cecma

anNCalt ECMA-334
-- 6 Edition / June 2022

C# Language
Specification

-,

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001

secmd

"COPYRIGHT NOTICE
© 2022 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE."

© Ecma International 2022

C#

Language Specification
6™ Edition, June 2022

Table of Contents

0) Xix
0000 o007 10 U0 0 o XX
Y o1 1
P\ 100 3 0B L A =) =) o) (L L, 3
3. Terms and defiNitioNsS ... ————————————————————————— 5
4. GeNeETral deSCTIPLION ...iiiiiicciimsri s AR R AR SRR 7
LI 000 110 11)1 T, 9
6. LeXICal STIUCTULE ..ot RS R R R RS R RS 11
L0 g 0 =3 = o 0 3 11
LT € =110 40 T 1 T 11
6.2.T GEINETAL couiueurreuetreirereesssesesse e sse e bbb s RS R R R R AR 11
LOIZ0Z €3 =1 400 00D gl 010 v L0 (o) o U0 12
LIS B 7= Uor= Y =0 = 04D 44 o PP 12
LA N0 VA 0L Lot Tl =3 = U 4D 0 - | 12
6.2.5 GrammMAL AINDIGUITIES . .cuueeureesreesseeeseeesseeseeseesssesssessseessessssssssesssessseesssesssesssesssessssssssesssesssessssesssesssesssessssssmsesssesssassssees 12

6.3 LEXICAL QNALYSIS 1.reurreuseesseersrersressseesseesseesssesssesssessseesssesssesssesssessssesssesssesssessssesssesssessseesssssasesssesssessseesssesssesssessssesssesssesssessssssssees 13
LT T B €)' 1= i | PO PP 13
LG T 0 T =) 9 00 4 =0) 14
6.3.3 COIMIMENTES ..ocureureereneeresseesesseesessesssssssssessessessessessessessessessessessessssssssssssssssssssssssessessessessessessessesssssessssssssessnssssussssessessessessessenns 15
6.3.4 WHITE SPACE c.ueueererreereririnsisssss s sssse s st st s s e e e 17

6.4 TOKEIS «.eueeeeuerseesreeseessessesssessessessse s s e s s s et see s R RS £ eER 4R RS £ AR 4R RS eE R E R AR 17
6.4 T GEINETAL oottt R SRR AR R AR R 17
6.4.2 Unicode character €SCAPE SEQUEIICESucurrreseesserssesssessesssesssesssesssessessssssssesssessssssssesssesssesssessasssasesssessssssssees 17
6.4.3 TAENEITIETS co.evceeeereeeeeseete ettt bbb b es bbb RS R bR bbbt 18
6.4.4 KEYWOTS. ...cuuieueereenreueesseesessesseessessssssessse s ess s s s s s e s RS s E R R R AR s R AR AR bbbt 21
6.4.5 LILEIALS ccuitreurenretreisetseesseissesse st bR R AR R AR R 22
6.4.5.1 GENETAL ..ottt essts bbb s S AR AR 22
6.4.5.2 BOOIEAN TIEETALS ..ottt ettt s e s s b a s st 23
6.4.5.3 INEEEET IIEETALS ... cuueerecee ettt es et s bbb s R bbbt 23
6.4.5.4 REAI HIEETAIS ..ottt sttt s sss st s s bbb 24
6.4.5.5 CharaCter IIEEIalS. ...ttt st s s bbbt 25
6.4.5.6 STIING LHIEETALS ..euvieeeeeercee ettt sttt se et ese e ss s s s bR R bR R bbb 26
6.4.5.7 THe NUILHEETAL....coeeeeeee ettt es e b e s b s s Rt 28

6.4.6 OPErators AN PUINCLUALOTS cuuueeeseeeseesseesseesseessresssesssesssessssesssesssesssessssesssesssesssessssesssesssesssessssesssesssessssssssssssesssssssssssees 28

6.5 Pre-ProCeSSING QITECTIVES ...veueueeureeecsreeeeseeses et ssse s s e s es s sse s s sse bR bR a bbbt 29
6.5. 1 GEINETAL ..ereuieieeetreeeteesree st esesese et s b s s £ s RS R R E AR AR AR bR 29
6.5.2 Conditional compilation SYMDBOLS ...t s ssssssss s sss s sssesssesssees 31
6.5.3 Pre-PrOCESSINE EXPIESSIONS .. veureeseruseesseesseessesssessseessessssesssesssesssse s sssesssess s sssess e sssesssess s sssesssasssssssnees 31
6.5.4 DefiNItiON AITECTIVES ...cuuieereeeeuseeneeereessesseesseeeessessesessses s ssse s s es s s a AR e bbb 32
6.5.5 Conditional cOMPIlation IT@CTIVES ...t sersse e s s ses s s s 33
6.5.6 DIAGNOSTIC QITECLIVES ..ouvevueereeseesreeeseeesseesesseesssesssess s sessss s ssse s sssesssees s s s bbb s 36
6.5.7 REZION QIT@CHIVES....euueececrreesreceseeesees st sesssess s ss s s sseeReREaRR e RR R bR 37
6.5.8 LINE QITECLIVES .oueueeeeeeeecureeeesseeseee et esee s s s e s s e s R bR AR s bbb 37

il

ECMA-334

6.5.9 PTagma QITECLIVES ...cuueeuceersreesseeesesesseessesssesseesssesssesssesssessssssssssssessses s sssesssess e ssss s ssse s e sssasssess s sssasssasssnees 38
70 2 T3 Lol o0 ¢ L 01 41
4% W2V 0) 0§ Uor= N Uo) o 1) = | o FE0 PPN 41
7.2 APPIICAtION LOITNINATION cuuvetreereteeueeecsree s et seesse s esss e ets bbb e s a bbb sseEnEReEaebseEa e bR 42
7.3 DIECLATALIONS .eueureereeueineesseesseeseessessesssees s sessesasessessse e s s s E R4 R R s £ 4R R s R A bbbt b et 42
74 MEITIDETS ...coveeereeereeeseesseesseesss s essees s ass s s s RsEEeEESEaER 8RR AR RS AR AR SRR Rt R 46
7 4.1 GEIIETAL ..oureeeeeeeeeeeeesseese st cs bbb s E R SRR E R AR AR R R 46
7.4.2 NAIMESPACE IMEIMNDETS ...uvcurrereuseeneeeseesseseessesseessesssessssssessasssessssssesssessesssssssasessasssessssssessssssessssssssasessssasessssassssssssesssssesas 46
7.4.3 STEUCE INEIMIDETS w..coivueeeeeceseieese et e s esse e st s b a bR s R R A s R bbb s bbb 46
7.4.4 ENUMETATION IMEIMDETScuuieuiceeeeseesseesseeseessssssesssesssessssssssesssssssss s sssesssesssesssss s s st s s sssasssesssessssssssasssasssasssnees 46
7.4.5 ClaSS IMEIMDET'S ..ccvuvieureeeeteisseessectseessssss s s st ss s s RS seER RS R R Rt 47
7.4.6 INTEITACE INEIMDETS ..ceveeeceeireeeeet ettt bbb s e bR e e a bbb 47

7 4.7 ATTAY IMEIMNDETS ...cuieueeeeeeureesesseeseesesssesssessesssssse s st sessse s s bbb R s £ AR A s R E e s bbb R bbb 47
7.4.8 DElEZALE IMNEIMIDETS ...oucuueeuerureesseetseeesseess s s s sssess st sess s s s s e sseER eSS R bRt Rt 47
7.5 MEITIDET QCCESS ..uuveueuerrerseenesseessesesssesseessessessssssessessse s sss e s s R R s R RS £ SRR AR R R AR bbb 47
7.5. 1 GEINETAL ottt s b s R SR AR R AR R 47
7.5.2 Declared aCCESSIDIIITYcvuueueeceereereereeseesees et ee e ssse e s s es e s s bR s e 47
7.5.3 ACCESSIDIIITY AOMAINS .o euieeeeeee ettt es bbb R s 48
7.5.4 PTOTECTEA ACCESS ..uuvuueurreneuriesesserseesessse s sssesssesss s st s sase s R AR R R bbb 51
7.5.5 ACCESSIDILILY CONSTIAINTS w.cvuieeeceeceseeneeseeseessresssees s seesssesssesssess e sssesssees s sssess s sssess s ssss s sssasssessseees 53
7.6 SigNatures and OVETIOAAING ..o eeerrerrrerreesee e seesseeees s es s sesse s ss s bbb s s 54
7.7 SCOPES cureureureuressessesssssessssssssss s st ss s sssssssssesssssessssssssesesssessss s s 2 R 56
7.7 .1 GEINETAL couiieineereeseiecsssesesse bbb s RS R AR R R bbb 56
W70\ - U1 T=3 1) U DoV PPN 59
W B €= 4 U - Y PPN 59
7.7.2.2 Hiding throUZh NESTINE ... et sseesseeses e sses s s s s ssse s sss s s s s s sees 59
7.7.2.3 Hiding through iNNerItancCe ... sess s sssesss s sssess s sesssssssssssseeens 60

7.8 NAMESPACE AN LYPE NAIMIES ...eercercereesseesseesseesssesssesssessseesseesssesssessseesseesssesssessseesssssasssssesssessssesssesssesssessssesssesssesssasssessssees 61
7.8. 1 GEINETAL ..eueuieeeeereeeeeeseesesse s ee s s s RsEER R AR R s R R AR 61
7.8.2 UNQUANIIEA NAIMNES .cuvevreeiireeerect e sse st ss et sesssse s s s b s bbb bbb bt 64
7.8.3 FUlly qUAlIfied NAMESceveeeeicereeseieeseieesss s isss s es s sss s bbb s s st 64
7.9 AutomatiC MEMOTY MANAGEIMIEIIT ..o reureuresresressessessss s sss s s sse s R s R R R bbb R s 65
7.10 EXECULION OT AT c..curieueusieueereesseseeseeeessessessesssessessse s ssss e s s s s s s s s R b s R R R R et 68
0 74 o L 69
8.1 GENETAL ..euveeeeeeeeeeeesre sttt seesse st s e s s s R s R R SRR SRR R R AR ARt 69
ST =] L3 =) o Lo 4 =3P 69
B.2. T GEINETAL ottt b bbb s R SRR AR AR AR R 69
B.2.2 ClaSS LY POS euureurereemrerseeseesessesseessesssessessse s sss s s s s s s s Ese RS s E R R AR R re R AR R E s 70
LS T N o L= 0] o) 1= o o = T PO 71

LS R TN U=l |4 U 0 (ol 74 o1 PPN 71
8.2.5 ThHE SEIINE LD cereeurreureereerrersreesseesseesssesssesssesssees s sssesssees s sss s sssess e e ssee s RS ReER R R E e 71
B.2.6 INTEITACE LY P S ettt ettt s e s s a bR R R AR R s bbb 71
SN - | 14 1= T 71
B.2.8 DELEZALE LYPES covurreurrerseereerserssessseessessssesssesssessee s sssesssess s sss s s s s SRR R R AR R R R 71
ST Y 110 TR 0 0TSPTSRO 72
8.3, 1 GEINETAL ..eueuieeeeeseereeees ettt eee et s e s bR RS R R E AR RS AR AR 72
8.3.2 The SYSteM.VaAlUETYPE LYPE .eveereereemeemeeseersresssessseessessssesssssssesssse s sssessseessssssssssssssssssssssssssssssssesssessssssssesssssssssssnees 73
LTS G DT =L L Ul o0] 0 g DU 0 3PP 73

Table of Contents

8.3.4 SEIUCE LY DS cueueererreerersse s s s bR R 74
B.3.5 SIIMIPIE LY PES oeurrteeereeeeureeecire sttt b s esse b st s s R R AR R R 74
B.3.6 INTEETAL LY PES e ruieuriueereeeeuretsese st ssse e b e s b s bbb s a bR AR A AR s e s et R bbb 75
B8.3.7 FlOAtING-POINE LYPES...cueurirrrresreesseerserssessseessesssesssasssesssessssssssesssesssss s sssssssess e ssse s e s s s s s s saasssasssnees 76
8.3.8 The DECIMAL LD .. s s e e s 77
B.3.9 THE BOOI £ P ettt stsse s s s s £ R eb bbbt 78
8.3.10 ENUIMETATION LY PES weerrereeeereeeeeeeeseeessessessessessessessesssssesssssessssssssesssssssssessessessessessessessessessessssssssesssssssssssssssssessessessenns 78
8.3.11 NUIIADIE VAlUE LYPES cuurveurrrrrrrrerserssssesssessssssessssssesss s sssssssssssss s sssssss s sssssssssssss s ssssssssss s ssssssssssssssssssssssnsssnsas 78
8.3.12 BOXING ANA UNDOXING ...ourrurreueceeerseesseeseeseessssssesssesssessssssssesssessssssssesssesssessssssssssssassssssssssssssssasssessssssasssssesssasssasssnees 79
8.4 CONSIIUCLEA LYPES wcurrvueurremerreesseseesseeseessessessesssessasssessssssssssss s s s s sssesse s st s £sse b a e s eE AR bbbt bR bne et 79
84T GEINETAL ..ottt a b s b s RS R R AR AR AR AR 79
S A 4 T Do D00 0= 01 80
8.4.3 OPEN ANA ClOSEA LYPES wuveurirrrrrererrsssessesssssesss s s s sssssss s sssssss s ssss s s e ssssss s s st sas 80
8.4.4 BoUNd aNnd UNDOUNA LYPES ...uuruurerieriererreeeessetssesssesseeseessessssssesssssesssssss s sssssssssssss st ses s s sssse s ssssssssssssesas 81
8.4.5 SAtiSTYING CONSLIAINES .uueuuerueesreereeeseesseeseeseessessseessesssessss s sssess e sssesssees s s s s s s r s m s e s s 81
8.5 TY P PATAIMETLETS ...ccurevueuseeneeseesseseesseeeessesssessesssessessse s s s sessse s sss s sees bR e s SRR s R R R s R e R R AR bbb 82
LE SR 4 0] T 10 T 0 T 4 PP 83
8.7 THE AYNAIMIC L P . reurrerrcerrerreesreesseeeseesseessesssessses e sssessseesseesss s es s R R R AR RSB R R 84
8.8 UNIMANAZEMA LY PES.cureruersrenrerreesseseesseeseessessessesssessasssessessssssssssesssessssssessssssessssssesassssessssssssssessssssessssssssasesssssssssasssessssssssssessesas 84
B0 I T 1 = 10 T 87
0.1 GEINETAL ..eueueeeeeeereeeeseeseeeseeses e ee s es e s s s e s s R R £ E £ R £ R R SRR AR SRR AR e R b 87
0.2 VaTiable CAtEEOTIES ...cucuieuieeesreeeesresseseeseesseesses s essess s sess s s s a bR s R e R st 87
O.2.1 GENETAL ettt bbb s s s R s AR AR R R 87
0.2.2 STALIC VATTIADIES c..eueeeereereieeseeset et ss s ss bbb ss bbb e bbb 87
9.2.3 INSTANCE VATIADIES ..ottt ee e s s R s 88
Lo TR0 R =5 4) - | PP 88
9.2.3.2 InStance variables iN CIASSES ... ssesses s ssssssessss s ssssss st sessssssssssssssssesas 88
9.2.3.3 InStance variables IN STIUCLScocirnieeseessessesssssss s ssssssesssssss s ssssssssssssss sttt sessssssssssssssssesas 88
O.2.4 ATTAY ElEIMENITS. ..couieurereeureeeesreeeessessessesssee s s es e s s esse s ea s R AR R R R E s bbb 88
O.2.5 ValUE PATAIMELETS ...uvrerieureeeesseeseesseessessesssessesssesssessesssessasssessssssessesssssssesse s es s s e sse s se s s bbb s bbb s s b s sas 88
9.2.6 REFEIEIICE PATAIMIETETS ..covveeurremseesseesseessresssessseesseesssesssesssesssesssesssessseesseessse s s s e s ssesssees s ses s sesssesssessseeens 88
Lo A 0 10 U 01U = = 0 =3 o) PP 89
O.2.8 LOCAL VATTADIES. ..ottt eee e es s ss s s R AR R 89
0.3 DEFAUIL VAIUES ..ot eseessesssissesss st sss s ss s sss bbb s R s S sEb banbnbabtab 90
9.4 DefiNite ASSIGIIMIEIIE «..oovcureeueeseesseeseerrersessseessessseesssesssesssess s ssseesseessees e R R R RS R R R s 91
0.4, 1 GEINETAL ..ttt ettt s e s s s R £ R R AR R AR 91
9.4.2 Initially asSigNed VAriabIes ... s ssss s 92
9.4.3 Initially Unassigned VariabIes ... sssess s sssess s sssssssssssesssessssssssssssssssseeas 92
9.4.4 Precise rules for determining definite asSigNMENt. ... sseesseesseeens 92
0.4 4.1 GEIETAL ..ueeeeeeeeeeeeere et es e s s R SRR SRR R R AR 92
9.4.4.2 General rules fOr SEAtEIMENTES ..ot sets s bbb s bbb 93
9.4.4.3 Block statements, checked, and unchecked StatemMENTSoueermermeeseesseesssesnsesssessseesssesseesseesseeens 93
9.4.4.4 EXPIreSSION STALEIMEIITS. ...cuieurereeseeseesrersressessesseessessessssssessessse s sss e sessses s sss s s sessse s ssssss s sesssesesas 93
9.4.4.5 DeClaration STATEIMENTS.ocriueeueeeeureesresseesseeseessessessesssessessse s sss e s ses bbb es s s bbb ae e bbb 93
O.4.4.6 If STALEIMENES ..cuvreucerieereeeesreeseesseiseesessese s s s sees s ss s s e s Ea eSS E R R e R bbbt R 94
0.4.4.7 SWILCH STATEIMENES. ..cuieuieeesresseissessises s s bbb s b s 94
0.4.4.8 WHIlE STALEIMENLS ...ovvueurieureereesreeeeseeseessessse s essessses s sssessse s sss s s bR R bbb e 94

o T B D L0 Ty 2 U= 4 0 1<) o Lt P 94
0.4.4.10 FOT STAtEIMENTS....oivirserrrsessesesesessessessesssssessss st s s st 95

ECMA-334

9.4.4.11 Break, continue, and Z0t0 STALEIMENLScvveeeeermeesseesseesseersesssesssssssesssssssesssessssssssssssssssssssssssssssssssesss 95
9.4.4.12 TRIOW STATEIMIENTLS ...covceureemseesseesseessesssensseessessssesssesssessssssssesssessseessessssesssesssess s sssesssess e s s sssesssessssssssssssssssseeas 95
9.4.4.13 RETUITE SEALEINIEIILS w.covvceuveemseesseesseessesssessseesseesssessseessesssessssesssessseessessssesssesssess s sssesssesssessssssssssssesssesssesssesssssssseens 95

Lo 0 T U g or Lol Y = 1) 1 (=) 01 PN 96
9.4.4.15 Try-fiNally STALEIMENTS ..cvveririsereises s s sss s s s s s s sass s sas 96
9.4.4.16 Try-catCh-fiNally STAtEIMENTScccrierieeerrereee et ess s bbb sss s sss bbb s 96
9.4.4.17 FOTEaCh SEALEIMEINLS ...cvueeereseeseerresssees s seesssesssessees s ssesssess s s ss s sssees s ss s ssssessseeas 97
9.4.4.18 USING StALEIMENTS ...cviririesrsisissisissis s bbb 98
9.4.4.19 LOCK STAtEIMENTS c.ccvuriivsiersessssssssssssssssssssssssssssssssssssss bbb bbb bbb 98
9.4.4.20 YIeld STAtEIMENLS w...veereereemeeseeseesssesssees s seesssesssssssess s sssesssess s sessss s ssses s sssees s s e ssssssessseeas 98
9.4.4.21 General rules for CONSTANT EXPIESSIONS. ... reuiereeseesrerseessessesssesssesssssessssssssssssssssssssssssssssassssssssssssssssas 98
9.4.4.22 General rules for SIMPle EXPreSSIONS. .. s 99
9.4.4.23 General rules for expressions with embedded eXpressions....... i ————— 99
9.4.4.24 Invocation expressions and object creation eXPreSSiONS. ... erensenernsesseensesseesessessssssesseens 99
9.4.4.25 Simple aSSigNMENT EXPIESSIONS w.uueuuermreeseesreessrersessessseesssesssesssesssessseesssssssesssessssssssesssesssesssesssssssssssessens 100
0.4.4.26 && EXPTESSIONS ..eurveurererrissesssrisessssesssssssesssssssesssssssesssssssesssssssesssssssesssssssssssssssessssssssssssssssssssssssssssssssssssesssassseanes 101
0.4.4.27 || @XPTESSIONS c.vevurerureesseesseesseesseessesssessseesssesssesssesssessssesssesssesssesssessssesssesssessseesssesssesssessssesssesssesssesssessssesssesssessees 102

B0 A B =4 0] (] () LT 103
O0.4.4.29 77 @XPIESSIONS c.cuerrereuseeerissessssissssssessssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssssssssssessssssnsssssssnsssssesssansneanes 103
O0.4.4.30 7: X PTESSIONIS c.cureurereuresseressessesessessssesssssssesssssssesssssssesssssssesssssssesssssssesssssssesssssssessssesssssssssnessssssnessssssnsasssesnsasseanes 103
9.4.4.31 ANONYMOUS FUNCHIONS..ccvureueemeeseesseersessseesseessesssesssesssessseesssesssesssessseessessssssssssssessssesssesssesssesssessssesssesssessees 104

LY U g 1 0] LD =] (S =) 4 U =TT 105
9.6 AtOMICILY Of VATIable FEIEIEICES. ...rieueeeeeeeeeeeiseesse et ce e bbb s sess bbb 105
I 004 o] L0 1 107
0T T =) - 107
10.2 IMPLICIT CONVEISIONS ceutrvureririirsissssssesssssssssssesssssessesssssssssssesssssssssssssss s ss st s s ssssssssssasesssanes 107
00 =) 0 1<) ¢ | PP 107
10.2.2 IAENTILY CONVETSION weurerreereemeesseesseesseesssessseessessssesssesssesssessssssssesssesssesssessssssssesssesssessssesssesssesssessssssssesssesssasssessssesss 108
10.2.3 IMPIICIt NUIMETIC CONVETSIONS ...uvuveereeueeeeseeeessessessesssesseessessesssessssssesssessssssessssssssssssssssssssesssessesssessssssessasssesasees 108
10.2.4 Implicit ENUMETatiON CONVETSIONS ...cuvuueueeeeererreseessesssessessesssesseessssssessssssessssssssssssss s sssesssessssssesssssssssasssesasees 109
10.2.5 Implicit interpolated String CONVETISIONS......cceeeerrerrersseesseesseessessesssessssesssesssessssessesssssssessssssssessessseens 109
10.2.6 IMPIiCit NUIADIE CONVETSIONSuvueereeuieeeseeeeereeseseisee e ss s ss s s ssss s ssss bbb anees 109
10.2.7 NUl Literal CONVEISIONS. cccuuiruirmiissisirssssssessessssssssssssss s ssss s sssss s ssss s ssss s s s s ssees 109
10.2.8 IMPIIiCit refereNCe CONVEISIONS c.uueruersreesreesreeeseeesseessessseesssesssesssesssesssesssesssesssessssssssesssesssesssessssssssssssesssasssessssesss 109
10.2.9 BOXING CONVETISIONS ..vcvueurrrresrersesserssessesssessesssesssessesssessssssessssssessssssssssessesssessssssessssssessssssesssessesssessesssssssssssssasssesasees 110
10.2.10 ImpIicit dYNAMIC CONVETISIONS ...ueurieueeeeseeeesseesessessesssessessesssessesssesssessssssessssssssssssssssssssesssessasssesssssssssssssesasees 112
10.2.11 Implicit constant eXPreSSiON CONVETISIONS. ... rererreesereessesssessesssesssessessssssessessesssessssssesssssssssssssessess 112
10.2.12 Implicit conversions involving tyPe Parameters ... erereressseesssesssesssessseesseesssssssesssesssesssssssseess 113
10.2.13 User-defined impliCit CONVEISIONSuceeeeeeeseesseessserssessseesseesseessesssesssessssssssssssessseesssssssssssesssssssesssessssesss 114
10.2.14 Anonymous function conversions and method group CONVErsions.........eneeeseessseesseens 114
10.3 EXPLICIT CONVEISIONS ...cvrieureuueueeseessessseseessesseessesssssesssessesssessssssesssessesssesss s essasssessssssssasessasssessassssssssssesssessasssessssssssssessesas 114
T10.3.T GENETAL.cueurirrerseeeeseese s ssssss st ses s sse b s s s s s R SRR R e 114
10.3.2 EXPIiCIt NUMETIC CONVEISIONS ..ueureerersrreseesseesseesssesssessseessesssesssesssessssesssesssssssessssssssssssesssessssssssssssssaesssassssssssesss 114
10.3.3 EXplicit eNUMETration CONVETSIONS ...viuieueeeeereeresseesesseessessesssessesssesssessssssesssssssssssssssssssasssessssssessssssessasasesanees 116
10.3.4 EXPliCit NUIIADIE CONVETSIONS .cuurvurerieurereeseeeeeseeseseisesseessessesssessssssessesss s ssssssssssssss s ses s sass s sanees 117
10.3.5 EXPIIiCit referenCe CONVEISIONS ..uuuirresreereeeseeesseesessseesssesssesssesssessssssssesssssssessssssssssssesssssssessssssssssssesssasssessssesss 117
10.3.6 UNDOXING CONVETSIONS ...uurureuerrresseeseeesesssessesssessssssesssessesssessasssessssssessssssesssessesssessssssessssssesssssesssessssssessssssessasasssanees 118
10.3.7 EXPliCIt AYNAMIC CONVETSIONS ...ueueereeueeeeseeeessessessesssesseessessesssessssssesssessssssessssssssssssssssssssasssessasasessssssessasssesanees 119
10.3.8 Explicit conversions involving tyPe Parameters ... ereermeressseesssesssesssessssssssessessssssesssesssesssseess 119

