]
class A {}

end example

Attributes on type parameters combine in the same way.

21.4 Attribute instances

21.4.1 General

An attribute instance is an instance that represents an attribute at run-time. An attribute is defined with
an attribute class, positional arguments, and named arguments. An attribute instance is an instance of the
attribute class that is initialized with the positional and named arguments.

Retrieval of an attribute instance involves both compile-time and run-time processing, as described in the
following subclauses.

Chapter 21 Attributes

491

21.4.2 Compilation of an attribute

The compilation of an attribute with attribute class T, positional_argument_list P, named_argument_list N,
and specified on a program entity E is compiled into an assembly A via the following steps:

• Follow the compile-time processing steps for compiling an object_creation_expression of the form
new T(P). These steps either result in a compile-time error, or determine an instance constructor C
on T that can be invoked at run-time.

• If C does not have public accessibility, then a compile-time error occurs.

• For each named_argument Arg in N:

o Let Name be the identifier of the named_argument Arg.

o Name shall identify a non-static read-write public field or property on T. If T has no such field or
property, then a compile-time error occurs.

• If any of the values within positional_argument_list P or one of the values within
named_argument_list N is of type System.String and the value is not well-formed as defined by the
Unicode Standard, it is implementation-defined whether the value compiled is equal to the run-time
value retrieved (§21.4.3).
Note: As an example, a string which contains a high surrogate UTF-16 code unit which isn’t
immediately followed by a low surrogate code unit is not well-formed. end note

• Store the following information (for run-time instantiation of the attribute) in the assembly output
by the compiler as a result of compiling the program containing the attribute: the attribute class T,
the instance constructor C on T, the positional_argument_list P, the named_argument_list N, and the
associated program entity E, with the values resolved completely at compile-time.

21.4.3 Run-time retrieval of an attribute instance

The attribute instance represented by T, C, P, and N, and associated with E can be retrieved at run-time
from the assembly A using the following steps:

• Follow the run-time processing steps for executing an object_creation_expression of the form
new T(P), using the instance constructor C and values as determined at compile-time. These steps
either result in an exception, or produce an instance O of T.

• For each named_argument Arg in N, in order:

o Let Name be the identifier of the named_argument Arg. If Name does not identify a non-static
public read-write field or property on O, then an exception is thrown.

o Let Value be the result of evaluating the attribute_argument_expression of Arg.

o If Name identifies a field on O, then set this field to Value.

o Otherwise, Name identifies a property on O. Set this property to Value.

o The result is O, an instance of the attribute class T that has been initialized with the
positional_argument_list P and the named_argument_list N.

Note: The format for storing T, C, P, N (and associating it with E) in A and the mechanism to specify E
and retrieve T, C, P, N from A (and hence how an attribute instance is obtained at runtime) is beyond
the scope of this standard. end note

Example: In an implementation of the CLI, the Help attribute instances in the assembly created by
compiling the example program in §21.2.3 can be retrieved with the following program:

ECMA-334

492

using System;
using System.Reflection;

public sealed class InterrogateHelpUrls
{
 public static void Main(string[] args)
 {
 Type helpType = typeof(HelpAttribute);
 string assemblyName = args[0];
 foreach (Type t in Assembly.Load(assemblyName).GetTypes())
 {
 Console.WriteLine($"Type : {t}");
 HelpAttribute[] helpers =
 (HelpAttribute[])t.GetCustomAttributes(helpType, false);
 for (int at = 0; at != helpers.Length; at++)
 {
 Console.WriteLine($"\tUrl : {helpers[at].Url}");
 }
 }
 }
}

end example

21.5 Reserved attributes

21.5.1 General

A small number of attributes affect the language in some way. These attributes include:

• System.AttributeUsageAttribute (§21.5.2), which is used to describe the ways in which an
attribute class can be used.

• System.Diagnostics.ConditionalAttribute (§21.5.3), is a multi-use attribute class which is used
to define conditional methods and conditional attribute classes. This attribute indicates a condition
by testing a conditional compilation symbol.

• System.ObsoleteAttribute (§21.5.4), which is used to mark a member as obsolete.

• System.Runtime.CompilerServices.CallerLineNumberAttribute (§21.5.5.2),
System.Runtime.CompilerServices.CallerFilePathAttribute (§21.5.5.3), and
System.Runtime.CompilerServices.CallerMemberNameAttribute (§21.5.5.4), which are used to
supply information about the calling context to optional parameters.

An execution environment may provide additional implementation-specific attributes that affect the
execution of a C# program.

21.5.2 The AttributeUsage attribute

The attribute AttributeUsage is used to describe the manner in which the attribute class can be used.

A class that is decorated with the AttributeUsage attribute shall derive from System.Attribute, either
directly or indirectly. Otherwise, a compile-time error occurs.

Note: For an example of using this attribute, see §21.2.2. end note

Chapter 21 Attributes

493

21.5.3 The Conditional attribute

21.5.3.1 General

The attribute Conditional enables the definition of conditional methods and conditional attribute
classes.

21.5.3.2 Conditional methods

A method decorated with the Conditional attribute is a conditional method. Each conditional method is
thus associated with the conditional compilation symbols declared in its Conditional attributes.

Example:

using System.Diagnostics;

class Eg
{
 [Conditional("ALPHA")]
 [Conditional("BETA")]
 public static void M()
 {
 // ...
 }
}

declares Eg.M as a conditional method associated with the two conditional compilation symbols
ALPHA and BETA.

end example

A call to a conditional method is included if one or more of its associated conditional compilation symbols
is defined at the point of call, otherwise the call is omitted.

A conditional method is subject to the following restrictions:

• The conditional method shall be a method in a class_declaration or struct_declaration. A compile-
time error occurs if the Conditional attribute is specified on a method in an interface declaration.

• The conditional method shall have a return type of void.

• The conditional method shall not be marked with the override modifier. A conditional method can
be marked with the virtual modifier, however. Overrides of such a method are implicitly
conditional, and shall not be explicitly marked with a Conditional attribute.

• The conditional method shall not be an implementation of an interface method. Otherwise, a
compile-time error occurs.

• The parameters of the conditional method shall not have the out modifier.

In addition, a compile-time error occurs if a delegate is created from a conditional method.

Example: The example

#define DEBUG
using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]

ECMA-334

494

 public static void M()
 {
 Console.WriteLine("Executed Class1.M");
 }
}

class Class2
{
 public static void Test()
 {
 Class1.M();
 }
}

declares Class1.M as a conditional method. Class2’s Test method calls this method. Since the
conditional compilation symbol DEBUG is defined, if Class2.Test is called, it will call M. If the symbol
DEBUG had not been defined, then Class2.Test would not call Class1.M.

end example

It is important to understand that the inclusion or exclusion of a call to a conditional method is controlled
by the conditional compilation symbols at the point of the call.

Example: In the following code

// File `class1.cs`:
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public static void F()
 {
 Console.WriteLine("Executed Class1.F");
 }
}

// File `class2.cs`:
#define DEBUG
class Class2
{
 public static void G()
 {
 Class1.F(); // F is called
 }
}

// File `class3.cs`:
#undef DEBUG
class Class3
{
 public static void H()
 {
 Class1.F(); // F is not called
 }
}

Chapter 21 Attributes

495

the classes Class2 and Class3 each contain calls to the conditional method Class1.F, which is
conditional based on whether or not DEBUG is defined. Since this symbol is defined in the context of
Class2 but not Class3, the call to F in Class2 is included, while the call to F in Class3 is omitted.

end example

The use of conditional methods in an inheritance chain can be confusing. Calls made to a conditional
method through base, of the form base.M, are subject to the normal conditional method call rules.

Example: In the following code

// File `class1.cs`
using System;
using System.Diagnostics;

class Class1
{
 [Conditional("DEBUG")]
 public virtual void M() => Console.WriteLine("Class1.M executed");
}

// File `class2.cs`
using System;
class Class2 : Class1
{
 public override void M()
 {
 Console.WriteLine("Class2.M executed");
 base.M(); // base.M is not called!
 }
}

// File `class3.cs`
#define DEBUG
using System;

class Class3
{
 public static void Test()
 {
 Class2 c = new Class2();
 c.M(); // M is called
 }
}

Class2 includes a call to the M defined in its base class. This call is omitted because the base method
is conditional based on the presence of the symbol DEBUG, which is undefined. Thus, the method
writes to the console “Class2.M executed” only. Judicious use of pp_declarations can eliminate such
problems.

end example

21.5.3.3 Conditional attribute classes

An attribute class (§21.2) decorated with one or more Conditional attributes is a conditional attribute
class. A conditional attribute class is thus associated with the conditional compilation symbols declared in
its Conditional attributes.

ECMA-334

496

Example:

using System;
using System.Diagnostics;

[Conditional("ALPHA")]
[Conditional("BETA")]
public class TestAttribute : Attribute {}

declares TestAttribute as a conditional attribute class associated with the conditional
compilations symbols ALPHA and BETA.

end example

Attribute specifications (§21.3) of a conditional attribute are included if one or more of its associated
conditional compilation symbols is defined at the point of specification, otherwise the attribute
specification is omitted.

It is important to note that the inclusion or exclusion of an attribute specification of a conditional
attribute class is controlled by the conditional compilation symbols at the point of the specification.

Example: In the example

// File `test.cs`:
using System;
using System.Diagnostics;

[Conditional("DEBUG")]
public class TestAttribute : Attribute {}

// File `class1.cs`:
#define DEBUG
[Test] // TestAttribute is specified
class Class1 {}

// File `class2.cs`:
#undef DEBUG
[Test] // TestAttribute is not specified
class Class2 {}

the classes Class1 and Class2 are each decorated with attribute Test, which is conditional based on
whether or not DEBUG is defined. Since this symbol is defined in the context of Class1 but not
Class2, the specification of the Test attribute on Class1 is included, while the specification of the
Test attribute on Class2 is omitted.

end example

21.5.4 The Obsolete attribute

The attribute Obsolete is used to mark types and members of types that should no longer be used.

If a program uses a type or member that is decorated with the Obsolete attribute, the compiler shall issue
a warning or an error. Specifically, the compiler shall issue a warning if no error parameter is provided, or
if the error parameter is provided and has the value false. The compiler shall issue an error if the error
parameter is specified and has the value true.

Example: In the following code

Chapter 21 Attributes

497

[Obsolete("This class is obsolete; use class B instead")]
class A
{
 public void F() {}
}

class B
{
 public void F() {}
}

class Test
{
 static void Main()
 {
 A a = new A(); // Warning
 a.F();
 }
}

the class A is decorated with the Obsolete attribute. Each use of A in Main results in a warning that
includes the specified message, “This class is obsolete; use class B instead”.

end example

21.5.5 Caller-info attributes

21.5.5.1 General

For purposes such as logging and reporting, it is sometimes useful for a function member to obtain certain
compile-time information about the calling code. The caller-info attributes provide a way to pass such
information transparently.

When an optional parameter is annotated with one of the caller-info attributes, omitting the
corresponding argument in a call does not necessarily cause the default parameter value to be
substituted. Instead, if the specified information about the calling context is available, that information
will be passed as the argument value.

Example:

using System.Runtime.CompilerServices

...

public void Log(
 [CallerLineNumber] int line = -1,
 [CallerFilePath] string path = null,
 [CallerMemberName] string name = null
)
{
 Console.WriteLine((line < 0) ? "No line" : "Line "+ line);
 Console.WriteLine((path == null) ? "No file path" : path);
 Console.WriteLine((name == null) ? "No member name" : name);
}

A call to Log() with no arguments would print the line number and file path of the call, as well as the
name of the member within which the call occurred.

ECMA-334

498

end example

Caller-info attributes can occur on optional parameters anywhere, including in delegate declarations.
However, the specific caller-info attributes have restrictions on the types of the parameters they can
attribute, so that there will always be an implicit conversion from a substituted value to the parameter
type.

It is an error to have the same caller-info attribute on a parameter of both the defining and implementing
part of a partial method declaration. Only caller-info attributes in the defining part are applied, whereas
caller-info attributes occurring only in the implementing part are ignored.

Caller information does not affect overload resolution. As the attributed optional parameters are still
omitted from the source code of the caller, overload resolution ignores those parameters in the same way
it ignores other omitted optional parameters (§11.6.4).

Caller information is only substituted when a function is explicitly invoked in source code. Implicit
invocations such as implicit parent constructor calls do not have a source location and will not substitute
caller information. Also, calls that are dynamically bound will not substitute caller information. When a
caller-info attributed parameter is omitted in such cases, the specified default value of the parameter is
used instead.

One exception is query expressions. These are considered syntactic expansions, and if the calls they
expand to omit optional parameters with caller-info attributes, caller information will be substituted. The
location used is the location of the query clause which the call was generated from.

If more than one caller-info attribute is specified on a given parameter, they are preferred in the following
order: CallerLineNumber, CallerFilePath, CallerMemberName.

21.5.5.2 The CallerLineNumber attribute

The System.Runtime.CompilerServices.CallerLineNumberAttribute is allowed on optional parameters
when there is a standard implicit conversion (§10.4.2) from the constant value int.MaxValue to the
parameter’s type. This ensures that any non-negative line number up to that value can be passed without
error.

If a function invocation from a location in source code omits an optional parameter with the
CallerLineNumberAttribute, then a numeric literal representing that location’s line number is used as an
argument to the invocation instead of the default parameter value.

If the invocation spans multiple lines, the line chosen is implementation-dependent.

The line number may be affected by #line directives (§6.5.8).

21.5.5.3 The CallerFilePath attribute

The System.Runtime.CompilerServices.CallerFilePathAttribute is allowed on optional parameters
when there is a standard implicit conversion (§10.4.2) from string to the parameter’s type.

If a function invocation from a location in source code omits an optional parameter with the
CallerFilePathAttribute, then a string literal representing that location’s file path is used as an
argument to the invocation instead of the default parameter value.

The format of the file path is implementation-dependent.

The file path may be affected by #line directives (§6.5.8).

Chapter 21 Attributes

499

21.5.5.4 The CallerMemberName attribute

The System.Runtime.CompilerServices.CallerMemberNameAttribute is allowed on optional parameters
when there is a standard implicit conversion (§10.4.2) from string to the parameter’s type.

If a function invocation from a location within the body of a function member or within an attribute
applied to the function member itself or its return type, parameters or type parameters in source code
omits an optional parameter with the CallerMemberNameAttribute, then a string literal representing the
name of that member is used as an argument to the invocation instead of the default parameter value.

For invocations that occur within generic methods, only the method name itself is used, without the type
parameter list.

For invocations that occur within explicit interface member implementations, only the method name itself
is used, without the preceding interface qualification.

For invocations that occur within property or event accessors, the member name used is that of the
property or event itself.

For invocations that occur within indexer accessors, the member name used is that supplied by an
IndexerNameAttribute (§21.6) on the indexer member, if present, or the default name Item otherwise.

For invocations that occur within field or event initializers, the member name used is the name of the field
or event being initialized.

For invocations that occur within declarations of instance constructors, static constructors, finalizers and
operators the member name used is implementation-dependent.

21.6 Attributes for interoperation
For interoperation with other languages, an indexer may be implemented using indexed properties. If no
IndexerName attribute is present for an indexer, then the name Item is used by default. The IndexerName
attribute enables a developer to override this default and specify a different name.

Example: By default, an indexer’s name is Item. This can be overridden, as follows:

[System.Runtime.CompilerServices.IndexerName("TheItem")]
public int this[int index]
{
 // get and set accessors
}

Now, the indexer’s name is TheItem.

end example

Chapter 22 Unsafe code

501

22. Unsafe code

22.1 General
An implementation that does not support unsafe code is required to diagnose any usage of the syntactic
rules defined in this clause.

The remainder of this clause, including all of its subclauses, is conditionally normative.

Note: The core C# language, as defined in the preceding clauses, differs notably from C and C++ in its
omission of pointers as a data type. Instead, C# provides references and the ability to create objects
that are managed by a garbage collector. This design, coupled with other features, makes C# a much
safer language than C or C++. In the core C# language, it is simply not possible to have an
uninitialized variable, a “dangling” pointer, or an expression that indexes an array beyond its
bounds. Whole categories of bugs that routinely plague C and C++ programs are thus eliminated.

While practically every pointer type construct in C or C++ has a reference type counterpart in C#,
nonetheless, there are situations where access to pointer types becomes a necessity. For example,
interfacing with the underlying operating system, accessing a memory-mapped device, or
implementing a time-critical algorithm might not be possible or practical without access to pointers.
To address this need, C# provides the ability to write unsafe code.

In unsafe code, it is possible to declare and operate on pointers, to perform conversions between
pointers and integral types, to take the address of variables, and so forth. In a sense, writing unsafe
code is much like writing C code within a C# program.

Unsafe code is in fact a “safe” feature from the perspective of both developers and users. Unsafe
code shall be clearly marked with the modifier unsafe, so developers can’t possibly use unsafe
features accidentally, and the execution engine works to ensure that unsafe code cannot be
executed in an untrusted environment.

end note

22.2 Unsafe contexts
The unsafe features of C# are available only in unsafe contexts. An unsafe context is introduced by
including an unsafe modifier in the declaration of a type or member, or by employing an
unsafe_statement:

• A declaration of a class, struct, interface, or delegate may include an unsafe modifier, in which case,
the entire textual extent of that type declaration (including the body of the class, struct, or interface)
is considered an unsafe context.
Note: If the type_declaration is partial, only that part is an unsafe context. end note

• A declaration of a field, method, property, event, indexer, operator, instance constructor, finalizer,
or static constructor may include an unsafe modifier, in which case, the entire textual extent of that
member declaration is considered an unsafe context.

• An unsafe_statement enables the use of an unsafe context within a block. The entire textual extent of
the associated block is considered an unsafe context.

ECMA-334

502

The associated grammar extensions are shown below and in subsequent subclauses.

unsafe_modifier
 : 'unsafe'
 ;

unsafe_statement
 : 'unsafe' block
 ;

Example: In the following code

public unsafe struct Node
{
 public int Value;
 public Node* Left;
 public Node* Right;
}

the unsafe modifier specified in the struct declaration causes the entire textual extent of the struct
declaration to become an unsafe context. Thus, it is possible to declare the Left and Right fields to
be of a pointer type. The example above could also be written

public struct Node
{
 public int Value;
 public unsafe Node* Left;
 public unsafe Node* Right;
}

Here, the unsafe modifiers in the field declarations cause those declarations to be considered
unsafe contexts.

end example

Other than establishing an unsafe context, thus permitting the use of pointer types, the unsafe modifier
has no effect on a type or a member.

Example: In the following code

public class A
{
 public unsafe virtual void F()
 {
 char* p;
 ...
 }
}

public class B : A
{
 public override void F()
 {
 base.F();
 ...
 }
}

Chapter 22 Unsafe code

503

the unsafe modifier on the F method in A simply causes the textual extent of F to become an unsafe
context in which the unsafe features of the language can be used. In the override of F in B, there is no
need to re-specify the unsafe modifier—unless, of course, the F method in B itself needs access to
unsafe features.

The situation is slightly different when a pointer type is part of the method’s signature

public unsafe class A
{
 public virtual void F(char* p) {...}
}

public class B: A
{
 public unsafe override void F(char* p) {...}
}

Here, because F’s signature includes a pointer type, it can only be written in an unsafe context.
However, the unsafe context can be introduced by either making the entire class unsafe, as is the
case in A, or by including an unsafe modifier in the method declaration, as is the case in B.

end example

When the unsafe modifier is used on a partial type declaration (§14.2.7), only that particular part is
considered an unsafe context.

22.3 Pointer types
In an unsafe context, a type (§8.1) can be a pointer_type as well as a value_type, a reference_type, or a
type_parameter. In an unsafe context a pointer_type may also be the element type of an array (§16). A
pointer_type may also be used in a typeof expression (§11.7.16) outside of an unsafe context (as such
usage is not unsafe).

A pointer_type is written as an unmanaged_type (§8.8) or the keyword void, followed by a * token:

pointer_type
 : value_type ('*')+
 | 'void' ('*')+
 ;

The type specified before the * in a pointer type is called the referent type of the pointer type. It
represents the type of the variable to which a value of the pointer type points.

A pointer_type may only be used in an array_type in an unsafe context (§22.2). A non_array_type is any
type that is not itself an array_type.

Unlike references (values of reference types), pointers are not tracked by the garbage collector—the
garbage collector has no knowledge of pointers and the data to which they point. For this reason a pointer
is not permitted to point to a reference or to a struct that contains references, and the referent type of a
pointer shall be an unmanaged_type.

The intuitive rule for mixing of pointers and references is that referents of references (objects) are
permitted to contain pointers, but referents of pointers are not permitted to contain references.

Example: Some examples of pointer types are given in the table below:

Example Description

ECMA-334

504

byte* Pointer to byte

char* Pointer to char

int** Pointer to pointer to int

int*[] Single-dimensional array of pointers to int

void* Pointer to unknown type

end example

For a given implementation, all pointer types shall have the same size and representation.

Note: Unlike C and C++, when multiple pointers are declared in the same declaration, in C# the * is
written along with the underlying type only, not as a prefix punctuator on each pointer name. For
example:

int* pi, pj; // NOT as int *pi, *pj;

end note

The value of a pointer having type T* represents the address of a variable of type T. The pointer
indirection operator * (§22.6.2) can be used to access this variable.

Example: Given a variable P of type int*, the expression *P denotes the int variable found at the
address contained in P. end example

Like an object reference, a pointer may be null. Applying the indirection operator to a null-valued
pointer results in implementation-defined behavior (§22.6.2). A pointer with value null is represented by
all-bits-zero.

The void* type represents a pointer to an unknown type. Because the referent type is unknown, the
indirection operator cannot be applied to a pointer of type void*, nor can any arithmetic be performed on
such a pointer. However, a pointer of type void* can be cast to any other pointer type (and vice versa)
and compared to values of other pointer types (§22.6.8).

Pointer types are a separate category of types. Unlike reference types and value types, pointer types do
not inherit from object and no conversions exist between pointer types and object. In particular, boxing
and unboxing (§8.3.12) are not supported for pointers. However, conversions are permitted between
different pointer types and between pointer types and the integral types. This is described in §22.5.

A pointer_type cannot be used as a type argument (§8.4), and type inference (§11.6.3) fails on generic
method calls that would have inferred a type argument to be a pointer type.

A pointer_type cannot be used as a type of a subexpression of a dynamically bound operation (§11.3.3).

A pointer_type may be used as the type of a volatile field (§14.5.4).

Note: Although pointers can be passed as ref or out parameters, doing so can cause undefined
behavior, since the pointer might well be set to point to a local variable that no longer exists when
the called method returns, or the fixed object to which it used to point, is no longer fixed. For
example:

using System;

class Test
{
 static int value = 20;

Chapter 22 Unsafe code

505

 unsafe static void F(out int* pi1, ref int* pi2)
 {
 int i = 10;
 pi1 = &i;
 fixed (int* pj = &value)
 {
 // ...
 pi2 = pj;
 }
 }

 static void Main()
 {
 int i = 10;
 unsafe
 {
 int* px1;
 int* px2 = &i;
 F(out px1, ref px2);
 // Undefined behavior
 Console.WriteLine($"*px1 = {*px1}, *px2 = {*px2}",
 }
 }
}

end note

A method can return a value of some type, and that type can be a pointer.

Example: When given a pointer to a contiguous sequence of ints, that sequence’s element count,
and some other int value, the following method returns the address of that value in that sequence,
if a match occurs; otherwise it returns null:

unsafe static int* Find(int* pi, int size, int value)
{
 for (int i = 0; i < size; ++i)
 {
 if (*pi == value)
 {
 return pi;
 }
 ++pi;
 }
 return null;
}

end example

In an unsafe context, several constructs are available for operating on pointers:

• The unary * operator may be used to perform pointer indirection (§22.6.2).

• The -> operator may be used to access a member of a struct through a pointer (§22.6.3).

• The [] operator may be used to index a pointer (§22.6.4).

• The unary & operator may be used to obtain the address of a variable (§22.6.5).

• The ++ and -- operators may be used to increment and decrement pointers (§22.6.6).

ECMA-334

506

• The binary + and - operators may be used to perform pointer arithmetic (§22.6.7).

• The ==, !=, <, >, <=, and >= operators may be used to compare pointers (§22.6.8).

• The stackalloc operator may be used to allocate memory from the call stack (§22.9).

• The fixed statement may be used to temporarily fix a variable so its address can be obtained
(§22.7).

22.4 Fixed and moveable variables
The address-of operator (§22.6.5) and the fixed statement (§22.7) divide variables into two categories:
Fixed variables and moveable variables.

Fixed variables reside in storage locations that are unaffected by operation of the garbage collector.
(Examples of fixed variables include local variables, value parameters, and variables created by
dereferencing pointers.) On the other hand, moveable variables reside in storage locations that are
subject to relocation or disposal by the garbage collector. (Examples of moveable variables include fields
in objects and elements of arrays.)

The & operator (§22.6.5) permits the address of a fixed variable to be obtained without restrictions.
However, because a moveable variable is subject to relocation or disposal by the garbage collector, the
address of a moveable variable can only be obtained using a fixed statement (§22.7), and that address
remains valid only for the duration of that fixed statement.

In precise terms, a fixed variable is one of the following:

• A variable resulting from a simple_name (§11.7.4) that refers to a local variable, value parameter, or
parameter array, unless the variable is captured by an anonymous function (§11.16.6.2).

• A variable resulting from a member_access (§11.7.6) of the form V.I, where V is a fixed variable of a
struct_type.

• A variable resulting from a pointer_indirection_expression (§22.6.2) of the form *P, a
pointer_member_access (§22.6.3) of the form P->I, or a pointer_element_access (§22.6.4) of the form
P[E].

All other variables are classified as moveable variables.

A static field is classified as a moveable variable. Also, a ref or out parameter is classified as a moveable
variable, even if the argument given for the parameter is a fixed variable. Finally, a variable produced by
dereferencing a pointer is always classified as a fixed variable.

22.5 Pointer conversions

22.5.1 General

In an unsafe context, the set of available implicit conversions (§10.2) is extended to include the following
implicit pointer conversions:

• From any pointer_type to the type void*.

• From the null literal (§6.4.5.7) to any pointer_type.

Additionally, in an unsafe context, the set of available explicit conversions (§10.3) is extended to include
the following explicit pointer conversions:

Chapter 22 Unsafe code

507

• From any pointer_type to any other pointer_type.

• From sbyte, byte, short, ushort, int, uint, long, or ulong to any pointer_type.

• From any pointer_type to sbyte, byte, short, ushort, int, uint, long, or ulong.

Finally, in an unsafe context, the set of standard implicit conversions (§10.4.2) includes the following
pointer conversions:

• From any pointer_type to the type void*.

• From the null literal to any pointer_type.

Conversions between two pointer types never change the actual pointer value. In other words, a
conversion from one pointer type to another has no effect on the underlying address given by the pointer.

When one pointer type is converted to another, if the resulting pointer is not correctly aligned for the
pointed-to type, the behavior is undefined if the result is dereferenced. In general, the concept “correctly
aligned” is transitive: if a pointer to type A is correctly aligned for a pointer to type B, which, in turn, is
correctly aligned for a pointer to type C, then a pointer to type A is correctly aligned for a pointer to type C.

Example: Consider the following case in which a variable having one type is accessed via a pointer to
a different type:

char c = 'A';
char* pc = &c;
void* pv = pc;
int* pi = (int*)pv;
int i = *pi; // undefined
*pi = 123456; // undefined

end example

When a pointer type is converted to a pointer to byte, the result points to the lowest addressed byte of
the variable. Successive increments of the result, up to the size of the variable, yield pointers to the
remaining bytes of that variable.

Example: The following method displays each of the eight bytes in a double as a hexadecimal value:

using System;
class Test
{
 static void Main()
 {
 double d = 123.456e23;
 unsafe
 {
 byte* pb = (byte*)&d;
 for (int i = 0; i < sizeof(double); ++i)
 {
 Console.Write($"{*pb++:X2} ");
 }
 Console.WriteLine();
 }
 }
}

Of course, the output produced depends on endianness.

end example

ECMA-334

508

Mappings between pointers and integers are implementation-defined.

Note: However, on 32- and 64-bit CPU architectures with a linear address space, conversions of
pointers to or from integral types typically behave exactly like conversions of uint or ulong values,
respectively, to or from those integral types. end note

22.5.2 Pointer arrays

Arrays of pointers can be constructed using array_creation_expression (§11.7.15.5) in an usafe context.
Only some of the conversions that apply to other array types are allowed on pointer arrays:

• The implicit reference conversion (§10.2.6) from any array_type to System.Array and the interfaces
it implements also applies to pointer arrays. However, any attempt to access the array elements
through System.Array or the interfaces it implements may result in an exception at run-time, as
pointer types are not convertible to object.

• The implicit and explicit reference conversions (§10.2.6, §10.3.4) from a single-dimensional array
type S[] to System.Collections.Generic.IList<T> and its generic base interfaces never apply to
pointer arrays.

• The explicit reference conversion (§10.3.4) from System.Array and the interfaces it implements to
any array_type applies to pointer arrays.

• The explicit reference conversions (§10.3.4) from System.Collections.Generic.IList<S> and its
base interfaces to a single-dimensional array type T[] never applies to pointer arrays, since pointer
types cannot be used as type arguments, and there are no conversions from pointer types to non-
pointer types.

These restrictions mean that the expansion for the foreach statement over arrays described in §9.4.4.17
cannot be applied to pointer arrays. Instead, a foreach statement of the form

foreach (V v in x) embedded_statement

where the type of x is an array type of the form T[,,...,], n is the number of dimensions minus 1 and T
or V is a pointer type, is expanded using nested for-loops as follows:

{
 T[,,...,] a = x;
 for (int i0 = a.GetLowerBound(0); i0 <= a.GetUpperBound(0); i0++)
 {
 for (int i1 = a.GetLowerBound(1); i1 <= a.GetUpperBound(1); i1++)
 {
 ...
 for (int in = a.GetLowerBound(n); in <= a.GetUpperBound(n); in++)
 {
 V v = (V)a[i0,i1,...,in];
 embedded_statement
 }
 }
 }
}

The variables a, i0, i1, … in are not visible to or accessible to x or the embedded_statement or any other
source code of the program. The variable v is read-only in the embedded statement. If there is not an
explicit conversion (§22.5) from T (the element type) to V, an error is produced and no further steps are
taken. If x has the value null, a System.NullReferenceException is thrown at run-time.

Chapter 22 Unsafe code

509

Note: Although pointer types are not permitted as type arguments, pointer arrays may be used as
type arguments. end note

22.6 Pointers in expressions

22.6.1 General

In an unsafe context, an expression may yield a result of a pointer type, but outside an unsafe context, it is
a compile-time error for an expression to be of a pointer type. In precise terms, outside an unsafe context
a compile-time error occurs if any simple_name (§11.7.4), member_access (§11.7.6), invocation_expression
(§11.7.8), or element_access (§11.7.10) is of a pointer type.

In an unsafe context, the primary_no_array_creation_expression (§11.7) and unary_expression (§11.8)
productions permit additional constructs, which are described in the following subclauses.

Note: The precedence and associativity of the unsafe operators is implied by the grammar. end note

22.6.2 Pointer indirection

A pointer_indirection_expression consists of an asterisk (*) followed by a unary_expression.

pointer_indirection_expression
 : '*' unary_expression
 ;

The unary * operator denotes pointer indirection and is used to obtain the variable to which a pointer
points. The result of evaluating *P, where P is an expression of a pointer type T*, is a variable of type T. It
is a compile-time error to apply the unary * operator to an expression of type void* or to an expression
that isn’t of a pointer type.

The effect of applying the unary * operator to a null-valued pointer is implementation-defined. In
particular, there is no guarantee that this operation throws a System.NullReferenceException.

If an invalid value has been assigned to the pointer, the behavior of the unary * operator is undefined.

Note: Among the invalid values for dereferencing a pointer by the unary * operator are an address
inappropriately aligned for the type pointed to (see example in §22.5), and the address of a variable
after the end of its lifetime.

For purposes of definite assignment analysis, a variable produced by evaluating an expression of the form
*P is considered initially assigned (§9.4.2).

22.6.3 Pointer member access

A pointer_member_access consists of a primary_expression, followed by a “->” token, followed by an
identifier and an optional type_argument_list.

pointer_member_access
 : primary_expression '->' identifier type_argument_list?
 ;

In a pointer member access of the form P->I, P shall be an expression of a pointer type, and I shall denote
an accessible member of the type to which P points.

A pointer member access of the form P->I is evaluated exactly as (*P).I. For a description of the pointer
indirection operator (*), see §22.6.2. For a description of the member access operator (.), see §11.7.6.

Example: In the following code

ECMA-334

510

using System;

struct Point
{
 public int x;
 public int y;
 public override string ToString() => $"({x},{y})";
}

class Test
{
 static void Main()
 {
 Point point;
 unsafe
 {
 Point* p = &point;
 p->x = 10;
 p->y = 20;
 Console.WriteLine(p->ToString());
 }
 }
}

the -> operator is used to access fields and invoke a method of a struct through a pointer. Because
the operation P->I is precisely equivalent to (*P).I, the Main method could equally well have been
written:

class Test
{
 static void Main()
 {
 Point point;
 unsafe
 {
 Point* p = &point;
 (*p).x = 10;
 (*p).y = 20;
 Console.WriteLine((*p).ToString());
 }
 }
}

end example

22.6.4 Pointer element access

A pointer_element_access consists of a primary_no_array_creation_expression followed by an expression
enclosed in “[” and “]”.

pointer_element_access
 : primary_no_array_creation_expression '[' expression ']'
 ;

In a pointer element access of the form P[E], P shall be an expression of a pointer type other than void*,
and E shall be an expression that can be implicitly converted to int, uint, long, or ulong.

Chapter 22 Unsafe code

511

A pointer element access of the form P[E] is evaluated exactly as *(P + E). For a description of the
pointer indirection operator (*), see §22.6.2. For a description of the pointer addition operator (+), see
§22.6.7.

Example: In the following code

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++) p[i] = (char)i;
 }
 }
}

a pointer element access is used to initialize the character buffer in a for loop. Because the
operation P[E] is precisely equivalent to *(P + E), the example could equally well have been
written:

class Test
{
 static void Main()
 {
 unsafe
 {
 char* p = stackalloc char[256];
 for (int i = 0; i < 256; i++)
 {
 *(p + i) = (char)i;
 }
 }
 }
}

end example

The pointer element access operator does not check for out-of-bounds errors and the behavior when
accessing an out-of-bounds element is undefined.

Note: This is the same as C and C++. end note

22.6.5 The address-of operator

An addressof_expression consists of an ampersand (&) followed by a unary_expression.

addressof_expression
 : '&' unary_expression
 ;

Given an expression E which is of a type T and is classified as a fixed variable (§22.4), the construct &E
computes the address of the variable given by E. The type of the result is T* and is classified as a value. A
compile-time error occurs if E is not classified as a variable, if E is classified as a read-only local variable,
or if E denotes a moveable variable. In the last case, a fixed statement (§22.7) can be used to temporarily
“fix” the variable before obtaining its address.

ECMA-334

512

Note: As stated in §11.7.6, outside an instance constructor or static constructor for a struct or class
that defines a readonly field, that field is considered a value, not a variable. As such, its address
cannot be taken. Similarly, the address of a constant cannot be taken.

The & operator does not require its argument to be definitely assigned, but following an & operation, the
variable to which the operator is applied is considered definitely assigned in the execution path in which
the operation occurs. It is the responsibility of the programmer to ensure that correct initialization of the
variable actually does take place in this situation.

Example: In the following code

using System;

class Test
{
 static void Main()
 {
 int i;
 unsafe
 {
 int* p = &i;
 *p = 123;
 }
 Console.WriteLine(i);
 }
}

i is considered definitely assigned following the &i operation used to initialize p. The assignment to
*p in effect initializes i, but the inclusion of this initialization is the responsibility of the
programmer, and no compile-time error would occur if the assignment was removed.

end example

Note: The rules of definite assignment for the & operator exist such that redundant initialization of
local variables can be avoided. For example, many external APIs take a pointer to a structure which
is filled in by the API. Calls to such APIs typically pass the address of a local struct variable, and
without the rule, redundant initialization of the struct variable would be required. end note

Note: When a local variable, value parameter, or parameter array is captured by an anonymous
function (§11.7.21), that local variable, parameter, or parameter array is no longer considered to be
a fixed variable (§22.7), but is instead considered to be a moveable variable. Thus it is an error for
any unsafe code to take the address of a local variable, value parameter, or parameter array that has
been captured by an anonymous function. end note

22.6.6 Pointer increment and decrement

In an unsafe context, the ++ and -- operators (§11.7.14 and §11.8.6) can be applied to pointer variables of
all types except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator ++(T* x);
T* operator --(T* x);

The operators produce the same results as x+1 and x-1, respectively (§22.6.7). In other words, for a
pointer variable of type T*, the ++ operator adds sizeof(T) to the address contained in the variable, and
the -- operator subtracts sizeof(T) from the address contained in the variable.

Chapter 22 Unsafe code

513

If a pointer increment or decrement operation overflows the domain of the pointer type, the result is
implementation-defined, but no exceptions are produced.

22.6.7 Pointer arithmetic

In an unsafe context, the + operator (§11.9.5) and – operator (§11.9.6) can be applied to values of all
pointer types except void*. Thus, for every pointer type T*, the following operators are implicitly defined:

T* operator +(T* x, int y);
T* operator +(T* x, uint y);
T* operator +(T* x, long y);
T* operator +(T* x, ulong y);
T* operator +(int x, T* y);
T* operator +(uint x, T* y);
T* operator +(long x, T* y);
T* operator +(ulong x, T* y);
T* operator –(T* x, int y);
T* operator –(T* x, uint y);
T* operator –(T* x, long y);
T* operator –(T* x, ulong y);
long operator –(T* x, T* y);

Given an expression P of a pointer type T* and an expression N of type int, uint, long, or ulong, the
expressions P + N and N + P compute the pointer value of type T* that results from adding N *
sizeof(T) to the address given by P. Likewise, the expression P – N computes the pointer value of type
T* that results from subtracting N * sizeof(T) from the address given by P.

Given two expressions, P and Q, of a pointer type T*, the expression P – Q computes the difference
between the addresses given by P and Q and then divides that difference by sizeof(T). The type of the
result is always long. In effect, P - Q is computed as ((long)(P) - (long)(Q)) / sizeof(T).

Example:

using System;
class Test
{
 static void Main()
 {
 unsafe
 {
 int* values = stackalloc int[20];
 int* p = &values[1];
 int* q = &values[15];
 Console.WriteLine($"p - q = {p - q}");
 Console.WriteLine($"q - p = {q - p}");
 }
 }
}

which produces the output:

p - q = -14
q - p = 14

end example

If a pointer arithmetic operation overflows the domain of the pointer type, the result is truncated in an
implementation-defined fashion, but no exceptions are produced.

ECMA-334

514

22.6.8 Pointer comparison

In an unsafe context, the ==, !=, <, >, <=, and >= operators (§11.11) can be applied to values of all pointer
types. The pointer comparison operators are:

bool operator ==(void* x, void* y);
bool operator !=(void* x, void* y);
bool operator <(void* x, void* y);
bool operator >(void* x, void* y);
bool operator <=(void* x, void* y);
bool operator >=(void* x, void* y);

Because an implicit conversion exists from any pointer type to the void* type, operands of any pointer
type can be compared using these operators. The comparison operators compare the addresses given by
the two operands as if they were unsigned integers.

22.6.9 The sizeof operator

For certain predefined types (§11.7.17), the sizeof operator yields a constant int value. For all other
types, the result of the sizeof operator is implementation-defined and is classified as a value, not a
constant.

The order in which members are packed into a struct is unspecified.

For alignment purposes, there may be unnamed padding at the beginning of a struct, within a struct, and
at the end of the struct. The contents of the bits used as padding are indeterminate.

When applied to an operand that has struct type, the result is the total number of bytes in a variable of
that type, including any padding.

22.7 The fixed statement
In an unsafe context, the embedded_statement (§12.1) production permits an additional construct, the
fixed statement, which is used to “fix” a moveable variable such that its address remains constant for the
duration of the statement.

fixed_statement
 : 'fixed' '(' pointer_type fixed_pointer_declarators ')' embedded_statement
 ;

fixed_pointer_declarators
 : fixed_pointer_declarator (',' fixed_pointer_declarator)*
 ;

fixed_pointer_declarator
 : identifier '=' fixed_pointer_initializer
 ;

fixed_pointer_initializer
 : '&' variable_reference
 | expression
 ;

Each fixed_pointer_declarator declares a local variable of the given pointer_type and initializes that local
variable with the address computed by the corresponding fixed_pointer_initializer. A local variable
declared in a fixed statement is accessible in any fixed_pointer_initializers occurring to the right of that

Chapter 22 Unsafe code

515

variable’s declaration, and in the embedded_statement of the fixed statement. A local variable declared by
a fixed statement is considered read-only. A compile-time error occurs if the embedded statement
attempts to modify this local variable (via assignment or the ++ and -- operators) or pass it as a ref or
out parameter.

It is an error to use a captured local variable (§11.16.6.2), value parameter, or parameter array in a
fixed_pointer_initializer.A fixed_pointer_initializer can be one of the following:

• The token “&” followed by a variable_reference (§9.4.4) to a moveable variable (§22.4) of an
unmanaged type T, provided the type T* is implicitly convertible to the pointer type given in the
fixed statement. In this case, the initializer computes the address of the given variable, and the
variable is guaranteed to remain at a fixed address for the duration of the fixed statement.

• An expression of an array_type with elements of an unmanaged type T, provided the type T* is
implicitly convertible to the pointer type given in the fixed statement. In this case, the initializer
computes the address of the first element in the array, and the entire array is guaranteed to remain
at a fixed address for the duration of the fixed statement. If the array expression is null or if the
array has zero elements, the initializer computes an address equal to zero.

• An expression of type string, provided the type char* is implicitly convertible to the pointer type
given in the fixed statement. In this case, the initializer computes the address of the first character
in the string, and the entire string is guaranteed to remain at a fixed address for the duration of the
fixed statement. The behavior of the fixed statement is implementation-defined if the string
expression is null.

• A simple_name or member_access that references a fixed-size buffer member of a moveable variable,
provided the type of the fixed-size buffer member is implicitly convertible to the pointer type given
in the fixed statement. In this case, the initializer computes a pointer to the first element of the
fixed-size buffer (§22.8.3), and the fixed-size buffer is guaranteed to remain at a fixed address for
the duration of the fixed statement.

For each address computed by a fixed_pointer_initializer the fixed statement ensures that the variable
referenced by the address is not subject to relocation or disposal by the garbage collector for the duration
of the fixed statement.

Example: If the address computed by a fixed_pointer_initializer references a field of an object or an
element of an array instance, the fixed statement guarantees that the containing object instance is
not relocated or disposed of during the lifetime of the statement. end example

It is the programmer’s responsibility to ensure that pointers created by fixed statements do not survive
beyond execution of those statements.