vi

Table of Contents

10.3.9 User-defined eXpliCit CONVEISIONS .. sssssss s s sssssssssssssssssssssssess 121
10.4 StANAATTA CONVETSIONS c.ueuriuueureereeureesseseesseeseessesesssessesssesssessssssesses s s s saes s sse s s s Esse s ase s b s bbb s b st st 121
T10.4.T GEINETAL.coueeieeeeeeet ettt et es et e s ess b s bR bR R s R ER R R s E bbb R s 121
10.4.2 Standard imPliCit CONVETSIONS ..uueeriesesesssnsesssssesssssss s sssesssssssssssssssasess 121
10.4.3 Standard eXpliCit CONVETISIONS ... s ssssss s ssssssssssssaness 121
10.5 USEr-defiNed CONVETISIONSucuuieeriereeeenreeseessetseesssesssseessessssssessssssesssssss s s ssssesssssss s s sassse s bbb bbb st 122
T0.5.T GEINETAL.ceueerieeeieeeet et eesse b esebsee e es et s bR bR R AR AR bbb Rt 122
10.5.2 Permitted user-defined COMVEISIONS. ..o eeeseessseesessseessesssesssessssssssssssssssssssssssssssssssss s sssssssassssssssesss 122
10.5.3 Evaluation of user-defined CONVETSIONSccoveernernmeesseessecssesssssssssssssssesssessssssssssssssssssssssssssssssssssssseens 122
10.5.4 User-defined impliCit CONVETISIONSvuueureeeereenreueesesseessessssssesssssessessssssessssssessssssssssssessssssssssssssssessssssssnees 123
10.5.5 User-defined eXpliCit CONVETSIONSviueurierecereenseuseesesseessessesssesesssessesss st sssssesssssss st sessss s s ssassssssasssanees 124
10.6 Conversions involving NUIIADIE £YPES ...t sssees s ssssss s ss s sssssssssssesens 125
10.6.1 NUILIADIE CONVETSIONS ...correrrensienseesseesnesssessseessesssessssesssssssessssssssssssasssessssssssesssesssssssssssssssesssasssessssssssssssesssasssassssesss 125
10.6.2 Lifted COMVEISIONS. cicuiuuieereeeeureteesseeseeseessessesssessssssessesss s s ssesse e sss st s bbb s e a bbb bbbt 126
10.7 ANONYMOUS fUNCLION CONVETISIONS ...cvurreureerseeeseemserseeseessesssessseesseesssesssesssesssessssssssesssesssesssesssssssssssasssessssssssesssesssessns 126
T10.7.1 GEINETAL.eueeieeeeeeeee et eeees s ee e es e s s bR R RS R R AR R s R bR s 126
10.7.2 Evaluation of anonymous function conversions to delegate tyPesenenmernsermeesseesseeeseens 128
10.7.3 Evaluation of lambda expression conversions to eXpression tree typesoeeeeseesseeesseens 129
10.8 MethOd GTrOUP CONVETSIONS. ...cuieuierrereeneeseesseseessesssessesssessssssessesssesssessssssessssssesssssssasessasssesssssssssssssesssessssssessssssssssessesas 129
11, EXPIESSIONS wuiuiuiususmsssssssmsssassssss st s sssssssssssss s e s sasass st st st s e s s s e s m AR AR AR R 133
B I =5 4) - | PO 133
11.2 EXPression ClasSifiCatiOnS ... sssessssssssssssssas 133
T 1,21 GEINETAL.tuierieeeeeereereese e eseesses b sesss s s e s sse bR RS REaEEA R bR bR s 133
11.2.2 ValUES Of EXPIESSIONS wcereereemseemseesseesresssessseessessseesssesssesssessssssssesssesssesssessssesssesssessssssssesssesssesssessssssssesssesssssssssssseess 134
11.3 Static and DyNamic BINAINGcueeenenerneeeeecsseesessessseeseessesssessssssesssessesssessssssesssssssssssssssssssssssssssssssesssssssssssssesas 134
0 R 1) 0 =) o OO PP TP 134
11.3.2 BINAING-TIIMNIE....ouierieereeeeeesecesseeseeseeseessesssessseessessseesssesssesssees s sssesssess s s sss s e sssess s sesssse e smsesssesssesssseees 135
11.3.3 DYNAMIC DINAING . teurierreeereeeseeseeseeseessesssessseessessseesssesssesssessssssssesssesssesssessssesssssssesssessssesssessseessessssssssesmsesssasssesssseens 135
11.3.4 TYPES Of SUDEXPIESSIONS ..uvvurieusiurerneesseesseessessesessesssssssesssss s sssesssess s s s bs st s e s e s asnses 136
B 0] 0 T) = L0 PPN 136
T 14T GEINETAL ettt esss et s e ase bbb s R R R bbb e 136
11.4.2 Operator precedence and aSSOCIATIVILYcoccreeeerreereeserseesserneesseessessessesseesse s ss s ssssssssssssssssesasees 137
11.4.3 OPErator OVETIOAMINE ...cvueeureeeeueeeeereessesseesseeeessessesse s ssesse s ss bbb bbb s s 138
11.4.4 Unary operator overload reSOIULION ... e sssess e ssesssesssssssessssssssssssssssesssssssseess 139
11.4.5 Binary operator 0Verload reSOIULION ... eeeeeeseersrerseesseessecsseessesssessseesssesssesssessssessessssssssssssesssesssssssseens 139
11.4.6 Candidate uSer-defiNned OPEIALOTS ... cenreereesseeesseesei s sess s ss s ss s b e ss st 140
11.4.7 NUMETIC PrOMOTIONS ..cuiuiuriurisrissiesesssssesssssssssssssssessessessessessessessessesses s s ss s st ssessessesses s ssessss e 140
T1.4.7.1 GENETAL ottt e s s s bR s AR bR bbbt 140
11.4.7.2 UNary NUMETIC PrOMOTIONS. ...ucuurrecsrersrereesesserssesssessesssessesssessssssssssessesssesssssssssesssesssessesssessssssessssssesssesssssnes 141
11.4.7.3 Binary NUMETiC PrOMOTIONS ...ouieiieceerssessesessesessessessessessessesssssesssssssssssssssssssssssssssssssessessessessessesssssesssssees 141
11.4.8 Lift@d OPETAtOTS .uceeieeectreeeseesseesseiseesse s sssesssessseessse s s s es b s bR bbb bbbt 142
11.5 MEIMDET LOOKUP ovuvevueeereeeeeeseeseeseeseessesssesssesssessssessse s s s sssees s s R R s e 143
T 1,51 GENETAL.ruiiurirrereeseiseese s esessses s sesss st s s ss s s s s s R s AR R e 143

1 1.5.2 BASE LY POS cuiuureuseenreereesesseesseeseessessessesssessasssessssssesssessesssesss et sae s e s R s £ AR AR R R R R bR 144

1 1.6 FUNCHON INEIMDETS c..eueteeuieseueeseeusesssesesssesseessesse s ssesssessse s sss e s s s s R e E AR bbb b s et 144
T1.6. 1T GENETAL.ueurirreesrereeseese s ssssss st ses s se s s s s R SRR bR e 144
11.6.2 ATGUIMNENT LISTS ..euierieerieeeureeecsre et seesse e ess s secs s ss s s s e s bbb R R bR a s e 147
T1.6.2.1 GEINETAL.curieieeeeereeereeeesee et sees st s e s s s b s s £ E RS se b e a A s £ AR bR bR bbb 147
11.6.2.2 COrreSPONAING PATAIMIETETS ...cuueuueeserseesseeeseesssesssesssessssesssesssesssessssesssssssessssssssssssesssesssessssssssssssesssasssssssseens 148

vii

ECMA-334

viii

11.6.2.3 Run-time evaluation of argument liIStS ... ssessessssssssssessssssssssseens 149

1 1.6.3 TYPE INEETEIICE ...cueeeeueeeeueeeeeretseseesee e ess b ets s s e s e s R R bbb e 151
T1.6.3.1 GEINETAL .ottt et e s s e b s s s AR R bR bbb 151
11.6.3.2 The firsSt PRASE ..o s s s b s 152
11.6.3.3 The SECONA PRASE vt sss s bbb b et 152

T 1.6.3.4 INPUL EYPES weureureereeurereesseessesseessessssssessssssesssesss s sessessssssssssessesssessesase s seb s eE s se bbb base b se s s bnbaes 152

T 1.6.3.5 OULPUL LY POS wueureereeurerreemseesseeseessessesssessesssesssessesssesssessessssssssssessesssessssase st ses s s sase et s s sne s base b ses s bsnbanes 152
11.6.3.6 DEPENUEIICE c.ucvureireeriressesses s s s s sss s s s sss s s sss s bR s 153
11.6.3.7 OULPUL LY PE INFEIENCES. ettt s s st s b 153
11.6.3.8 Explicit parameter tyPe INfEIENCES. ... uereerrerreeseereeseisessseesessessessesssesssssessesssssessssssessssssssssssssanes 153
11.6.3.9 EXACE INTEIEIICES ...cuiuueeureerreereenseiseesseeecs s essebssesse s ssss s sss bbb bbb bbb a s bbb 153
11.6.3.10 LOWETr-bDOUNA INFEIEIICES ..cureureeierieereerseeeseeeseeseesseessesssesssess s s ssssss s sssess s s sssasssessssesns 153
11.6.3.11 UpPPer-DoUNA INfEIEIICES ..vuierrinesssissesssessssssssssssss s sssssss s sssssssssssssssssssssssssssssssssssssssnssssssssssssnes 154
11.6.3. 12 FIXING corvrureerrureesseesssessseesssesssseessseessssessssessssesssssessseessssessssessssessssessssesssssessasessssessssessssssssssessssessssessssesssssssssssssanens 155
11.6.3.13 INfErred FELUITL LFPE ocuueemeemeemeerrersreesseesseesseesssessssssseessssssesssesssesssss s sssssssess e sssesssesssessssssmsesssesssessssssseens 155
11.6.3.14 Type inference for conversion of method Groups.......enenenmeenseneeeeseeseesseesseseseens 156
11.6.3.15 Finding the best common type of a set 0f EXPIreSSIONS ... eeerrmeereesseesseesssesnseesseesseesssessseens 157
11.6.4 OVEIload IeSOIULION ... icmcereemremeeseer e seesseeseessseesseessses s ssseessees s s e s s s R s s e 157
T 1.6.4.1 GEINETAL ot et e s s e s s s e s R RS AR R R R 157
11.6.4.2 Applicable funCtion MEMDET ... s ssssss s s e ssssaes 158
11.6.4.3 Better fUNCION MEMDET ... eeeceeereesreesseeeseeesseesesssees s sssesssesssesssss s ssssssssssssssssesssessseessss s sssesssesssesssseens 158
11.6.4.4 Better cONVersion frOM @XPrESSION ... reereeseersesssesssesssesssesssessssssssesssssssesssesssessssssssssesssesssesssseens 159
11.6.4.5 Exactly MatChing @XPreSSION ... ierereererseesseseessessesseesses s seessesssesse s ssssse s sssesssssssssesssesasesssssses 160
11.6.4.6 Better CONVErSION tATZEL ...t 160
11.6.4.7 Overloading in GENETIC ClASSES. ... rerreeeeseeseesssersess s sesssse s sssssssess s sssesssesssssssseens 160
11.6.5 Compile-time checking of dynamic member iNVOCAtION ... eeeeeesreerseernreeseesseesseesssessessseesssesssessseens 161
11.6.6 FUNCtion MeMDET INVOCATION ...u.uucereeareeeeseeecs e ssee e ssessess s s ssssssssssssse st ses e s s s s ssssssasssesanens 162
B ST B CT=) 4 1<) =Y TP 162
11.6.6.2 Invocations 0N DOXEd INSTATICESvwuuieeeeeeeermeeseesssessessseesseesssesssssssssssssssssssssssesssessssssssssssesssesssssssseens 163
11.7 PYiMQATY EXPIESSIONS ..coreeurerucessreseesserssesseesesserssesssessesssessesssessssssesssessesssessesssessesssesssessssasessesssessssssesssessesssessesssesssssssssessesas 163
T 1,71 GEINETAL . eeueerieeeeeeee et es st e s ss b s R R R R AR R s R bR s 163
T 1.7.2 LIEEIALS certeuriteeeeeeset st esetsssse b st ssse s sae s s s s AR bR e 164
11.7.3 Interpolated String EXPIESSIONS ... eereeeeerrerssersseesssessesssessseessessssesssesssessssssssssssesssesssessssssssesssesssassssssssesss 164
11.7.4 SIMPIE NAIMES «..ovurereeuereeseeeesseesessesseee e s esse s eessesses e s s s E £ AR AR s E R e 169
11.7.5 ParenthesSiZed EXPIrESSIONS. ... cereererreesseesessessesse s sessse s sssessses s s b s e es bbb bbb s s st 171
11.7.6 MEINIDET ACCESS ..cvurerureesreeeseeeseesseesseesseesssesssessseessesssessssesssesssesssessssesssesssesssessssesasesssesssesssesssesssessessssesasesmsesssasssessssesas 171
T1.7.6.1 GEINET ALt s s s s s s a bbb 171
11.7.6.2 Identical simple names and tYPe NAMES........o.oveuereereeurerseesserseessesssessssssesssssessessessessssssssssssssssessssanes 173
11.7.7 Null Conditional MEIMDET ACCESSveuriueueeeerrerressessesseessessssssessesssssessssssessssssssssssssssssssssssssssssesssssssssssssesasees 174
11.7.8 INVOCATION EXPIESSIONS c.ccvueereruressersersersessessesssessesssessesssessesssesssssssssssssesssessssssessssssesssssss s s sesssessesssessssssesssssnesasess 174
T1.7.8.1 GENET ALttt b s s s Rt 174
11.7.8.2 MethOd INVOCATIONS ...cuureuceeeneeeeseeecsseesesseessesssesse s ssssssessse s ssse s s s bbb e s s s neas 175
11.7.8.3 Extension Method INVOCATIONSccviereeneeereeseesseeseeseesses e sess s s ssssse s s ssesssssssssesssssssssssanes 177
11.7.8.4 Delegate INVOCALIONS. ... bbb bbb bbb 179
11.7.9 Null Conditional INVOCation EXPreSSION ... eeeeeerersessseesseesseessesssesssessssesssesssesssessssssssssssesssesssssssssssseens 180
11.7.10 EICINIENE ACCESS...cuieureureemeeeesrersesseessessasssessesssessssssesssesss s sssesse s ssse et s s sse s Esse e e s s b bbb ba b nees 180
T1.7.10.1 GENETAL..eieiereereeersissessseses st s s bbb s R s bR s 180
11.7.10.2 ATTAY QCCESS ceurerreeurerseessressessesssessesssesssessesssessesssessesssessssssesssessesssessssssssasessesssessssssssssessesssessesasessssssessesssesasesssssnes 181

T 1.7.10.3 INAEXEE ACCESS ...eureureusrereesseessessesssesseessesssessssssesssessesssessssssessesssessesssesssessesssessssssesseessesssessesasesssessebsnsssesusessssanes 181
11.7.11 Null Conditional EIEMENE ACCESS.....ruueurerreureeresersesseessessesssessesssessessssssesssssssssssssssssssssssessssssssssssssssasssesnees 182

Table of Contents

0 R B 4 (3 T o 183
11.7.13 BASE QCCESS .uvurreurrrreeuireesissessessesssssssssesse s sssssssss s s s s RS R R s 184
11.7.14 Postfix increment and deCrement OPETALOLSceeuresreenesseesesssesessssssssssssssssssssssssessessssssssssssssassssees 184
11.7.15 THE NEW OPEIALOT cuuevieurersesrersessssses s ssssssssssssss st sssssssssssss s ssssssssss e ssssssssssssss st ssssssssssssssssssssssnsssssaness 186
B 0 BT B €] 0 T=) =) PPN 186
11.7.15.2 ODjJECt Creation @XPIESSIONS ...cvuecuriereueeurerseesressssssessssssesssessssssesssssesssessssssessssssssssssssasessssasessesssessssssssanes 186
11.7.15.3 ODJECE INTHIALIZETS covueurreueereeereeeesreeecs ettt sessbsss s sss bbb bbb 187
11.7.15.4 Collection INTHAlIZETS .. ssssasens 190
11.7.15.5 Array Creation EXPIESSIONS ..mmmrssimsssnsssssssssssaes 191
11.7.15.6 Delegate Creation EXPIESSIONSweeesrerrseserssssesssessssssessssssasssessssssessssssssssessssssessssssesssssssssssssssanes 194
11.7.15.7 Anonymous 0bject Creation EXPrESSIONS ... rereereeseeeessersessesssesssssssssessssssssssssssssssssssssssssnes 195

0 R ST N o Lo 7 o o0 0} o1 = 0) o PP 197
B R W N 4 T3 =10 0 0 =) i L0 PP 199
11.7.18 The checked and UNCheCKed OPEIatorsS.......oereereemeireisreeneeeseessesss e ss s ssssssssssssnees 200
11.7.19 Default Value @XPIeSSIONS ...cueeceerreesreesseeseessseessessseesssesssesssesssesssessssssssssssessssesssssssesssesssessssssssesssessssesssssseses 202
11.7.20 NAMEOL EXPIESSIONS wuuvuereerrernesssesssesesissssessesssssesssnsssesaness 202
11.7.21 Anonymous MeEthOd EXPrESSIONS ... eeeereesemsseesseerssesssessseesseessesssesssessssssssesssesssesssessssssssesssesssesssssssseess 204
1 1.8 UNAIY OPEIALOTS couvcurieuerrerssesseesseessessesssessesssessesssesssessssssessesssessssssssssessesssessssssessesssesssessesasessesssessesssssssessesssessesasessssssesssesesas 204
S 00 I CT=) 4 1=) - | P 204
11.8.2 UNATY PLUS OPETALOT ..eueueeeeurereesseeseeesesssesseessesssessesssessssssessssssessssssssssessesssessssssessssssessssssessssssasssessssssessssssessasssesasess 205
11.8.3 UNATY IMINUS OPEIALOT ..cuurrueererreessersesseesessesssesssessesssessesssessssssessssssesssessesssessssssessssssessssssssasessesssessessssssssssessasssesasess 205
11.8.4 LOGICal NEGAtION OPEIALOL ..o ieurieeserreesreesreesseesseessseessessssesssesssesssesssesssessssesssesssesssessssesssessseessessssesssesssesssssssessseess 206
11.8.5 Bitwise COMPIEMENT OPEIALOT ...ovuviiviriirirsrsesseessssssssssessessssssssss st s sssssssssssssssssessssssssnens 206
11.8.6 Prefix increment and deCremMent OPEratorS.. . sssssssssssssssssssssssssssssssasess 206
R I 08 T = q 0 (1) () 4L 208
11.8.8 AWAIT @XPIESSIONS ..euvevreurerseesrersessersessersesssessessssssesssessssssessssssessssss s s s s ees s s s s e s s sssessassesasens 208
SR 00 -] 4 1<) - | P 208
11.8.8.2 AWaItaDble EXPIrESSIONS . s ssssss st s sssnss 209
11.8.8.3 Classification of await EXPIESSIONSucceeeereesreerserresssees s sess s ssssssssssssssssesns 209
11.8.8.4 Run-time evaluation of await EXPreSSIONSeeeerrerrereresssees s seesssssessesssesssssssseens 209
11.9 ATTENIMETIC OPETALOTLS woueuriereeeereetreeeeseesee s s esse s seesse e ss b s bR R bR R R a bt 210
R TR €=) 0 1<) - 1 PP 210
11.9.2 MUItIPIICAtION OPEIALOT . .ccoureuieuseeseerrersreesseesseeseeesseessesssees s sssees s s s s e s s s e 210
R TR I DT (0] 0] o 1<) o L o) T 211
11.9.4 REIMAINAET OPETALOT ...eueureereeurereesseeseeeseessessesssessesssesssessesssesseesse s sss e s s s s a s e R b s bbb 213
RS TRSI Vo Ua (0] o I 0] 0 1<) = U0) PP PP 214
11.9.6 SUDLIACTION OPETALOT ..corcereemseesseesseesserssessseessesssessssesssessseesssesssesssesssess s s sssess e s sssesssess s sssesssesssesssessssesas 216
11,10 SHIE OPETALOTS couvvureeereeeeeesseeseeseesseessse s sssess s b s s b £s bbb RS bbb 218
11.11 Relational and type-teSting OPETALOTS ..o ueereereureeseeseesseesessessesssessesssessesssessessses s sssssssssessssssesssssssssessesas 219
0 O =) =) ¢ 1 PP 219
11.11.2 Integer COMPATISON OPETALOTScureeurereesrereesrersesserssessesssessssssesssessesssessssssessssssessssssssssessesssessssasessssssesssssesasees 220
11.11.3 Floating-point COMPATiSON OPETALOTScccuiereueererseessesseesseseessesssessesssessssssssssssse st sesssessssssessssssessssssesasees 221
11.11.4 Decimal COMPATISON OPEIALOTS. .cuveueueeueereesreessessersesseessessesssessesssesssessssssessssssesssssssssssssesssessesasessssssessasssesasees 222
11.11.5 BoOlean eqUality OPEIAtOrSeeeesreesseeseeesseessessseessesssesssesssessssesssesssesssessssesssssssesssasssessssssssssssesssasssesssseess 222
11.11.6 Enumeration COMPAriSON OPETATOLSceeererersrerserssessessesseessesssessesssessssssessssssesssssesssessessssssssssessssssesasess 222
11.11.7 Reference type eqUAlity OPETALOLS ..o cereereereeseeseessessessseseessessessssssessssssssssssse s sssssssesssssssssssssessasssesasees 223
11.11.8 String EqQUAlILY OPEIAtOIS.couieueeeeeeeersreesreesseeeeeesseessessseessesssesssees s ssssse s s s s s s s snnes 225
11.11.9 Delegate €qUALILY OPEIAtOTS ...erresreesseeeeerssesssessssessesssesssesssessssesssesssssssessssssssssssesssessssssssssasssssesssasssesssseess 225
11.11.10 Equality operators between nullable value types and the null literal.......cc.coccveereneerenneenennens 226
T1.11. 11 TIE IS OPEIALOT ceueureeueueereesrersesseessee e sseessessssssesssesss e s ss bR R R bR bbb R e e 226

ECMA-334

T11.11.12 THE @S OPEIATOT uuriviererrsesrerssssssssss s ssssss s s s s s SR bR e 227
T1.12 LOZICAl OPETALOTS ..eueeeeuiereeueessesseessesseessesseessesss st seesse s sas s s s s s R bR a e st a bbb 228
O 0 B €Y =) ¢ | PP 228
11.12.2 INteGET 10ZICAl OPETALOTS w.ouvreuseererreesreeseesseeseesssessssssseessse s sssess s s ss bbb s bbb s b snnes 229
11.12.3 Enumeration 10ZiCal OPETAtOTSoeeereeeeeeseesessseesssessesssesss s sasssssasssessssesss 229
11.12.4 BOOIEan 10ZICal OPEIatOrS.....cueeriereereeseeeessessesessesssessessssssessssssessss s sssssse s ssss st s ssss bbb ssssssaness 229
11.12.5 Nullable Boolean & and | OPEIatorS ... eeenmeereesesseesseeeessessessssssesssees 230
11.13 Conditional 10ZICal OPEIatOrS....o et sssees s s bbb ssses bbb s s s ss b 230
0 00) T-) =) 230
11.13.2 Boolean conditional 10@ical OPEIatorscoerreereemeeneesseeneesseesesssesesssssssssssssssssssssssssssssssssssssesssssssssees 231
11.13.3 User-defined conditional 10ZiCal OPEIratorscoereereeueenseeseensesseesessesssessssssesssssessessessssssssssessssassssees 231
11.14 The NUIl COAlESCING OPEIALOT.....ccuiereeereeeseeeseeseesse s s sess s s s bR bbb ss b s 232
0 T 000} o o o) o = 0] 013 ir= 1) o PPN 233
11.16 ANONYMOUS fUNCLION EXPTESSIONS. c..urrurieuriereeuseeseesseessessssssessssssesssessssssessssssessssssssasessssssessassssssssss st sasssesssssessssssssas 234
O T B =) =) ¢ | PP 234
11.16.2 ANONYMOUS fUNCLION SIZNATUTES ...ceurveerieeeeereeseesseeseesseessesssesssesssssssse s ssssssssssssssssasssessssssssssssssasasssasssesssseses 236
11.16.3 Anonymous funNCtioN DOAIES ... e ssesse s ssesssess s sssesssesssssssseens 237
11.16.4 OVETlOad T@SOIULION ...couceucenreneeseerrerreessees s eeessees s sees s sesssenssess s s s e s s s s s e snnns 237
11.16.5 Anonymous functions and dynamic Binding.......ccuneneeeineneeeseessssssesssssssesssesssssesseens 238
11.16.6 OULer VATIaDIes .. ——————— 238
O T 0t I €73 1= o PP 238
11.16.6.2 Captured OULET VAriabLes. ..o reesseeereeessessensseesssesssesssesssessssessssssssssessssssssesssesssesssssssssssesssesssssssseens 238
11.16.6.3 Instantiation 0f 10cal Variables.......sssss s 239
11.16.7 Evaluation of anonymous function eXPreSSIOnNS ... rereesesssssssessessssssssssssssssssssssesssssssseens 242
11.16.8 Implementation EXamMPIe ... eereereeeneeseeseesseesssessesssesssesssesssssssesssessssssssssssessseessessssssssesssesssssssssssseses 242
11,17 QUETY EXPIESSIONS couverrerurerseessreseessesssessesssessesssesssessesssessesssessssssesssessesssessesssessssssesssessesasessesssessesssesasessesssessesasessssssesssesesas 246
O) =) - | P 246
11.17.2 AMbiguities iN QUETY EXPIESSIONS ...cueureeeereereressesssessessesssessessesssessssssessssssssssssssssssssssssessssssesssssssssasssesasees 247
11.17.3 Query eXpressSion tranSIatioN .. e sesssessesssesssess s ssesssesssesssessss s sssesssesssessssesns 247