Example: When pointers created by fixed statements are passed to external APIs, it is the
programmer’s responsibility to ensure that the APIs retain no memory of these pointers. end
example

Fixed objects can cause fragmentation of the heap (because they can’t be moved). For that reason, objects
should be fixed only when absolutely necessary and then only for the shortest amount of time possible.

Example: The example

class Test
{
 static int x;
 int y;

ECMA-334

516

 unsafe static void F(int* p)
 {
 *p = 1;
 }

 static void Main()
 {
 Test t = new Test();
 int[] a = new int[10];
 unsafe
 {
 fixed (int* p = &x) F(p);
 fixed (int* p = &t.y) F(p);
 fixed (int* p = &a[0]) F(p);
 fixed (int* p = a) F(p);
 }
 }
}

demonstrates several uses of the fixed statement. The first statement fixes and obtains the address
of a static field, the second statement fixes and obtains the address of an instance field, and the third
statement fixes and obtains the address of an array element. In each case, it would have been an
error to use the regular & operator since the variables are all classified as moveable variables.

The third and fourth fixed statements in the example above produce identical results. In general,
for an array instance a, specifying a[0] in a fixed statement is the same as simply specifying a.

end example

In an unsafe context, array elements of single-dimensional arrays are stored in increasing index order,
starting with index 0 and ending with index Length – 1. For multi-dimensional arrays, array elements are
stored such that the indices of the rightmost dimension are increased first, then the next left dimension,
and so on to the left.

Within a fixed statement that obtains a pointer p to an array instance a, the pointer values ranging from p
to p + a.Length - 1 represent addresses of the elements in the array. Likewise, the variables ranging
from p[0] to p[a.Length - 1] represent the actual array elements. Given the way in which arrays are
stored, we can treat an array of any dimension as though it were linear.

Example:

using System;

class Test
{
 static void Main()
 {
 int[,,] a = new int[2,3,4];
 unsafe
 {
 fixed (int* p = a)
 {
 for (int i = 0; i < a.Length; ++i) // treat as linear
 {
 p[i] = i;
 }
 }

Chapter 22 Unsafe code

517

 }
 for (int i = 0; i < 2; ++i)
 {
 for (int j = 0; j < 3; ++j)
 {
 for (int k = 0; k < 4; ++k)
 {
 Console.Write($"[{i},{j},{k}] = {a[i,j,k],2} ");
 }
 Console.WriteLine();
 }
 }
 }
}

which produces the output:

[0,0,0] = 0 [0,0,1] = 1 [0,0,2] = 2 [0,0,3] = 3
[0,1,0] = 4 [0,1,1] = 5 [0,1,2] = 6 [0,1,3] = 7
[0,2,0] = 8 [0,2,1] = 9 [0,2,2] = 10 [0,2,3] = 11
[1,0,0] = 12 [1,0,1] = 13 [1,0,2] = 14 [1,0,3] = 15
[1,1,0] = 16 [1,1,1] = 17 [1,1,2] = 18 [1,1,3] = 19
[1,2,0] = 20 [1,2,1] = 21 [1,2,2] = 22 [1,2,3] = 23

end example

Example: In the following code

class Test
{
 unsafe static void Fill(int* p, int count, int value)
 {
 for (; count != 0; count--)
 {
 *p++ = value;
 }
 }

 static void Main()
 {
 int[] a = new int[100];
 unsafe
 {
 fixed (int* p = a) Fill(p, 100, -1);
 }
 }
}

a fixed statement is used to fix an array so its address can be passed to a method that takes a
pointer.

end example

A char* value produced by fixing a string instance always points to a null-terminated string. Within a
fixed statement that obtains a pointer p to a string instance s, the pointer values ranging from p to p +
s.Length ‑ 1 represent addresses of the characters in the string, and the pointer value p + s.Length
always points to a null character (the character with value ‘\0’).

ECMA-334

518

Example:

class Test
{
 static string name = "xx";

 unsafe static void F(char* p)
 {
 for (int i = 0; p[i] != '\\0'; ++i)
 Console.WriteLine(p[i]);
 }

 static void Main()
 {
 unsafe
 {
 fixed (char* p = name) F(p);
 fixed (char* p = "xx") F(p);
 }
 }
}

end example

Modifying objects of managed type through fixed pointers can result in undefined behavior.

Note: For example, because strings are immutable, it is the programmer’s responsibility to ensure
that the characters referenced by a pointer to a fixed string are not modified. end note

Note: The automatic null-termination of strings is particularly convenient when calling external
APIs that expect “C-style” strings. Note, however, that a string instance is permitted to contain null
characters. If such null characters are present, the string will appear truncated when treated as a
null-terminated char*. end note

22.8 Fixed-size buffers

22.8.1 General

Fixed-size buffers are used to declare “C-style” in-line arrays as members of structs, and are primarily
useful for interfacing with unmanaged APIs.

22.8.2 Fixed-size buffer declarations

A fixed-size buffer is a member that represents storage for a fixed-length buffer of variables of a given
type. A fixed-size buffer declaration introduces one or more fixed-size buffers of a given element type.

Note: Like an array, a fixed-size buffer can be thought of as containing elements. As such, the term
element type as defined for an array is also used with a fixed-size buffer. end note

Fixed-size buffers are only permitted in struct declarations and may only occur in unsafe contexts (§22.2).

fixed_size_buffer_declaration
 : attributes? fixed_size_buffer_modifier* 'fixed' buffer_element_type
 fixed_size_buffer_declarator+ ';'
 ;

fixed_size_buffer_modifier

Chapter 22 Unsafe code

519

 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'unsafe'
 ;

buffer_element_type
 : type
 ;

fixed_size_buffer_declarator
 : identifier '[' constant_expression ']'
 ;

A fixed-size buffer declaration may include a set of attributes (§21), a new modifier (§14.3.5), a valid
combination of the four access modifiers (§14.3.6) and an unsafe modifier (§22.2). The attributes and
modifiers apply to all of the members declared by the fixed-size buffer declaration. It is an error for the
same modifier to appear multiple times in a fixed-size buffer declaration.

A fixed-size buffer declaration is not permitted to include the static modifier.

The buffer element type of a fixed-size buffer declaration specifies the element type of the buffer(s)
introduced by the declaration. The buffer element type shall be one of the predefined types sbyte, byte,
short, ushort, int, uint, long, ulong, char, float, double, or bool.

The buffer element type is followed by a list of fixed-size buffer declarators, each of which introduces a
new member. A fixed-size buffer declarator consists of an identifier that names the member, followed by a
constant expression enclosed in [and] tokens. The constant expression denotes the number of elements
in the member introduced by that fixed-size buffer declarator. The type of the constant expression shall
be implicitly convertible to type int, and the value shall be a non-zero positive integer.

The elements of a fixed-size buffer shall be laid out sequentially in memory.

A fixed-size buffer declaration that declares multiple fixed-size buffers is equivalent to multiple
declarations of a single fixed-size buffer declaration with the same attributes, and element types.

Example:

unsafe struct A
{
 public fixed int x[5], y[10], z[100];
}

is equivalent to

unsafe struct A
{
 public fixed int x[5];
 public fixed int y[10];
 public fixed int z[100];
}

end example

22.8.3 Fixed-size buffers in expressions

Member lookup (§11.5) of a fixed-size buffer member proceeds exactly like member lookup of a field.

ECMA-334

520

A fixed-size buffer can be referenced in an expression using a simple_name (§11.6.3) or a member_access
(§11.6.5).

When a fixed-size buffer member is referenced as a simple name, the effect is the same as a member
access of the form this.I, where I is the fixed-size buffer member.

In a member access of the form E.I, if E is of a struct type and a member lookup of I in that struct type
identifies a fixed-size member, then E.I is evaluated an classified as follows:

• If the expression E.I does not occur in an unsafe context, a compile-time error occurs.

• If E is classified as a value, a compile-time error occurs.

• Otherwise, if E is a moveable variable (§22.4) and the expression E.I is not a fixed_pointer_initializer
(§22.7), a compile-time error occurs.

• Otherwise, E references a fixed variable and the result of the expression is a pointer to the first
element of the fixed-size buffer member I in E. The result is of type S*, where S is the element type
of I, and is classified as a value.

The subsequent elements of the fixed-size buffer can be accessed using pointer operations from the first
element. Unlike access to arrays, access to the elements of a fixed-size buffer is an unsafe operation and is
not range checked.

Example: The following declares and uses a struct with a fixed-size buffer member.

unsafe struct Font
{
 public int size;
 public fixed char name[32];
}

class Test
{
 unsafe static void PutString(string s, char* buffer, int bufSize)
 {
 int len = s.Length;
 if (len > bufSize)
 {
 len = bufSize;
 }
 for (int i = 0; i < len; i++)
 {
 buffer[i] = s[i];
 }
 for (int i = len; i < bufSize; i++)
 {
 buffer[i] = (char)0;
 }
 }

 unsafe static void Main()
 {
 Font f;
 f.size = 10;
 PutString("Times New Roman", f.name, 32);

Chapter 22 Unsafe code

521

 }
}

end example

22.8.4 Definite assignment checking

Fixed-size buffers are not subject to definite assignment-checking (§9.4), and fixed-size buffer members
are ignored for purposes of definite-assignment checking of struct type variables.

When the outermost containing struct variable of a fixed-size buffer member is a static variable, an
instance variable of a class instance, or an array element, the elements of the fixed-size buffer are
automatically initialized to their default values (§9.3). In all other cases, the initial content of a fixed-size
buffer is undefined.

22.9 Stack allocation
In an unsafe context, a local variable declaration (§12.6.2) may include a stack allocation initializer, which
allocates memory from the call stack.

stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression ']'
 ;

The unmanaged_type (§8.8) indicates the type of the items that will be stored in the newly allocated
location, and the expression indicates the number of these items. Taken together, these specify the
required allocation size. Since the size of a stack allocation cannot be negative, it is a compile-time error
to specify the number of items as a constant_expression that evaluates to a negative value.

A stack allocation initializer of the form stackalloc T[E] requires T to be an unmanaged type (§22.3) and E
to be an expression implicitly convertible to type int. The construct allocates E * sizeof(T) bytes from
the call stack and returns a pointer, of type T*, to the newly allocated block. If E is a negative value, then
the behavior is undefined. If E is zero, then no allocation is made, and the pointer returned is
implementation-defined. If there is not enough memory available to allocate a block of the given size, a
System.StackOverflowException is thrown.

The content of the newly allocated memory is undefined.

Stack allocation initializers are not permitted in catch or finally blocks (§12.11).

Note: There is no way to explicitly free memory allocated using stackalloc. end note

All stack-allocated memory blocks created during the execution of a function member are automatically
discarded when that function member returns.

Note: This corresponds to the alloca function, an extension commonly found in C and C++
implementations. end note

Example: In the following code

using System;

class Test
{
 static string IntToString(int value)
 {
 if (value == int.MinValue)
 {

ECMA-334

522

 return "-2147483648";
 }
 int n = value >= 0 ? value : -value;
 unsafe
 {
 char* buffer = stackalloc char[16];
 char* p = buffer + 16;
 do
 {
 *--p = (char)(n % 10 + '0');
 n /= 10;
 } while (n != 0);
 if (value < 0)
 {
 *--p = '-';
 }
 return new string(p, 0, (int)(buffer + 16 - p));
 }
 }

 static void Main()
 {
 Console.WriteLine(IntToString(12345));
 Console.WriteLine(IntToString(-999));
 }
}

a stackalloc initializer is used in the IntToString method to allocate a buffer of 16 characters on
the stack. The buffer is automatically discarded when the method returns.

end example

Except for the stackalloc operator, C# provides no predefined constructs for managing non-garbage
collected memory. Such services are typically provided by supporting class libraries or imported directly
from the underlying operating system.

End of conditionally normative text.

 A Grammar

523

A. Grammar

This clause is informative.

A.1 General
This annex contains the grammar productions found in the specification, including the optional ones for
unsafe code. Productions appear here in the same order in which they appear in the specification.

A.2 Lexical grammar
// Source: §6.3.1 General
DEFAULT : 'default' ;
NULL : 'null' ;
TRUE : 'true' ;
FALSE : 'false' ;
ASTERISK : '*' ;
SLASH : '/' ;

// Source: §6.3.1 General
input
 : input_section?
 ;

input_section
 : input_section_part+
 ;

input_section_part
 : input_element* New_Line
 | PP_Directive
 ;

input_element
 : Whitespace
 | Comment
 | token
 ;

// Source: §6.3.2 Line terminators
New_Line
 : New_Line_Character
 | '\u000D\u000A' // carriage return, line feed
 ;

// Source: §6.3.3 Comments
Comment
 : Single_Line_Comment
 | Delimited_Comment

ECMA-334

524

 ;

fragment Single_Line_Comment
 : '//' Input_Character*
 ;

fragment Input_Character
 // anything but New_Line_Character
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029')
 ;

fragment New_Line_Character
 : '\u000D' // carriage return
 | '\u000A' // line feed
 | '\u0085' // next line
 | '\u2028' // line separator
 | '\u2029' // paragraph separator
 ;

fragment Delimited_Comment
 : '/*' Delimited_Comment_Section* ASTERISK+ '/'
 ;

fragment Delimited_Comment_Section
 : SLASH
 | ASTERISK* Not_Slash_Or_Asterisk
 ;

fragment Not_Slash_Or_Asterisk
 : ~('/' | '*') // Any except SLASH or ASTERISK
 ;

// Source: §6.3.4 White space
Whitespace
 : [\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
 ;

// Source: §6.4.1 General
token
 : identifier
 | keyword
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal
 | operator_or_punctuator
 ;

// Source: §6.4.2 Unicode character escape sequences
fragment Unicode_Escape_Sequence
 : '\\u' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
 | '\\U' Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit

 A Grammar

525

Hex_Digit
 ;

// Source: §6.4.3 Identifiers
identifier
 : Simple_Identifier
 | contextual_keyword
 ;

Simple_Identifier
 : Available_Identifier
 | Escaped_Identifier
 ;

fragment Available_Identifier
 : Basic_Identifier // excluding keywords or contextual keywords, see note
below
 ;

fragment Escaped_Identifier
 // Includes keywords and contextual keywords prefixed by '@'. See note below.
 : '@' Basic_Identifier
 ;

fragment Basic_Identifier
 : Identifier_Start_Character Identifier_Part_Character*
 ;

fragment Identifier_Start_Character
 : Letter_Character
 | Underscore_Character
 ;

fragment Underscore_Character
 : '_' // underscore
 | '\\u005' [fF] // Unicode_Escape_Sequence for underscore
 ;

fragment Identifier_Part_Character
 : Letter_Character
 | Decimal_Digit_Character
 | Connecting_Character
 | Combining_Character
 | Formatting_Character
 ;

fragment Letter_Character
 // Category Letter, all subcategories; category Number, subcategory letter.
 : [\p{L}\p{Nl}]
 // Only escapes for categories L & Nl allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Combining_Character
 // Category Mark, subcategories non-spacing and spacing combining.

ECMA-334

526

 : [\p{Mn}\p{Mc}]
 // Only escapes for categories Mn & Mc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Decimal_Digit_Character
 // Category Number, subcategory decimal digit.
 : [\p{Nd}]
 // Only escapes for category Nd allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Connecting_Character
 // Category Punctuation, subcategory connector.
 : [\p{Pc}]
 // Only escapes for category Pc allowed. See note below.
 | Unicode_Escape_Sequence
 ;

fragment Formatting_Character
 // Category Other, subcategory format.
 : [\p{Cf}]
 // Only escapes for category Cf allowed, see note below.
 | Unicode_Escape_Sequence
 ;

// Source: §6.4.4 Keywords
keyword
 : 'abstract' | 'as' | 'base' | 'bool' | 'break'
 | 'byte' | 'case' | 'catch' | 'char' | 'checked'
 | 'class' | 'const' | 'continue' | 'decimal' | DEFAULT
 | 'delegate' | 'do' | 'double' | 'else' | 'enum'
 | 'event' | 'explicit' | 'extern' | FALSE | 'finally'
 | 'fixed' | 'float' | 'for' | 'foreach' | 'goto'
 | 'if' | 'implicit' | 'in' | 'int' | 'interface'
 | 'internal' | 'is' | 'lock' | 'long' | 'namespace'
 | 'new' | NULL | 'object' | 'operator' | 'out'
 | 'override' | 'params' | 'private' | 'protected' | 'public'
 | 'readonly' | 'ref' | 'return' | 'sbyte' | 'sealed'
 | 'short' | 'sizeof' | 'stackalloc' | 'static' | 'string'
 | 'struct' | 'switch' | 'this' | 'throw' | TRUE
 | 'try' | 'typeof' | 'uint' | 'ulong' | 'unchecked'
 | 'unsafe' | 'ushort' | 'using' | 'virtual' | 'void'
 | 'volatile' | 'while'
 ;

// Source: §6.4.4 Keywords
contextual_keyword
 : 'add' | 'alias' | 'ascending' | 'async' | 'await'
 | 'by' | 'descending' | 'dynamic' | 'equals' | 'from'
 | 'get' | 'global' | 'group' | 'into' | 'join'
 | 'let' | 'nameof' | 'on' | 'orderby' | 'partial'
 | 'remove' | 'select' | 'set' | 'value' | 'var'
 | 'when' | 'where' | 'yield'
 ;

 A Grammar

527

// Source: §6.4.5.1 General
literal
 : boolean_literal
 | Integer_Literal
 | Real_Literal
 | Character_Literal
 | String_Literal
 | null_literal
 ;

// Source: §6.4.5.2 Boolean literals
boolean_literal
 : TRUE
 | FALSE
 ;

// Source: §6.4.5.3 Integer literals
Integer_Literal
 : Decimal_Integer_Literal
 | Hexadecimal_Integer_Literal
 ;

fragment Decimal_Integer_Literal
 : Decimal_Digit+ Integer_Type_Suffix?
 ;

fragment Decimal_Digit
 : '0'..'9'
 ;

fragment Integer_Type_Suffix
 : 'U' | 'u' | 'L' | 'l' | 'UL' | 'Ul' | 'uL' | 'ul' | 'LU' | 'Lu' | 'lU' | 'lu'
 ;

fragment Hexadecimal_Integer_Literal
 : ('0x' | '0X') Hex_Digit+ Integer_Type_Suffix?
 ;

fragment Hex_Digit
 : '0'..'9' | 'A'..'F' | 'a'..'f'
 ;

// Source: §6.4.5.4 Real literals
Real_Literal
 : Decimal_Digit+ '.' Decimal_Digit+ Exponent_Part? Real_Type_Suffix?
 | '.' Decimal_Digit+ Exponent_Part? Real_Type_Suffix?
 | Decimal_Digit+ Exponent_Part Real_Type_Suffix?
 | Decimal_Digit+ Real_Type_Suffix
 ;

fragment Exponent_Part
 : ('e' | 'E') Sign? Decimal_Digit+
 ;

ECMA-334

528

fragment Sign
 : '+' | '-'
 ;

fragment Real_Type_Suffix
 : 'F' | 'f' | 'D' | 'd' | 'M' | 'm'
 ;

// Source: §6.4.5.5 Character literals
Character_Literal
 : '\'' Character '\''
 ;

fragment Character
 : Single_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Character
 : ~['\\\u000D\u000A\u0085\u2028\u2029] // anything but ', \, and
New_Line_Character
 ;

fragment Simple_Escape_Sequence
 : '\\\'' | '\\"' | '\\\\' | '\\0' | '\\a' | '\\b' | '\\f' | '\\n' | '\\r' |
'\\t' | '\\v'
 ;

fragment Hexadecimal_Escape_Sequence
 : '\\x' Hex_Digit Hex_Digit? Hex_Digit? Hex_Digit?
 ;

// Source: §6.4.5.6 String literals
String_Literal
 : Regular_String_Literal
 | Verbatim_String_Literal
 ;

fragment Regular_String_Literal
 : '"' Regular_String_Literal_Character* '"'
 ;

fragment Regular_String_Literal_Character
 : Single_Regular_String_Literal_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 ;

fragment Single_Regular_String_Literal_Character
 : ~["\\\u000D\u000A\u0085\u2028\u2029] // anything but ", \, and
New_Line_Character
 ;

 A Grammar

529

fragment Verbatim_String_Literal
 : '@"' Verbatim_String_Literal_Character* '"'
 ;

fragment Verbatim_String_Literal_Character
 : Single_Verbatim_String_Literal_Character
 | Quote_Escape_Sequence
 ;

fragment Single_Verbatim_String_Literal_Character
 : ~["] // anything but quotation mark (U+0022)
 ;

fragment Quote_Escape_Sequence
 : '""'
 ;

// Source: §6.4.5.7 The null literal
null_literal
 : NULL
 ;

// Source: §6.4.6 Operators and punctuators
operator_or_punctuator
 : '{' | '}' | '[' | ']' | '(' | ')' | '.' | ',' | ':' | ';'
 | '+' | '-' | ASTERISK | SLASH | '%' | '&' | '|' | '^' | '!' | '~'
 | '=' | '<' | '>' | '?' | '??' | '::' | '++' | '--' | '&&' | '||'
 | '->' | '==' | '!=' | '<=' | '>=' | '+=' | '-=' | '*=' | '/=' | '%='
 | '&=' | '|=' | '^=' | '<<' | '<<=' | '=>'
 ;

right_shift
 : '>' '>'
 ;

right_shift_assignment
 : '>' '>='
 ;

// Source: §6.5.1 General
PP_Directive
 : PP_Start PP_Kind PP_New_Line
 ;

fragment PP_Kind
 : PP_Declaration
 | PP_Conditional
 | PP_Line
 | PP_Diagnostic
 | PP_Region
 | PP_Pragma
 ;