B 0 00 T €] 1= o PP 247
11.17.3.2 select and group ... by clauses with cONtiNUAtIONS ... eeesees 248
11.17.3.3 Explicit range variable tYPESecrereeeeseesseesessseesseessessssssssssesssssssssssssssesssssssssssesssesssssssseeas 248
11.17.3.4 Degenerate QUETY EXPIESSIONS. .. rrerersrersesersessesssessessessessesssesssssssssssssesssessssssessssssessssssessssssssnes 249
11.17.3.5 From, let, where, join and orderby ClauSes.........orenreeneeneenseeneeseeecseisesse e seessessesssenes 250
11.17.3.6 SELECE ClAUSES...couireriereeririrssssses st 253
11.17.3.7 GIOUP CLAUSES w.cvurreureeereeeseeseesseesseesssesssesssesssesssessssesssesssessssesssesssesssessssesssssssesssessssesssesssesssessssesmsesssesssesssssssseess 254
11.17.3.8 Transparent ideNifIEIS ... sssess s sessse s sssess s seessss s sssesssesssesssseens 254
11.17.4 The QUETY-EXPreSSION PALEITL. ..ccuieureeeeueeeeereesessesses e s s sseessessses e s s ssssse bbb easn e sanees 256
11.18 ASSIGNIMENT OPEIATOTS coiuueerirsceseresesssessessessessessessessessessss s s s bbb R SRR SRR SRR 257
B T €] =) - | PP 257
BRSNS 000 o (ST TS13 Fq 010 0 =) o LT 258
11.18.3 COMPOUNA ASSIGNIMENTcuirieuirneereesresseesseeeessesssessesssesssesse s s ssssssesssesss e s esse s sss bbb bbb es s nsasesanens 260
11.18.4 EVENT ASSIZINIMENTcuiuiereereerereesessss s sessssssessessessessessessessessessesses s s s s s s s s s 261
B 0 20 q o) 1CTY3 T) o PP 261
11.20 CONSTANT EXPIESSIOIS weuvevrruserseeserssesserssesseessessesssesssessasssessssssesseessesssessesssessasssesssessesasessesssessssssssssessesssessesssessssssesssessesas 262
1 1.2 BOOIEAN EXPIESSIONS. ...euriuueusreseeuserssesseessesseessessesssessssssasssessssssessesssesssessesssessasssessessesasessesssessasssessstssesssessssssesssssssssssssesas 263
2] = L) 11T 4 265
0 R 1) =) - PPN 265
12.2 End points and reachability ... seesseesssssssssssssssssssssssesssesssessssssssssssssssssssssssssssssssesess 266

Table of Contents

T2.3 BIOCKS ottt sss b sesssss s sssss b sssss s sss st sssss st essssss s ss s sssas st sss st ss st essas st esss st es st s bes st s sennnsans 267
B T R €73 0 1<) - | 267
B T = U <) 0 1<) 6 Ll D 268

12.4 The eMPLY SLALEIMENT .c.uiciiuiererssesssssesiseses e ssssss s ssssss s s s s s e e bR 268

12.5 Labeled STateIMENTES. ... sss s bbb bbb s bbb bbb s bbb bt s 269

B RS D LYol B D=1)] = L) 0 1<) 0 1 270
BT R €5 0 1<) - | 270
12.6.2 Local variable deClarations ... ss 270
12.6.3 Local conStant deClarations ... ssans 272

12.7 EXPIreSSION STALEIMEIITS ...ovueeeeeeseseeeeseeseessessessessessessessessessessssssssssssssssssssssssessessessessessessessesssssessssssssssssssssussssssssssessesseses 273

B S B Y=Y =Tt (o) o TR ==Y 0 1) o Lo 273
B S €T3 1<) = TP 273
R S N o TS U] =1 =) 00 1<) 0 X OO 273
12.8.3 The SWItCh STALEIMENT ...ttt e esss bbb s b bbb bbb b b sp b baes 274

12.9 THEration STAtEIMENTS ... b b e bbb e e bbb bbb bbbttt 278
B0 TR R 7<) 1<) -) TR TTT 278
B T N e TSR T34 o U 3 U) 00 1<) o X 278
B0 TS T N e Tl s Lo TR 2 <) 6 1<) 0 279
B N o T o) o v <) 4 =) o 279
12.9.5 The foreach StAtEIMENT ... bbb bbb bbb bbb bes 281

B0 O 00 0 0B o UT=) 00) 3PP 285
B O 7Y 4 =) o= 285
12.10.2 The Dreak STAtEIMENT .. s s s b bR bbb bbb en bt nn 286
12.10.3 The CONtINUE STATEIMENT ...cciirccec s s b s s bbb es bbb en 286
12.10.4 The SO0 STALEIMIEIIEcuuceueemseesseesseeseerssessseesseesseessseessessseesssesssesssesssessseessss s sssess e ssesssessseessessssesssesssesssasssesssseess 287
B RS T N o T 0 g 0B 7= =) 0 1<) o L o 288
12.10.6 The thrOW STAtEIMENT. ..o s s bbb R bbb b ee s b e bt s 289

12.171 THE trY SEATEIMEINT «..occeeeeieceeeeseeesersessesseeeseessesseesse s s sessse s sss e s s R e E RS E R AR R s e Rt 290

12.12 The checked and unchecked STAtEIMENTS ... bbb bbb ses 294

B2 R T N o TN (Yol Q] ==Y 0.6 U<) o | 295

12.14 The USING STALEIMENE c..cueeueurereeerereeseesseeseessesseessessess s s sss s es s s b s s s bR bbb a bbb 295

12.15 The Yield STALEIMENTccuureueeseereersersseesseesseessessse s sssees s sssees e s s s e s R R R R e 298

G TR\ P) LTy T Lo 301

S R €73 0 U] = 301

13.2 COMPILAtION UNILS covurreeeeeeeeseeseeseeseesssessessseesseessessse s ss s sssess s s s s s s R s 301

13.3 NaMESPACE AECIATATIONS . c.uueureereureeeerseeseeseessesse s assss e s sss s s s s s s s bR a bR bbb bbbt 302

13.4 EXTEIN QliaS QIFECLIVES ..ottt s s s s b bbb bbb bbb bbbt 303

13.5 USINE QIT@CHIVES ..ouvvueeeeeereeeseesseesseesseessesssessseessessssesssesssssssessssesssesssasssessssssssssssesssess e sssesssesssessssssasesssesssesssesssesssesssesens 304
B0 R €5 0 1< = | 304
13.5.2 USING AlIAS QITECTIVESeueereereeeeseeeeereessesseessessessessessessssssesse s sss e ss s ssse s bbb s s 304
13.5.3 USING NAMESPACE IT@CTIVES......cuuieueereerrereesreeeessessese s seessessesssessssssesssesss s sssssss s essessse s sssesssssesaees 309
13.5.4 USING StAtIC AIT@CLIVES ..oueeueeueeneeseereerseesseesseesseeessssssessseessss s sssess s sssss s ssse s ssss s sess s s sssesssessssnens 312

13.6 Namespace Member deClarations ... e seesssssssssssssessssssssessssssseessessss s sssesssessssssssssssesssesens 314

13.7 TYPE AECIATALIONS ceueueereeueuseeseeseeusessesseessesseessese s ssees e sss e s s s s R e A bR AR b bR et 314

13.8 Qualified aliaS MEIMDET ..o s ns e 315
BT C T0 R €73 0 1< = | 315
13.8.2 UNIQUENESS Of AlIASESeureeueeurireeueeeeeseessesseessesssssessesse s sessse e sss et s s s b sse e a bbb st 317

2 S 00 T Ty 319

Xi

ECMA-334

0 T =5 4) 1 PPN 319
14.2 Class AECIAratiOnNS. ...ccviuecereureerrirressessessessssesessessessessesessessessssssssssssssssssssssssssssessesssssessessesssssesssssssssssssssssssssassssessenseses 319
0 = =) o= 319
14.2.2 Class MOIFIETS v sssssss s ssssss s ssss s s s sss s s s s s ssss s sanens 319
B T €Y 1<) =Y PP 319

B 07 20 2N 11 = Lot o = 1] 320
14.2.2.3 SEAIEA ClaSSES ..ttt ssssssssssss e s sse s s s st se st sse s seesse e see s s e seeseesensnes 321
14.2.2.4 STALIC ClASSES i s e bR s 321
B N 1= 4 V) Y PPN 321
14.2.2.4.2 Referencing StatiC Class LYPES c.encureiseseesesssessesssesse s sssssessssssessssssssssssssassssssssssssssssssssssanes 322
14.2.3 TYPE PATAIMELET'S .evcureureureureeressessesseesessessessessessssssessessessessessessessessessessessessssssssssssssssssssssssssssssessessessessessessessessessesssssnens 322
14.2.4 Class Dase SPECIHICAtION....uiiiesss s s s b s s 322
B T €Y 1<) =Y O PP 322
14.2.4.2 BASE CLASSES ..eueureureureeresresressessessssssssstsssssssssssssssssssessessessessessessessesssssssssssssessusssssusssssssesssssessessessessessesessssssssnsnes 323
14.2.4.3 Interface implemMeNTatiONS ... e e seeeseeeseessess s sess s ssssss s s s sssesssess s s sssesssesssesssseens 325
14.2.5 Type parameter CONSITAINTS ... crerereesseeeesseessessesssesseessessesssessssssesssesss s sssssssssssss s sesssessasssessssssessasssesasess 326
14.2.6 ClaSS DOMY .ereuueruermersreeseesseeesseesseessessseesssesssesssesssessseesssesssssssessssssssesssesssecsseesssssasesssesssesssesssesssesssessssesssesssesssesssessseess 331
14.2.7 Partial deClarationscccnrencinsensessessessessesesessessessessessessessssssssssssssssssssssssssssssssssssessessessessessessessessessssssssens 331
14.3 ClaSS IMEIMDET S ..cueureureireseenissss s sssse s s s st s e AR e s 333
G T 1= =) o= PP 333
14.3.2 THE INSTATICE LYPE orureeereerreeeseesseesseesseessesssessseessessseesssesssesssesssessssesssesssesssessssesssesssessssessesssesssesssessssesssesssesssasssesssseess 335
14.3.3 Members Of CONSIIUCLEA LYPES ..uuerreereerreerreereeeseessemsseesssesssesssesssesssssssesssssssessssssssesssesssssssessssssssesmsesssesssssssseens 335
14.3.4 INNEIITANCE v s AR 336
14.3.5 The NEW IMNOAIfIET c.verriiereiiecreisessses s sssss s s s sss s s s s s s s s e a s s 337
G T S Vot o T3 ' Lo 16 V(=) o 338
14.3.7 CONSTITUCIIL LYPES oreurerremreeeesrerseseessessessesssesesssessesssesss s s ssssse s sss s s s s ssesse s sessse s sssssessasssesasens 338
14.3.8 Static and iNSTANCE MEIMDETS ... st 338
14.3.9 NESTEA LYPES .uveurreneereemrereeseeeessesssessesseessessse s sssesssss s sses s s s e R se R R R R s R bR e 339
G 20 R 0T 4T - O 339
14.3.9.2 Fully QUAlIfIEd NAME.....co e eesessesssee s sssesssess s s s s sees s sssess s sssnens 340
14.3.9.3 DecClared aCCeSSIDIIITY ..ot ssese e s sessse s s s e s s 340
T4.3.9.4 HIAINE coeeurirrereeseereissinsesssesesssasss s s s s s s s st s s s baebbs e bbb 340
14.3.9.5 thiS ACCESS . cvurerereurerrerresresresesressssssssssssssssssesssssssssessessessessesse st se st s st s s s asesne e s seesne e s et ensensensnes 341
14.3.9.6 Access to private and protected members of the containing type......ccooveereneerreeneereeneenneennes 342
14.3.9.7 Nested types iN GENETIC ClASSES ...uuuuiiererreerreeeessersesseeses et sessses s ssssssssss s ssesssssesssessssssesnes 343
14.3.10 RESEIVEd MEIMDET NAIMNES ..vvueureereereeserseesseessessesssesssssssssesss s s ssssssesssssss e ssssssssssssss st sesssssssssssssssssssssssssaness 344
G 100 T €75 5 =) - P 344
14.3.10.2 Member names reServed fOr PrOPEITIES ... e eereesneeseissssseesssesssssssessssssssssssssssssesssssssseens 344
14.3.10.3 Member names reSErved fOI EVENTS ... ssesssassssssanes 345
14.3.10.4 Member names reServed fOr INAEXETS inieiessssssssssssssssssssssssssessssssssssssssssesssssnes 345
14.3.10.5 Member names reserved for fiNaliZETS. ... e sesssesssssssssssssssssanes 346
14,4 CONSTANLES ..euevrerrereresreseressesse et sttt s s s se eSS ee bbbttt en 346
T4.5 FAELIAS curvvueureenreereeuseteesseeees et s s e ss s s s s e R££eEREaEEeER AR R R A SRR AR bbb 348
T80 7= =) o= PP 348
BRI v Lo (k=1 o o I8 0TS] =)o Lol cIS i (=) (o PP 349
14.5.3 REAAONIY fIELAS ..euveveeueeceueeectreieesetsee et eses s s ss b s b bbb e 349
IO TR 0T 4 =) - | RO 349
14.5.3.2 Using static readonly fields fOr CONStANTS ... 349
14.5.3.3 Versioning of constants and static readonly fields.......coneneneenrenecneenseseeeseeseeseesseiseesseenes 350
14.5.4 VOIAtile fIelAS vttt ssssssssessesse s ssss s sttt ssss s sssssssssessessesssssessssessnssssansss 351

xii

Table of Contents

14.5.5 Field INItIAlIZATION wovrcrecrcccceseess st b s bbb ns s s s s s saen 352
14.5.6 Variable INITHALIZETS ...ttt sss b s bbb s s bbb bbb bbb sp b baes 353
BT R CT=) 1<) - | 353
14.5.6.2 Static field iNitialiZationN ... s s s b s e 354
14.5.6.3 Instance field iNitialiZationN. ... s s s s nes 355
ST =10 o o Yo C 356
Y0 R €73 0 1<) - | 356

B STV (=T a Vo T o F= =Y 0 U]) PP 358
T14.6.2.17 GENET AL et bbb b e s s R bR b R b bR b s 358
14.6.2.2 VAlUE PATAINIELET'S w.eoveererseeseesseesseesseesssesssesssessssesssesssesssessssssssesssesssessssesssssssessssssssssssesssesssessssesssssssesssesssesssseess 360
14.6.2.3 REfEIEINCE PATAIMETET'S ..oueureeueureeseeeesresssesseessesssessesssessesssessasssesssssse s s ses s bbbt s s ne s e b s an s snbaes 361
14.6.2.4 OULPUL PATAIMELET'S ..oovueerreueersessesssessessssessesssessessssessessssessessssessesssssssesssssssesssssssesssssssesssssssssssssssesssssssssssesanens 362
14.6.2.5 ParaImeter AITAYS. ouiveureeesrsessessasesssssssssnsssssssssssnes 363
14.6.3 Static and iNSTtANCE METNOAS ... bbb b ee s e p s bbb 366

B X VA qrn D T2 05 0 =1 o o Lo Yo C 366
14.6.5 OVEITIAE METNOAS .o s s bbb bR bbb bbbt 369

B S SR =T= 1 (e B0 T=] o 0 Lo o K 371

B ST AN o 1w ir=od o 016 =1 8 6 Lo Yo (-3 372
14.6.8 EXTErNal METNOMAS ... s s bbb b bR bbb 373
14.6.9 Partial METROMAS ... s s bbb bbb en bt 374
BT 0I5 Q=) 0 13 0) 6 10 5 611 Lo Yo K- 377
14.6. 11 MEthOA DOAY ...t sessss s sssssessesss bbb sss bbb e bbb s 378
L14.7 PTrOPEITIES .uveueuceresreseressesesessessssessessssessessssesss st sess s st sesss st s s e st s s s st s st ss s s b s E e s s E s b e E e b e b b e b b e b b ee et s st nen 379
s R €72 1<) -) TP 379
14.7.2 Static and iNSTANCE PIOPEITIESccerereesreerreereeeseesseesseesssesssesssesssesssesssesssssssessssssssesssesssesssessssssasssssesssasssessssesss 380
T14.7.3 ACCESSOTS ittt bs st sa s s b bbb bbb b eE e AR bR bbb bR R AR RS R e b bbb bbb b s e R bbb bttt 381
14.7.4 Automatically implemented ProPerties.. . e ss s ssssssssssssessess 387
14.7.5 ACCESSIDIIITY c.uveurieeeereeereteeseeeet ettt e s s s s s R R R s a e e 388
14.7.6 Virtual, sealed, override, and abStract aCCESSOTS ... sse s sessssssesssssees 389

B S 2 D 7Y o X TP 392
R 700 R €7<) 0 1<) -) TP P 392
B T U] (o B Y Ik T4 L 394
14.8.3 EVEINE ACCESSOTS .ttt s s s st b b s s e bbb b e AR bbb bbbt b s s s R bbbt e 395
14.8.4 Static aNd INSTANCE BVEINLS.....ciiecrre s bbb bR bbb e b b en s ben bt ann 397
14.8.5 Virtual, sealed, override, and abStract CCESSOIS ... sssssssess 397
B0 I 50T 1<) T 398
B 0 T=) = 1 0) PP 402
g O T 4 =) o= TP 402
14.10.2 UNQAIY OPETALOLS ..cueueuinieressessesssssessssssssssssssssssssssssessessessessessessessessessassssssssssssssessssssssssssssssssessessessessessessessesssssssssens 404
14.10.3 BINATIY OPEIAOTS c.eurerueuerreesrersesserssessesssessesssesssessesssessesssessssssesssssssssssssesssessesssessssssessssssssasessesssessssssesssssssssassresasees 405
14.10.4 CONVEISION OPETALOTS .uuvvueerersressersessersessesssesssessesssessesssessssssessssssesssessesssessesssessssssessssssesssessesssessesssessesssesssssesasess 405
14.171 INSEANCE CONSLIUCTOTS ..uveiuceerersrrrrereseseessssssssssssesesesesssesssssssssssssasssssssnsnsssnsasssssssssssssanes 408
R I R T 4 =) o= T 408
B R O 000) 0 Ry B od o) ol D0 VU0 = B 7<) 409
14.11.3 Instance variable INItIAlIZErrS s sss bbb se s s s e bees 410
14.11.4 CONSEIUCLOT EXECULION ..cucuerirititierereseees s sesssee e s sss st sa s s ss s s ss e s s s e e e e as e e b bbb essa s s s asassnnasesnasren 410
B R RS T D I3 =100 Ll of0) 151 0 00 Lot 0 o 413
0 2 =X (ol o 0) 1oy o 0 Ut o0} ST 413
R R B 0 b= 1 2= T 416
B o =Y 1 0] =3O 418

Xiii

ECMA-334

B €] =) ¢ | PP 418
14.14.2 ENUMETAtOT INEEITACES. ..o eurieriueereereesretseessetsetssessese et e s bbb s e 418
14.14.3 ENUMETADIE INTEITACES ...uveuieeeeiectreeseeseesseeecese st st ssesse s ss bbb bbb s 419
0 4 1= U IR 7 oY PP 419
14.14.5 ENUMETALOT ODJECES cuuvvurerieeriiisessssses s sssssssssssss st sssssssssssss s ssssssssss s ssnsssssaness 419
T4.14.5.1 GENETAL....oiieieeeeereereieee et seesse e e es e s b s b s a bR R b E e e bbb 419
14.14.5.2 The MOVENEXE INETNOM ...vuuieeeerieecereiseeseiseeseesse s ssss s ssse s sss s s s s s bbb nnaes 419
14.14.5.3 The CUITENT PrOPEILY ccuiirrcrirserssesssssessssssessasssssssssssnsssssasssssssnes 421
14.14.5.4 The DiSP0Se METNOW. .. ssssss s s s sssssssssssssssassssssanes 421
14.14.6 ENUMETADIE ODJECESoueeeeerieeeeeeeceseesetseesseeetssessesse et ssesse s sss s ss s bbb s 421
T4.14.6.1 GENETAL.....ieieereereeereieee et seesse e e s s e b et s s s s R AR AR b s e nb s 421
14.14.6.2 The GetENUMErator METNOM . ..o eereeereeeseeeesseessseisesssess s ssses s ss st sess s sssass s ssssens 422
14,15 ASYNC FUNCLIONS wcuuvvuetieisiisesssssesss s ssessssssssss s ssssssssssss s s ssssss s sssssssss s s s et ssssss s sssss s sesssessssssssnssnsas 422
T4 15,1 GEINETAL.c.cuieeeeeeereeseerete st esse b ess et see s ss b s bR e e R e R s AR R R AR R bR e 422
14.15.2 Evaluation of a task-returning async funCtion ... seesseesseessessessesssessssessseens 423
14.15.3 Evaluation of a void-returning async fUnCioNceseeseeseessseesssessessssssssssssssssssssssesssssssseens 423
LS T 0 425
BTN 1= 4) - | PP 425
15.2 SEIUCE AECIATAtIONS. cocucerierereeeseeseese st bbb bR bbb 425
L5.2.17 GEINETAL.cuuieriiieeeereeseee e esessses b ssesse s s s s s es bbb s RS RaEEA R R e 425
15.2.2 SEIUCE MOGILIET'S couveveieeeetreeeseesseeseesesssessessseessesssessssessse s s sssees bbb bR bbb bbbt 425
15.2.3 Partial MOGIfIET ..uieerieereceeeeeeesresecseeteeiseessees et sesss s s ss s ss bbb bbb et 426
15.2.4 SETUCE INTEITACES ...cvrieuirceeeeeeire sttt s s s e s b s 426
15.2.5 SEEUCE DOAY oeuueeueeeesreesreeeseeessesseessessseessesssessseesseessessssesssssssees s sssesssess s s s s e s e s sssessnessesseses 426
15.3 SEIUCE IMEIMNDETS ...occereueereeeeeeeseeses e ssese e eeseesse e esss s s s ss s R R AR Rt 426
15.4 Class and STrUCE AIfTEIEIICES ...ttt sees bbb s bbb 427
T5.4.1T GEINETAL.uuieriirieceeeereese e eseess s esss s e s sa s s bR RS REaEEA R bR R e e 427
15.4.2 VAIUE SEIMANTICS .ucvveuerreseenesreisessssssssesssessssssessssssssssesssssessssssssssssssssssssessssssssasessssssessassssasssssssssssssassssssasessassnssanees 427
15.4.3 INNETITANCE ...eueeveeeereeeereeseeees s ee e ss e ss s s e R SRR AR s R bR 428
15.4.4 ASSIGINIMENT «..ocereeeereeeeeeeseeees et ess e ee s s ess s es s s e b s e R eSS R R R R R s R R bR 429
15.4.5 DEfAULL VAIUES ...eueereereieretnciseis ettt sssss s ssesss st s sss s s s s s s 429
15.4.6 BOXING QNd UNDOXINGcureeuriieeueeeceseessesseessesssssessesssssessssssessssssessssssesssesss e sssssssssssss st sessssssssssssssssssssasssesasess 430
15.4.7 MEANINEZ Of TS w.couieerieerectreee ettt s b ssse bbb b e bR bbbt 430
15.4.8 FIeld INTHALIZET'S ..vvrveerieeeerreneireisesseiset e ssss e sssesss st e bbb s 432
15.4.9 CONSEIUCEOTS cuvureuseereeuseseesseessessesssesss st sessse s s sssss s s s s sse s s AR bbbt e 432
15.4.10 STALIC CONSEIUCTOTS w.cvueureereeureeeesseeseeeseessessesssessesssesssessesssesssssse s sss s s s s s s R s bbb aens 433
15.4.11 Automatically implemented ProPEIties ... eoreeneeseeneesseessessessesssssse s sssesssessssssessssssssssssssasees 434
T i £ 435
L16.1 GEIETAL...cuuieueereeuereeseeseeeseessese s es s es s e s a s R R ER SRR AR R AR R 435
BTSN g =7 04 TP 435
T6.2.1T GEINETAL..eueerieeeseeereereesetse et esse et s e a bbb s s R R R s e 435
16.2.2 ThE SYSLEIM.ATTAY TP couruueeurerreuseeeeeseessesseessesesssessesss s sassse e ssse st sses s s s bsse s ass b s bbb s as s banees 436
16.2.3 Arrays and the generic collection INtEIrfaCes ...t snees 436
BT 2N 4 =00 ==t () o PP 437
16.4 ATTAY ElEIMENT ACCESS .ueurrerremsresseeseesssesssesssesssessseesssesssesssessssesssesssassseessessssssssesssass e s sssesssees e bt s s e st ses s bssesssnesseseas 437
16.5 ATTAY IMEINIDET'S ...occurieuetreeerieeesseeeeese s s esseesse s esse s s e s Ea £ s s E AR E AR bRt b et 438
116.6 ATTAY COVATIAIICE. .cuurrurrrreesserseesseessessesssessesssesseessesssssssssessesssessssssesseessessse s sss s ees s e s s s es e s s e AR ne s e s s s 438
16.7 AITAY INTHALIZETS ceocveeeereeeeeeseeseeseesees s sees s esss s ss s ss e bbb R RS ee e R e 439