// Only recognised at the beginning of a line

ECMA-334

530

fragment PP_Start
 : { getCharPositionInLine() == 0 }? PP_Whitespace? '#' PP_Whitespace? // see
note below
 ;

fragment PP_Whitespace
 : ([\p{Zs}] // any character with Unicode class Zs
 | '\u0009' // horizontal tab
 | '\u000B' // vertical tab
 | '\u000C' // form feed
)+
 ;

fragment PP_New_Line
 : PP_Whitespace? Single_Line_Comment? New_Line
 ;

// Source: §6.5.2 Conditional compilation symbols
fragment PP_Conditional_Symbol
 : Basic_Identifier // must not be equal to tokens TRUE or FALSE, see note below
 ;

// Source: §6.5.3 Pre-processing expressions
fragment PP_Expression
 : PP_Whitespace? PP_Or_Expression PP_Whitespace?
 ;

fragment PP_Or_Expression
 : PP_And_Expression (PP_Whitespace? '||' PP_Whitespace? PP_And_Expression)*
 ;

fragment PP_And_Expression
 : PP_Equality_Expression (PP_Whitespace? '&&' PP_Whitespace?
PP_Equality_Expression)*
 ;

fragment PP_Equality_Expression
 : PP_Unary_Expression (PP_Whitespace? ('==' | '!=') PP_Whitespace?
PP_Unary_Expression)*
 ;

fragment PP_Unary_Expression
 : PP_Primary_Expression
 | '!' PP_Whitespace? PP_Unary_Expression
 ;

fragment PP_Primary_Expression
 : TRUE
 | FALSE
 | PP_Conditional_Symbol
 | '(' PP_Whitespace? PP_Expression PP_Whitespace? ')'
 ;

// Source: §6.5.4 Definition directives
fragment PP_Declaration

 A Grammar

531

 : 'define' PP_Whitespace PP_Conditional_Symbol
 | 'undef' PP_Whitespace PP_Conditional_Symbol
 ;

// Source: §6.5.5 Conditional compilation directives
fragment PP_Conditional
 : PP_If_Section
 | PP_Elif_Section
 | PP_Else_Section
 | PP_Endif
 ;

fragment PP_If_Section
 : 'if' PP_Whitespace PP_Expression
 ;

fragment PP_Elif_Section
 : 'elif' PP_Whitespace PP_Expression
 ;

fragment PP_Else_Section
 : 'else'
 ;

fragment PP_Endif
 : 'endif'
 ;

// Source: §6.5.6 Diagnostic directives
fragment PP_Diagnostic
 : 'error' PP_Message?
 | 'warning' PP_Message?
 ;

fragment PP_Message
 : PP_Whitespace Input_Character*
 ;

// Source: §6.5.7 Region directives
fragment PP_Region
 : PP_Start_Region
 | PP_End_Region
 ;

fragment PP_Start_Region
 : 'region' PP_Message?
 ;

fragment PP_End_Region
 : 'endregion' PP_Message?
 ;

// Source: §6.5.8 Line directives
fragment PP_Line
 : 'line' PP_Whitespace PP_Line_Indicator

ECMA-334

532

 ;

fragment PP_Line_Indicator
 : Decimal_Digit+ PP_Whitespace PP_Compilation_Unit_Name
 | Decimal_Digit+
 | DEFAULT
 | 'hidden'
 ;

fragment PP_Compilation_Unit_Name
 : '"' PP_Compilation_Unit_Name_Character+ '"'
 ;

fragment PP_Compilation_Unit_Name_Character
 // Any Input_Character except "
 : ~('\u000D' | '\u000A' | '\u0085' | '\u2028' | '\u2029' | '#')
 ;

// Source: §6.5.9 Pragma directives
fragment PP_Pragma
 : 'pragma' PP_Pragma_Text?
 ;

fragment PP_Pragma_Text
 : PP_Whitespace Input_Character*
 ;

A.3 Syntactic grammar
// Source: §7.8.1 General
namespace_name
 : namespace_or_type_name
 ;

type_name
 : namespace_or_type_name
 ;

namespace_or_type_name
 : identifier type_argument_list?
 | namespace_or_type_name '.' identifier type_argument_list?
 | qualified_alias_member
 ;

// Source: §8.1 General
type
 : reference_type
 | value_type
 | type_parameter
 | pointer_type // unsafe code support
 ;

// Source: §8.2.1 General
reference_type

 A Grammar

533

 : class_type
 | interface_type
 | array_type
 | delegate_type
 | 'dynamic'
 ;

class_type
 : type_name
 | 'object'
 | 'string'
 ;

interface_type
 : type_name
 ;

array_type
 : non_array_type rank_specifier+
 ;

non_array_type
 : value_type
 | class_type
 | interface_type
 | delegate_type
 | 'dynamic'
 | type_parameter
 | pointer_type // unsafe code support
 ;

rank_specifier
 : '[' ','* ']'
 ;

delegate_type
 : type_name
 ;

// Source: §8.3.1 General
value_type
 : non_nullable_value_type
 | nullable_value_type
 ;

non_nullable_value_type
 : struct_type
 | enum_type
 ;

struct_type
 : type_name
 | simple_type
 ;

ECMA-334

534

simple_type
 : numeric_type
 | 'bool'
 ;

numeric_type
 : integral_type
 | floating_point_type
 | 'decimal'
 ;

integral_type
 : 'sbyte'
 | 'byte'
 | 'short'
 | 'ushort'
 | 'int'
 | 'uint'
 | 'long'
 | 'ulong'
 | 'char'
 ;

floating_point_type
 : 'float'
 | 'double'
 ;

enum_type
 : type_name
 ;

nullable_value_type
 : non_nullable_value_type '?'
 ;

// Source: §8.4.2 Type arguments
type_argument_list
 : '<' type_arguments '>'
 ;

type_arguments
 : type_argument (',' type_argument)*
 ;

type_argument
 : type
 ;

// Source: §8.5 Type parameters
type_parameter
 : identifier
 ;

// Source: §8.8 Unmanaged types

 A Grammar

535

unmanaged_type
 : value_type
 | pointer_type // unsafe code support
 ;

// Source: §9.5 Variable references
variable_reference
 : expression
 ;

// Source: §11.6.2.1 General
argument_list
 : argument (',' argument)*
 ;

argument
 : argument_name? argument_value
 ;

argument_name
 : identifier ':'
 ;

argument_value
 : expression
 | 'ref' variable_reference
 | 'out' variable_reference
 ;

// Source: §11.7.1 General
primary_expression
 : primary_no_array_creation_expression
 | array_creation_expression
 ;

primary_no_array_creation_expression
 : literal
 | interpolated_string_expression
 | simple_name
 | parenthesized_expression
 | member_access
 | null_conditional_member_access
 | invocation_expression
 | element_access
 | null_conditional_element_access
 | this_access
 | base_access
 | post_increment_expression
 | post_decrement_expression
 | object_creation_expression
 | delegate_creation_expression
 | anonymous_object_creation_expression
 | typeof_expression
 | sizeof_expression
 | checked_expression

ECMA-334

536

 | unchecked_expression
 | default_value_expression
 | nameof_expression
 | anonymous_method_expression
 | pointer_member_access // unsafe code support
 | pointer_element_access // unsafe code support
 ;

// Source: §11.7.3 Interpolated string expressions
interpolated_string_expression
 : interpolated_regular_string_expression
 | interpolated_verbatim_string_expression
 ;

// interpolated regular string expressions

interpolated_regular_string_expression
 : Interpolated_Regular_String_Start Interpolated_Regular_String_Mid?
 ('{' regular_interpolation '}' Interpolated_Regular_String_Mid?)*
 Interpolated_Regular_String_End
 ;

regular_interpolation
 : expression (',' interpolation_minimum_width)? Regular_Interpolation_Format?
 ;

interpolation_minimum_width
 : constant_expression
 ;

Interpolated_Regular_String_Start
 : '$"'
 ;

// the following three lexical rules are context sensitive, see details below

Interpolated_Regular_String_Mid
 : Interpolated_Regular_String_Element+
 ;

Regular_Interpolation_Format
 : ':' Interpolated_Regular_String_Element+
 ;

Interpolated_Regular_String_End
 : '"'
 ;

fragment Interpolated_Regular_String_Element
 : Interpolated_Regular_String_Character
 | Simple_Escape_Sequence
 | Hexadecimal_Escape_Sequence
 | Unicode_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence

 A Grammar

537

 ;

fragment Interpolated_Regular_String_Character
 // Any character except " (U+0022), \\ (U+005C),
 // { (U+007B), } (U+007D), and New_Line_Character.
 : ~["\\{}\u000D\u000A\u0085\u2028\u2029]
 ;

// interpolated verbatim string expressions

interpolated_verbatim_string_expression
 : Interpolated_Verbatim_String_Start Interpolated_Verbatim_String_Mid?
 ('{' verbatim_interpolation '}' Interpolated_Verbatim_String_Mid?)*
 Interpolated_Verbatim_String_End
 ;

verbatim_interpolation
 : expression (',' interpolation_minimum_width)? Verbatim_Interpolation_Format?
 ;

Interpolated_Verbatim_String_Start
 : '$@"'
 ;

// the following three lexical rules are context sensitive, see details below

Interpolated_Verbatim_String_Mid
 : Interpolated_Verbatim_String_Element+
 ;

Verbatim_Interpolation_Format
 : ':' Interpolated_Verbatim_String_Element+
 ;

Interpolated_Verbatim_String_End
 : '"'
 ;

fragment Interpolated_Verbatim_String_Element
 : Interpolated_Verbatim_String_Character
 | Quote_Escape_Sequence
 | Open_Brace_Escape_Sequence
 | Close_Brace_Escape_Sequence
 ;

fragment Interpolated_Verbatim_String_Character
 : ~["{}] // Any character except " (U+0022), { (U+007B) and } (U+007D)
 ;

// lexical fragments used by both regular and verbatim interpolated strings

fragment Open_Brace_Escape_Sequence
 : '{{'
 ;

ECMA-334

538

fragment Close_Brace_Escape_Sequence
 : '}}'
 ;

// Source: §11.7.4 Simple names
simple_name
 : identifier type_argument_list?
 ;

// Source: §11.7.5 Parenthesized expressions
parenthesized_expression
 : '(' expression ')'
 ;

// Source: §11.7.6.1 General
member_access
 : primary_expression '.' identifier type_argument_list?
 | predefined_type '.' identifier type_argument_list?
 | qualified_alias_member '.' identifier type_argument_list?
 ;

predefined_type
 : 'bool' | 'byte' | 'char' | 'decimal' | 'double' | 'float' | 'int' |
'long'
 | 'object' | 'sbyte' | 'short' | 'string' | 'uint' | 'ulong' | 'ushort'
 ;

// Source: §11.7.7 Null Conditional Member Access
null_conditional_member_access
 : primary_expression '?' '.' identifier type_argument_list? dependent_access*
 ;

dependent_access
 : '.' identifier type_argument_list? // member access
 | '[' argument_list ']' // element access
 | '(' argument_list? ')' // invocation
 ;

null_conditional_projection_initializer
 : primary_expression '?' '.' identifier type_argument_list?
 ;

// Source: §11.7.8.1 General
invocation_expression
 : primary_expression '(' argument_list? ')'
 ;

// Source: §11.7.9 Null Conditional Invocation Expression
null_conditional_invocation_expression
 : null_conditional_member_access '(' argument_list? ')'
 | null_conditional_element_access '(' argument_list? ')'
 ;

// Source: §11.7.10.1 General
element_access

 A Grammar

539

 : primary_no_array_creation_expression '[' argument_list ']'
 ;

// Source: §11.7.11 Null Conditional Element Access
null_conditional_element_access
 : primary_no_array_creation_expression '?' '[' argument_list ']'
dependent_access*
 ;

// Source: §11.7.12 This access
this_access
 : 'this'
 ;

// Source: §11.7.13 Base access
base_access
 : 'base' '.' identifier type_argument_list?
 | 'base' '[' argument_list ']'
 ;

// Source: §11.7.14 Postfix increment and decrement operators
post_increment_expression
 : primary_expression '++'
 ;

post_decrement_expression
 : primary_expression '--'
 ;

// Source: §11.7.15.2 Object creation expressions
object_creation_expression
 : 'new' type '(' argument_list? ')' object_or_collection_initializer?
 | 'new' type object_or_collection_initializer
 ;

object_or_collection_initializer
 : object_initializer
 | collection_initializer
 ;

// Source: §11.7.15.3 Object initializers
object_initializer
 : '{' member_initializer_list? '}'
 | '{' member_initializer_list ',' '}'
 ;

member_initializer_list
 : member_initializer (',' member_initializer)*
 ;

member_initializer
 : initializer_target '=' initializer_value
 ;

initializer_target

ECMA-334

540

 : identifier
 | '[' argument_list ']'
 ;

initializer_value
 : expression
 | object_or_collection_initializer
 ;

// Source: §11.7.15.4 Collection initializers
collection_initializer
 : '{' element_initializer_list '}'
 | '{' element_initializer_list ',' '}'
 ;

element_initializer_list
 : element_initializer (',' element_initializer)*
 ;

element_initializer
 : non_assignment_expression
 | '{' expression_list '}'
 ;

expression_list
 : expression
 | expression_list ',' expression
 ;

// Source: §11.7.15.5 Array creation expressions
array_creation_expression
 : 'new' non_array_type '[' expression_list ']' rank_specifier*
array_initializer?
 | 'new' array_type array_initializer
 | 'new' rank_specifier array_initializer
 ;

// Source: §11.7.15.6 Delegate creation expressions
delegate_creation_expression
 : 'new' delegate_type '(' expression ')'
 ;

// Source: §11.7.15.7 Anonymous object creation expressions
anonymous_object_creation_expression
 : 'new' anonymous_object_initializer
 ;

anonymous_object_initializer
 : '{' member_declarator_list? '}'
 | '{' member_declarator_list ',' '}'
 ;

member_declarator_list
 : member_declarator (',' member_declarator)*
 ;

 A Grammar

541

member_declarator
 : simple_name
 | member_access
 | null_conditional_projection_initializer
 | base_access
 | identifier '=' expression
 ;

// Source: §11.7.16 The typeof operator
typeof_expression
 : 'typeof' '(' type ')'
 | 'typeof' '(' unbound_type_name ')'
 | 'typeof' '(' 'void' ')'
 ;

unbound_type_name
 : identifier generic_dimension_specifier?
 | identifier '::' identifier generic_dimension_specifier?
 | unbound_type_name '.' identifier generic_dimension_specifier?
 ;

generic_dimension_specifier
 : '<' comma* '>'
 ;

comma
 : ','
 ;

// Source: §11.7.17 The sizeof operator
sizeof_expression
 : 'sizeof' '(' unmanaged_type ')'
 ;

// Source: §11.7.18 The checked and unchecked operators
checked_expression
 : 'checked' '(' expression ')'
 ;

unchecked_expression
 : 'unchecked' '(' expression ')'
 ;

// Source: §11.7.19 Default value expressions
default_value_expression
 : 'default' '(' type ')'
 ;

// Source: §11.7.20 Nameof expressions
nameof_expression
 : 'nameof' '(' named_entity ')'
 ;

ECMA-334

542

named_entity
 : named_entity_target ('.' identifier type_argument_list?)*
 ;

named_entity_target
 : simple_name
 | 'this'
 | 'base'
 | predefined_type
 | qualified_alias_member
 ;

// Source: §11.8.1 General
unary_expression
 : primary_expression
 | '+' unary_expression
 | '-' unary_expression
 | '!' unary_expression
 | '~' unary_expression
 | pre_increment_expression
 | pre_decrement_expression
 | cast_expression
 | await_expression
 | pointer_indirection_expression // unsafe code support
 | addressof_expression // unsafe code support
 ;

// Source: §11.8.6 Prefix increment and decrement operators
pre_increment_expression
 : '++' unary_expression
 ;

pre_decrement_expression
 : '--' unary_expression
 ;

// Source: §11.8.7 Cast expressions
cast_expression
 : '(' type ')' unary_expression
 ;

// Source: §11.8.8.1 General
await_expression
 : 'await' unary_expression
 ;

// Source: §11.9.1 General
multiplicative_expression
 : unary_expression
 | multiplicative_expression '*' unary_expression
 | multiplicative_expression '/' unary_expression
 | multiplicative_expression '%' unary_expression
 ;

additive_expression

 A Grammar

543

 : multiplicative_expression
 | additive_expression '+' multiplicative_expression
 | additive_expression '-' multiplicative_expression
 ;

// Source: §11.10 Shift operators
shift_expression
 : additive_expression
 | shift_expression '<<' additive_expression
 | shift_expression right_shift additive_expression
 ;

// Source: §11.11.1 General
relational_expression
 : shift_expression
 | relational_expression '<' shift_expression
 | relational_expression '>' shift_expression
 | relational_expression '<=' shift_expression
 | relational_expression '>=' shift_expression
 | relational_expression 'is' type
 | relational_expression 'as' type
 ;

equality_expression
 : relational_expression
 | equality_expression '==' relational_expression
 | equality_expression '!=' relational_expression
 ;

// Source: §11.12.1 General
and_expression
 : equality_expression
 | and_expression '&' equality_expression
 ;

exclusive_or_expression
 : and_expression
 | exclusive_or_expression '^' and_expression
 ;

inclusive_or_expression
 : exclusive_or_expression
 | inclusive_or_expression '|' exclusive_or_expression
 ;

// Source: §11.13.1 General
conditional_and_expression
 : inclusive_or_expression
 | conditional_and_expression '&&' inclusive_or_expression
 ;

conditional_or_expression
 : conditional_and_expression
 | conditional_or_expression '||' conditional_and_expression
 ;

ECMA-334

544

// Source: §11.14 The null coalescing operator
null_coalescing_expression
 : conditional_or_expression
 | conditional_or_expression '??' null_coalescing_expression
 ;

// Source: §11.15 Conditional operator
conditional_expression
 : null_coalescing_expression
 | null_coalescing_expression '?' expression ':' expression
 ;

// Source: §11.16.1 General
lambda_expression
 : 'async'? anonymous_function_signature '=>' anonymous_function_body
 ;

anonymous_method_expression
 : 'async'? 'delegate' explicit_anonymous_function_signature? block
 ;

anonymous_function_signature
 : explicit_anonymous_function_signature
 | implicit_anonymous_function_signature
 ;

explicit_anonymous_function_signature
 : '(' explicit_anonymous_function_parameter_list? ')'
 ;

explicit_anonymous_function_parameter_list
 : explicit_anonymous_function_parameter (','
explicit_anonymous_function_parameter)*
 ;

explicit_anonymous_function_parameter
 : anonymous_function_parameter_modifier? type identifier
 ;

anonymous_function_parameter_modifier
 : 'ref'
 | 'out'
 ;

implicit_anonymous_function_signature
 : '(' implicit_anonymous_function_parameter_list? ')'
 | implicit_anonymous_function_parameter
 ;

implicit_anonymous_function_parameter_list
 : implicit_anonymous_function_parameter (','
implicit_anonymous_function_parameter)*
 ;

 A Grammar

545

implicit_anonymous_function_parameter
 : identifier
 ;

anonymous_function_body
 : null_conditional_invocation_expression
 | expression
 | block
 ;

// Source: §11.17.1 General
query_expression
 : from_clause query_body
 ;

from_clause
 : 'from' type? identifier 'in' expression
 ;

query_body
 : query_body_clauses? select_or_group_clause query_continuation?
 ;

query_body_clauses
 : query_body_clause
 | query_body_clauses query_body_clause
 ;

query_body_clause
 : from_clause
 | let_clause
 | where_clause
 | join_clause
 | join_into_clause
 | orderby_clause
 ;

let_clause
 : 'let' identifier '=' expression
 ;

where_clause
 : 'where' boolean_expression
 ;

join_clause
 : 'join' type? identifier 'in' expression 'on' expression 'equals' expression
 ;

join_into_clause
 : 'join' type? identifier 'in' expression 'on' expression 'equals' expression
 'into' identifier
 ;

orderby_clause

ECMA-334

546

 : 'orderby' orderings
 ;

orderings
 : ordering (',' ordering)*
 ;

ordering
 : expression ordering_direction?
 ;

ordering_direction
 : 'ascending'
 | 'descending'
 ;

select_or_group_clause
 : select_clause
 | group_clause
 ;

select_clause
 : 'select' expression
 ;

group_clause
 : 'group' expression 'by' expression
 ;

query_continuation
 : 'into' identifier query_body
 ;

// Source: §11.18.1 General
assignment
 : unary_expression assignment_operator expression
 ;

assignment_operator
 : '=' | '+=' | '-=' | '*=' | '/=' | '%=' | '&=' | '|=' | '^=' | '<<='
 | right_shift_assignment
 ;

// Source: §11.19 Expression
expression
 : non_assignment_expression
 | assignment
 ;

non_assignment_expression
 : conditional_expression
 | lambda_expression
 | query_expression
 ;

 A Grammar

547

// Source: §11.20 Constant expressions
constant_expression
 : expression
 ;

// Source: §11.21 Boolean expressions
boolean_expression
 : expression
 ;

// Source: §12.1 General
statement
 : labeled_statement
 | declaration_statement
 | embedded_statement
 ;

embedded_statement
 : block
 | empty_statement
 | expression_statement
 | selection_statement
 | iteration_statement
 | jump_statement
 | try_statement
 | checked_statement
 | unchecked_statement
 | lock_statement
 | using_statement
 | yield_statement
 | unsafe_statement // unsafe code support
 | fixed_statement // unsafe code support
 ;

// Source: §12.3.1 General
block
 : '{' statement_list? '}'
 ;

// Source: §12.3.2 Statement lists
statement_list
 : statement+
 ;

// Source: §12.4 The empty statement
empty_statement
 : ';'
 ;

// Source: §12.5 Labeled statements
labeled_statement
 : identifier ':' statement
 ;

// Source: §12.6.1 General

ECMA-334

548

declaration_statement
 : local_variable_declaration ';'
 | local_constant_declaration ';'
 ;

// Source: §12.6.2 Local variable declarations
local_variable_declaration
 : local_variable_type local_variable_declarators
 ;

local_variable_type
 : type
 | 'var'
 ;

local_variable_declarators
 : local_variable_declarator
 | local_variable_declarators ',' local_variable_declarator
 ;

local_variable_declarator
 : identifier
 | identifier '=' local_variable_initializer
 ;

local_variable_initializer
 : expression
 | array_initializer
 | stackalloc_initializer // unsafe code support
 ;

// Source: §12.6.3 Local constant declarations
local_constant_declaration
 : 'const' type constant_declarators
 ;

constant_declarators
 : constant_declarator (',' constant_declarator)*
 ;

constant_declarator
 : identifier '=' constant_expression
 ;

// Source: §12.7 Expression statements
expression_statement
 : statement_expression ';'
 ;

statement_expression
 : null_conditional_invocation_expression
 | invocation_expression
 | object_creation_expression
 | assignment
 | post_increment_expression

 A Grammar

549

 | post_decrement_expression
 | pre_increment_expression
 | pre_decrement_expression
 | await_expression
 ;

// Source: §12.8.1 General
selection_statement
 : if_statement
 | switch_statement
 ;

// Source: §12.8.2 The if statement
if_statement
 : 'if' '(' boolean_expression ')' embedded_statement
 | 'if' '(' boolean_expression ')' embedded_statement 'else' embedded_statement
 ;

// Source: §12.8.3 The switch statement
switch_statement
 : 'switch' '(' expression ')' switch_block
 ;

switch_block
 : '{' switch_section* '}'
 ;

switch_section
 : switch_label+ statement_list
 ;

switch_label
 : 'case' constant_expression ':'
 | 'default' ':'
 ;

// Source: §12.9.1 General
iteration_statement
 : while_statement
 | do_statement
 | for_statement
 | foreach_statement
 ;

// Source: §12.9.2 The while statement
while_statement
 : 'while' '(' boolean_expression ')' embedded_statement
 ;

// Source: §12.9.3 The do statement
do_statement
 : 'do' embedded_statement 'while' '(' boolean_expression ')' ';'
 ;

// Source: §12.9.4 The for statement

ECMA-334

550

for_statement
 : 'for' '(' for_initializer? ';' for_condition? ';' for_iterator? ')'
embedded_statement
 ;

for_initializer
 : local_variable_declaration
 | statement_expression_list
 ;

for_condition
 : boolean_expression
 ;

for_iterator
 : statement_expression_list
 ;

statement_expression_list
 : statement_expression (',' statement_expression)*
 ;

// Source: §12.9.5 The foreach statement
foreach_statement
 : 'foreach' '(' local_variable_type identifier 'in' expression ')'
embedded_statement
 ;

// Source: §12.10.1 General
jump_statement
 : break_statement
 | continue_statement
 | goto_statement
 | return_statement
 | throw_statement
 ;

// Source: §12.10.2 The break statement
break_statement
 : 'break' ';'
 ;

// Source: §12.10.3 The continue statement
continue_statement
 : 'continue' ';'
 ;

// Source: §12.10.4 The goto statement
goto_statement
 : 'goto' identifier ';'
 | 'goto' 'case' constant_expression ';'
 | 'goto' 'default' ';'
 ;

// Source: §12.10.5 The return statement

 A Grammar

551

return_statement
 : 'return' expression? ';'
 ;

// Source: §12.10.6 The throw statement
throw_statement
 : 'throw' expression? ';'
 ;

// Source: §12.11 The try statement
try_statement
 : 'try' block catch_clauses
 | 'try' block catch_clauses* finally_clause
 ;

catch_clauses
 : specific_catch_clause+
 | specific_catch_clause* general_catch_clause
 ;

specific_catch_clause
 : 'catch' exception_specifier exception_filter? block
 | 'catch' exception_filter block
 ;

exception_specifier
 : '(' type identifier? ')'
 ;

exception_filter
 : 'when' '(' boolean_expression ')'
 ;

general_catch_clause
 : 'catch' block
 ;

finally_clause
 : 'finally' block
 ;

// Source: §12.12 The checked and unchecked statements
checked_statement
 : 'checked' block
 ;

unchecked_statement
 : 'unchecked' block
 ;

// Source: §12.13 The lock statement
lock_statement
 : 'lock' '(' expression ')' embedded_statement
 ;

ECMA-334

552

// Source: §12.14 The using statement
using_statement
 : 'using' '(' resource_acquisition ')' embedded_statement
 ;

resource_acquisition
 : local_variable_declaration
 | expression
 ;

// Source: §12.15 The yield statement
yield_statement
 : 'yield' 'return' expression ';'
 | 'yield' 'break' ';'
 ;

// Source: §13.2 Compilation units
compilation_unit
 : extern_alias_directive* using_directive* global_attributes?
namespace_member_declaration*
 ;

// Source: §13.3 Namespace declarations
namespace_declaration
 : 'namespace' qualified_identifier namespace_body ';'?
 ;

qualified_identifier
 : identifier ('.' identifier)*
 ;

namespace_body
 : '{' extern_alias_directive* using_directive* namespace_member_declaration*
'}'
 ;

// Source: §13.4 Extern alias directives
extern_alias_directive
 : 'extern' 'alias' identifier ';'
 ;

// Source: §13.5.1 General
using_directive
 : using_alias_directive
 | using_namespace_directive
 | using_static_directive
 ;

// Source: §13.5.2 Using alias directives
using_alias_directive
 : 'using' identifier '=' namespace_or_type_name ';'
 ;

// Source: §13.5.3 Using namespace directives
using_namespace_directive

 A Grammar

553

 : 'using' namespace_name ';'
 ;

// Source: §13.5.4 Using static directives
using_static_directive
 : 'using' 'static' type_name ';'
 ;

// Source: §13.6 Namespace member declarations
namespace_member_declaration
 : namespace_declaration
 | type_declaration
 ;

// Source: §13.7 Type declarations
type_declaration
 : class_declaration
 | struct_declaration
 | interface_declaration
 | enum_declaration
 | delegate_declaration
 ;

// Source: §13.8.1 General
qualified_alias_member
 : identifier '::' identifier type_argument_list?
 ;

// Source: §14.2.1 General
class_declaration
 : attributes? class_modifier* 'partial'? 'class' identifier type_parameter_list?
 class_base? type_parameter_constraints_clause* class_body ';'?
 ;

// Source: §14.2.2.1 General
class_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'abstract'
 | 'sealed'
 | 'static'
 | unsafe_modifier // unsafe code support
 ;

// Source: §14.2.3 Type parameters
type_parameter_list
 : '<' type_parameters '>'
 ;

type_parameters
 : attributes? type_parameter
 | type_parameters ',' attributes? type_parameter

ECMA-334

554

 ;

// Source: §14.2.4.1 General
class_base
 : ':' class_type
 | ':' interface_type_list
 | ':' class_type ',' interface_type_list
 ;

interface_type_list
 : interface_type (',' interface_type)*
 ;

// Source: §14.2.5 Type parameter constraints
type_parameter_constraints_clauses
 : type_parameter_constraints_clause
 | type_parameter_constraints_clauses type_parameter_constraints_clause
 ;

type_parameter_constraints_clause
 : 'where' type_parameter ':' type_parameter_constraints
 ;

type_parameter_constraints
 : primary_constraint
 | secondary_constraints
 | constructor_constraint
 | primary_constraint ',' secondary_constraints
 | primary_constraint ',' constructor_constraint
 | secondary_constraints ',' constructor_constraint
 | primary_constraint ',' secondary_constraints ',' constructor_constraint
 ;

primary_constraint
 : class_type
 | 'class'
 | 'struct'
 ;

secondary_constraints
 : interface_type
 | type_parameter
 | secondary_constraints ',' interface_type
 | secondary_constraints ',' type_parameter
 ;

constructor_constraint
 : 'new' '(' ')'
 ;

// Source: §14.2.6 Class body
class_body
 : '{' class_member_declaration* '}'
 ;

 A Grammar

555

// Source: §14.3.1 General
class_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | finalizer_declaration
 | static_constructor_declaration
 | type_declaration
 ;

// Source: §14.4 Constants
constant_declaration
 : attributes? constant_modifier* 'const' type constant_declarators ';'
 ;

constant_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

// Source: §14.5.1 General
field_declaration
 : attributes? field_modifier* type variable_declarators ';'
 ;

field_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'readonly'
 | 'volatile'
 | unsafe_modifier // unsafe code support
 ;

variable_declarators
 : variable_declarator (',' variable_declarator)*
 ;

variable_declarator
 : identifier ('=' variable_initializer)?
 ;

// Source: §14.6.1 General
method_declaration

ECMA-334

556

 : method_header method_body
 ;

method_header
 : attributes? method_modifier* 'partial'? return_type member_name
type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause*
 ;

method_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | 'async'
 | unsafe_modifier // unsafe code support
 ;

return_type
 : type
 | 'void'
 ;

member_name
 : identifier
 | interface_type '.' identifier
 ;

method_body
 : block
 | '=>' null_conditional_invocation_expression ';'
 | '=>' expression ';'
 | ';'
 ;

// Source: §14.6.2.1 General
formal_parameter_list
 : fixed_parameters
 | fixed_parameters ',' parameter_array
 | parameter_array
 ;

fixed_parameters
 : fixed_parameter (',' fixed_parameter)*
 ;

fixed_parameter
 : attributes? parameter_modifier? type identifier default_argument?

 A Grammar

557

 ;

default_argument
 : '=' expression
 ;

parameter_modifier
 : parameter_mode_modifier
 | 'this'
 ;

parameter_mode_modifier
 : 'ref'
 | 'out'
 ;

parameter_array
 : attributes? 'params' array_type identifier
 ;

// Source: §14.7.1 General
property_declaration
 : attributes? property_modifier* type member_name property_body
 ;

property_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

property_body
 : '{' accessor_declarations '}' property_initializer?
 | '=>' expression ';'
 ;

property_initializer
 : '=' variable_initializer ';'
 ;

// Source: §14.7.3 Accessors
accessor_declarations
 : get_accessor_declaration set_accessor_declaration?
 | set_accessor_declaration get_accessor_declaration?
 ;

ECMA-334

558

get_accessor_declaration
 : attributes? accessor_modifier? 'get' accessor_body
 ;

set_accessor_declaration
 : attributes? accessor_modifier? 'set' accessor_body
 ;

accessor_modifier
 : 'protected'
 | 'internal'
 | 'private'
 | 'protected' 'internal'
 | 'internal' 'protected'
 ;

accessor_body
 : block
 | ';'
 ;

// Source: §14.8.1 General
event_declaration
 : attributes? event_modifier* 'event' type variable_declarators ';'
 | attributes? event_modifier* 'event' type member_name '{'
event_accessor_declarations '}'
 ;

event_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'static'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

event_accessor_declarations
 : add_accessor_declaration remove_accessor_declaration
 | remove_accessor_declaration add_accessor_declaration
 ;

add_accessor_declaration
 : attributes? 'add' block
 ;

remove_accessor_declaration
 : attributes? 'remove' block
 ;

 A Grammar

559

// Source: §14.9 Indexers
indexer_declaration
 : attributes? indexer_modifier* indexer_declarator indexer_body
 ;

indexer_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'virtual'
 | 'sealed'
 | 'override'
 | 'abstract'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

indexer_declarator
 : type 'this' '[' formal_parameter_list ']'
 | type interface_type '.' 'this' '[' formal_parameter_list ']'
 ;

indexer_body
 : '{' accessor_declarations '}'
 | '=>' expression ';'
 ;

// Source: §14.10.1 General
operator_declaration
 : attributes? operator_modifier+ operator_declarator operator_body
 ;

operator_modifier
 : 'public'
 | 'static'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

operator_declarator
 : unary_operator_declarator
 | binary_operator_declarator
 | conversion_operator_declarator
 ;

unary_operator_declarator
 : type 'operator' overloadable_unary_operator '(' fixed_parameter ')'
 ;

overloadable_unary_operator
 : '+' | '-' | '!' | '~' | '++' | '--' | 'true' | 'false'
 ;

ECMA-334

560

binary_operator_declarator
 : type 'operator' overloadable_binary_operator '(' fixed_parameter ','
fixed_parameter ')'
 ;

overloadable_binary_operator
 : '+' | '-' | '*' | '/' | '%' | '&' | '|' | '^' | '<<'
 | right_shift | '==' | '!=' | '>' | '<' | '>=' | '<='
 ;

conversion_operator_declarator
 : 'implicit' 'operator' type '(' fixed_parameter ')'
 | 'explicit' 'operator' type '(' fixed_parameter ')'
 ;

operator_body
 : block
 | '=>' expression ';'
 | ';'
 ;

// Source: §14.11.1 General
constructor_declaration
 : attributes? constructor_modifier* constructor_declarator constructor_body
 ;

constructor_modifier
 : 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'extern'
 | unsafe_modifier // unsafe code support
 ;

constructor_declarator
 : identifier '(' formal_parameter_list? ')' constructor_initializer?
 ;

constructor_initializer
 : ':' 'base' '(' argument_list? ')'
 | ':' 'this' '(' argument_list? ')'
 ;

constructor_body
 : block
 | ';'
 ;

// Source: §14.12 Static constructors
static_constructor_declaration
 : attributes? static_constructor_modifiers identifier '(' ')'
static_constructor_body

 A Grammar

561

 ;

static_constructor_modifiers
 : 'static'
 | 'static' 'extern' unsafe_modifier?
 | 'static' unsafe_modifier 'extern'?
 | 'extern' 'static' unsafe_modifier?
 | 'extern' unsafe_modifier 'static'
 | unsafe_modifier 'static' 'extern'?
 | unsafe_modifier 'extern' 'static'
 ;

static_constructor_body
 : block
 | ';'
 ;

// Source: §14.13 Finalizers
finalizer_declaration
 : attributes? '~' identifier '(' ')' finalizer_body
 | attributes? 'extern' unsafe_modifier? '~' identifier '(' ')' finalizer_body
 | attributes? unsafe_modifier 'extern'? '~' identifier '(' ')' finalizer_body
 ;

finalizer_body
 : block
 | ';'
 ;

// Source: §15.2.1 General
struct_declaration
 : attributes? struct_modifier* 'partial'? 'struct' identifier
type_parameter_list?
 struct_interfaces? type_parameter_constraints_clause* struct_body ';'?
 ;

// Source: §15.2.2 Struct modifiers
struct_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

// Source: §15.2.4 Struct interfaces
struct_interfaces
 : ':' interface_type_list
 ;

// Source: §15.2.5 Struct body
struct_body
 : '{' struct_member_declaration* '}'
 ;

ECMA-334

562

// Source: §15.3 Struct members
struct_member_declaration
 : constant_declaration
 | field_declaration
 | method_declaration
 | property_declaration
 | event_declaration
 | indexer_declaration
 | operator_declaration
 | constructor_declaration
 | static_constructor_declaration
 | type_declaration
 | fixed_size_buffer_declaration // unsafe code support
 ;

// Source: §16.7 Array initializers
array_initializer
 : '{' variable_initializer_list? '}'
 | '{' variable_initializer_list ',' '}'
 ;

variable_initializer_list
 : variable_initializer (',' variable_initializer)*
 ;

variable_initializer
 : expression
 | array_initializer
 ;

// Source: §17.2.1 General
interface_declaration
 : attributes? interface_modifier* 'partial'? 'interface'
 identifier variant_type_parameter_list? interface_base?
 type_parameter_constraints_clause* interface_body ';'?
 ;

// Source: §17.2.2 Interface modifiers
interface_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support
 ;

// Source: §17.2.3.1 General
variant_type_parameter_list
 : '<' variant_type_parameters '>'
 ;

// Source: §17.2.3.1 General
variant_type_parameters

 A Grammar

563

 : attributes? variance_annotation? type_parameter
 | variant_type_parameters ',' attributes? variance_annotation? type_parameter
 ;

// Source: §17.2.3.1 General
variance_annotation
 : 'in'
 | 'out'
 ;

// Source: §17.2.4 Base interfaces
interface_base
 : ':' interface_type_list
 ;

// Source: §17.3 Interface body
interface_body
 : '{' interface_member_declaration* '}'
 ;

// Source: §17.4.1 General
interface_member_declaration
 : interface_method_declaration
 | interface_property_declaration
 | interface_event_declaration
 | interface_indexer_declaration
 ;

// Source: §17.4.2 Interface methods
interface_method_declaration
 : attributes? 'new'? return_type identifier type_parameter_list?
 '(' formal_parameter_list? ')' type_parameter_constraints_clause* ';'
 ;

// Source: §17.4.3 Interface properties
interface_property_declaration
 : attributes? 'new'? type identifier '{' interface_accessors '}'
 ;

// Source: §17.4.3 Interface properties
interface_accessors
 : attributes? 'get' ';'
 | attributes? 'set' ';'
 | attributes? 'get' ';' attributes? 'set' ';'
 | attributes? 'set' ';' attributes? 'get' ';'
 ;

// Source: §17.4.4 Interface events
interface_event_declaration
 : attributes? 'new'? 'event' type identifier ';'
 ;

// Source: §17.4.5 Interface indexers
interface_indexer_declaration:
 attributes? 'new'? type 'this' '[' formal_parameter_list ']' '{'

ECMA-334

564

interface_accessors '}'
 ;

// Source: §18.2 Enum declarations
enum_declaration
 : attributes? enum_modifier* 'enum' identifier enum_base? enum_body ';'?
 ;

enum_base
 : ':' integral_type
 | ':' integral_type_name
 ;

integral_type_name
 : type_name // Shall resolve to an integral type other than char
 ;

enum_body
 : '{' enum_member_declarations? '}'
 | '{' enum_member_declarations ',' '}'
 ;

// Source: §18.3 Enum modifiers
enum_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 ;

// Source: §18.4 Enum members
enum_member_declarations
 : enum_member_declaration (',' enum_member_declaration)*
 ;

// Source: §18.4 Enum members
enum_member_declaration
 : attributes? identifier ('=' constant_expression)?
 ;

// Source: §19.2 Delegate declarations
delegate_declaration
 : attributes? delegate_modifier* 'delegate' return_type identifier
 variant_type_parameter_list? '(' formal_parameter_list? ')'
 type_parameter_constraints_clause* ';'
 ;

delegate_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | unsafe_modifier // unsafe code support

 A Grammar

565

 ;

// Source: §21.3 Attribute specification
global_attributes
 : global_attribute_section+
 ;

global_attribute_section
 : '[' global_attribute_target_specifier attribute_list ']'
 | '[' global_attribute_target_specifier attribute_list ',' ']'
 ;

global_attribute_target_specifier
 : global_attribute_target ':'
 ;

global_attribute_target
 : identifier
 ;

attributes
 : attribute_section+
 ;

attribute_section
 : '[' attribute_target_specifier? attribute_list ']'
 | '[' attribute_target_specifier? attribute_list ',' ']'
 ;

attribute_target_specifier
 : attribute_target ':'
 ;

attribute_target
 : identifier
 | keyword
 ;

attribute_list
 : attribute (',' attribute)*
 ;

attribute
 : attribute_name attribute_arguments?
 ;

attribute_name
 : type_name
 ;

attribute_arguments
 : '(' positional_argument_list? ')'
 | '(' positional_argument_list ',' named_argument_list ')'
 | '(' named_argument_list ')'
 ;

ECMA-334

566

positional_argument_list
 : positional_argument (',' positional_argument)*
 ;

positional_argument
 : argument_name? attribute_argument_expression
 ;

named_argument_list
 : named_argument (',' named_argument)*
 ;

named_argument
 : identifier '=' attribute_argument_expression
 ;

attribute_argument_expression
 : expression
 ;

A.4 Grammar extensions for unsafe code
// Source: §22.2 Unsafe contexts
unsafe_modifier
 : 'unsafe'
 ;

unsafe_statement
 : 'unsafe' block
 ;

// Source: §22.3 Pointer types
pointer_type
 : value_type ('*')+
 | 'void' ('*')+
 ;

// Source: §22.6.2 Pointer indirection
pointer_indirection_expression
 : '*' unary_expression
 ;

// Source: §22.6.3 Pointer member access
pointer_member_access
 : primary_expression '->' identifier type_argument_list?
 ;

// Source: §22.6.4 Pointer element access
pointer_element_access
 : primary_no_array_creation_expression '[' expression ']'
 ;

// Source: §22.6.5 The address-of operator

 A Grammar

567

addressof_expression
 : '&' unary_expression
 ;

// Source: §22.7 The fixed statement
fixed_statement
 : 'fixed' '(' pointer_type fixed_pointer_declarators ')' embedded_statement
 ;

fixed_pointer_declarators
 : fixed_pointer_declarator (',' fixed_pointer_declarator)*
 ;

fixed_pointer_declarator
 : identifier '=' fixed_pointer_initializer
 ;

fixed_pointer_initializer
 : '&' variable_reference
 | expression
 ;

// Source: §22.8.2 Fixed-size buffer declarations
fixed_size_buffer_declaration
 : attributes? fixed_size_buffer_modifier* 'fixed' buffer_element_type
 fixed_size_buffer_declarator+ ';'
 ;

fixed_size_buffer_modifier
 : 'new'
 | 'public'
 | 'protected'
 | 'internal'
 | 'private'
 | 'unsafe'
 ;

buffer_element_type
 : type
 ;

fixed_size_buffer_declarator
 : identifier '[' constant_expression ']'
 ;

// Source: §22.9 Stack allocation
stackalloc_initializer
 : 'stackalloc' unmanaged_type '[' expression ']'
 ;

End of informative text.