Xiv

Table of Contents

7 1 (L) £ Lo 441
17,1 GEINETAL ceurieereeseeeere st seees et s s s e es b s SRR R AR R R R R R 441
17.2 INTETTACE AECIATATIONS cccvvrvuvreesresserersesssesssesssesesessse s s s s e bbb RS n R 441

T7.2.1 GEINETAL ettt es st e s es e s bR s R RS R ER R AR R e e 441
17.2.2 INTETTACE MOAIFIET'S .ottt sttt te et eae et e e s bbb a e bbb s 441
17.2.3 Variant type Parameter LiISES ... isssasess 4472
17.2.3.1 GEINET AL curreereereeneeeesseeeseeteeess s s s ssse s sess s s s R sER R R RS R R Rt 442
17.2.3.2 VATIANCE SAELY ..cvureereeeeereeesseeseeseeseesssesssesssesssessssesssesssessssssssesssesssesssssssssssssssssssssssssesssesssessssssmsssssesssasssesssseens 442
17.2.3.3 VATIANCE COMVETSIOMN . coureueureerenseeressessessesssesesssessessessessessessessessessessessessessessssssssssssssssssessessessessessessessessssssssssnssnes 443
17.2.4 BaASE INEETIACES...ouieurieeeeereeesseesseesseesseessesssesssees s ssss s s s sseb R SRR R R et 443
17.3 INEETTACE DOAY ouirierrierisiissssissesss s ssssss s ssssss s ssss s s s s s s s s s e s s 445
17.4 INTETTACE IMEIMDETS...cucuieurieceueeeeeseisesseessesseesse s s s s e s sas s s s Esse eSS A R s bbb 445
T7.4. 17 GEINETAL .ottt et es et e s es e s bbb s R RS R ER R AR bbb Rt 445
17.4.2 INTETfACe METNOAS c..ceeeeeeceeeeeeee ettt sese e bbb eb b bR bbb e 446
A ST 0o Tvc) o = TolcTl o)] 0 1) ot =T3PPS 447
17.4.4 INTEITACE EVENTS...ruierireereereetre st s essssts s ses s s s bR e R R s e e 447
17.4.5 INTEITACE INAEXET'S c.uvreureereeereeneeseiseesssssssesssesssesssss s ssss s s ssse s s eb bR RS ebba assan bbb 447
17.4.6 INTEI ACE MEIMDET ACCESS....vuuieueeuerreeseesseessesseessessse s s s sssess bbb e bbb R bbb et 448
17.5 Qualified interface MEMDET NAIMES......coieei e bbb s 450
17.6 Interface iIMPleMENTAtIONS ... eeeererrees s receseeeseessees s sess e s s ss s s e s e n e 451
17.6.1 GEINETAL..euceieeeeeeee et eee s es e se e es e s R bR AR R AR R R R R e 451
17.6.2 Explicit interface member implementations ... —————————— 452
17.6.3 Uniqueness of implemented INTEITACESweeeeernmererseesseesseessessessseesssesssesssessseessesssssssessessssessesssseens 454
17.6.4 Implementation of generic MEthOAS ... seesenssseens 456
17.6.5 INTEITACE MAPPINE ..uiruierierrrenieseiseesseesseesseessesssessssessss s s s s sssesssees bR bR bbb st 457
17.6.6 Interface implementation INNETILANCE ...t ssssssasess 460
17.6.7 Interface re-implemMeENtation ... reerreeeeeeseeseesseesssessesssesssess s sssessssssssssssessseessesssss s smsesssesssesssseens 462
17.6.8 AbStract classes and INEEITACES. ... b ssss bbbt s 463

TR0 0 1114 465
T8.1 GEIEIAL . cuueurereeueiriseesetseessesss e s s s bbb s s RS REaEER SRR 465
18.2 ENUIM dECIATATIONS ..euveeeeueeseeseeseesseesesseessesseessesseessesssssssesse s s s sessse s s s s s s s s s s bbbt s s et a bbb 465
18.3 ENUIT INOMITIEIS ccuuucurieuetrieitseisseeseiseissesss et ssss et ses s ssss st s bbb 466
18.4 ENUIT INEIMDET'S w..uccuriuetriereteesreesessesssessssssesssesss s st ssssss s ssss s s s s sasesssesse s s s sssssessss s st sessssssssssesssssssssnsssnsas 466
18.5 The SYSTEML.ENUIN YD ...t esseasess e s s ss s s s s s s e s ea s b p e 469
18.6 ENUIM ValUeS and OPETATIONS ...cuveureeeenreereesreeeeseessesseessessssssesseessesssessssssesssssssssssssssasessssssessssssssssssssssssssssssessssssssssessesas 469

S TR D T L= o T 471
19,1 GEIETAL..ccuueueereeueeeeseeseee e ee s s e e s s RS EaERER SRR AR R R AR 471
19.2 Delegate AECIAratioNs ... eeereermersreesseesseeesesssesssessseessesssesssessseesses s sssess s sssasssess s sssesssessssssssesssesssesens 471
19.3 DEleGAtE IMEIMNIDET'S ..eereereeseesseeseesseessesssessseessessssessse s sssees s sssess s s s s RS R R R 472
19.4 Delegate COMPALIDIIILY c..uvcuce et ss s s s s b s bbb 473
19.5 Delegate INSTANTIATION ...t seesseie s ese e sss b ss bbb s 474
19.6 DElegate INVOCAION ..oueerrereeaseeseeseessesssessseessessssessse s s ss s sssees s s s RS RseEReEERaReReeEeeEeenneR s 476

20, EXCOPTIONS . c.uiuiiisurmsmsassnssssssnssssssssssssssssssssssssssssssssssessssssssssss sessssssssssss sessssssesssas sEREASEEE SRR AR BERE AR RE SRR AR RE R R SRR AR R AR R R R SRR R RS RS 479
B €73 V=) - | PSP 479
20.2 CAUSES Of EXCEPLIONS .uveuuveeurirureesreesseeeseeessesssesssessseesssesssesssesssessssssssesssesssess s sesssesssesssssssss e sssesssess s sssesssesssessssssssesasesanes 479
20.3 The SYStemM.EXCEPTION CLASS ...vuuieuecereeureeeesseeecsseesessesssessesssessssssssssss s s s ssssss s s s s st ssssesans 479
20.4 How exceptions are NANAIEA ... eesesssesssessssssssessssssseessssssss s ssssss s sssssssessssssssssasesanes 479

XV

ECMA-334

20.5 COMMON EXCEPLION ClASSES. .. s s b s s 480
2 T X 0 10 (N 481
2 0 0 T<Y ST o= PP 481
A A N w L Lo <l ol b= T 481
A R 1] 4 <) = 481
21.2.2 ALLTTDULE USAZE ccouvreurreusrerserrerssesssesssesssessssesssesssesssessssesssesssssssesssesssss s sssesssass s sssesssasssessssssssssssssssesssasssssssssssssssssssnns 481
21.2.3 Positional and named ParamMELETrS ... sssssssssssssssssssess 483
21.2.4 ACLTIDULE PATAIMETET LY PES .ueureureureesrereessesseessesssessssssessesssessssssssssessesssessssssessssssessssssssasesssssesssssssasesssssessnsasssasees 484
21.3 AHIIDULE SPECIHIICATION ceuvrteeerieeeeieect ettt s bbb bbb 484
2714 ATLTIDULE INSTANCES vt bbb bbb bR bbb bR bbb bR bbb bbb bR 490
A T s U< = | TP 490
21.4.2 Compilation Of QN atEITDULE ...ttt see et s bbb s bbb e 491
21.4.3 Run-time retrieval of an attribute INSTANCE. ... bbb s aes 491
21.5 RESEIVEA AtIIIDULES ..o bbb bbb bbb bbb bR 492
A R TR0 R 7] s <) = TP 492
21.5.2 The AttributelUsage attriDULE ... sees e sees s s sssssssess s sssssssssseesssssans 492
21.5.3 The Conditional attriDULE ... bbb s s p s s 493

A R TS T80 B €723 1<) = TP 493

P2 SIS T 000 s U 1w) o F=1 5 6 1] Lo Yo K-y 493
21.5.3.3 Conditional attriDULE CIASSES ... see s s s ss st sras s anaes 495
21.5.4 The ODSOLEte QttIIDULE .. s 496
21.5.5 Caller-iNfo attriDULES.....ooiie s s bbb b s s b R b R b s 497
R TR Tt R €13 s U] = 497
21.5.5.2 The CallerLineNUMDEr attlIDULE ...ttt s ss s s s srasssssanaes 498
21.5.5.3 The CallerFilePath attIIDULE ... ss s esssssssassssasasses 498
21.5.5.4 The CallerMemberName attribDULE ... s bsrsasaes 499
21.6 Attributes fOr INTETOPETALION ..ccuucerceseemeeseeseerrersresssees s seessees s sees s ssees e s s s s s s e 499
2720 0) 4 - § o .o < 501
A R L) 4 =) o= 501
A A0 4 T2 N LR ol0) 6 1T < q 501
22.3 POINEET LYPES weurrereeureineueesseeseessessessseesssssesssesss s s essesss s s esseesse s s s R s R R R bbbt R 503
22.4 Fixed and MOVEaDbIe Variables... ettt ssss st s s ss s sssss s ss s ens 506
22.5 POINTET CONVEISIONS ..ottt seesss e s sssss s s ss s s s bss s b s bbb s bbb s bR bbb e s R bbb ne b bras 506
A TR R 1] s <) = OO 506
22.5.2 POINEET QITAYS ..cuieureuseesreeseesseseesseeseessesssessssssessesssesssessssasessasssessessesssessesssessssssssssessesssessasssessssssesssessesasessssssessasssesasees 508
22.6 POINTEIS IN EXPIESSIONS . ..cvuieerirresirserreesreseesesseessessessesssessessse s sss s s s s s e s e n e 509
S T R 1] 4 <) = O 509
22.6.2 POINTET INAITECHION. ...ttt s s bbb e 509
22.6.3 POINTET INEIMDET ACCESS. ..ttt s s s bbb s bbb bbb bbb bR bt ne 509
A B o3 o 1= =Y 1<) 6 0T oL Lol ol cro 1 510
22.6.5 Te addreSS-0f OPEIALOT ..curirueeeeereeesseeseesseesseessesssesssesssesssessssssssesssessssssssssssesssesssessssssssssssassssssssesssesssasssesssessass 511
22.6.6 Pointer increment and deCTEMENT ... bbb s s b es 512
22.6.7 POINTET QITtNIMIETIC .ttt s s s bbb bbb b bR bbbt s R bbbt 513
22.6.8 POINTET COMPATISOIN ...euirrriruereesseeseessesssessesssssseessesssessesssesseessesssssse s s sessse s sss s s s s s s ranens 514
22.6.9 THE SIZEOF OPETALOT couueurerserrersseeseeeseessseessesssess s sssesssees s ssss s s s seeEse £ s s R R AR SR bR R b 514
AN 4 L= 5 6] =N <Y 0 0] o L TP 514
ARSI 5 =16 B VA<l o] (<) o 518
A S T R 1] 4 <) = O 518

Table of Contents

22.8.2 Fixed-size DUffer deClarations....... s esssss s sesssssssessssssssssssesssssssesssssssesseses 518
22.8.3 Fixed-size DUfErs iN EXPrESSIONS ... ieecereeeeeseireeseesseissesseisesse st sssessss s sssesss s sssssssasassssees 519
22.8.4 Definite assigNMENt ChECKING ..ot ssee s ss bbb ss s s bbbt e 521
AP B = Yol =1 | (6 Yor= 1 (o) o PO 521
7 VA5 1= 14 14 U= 523
N R CT=Y S =) o= TP 523
A2 LEXICAl GIAITIIMIAT ...uieeeeereeeseeseesseesseessesssesssesssesssessssesssesssess s s s s cs s b R R bR R SRR R bt 523
A3 SYNEACTIC GIAIMIMAT «.euvueeeeureteiueeseeeseessesseessessesssessessesssessessse s s s s s s s s Eas £ R s £ R bR AR bbbt 532
A.4 Grammar extensions fOr UNSAE COAO.... s s b sr s s s e b s 566
B. POrtability iSSUESiciiminiisiiisismisisssssssssssssssssssssssssssssss s s s smsssas s s s s ss s s s s as s s e s se st s smsmsasas s e s s e smmsasasas 569
S A CT=) 0 <Y o= 569
SR 05 Ta (30 T=To Il oY) 4 =T o) ol 569
B.3 Implementation-defined DENAVIOT ... s st sssssssnns 569
I 0D 0Ty oT<Toy U T=Ta o 1= o =g (o) OO 570
SRS R0 6 =) gl £51] D (=T 571
ORI = 14 0 E= 0 I L0 573
LOTS €Y 1<)) TP 573
C.2 Standard Library Types defined in ISO/IEC 23271 ... ssssssssssssssssssssssssssssssssssssssnes 573
C.3 Standard Library Types not defined in [ISO/IEC 23271 ... neneneinensinsesssisesssessssssssssssssssssssssssssssssssssnns 580
C.4 FOImMat SPECIHICAtIONS ...ttt ases bbb bbb bR s 581
C.5 Library TYPe ADDIEVIAtIONS.ocuuieccereereeeesseeecsseesessesssesseessesssesssssesssessse s s s s s sesss s s s sssesssssnsnns 588
D. Documentation COMIMENLES.........coccorocrrrrsmsessssssesesssssssssssssssssssssssssssssssnsssssssnssessssnssessssnssessssmssessssnssessssnssnssssnssns 591
200 R €73 s 1<) =) TP 591
| D272 66U oo Yo 10 Ut u o) s 000U 591
D.3 RECOMMENAEA LAGS...ceurerrerrermersreesseeeseesssesssesssessseesssesssesssesssessssesssesssssssessssssssesssesssessseesssssssesssesssesssessssesssesssessssesssesaessnes 593
RS0 R €15 0 U< = | 593

0. T o 593
0. 200 J oo Y (PP 594
D314 KEXAIMPIES ..ooeerercereiseseesee st ess s bbb bbb AR s SRR 594
D.3.5 EXCEPLIONS ..ttt st s s bR bR s R a e 594
0 TS 1 Lo 1 U (=TT 595
D.3.7 SLSED ettt AR AR AR AR AR AR AR AR A bR et 596
D38 SPATAS c.eeceeererece et sse bbb RS AR AR AR bR e 597
D.3.9 KPATAINIS ...ooereeieeeere s e seese e ess e s s bR RS R £ R AR SRR AR SRR AR R R e e 597
D.3.10 SPATAIMITEL>....co ettt es et b e s ss b s bbb SRR bbbt 598
D311 QP EITNISSION S cuvceriuceseeeeseessebsesssesse s s s s s bbb bR RS s e b n b sesa bees 598
RS S =) 0 =1 598
RS 00 R T =T D) 1o 599
D314 KSEES it b R R R AR AR E AR bR E R R bbb E e 599
DT YY1 o 600
D.3.16 SSUIMIMATY > ...cuiurerersresesssessesessessessessessessessessesssssessssssssssssssssasssssssessessessessessessessessnssnsnens 600
LD T B)7 0 T=Y 0 T2 = U 4 PP 601
D.3.18 <EYPEPATAMIEL> ...ttt essee s s b s s bR bbb e e 601
RS SRS | L <> 601
D.4 Processing the documentation file ... —————— 602
Rt R €7 4 U<) T 602
2R 7/ 1D IS g oV () 9 00 U= PP 602

xvii

ECMA-334

D.4.3 ID STIINE EXAMPLES ceuvreerrerreererresssessseesseesssesssesssessseesssesssesssessseessessssssssesssessssss s sssessseessessssssssssssasssesssssssssssssssessssssans 603

D5 AN EXAIMPIE ... eeeeieecereieeteesete ettt esse bbb bR s RS RS AER R R AR R b 607
D.5.1 CH SOUICE COUE....cuiumeuiemreereeurereesseessessesssessesusessessse s s s sessse s b £ s e as bR s £ R bR e 607
D.5.2 RESUILING XML ..o ocuuieuieneeseerstisesssesssesssessss s s ssssesssesssssssesssess s s s s s ss s s s b sssass s ssssssssssssssans 610

LD 53 10Y 10 3 021 0 42, 615

xviii

Foreword

Foreword

This specification replaces ECMA-334:2017. Changes from the previous edition include the addition of the
following:

Automatically implemented property initializers
await in catch and finally blocks

Exception filters

Expression-bodied function members

Extension Add methods in collection initializers
Improved overload resolution

Initialization of an accessible indexer
Initialization of associative collections using indexers
Interpolated strings

nameof operator

Null-conditional access operators ?. and ?[]
Read-only auto-properties

Relaxed rules for auto-properties

using static

All grammar is now expressed using ANTLR notation.

Xix

Introduction

This specification is based on a submission from Hewlett-Packard, Intel, and Microsoft, that described a
language called C#, which was developed within Microsoft. The principal inventors of this language were
Anders Hejlsberg, Scott Wiltamuth, and Peter Golde. The first widely distributed implementation of C#
was released by Microsoft in July 2000, as part of its .NET Framework initiative.

Ecma Technical Committee 39 (TC39) [later renamed to TC49] Task Group 2 (TG2) was formed in
September 2000, to produce a standard for C#. Another Task Group, TG3, was also formed at that time to
produce a standard for a library and execution environment called Common Language Infrastructure
(CLI). (CLI is based on a subset of the .NET Framework.) Although Microsoft’s implementation of C# relies
on CLI for library and run-time support, other implementations of C# need not, provided they support an
alternate way of getting at the minimum CLI features required by this C# standard (see Annex C).

As the definition of C# evolved, the goals used in its design were as follows:
e (#isintended to be a simple, modern, general-purpose, object-oriented programming language.

e The language, and implementations thereof, should provide support for software engineering
principles such as strong type checking, array bounds checking, detection of attempts to use
uninitialized variables, and automatic garbage collection. Software robustness, durability, and
programmer productivity are important.

e The language is intended for use in developing software components suitable for deployment in
distributed environments.

e Source code portability is very important, as is programmer portability, especially for those
programmers already familiar with C and C++.

e Support for internationalization is very important.

e (C# isintended to be suitable for writing applications for both hosted and embedded systems,
ranging from the very large that use sophisticated operating systems, down to the very small having
dedicated functions.

e Although C# applications are intended to be economical with regard to memory and processing
power requirements, the language was not intended to compete directly on performance and size
with C or assembly language.

The name C# is pronounced “C Sharp”.

The name C# is written as the LATIN CAPITAL LETTER C (U+0043) followed by the NUMBER SIGN #
(U+0023).

This Ecma Standard was developed by Technical Committee 49 and was adopted by the General Assembly
of June 2022.

Chapter 1 Scope

1. Scope

This specification describes the form and establishes the interpretation of programs written in the
C# programming language. It describes

e The representation of C# programs;
e The syntax and constraints of the C# language;
e The semantic rules for interpreting C# programs;
e The restrictions and limits imposed by a conforming implementation of C#.
This specification does not describe
e The mechanism by which C# programs are transformed for use by a data-processing system;
e The mechanism by which C# applications are invoked for use by a data-processing system;
e The mechanism by which input data are transformed for use by a C# application;
e The mechanism by which output data are transformed after being produced by a C# application;

e The size or complexity of a program and its data that will exceed the capacity of any specific data-
processing system or the capacity of a particular processor;

e All minimal requirements of a data-processing system that is capable of supporting a conforming
implementation

Chapter 2 Normative references

2. Normative references

The following normative documents contain provisions, which, through reference in this text, constitute
provisions of this specification. For dated references, subsequent amendments to, or revisions of, any of
these publications do not apply. However, parties to agreements based on this specification are
encouraged to investigate the possibility of applying the most recent editions of the normative documents
indicated below. For undated references, the latest edition of the normative document referred to applies.
Members of ISO and IEC maintain registers of currently valid specifications.

ISO/IEC 23271:2012, Common Language Infrastructure (CLI), Partition IV: Base Class Library (BCL),
Extended Numerics Library, and Extended Array Library.

[SO 80000-2, Quantities and units — Part 2: Mathematical signs and symbols to be used in the natural
sciences and technology.

ISO/IEC 2382, Information technology — Vocabulary.
ISO/IEC 60559:2020, Information technology — Microprocessor Systems — Floating-Point arithmetic

The Unicode Consortium. The Unicode Standard, https://www.unicode.org/standard/standard.html

Chapter 3 Terms and definitions

3. Terms and definitions

For the purposes of this specification, the following definitions apply. Other terms are defined where they
appear in italic type or on the left side of a syntax rule. Terms explicitly defined in this specification are
not to be presumed to refer implicitly to similar terms defined elsewhere. Terms not defined in this
specification are to be interpreted according to ISO/IEC 2382.1. Mathematical symbols not defined in this
specification are to be interpreted according to ISO 80000-2.

3.1
application
assembly with an entry point

3.2
application domain
entity that enables application isolation by acting as a container for application state

3.3

argument

expression in the comma-separated list bounded by the parentheses in a method or instance constructor
call expression or bounded by the square brackets in an element access expression

34
assembly
one or more files output by the compiler as a result of program compilation

3.5
behavior
external appearance or action

3.6
behavior, implementation-defined
unspecified behavior where each implementation documents how the choice is made

3.7

behavior, undefined

behavior, upon use of a non-portable or erroneous construct or of erroneous data, for which this
specification imposes no requirements

3.8

behavior, unspecified

behavior where this specification provides two or more possibilities and imposes no further
requirements on which is chosen in any instance

3.9
character (when used without a qualifier)
In the context of a non-Unicode encoding, the meaning of character in that encoding; or

In the context of a character literal or a value of type char, a Unicode code point in the range U+0000 to
U+FFFF (including surrogate code points), that is a UTF-16 code unit; or

Otherwise, a Unicode code point

ECMA-334

3.10
class library
assembly that can be used by other assemblies

3.11
compilation unit
ordered sequence of Unicode characters that is input to a compiler

3.12
diagnostic message
message belonging to an implementation-defined subset of the implementation’s output messages

3.13
error, compile-time
error reported during program translation

3.14
exception
exceptional condition reported during program execution

3.15

implementation

particular set of software (running in a particular translation environment under particular control
options) that performs translation of programs for, and supports execution of methods in, a particular
execution environment

3.16
namespace
logical organizational system grouping related program elements

3.17

parameter

variable declared as part of a method, instance constructor, operator, or indexer definition, which
acquires a value on entry to that function member

3.18

program

one or more compilation units that are presented to the compiler and are run or executed by an execution
environment

3.19

unsafe code

code that is permitted to perform such lower-level operations as declaring and operating on pointers,
performing conversions between pointers and integral types, and taking the address of variables

3.20

warning, compile-time

informational message reported during program translation, which is intended to identify a potentially
questionable usage of a program element

Chapter 4 General description

4. General description

This text is informative.

This specification is intended to be used by implementers, academics, and application programmers. As
such, it contains a considerable amount of explanatory material that, strictly speaking, is not necessary in
a formal language specification.

This standard is divided into the following subdivisions: front matter; language syntax, constraints, and
semantics; and annexes.

Examples are provided to illustrate possible forms of the constructions described. References are used to
refer to related clauses. Notes are provided to give advice or guidance to implementers or programmers.
Annexes provide additional information and summarize the information contained in this specification.

End of informative text.
Informative text is indicated in the following ways:

1. Whole or partial clauses or annexes delimited by “This clause/text is informative” and “End of
informative text”.

2. Example: The following example ... code fragment, possibly with some narrative ... end example
The Example: and end example markers are in the same paragraph for single paragraph examples. If
an example spans multiple paragraphs, the end example marker should be its own paragraph.

3. Note: narrative ... end note
The Note: and end note markers are in the same paragraph for single paragraph notes. If a note
spans multiple paragraphs, the end note marker should be its own paragraph.

All text not marked as being informative is normative.

Chapter 5 Conformance

5. Conformance

Conformance is of interest to the following audiences:
e Those designing, implementing, or maintaining C# implementations.
e Governmental or commercial entities wishing to procure C# implementations.
e Testing organizations wishing to provide a C# conformance test suite.
e Programmers wishing to port code from one C# implementation to another.
e Educators wishing to teach Standard C#.
e Authors wanting to write about Standard C#.

As such, conformance is most important, and the bulk of this specification is aimed at specifying the
characteristics that make C# implementations and C# programs conforming ones.

The text in this specification that specifies requirements is considered normative. All other text in this
specification is informative; that is, for information purposes only. Unless stated otherwise, all text is
normative. Normative text is further broken into required and conditional categories. Conditionally
normative text specifies a feature and its requirements where the feature is optional. However, if that
feature is provided, its syntax and semantics shall be exactly as specified.

Undefined behavior is indicated in this specification only by the words ‘undefined behavior.’

A strictly conforming program shall use only those features of the language specified in this
specification as being required. (This means that a strictly conforming program cannot use any
conditionally normative feature.) It shall not produce output dependent on any unspecified, undefined, or
implementation-defined behavior.

A conforming implementation of C# shall accept any strictly conforming program.

A conforming implementation of C# shall provide and support all the types, values, objects, properties,
methods, and program syntax and semantics described in the normative (but not the conditionally
normative) parts in this specification.

A conforming implementation of C# shall interpret characters in conformance with the Unicode Standard.
Conforming implementations shall accept compilation units encoded with the UTF-8 encoding form.

A conforming implementation of C# shall not successfully translate source containing a #error
preprocessing directive unless it is part of a group skipped by conditional compilation.

A conforming implementation of C# shall produce at least one diagnostic message if the source program
violates any rule of syntax, or any negative requirement (defined as a “shall” or “shall not” or “error” or
“warning” requirement), unless that requirement is marked with the words “no diagnostic is required”.

A conforming implementation of C# is permitted to provide additional types, values, objects, properties,
and methods beyond those described in this specification, provided they do not alter the behavior of any
strictly conforming program. Conforming implementations are required to diagnose programs that use
extensions that are ill formed according to this specification. Having done so, however, they can compile
and execute such programs. (The ability to have extensions implies that a conforming implementation
reserves no identifiers other than those explicitly reserved in this specification.)

ECMA-334

A conforming implementation of C# shall be accompanied by a document that defines all implementation-
defined characteristics, and all extensions.

A conforming implementation of C# shall support the class library documented in Annex C. This library is
included by reference in this specification.

A conforming program is one that is acceptable to a conforming implementation. (Such a program is
permitted to contain extensions or conditionally normative features.)

10

Chapter 6 Lexical structure

6. Lexical structure

6.1 Programs

A C# program consists of one or more source files, known formally as compilation units (§13.2).
Although a compilation unit might have a one-to-one correspondence with a file in a file system, such
correspondence is not required.

Conceptually speaking, a program is compiled using three steps:

1. Transformation, which converts a file from a particular character repertoire and encoding scheme
into a sequence of Unicode characters.

2. Lexical analysis, which translates a stream of Unicode input characters into a stream of tokens.
3. Syntactic analysis, which translates the stream of tokens into executable code.

Conforming implementations shall accept Unicode compilation units encoded with the UTF-8 encoding
form (as defined by the Unicode standard), and transform them into a sequence of Unicode characters.
Implementations can choose to accept and transform additional character encoding schemes (such as
UTF-16, UTF-32, or non-Unicode character mappings).

Note: The handling of the Unicode NULL character (U+0000) is implementation-specific. It is
strongly recommended that developers avoid using this character in their source code, for the sake
of both portability and readability. When the character is required within a character or string
literal, the escape sequences \0 or \ueeee may be used instead. end note

Note: It is beyond the scope of this standard to define how a file using a character representation
other than Unicode might be transformed into a sequence of Unicode characters. During such
transformation, however, it is recommended that the usual line-separating character (or sequence)
in the other character set be translated to the two-character sequence consisting of the Unicode
carriage-return character (U+000D) followed by Unicode line-feed character (U+000A). For the
most part this transformation will have no visible effects; however, it will affect the interpretation of
verbatim string literal tokens (§6.4.5.6). The purpose of this recommendation is to allow a verbatim
string literal to produce the same character sequence when its compilation unit is moved between
systems that support differing non-Unicode character sets, in particular, those using differing
character sequences for line-separation. end note

6.2 Grammars

6.2.1 General

This specification presents the syntax of the C# programming language using two grammars. The lexical
grammar (§6.2.3) defines how Unicode characters are combined to form line terminators, white space,
comments, tokens, and pre-processing directives. The syntactic grammar (§6.2.4) defines how the
tokens resulting from the lexical grammar are combined to form C# programs.

All terminal characters are to be understood as the appropriate Unicode character from the range U+0020
to U+007F, as opposed to any similar-looking characters from other Unicode character ranges.

11

ECMA-334

6.2.2 Grammar notation

The lexical and syntactic grammars are presented in the ANTLR grammar tool’s Extended Backus-Naur
form.

While the ANTLR notation is used, this Standard does not present a complete ANTLR-ready “reference
grammar” for C#; writing a lexer and parser, either by hand or using a tool such as ANTLR, is outside the
scope of a language specification. With that qualification, this Standard attempts to minimize the gap
between the specified grammar and that required to build a lexer and parser in ANTLR.

ANTLR distinguishes between lexical and syntactic, termed parser by ANTLR, grammars in its notation by
starting lexical rules with an uppercase letter and parser rules with a lowercase letter.

Note: The C# lexical grammar (§6.2.3) and syntactic grammar (§6.2.4) are not in exact
correspondence with the ANTLR division into lexical and parser grammers. This small mismatch
means that some ANTLR parser rules are used when specifying the C# lexical grammar. end note

6.2.3 Lexical grammar

The lexical grammar of C# is presented in §6.3, §6.4, and §6.5. The terminal symbols of the lexical
grammar are the characters of the Unicode character set, and the lexical grammar specifies how
characters are combined to form tokens (§6.4), white space (§6.3.4), comments (§6.3.3), and pre-
processing directives (§6.5).

Many of the terminal symbols of the syntactic grammar are not defined explicitly as tokens in the lexical
grammar. Rather, advantage is taken of the ANTLR behavior that literal strings in the grammar are
extracted as implicit lexical tokens; this allows keywords, operators, etc. to be represented in the
grammar by their literal representation rather than a token name.

Every compilation unit in a C# program shall conform to the input production of the lexical grammar

(§6.3.1).

6.2.4 Syntactic grammar

The syntactic grammar of C# is presented in the clauses, subclauses, and annexes that follow this
subclause. The terminal symbols of the syntactic grammar are the tokens defined explicitly by the lexical
grammar and implicitly by literal strings in the grammar itself (§6.2.3). The syntactic grammar specifies
how tokens are combined to form C# programs.

Every compilation unit in a C# program shall conform to the compilation_unit production (§13.2) of the
syntactic grammar.

6.2.5 Grammar ambiguities

The productions for simple_name (§11.7.4) and member_access (§11.7.6) can give rise to ambiguities in
the grammar for expressions.

Example: The statement:
F(G<A, B>(7));

could be interpreted as a call to F with two arguments,G < Aand B > (7). Alternatively, it could be
interpreted as a call to F with one argument, which is a call to a generic method G with two type
arguments and one regular argument.

end example

12

Chapter 6 Lexical structure

If a sequence of tokens can be parsed (in context) as a simple_name (§11.7.4), member_access (§11.7.6), or
pointer_member_access (§22.6.3) ending with a type_argument_list (§8.4.2), the token immediately
following the closing > token is examined. If it is one of

()1 :5, .2==1=

then the type_argument_list is retained as part of the simple_name, member_access, or
pointer_member_access and any other possible parse of the sequence of tokens is discarded. Otherwise,
the type_argument_list is not considered part of the simple_name, member_access, or
pointer_member_access, even if there is no other possible parse of the sequence of tokens.

Note: These rules are not applied when parsing a type_argument_list in a namespace_or._type_name
(§7.8). end note

Example: The statement:
F(G<A, B>(7));

will, according to this rule, be interpreted as a call to F with one argument, which is a call to a
generic method G with two type arguments and one regular argument. The statements

F(G<A, B>7);
F(G<A, B>>7);

will each be interpreted as a call to F with two arguments. The statement
X = F<A> + y;

will be interpreted as a less-than operator, greater-than operator and unary-plus operator, as if the
statement had been written x = (F < A) > (+y), instead of as a simple_name with a
type_argument_list followed by a binary-plus operator. In the statement

X =y is CKT> && z;

the tokens C<T> are interpreted as a namespace_or_type_name with a type_argument_list due to
being on the right-hand side of the is operator (§11.11.1). Because C<T> parses as a
namespace_or_type_name, not a simple_name, member._access, or pointer_member._access, the above
rule does not apply, and it is considered to have a type_argument _list regardless of the token that
follows.

end example

6.3 Lexical analysis

6.3.1 General

For convenience, the lexical grammar defines and references the following named lexer tokens:

DEFAULT : 'default' ;
NULL : 'null' ;
TRUE : 'true' ;
FALSE . 'false' ;
ASTERISK : '*' ;

SLASH A

Although these are lexer rules, these names are spelled in all-uppercase letters to distinguish them from
ordinary lexer rule names.

13

ECMA-334

Note: These convenience rules are exceptions to the usual practice of not providing explicit token
names for tokens defined by literal strings. end note

The input production defines the lexical structure of a C# compilation unit.
input
: input_section?
5
input_section
: input_section_part+
5
input_section_part
: input_element* New_Line
| PP_Directive

.
)

input_element
: Whitespace
| Comment
| token

)

Note: The above grammar is described by ANTLR parsing rules, it defines the lexical structure of a
C# compilation unit and not lexical tokens. end note

Five basic elements make up the lexical structure of a C# compilation unit: Line terminators (§6.3.2),
white space (§6.3.4), comments (§6.3.3), tokens (§6.4), and pre-processing directives (§6.5). Of these
basic elements, only tokens are significant in the syntactic grammar of a C# program (§6.2.4).

The lexical processing of a C# compilation unit consists of reducing the file into a sequence of tokens that
becomes the input to the syntactic analysis. Line terminators, white space, and comments can serve to
separate tokens, and pre-processing directives can cause sections of the compilation unit to be skipped,
but otherwise these lexical elements have no impact on the syntactic structure of a C# program.

When several lexical grammar productions match a sequence of characters in a compilation unit, the
lexical processing always forms the longest possible lexical element.

Example: The character sequence // is processed as the beginning of a single-line comment because
that lexical element is longer than a single / token. end example

Some tokens are defined by a set of lexical rules; a main rule and one or more sub-rules. The latter are
marked in the grammar by fragment to indicate the rule defines part of another token. Fragment rules are
not considered in the top-to-bottom ordering of lexical rules.

Note: In ANTLR fragment is a keyword which produces the same behavior defined here. end note

6.3.2 Line terminators
Line terminators divide the characters of a C# compilation unit into lines.

New_Line
: New_Line_Character
| '\ueeeD\uoeoA' // carriage return, line feed

)

14

Chapter 6 Lexical structure

For compatibility with source code editing tools that add end-of-file markers, and to enable a compilation
unit to be viewed as a sequence of properly terminated lines, the following transformations are applied, in
order, to every compilation unit in a C# program:

o I[fthe last character of the compilation unit is a Control-Z character (U+001A), this character is
deleted.

e A carriage-return character (U+000D) is added to the end of the compilation unit if that compilation
unit is non-empty and if the last character of the compilation unit is not a carriage return (U+000D),
a line feed (U+000A), a next line character (U+0085), a line separator (U+2028), or a paragraph
separator (U+2029).

Note: The additional carriage-return allows a program to end in a PP_Directive (§6.5) that does not
have a terminating New_Line. end note

6.3.3 Comments

Two forms of comments are supported: delimited comments and single-line comments.

A delimited comment begins with the characters /* and ends with the characters */. Delimited
comments can occupy a portion of a line, a single line, or multiple lines.

Example: The example

/* Hello, world program
This program writes "hello, world" to the console

*/
class Hello
{
static void Main()
{
System.Console.WriteLine("hello, world");
}

}

includes a delimited comment.
end example

A single-line comment begins with the characters // and extends to the end of the line.
Example: The example

// Hello, world program
// This program writes "hello, world" to the console

//
class Hello // any name will do for this class
{
static void Main() // this method must be named "Main"
{
System.Console.WriteLine("hello, world");
}
}

shows several single-line comments.
end example

Comment
: Single_Line_Comment

15

ECMA-334

| Delimited Comment

B

fragment Single_Line_Comment
'//' Input_Character*

.
B

fragment Input_Character
// anything but New_Line_Character
: ~('\ueeeD' | '\ueeeA' | '\ueess' | '\u2028' | '\u2029')

B

fragment New_Line_Character
'\ueeeD' // carriage return
| '\ueeeA' // line feed
| '"\ueess' // next line
| '\u2028' // line separator
| '\u2029' // paragraph separator
B

fragment Delimited_Comment
'/*' Delimited_Comment_Section* ASTERISK+ '/'

5
fragment Delimited_Comment_Section

: SLASH
| ASTERISK* Not_Slash_Or_Asterisk

)

fragment Not_Slash_Or_Asterisk
s~ Y // Any except SLASH or ASTERISK

)

Comments do not nest. The character sequences /* and */ have no special meaning within a single-line
comment, and the character sequences // and /* have no special meaning within a delimited comment.

Comments are not processed within character and string literals.

16

Note: These rules must be interpreted carefully. For instance, in the example below, the delimited
comment that begins before A ends between B and C(). The reason is that

/1 B */ CO);

is not actually a single-line comment, since // has no special meaning within a delimited comment,
and so */ does have its usual special meaning in that line.

Likewise, the delimited comment starting before D ends before E. The reason is that "D */ " is not
actually a string literal, since it appears inside a delimited comment.

A useful consequence of /* and */ having no special meaning within a single-line comment is that a
block of source code lines can be commented out by putting // at the beginning of each line. In
general it does not work to put /* before those lines and */ after them, as this does not properly
encapsulate delimited comments in the block, and in general may completely change the structure
of such delimited comments.

Example code:

Chapter 6 Lexical structure

static void Main()

{
/* A
// B */ C();
Console.WriteLine(/* "D */ "E");
}
end note

Single_Line_Comments and Delimited_Comments having particular formats can be used as documentation
comments, as described in §D.

6.3.4 White space

White space is defined as any character with Unicode class Zs (which includes the space character) as well
as the horizontal tab character, the vertical tab character, and the form feed character.

Whitespace
: [\p{Zs}] // any character with Unicode class Zs
| '\ueee9' // horizontal tab
| '\ueeeB' // vertical tab
| '\ueeeC' // form feed
B

6.4 Tokens

6.4.1 General

There are several kinds of tokens: identifiers, keywords, literals, operators, and punctuators. White space
and comments are not tokens, though they act as separators for tokens.

token
: identifier

| keyword

| Integer_Literal

| Real Literal

| Character_Literal

| string Literal

| operator_or_punctuator

3

Note: This is an ANTLR parser rule, it does not define a lexical token but rather the collection of
token kinds. end note

6.4.2 Unicode character escape sequences

A Unicode escape sequence represents a Unicode code point. Unicode escape sequences are processed in
identifiers (§6.4.3), character literals (§6.4.5.5), regular string literals (§6.4.5.6), and interpolated regular
string expressions (§11.7.3). A Unicode escape sequence is not processed in any other location (for
example, to form an operator, punctuator, or keyword).

fragment Unicode_Escape_Sequence

"\\u' Hex_Digit Hex_Digit Hex_Digit Hex_Digit
| "\\U' Hex_Digit Hex_Digit Hex Digit Hex_Digit Hex_Digit Hex_Digit Hex_Digit
Hex_Digit

)

17

ECMA-334

A Unicode character escape sequence represents the single Unicode code point formed by the
hexadecimal number following the “\u” or “\U” characters. Since C# uses a 16-bit encoding of Unicode
code points in character and string values, a Unicode code point in the range U+10000 to U+10FFFF is
represented using two Unicode surrogate code units. Unicode code points above U+FFFF are not permitted
in character literals. Unicode code points above U+10FFFF are invalid and are not supported.

Multiple translations are not performed. For instance, the string literal "\uee5CcueesC" is equivalent to
"\uees5C" rather than "\".

Note: The Unicode value \u0o5cC is the character “\”. end note

Example: The example

class Classl

{
static void Test(bool \u@®@66)
{
char ¢ = "\u0o66"';
if (\ueo66)
{
System.Console.WriteLine(c.ToString());
}
}
}
shows several uses of \uee66, which is the escape sequence for the letter “f”. The program is
equivalent to
class Classi
{
static void Test(bool f)
{
char ¢ = 'f';
if (f)
{
System.Console.WriteLine(c.ToString());
}
}
}
end example

6.4.3 Identifiers

The rules for identifiers given in this subclause correspond exactly to those recommended by the Unicode
Standard Annex 15 except that underscore is allowed as an initial character (as is traditional in the
C programming language), Unicode escape sequences are permitted in identifiers, and the “@” character is
allowed as a prefix to enable keywords to be used as identifiers.
identifier
: Simple_Identifier
| contextual_keyword
5
Simple_Identifier

: Available_Identifier
| Escaped_Identifier

18

Chapter 6 Lexical structure

)

fragment Available Identifier
: Basic_Identifier // excluding keywords or contextual keywords, see note
below

B

fragment Escaped_Identifier
// Includes keywords and contextual keywords prefixed by '@'. See note below.
'@' Basic_Identifier

.
B

fragment Basic_Identifier
: Identifier_Start_Character Identifier_Part_Character*

)

fragment Identifier_Start_Character
Letter_Character
| Underscore_Character

.
)

fragment Underscore_Character
R // underscore
| "\\uees' [fF] // Unicode Escape_Sequence for underscore

.
)

fragment Identifier_Part_Character
: Letter_Character
| Decimal_Digit_Character
| Connecting_Character
| Combining Character
| Formatting Character
)

fragment Letter_Character
// Category Letter, all subcategories; category Number, subcategory letter.

¢ [\p{L}\p{N1}]
// Only escapes for categories L & N1 allowed. See note below.
| Unicode_Escape_Sequence

)

fragment Combining Character
// Category Mark, subcategories non-spacing and spacing combining.

¢ [\p{Mn}\p{Mc}]
// Only escapes for categories Mn & Mc allowed. See note below.
| Unicode_Escape_Sequence

5
fragment Decimal Digit_Character
// Category Number, subcategory decimal digit.

[\p{Nd}]
// Only escapes for category Nd allowed. See note below.

| Unicode_Escape_Sequence

)

19

ECMA-334

fragment Connecting_Character
// Category Punctuation, subcategory connector.

[\p{Pc}]
// Only escapes for category Pc allowed. See note below.
| Unicode_Escape_Sequence

B

fragment Formatting_Character
// Category Other, subcategory format.

¢ [\p{CF}]
// Only escapes for category Cf allowed, see note below.
| Unicode Escape_Sequence

J
Note:
e For information on the Unicode character classes mentioned above, see The Unicode Standard.

e The fragment Available_Identifier requires the exclusion of keywords and contextual
keywords. If the grammar in this Standard is processed with ANTLR then this exclusion is
handled automatically by the semantics of ANTLR:

o Keywords and contextual keywords occur in the grammar as literal strings.
o ANTLR creates implicit lexical token rules are created from these literal strings.
o ANTLR considers these implicit rules before the explicit lexical rules in the grammar.

o Therefore fragment Available_Identifier will not match keywords or contextual keywords
as the lexical rules for those precede it.

o Fragment Escaped_Identifier includes escaped keywords and contextual keywords as they are
part of the longer token starting with an @ and lexical processing always forms the longest
possible lexical element (§6.3.1).

e How an implementation enforces the restrictions on the allowable Unicode_Escape_Sequence
values is an implementation issue.

end note

Example: Examples of valid identifiers are identifierl, _identifier2, and @if. end example

An identifier in a conforming program shall be in the canonical format defined by Unicode Normalization
Form C, as defined by Unicode Standard Annex 15. The behavior when encountering an identifier not in
Normalization Form C is implementation-defined; however, a diagnostic is not required.

The prefix “@” enables the use of keywords as identifiers, which is useful when interfacing with other
programming languages. The character @ is not actually part of the identifier, so the identifier might be
seen in other languages as a normal identifier, without the prefix. An identifier with an @ prefix is called a
verbatim identifier.

20

Note: Use of the @ prefix for identifiers that are not keywords is permitted, but strongly discouraged
as a matter of style. end note

Example: The example:

class (@class

{
public static void @static(bool @bool)

{

Chapter 6 Lexical structure

if (@bool)
¢ System.Console.WriteLine("true");
}
else
{
System.Console.WriteLine("false");
}
}
}
class Classi
{
static void M()
t cl\uev6lss.st\ueveltic(true);
}
}

defines a class named “class” with a static method named “static” that takes a parameter named
“bool”. Note that since Unicode escapes are not permitted in keywords, the token “c1\u@e61ss” is
an identifier, and is the same identifier as “@class”.

end example

Two identifiers are considered the same if they are identical after the following transformations are
applied, in order:

o The prefix “@”, if used, is removed.
e Each Unicode_Escape_Sequence is transformed into its corresponding Unicode character.
e Any Formatting_Characters are removed.

Identifiers containing two consecutive underscore characters (U+005F) are reserved for use by the
implementation; however, no diagnostic is required if such an identifier is defined.

Note: For example, an implementation might provide extended keywords that begin with two
underscores. end note
6.4.4 Keywords

A keyword is an identifier-like sequence of characters that is reserved, and cannot be used as an identifier
except when prefaced by the @ character.

keyword
'abstract' | 'as' | 'base’ | 'bool! | 'break’
| 'byte’ | 'case’ | 'catch' | 'char' | 'checked'
| 'class' | "const' | 'continue’ | 'decimal'’ | DEFAULT
| 'delegate' | 'do' | 'double’ | 'else’ | 'enum'
| 'event' | "explicit' | 'extern' | FALSE | 'finally'
| 'fixed' | 'float' | 'for' | 'foreach' | 'goto’
| 'if" | 'implicit' | 'in' | 'int’ | "interface'
| "internal' | 'is' | "lock' | "long' | 'namespace’
| "new’ | NULL | 'object' | 'operator' | 'out'
| 'override' | 'params' | 'private’ | 'protected' | 'public’
| 'readonly' | 'ref' | 'return’ | 'sbyte' | 'sealed’
| 'short' | 'sizeof' | 'stackalloc' | 'static' | 'string'

21

ECMA-334

| 'struct' | "switch' | 'this’ | "throw' | TRUE

| "try' | "typeof' | "uint' | 'ulong' | 'unchecked'’
| 'unsafe' | "ushort’ | 'using' | 'virtual' | 'void'

| 'volatile' | 'while'

B

A contextual keyword is an identifier-like sequence of characters that has special meaning in certain
contexts, but is not reserved, and can be used as an identifier outside of those contexts as well as when
prefaced by the @ character.

contextual_keyword

: 'add’ | 'alias’ | 'ascending' | 'async' | 'await’

| 'by' | 'descending' | 'dynamic' | 'equals' | 'from'

| 'get’ | 'global’ | 'group' | 'into' | 'join'

| 'let’ | 'nameof’ | 'on' | 'orderby' | 'partial'
| 'remove' | 'select' | 'set’ | 'value' | 'var'

| 'when' | 'where' | 'yield"

B

Note: The rules keyword and contextual_keyword are parser rules as they do not introduce new
token kinds. All keywords and contextual keywords are defined by implicit lexical rules as they
occur as literal strings in the grammar (§6.2.3). end note

In most cases, the syntactic location of contextual keywords is such that they can never be confused with
ordinary identifier usage. For example, within a property declaration, the get and set identifiers have
special meaning (§14.7.3). An identifier other than get or set is never permitted in these locations, so this
use does not conflict with a use of these words as identifiers.

In certain cases the grammar is not enough to distinguish contextual keyword usage from identifiers. In
all such cases it will be specified how to disambiguate between the two. For example, the contextual
keyword var in implicitly typed local variable declarations (§12.6.2) might conflict with a declared type
called var, in which case the declared name takes precedence over the use of the identifier as a contextual
keyword.

Another example such disambiguation is the contextual keyword await (§11.8.8.1), which is considered a
keyword only when inside a method declared async, but can be used as an identifier elsewhere.

Just as with keywords, contextual keywords can be used as ordinary identifiers by prefixing them with
the @ character.

Note: When used as contextual keywords, these identifiers cannot contain
Unicode_Escape_Sequences. end note

6.4.5 Literals

6.4.5.1 General
A literal (§11.7.2) is a source-code representation of a value.

literal
: boolean_literal

| Integer_ Literal

| Real Literal

| Character_Literal

| String Literal

| null literal

B

22

Chapter 6 Lexical structure

Note: literal is a parser rule as it groups other token kinds and does not introduce a new token kind.
end note

6.4.5.2 Boolean literals
There are two Boolean literal values: true and false.

boolean_literal
: TRUE
| FALSE

5
Note: boolean_literal is a parser rule as it groups other token kinds and does not introduce a new
token kind. end note

The type of a boolean_literal is bool.

6.4.5.3 Integer literals

Integer literals are used to write values of types int, uint, long, and ulong. Integer literals have two
possible forms: decimal and hexadecimal.

Integer_Literal
: Decimal_Integer_Literal
| Hexadecimal Integer Literal

)

fragment Decimal_Integer_Literal
: Decimal_Digit+ Integer_Type_Suffix?
5
fragment Decimal Digit
'9'..'9"
5
fragment Integer_Type_Suffix
|U| | |u| | |L| | |l| | |UL| | |U1| | |uL| I |u1| | |LU| | |Lu| I |1U| | |1u|
fragment Hexadecimal_Integer_ Literal
: ('ex' | 'eX') Hex_Digit+ Integer_Type_Suffix?

)

fragment Hex_Digit
lel..lgl | IAI"IFI | 'a'..'f'
5
The type of an integer literal is determined as follows:

o Ifthe literal has no suffix, it has the first of these types in which its value can be represented: int,
uint, long, ulong.

o Ifthe literal is suffixed by U or u, it has the first of these types in which its value can be represented:
uint, ulong.

o I[fthe literal is suffixed by L or 1, it has the first of these types in which its value can be represented:
long, ulong.

o I[fthe literal is suffixed by UL, U1, uL, ul, LU, Lu, 1U, or lu, it is of type ulong.