 B Portability issues

569

B. Portability issues

This clause is informative.

B.1 General
This annex collects some information about portability that appears in this specification.

B.2 Undefined behavior
The behavior is undefined in the following circumstances:

1. The behavior of the enclosing async function when an awaiter’s implementation of the interface
methods INotifyCompletion.OnCompleted and ICriticalNotifyCompletion.UnsafeOnCompleted
does not cause the resumption delegate to be invoked at most once (§11.8.8.4).

2. Passing pointers as ref or out parameters (§22.3).

3. When dereferencing the result of converting one pointer type to another and the resulting pointer is
not correctly aligned for the pointed-to type. (§22.5.1).

4. When the unary * operator is applied to a pointer containing an invalid value (§22.6.2).

5. When a pointer is subscripted to access an out-of-bounds element (§22.6.4).

6. Modifying objects of managed type through fixed pointers (§22.7).

7. The content of memory newly allocated by stackalloc (§22.9).

8. Attempting to allocate a negative number of items using stackalloc(§22.9).

B.3 Implementation-defined behavior
A conforming implementation is required to document its choice of behavior in each of the areas listed in
this subclause. The following are implementation-defined:

1. The behavior when an identifier not in Normalization Form C is encountered (§6.4.3).

2. The interpretation of the input_characters in the pp_pragma-text of a #pragma directive (§6.5.9).

3. The values of any application parameters passed to Main by the host environment prior to
application startup (§7.1).

4. The precise structure of the expression tree, as well as the exact process for creating it, when an
anonymous function is converted to an expression-tree (§10.7.3).

5. Whether a System.ArithmeticException (or a subclass thereof) is thrown or the overflow goes
unreported with the resulting value being that of the left operand, when in an unchecked context
and the left operand of an integer division is the maximum negative int or long value and the right
operand is –1 (§11.9.3).

ECMA-334

570

6. When a System.ArithmeticException (or a subclass thereof) is thrown when performing a decimal
remainder operation (§11.9.4).

7. The impact of thread termination when a thread has no handler for an exception, and the thread is
itself terminated (§12.10.6).

8. The impact of thread termination when no matching catch clause is found for an exception and the
code that initially started that thread is reached. (§20.4).

9. The mappings between pointers and integers (§22.5.1).

10. The effect of applying the unary * operator to a null pointer (§22.6.2).

11. The behavior when pointer arithmetic overflows the domain of the pointer type (§22.6.6, §22.6.7).

12. The result of the sizeof operator for non-pre-defined value types (§22.6.9).

13. The behavior of the fixed statement if the array expression is null or if the array has zero
elements (§22.7).

14. The behavior of the fixed statement if the string expression is null (§22.7).

15. The value returned when a stack allocation of size zero is made (§22.9).

B.4 Unspecified behavior
1. The time at which the finalizer (if any) for an object is run, once that object has become eligible for

finalization (§7.9).

2. The value of the result when converting out-of-range values from float or double values to an
integral type in an unchecked context (§10.3.2).

3. The exact target object and target method of the delegate produced from an
anonymous_method_expression contains (§10.7.2).

4. The layout of arrays, except in an unsafe context (§11.7.15.5).

5. Whether there is any way to execute the block of an anonymous function other than through
evaluation and invocation of the lambda_expression or anonymous_method-expression (§11.16.3).

6. The exact timing of static field initialization (§14.5.6.2).

7. The result of invoking MoveNext when an enumerator object is running (§14.14.5.2).

8. The result of accessing Current when an enumerator object is in the before, running, or after states
(§14.14.5.3).

9. The result of invoking Dispose when an enumerator object is in the running state (§14.14.5.4).

10. The attributes of a type declared in multiple parts are determined by combining, in an unspecified
order, the attributes of each of its parts (§21.3).

11. The order in which members are packed into a struct (§22.6.9).

12. An exception occurs during finalizer execution, and that execution is not caught (§20.4).

13. If more than one member matches, which member is the implementation of I.M. (§17.6.5)

 B Portability issues

571

B.5 Other Issues
1. The exact results of floating-point expression evaluation can vary from one implementation to

another, because an implementation is permitted to evaluate such expressions using a greater range
and/or precision than is required. (§8.3.7)

2. The CLI reserves certain signatures for compatibility with other programming languages.
(§14.3.9.7)

End of informative text.

 C Standard library

573

C. Standard library

C.1 General
A conforming C# implementation shall provide a minimum set of types having specific semantics. These
types and their members are listed here, in alphabetical order by namespace and type. For a formal
definition of these types and their members, refer to ISO/IEC 23271:2012 Common Language
Infrastructure (CLI), Partition IV; Base Class Library (BCL), Extended Numerics Library, and Extended Array
Library, which are included by reference in this specification.

This text is informative.

The standard library is intended to be the minimum set of types and members required by a conforming
C# implementation. As such, it contains only those members that are explicitly required by the
C# language specification.

It is expected that a conforming C# implementation will supply a significantly more extensive library that
enables useful programs to be written. For example, a conforming implementation might extend this
library by

• Adding namespaces.

• Adding types.

• Adding members to non-interface types.

• Adding intervening base classes or interfaces.

• Having struct and class types implement additional interfaces.

• Adding attributes (other than the ConditionalAttribute) to existing types and members.

End of informative text.

C.2 Standard Library Types defined in ISO/IEC 23271
namespace System
{
 public delegate void Action();

 public class ArgumentException : SystemException
 {
 public ArgumentException();
 public ArgumentException(string message);
 public ArgumentException(string message, Exception innerException);
 }

 public class ArithmeticException : Exception
 {
 public ArithmeticException();
 public ArithmeticException(string message);
 public ArithmeticException(string message, Exception innerException);

ECMA-334

574

 }

 public abstract class Array : IList, ICollection, IEnumerable
 {
 public int Length { get; }
 public int Rank { get; }
 public int GetLength(int dimension);
 }

 public class ArrayTypeMismatchException : Exception
 {
 public ArrayTypeMismatchException();
 public ArrayTypeMismatchException(string message);
 public ArrayTypeMismatchException(string message, Exception
innerException);
 }

 [AttributeUsageAttribute(AttributeTargets.All, Inherited = true, AllowMultiple
= false)]
 public abstract class Attribute
 {
 protected Attribute();
 }

 public enum AttributeTargets
 {
 Assembly = 0x1,
 Module = 0x2,
 Class = 0x4,
 Struct = 0x8,
 Enum = 0x10,
 Constructor = 0x20,
 Method = 0x40,
 Property = 0x80,
 Field = 0x100,
 Event = 0x200,
 Interface = 0x400,
 Parameter = 0x800,
 Delegate = 0x1000,
 ReturnValue = 0x2000,
 GenericParameter = 0x4000,
 All = 0x7FFF
 }

 [AttributeUsageAttribute(AttributeTargets.Class, Inherited = true)]
 public sealed class AttributeUsageAttribute : Attribute
 {
 public AttributeUsageAttribute(AttributeTargets validOn);
 public bool AllowMultiple { get; set; }
 public bool Inherited { get; set; }
 public AttributeTargets ValidOn { get; }
 }

 public struct Boolean { }
 public struct Byte { }

 C Standard library

575

 public struct Char { }
 public struct Decimal { }
 public abstract class Delegate { }

 public class DivideByZeroException : ArithmeticException
 {
 public DivideByZeroException();
 public DivideByZeroException(string message);
 public DivideByZeroException(string message, Exception innerException);
 }

 public struct Double { }

 public abstract class Enum : ValueType
 {
 protected Enum();
 }

 public class Exception
 {
 public Exception();
 public Exception(string message);
 public Exception(string message, Exception innerException);
 public sealed Exception InnerException { get; }
 public virtual string Message { get; }
 }

 public class GC { }

 public interface IDisposable
 {
 void Dispose();
 }

 public interface IFormattable { }

 public sealed class IndexOutOfRangeException : Exception
 {
 public IndexOutOfRangeException();
 public IndexOutOfRangeException(string message);
 public IndexOutOfRangeException(string message, Exception innerException);
 }

 public struct Int16 { }
 public struct Int32 { }
 public struct Int64 { }
 public struct IntPtr { }

 public class InvalidCastException : Exception
 {
 public InvalidCastException();
 public InvalidCastException(string message);
 public InvalidCastException(string message, Exception innerException);
 }

ECMA-334

576

 public class InvalidOperationException : Exception
 {
 public InvalidOperationException();
 public InvalidOperationException(string message);
 public InvalidOperationException(string message, Exception innerException);
 }

 public class NotSupportedException : Exception
 {
 public NotSupportedException();
 public NotSupportedException(string message);
 public NotSupportedException(string message, Exception innerException);
 }

 public struct Nullable<T>
 {
 public bool HasValue { get; }
 public T Value { get; }
 }

 public class NullReferenceException : Exception
 {
 public NullReferenceException();
 public NullReferenceException(string message);
 public NullReferenceException(string message, Exception innerException);
 }

 public class Object
 {
 public Object();
 ~Object();
 public virtual bool Equals(object obj);
 public virtual int GetHashCode();
 public Type GetType();
 public virtual string ToString();
 }

 [AttributeUsageAttribute(AttributeTargets.Class | AttributeTargets.Struct |
 AttributeTargets.Enum | AttributeTargets.Interface |
 AttributeTargets.Constructor | AttributeTargets.Method |
 AttributeTargets.Property | AttributeTargets.Field |
 AttributeTargets.Event | AttributeTargets.Delegate, Inherited = false)]
 public sealed class ObsoleteAttribute : Attribute
 {
 public ObsoleteAttribute();
 public ObsoleteAttribute(string message);
 public ObsoleteAttribute(string message, bool error);
 public bool IsError { get; }
 public string Message { get; }
 }

 public class OutOfMemoryException : Exception
 {
 public OutOfMemoryException();
 public OutOfMemoryException(string message);

 C Standard library

577

 public OutOfMemoryException(string message, Exception innerException);
 }

 public class OverflowException : ArithmeticException
 {
 public OverflowException();
 public OverflowException(string message);
 public OverflowException(string message, Exception innerException);
 }

 public struct SByte { }
 public struct Single { }

 public sealed class StackOverflowException : Exception
 {
 public StackOverflowException();
 public StackOverflowException(string message);
 public StackOverflowException(string message, Exception innerException);
 }

 public sealed class String : IEnumerable<Char>, IEnumerable
 {
 public int Length { get; }
 public char this [int index] { get; }
 public static string Format(string format, params object[] args);
 }

 public abstract class Type : MemberInfo { }

 public sealed class TypeInitializationException : Exception
 {
 public TypeInitializationException(string fullTypeName, Exception
innerException);
 }

 public struct UInt16 { }
 public struct UInt32 { }
 public struct UInt64 { }
 public struct UIntPtr { }

 public abstract class ValueType
 {
 protected ValueType();
 }
}

namespace System.Collections
{
 public interface ICollection : IEnumerable
 {
 int Count { get; }
 bool IsSynchronized { get; }
 object SyncRoot { get; }
 void CopyTo(Array array, int index);
 }

ECMA-334

578

 public interface IEnumerable
 {
 IEnumerator GetEnumerator();
 }

 public interface IEnumerator
 {
 object Current { get; }
 bool MoveNext();
 void Reset();
 }

 public interface IList : ICollection, IEnumerable
 {
 bool IsFixedSize { get; }
 bool IsReadOnly { get; }
 object this [int index] { get; set; }
 int Add(object value);
 void Clear();
 bool Contains(object value);
 int IndexOf(object value);
 void Insert(int index, object value);
 void Remove(object value);
 void RemoveAt(int index);
 }
}

namespace System.Collections.Generic
{
 public interface ICollection<T> : IEnumerable<T>
 {
 int Count { get; }
 bool IsReadOnly { get; }
 void Add(T item);
 void Clear();
 bool Contains(T item);
 void CopyTo(T[] array, int arrayIndex);
 bool Remove(T item);
 }

 public interface IEnumerable<T> : IEnumerable
 {
 IEnumerator<T> GetEnumerator();
 }

 public interface IEnumerator<T> : IDisposable, IEnumerator
 {
 T Current { get; }
 }

 public interface IList<T> : ICollection<T>
 {
 T this [int index] { get; set; }
 int IndexOf(T item);

 C Standard library

579

 void Insert(int index, T item);
 void RemoveAt(int index);
 }

 public interface IReadOnlyCollection<out T> : IEnumerable<T>
 {
 int Count { get; }
 }

 public interface IReadOnlyList<out T> : IReadOnlyCollection<T>
 {
 T this [int index] { get; }
 }
}

namespace System.Diagnostics
{
 [AttributeUsageAttribute(AttributeTargets.Method | AttributeTargets.Class,
 AllowMultiple = true)]
 public sealed class ConditionalAttribute : Attribute
 {
 public ConditionalAttribute(string conditionString);
 public string ConditionString { get; }
 }
}

namespace System.Reflection
{
 public abstract class MemberInfo
 {
 protected MemberInfo();
 }
}

namespace System.Runtime.CompilerServices
{
 public sealed class IndexerNameAttribute : Attribute
 {
 public IndexerNameAttribute(String indexerName);
 }
}

namespace System.Threading
{
 public static class Monitor
 {
 public static void Enter(object obj);
 public static void Exit(object obj);
 }
}

ECMA-334

580

C.3 Standard Library Types not defined in ISO/IEC 23271
The following types, including the members listed, must be defined in a conforming standard library.
(These types might be defined in a future edition of ISO/IEC 23271.) It is expected that many of these
types will have more members available than are listed.

A conforming implementation may provide Task.GetAwaiter() and Task<T>.GetAwaiter() as extension
methods.

namespace System
{
 public class FormattableString : IFormattable { }
}

namespace System.Linq.Expressions
{
 public sealed class Expression<TDelegate>
 {
 public TDelegate Compile();
 }
}
namespace System.Runtime.CompilerServices
{
 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerFilePathAttribute : Attribute
 {
 public CallerFilePathAttribute() { }
 }

 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerLineNumberAttribute : Attribute
 {
 public CallerLineNumberAttribute() { }
 }

 [AttributeUsage(AttributeTargets.Parameter, Inherited = false)]
 public sealed class CallerMemberNameAttribute : Attribute
 {
 public CallerMemberNameAttribute() { }
 }

 public static class FormattableStringFactory
 {
 public static FormattableString Create(string format, params object[]
arguments);
 }

 public interface ICriticalNotifyCompletion : INotifyCompletion
 {
 void UnsafeOnCompleted(Action continuation);
 }

 public interface INotifyCompletion
 {
 void OnCompleted(Action continuation);

 C Standard library

581

 }

 public struct TaskAwaiter : ICriticalNotifyCompletion, INotifyCompletion
 {
 public bool IsCompleted { get; }
 public void GetResult();
 }

 public struct TaskAwaiter<T> : ICriticalNotifyCompletion, INotifyCompletion
 {
 public bool IsCompleted { get; }
 public T GetResult();
 }
}

namespace System.Threading.Tasks
{
 public class Task
 {
 public System.Runtime.CompilerServices.TaskAwaiter GetAwaiter();
 }
 public class Task<TResult> : Task
 {
 public new System.Runtime.CompilerServices.TaskAwaiter<T> GetAwaiter();
 }
}

C.4 Format Specifications
The meaning of the formats, as used in interpolated string expressions (§11.7.3), are defined in ISO/IEC
23271:2012. For convenience the following text is copied from the description of System.IFormatable.

This text is informative.

A format is a string that describes the appearance of an object when it is converted to a string. Either
standard or custom formats can be used. A standard format takes the form Axx, where A is a single
alphabetic character called the format specifier, and xx is an integer between zero and 99 inclusive, called
the precision specifier. The format specifier controls the type of formatting applied to the value being
represented as a string. The precision specifier controls the number of significant digits or decimal places
in the string, if applicable.

Note: For the list of standard format specifiers, see the table below. Note that a given data type, such
as System.Int32, might not support one or more of the standard format specifiers. end note

Note: When a format includes symbols that vary by culture, such as the currencysymbol included by
the ‘C’ and ‘c’ formats, a formatting object supplies the actual characters used in the string
representation. A method might include a parameter to pass a System.IFormatProvider object that
supplies a formatting object, or the method might use the default formatting object, which contains
the symbol definitions for the current culture. The current culture typically uses the same set of
symbols used system-wide by default. In the Base Class Library, the formatting object for system-
supplied numeric types is a System.Globalization.NumberFormatInfo instance. For
System.DateTime instances, a System.Globalization.DateTimeFormatInfo is used. end note

The following table describes the standard format specifiers and associated formatting object members
that are used with numeric data types in the Base Class Library.

ECMA-334

582

Format
Specifier

Description

C

c

Currency Format: Used for strings containing a monetary value. The
System.Globalization.NumberFormatInfo.CurrencySymbol,
System.Globalization.NumberFormatInfo.CurrencyGroupSizes,
System.Globalization.NumberFormatInfo.CurrencyGroupSeparator, and
System.Globalization.NumberFormatInfo.CurrencyDecimalSeparator members of a
System.Globalization.NumberFormatInfo supply the currency symbol, size and
separator for digit groupings, and decimal separator, respectively.

System.Globalization.NumberFormatInfo.CurrencyNegativePattern and
System.Globalization.NumberFormatInfo.CurrencyPositivePattern determine the
symbols used to represent negative and positive values. For example, a negative value
can be prefixed with a minus sign, or enclosed in parentheses.

If the precision specifier is omitted,
System.Globalization.NumberFormatInfo.CurrencyDecimalDigits determines the
number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

D

d

Decimal Format: (This format is valid only when specified with integral data types.)
Used for strings containing integer values. Negative numbers are prefixed with the
negative number symbol specified by the
System.Globalization.NumberFormatInfo.NegativeSign property.

The precision specifier determines the minimum number of digits that appear in the
string. If the specified precision requires more digits than the value contains, the string
is left-padded with zeros. If the precision specifier specifies fewer digits than are in the
value, the precision specifier is ignored.

E

e

Scientific (Engineering) Format: Used for strings in one of the following forms:

 [-]m.ddddddE+xxx

 [-]m.ddddddE-xxx

 [-]m.dddddde+xxx

 [-]m.dddddde-xxx

The negative number symbol (‘-’) appears only if the value is negative, and is supplied
by the System.Globalization.NumberFormatInfo.NegativeSign property.

Exactly one non-zero decimal digit (m) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property.

The precision specifier determines the number of decimal places (dddddd) in the string.
If the precision specifier is omitted, six decimal places are included in the string.

The exponent (+/-xxx) consists of either a positive or negative number symbol followed
by a minimum of three digits (xxx). The exponent is left-padded with zeros, if necessary.
The case of the format specifier (‘E’ or ‘e’) determines the case used for the exponent
prefix (E or e) in the string. Results are rounded to the nearest representable value

 C Standard library

583

Format
Specifier

Description

when necessary. The positive number symbol is supplied by the
System.Globalization.NumberFormatInfo.PositiveSign property.

F

f

Fixed-Point Format: Used for strings in the following form:

 [-]m.dd...d

At least one non-zero decimal digit (m) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property.

A negative number symbol sign (‘-’) precedes m only if the value is negative. This
symbol is supplied by the System.Globalization.NumberFormatInfo.NegativeSign
property.

The precision specifier determines the number of decimal places (dd...d) in the string. If
the precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines the
number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

G

g

General Format: The string is formatted in either fixed-point format (‘F’ or ‘f’) or
scientific format (‘E’ or ‘e’).

For integral types:

Values are formatted using fixed-point format if exponent < precision specifier, where
exponent is the exponent of the value in scientific format. For all other values, scientific
format is used.

If the precision specifier is omitted, a default precision equal to the field width required
to display the maximum value for the data type is used, which results in the value being
formatted in fixed-point format. The default precisions for integral types are as follows:

 System.Int16, System.UInt16 : 5

 System.Int32, System.UInt32 : 10

 System.Int64, System.UInt64 : 19

For Single, Decimal and Double types:

Values are formatted using fixed-point format if exponent ≥ -4 and exponent < precision
specifier, where exponent is the exponent of the value in scientific format. For all other
values, scientific format is used. Results are rounded to the nearest representable value
when necessary.

If the precision specifier is omitted, the following default precisions are used:

 System.Single : 7

 System.Double : 15

 System.Decimal : 29

ECMA-334

584

Format
Specifier

Description

For all types:

• The number of digits that appear in the result (not including the exponent) will not

exceed the value of the precision specifier; values are rounded as necessary.

• The decimal point and any trailing zeros after the decimal point are removed

whenever possible.

• The case of the format specifier (‘G’ or ‘g’) determines whether ‘E’ or ‘e’ prefixes

the scientific format exponent.

N

n

Number Format: Used for strings in the following form:

 [-]d,ddd,ddd.dd...d

The representation of negative values is determined by the
System.Globalization.NumberFormatInfo.NumberNegativePattern property. If the
pattern includes a negative number symbol (‘-’), this symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

At least one non-zero decimal digit (d) precedes the decimal separator (‘.’), which is
supplied by the System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property. Digits between the decimal point and the most significant digit in the value
are grouped using the group size specified by the
System.Globalization.NumberFormatInfo.NumberGroupSizes property. The group
separator (‘,’) is inserted between each digit group, and is supplied by the
System.Globalization.NumberFormatInfo.NumberGroupSeparator property.

The precision specifier determines the number of decimal places (dd...d). If the
precision specifier is omitted,
System.Globalization.NumberFormatInfo.NumberDecimalDigits determines the
number of decimal places in the string. Results are rounded to the nearest
representable value when necessary.