23

ECMA-334

If the value represented by an integer literal is outside the range of the ulong type, a compile-time error
occurs.

Note: As a matter of style, it is suggested that “L” be used instead of “1” when writing literals of type
long, since it is easy to confuse the letter “1” with the digit “1”. end note

To permit the smallest possible int and long values to be written as integer literals, the following two
rules exist:

e When an Integer._Literal representing the value 2147483648 (23!) and no Integer_Type_Suffix
appears as the token immediately following a unary minus operator token (§11.8.3), the result (of
both tokens) is a constant of type int with the value -2147483648 (-23%). In all other situations, such
an Integer_Literal is of type uint.

e When an Integer._Literal representing the value 9223372036854775808 (2°%) and no
Integer_Type_Suffix or the Integer_Type_Suffix L or 1 appears as the token immediately following a
unary minus operator token (§11.8.3), the result (of both tokens) is a constant of type long with the
value -9223372036854775808 (-2°%). In all other situations, such an Integer_Literal is of type ulong.

6.4.5.4 Real literals
Real literals are used to write values of types float, double, and decimal.

Real Literal
: Decimal_Digit+ Decimal_Digit+ Exponent_Part? Real Type_ Suffix?
| '.' Decimal_Digit+ Exponent_Part? Real Type Suffix?
| Decimal_Digit+ Exponent_Part Real Type_ Suffix?
| Decimal Digit+ Real Type Suffix

)

fragment Exponent_Part
: ('e' | 'E') Sign? Decimal Digit+
5

fragment Sign
eyt | v

)

fragment Real Type_Suffix
"FClfF | ‘D] dt] M| 'm”
If no Real_Type_Suffix is specified, the type of the Real_Literal is double. Otherwise, the Real_Type_Suffix
determines the type of the real literal, as follows:

e Areal literal suffixed by F or f is of type float.
Example: The literals 1f, 1.5, 1elef, and 123.456F are all of type float. end example

e Areal literal suffixed by D or d is of type double.
Example: The literals 1d, 1.5d, 1el@d, and 123.456D are all of type double. end example

e Areal literal suffixed by M or m is of type decimal.
Example: The literals 1m, 1.5m, 1e10m, and 123.456M are all of type decimal. end example
This literal is converted to a decimal value by taking the exact value, and, if necessary, rounding to
the nearest representable value using banker’s rounding (§8.3.8). Any scale apparent in the literal is
preserved unless the value is rounded.

24

Chapter 6 Lexical structure

Note: Hence, the literal 2.900m will be parsed to form the decimal with sign o, coefficient 2900, and
scale 3. end note

If the magnitude of the specified literal is too large to be represented in the indicated type, a compile-time
error occurs.

Note: In particular, a Real_Literal will never produce a floating-point infinity. A non-zero Real_Literal
may, however, be rounded to zero. end note

The value of a real literal of type float or double is determined by using the IEC 60559 “round to nearest”
mode with ties broken to “even” (a value with the least-significant-bit zero), and all digits considered
significant.

Note: In a real literal, decimal digits are always required after the decimal point. For example, 1.3F
is areal literal but 1.F is not. end note

6.4.5.5 Character literals
A character literal represents a single character, and consists of a character in quotes, asin 'a".

Character_Literal
"\'' Character "\"'

)

fragment Character

: Single_Character

| Simple Escape_Sequence

| Hexadecimal Escape_Sequence
| Unicode_Escape_Sequence
3

fragment Single_Character
¢ ~["\\\ueooD\uoeoA\uoe85\u2028\u2029] // anything but ', \, and
New_Line_Character

J

fragment Simple_Escape_Sequence
EONWTT DN L NN L Net | \at | NDT L NE et e
N\t T\

J

fragment Hexadecimal_ Escape_Sequence
"\\x' Hex_Digit Hex_Digit? Hex_Digit? Hex_Digit?
Note: A character that follows a backslash character (\) in a Character must be one of the following

characters: ', ", \,9,a,b,f, n,r,t,uU,x,v. Otherwise, a compile-time error occurs. end note

Note: The use of the \x Hexadecimal_Escape_Sequence production can be error-prone and hard to
read due to the variable number of hexadecimal digits following the \x. For example, in the code:

string good = "x9Good text";
string bad = "x9Bad text";

it might appear at first that the leading character is the same (U+0009, a tab character) in both
strings. In fact the second string starts with U+9BAD as all three letters in the word “Bad” are valid
hexadecimal digits. As a matter of style, it is recommended that \x is avoided in favour of either
specific escape sequences (\t in this example) or the fixed-length \u escape sequence.

25

ECMA-334

end note

A hexadecimal escape sequence represents a single Unicode UTF-16 code unit, with the value formed by
the hexadecimal number following “\x”.

If the value represented by a character literal is greater than U+FFFF, a compile-time error occurs.
A Unicode escape sequence (§6.4.2) in a character literal shall be in the range U+0000 to U+FFFF.

A simple escape sequence represents a Unicode character, as described in the table below.

Escape sequence Character name Unicode code point
\' Single quote U+0027
\" Double quote U+0022
\\ Backslash U+005C
\0 Null U+0000
\a Alert U+0007
\b Backspace U+0008
\f Form feed U+000C
\n New line U+000A
\r Carriage return U+000D
\t Horizontal tab U+0009
\v Vertical tab U+000B

The type of a Character_Literal is char.

6.4.5.6 String literals

C# supports two forms of string literals: regular string literals and verbatim string literals. A regular
string literal consists of zero or more characters enclosed in double quotes, as in "hello", and can include
both simple escape sequences (such as \t for the tab character), and hexadecimal and Unicode escape
sequences.

A verbatim string literal consists of an @ character followed by a double-quote character, zero or more
characters, and a closing double-quote character.

Example: A simple example is @"hello". end example

In a verbatim string literal, the characters between the delimiters are interpreted verbatim, with the only
exception being a Quote_Escape_Sequence, which represents one double-quote character. In particular,
simple escape sequences, and hexadecimal and Unicode escape sequences are not processed in verbatim
string literals. A verbatim string literal may span multiple lines.

String_Literal
: Regular_String_Literal
| Verbatim_String_Literal

)

fragment Regular_String Literal
' Regular_String Literal_Character* '"'

26

Chapter 6 Lexical structure

fragment Regular_String_ Literal_Character
: Single_Regular_String Literal_Character
| Simple_Escape_Sequence
| Hexadecimal Escape_Sequence
| Unicode_Escape_Sequence

B

fragment Single_Regular_String_Literal_Character
: ~["\\\ueooD\uoooA\uee85\u2028\u2029] // anything but ", \, and
New_Line_Character

B

fragment Verbatim_String Literal
'@"' Verbatim_String_Literal_Character* '"'

I

fragment Verbatim_String_Literal_Character
: Single_Verbatim_String_Literal_Character
| Quote_Escape_Sequence

)

fragment Single_Verbatim_String_Literal_Character
: ~["] // anything but quotation mark (U+0022)

)

fragment Quote_Escape_Sequence

T
.
)

Example: The example

string a = "Happy birthday, Joel"™; // Happy birthday, Joel

string b = @"Happy birthday, Joel"; // Happy birthday, Joel
string ¢ = "hello \t world"; // hello world

string d = @"hello \t world"; // hello \t world

string e = "Joe said \"Hello\" to me"; // Joe said "Hello" to me
string f = @"Joe said ""Hello"" to me"; // Joe said "Hello" to me
string g = "\\\\server\\share\\file.txt"; // \\server\share\file.txt
string h = @"\\server\share\file.txt"; // \\server\share\file.txt
string i = "one\r\ntwo\r\nthree";

string j = @"one

two

three";

shows a variety of string literals. The last string literal, j, is a verbatim string literal that spans
multiple lines. The characters between the quotation marks, including white space such as new line
characters, are preserved verbatim, and each pair of double-quote characters is replaced by one
such character.

end example

Note: Any line breaks within verbatim string literals are part of the resulting string. If the exact
characters used to form line breaks are semantically relevant to an application, any tools that
translate line breaks in source code to different formats (between “\n” and “\r\n”, for example) will
change application behavior. Developers should be careful in such situations. end note

27

ECMA-334

Note: Since a hexadecimal escape sequence can have a variable number of hex digits, the string
literal "\x123" contains a single character with hex value 123. To create a string containing the
character with hex value 12 followed by the character 3, one could write "\x00123" or "\x12" + "3"
instead. end note

The type of a String_Literal is string.

Each string literal does not necessarily result in a new string instance. When two or more string literals
that are equivalent according to the string equality operator (§11.11.8), appear in the same assembly,
these string literals refer to the same string instance.

Example: For instance, the output produced by

class Test

{
static void Main()
{
object a = "hello";
object b = "hello";
System.Console.WritelLine(a == b);
}
}

is True because the two literals refer to the same string instance.
end example

6.4.5.7 The null literal

null literal
: NULL

5
Note: null_literal is a parser rule as it does not introduce a new token kind. end note

A null_literal represents a null value. It does not have a type, but can be converted to any reference type
or nullable value type through a null literal conversion (§10.2.7).

6.4.6 Operators and punctuators

There are several kinds of operators and punctuators. Operators are used in expressions to describe
operations involving one or more operands.

Example: The expression a + b uses the + operator to add the two operands a and b. end example
Punctuators are for grouping and separating.

operator_or_punctuator

S S Y S U O I G N L AP PR I R IS
| "+] - |ASTERISK | SLASH | *%* | &' | *|* | At | trto] e
I R e I B B e e S TR
RSN [RMAT INYAU INDAVIS ISGRI INVGRIN PN INPAS Rt pEPAR
I B R B B R S

right_shift_assignment

28

Chapter 6 Lexical structure

Note: right_shift and right_shift_assignment are parser rules as they do not introduce a new token
kind but represent a sequence of two tokens. The operator_or_punctuator rule exists for descriptive
purposes only and is not used elsewhere in the grammar. end note

right_shift is made up of the two tokens > and >. Similarly, right_shift_assignment is made up of the two
tokens > and >=. Unlike other productions in the syntactic grammar, no characters of any kind (not even
whitespace) are allowed between the two tokens in each of these productions. These productions are
treated specially in order to enable the correct handling of type_parameter_lists (§14.2.3).

Note: Prior to the addition of generics to C#, >> and >>= were both single tokens. However, the
syntax for generics uses the < and > characters to delimit type parameters and type arguments. It is
often desirable to use nested constructed types, such as List<Dictionary<string, int>>.Rather
than requiring the programmer to separate the > and > by a space, the definition of the two
operator_or_punctuators was changed. end note

6.5 Pre-processing directives

6.5.1 General

The pre-processing directives provide the ability to skip conditionally sections of compilation units, to
report error and warning conditions, and to delineate distinct regions of source code.

Note: The term “pre-processing directives” is used only for consistency with the C and
C++ programming languages. In C#, there is no separate pre-processing step; pre-processing
directives are processed as part of the lexical analysis phase. end note

PP_Directive
: PP_Start PP_Kind PP_New_Line

J

fragment PP_Kind
: PP_Declaration
| PP_Conditional
| PP_Line
| PP_Diagnostic
| PP_Region
| PP_Pragma

)

// Only recognised at the beginning of a line
fragment PP_Start

: { getCharPositionInLine() == @ }? PP_Whitespace? '#' PP_Whitespace? // see
note below

)

fragment PP_Whitespace
: ([\p{Zs}] // any character with Unicode class Zs
| '\ueee9' // horizontal tab
| '\ueeeB' // vertical tab
| *\ueeec' // form feed

)+

29

ECMA-334

fragment PP_New_Line
PP_Whitespace? Single Line_Comment? New_Line

Note:

e The pre-processor grammar defines a single lexical token PP_Directive used for all pre-
processing directives. The semantics of each of the pre-processing directives are defined in
this language specification but not how to implement them.

o The PP_Start fragment must only be recognised at the start of a line, the
getCharPositionInLine() == @ ANTLR lexical predicate above suggests one way in which
this may be achieved and is informative only, an implementation may use a different strategy.

end note

The following pre-processing directives are available:

#define and #undef, which are used to define and undefine, respectively, conditional compilation
symbols (§6.5.4).

#if, #elif, #else, and #endif, which are used to skip conditionally sections of source code (§6.5.5).
#1line, which is used to control line numbers emitted for errors and warnings (§6.5.8).

#error, which is used to issue errors (§6.5.6).

#region and #endregion, which are used to explicitly mark sections of source code (§6.5.7).

#pragma, which is used to specify optional contextual information to a compiler (§6.5.9).

A pre-processing directive always occupies a separate line of source code and always begins with a
character and a pre-processing directive name. White space may occur before the # character and
between the # character and the directive name.

A source line containing a #define, #undef, #if, #elif, #else, #endif, #1ine, or #endregion directive can
end with a single-line comment. Delimited comments (the /* */ style of comments) are not permitted on
source lines containing pre-processing directives.

Pre-processing directives are not part of the syntactic grammar of C#. However, pre-processing directives
can be used to include or exclude sequences of tokens and can in that way affect the meaning of a
C# program.

30

Example: When compiled, the program

#tdefine A
#undef B
class C
{
#if A

void F() {}
#else

void G() {}
#tendif
#if B

void H() {}
#else

void I() {}

Chapter 6 Lexical structure

#tendif
}

results in the exact same sequence of tokens as the program

class C

{
void F() {}

void I1() {}
¥

Thus, whereas lexically, the two programs are quite different, syntactically, they are identical.

end example

6.5.2 Conditional compilation symbols

The conditional compilation functionality provided by the #if, #elif, #else, and #endif directives is
controlled through pre-processing expressions (§6.5.3) and conditional compilation symbols.

fragment PP_Conditional_ Symbol
: Basic_Identifier // must not be equal to tokens TRUE or FALSE, see note below
Note How an implementation enforces the restriction on the allowable Basic_Identifier values is an
implementation issue. end note

Two conditional compilation symbols are considered the same if they are identical after the following
transformations are applied, in order:

e Each Unicode_Escape_Sequence is transformed into its corresponding Unicode character.
e Any Formatting_Characters are removed.

A conditional compilation symbol has two possible states: defined or undefined. At the beginning of the
lexical processing of a compilation unit, a conditional compilation symbol is undefined unless it has been
explicitly defined by an external mechanism (such as a command-line compiler option). When a #define
directive is processed, the conditional compilation symbol named in that directive becomes defined in
that compilation unit. The symbol remains defined until a #undef directive for that same symbol is
processed, or until the end of the compilation unit is reached. An implication of this is that #define and
#undef directives in one compilation unit have no effect on other compilation units in the same program.

When referenced in a pre-processing expression (§6.5.3), a defined conditional compilation symbol has
the Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.
There is no requirement that conditional compilation symbols be explicitly declared before they are
referenced in pre-processing expressions. Instead, undeclared symbols are simply undefined and thus
have the value false.

The namespace for conditional compilation symbols is distinct and separate from all other named entities
in a C# program. Conditional compilation symbols can only be referenced in #define and #undef
directives and in pre-processing expressions.

6.5.3 Pre-processing expressions

Pre-processing expressions can occur in #if and #elif directives. The operators !, ==, | =, &&,and | | are
permitted in pre-processing expressions, and parentheses may be used for grouping.

fragment PP_Expression
: PP_Whitespace? PP_Or_Expression PP_Whitespace?

31

ECMA-334

)

fragment PP_Or_Expression
: PP_And_Expression (PP_Whitespace? '||' PP_Whitespace? PP_And_Expression)*

)

fragment PP_And_Expression
: PP_Equality_Expression (PP_Whitespace? '&&' PP_Whitespace?
PP_Equality_ Expression)*

)

fragment PP_Equality_Expression
: PP_Unary_Expression (PP_Whitespace? ('==' "1=") PP_Whitespace?
PP_Unary_Expression)*

)

fragment PP_Unary_Expression
: PP_Primary_Expression
| '!" PP_Whitespace? PP_Unary_ Expression

.
)

fragment PP_Primary_Expression

¢ TRUE

| FALSE

| PP_Conditional_Symbol
| "(' PP_Whitespace? PP_Expression PP_Whitespace? ')’
3

When referenced in a pre-processing expression, a defined conditional compilation symbol has the
Boolean value true, and an undefined conditional compilation symbol has the Boolean value false.

Evaluation of a pre-processing expression always yields a Boolean value. The rules of evaluation for a pre-
processing expression are the same as those for a constant expression (§11.20), except that the only user-
defined entities that can be referenced are conditional compilation symbols.

6.5.4 Definition directives
The definition directives are used to define or undefine conditional compilation symbols.

fragment PP_Declaration
"define' PP_Whitespace PP_Conditional_ Symbol
| "undef' PP_Whitespace PP_Conditional Symbol

5
The processing of a #define directive causes the given conditional compilation symbol to become defined,
starting with the source line that follows the directive. Likewise, the processing of a #undef directive

causes the given conditional compilation symbol to become undefined, starting with the source line that
follows the directive.

Any #define and #undef directives in a compilation unit shall occur before the first token (§6.4) in the
compilation unit; otherwise a compile-time error occurs. In intuitive terms, #define and #undef
directives shall precede any “real code” in the compilation unit.

Example: The example:

#define Enterprise
#if Professional || Enterprise

32

Chapter 6 Lexical structure

#tdefine Advanced
ttendif
namespace Megacorp.Data

{
#if Advanced

class PivotTable {...}
#endif

}

is valid because the #define directives precede the first token (the namespace keyword) in the
compilation unit.

end example

Example: The following example results in a compile-time error because a #define follows real code:

#define A
namespace N

{
#tdefine B

#if B
class Classl {}
#endif

}

end example

A #define may define a conditional compilation symbol that is already defined, without there being any
intervening #undef for that symbol.

Example: The example below defines a conditional compilation symbol A and then defines it again.

#tdefine A
#tdefine A

For compilers that allow conditional compilation symbols to be defined as compilation options, an
alternative way for such redefinition to occur is to define the symbol as a compiler option as well as
in the source.

end example
A #undef may “undefine” a conditional compilation symbol that is not defined.

Example: The example below defines a conditional compilation symbol A and then undefines it
twice; although the second #undef has no effect, it is still valid.

#tdefine A
#undef A
#undef A

end example

6.5.5 Conditional compilation directives

The conditional compilation directives are used to conditionally include or exclude portions of a
compilation unit.
fragment PP_Conditional
: PP_If Section
| PP_Elif_Section
| PP_Else Section

33

ECMA-334

| PP_Endif

.
B

fragment PP_If_Section
'if' PP_Whitespace PP_Expression

.
B

fragment PP_Elif Section
'elif' PP_Whitespace PP_Expression

I

fragment PP_Else_Section
'else’

I

fragment PP_Endif
'endif’
5
Conditional compilation directives shall be written in groups consisting of, in order, a #if directive, zero
or more #elif directives, zero or one #else directive, and a #endif directive. Between the directives are
conditional sections of source code. Each section is controlled by the immediately preceding directive. A

conditional section may itself contain nested conditional compilation directives provided these directives
form complete groups.

Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction

{
void Commit()
{
#if Debug
CheckConsistency();
#if Trace
WriteToLog(this.ToString());
#tendif
#tendif
CommitHelper();
}
}
end example

At most one of the contained conditional sections is selected for normal lexical processing:

e The PP_Expressions of the #if and #elif directives are evaluated in order until one yields true. If an
expression yields true, the conditional section following the corresponding directive is selected.

o Ifall PP_Expressions yield false, and if a #else directive is present, the conditional section following
the #else directive is selected.

e Otherwise, no conditional section is selected.

34

Chapter 6 Lexical structure

The selected conditional section, if any, is processed as a normal input_section: the source code contained
in the section shall adhere to the lexical grammar; tokens are generated from the source code in the
section; and pre-processing directives in the section have the prescribed effects.

Any remaining conditional sections are skipped and no tokens, except those for pre-processing directives,
are generated from the source code. Therefore skipped source code, except pre-processing directives,
may be lexically incorrect. Skipped pre-processing directives shall be lexically correct but are not
otherwise processed. Within a conditional section that is being skipped any nested conditional sections
(contained in nested #if. . .#endif constructs) are also skipped.

Note: The above grammar does not capture the allowance that the conditional sections between the
pre-processing directives may be malformed lexically. Therefore the grammar is not ANTLR-ready
as it only supports lexically correct input. end note

Example: The following example illustrates how conditional compilation directives can nest:

#define Debug // Debugging on
#undef Trace // Tracing off
class PurchaseTransaction

{
void Commit()
{
#if Debug
CheckConsistency();
#if Trace
WriteToLog(this.ToString());
#tendif
#tendif
CommitHelper();
}
}

Except for pre-processing directives, skipped source code is not subject to lexical analysis. For
example, the following is valid despite the unterminated comment in the #else section:

#define Debug // Debugging on
class PurchaseTransaction

{
void Commit()
{
#if Debug
CheckConsistency();
#else
/* Do something else
#endif
}
}

Note, however, that pre-processing directives are required to be lexically correct even in skipped
sections of source code.

Pre-processing directives are not processed when they appear inside multi-line input elements. For
example, the program:

35

ECMA-334

class Hello

{

static void Main()

{
System.Console.WriteLine(@"hello,
#if Debug
world
#telse
Nebraska
#endif
")
}
}

results in the output:

hello,

#if Debug
world

#else
Nebraska

#endif

In peculiar cases, the set of pre-processing directives that is processed might depend on the
evaluation of the pp_expression. The example:
#if X
/*
#else

/* */ class Q { }
ttendif

always produces the same token stream (class Q { }), regardless of whether or not X is defined. If X
is defined, the only processed directives are #if and #endif, due to the multi-line comment. If X is
undefined, then three directives (#if, #else, #endif) are part of the directive set.

end example

6.5.6 Diagnostic directives

The diagnostic directives are used to generate explicitly error and warning messages that are reported in
the same way as other compile-time errors and warnings.

36

fragment PP_Diagnostic
'error' PP_Message?
| 'warning' PP_Message?
5
fragment PP_Message
: PP_Whitespace Input_Character*
5
Example: The example
#if Debug && Retail
#error A build can't be both debug and retail

#endif
class Test {...}

Chapter 6 Lexical structure

produces a compile-time error (“A build can’t be both debug and retail”) if the conditional
compilation symbols Debug and Retail are both defined. Note that a PP_Message can contain
arbitrary text; specifically, it need not contain well-formed tokens, as shown by the single quote in
the word can't.

end example

6.5.7 Region directives
The region directives are used to mark explicitly regions of source code.

fragment PP_Region
: PP_Start_Region
| PP_End_Region
5
fragment PP_Start_Region
'region' PP_Message?
5
fragment PP_End_Region
"endregion' PP_Message?
5
No semantic meaning is attached to a region; regions are intended for use by the programmer or by
automated tools to mark a section of source code. There must be one #endregion directive matching
every #region directive. The message specified in a #region or #endregion directive likewise has no

semantic meaning; it merely serves to identify the region. Matching #region and #endregion directives
may have different PP_Messages.

The lexical processing of a region:
#region
#endregion
corresponds exactly to the lexical processing of a conditional compilation directive of the form:
#if true
#endif
Note: This means that a region can include one or more #if/.../#endif, or be contained with a

conditional section within a #if/.../#endif; but a region cannot overlap with an just part of an
#if/../#endif, or start & end in different conditional sections. end note

6.5.8 Line directives

Line directives may be used to alter the line numbers and compilation unit names that are reported by the
compiler in output such as warnings and errors. These values are also used by caller-info attributes
(§21.5.5).

Note: Line directives are most commonly used in meta-programming tools that generate C# source
code from some other text input. end note

fragment PP_Line
'line' PP_Whitespace PP_Line_Indicator

37

ECMA-334

fragment PP_Line_Indicator
: Decimal_Digit+ PP_Whitespace PP_Compilation_Unit_Name
| Decimal Digit+
| DEFAULT
| "hidden'

.
B

fragment PP_Compilation_Unit_Name
'"' PP_Compilation_Unit_Name_Character+

3
fragment PP_Compilation_Unit_Name_Character
// Any Input_Character except "
: ~('\uegeD' | '\ueeeA' | *\uee85' | '\u2028' | '\u2029' | '#')
5
When no #1line directives are present, the compiler reports true line numbers and compilation unit
names in its output. When processing a #1ine directive that includes a Line_Indicator that is not default,

the compiler treats the line after the directive as having the given line number (and compilation unit
name, if specified).

A #line default directive undoes the effect of all preceding #1ine directives. The compiler reports true
line information for subsequent lines, precisely as if no #1ine directives had been processed.

A #line hidden directive has no effect on the compilation unit and line numbers reported in error
messages, or produced by use of CallerLineNumberAttribute (§21.5.5.2). It is intended to affect source-
level debugging tools so that, when debugging, all lines between a #1ine hidden directive and the
subsequent #1ine directive (that is not #1ine hidden) have no line number information, and are skipped
entirely when stepping through code.

Note: Although a Compilation_Unit_Name might contain text that looks like an escape sequence, such
text is not an escape sequence; in this context a ‘\’ character simply designates an ordinary
backslash character. end note
6.5.9 Pragma directives
The #pragma preprocessing directive is used to specify contextual information to a compiler.
Note: For example, a compiler might provide #pragma directives that
e Enable or disable particular warning messages when compiling subsequent code.
e Specify which optimizations to apply to subsequent code.
e Specify information to be used by a debugger.
end note

fragment PP_Pragma
"pragma’ PP_Pragma_Text?

)

fragment PP_Pragma_Text
PP_Whitespace Input_Character*

38

Chapter 6 Lexical structure

The Input_Characters in the PP_Pragma_Text are interpreted by the compiler in an implementation-
defined manner. The information supplied in a #pragma directive shall not change program semantics. A
#pragma directive shall only change compiler behavior that is outside the scope of this language

specification. If the compiler cannot interpret the Input_Characters, the compiler can produce a warning;
however, it shall not produce a compile-time error.