P

p

Percent Format: Used for strings containing a percentage. The
System.Globalization.NumberFormatInfo.PercentSymbol,
System.Globalization.NumberFormatInfo.PercentGroupSizes,
System.Globalization.NumberFormatInfo.PercentGroupSeparator, and
System.Globalization.NumberFormatInfo.PercentDecimalSeparator members of a
System.Globalization.NumberFormatInfo supply the percent symbol, size and
separator for digit groupings, and decimal separator, respectively.

System.Globalization.NumberFormatInfo.PercentNegativePattern and
System.Globalization.NumberFormatInfo.PercentPositivePattern determine the
symbols used to represent negative and positive values. For example, a negative value
can be prefixed with a minus sign, or enclosed in parentheses.

If no precision is specified, the number of decimal places in the result is determined by
System.Globalization.NumberFormatInfo.PercentDecimalDigits. Results are
rounded to the nearest representable value when necessary.

 C Standard library

585

Format
Specifier

Description

The result is scaled by 100 (.99 becomes 99%).

R

r

Round trip Format: (This format is valid only when specified with System.Double or
System.Single.) Used to ensure that the precision of the string representation of a
floating-point value is such that parsing the string does not result in a loss of precision
when compared to the original value. If the maximum precision of the data type (7 for
System.Single, and 15 for System.Double) would result in a loss of precision, the
precision is increased by two decimal places. If a precision specifier is supplied with
this format specifier, it is ignored. This format is otherwise identical to the fixed-point
format.

X

x

Hexadecimal Format: (This format is valid only when specified with integral data
types.) Used for string representations of numbers in Base 16. The precision
determines the minimum number of digits in the string. If the precision specifies more
digits than the number contains, the number is left-padded with zeros. The case of the
format specifier (‘X’ or ‘x’) determines whether upper case or lower case letters are
used in the hexadecimal representation.

If the numerical value is a System.Single or System.Double with a value of NaN, PositiveInfinity, or
NegativeInfinity, the format specifier is ignored, and one of the following is returned:
System.Globalization.NumberFormatInfo.NaNSymbol,
System.Globalization.NumberFormatInfo.PositiveInfinitySymbol, or
System.Globalization.NumberFormatInfo.NegativeInfinitySymbol.

A custom format is any string specified as a format that is not in the form of a standard format string
(Axx) described above. The following table describes the characters that are used in constructing custom
formats.

Format
Specifier

Description

0 (zero)

Zero placeholder: If the value being formatted has a digit in the position where a ‘0’
appears in the custom format, then that digit is copied to the output string; otherwise a
zero is stored in that position in the output string. The position of the leftmost ‘0’ before
the decimal separator and the rightmost ‘0’ after the decimal separator determine the
range of digits that are always present in the output string.

The number of Zero and/or Digit placeholders after the decimal separator determines
the number of digits that appear after the decimal separator. Values are rounded as
necessary.

Digit placeholder: If the value being formatted has a digit in the position where a ‘#’
appears in the custom format, then that digit is copied to the output string; otherwise,
nothing is stored in that position in the output string. Note that this specifier never
stores the ‘0’ character if it is not a significant digit, even if ‘0’ is the only digit in the
string. (It does display the ‘0’ character in the output string if it is a significant digit.)

ECMA-334

586

Format
Specifier

Description

The number of Zero and/or Digit placeholders after the decimal separator determines
the number of digits that appear after the decimal separator. Values are rounded as
necessary.

.(period)

Decimal separator: The left most ‘.’ character in the format string determines the
location of the decimal separator in the formatted value; any additional ‘.’ characters
are ignored. The System.Globalization.NumberFormatInfo.NumberDecimalSeparator
property determines the symbol used as the decimal separator.

, (comma)

Group separator and number scaling: The ‘,’ character serves two purposes. First, if
the custom format contains this character between two Zero or Digit placeholders (0 or
#) and to the left of the decimal separator if one is present, then the output will have
group separators inserted between each group of digits to the left of the decimal
separator. The System.Globalization.NumberFormatInfo.NumberGroupSeparator and
System.Globalization.NumberFormatInfo.NumberGroupSizes properties determine
the symbol used as the group separator and the number of digits in each group,
respectively.

If the format string contains one or more ‘,’ characters immediately to the left of the
decimal separator, then the number will be scaled. The scale factor is determined by the
number of group separator characters immediately to the left of the decimal separator.
If there are x characters, then the value is divided by 1000X before it is formatted. For
example, the format string ‘0,,’ will divide a value by one million. Note that the presence
of the ‘,’ character to indicate scaling does not insert group separators in the output
string. Thus, to scale a number by 1 million and insert group separators, use a custom
format similar to ‘#,##0,,’.

% (percent)

Percentage placeholder: The presence of a ‘%’ character in a custom format causes a
number to be multiplied by 100 before it is formatted. The percent symbol is inserted
in the output string at the location where the ‘%’ appears in the format string. The
System.Globalization.NumberFormatInfo.PercentSymbol property determines the
percent symbol.

E0

E+0

E-0

e0

e+0

e-0

Engineering format: If any of the strings ‘E’, ‘E+’, ‘E-’, ‘e’, ‘e+’, or ‘e-’ are present in a
custom format and is followed immediately by at least one ‘0’ character, then the value
is formatted using scientific notation. The number of ‘0’ characters following the
exponent prefix (E or e) determines the minimum number of digits in the exponent.
The ‘E+’ and ‘e+’ formats indicate that a positive or negative number symbol always
precedes the exponent. The ‘E’, ‘E-’, ‘e’, or ‘e-’ formats indicate that a negative number
symbol precedes negative exponents; no symbol is precedes positive exponents. The
positive number symbol is supplied by the
System.Globalization.NumberFormatInfo.PositiveSign property. The negative
number symbol is supplied by the
System.Globalization.NumberFormatInfo.NegativeSign property.

\ (backslash) Escape character: In some languages, such as C#, the backslash character causes the
next character in the custom format to be interpreted as an escape sequence. It is used

 C Standard library

587

Format
Specifier

Description

with C language formatting sequences, such as ‘\n’ (newline). In some languages, the
escape character itself is required to be preceded by an escape character when used as
a literal. Otherwise, the compiler interprets the character as an escape sequence. This
escape character is not required to be supported in all programming languages.

'ABC'

"ABC"

Literal string: Characters enclosed in single or double quotes are copied to the output
string literally, and do not affect formatting.

; (semicolon)
Section separator: The ‘;’ character is used to separate sections for positive, negative,
and zero numbers in the format string. (This feature is described in detail below.)

Other
All other characters: All other characters are stored in the output string as literals in
the position in which they appear.

Note that for fixed-point format strings (strings not containing an ‘E0’, ‘E+0’, ‘E-0’, ‘e0’, ‘e+0’, or ‘e-0’),
numbers are rounded to as many decimal places as there are Zero or Digit placeholders to the right of the
decimal separator. If the custom format does not contain a decimal separator, the number is rounded to
the nearest integer. If the number has more digits than there are Zero or Digit placeholders to the left of
the decimal separator, the extra digits are copied to the output string immediately before the first Zero or
Digit placeholder.

A custom format can contain up to three sections separated by section separator characters, to specify
different formatting for positive, negative, and zero values. The sections are interpreted as follows:

• One section: The custom format applies to all values (positive, negative and zero). Negative values
include a negative sign.

• Two sections: The first section applies to positive values and zeros, and the second section applies
to negative values. If the value to be formatted is negative, but becomes zero after rounding
according to the format in the second section, then the resulting zero is formatted according to the
first section. Negative values do not include a negative sign to allow full control over
representations of negative values. For example, a negative can be represented in parenthesis using
a custom format similar to ‘####.####;(####.####)’.

• Three sections: The first section applies to positive values, the second section applies to negative
values, and the third section applies to zeros. The second section can be empty (nothing appears
between the semicolons), in which case the first section applies to all nonzero values, and negative
values include a negative sign. If the number to be formatted is nonzero, but becomes zero after
rounding according to the format in the first or second section, then the resulting zero is formatted
according to the third section.

The System.Enum and System.DateTime types also support using format specifiers to format string
representations of values. The meaning of a specific format specifier varies according to the kind of data
(numeric, date/time, enumeration) being formatted. See System.Enum and
System.Globalization.DateTimeFormatInfo for a comprehensive list of the format specifiers supported
by each type.

ECMA-334

588

C.5 Library Type Abbreviations
The following library types are referenced in this specification. The full names of those types, including
the global namespace qualifier are listed below. Throughout this specification, these types appear as
either the fully qualified name; with the global namespace qualifier omitted; or as a simple unqualified
type name, with the namespace omitted as well. For example, the type ICollection<T>, when used in this
specification, always means the type global::System.Collections.Generic.ICollection<T>.

• global::System.Action

• global::System.ArgumentException

• global::System.ArithmeticException

• global::System.Array

• global::System.ArrayTypeMisMatchException

• global::System.Attribute

• global::System.AttributeTargets

• global::System.AttributeUsageAttribute

• global::System.Boolean

• global::System.Byte

• global::System.Char

• global::System.Collections.Generic.ICollection<T>

• global::System.Collections.Generic.IEnumerable<T>

• global::System.Collections.Generic.IEnumerator<T>

• global::System.Collections.Generic.IList<T>

• global::System.Collections.Generic.IReadonlyCollection<out T>

• global::System.Collections.Generic.IReadOnlyList<out T>

• global::System.Collections.ICollection

• global::System.Collections.IEnumerable

• global::System.Collections.IList

• global::System.Collections.IEnumerator

• global::System.Decimal

• global::System.Delegate

• global::System.Diagnostics.ConditionalAttribute

• global::System.DivideByZeroException

• global::System.Double

• global::System.Enum

• global::System.Exception

 C Standard library

589

• global::System.GC

• global::System.ICollection

• global::System.IDisposable

• global::System.IEnumerable

• global::System.IEnumerable<out T>

• global::System.IList

• global::System.IndexOutOfRangeException

• global::System.Int16

• global::System.Int32

• global::System.Int64

• global::System.IntPtr

• global::System.InvalidCastException

• global::System.InvalidOperationException

• global::System.Linq.Expressions.Expression<TDelegate>

• global::System.MemberInfo

• global::System.NotSupportedException

• global::System.Nullable<T>

• global::System.NullReferenceException

• global::System.Object

• global::System.ObsoleteAttribute

• global::System.OutOfMemoryException

• global::System.OverflowException

• global::System.Runtime.CompilerServices.CallerFileAttribute

• global::System.Runtime.CompilerServices.CallerLineNumberAttribute

• global::System.Runtime.CompilerServices.CallerMemberNameAttribute

• global::System.Runtime.CompilerServices.ICriticalNotifyCompletion

• global::System.Runtime.CompilerServices.IndexerNameAttribute

• global::System.Runtime.CompilerServices.INotifyCompletion

• global::System.Runtime.CompilerServices.TaskAwaiter

• global::System.Runtime.CompilerServices.TaskAwaiter<T>

• global::System.SByte

• global::System.Single

• global::System.StackOverflowException

ECMA-334

590

• global::System.String

• global::System.SystemException

• global::System.Threading.Monitor

• global::System.Threading.Tasks.Task

• global::System.Threading.Tasks.Task<TResult>

• global::System.Type

• global::System.TypeInializationException

• global::System.UInt16

• global::System.UInt32

• global::System.UInt64

• global::System.UIntPtr

• global::System.ValueType

End of informative text.

 D Documentation comments

591

D. Documentation comments

This annex is informative.

D.1 General
C# provides a mechanism for programmers to document their code using a comment syntax that contains
XML text. In source code files, comments having a certain form can be used to direct a tool to produce
XML from those comments and the source code elements, which they precede. Comments using such
syntax are called documentation comments. They must immediately precede a user-defined type (such
as a class, delegate, or interface) or a member (such as a field, event, property, or method). The XML
generation tool is called the documentation generator. (This generator could be, but need not be, the
C# compiler itself.) The output produced by the documentation generator is called the documentation
file. A documentation file is used as input to a documentation viewer; a tool intended to produce some
sort of visual display of type information and its associated documentation.

A conforming C# compiler is not required to check the syntax of documentation comments; such
comments are simply ordinary comments. A conforming compiler is permitted to do such checking,
however.

This specification suggests a set of standard tags to be used in documentation comments, but use of these
tags is not required, and other tags may be used if desired, as long as the rules of well-formed XML are
followed. For C# implementations targeting the CLI, it also provides information about the documentation
generator and the format of the documentation file. No information is provided about the documentation
viewer.

D.2 Introduction
Comments having a certain form can be used to direct a tool to produce XML from those comments and
the source code elements that they precede. Such comments are Single-Line_Comments (§6.3.3) that start
with three slashes (///), or Delimited_Comments (§6.3.3) that start with a slash and two asterisks (/**).
They must immediately precede a user-defined type or a member that they annotate. Attribute sections
(§21.3) are considered part of declarations, so documentation comments must precede attributes applied
to a type or member.

For expository purposes, the format of document comments is shown below as two grammar rules:
Single_Line_Doc_Comment and Delimited_Doc_Comment. However, these rules are not part of the C#
grammar, but rather, they represent particular formats of Single_Line_Comment and Delimited_Comment
lexer rules, respectively.

Syntax:

Single_Line_Doc_Comment
 : '///' Input_Character*
 ;

Delimited_Doc_Comment

ECMA-334

592

 : '/**' Delimited_Comment_Section* ASTERISK+ '/'
 ;

In a Single_Line_Doc_Comment, if there is a Whitespace character following the /// characters on each of
the Single_Line_Doc_Comments adjacent to the current Single_Line_Doc_Comment, then that Whitespace
character is not included in the XML output.

In a Delimited_Doc_Comment, if the first non-Whitespace character on the second line is an ASTERISK and
the same pattern of optional Whitespace characters and an ASTERISK character is repeated at the
beginning of each of the lines within the Delimited_Doc_Comment, then the characters of the repeated
pattern are not included in the XML output. The pattern can include Whitespace characters after, as well
as before, the ASTERISK character.

Example:

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
public class Point
{
 /// <summary>
 /// Method <c>Draw</c> renders the point.
 /// </summary>
 void Draw() {...}
}

The text within documentation comments must be well formed according to the rules of XML
(http://www.w3.org/TR/REC-xml). If the XML is ill formed, a warning is generated and the
documentation file will contain a comment saying that an error was encountered.

Although developers are free to create their own set of tags, a recommended set is defined in §D.3. Some
of the recommended tags have special meanings:

• The <param> tag is used to describe parameters. If such a tag is used, the documentation generator
must verify that the specified parameter exists and that all parameters are described in
documentation comments. If such verification fails, the documentation generator issues a warning.

• The cref attribute can be attached to any tag to provide a reference to a code element. The
documentation generator must verify that this code element exists. If the verification fails, the
documentation generator issues a warning. When looking for a name described in a cref attribute,
the documentation generator must respect namespace visibility according to using statements
appearing within the source code. For code elements that are generic, the normal generic syntax
(e.g., “List<T>”) cannot be used because it produces invalid XML. Braces can be used instead of
brackets (e.g.; “List{T}”), or the XML escape syntax can be used (e.g., “List<T>”).

• The <summary> tag is intended to be used by a documentation viewer to display additional
information about a type or member.

• The <include> tag includes information from an external XML file.

Note carefully that the documentation file does not provide full information about the type and members
(for example, it does not contain any type information). To get such information about a type or member,
the documentation file must be used in conjunction with reflection on the type or member.

 D Documentation comments

593

D.3 Recommended tags

D.3.1 General

The documentation generator must accept and process any tag that is valid according to the rules of XML.
The following tags provide commonly used functionality in user documentation. (Of course, other tags are
possible.)

Tag Reference Purpose

<c> §D.3.2 Set text in a code-like font

<code> §D.3.3 Set one or more lines of source code or program output

<example> §D.3.4 Indicate an example

<exception> §D.3.5 Identifies the exceptions a method can throw

<list> §D.3.6 Create a list or table

<include> §D.3.6 Includes XML from an external file

<para> §D.3.8 Permit structure to be added to text

<param> §D.3.9 Describe a parameter for a method or constructor

<paramref> §D.3.10 Identify that a word is a parameter name

<permission> §D.3.11 Document the security accessibility of a member

<remarks> §D.3.12 Describe additional information about a type

<returns> §D.3.13 Describe the return value of a method

<see> §D.3.14 Specify a link

<seealso> §D.3.15 Generate a See Also entry

<summary> §D.3.16 Describe a type or a member of a type

<typeparam> §D.3.17 Describe a type parameter for a generic type or method

<typeparamref> §D.3.18 Identify that a word is a type parameter name

<value> §D.3.17 Describe a property

D.3.2 <c>

This tag provides a mechanism to indicate that a fragment of text within a description should be set in a
special font such as that used for a block of code. For lines of actual code, use <code> (§D.3.3).

Syntax:

<c>text</c>

Example:

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
public class Point
{
 // ...
}

ECMA-334

594

D.3.3 <code>

This tag is used to set one or more lines of source code or program output in some special font. For small
code fragments in narrative, use <c> (§D.3.2).

Syntax:

<code>source code or program output</code>

Example:

/// <summary>
/// This method changes the point's location by the given x- and y-offsets.
/// <example>
/// For example:
/// <code>
/// Point p = new Point(3,5);
/// p.Translate(-1,3);
/// </code>
/// results in <c>p</c>'s having the value (2,8).
/// </example>
/// </summary>
public void Translate(int dx, int dy)
{
 X += dx;
 Y += dy;
}

D.3.4 <example>

This tag allows example code within a comment, to specify how a method or other library member might
be used. Ordinarily, this would also involve use of the tag <code> (§D.3.3) as well.

Syntax:

<example>description</example>

Example:

See <code> (§D.3.3) for an example.

D.3.5 <exception>

This tag provides a way to document the exceptions a method can throw.

Syntax:

<exception cref="member">description</exception>

where

• cref="member" is the name of a member. The documentation generator checks that the given
member exists and translates member to the canonical element name in the documentation file.

• description is a description of the circumstances in which the exception is thrown.

Example:

public class DataBaseOperations
{
 /// <exception cref="MasterFileFormatCorruptException">

 D Documentation comments

595

 /// Thrown when the master file is corrupted.
 /// </exception>
 /// <exception cref="MasterFileLockedOpenException">
 /// Thrown when the master file is already open.
 /// </exception>
 public static void ReadRecord(int flag)
 {
 if (flag == 1)
 {
 throw new MasterFileFormatCorruptException();
 }
 else if (flag == 2)
 {
 throw new MasterFileLockedOpenException();
 }
 // ...
 }
}

D.3.6 <include>

This tag allows including information from an XML document that is external to the source code file. The
external file must be a well-formed XML document, and an XPath expression is applied to that document
to specify what XML from that document to include. The <include> tag is then replaced with the selected
XML from the external document.

Syntax:

<include file="filename" path="xpath" />

where

• file="filename" is the file name of an external XML file. The file name is interpreted relative to the
file that contains the include tag.

• path="xpath" is an XPath expression that selects some of the XML in the external XML file.

Example:

If the source code contained a declaration like:

/// <include file="docs.xml" path='extradoc/class[@name="IntList"]/*' />
public class IntList { ... }

and the external file “docs.xml” had the following contents:

<?xml version="1.0"?>
<extradoc>
 <class name="IntList">
 <summary>
 Contains a list of integers.
 </summary>
 </class>
 <class name="StringList">
 <summary>
 Contains a list of strings.
 </summary>
 </class>
</extradoc>

ECMA-334

596

then the same documentation is output as if the source code contained:

/// <summary>
/// Contains a list of integers.
/// </summary>
public class IntList { ... }

D.3.7 <list>

This tag is used to create a list or table of items. It can contain a <listheader> block to define the heading
row of either a table or definition list. (When defining a table, only an entry for term in the heading need
be supplied.)

Each item in the list is specified with an <item> block. When creating a definition list, both term and
description must be specified. However, for a table, bulleted list, or numbered list, only description need be
specified.

Syntax:

<list type="bullet" | "number" | "table">
 <listheader>
 <term>term</term>
 <description>description</description>
 </listheader>
 <item>
 <term>term</term>
 <description>description</description>
 </item>
 ...
 <item>
 <term>term</term>
 <description>description</description>
 </item>
</list>

where

• term is the term to define, whose definition is in description.

• description is either an item in a bullet or numbered list, or the definition of a term.

Example:

public class MyClass
{
 /// <summary>Here is an example of a bulleted list:
 /// <list type="bullet">
 /// <item>
 /// <description>Item 1.</description>
 /// </item>
 /// <item>
 /// <description>Item 2.</description>
 /// </item>
 /// </list>
 /// </summary>
 public static void Main()
 {
 // ...

 D Documentation comments

597

 }
}

D.3.8 <para>

This tag is for use inside other tags, such as <summary> (§D.3.16) or <returns> (§D.3.13), and permits
structure to be added to text.

Syntax:

<para>content</para>

where

• content is the text of the paragraph.

Example:

/// <summary>This is the entry point of the Point class testing program.
/// <para>
/// This program tests each method and operator, and
/// is intended to be run after any non-trivial maintenance has
/// been performed on the Point class.
/// </para>
/// </summary>
public static void Main()
{
 // ...
}

D.3.9 <param>

This tag is used to describe a parameter for a method, constructor, or indexer.

Syntax:

<param name="name">description</param>

where

• name is the name of the parameter.

• description is a description of the parameter.

Example:

/// <summary>
/// This method changes the point's location to
/// the given coordinates.
/// </summary>
/// <param name="xPosition">the new x-coordinate.</param>
/// <param name="yPosition">the new y-coordinate.</param>
public void Move(int xPosition, int yPosition)
{
 X = xPosition;
 Y = yPosition;
}

ECMA-334

598

D.3.10 <paramref>

This tag is used to indicate that a word is a parameter. The documentation file can be processed to format
this parameter in some distinct way.