Note: PP_Pragma_Text can contain arbitrary text; specifically, it need not contain well-formed
tokens. end note

39

Chapter 7 Basic concepts

7. Basic concepts

7.1 Application startup

A program may be compiled either as a class library to be used as part of other applications, or as an
application that may be started directly. The mechanism for determining this mode of compilation is
implementation-specific and external to this specification.

A program compiled as an application shall contain at least one method qualifying as an entry point by
satisfying the following requirements:

e It shall have the name Main.
e Itshall be static.
e [t shall not be generic.

e Itshall be declared in a non-generic type. If the type declaring the method is a nested type, none of
its enclosing types may be generic.

e It shall not have the async modifier.

e The return type shall be void or int.

e Itshall not be a partial method (§14.6.9) without an implementation.

e The formal parameter list shall either be empty, or have a single value parameter of type string[].

If more than one method qualifying as an entry point is declared within a program, an external
mechanism may be used to specify which method is deemed to be the actual entry point for the
application. It is a compile-time error for a program to be compiled as an application without exactly one
entry point. A program compiled as a class library may contain methods that would qualify as application
entry points, but the resulting library has no entry point.

Ordinarily, the declared accessibility (§7.5.2) of a method is determined by the access modifiers (§14.3.6)
specified in its declaration, and similarly the declared accessibility of a type is determined by the access
modifiers specified in its declaration. In order for a given method of a given type to be callable, both the
type and the member shall be accessible. However, the application entry point is a special case.
Specifically, the execution environment can access the application’s entry point regardless of its declared
accessibility and regardless of the declared accessibility of its enclosing type declarations.

When an application is run, a new application domain is created. Several different instantiations of an
application may exist on the same machine at the same time, and each has its own application domain. An
application domain enables application isolation by acting as a container for application state. An
application domain acts as a container and boundary for the types defined in the application and the class
libraries it uses. Types loaded into one application domain are distinct from the same types loaded into
another application domain, and instances of objects are not directly shared between application
domains. For instance, each application domain has its own copy of static variables for these types, and a
static constructor for a type is run at most once per application domain. Implementations are free to
provide implementation-specific policy or mechanisms for the creation and destruction of application
domains.

41

ECMA-334

Application startup occurs when the execution environment calls the application’s entry point. If the
entry point declares a parameter, then during application startup, the implementation shall ensure that
the initial value of that parameter is a non-null reference to a string array. This array shall consist of non-
null references to strings, called application parameters, which are given implementation-defined values
by the host environment prior to application startup. The intent is to supply to the application
information determined prior to application startup from elsewhere in the hosted environment.

Note: On systems supporting a command line, application parameters correspond to what are
generally known as command-line arguments. end note

If the entry point’s return type is int rather than void, the return value from the method invocation by
the execution environment is used in application termination (§7.2).

Other than the situations listed above, entry point methods behave like those that are not entry points in
every respect. In particular, if the entry point is invoked at any other point during the application’s
lifetime, such as by regular method invocation, there is no special handling of the method: if there is a
parameter, it may have an initial value of null, or a non-null value referring to an array that contains null
references. Likewise, the return value of the entry point has no special significance other than in the
invocation from the execution environment.

7.2 Application termination
Application termination returns control to the execution environment.

If the return type of the application’s entry point method is int, the value returned serves as the
application’s termination status code. The purpose of this code is to allow communication of success or
failure to the execution environment.

If the return type of the entry point method is void, reaching the right brace (}) that terminates that
method, or executing a return statement that has no expression, results in a termination status code of .
If the entry point method terminates due to an exception (§20.4), the exit code is implementation-specific.
Additionally, the implementation may provide alternative APIs for specifying the exit code.

Whether or not finalizers (§14.13) are run as part of application termination is implementation-specific.

Note: The .NET Framework implementation makes every reasonable effort to call finalizers (§14.13)
for all of its objects that have not yet been garbage collected, unless such cleanup has been
suppressed (by a call to the library method GC.SuppressFinalize, for example). end note

7.3 Declarations

Declarations in a C# program define the constituent elements of the program. C# programs are organized
using namespaces. These are introduced using namespace declarations (§13), which can contain type
declarations and nested namespace declarations. Type declarations (§13.7) are used to define classes
(§14), structs (§15), interfaces (§17), enums (§18), and delegates (§19). The kinds of members permitted
in a type declaration depend on the form of the type declaration. For instance, class declarations can
contain declarations for constants (§14.4), fields (§14.5), methods (§14.6), properties (§14.7), events
(§14.8), indexers (§14.9), operators (§14.10), instance constructors (§14.11), static constructors (§14.12),
finalizers (§14.13), and nested types (§14.3.9).

A declaration defines a name in the declaration space to which the declaration belongs. It is a compile-
time error to have two or more declarations that introduce members with the same name in a declaration
space, except in the following cases:

42

Chapter 7 Basic concepts

Two or more namespace declarations with the same name are allowed in the same declaration
space. Such namespace declarations are aggregated to form a single logical namespace and share a
single declaration space.

Declarations in separate programs but in the same namespace declaration space are allowed to
share the same name.

Note: However, these declarations could introduce ambiguities if included in the same application.
end note

Two or more methods with the same name but distinct signatures are allowed in the same
declaration space (§7.6).

Two or more type declarations with the same name but distinct numbers of type parameters are
allowed in the same declaration space (§7.8.2).

Two or more type declarations with the partial modifier in the same declaration space may share
the same name, same number of type parameters and same classification (class, struct or interface).
In this case, the type declarations contribute to a single type and are themselves aggregated to form
a single declaration space (§14.2.7).

A namespace declaration and a type declaration in the same declaration space can share the same
name as long as the type declaration has at least one type parameter (§7.8.2).

There are several different types of declaration spaces, as described in the following.

Within all compilation units of a program, namespace_member_declarations with no enclosing
namespace_declaration are members of a single combined declaration space called the global
declaration space.

Within all compilation units of a program, namespace_member_declarations within
namespace_declarations that have the same fully qualified namespace name are members of a single
combined declaration space.

Each compilation_unit and namespace_body has an alias declaration space. Each
extern_alias_directive and using_alias_directive of the compilation_unit or namespace_body
contributes a member to the alias declaration space (§13.5.2).

Each non-partial class, struct, or interface declaration creates a new declaration space. Each partial
class, struct, or interface declaration contributes to a declaration space shared by all matching parts
in the same program (§15.2.3).Names are introduced into this declaration space through
class_member_declarations, struct_member_declarations, interface_member_declarations, or
type_parameters. Except for overloaded instance constructor declarations and static constructor
declarations, a class or struct cannot contain a member declaration with the same name as the class
or struct. A class, struct, or interface permits the declaration of overloaded methods and indexers.
Furthermore, a class or struct permits the declaration of overloaded instance constructors and
operators. For example, a class, struct, or interface may contain multiple method declarations with
the same name, provided these method declarations differ in their signature (§7.6). Note that base
classes do not contribute to the declaration space of a class, and base interfaces do not contribute to
the declaration space of an interface. Thus, a derived class or interface is allowed to declare a
member with the same name as an inherited member. Such a member is said to hide the inherited
member.

Each delegate declaration creates a new declaration space. Names are introduced into this
declaration space through formal parameters (fixed_parameters and parameter_arrays) and
type_parameters.

43

ECMA-334

Each enumeration declaration creates a new declaration space. Names are introduced into this
declaration space through enum_member_declarations.

Each method declaration, property declaration, property accessor declaration, indexer declaration,
indexer accessor declaration, operator declaration, instance constructor declaration and
anonymous function creates a new declaration space called a local variable declaration space.
Names are introduced into this declaration space through formal parameters (fixed_parameters and
parameter_arrays) and type_parameters. The set accessor for a property or an indexer introduces
the valuename as a formal parameter. The body of the function member or anonymous function, if
any, is considered to be nested within the local variable declaration space. It is an error for a local
variable declaration space and a nested local variable declaration space to contain elements with
the same name. Thus, within a nested declaration space it is not possible to declare a local variable
or constant with the same name as a local variable or constant in an enclosing declaration space. It
is possible for two declaration spaces to contain elements with the same name as long as neither
declaration space contains the other.

Each block or switch_block, as well as a for, foreach, and using statement, creates a local variable
declaration space for local variables and local constants. Names are introduced into this declaration
space through local_variable_declarations and local_constant_declarations. Note that blocks that
occur as or within the body of a function member or anonymous function are nested within the local
variable declaration space declared by those functions for their parameters. Thus, it is an error to
have, for example, a method with a local variable and a parameter of the same name.

Each block or switch_block creates a separate declaration space for labels. Names are introduced
into this declaration space through labeled_statements, and the names are referenced through
goto_statements. The label declaration space of a block includes any nested blocks. Thus, within a
nested block it is not possible to declare a label with the same name as a label in an enclosing block.

The textual order in which names are declared is generally of no significance. In particular, textual order
is not significant for the declaration and use of namespaces, constants, methods, properties, events,
indexers, operators, instance constructors, finalizers, static constructors, and types. Declaration order is
significant in the following ways:

44

Declaration order for field declarations determines the order in which their initializers (if any) are
executed (§14.5.6.2, §14.5.6.3).

Local variables shall be defined before they are used (§7.7).

Declaration order for enum member declarations (§18.4) is significant when constant_expression
values are omitted.

Example: The declaration space of a namespace is “open ended”, and two namespace declarations
with the same fully qualified name contribute to the same declaration space. For example

namespace Megacorp.Data

{
class Customer
{
}

}

namespace Megacorp.Data

{

class Order

Chapter 7 Basic concepts

}

The two namespace declarations above contribute to the same declaration space, in this case
declaring two classes with the fully qualified names Megacorp.Data.Customer and
Megacorp.Data.Order. Because the two declarations contribute to the same declaration space, it
would have caused a compile-time error if each contained a declaration of a class with the same
name.

end example

Note: As specified above, the declaration space of a block includes any nested blocks. Thus, in the
following example, the F and G methods result in a compile-time error because the name i is
declared in the outer block and cannot be redeclared in the inner block. However, the H and

I methods are valid since the two i’s are declared in separate non-nested blocks.

class A
void F()
{
int i = 0;
if (true)
{
int i = 1;
}
}
void G()
{
if (true)
{
int 1 = 0;
}
int i = 1;
}
void H()
{
if (true)
{
int 1 = 0;
}
if (true)
{
int i = 1;
}
}
void I()
{
for (int i = 0; i < 10; i++)
{
H(O);
}

45

ECMA-334

for (int i = 0; i < 10; i++)

{
}

HO)

}

end note

7.4 Members

7.4.1 General
Namespaces and types have members.

Note: The members of an entity are generally available through the use of a qualified name that

starts with a reference to the entity, followed by a “.” token, followed by the name of the member.
end note

Members of a type are either declared in the type declaration or inherited from the base class of the type.
When a type inherits from a base class, all members of the base class, except instance constructors,
finalizers, and static constructors become members of the derived type. The declared accessibility of a
base class member does not control whether the member is inherited—inheritance extends to any
member that isn’t an instance constructor, static constructor, or finalizer.

Note: However, an inherited member might not be accessible in a derived type, for example because
of its declared accessibility (§7.5.2). end note

7.4.2 Namespace members

Namespaces and types that have no enclosing namespace are members of the global namespace. This
corresponds directly to the names declared in the global declaration space.

Namespaces and types declared within a namespace are members of that namespace. This corresponds
directly to the names declared in the declaration space of the namespace.

Namespaces have no access restrictions. It is not possible to declare private, protected, or internal
namespaces, and namespace names are always publicly accessible.

7.4.3 Struct members

The members of a struct are the members declared in the struct and the members inherited from the
struct’s direct base class System.ValueType and the indirect base class object.

The members of a simple type correspond directly to the members of the struct type aliased by the simple
type (§8.3.5).
7.4.4 Enumeration members

The members of an enumeration are the constants declared in the enumeration and the members
inherited from the enumeration’s direct base class System. Enum and the indirect base classes
System.ValueType and object.

46

Chapter 7 Basic concepts

7.4.5 Class members

The members of a class are the members declared in the class and the members inherited from the base
class (except for class object which has no base class). The members inherited from the base class
include the constants, fields, methods, properties, events, indexers, operators, and types of the base class,
but not the instance constructors, finalizers, and static constructors of the base class. Base class members
are inherited without regard to their accessibility.

A class declaration may contain declarations of constants, fields, methods, properties, events, indexers,
operators, instance constructors, finalizers, static constructors, and types.

The members of object (§8.2.3) and string (§8.2.5) correspond directly to the members of the class
types they alias.

7.4.6 Interface members

The members of an interface are the members declared in the interface and in all base interfaces of the
interface.

Note: The members in class object are not, strictly speaking, members of any interface (§17.4).
However, the members in class object are available via member lookup in any interface type
(§11.5). end note

7.4.7 Array members

The members of an array are the members inherited from class System.Array.

7.4.8 Delegate members

A delegate inherits members from class System.Delegate. Additionally, it contains a method named
Invoke with the same return type and formal parameter list specified in its declaration (§19.2). An
invocation of this method shall behave identically to a delegate invocation (§19.6) on the same delegate
instance.

An implementation may provide additional members, either through inheritance or directly in the
delegate itself.

7.5 Member access

7.5.1 General

Declarations of members allow control over member access. The accessibility of a member is established
by the declared accessibility (§7.5.2) of the member combined with the accessibility of the immediately
containing type, if any.

When access to a particular member is allowed, the member is said to be accessible. Conversely, when
access to a particular member is disallowed, the member is said to be inaccessible. Access to a member is
permitted when the textual location in which the access takes place is included in the accessibility domain
(§7.5.3) of the member.

7.5.2 Declared accessibility

The declared accessibility of a member can be one of the following:

e Public, which is selected by including a public modifier in the member declaration. The intuitive
meaning of public is “access not limited”.

47

ECMA-334

e Protected, which is selected by including a protected modifier in the member declaration. The
intuitive meaning of protected is “access limited to the containing class or types derived from the
containing class”.

e Internal, which is selected by including an internal modifier in the member declaration. The
intuitive meaning of internal is “access limited to this assembly”.

e Protected internal, which is selected by including both a protected and an internal modifier in the
member declaration. The intuitive meaning of protected internal is “accessible within this
assembly as well as types derived from the containing class”.

e Private, which is selected by including a private modifier in the member declaration. The intuitive
meaning of private is “access limited to the containing type”.

Depending on the context in which a member declaration takes place, only certain types of declared
accessibility are permitted. Furthermore, when a member declaration does not include any access
modifiers, the context in which the declaration takes place determines the default declared accessibility.

e Namespaces implicitly have public declared accessibility. No access modifiers are allowed on
namespace declarations.

e Types declared directly in compilation units or namespaces (as opposed to within other types) can
have public or internal declared accessibility and default to internal declared accessibility.

e (Class members can have any of the five kinds of declared accessibility and default to private
declared accessibility.
Note: A type declared as a member of a class can have any of the five kinds of declared accessibility,
whereas a type declared as a member of a namespace can have only public or internal declared
accessibility. end note

e Struct members can have public, internal, or private declared accessibility and default to
private declared accessibility because structs are implicitly sealed. Struct members introduced in a
struct (that is, not inherited by that struct) cannot have protected or protected internal
declared accessibility.

Note: A type declared as a member of a struct can have public, internal, or private declared
accessibility, whereas a type declared as a member of a namespace can have only public or
internal declared accessibility. end note

e Interface members implicitly have public declared accessibility. No access modifiers are allowed on
interface member declarations.

e Enumeration members implicitly have public declared accessibility. No access modifiers are
allowed on enumeration member declarations.

7.5.3 Accessibility domains

The accessibility domain of a member consists of the (possibly disjoint) sections of program text in
which access to the member is permitted. For purposes of defining the accessibility domain of a member,
a member is said to be top-level if it is not declared within a type, and a member is said to be nested if it is
declared within another type. Furthermore, the program text of a program is defined as all text contained
in all compilation units of the program, and the program text of a type is defined as all text contained in
the type_declarations of that type (including, possibly, types that are nested within the type).

The accessibility domain of a predefined type (such as object, int, or double) is unlimited.

48

Chapter 7 Basic concepts

The accessibility domain of a top-level unbound type T (§8.4.4) that is declared in a program P is defined
as follows:

If the declared accessibility of T is public, the accessibility domain of T is the program text of P and
any program that references P.

If the declared accessibility of T is internal, the accessibility domain of T is the program text of P.

Note: From these definitions, it follows that the accessibility domain of a top-level unbound type is
always at least the program text of the program in which that type is declared. end note

The accessibility domain for a constructed type T<A;, ..., Ac>isthe intersection of the accessibility
domain of the unbound generic type T and the accessibility domains of the type arguments A;, ..., A

The accessibility domain of a nested member M declared in a type T within a program P, is defined as
follows (noting that M itself might possibly be a type):

If the declared accessibility of M is public, the accessibility domain of M is the accessibility domain
of T.

If the declared accessibility of M is protected internal,let D be the union of the program text of P
and the program text of any type derived from T, which is declared outside P. The accessibility
domain of M is the intersection of the accessibility domain of T with D.

If the declared accessibility of M is protected, let D be the union of the program text of Tand the
program text of any type derived from T. The accessibility domain of M is the intersection of the
accessibility domain of T with D.

If the declared accessibility of M is internal, the accessibility domain of M is the intersection of the
accessibility domain of T with the program text of P.

If the declared accessibility of M is private, the accessibility domain of M is the program text of T.

Note: From these definitions it follows that the accessibility domain of a nested member is always at
least the program text of the type in which the member is declared. Furthermore, it follows that the
accessibility domain of a member is never more inclusive than the accessibility domain of the type
in which the member is declared. end note

Note: In intuitive terms, when a type or member M is accessed, the following steps are evaluated to
ensure that the access is permitted:

e First, if Mis declared within a type (as opposed to a compilation unit or a namespace), a
compile-time error occurs if that type is not accessible.

e Then,ifMis public, the access is permitted.

e Otherwise, if Mis protected internal, the access is permitted if it occurs within the program
in which Mis declared, or if it occurs within a class derived from the class in which M is
declared and takes place through the derived class type (§7.5.4).

e Otherwise, if Mis protected, the access is permitted if it occurs within the class in which Mis
declared, or if it occurs within a class derived from the class in which M is declared and takes
place through the derived class type (§7.5.4).

e Otherwise, if Mis internal, the access is permitted if it occurs within the program in which M is
declared.

e Otherwise, if Mis private, the access is permitted if it occurs within the type in which M is
declared.

49

ECMA-334

e Otherwise, the type or member is inaccessible, and a compile-time error occurs. end note

Example: In the following code

public class A

{
public static int X;

internal static int Y;
private static int Z;

}

internal class B

{
public static int X;

internal static int Y;
private static int Z;

public class C

{
public static int X;

internal static int Y;
private static int Z;

}

private class D

{
public static int X;

internal static int Y;
private static int Z;

}

the classes and members have the following accessibility domains:
e The accessibility domain of A and A. X is unlimited.

e The accessibility domain of A.Y, B, B.X,B.Y,B.C,B.C.X,and B.C.Y is the program text of the
containing program.

e The accessibility domain of A.Z is the program text of A.

o The accessibility domain of B.Z and B.D is the program text of B, including the program text of
B.CandB.D.

e The accessibility domain of B.C.Z is the program text of B. C.

o The accessibility domain of B.D.X and B.D.Y is the program text of B, including the program
textof B.Cand B.D.

o The accessibility domain of B.D.Z is the program text of B.D. As the example illustrates, the
accessibility domain of a member is never larger than that of a containing type. For example,
even though all X members have public declared accessibility, all but A. X have accessibility
domains that are constrained by a containing type.

end example

50

Chapter 7 Basic concepts

As described in §7.4, all members of a base class, except for instance constructors, finalizers, and static
constructors, are inherited by derived types. This includes even private members of a base class.
However, the accessibility domain of a private member includes only the program text of the type in
which the member is declared.

Example: In the following code

class A

{

int x;

static void F(B b)

{
b.x = 1; // Ok
}
}
class B : A
{
static void F(B b)
{
b.x = 1; // Error, x not accessible
}
}

the B class inherits the private member x from the A class. Because the member is private, it is only
accessible within the class_body of A. Thus, the access to b. x succeeds in the A.F method, but fails in
the B. F method.

end example

7.5.4 Protected access

When a protected instance member is accessed outside the program text of the class in which itis
declared, and when a protected internal instance member is accessed outside the program text of the
program in which it is declared, the access shall take place within a class declaration that derives from the
class in which it is declared. Furthermore, the access is required to take place through an instance of that
derived class type or a class type constructed from it. This restriction prevents one derived class from
accessing protected members of other derived classes, even when the members are inherited from the
same base class.

Let B be a base class that declares a protected instance member M, and let D be a class that derives from B.
Within the class_body of D, access to M can take one of the following forms:

e Anunqualified type_name or primary_expression of the form M.

e A primary_expression of the form E.M, provided the type of E is T or a class derived from T, where T is
the class D, or a class type constructed from D.

e A primary_expression of the form base.M.
e A primary_expression of the form base[argument_list].

In addition to these forms of access, a derived class can access a protected instance constructor of a base
class in a constructor_initializer (§14.11.2).

Example: In the following code

51

ECMA-334

public class A

{
protected int x;
static void F(A a, B b)
{
a.x =1; // Ok
b.x =1; // Ok
}
}
public class B : A
{
static void F(A a, B b)
{
a.x = 1; // Error, must access through instance of B
b.x = 1; // 0k
}
}

within A, it is possible to access x through instances of both A and B, since in either case the access
takes place through an instance of A or a class derived from A. However, within B, it is not possible to
access x through an instance of A, since A does not derive from B.

end example
Example:
class C<T>
{
protected T x;
}
class D<T> : C<T>
{
static void F()
{
D<T> dt = new D<T>();
D<int> di = new D<int>();
D<string> ds = new D<string>();
dt.x = default(T);
di.x = 123;
ds.x = "test";
}
}

Here, the three assignments to x are permitted because they all take place through instances of class
types constructed from the generic type.

end example

Note: The accessibility domain (§7.5.3) of a protected member declared in a generic class includes
the program text of all class declarations derived from any type constructed from that generic class.
In the example:

class C<T>

{

protected static T x;

52

Chapter 7 Basic concepts

}

class D : C«string>

{
static void Main()
{

C<int>.x = 5;

}

}

the reference to protected member C<int>.x in D is valid even though the class D derives from
C<string>. end note

7.5.5 Accessibility constraints

Several constructs in the C# language require a type to be at least as accessible as a member or another
type. A type T is said to be at least as accessible as a member or type M if the accessibility domain of T is a
superset of the accessibility domain of M. In other words, T is at least as accessible as Mif T is accessible in
all contexts in which M is accessible.

The following accessibility constraints exist:

The direct base class of a class type shall be at least as accessible as the class type itself.

The explicit base interfaces of an interface type shall be at least as accessible as the interface type
itself.

The return type and parameter types of a delegate type shall be at least as accessible as the delegate
type itself.

The type of a constant shall be at least as accessible as the constant itself.

The type of a field shall be at least as accessible as the field itself.

The return type and parameter types of a method shall be at least as accessible as the method itself.
The type of a property shall be at least as accessible as the property itself.

The type of an event shall be at least as accessible as the event itself.

The type and parameter types of an indexer shall be at least as accessible as the indexer itself.

The return type and parameter types of an operator shall be at least as accessible as the operator
itself.

The parameter types of an instance constructor shall be at least as accessible as the instance
constructor itself.

An interface or class type constraint on a type parameter shall be at least as accessible as the
member which declares the constraint.

Example: In the following code

class A {...}
public class B: A {...}

the B class results in a compile-time error because A is not at least as accessible as B.
end example

Example: Likewise, in the following code

53

ECMA-334

class A {...}

public class B

{
AFQO {...}
internal A G() {...}
public A H() {...}

}

the H method in B results in a compile-time error because the return type A is not at least as
accessible as the method.

end example

7.6 Signatures and overloading
Methods, instance constructors, indexers, and operators are characterized by their signatures:

e The signature of a method consists of the name of the method, the number of type parameters, and
the type and parameter-passing mode (value, reference, or output) of each of its formal parameters,
considered in the order left to right. For these purposes, any type parameter of the method that
occurs in the type of a formal parameter is identified not by its name, but by its ordinal position in
the type parameter list of the method. The signature of a method specifically does not include the
return type, parameter names, type parameter names, type parameter constraints, the params or
this parameter modifiers, nor whether parameters are required or optional.

o The signature of an instance constructor consists of the type and parameter-passing mode (value,
reference, or output) of each of its formal parameters, considered in the order left to right. The
signature of an instance constructor specifically does not include the params modifier that may be
specified for the right-most parameter.

o The signature of an indexer consists of the type of each of its formal parameters, considered in the
order left to right. The signature of an indexer specifically does not include the element type, nor
does it include the params modifier that may be specified for the right-most parameter.

e The signature of an operator consists of the name of the operator and the type of each of its formal
parameters, considered in the order left to right. The signature of an operator specifically does not
include the result type.

e The signature of a conversion operator consists of the source type and the target type. The implicit
or explicit classification of a conversion operator is not part of the signature.

e Two signatures of the same member kind (method, instance constructor, indexer or operator) are
considered to be the same signatures if they have the same name, number of type parameters,
number of parameters, and parameter-passing modes, and an identity conversion exists between
the types of their corresponding parameters (§10.2.2).