Syntax:

<paramref name="name"/>

where

• name is the name of the parameter.

Example:

/// <summary>This constructor initializes the new Point to
/// (<paramref name="xPosition"/>,<paramref name="yPosition"/>).
/// </summary>
/// <param name="xPosition">the new Point's x-coordinate.</param>
/// <param name="yPosition">the new Point's y-coordinate.</param>
public Point(int xPosition, int yPosition)
{
 X = xPosition;
 Y = yPosition;
}

D.3.11 <permission>

This tag allows the security accessibility of a member to be documented.

Syntax:

<permission cref="member">description</permission>

where

• member is the name of a member. The documentation generator checks that the given code element
exists and translates member to the canonical element name in the documentation file.

• description is a description of the access to the member.

Example:

/// <permission cref="System.Security.PermissionSet">
/// Everyone can access this method.
/// </permission>
public static void Test()
{
 // ...
}

D.3.12 <remarks>

This tag is used to specify extra information about a type. Use <summary> (§D.3.16) to describe the type
itself and the members of a type.

Syntax:

<remarks>description</remarks>

where

 D Documentation comments

599

• description is the text of the remark.

Example:

/// <summary>
/// Class <c>Point</c> models a point in a two-dimensional plane.
/// </summary>
/// <remarks>
/// Uses polar coordinates
/// </remarks>
public class Point
{
 // ...
}

D.3.13 <returns>

This tag is used to describe the return value of a method.

Syntax:

<returns>description</returns>

where

• description is a description of the return value.

Example:

/// <summary>
/// Report a point's location as a string.
/// </summary>
/// <returns>
/// A string representing a point's location, in the form (x,y),
/// without any leading, trailing, or embedded whitespace.
/// </returns>
public override string ToString() => $"({X},{Y})";

D.3.14 <see>

This tag allows a link to be specified within text. Use <seealso> (§D.3.15) to indicate text that is to appear
in a See Also subclause.

Syntax:

<see cref="member" href="url" langword="keyword" />

where

• member is the name of a member. The documentation generator checks that the given code element
exists and changes member to the element name in the generated documentation file.

• url is a reference to an external source.

• langword is a word to be highlighted somehow.

Example:

/// <summary>
/// This method changes the point's location to
/// the given coordinates. <see cref="Translate"/>

ECMA-334

600

/// </summary>
public void Move(int xPosition, int yPosition)
{
 X = xPosition;
 Y = yPosition;
}
/// <summary>This method changes the point's location by
/// the given x- and y-offsets. <see cref="Move"/>
/// </summary>
public void Translate(int dx, int dy)
{
 X += dx;
 Y += dy;
}

D.3.15 <seealso>

This tag allows an entry to be generated for the See Also subclause. Use <see> (§D.3.14) to specify a link
from within text.

Syntax:

<seealso cref="member" href="url" />

where

• member is the name of a member. The documentation generator checks that the given code element
exists and changes member to the element name in the generated documentation file.

• url is a reference to an external source.

Example:

/// <summary>
/// This method determines whether two Points have the same location.
/// </summary>
/// <seealso cref="operator=="/>
/// <seealso cref="operator!="/>
public override bool Equals(object o)
{
 // ...
}

D.3.16 <summary>

This tag can be used to describe a type or a member of a type. Use <remarks> (§D.3.12) to describe the
type itself.

Syntax:

<summary>description</summary>

where

• description is a summary of the type or member.

Example:

/// <summary>This constructor initializes the new Point to (0,0).</summary>
public Point() : this(0, 0)

 D Documentation comments

601

{
}

D.3.17 <typeparam>

This tag is used to describe a type parameter for a generic type or method.

Syntax:

<typeparam name="name">description</typeparam>

where

• name is the name of the type parameter.

• description is a description of the type parameter.

Example:

/// <summary>A generic list class.</summary>
/// <typeparam name="T">The type stored by the list.</typeparam>
public class MyList<T>
{
 ...
}

D.3.18 <typeparamref>

This tag is used to indicate that a word is a type parameter. The documentation file can be processed to
format this type parameter in some distinct way.

Syntax:

<typeparamref name="name"/>

where

• name is the name of the type parameter.

Example:

/// <summary>
/// This method fetches data and returns a list of <typeparamref name="T"> "/>">.
/// </summary>
/// <param name="string">query to execute</param>
public List<T> FetchData<T>(string query)
{
...
}

D.3.19 <value>

This tag allows a property to be described.

Syntax:

<value>property description</value>

where

• property description is a description for the property.

Example:

ECMA-334

602

/// <value>Property <c>X</c> represents the point's x-coordinate.</value>
public int X
{
 get { return x; }
 set { x = value; }
}

D.4 Processing the documentation file

D.4.1 General

The following information is intended for C# implementations targeting the CLI.

The documentation generator generates an ID string for each element in the source code that is tagged
with a documentation comment. This ID string uniquely identifies a source element. A documentation
viewer can use an ID string to identify the corresponding item to which the documentation applies.

The documentation file is not a hierarchical representation of the source code; rather, it is a flat list with a
generated ID string for each element.

D.4.2 ID string format

The documentation generator observes the following rules when it generates the ID strings:

• No white space is placed in the string.

• The first part of the string identifies the kind of member being documented, via a single character
followed by a colon. The following kinds of members are defined:

Character Description

E Event

F Field

M Method (including constructors, finalizers, and operators)

N Namespace

P Property (including indexers)

T Type (such as class, delegate, enum, interface, and struct)

! Error string; the rest of the string provides information about the error. For example,
the documentation generator generates error information for links that cannot be
resolved.

• The second part of the string is the fully qualified name of the element, starting at the root of the

namespace. The name of the element, its enclosing type(s), and namespace are separated by
periods. If the name of the item itself has periods, they are replaced by # (U+0023) characters. (It is
assumed that no element has this character in its name.)

• For methods and properties with arguments, the argument list follows, enclosed in parentheses. For
those without arguments, the parentheses are omitted. The arguments are separated by commas.
The encoding of each argument is the same as a CLI signature, as follows:

o Arguments are represented by their documentation name, which is based on their fully qualified
name, modified as follows:

 D Documentation comments

603

• Arguments that represent generic types have an appended “'” character followed by the
number of type parameters

• Arguments having the out or ref modifier have an @ following their type name. Arguments
passed by value or via params have no special notation.

• Arguments that are arrays are represented as [lowerbound : size , … , lowerbound : size]
where the number of commas is the rank less one, and the lower bounds and size of each
dimension, if known, are represented in decimal. If a lower bound or size is not specified, it
is omitted. If the lower bound and size for a particular dimension are omitted, the “:” is
omitted as well. Jagged arrays are represented by one “[]” per level.

• Arguments that have pointer types other than void are represented using a * following the
type name. A void pointer is represented using a type name of System.Void.

• Arguments that refer to generic type parameters defined on types are encoded using the “`”
character followed by the zero-based index of the type parameter.

• Arguments that use generic type parameters defined in methods use a double-backtick “``”
instead of the “`” used for types.

• Arguments that refer to constructed generic types are encoded using the generic type,
followed by “{”, followed by a comma-separated list of type arguments, followed by “}”.

D.4.3 ID string examples

The following examples each show a fragment of C# code, along with the ID string produced from each
source element capable of having a documentation comment:

Types are represented using their fully qualified name, augmented with generic information:

enum Color { Red, Blue, Green }

namespace Acme
{
 interface IProcess { ... }

 struct ValueType { ... }

 class Widget : IProcess
 {
 public class NestedClass { ... }
 public interface IMenuItem { ... }
 public delegate void Del(int i);
 public enum Direction { North, South, East, West }
 }

 class MyList<T>
 {
 class Helper<U,V> { ... }
 }
}

"T:Color"
"T:Acme.IProcess"
"T:Acme.ValueType"
"T:Acme.Widget"

ECMA-334

604

"T:Acme.Widget.NestedClass"
"T:Acme.Widget.IMenuItem"
"T:Acme.Widget.Del"
"T:Acme.Widget.Direction"
"T:Acme.MyList`1"
"T:Acme.MyList`1.Helper`2"

Fields are represented by their fully qualified name.

namespace Acme
{
 struct ValueType
 {
 private int total;
 }

 class Widget : IProcess
 {
 public class NestedClass
 {
 private int value;
 }

 private string message;
 private static Color defaultColor;
 private const double PI = 3.14159;
 protected readonly double monthlyAverage;
 private long[] array1;
 private Widget[,] array2;
 private unsafe int *pCount;
 private unsafe float **ppValues;
 }
}

"F:Acme.ValueType.total"
"F:Acme.Widget.NestedClass.value"
"F:Acme.Widget.message"
"F:Acme.Widget.defaultColor"
"F:Acme.Widget.PI"
"F:Acme.Widget.monthlyAverage"
"F:Acme.Widget.array1"
"F:Acme.Widget.array2"
"F:Acme.Widget.pCount"
"F:Acme.Widget.ppValues"

Constructors

namespace Acme
{
 class Widget : IProcess
 {
 static Widget() { ... }
 public Widget() { ... }
 public Widget(string s) { ... }
 }
}

 D Documentation comments

605

"M:Acme.Widget.#cctor"
"M:Acme.Widget.#ctor"
"M:Acme.Widget.#ctor(System.String)"

Finalizers

namespace Acme
{
 class Widget : IProcess
 {
 ~Widget() { ... }
 }
}

"M:Acme.Widget.Finalize"

Methods

namespace Acme
{
 struct ValueType
 {
 public void M(int i) { ... }
 }

 class Widget : IProcess
 {
 public class NestedClass
 {
 public void M(int i) { ... }
 }

 public static void M0() { ... }
 public void M1(char c, out float f, ref ValueType v) { ... }
 public void M2(short[] x1, int[,] x2, long[][] x3) { ... }
 public void M3(long[][] x3, Widget[][,,] x4) { ... }
 public unsafe void M4(char *pc, Color **pf) { ... }
 public unsafe void M5(void *pv, double *[][,] pd) { ... }
 public void M6(int i, params object[] args) { ... }
 }

 class MyList<T>
 {
 public void Test(T t) { ... }
 }

 class UseList
 {
 public void Process(MyList<int> list) { ... }
 public MyList<T> GetValues<T>(T value) { ... }
 }
}

"M:Acme.ValueType.M(System.Int32)"
"M:Acme.Widget.NestedClass.M(System.Int32)"
"M:Acme.Widget.M0"
"M:Acme.Widget.M1(System.Char,System.Single@,Acme.ValueType@)"

ECMA-334

606

"M:Acme.Widget.M2(System.Int16[],System.Int32[0:,0:],System.Int64[][])"
"M:Acme.Widget.M3(System.Int64[][],Acme.Widget[0:,0:,0:][])"
"M:Acme.Widget.M4(System.Char*,Color**)"
"M:Acme.Widget.M5(System.Void*,System.Double*[0:,0:][])"
"M:Acme.Widget.M6(System.Int32,System.Object[])"
"M:Acme.MyList`1.Test(`0)"
"M:Acme.UseList.Process(Acme.MyList{System.Int32})"
"M:Acme.UseList.GetValues``1(``0)"

Properties and indexers

namespace Acme
{
 class Widget : IProcess
 {
 public int Width { get { ... } set { ... } }
 public int this[int i] { get { ... } set { ... } }
 public int this[string s, int i] { get { ... } set { ... } }
 }
}

"P:Acme.Widget.Width"
"P:Acme.Widget.Item(System.Int32)"
"P:Acme.Widget.Item(System.String,System.Int32)"

Events

namespace Acme
{
 class Widget : IProcess
 {
 public event Del AnEvent;
 }
}

"E:Acme.Widget.AnEvent"

Unary operators

namespace Acme
{
 class Widget : IProcess
 {
 public static Widget operator+(Widget x) { ... }
 }
}

"M:Acme.Widget.op_UnaryPlus(Acme.Widget)"

The complete set of unary operator function names used is as follows: op_UnaryPlus, op_UnaryNegation,
op_LogicalNot, op_OnesComplement, op_Increment, op_Decrement, op_True, and op_False.

Binary operators

namespace Acme
{
 class Widget : IProcess
 {
 public static Widget operator+(Widget x1, Widget x2) { ... }

 D Documentation comments

607

 }
}

"M:Acme.Widget.op_Addition(Acme.Widget,Acme.Widget)"

The complete set of binary operator function names used is as follows: op_Addition, op_Subtraction,
op_Multiply, op_Division, op_Modulus, op_BitwiseAnd, op_BitwiseOr, op_ExclusiveOr, op_LeftShift,
op_RightShift, op_Equality, op_Inequality, op_LessThan, op_LessThanOrEqual, op_GreaterThan, and
op_GreaterThanOrEqual.

Conversion operators have a trailing “~” followed by the return type.

namespace Acme
{
 class Widget : IProcess
 {
 public static explicit operator int(Widget x) { ... }
 public static implicit operator long(Widget x) { ... }
 }
}

"M:Acme.Widget.op_Explicit(Acme.Widget)~System.Int32"
"M:Acme.Widget.op_Implicit(Acme.Widget)~System.Int64"

D.5 An example

D.5.1 C# source code

The following example shows the source code of a Point class:

namespace Graphics
{
 /// <summary>
 /// Class <c>Point</c> models a point in a two-dimensional plane.
 /// </summary>
 public class Point
 {
 /// <summary>
 /// Instance variable <c>x</c> represents the point's x-coordinate.
 /// </summary>
 private int x;

 /// <summary>
 /// Instance variable <c>y</c> represents the point's y-coordinate.
 /// </summary>
 private int y;

 /// <value>
 /// Property <c>X</c> represents the point's x-coordinate.
 /// </value>
 public int X
 {
 get { return x; }
 set { x = value; }
 }

ECMA-334

608

 /// <value>
 /// Property <c>Y</c> represents the point's y-coordinate.
 /// </value>
 public int Y
 {
 get { return y; }
 set { y = value; }
 }

 /// <summary>
 /// This constructor initializes the new Point to (0,0).
 /// </summary>
 public Point() : this(0, 0) {}

 /// <summary>
 /// This constructor initializes the new Point to
 /// (<paramref name="xPosition"/>,<paramref name="yPosition"/>).
 /// </summary>
 /// <param><c>xPosition</c> is the new Point's x-coordinate.</param>
 /// <param><c>yPosition</c> is the new Point's y-coordinate.</param>
 public Point(int xPosition, int yPosition)
 {
 X = xPosition;
 Y = yPosition;
 }

 /// <summary>
 /// This method changes the point's location to
 /// the given coordinates. <see cref="Translate"/>
 /// </summary>
 /// <param><c>xPosition</c> is the new x-coordinate.</param>
 /// <param><c>yPosition</c> is the new y-coordinate.</param>
 public void Move(int xPosition, int yPosition)
 {
 X = xPosition;
 Y = yPosition;
 }

 /// <summary>
 /// This method changes the point's location by
 /// the given x- and y-offsets.
 /// <example>For example:
 /// <code>
 /// Point p = new Point(3, 5);
 /// p.Translate(-1, 3);
 /// </code>
 /// results in <c>p</c>'s having the value (2, 8).
 /// <see cref="Move"/>
 /// </example>
 /// </summary>
 /// <param><c>dx</c> is the relative x-offset.</param>
 /// <param><c>dy</c> is the relative y-offset.</param>
 public void Translate(int dx, int dy)
 {

 D Documentation comments

609

 X += dx;
 Y += dy;
 }

 /// <summary>
 /// This method determines whether two Points have the same location.
 /// </summary>
 /// <param>
 /// <c>o</c> is the object to be compared to the current object.
 /// </param>
 /// <returns>
 /// True if the Points have the same location and they have
 /// the exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="operator=="/>
 /// <seealso cref="operator!="/>
 public override bool Equals(object o)
 {
 if (o == null)
 {
 return false;
 }
 if (this == o)
 {
 return true;
 }
 if (GetType() == o.GetType())
 {
 Point p = (Point)o;
 return (X == p.X) && (Y == p.Y);
 }
 return false;
 }

 /// <summary>Report a point's location as a string.</summary>
 /// <returns>
 /// A string representing a point's location, in the form (x,y),
 /// without any leading, training, or embedded whitespace.
 /// </returns>
 public override string ToString() => $"({X},{Y})";

 /// <summary>
 /// This operator determines whether two Points have the same location.
 /// </summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>
 /// True if the Points have the same location and they have
 /// the exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator!="/>
 public static bool operator==(Point p1, Point p2)
 {
 if ((object)p1 == null || (object)p2 == null)

ECMA-334

610

 {
 return false;
 }
 if (p1.GetType() == p2.GetType())
 {
 return (p1.X == p2.X) && (p1.Y == p2.Y);
 }
 return false;
 }

 /// <summary>
 /// This operator determines whether two Points have the same location.
 /// </summary>
 /// <param><c>p1</c> is the first Point to be compared.</param>
 /// <param><c>p2</c> is the second Point to be compared.</param>
 /// <returns>
 /// True if the Points do not have the same location and the
 /// exact same type; otherwise, false.
 /// </returns>
 /// <seealso cref="Equals"/>
 /// <seealso cref="operator=="/>
 public static bool operator!=(Point p1, Point p2) => !(p1 == p2);
 }
}

D.5.2 Resulting XML

Here is the output produced by one documentation generator when given the source code for class Point,
shown above:

<?xml version="1.0"?>
<doc>
 <assembly>
 <name>Point</name>
 </assembly>
 <members>
 <member name="T:Graphics.Point">
 <summary>Class <c>Point</c> models a point in a two-dimensional
 plane.
 </summary>
 </member>
 <member name="F:Graphics.Point.x">
 <summary>
 Instance variable <c>x</c> represents the point's x-coordinate.
 </summary>
 </member>
 <member name="F:Graphics.Point.y">
 <summary>
 Instance variable <c>y</c> represents the point's y-coordinate.
 </summary>
 </member>
 <member name="M:Graphics.Point.#ctor">
 <summary>This constructor initializes the new Point to (0,
0).</summary>
 </member>
 <member name="M:Graphics.Point.#ctor(System.Int32,System.Int32)">

 D Documentation comments

611

 <summary>
 This constructor initializes the new Point to
 (<paramref name="xPosition"/>,<paramref name="yor"/>).
 </summary>
 <param><c>xPosition</c> is the new Point's x-coordinate.</param>
 <param><c>yPosition</c> is the new Point's y-coordinate.</param>
 </member>
 <member name="M:Graphics.Point.Move(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location to
 the given coordinates.
 <see cref="M:Graphics.Point.Translate(System.Int32,System.Int32)"/>
 </summary>
 <param><c>xPosition</c> is the new x-coordinate.</param>
 <param><c>yPosition</c> is the new y-coordinate.</param>
 </member>
 <member name="M:Graphics.Point.Translate(System.Int32,System.Int32)">
 <summary>
 This method changes the point's location by
 the given x- and y-offsets.
 <example>For example:
 <code>
 Point p = new Point(3,5);
 p.Translate(-1,3);
 </code>
 results in <c>p</c>'s having the value (2,8).
 </example>
 <see cref="M:Graphics.Point.Move(System.Int32,System.Int32)"/>
 </summary>
 <param><c>dx</c> is the relative x-offset.</param>
 <param><c>dy</c> is the relative y-offset.</param>
 </member>
 <member name="M:Graphics.Point.Equals(System.Object)">
 <summary>
 This method determines whether two Points have the same location.
 </summary>
 <param>
 <c>o</c> is the object to be compared to the current object.
 </param>
 <returns>
 True if the Points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso
 cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"
/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.ToString">
 <summary>
 Report a point's location as a string.
 </summary>
 <returns>

ECMA-334

612

 A string representing a point's location, in the form (x,y),
 without any leading, training, or embedded whitespace.
 </returns>
 </member>
 <member name="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two Points have the same location.
 </summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>
 True if the Points have the same location and they have
 the exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso

cref="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member
name="M:Graphics.Point.op_Inequality(Graphics.Point,Graphics.Point)">
 <summary>
 This operator determines whether two Points have the same location.
 </summary>
 <param><c>p1</c> is the first Point to be compared.</param>
 <param><c>p2</c> is the second Point to be compared.</param>
 <returns>
 True if the Points do not have the same location and the
 exact same type; otherwise, false.
 </returns>
 <seealso cref="M:Graphics.Point.Equals(System.Object)"/>
 <seealso

cref="M:Graphics.Point.op_Equality(Graphics.Point,Graphics.Point)"/>
 </member>
 <member name="M:Graphics.Point.Main">
 <summary>
 This is the entry point of the Point class testing program.
 <para>
 This program tests each method and operator, and
 is intended to be run after any non-trivial maintenance has
 been performed on the Point class.
 </para>
 </summary>
 </member>
 <member name="P:Graphics.Point.X">
 <value>
 Property <c>X</c> represents the point's x-coordinate.
 </value>
 </member>
 <member name="P:Graphics.Point.Y">
 <value>
 Property <c>Y</c> represents the point's y-coordinate.
 </value>
 </member>

 D Documentation comments

613

 </members>
</doc>

End of informative text.

 D Documentation

615

E. Bibliography

This annex is informative.

ANSI X3.274-1996, Programming Language REXX. (This document is useful in understanding
floating-point decimal arithmetic rules.)

ISO/IEC 9075-1, Information technology — Database languages — SQL — Part 1: Framework
(SQL/Framework)

ISO/IEC 9899, Programming languages — C.

ISO/IEC 14882 Programming languages — C++

ISO 80000-1, Quantities and units — Part 1: General. (This document defines “banker’s rounding.”)

End of informative text.