Signatures are the enabling mechanism for overloading of members in classes, structs, and interfaces:

e Overloading of methods permits a class, struct, or interface to declare multiple methods with the
same name, provided their signatures are unique within that class, struct, or interface.

e Overloading of instance constructors permits a class or struct to declare multiple instance
constructors, provided their signatures are unique within that class or struct.

54

Chapter 7 Basic concepts

e Overloading of indexers permits a class, struct, or interface to declare multiple indexers, provided
their signatures are unique within that class, struct, or interface.

e Overloading of operators permits a class or struct to declare multiple operators with the same
name, provided their signatures are unique within that class or struct.

Although out and ref parameter modifiers are considered part of a signature, members declared in a
single type cannot differ in signature solely by ref and out. A compile-time error occurs if two members
are declared in the same type with signatures that would be the same if all parameters in both methods
with out modifiers were changed to ref modifiers. For other purposes of signature matching (e.g., hiding
or overriding), ref and out are considered part of the signature and do not match each other.

Note: This restriction is to allow C# programs to be easily translated to run on the Common
Language Infrastructure (CLI), which does not provide a way to define methods that differ solely in
ref and out. end note

The types object and dynamic are not distinguished when comparing signatures. Therefore members
declared in a single type whose signatures differ only by replacing object with dynamic are not allowed.

Example: The following example shows a set of overloaded method declarations along with their
signatures.

interface ITest

{
void
void
void
void
void
void
void

FO)s

F(int x);

F(ref int x);
F(out int x);
F(object o0);
F(dynamic d);
F(int x, int y);

int F(string s);
int F(int x);

void
void
void
void
void
void

}

F(string[] a);
F(params string[] a);
F<S>(S s);

F<T>(T t);

F<S,T>(S s);

F<T,S>(S s);

FO)

F(int)

F(ref int)

F(out int) error
F(object)

error.

F(int, int)
F(string)

F(int) error
F(string[])
F(string[]) error
F<0>(0)

F<@>(0) error
F<0,1>(0)
F<0,1>(1) ok

Note that any ref and out parameter modifiers (§14.6.2) are part of a signature. Thus, F(int),
F(ref int),and F(out int) are all unique signatures. However, F(ref int) and F(out int)
cannot be declared within the same interface because their signatures differ solely by ref and out.
Also, note that the return type and the params modifier are not part of a signature, so it is not
possible to overload solely based on return type or on the inclusion or exclusion of the params
modifier. As such, the declarations of the methods F(int) and F(params string[]) identified

above, result in a compile-time error.

end example

55

ECMA-334

7.7 Scopes

7.7.1 General

The scope of a name is the region of program text within which it is possible to refer to the entity declared
by the name without qualification of the name. Scopes can be nested, and an inner scope may redeclare
the meaning of a name from an outer scope. (This does not, however, remove the restriction imposed by
§7.3 that within a nested block it is not possible to declare a local variable or local constant with the same
name as a local variable or local constant in an enclosing block.) The name from the outer scope is then
said to be hidden in the region of program text covered by the inner scope, and access to the outer name
is only possible by qualifying the name.

o The scope of a namespace member declared by a namespace_member_declaration (§13.6) with no
enclosing namespace_declaration is the entire program text.

e The scope of a namespace member declared by a namespace_member_declaration within a
namespace_declaration whose fully qualified name is N, is the namespace_body of every
namespace_declaration whose fully qualified name is N or starts with N, followed by a period.

e The scope of a name defined by an extern_alias_directive (§13.4) extends over the using_directives,
global_attributes and namespace_member_declarations of its immediately containing
compilation_unit or namespace_body. An extern_alias_directive does not contribute any new
members to the underlying declaration space. In other words, an extern_alias_directive is not
transitive, but, rather, affects only the compilation_unit or namespace_body in which it occurs.

e The scope of a name defined or imported by a using_directive (§13.5) extends over the
global_attributes and namespace_member_declarations of the compilation_unit or namespace_body in
which the using_directive occurs. A using_directive may make zero or more namespace or type
names available within a particular compilation_unit or namespace_body, but does not contribute
any new members to the underlying declaration space. In other words, a using_directive is not
transitive but rather affects only the compilation_unit or namespace_body in which it occurs.

o The scope of a type parameter declared by a type_parameter_list on a class_declaration (§14.2) is the
class_base, type_parameter._constraints_clauses, and class_body of that class_declaration.

Note: Unlike members of a class, this scope does not extend to derived classes. end note

e The scope of a type parameter declared by a type_parameter._list on a struct_declaration (§15.2) is
the struct_interfaces, type_parameter_constraints_clauses, and struct_body of that struct_declaration.

e The scope of a type parameter declared by a type_parameter._list on an interface_declaration (§17.2)
is the interface_base, type_parameter_constraints_clauses, and interface_body of that
interface_declaration.

e The scope of a type parameter declared by a type_parameter._list on a delegate_declaration (§19.2) is
the return_type, formal_parameter_list, and type_parameter_constraints_clauses of that
delegate_declaration.

e The scope of a type parameter declared by a type_parameter_list on a method_declaration (§14.6.1)
is the method_declaration.

o The scope of a member declared by a class._ member_declaration (§14.3.1) is the class_body in which
the declaration occurs. In addition, the scope of a class member extends to the class_body of those
derived classes that are included in the accessibility domain (§7.5.3) of the member.

56

Chapter 7 Basic concepts

o The scope of a member declared by a struct_member_declaration (§15.3) is the struct_body in which
the declaration occurs.

o The scope of a member declared by an enum_member_declaration (§18.4) is the enum_body in which
the declaration occurs.

o The scope of a parameter declared in a method_declaration (§14.6) is the method_body of that
method_declaration.

e The scope of a parameter declared in an indexer_declaration (§14.9) is the accessor_declarations of
that indexer_declaration.

e The scope of a parameter declared in an operator_declaration (§14.10) is the block of that
operator_declaration.

e The scope of a parameter declared in a constructor_declaration (§14.11) is the constructor_initializer
and block of that constructor_declaration.

e The scope of a parameter declared in a lambda_expression (§11.16) is the lambda_expression_body of
that lambda_expression.

e The scope of a parameter declared in an anonymous_method_expression (§11.16) is the block of that
anonymous_method_expression.

e The scope of alabel declared in a labeled_statement (§12.5) is the block in which the declaration
occurs.

e The scope of alocal variable declared in a local_variable_declaration (§12.6.2) is the block in which
the declaration occurs.

e The scope of alocal variable declared in a switch_block of a switch statement (§12.8.3) is the
switch_block.

e The scope of alocal variable declared in a for_initializer of a for statement (§12.9.4) is the
for_initializer, the for_condition, the for_iterator, and the contained statement of the for statement.

o The scope of alocal constant declared in a local_constant_declaration (§12.6.3) is the block in which
the declaration occurs. It is a compile-time error to refer to a local constant in a textual position that
precedes its constant_declarator.

o The scope of a variable declared as part of a foreach_statement, using_statement, lock_statement or
query_expression is determined by the expansion of the given construct.

Within the scope of a namespace, class, struct, or enumeration member it is possible to refer to the
member in a textual position that precedes the declaration of the member.

Example:
class A
{
void F()
{
i=1;
}
int i = 9;
}

Here, it is valid for F to refer to i before it is declared.

57

ECMA-334

end example

Within the scope of a local variable, it is a compile-time error to refer to the local variable in a textual
position that precedes the local_variable_declarator of the local variable.

Example:

class A

{

int i = 9;

void F()
{

i=1; // Error, use precedes declaration
int i;
i=2;

void G()

int j = (3 = 1); // Valid

void H()

int a

1, b = ++a; // valid

}

In the F method above, the first assignment to i specifically does not refer to the field declared in
the outer scope. Rather, it refers to the local variable and it results in a compile-time error because
it textually precedes the declaration of the variable. In the G method, the use of j in the initializer for
the declaration of j is valid because the use does not precede the local_variable_declarator. In the

H method, a subsequent local_variable_declarator correctly refers to a local variable declared in an
earlier local_variable_declarator within the same local_variable_declaration.

end example

Note: The scoping rules for local variables and local constants are designed to guarantee that the
meaning of a name used in an expression context is always the same within a block. If the scope of a
local variable were to extend only from its declaration to the end of the block, then in the example
above, the first assignment would assign to the instance variable and the second assignment would
assign to the local variable, possibly leading to compile-time errors if the statements of the block
were later to be rearranged.)

The meaning of a name within a block may differ based on the context in which the name is used. In
the example

using System;
class A {}

class Test

{

static void Main()

{
string A = "hello, world";

58

Chapter 7 Basic concepts

string s = A; // expression context
Type t = typeof(A); // type context
Console.WriteLine(s); // writes "hello, world"
Console.WriteLine(t); // writes "A"

}

the name A is used in an expression context to refer to the local variable A and in a type context to
refer to the class A. end note

7.7.2 Name hiding

7.7.2.1 General

The scope of an entity typically encompasses more program text than the declaration space of the entity.
In particular, the scope of an entity may include declarations that introduce new declaration spaces
containing entities of the same name. Such declarations cause the original entity to become hidden.
Conversely, an entity is said to be visible when it is not hidden.

Name hiding occurs when scopes overlap through nesting and when scopes overlap through inheritance.
The characteristics of the two types of hiding are described in the following subclauses.
7.7.2.2 Hiding through nesting

Name hiding through nesting can occur as a result of nesting namespaces or types within namespaces, as
a result of nesting types within classes or structs, and as a result of parameter, local variable, and local
constant declarations.

Example: In the following code

class A

{
int i = 0;
void F()
{

}

void G()

int i = 1;

}

within the F method, the instance variable i is hidden by the local variable i, but within the
G method, i still refers to the instance variable.

end example

When a name in an inner scope hides a name in an outer scope, it hides all overloaded occurrences of that
name.

Example: In the following code

class Outer

{
static void F(int i) {}

static void F(string s) {}

59

ECMA-334

class Inner

{ static void F(long 1) {}
void G()
{
F(1); // Invokes Outer.Inner.F
F("Hello"); // Error
}
}

}

the call F(1) invokes the F declared in Inner because all outer occurrences of F are hidden by the
inner declaration. For the same reason, the call F("Hello") results in a compile-time error.

end example

7.7.2.3 Hiding through inheritance

Name hiding through inheritance occurs when classes or structs redeclare names that were inherited
from base classes. This type of name hiding takes one of the following forms:

A constant, field, property, event, or type introduced in a class or struct hides all base class members
with the same name.

A method introduced in a class or struct hides all non-method base class members with the same
name, and all base class methods with the same signature (§7.6).

An indexer introduced in a class or struct hides all base class indexers with the same signature

(§7.6) .

The rules governing operator declarations (§14.10) make it impossible for a derived class to declare an
operator with the same signature as an operator in a base class. Thus, operators never hide one another.

Contrary to hiding a name from an outer scope, hiding a visible name from an inherited scope causes a
warning to be reported.

Example: In the following code

class Base

{
public void F() {}
}
class Derived : Base
{
public void F() {} // Warning, hiding an inherited name
}

the declaration of F in Derived causes a warning to be reported. Hiding an inherited name is
specifically not an error, since that would preclude separate evolution of base classes. For example,
the above situation might have come about because a later version of Base introduced an F method
that wasn’t present in an earlier version of the class.

end example

The warning caused by hiding an inherited name can be eliminated through use of the new modifier:

60

Example:

Chapter 7 Basic concepts

class Base

{
public void F() {}
}
class Derived : Base
{
public new void F() {}
}

The new modifier indicates that the F in Derived is “new”, and that it is indeed intended to hide the
inherited member.

end example

A declaration of a new member hides an inherited member only within the scope of the new member.

Example:
class Base
{
public static void F() {}
¥
class Derived : Base
{
private new static void F() {} // Hides Base.F in Derived only
¥
class MoreDerived : Derived
{
static void G()
{
FO); // Invokes Base.F
}
}

In the example above, the declaration of F in Derived hides the F that was inherited from Base, but
since the new F in Derived has private access, its scope does not extend to MoreDerived. Thus, the
call F() in MoreDerived.G is valid and will invoke Base.F.

end example

7.8 Namespace and type names

7.8.1 General
Several contexts in a C# program require a namespace_name or a type_name to be specified.

namespace_name
: namespace_or_type_name

)

type_name
namespace_or_type_name

61

ECMA-334

namespace_or_type_name
: identifier type_argument_list?
| namespace_or_type name '.' identifier type_argument_list?
| qualified_alias_member

B
A namespace_name is a namespace_or._type_name that refers to a namespace.

Following resolution as described below, the namespace_or_type_name of a namespace_name shall refer to
a namespace, or otherwise a compile-time error occurs. No type arguments (§8.4.2) can be presentin a
namespace_name (only types can have type arguments).

A type_name is a namespace_or_type_name that refers to a type. Following resolution as described below,
the namespace_or_type_name of a type_name shall refer to a type, or otherwise a compile-time error
occurs.

If the namespace_or_type_name is a qualified_alias_member its meaning is as described in §13.8.1.
Otherwise, a namespace_or_type_name has one of four forms:

o T
o T<A;, ..., Ao
e N.I
o N.IKA;, ..., A>
where I is a single identifier, N is a namespace_or_type_name and <A;, ..., As>isan optional

type_argument_list. When no type_argument_list is specified, consider x to be zero.

The meaning of a namespace_or_type_name is determined as follows:
o I[fthe namespace_or_type_name is a qualified_alias_member, the meaning is as specified in §13.8.1.
e Otherwise, if the namespace_or_type_name is of the form I or of the form I<A;, ..., Ao:

o If xis zero and the namespace_or_type_name appears within a generic method declaration
(§14.6) but outside the attributes of its method-header, and if that declaration includes a type
parameter (§14.2.3) with name I, then the namespace_or_type_name refers to that type
parameter.

o Otherwise, if the namespace_or_type_name appears within a type declaration, then for each
instance type T (§14.3.2), starting with the instance type of that type declaration and continuing
with the instance type of each enclosing class or struct declaration (if any):

e Ifxiszero and the declaration of T includes a type parameter with name I, then the
namespace_or_type_name refers to that type parameter.

e Otherwise, if the namespace_or_type_name appears within the body of the type declaration,
and T or any of its base types contain a nested accessible type having name I and x type
parameters, then the namespace_or_type_name refers to that type constructed with the given
type arguments. If there is more than one such type, the type declared within the more
derived type is selected.

Note: Non-type members (constants, fields, methods, properties, indexers, operators,
instance constructors, finalizers, and static constructors) and type members with a different
number of type parameters are ignored when determining the meaning of the
namespace_or_type_name. end note

62

Chapter 7 Basic concepts

o Otherwise, for each namespace N, starting with the namespace in which the
namespace_or_type_name occurs, continuing with each enclosing namespace (if any), and ending
with the global namespace, the following steps are evaluated until an entity is located:

e Ifxiszeroand I isthe name of a namespace in N, then:

o Ifthe location where the namespace_or_type_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with a namespace or type, then the
namespace_or_type_name is ambiguous and a compile-time error occurs.

o Otherwise, the namespace_or_type_name refers to the namespace named I in N.

e Otherwise, if N contains an accessible type having name I and x type parameters, then:

o Ifxiszero and the location where the namespace_or_type_name occurs is enclosed by a
namespace declaration for N and the namespace declaration contains an
extern_alias_directive or using_alias_directive that associates the name I with a
namespace or type, then the namespace_or_type_name is ambiguous and a compile-time
error occurs.

o Otherwise, the namespace_or_type_name refers to the type constructed with the given
type arguments.

e Otherwise, if the location where the namespace_or_type_name occurs is enclosed by a

namespace declaration for N:

o Ifxiszero and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with an imported namespace or type,
then the namespace_or_type_name refers to that namespace or type.

o Otherwise, if the namespaces imported by the using_namespace_directives of the
namespace declaration contain exactly one type having name I and x type parameters,
then the namespace_or_type_name refers to that type constructed with the given type
arguments.

o Otherwise, if the namespaces imported by the using_namespace_directives of the
namespace declaration contain more than one type having name I and x type
parameters, then the namespace_or_type_name is ambiguous and an error occurs.

o Otherwise, the namespace_or_type_name is undefined and a compile-time error occurs.

Otherwise, the namespace_or_type_name is of the form N.I or of the form N.I<A;, ..., Ao>.Nis first

resolved as a namespace_or_type_name. If the resolution of N is not successful, a compile-time error

occurs. Otherwise, N.I or N.I<A;, ..., Ac> isresolved as follows:

o Ifxis zero and N refers to a namespace and N contains a nested namespace with name I, then the
namespace_or_type_name refers to that nested namespace.

o Otherwise, if N refers to a namespace and N contains an accessible type having name I and x type
parameters, then the namespace_or_type_name refers to that type constructed with the given
type arguments.

o Otherwise, if N refers to a (possibly constructed) class or struct type and N or any of its base

classes contain a nested accessible type having name I and x type parameters, then the
namespace_or_type_name refers to that type constructed with the given type arguments. If there
is more than one such type, the type declared within the more derived type is selected.

63

ECMA-334

Note: If the meaning of N. I is being determined as part of resolving the base class specification
of N then the direct base class of N is considered to be object (§14.2.4.2). end note

o Otherwise, N.I is an invalid namespace_or_type_name, and a compile-time error occurs.
A namespace_or_type_name is permitted to reference a static class (§14.2.2.4) only if
e The namespace_or_type_name is the T in a namespace_or_type_name of the form T.I, or

e The namespace_or_type_name is the T in a typeof expression (§11.7.16) of the form typeof(T)

7.8.2 Unqualified names

Every namespace declaration and type declaration has an unqualified name determined as follows:

e For a namespace declaration, the unqualified name is the qualified_identifier specified in the
declaration.

e For atype declaration with no type_parameter_list, the unqualified name is the identifier specified in
the declaration.

e For atype declaration with K type parameters, the unqualified name is the identifier specified in the
declaration, followed by the generic_dimension_specifier (§11.7.16) for K type parameters.

7.8.3 Fully qualified names

Every namespace and type declaration has a fully qualified name, which uniquely identifies the
namespace or type declaration amongst all others within the program. The fully qualified name of a
namespace or type declaration with unqualified name N is determined as follows:

e IfNisamember of the global namespace, its fully qualified name is N.

e Otherwise, its fully qualified name is S.N, where S is the fully qualified name of the namespace or
type declaration in which N is declared.

In other words, the fully qualified name of N is the complete hierarchical path of identifiers and
generic_dimension_specifiers that lead to N, starting from the global namespace. Because every member of
a namespace or type shall have a unique name, it follows that the fully qualified name of a namespace or
type declaration is always unique. It is a compile-time error for the same fully qualified name to refer to
two distinct entities. In particular:

e [tisan error for both a namespace declaration and a type declaration to have the same fully
qualified name.

e [tisan error for two different kinds of type declarations to have the same fully qualified name (for
example, if both a struct and class declaration have the same fully qualified name).

e I[tisan error for a type declaration without the partial modifier to have the same fully qualified
name as another type declaration (§14.2.7).

Example: The example below shows several namespace and type declarations along with their
associated fully qualified names.

class A {} // A
namespace X // X
{
class B // X.B
{
class C {} // X.B.C

64

Chapter 7 Basic concepts

}
namespace Y // X.Y
{
class D {} // X.Y.D
}
}
namespace X.Y // X.Y
{
class E {} // X.Y.E
class G<T> // X.Y.G<>
{
class H {} // X.Y.G<>.H
}
class G<S,T»> // X.Y.G<,>
{
class H<U> {} // X.Y.G<, > He>
}
}
end example

7.9 Automatic memory management

C# employs automatic memory management, which frees developers from manually allocating and
freeing the memory occupied by objects. Automatic memory management policies are implemented by a
garbage collector. The memory management life cycle of an object is as follows:

1.

When the object is created, memory is allocated for it, the constructor is run, and the object is
considered live.

If neither the object nor any of its instance fields can be accessed by any possible continuation of
execution, other than the running of finalizers, the object is considered no longer in use and it
becomes eligible for finalization.

Note: The C# compiler and the garbage collector might choose to analyze code to determine which
references to an object might be used in the future. For instance, if a local variable that is in scope is
the only existing reference to an object, but that local variable is never referred to in any possible
continuation of execution from the current execution point in the procedure, the garbage collector
might (but is not required to) treat the object as no longer in use. end note

Once the object is eligible for finalization, at some unspecified later time the finalizer (§14.13) (if
any) for the object is run. Under normal circumstances the finalizer for the object is run once only,
though implementation-specific APIs may allow this behavior to be overridden.

Once the finalizer for an object is run, if neither the object nor any of its instance fields can be
accessed by any possible continuation of execution, including the running of finalizers, the object is
considered inaccessible and the object becomes eligible for collection.

Note: An object which could previously not be accessed may become accessible again due to its
finalizer. An example of this is provided below. end note

Finally, at some time after the object becomes eligible for collection, the garbage collector frees the
memory associated with that object.

The garbage collector maintains information about object usage, and uses this information to make
memory management decisions, such as where in memory to locate a newly created object, when to
relocate an object, and when an object is no longer in use or inaccessible.

65

ECMA-334

Like other languages that assume the existence of a garbage collector, C# is designed so that the garbage
collector might implement a wide range of memory management policies. C# specifies neither a time
constraint within that span, nor an order in which finalizers are run. Whether or not finalizers are run as
part of application termination is implementation-specific (§7.2).

The behavior of the garbage collector can be controlled, to some degree, via static methods on the class
System.GC. This class can be used to request a collection to occur, finalizers to be run (or not run), and so
forth.

Example: Since the garbage collector is allowed wide latitude in deciding when to collect objects and
run finalizers, a conforming implementation might produce output that differs from that shown by
the following code. The program

using System;

class A
{
~A()
{
Console.WriteLine("Finalize instance of A");
}
}
class B
{
object Ref;
public B(object o)
{
Ref = o;
}
~B()
{
Console.WriteLine("Finalize instance of B");
}
}
class Test
{
static void Main()
{
B b = new B(new A());
b = null;
GC.Collect();
GC.WaitForPendingFinalizers();
}
}

creates an instance of class A and an instance of class B. These objects become eligible for garbage
collection when the variable b is assigned the value null, since after this time it is impossible for any
user-written code to access them. The output could be either

Finalize instance of A
Finalize instance of B

or

66

Chapter 7 Basic concepts

Finalize instance of B
Finalize instance of A

because the language imposes no constraints on the order in which objects are garbage collected.

In subtle cases, the distinction between “eligible for finalization” and “eligible for collection” can be
important. For example,

using System;

class A
{
~A()
{
Console.WriteLine("Finalize instance of A");
}
public void F()
{
Console.WriteLine("A.F");
Test.RefA = this;
}
}
class B
{
public A Ref;
~B()
{
Console.WriteLine("Finalize instance of B");
Ref.F();
}
}
class Test
{
public static A RefA;
public static B RefB;
static void Main()
{
RefB = new B();
RefA = new A();
RefB.Ref = RefA;
RefB = null;
RefA = null;
// A and B now eligible for finalization
GC.Collect();
GC.WaitForPendingFinalizers();
// B now eligible for collection, but A is not
if (RefA != null)
{
Console.WriteLine("RefA is not null");
}
}
}

67

ECMA-334

In the above program, if the garbage collector chooses to run the finalizer of A before the finalizer of
B, then the output of this program might be:

Finalize instance of A
Finalize instance of B
A.F

RefA is not null

Note that although the instance of A was not in use and A’s finalizer was run, it is still possible for
methods of A (in this case, F) to be called from another finalizer. Also, note that running of a finalizer
might cause an object to become usable from the mainline program again. In this case, the running
of B’s finalizer caused an instance of A that was previously not in use, to become accessible from the
live reference Test.RefA. After the call to WaitForPendingFinalizers, the instance of B is eligible
for collection, but the instance of A is not, because of the reference Test.RefA.

end example

7.10 Execution order

Execution of a C# program proceeds such that the side effects of each executing thread are preserved at
critical execution points. A side effect is defined as a read or write of a volatile field, a write to a non-
volatile variable, a write to an external resource, and the throwing of an exception. The critical execution
points at which the order of these side effects shall be preserved are references to volatile fields (§14.5.4),
lock statements (§12.13), and thread creation and termination. The execution environment is free to
change the order of execution of a C# program, subject to the following constraints:

68

Data dependence is preserved within a thread of execution. That is, the value of each variable is
computed as if all statements in the thread were executed in original program order.

Initialization ordering rules are preserved (§14.5.5, §14.5.6).

The ordering of side effects is preserved with respect to volatile reads and writes (§14.5.4).
Additionally, the execution environment need not evaluate part of an expression if it can deduce
that that expression’s value is not used and that no needed side effects are produced (including any
caused by calling a method or accessing a volatile field). When program execution is interrupted by
an asynchronous event (such as an exception thrown by another thread), it is not guaranteed that
the observable side effects are visible in the original program order.

Chapter 8 Types

8. Types

8.1 General

The types of the C# language are divided into two main categories: reference types and value types. Both
value types and reference types may be generic types, which take one or more type parameters. Type
parameters can designate both value types and reference types.
type
: reference_type
value_type

|
| type_parameter
| pointer_type // unsafe code support

pointer_type (§22.3) is available only in unsafe code (§22).

Value types differ from reference types in that variables of the value types directly contain their data,
whereas variables of the reference types store references to their data, the latter being known as objects.
With reference types, it is possible for two variables to reference the same object, and thus possible for
operations on one variable to affect the object referenced by the other variable. With value types, the
variables each have their own copy of the data, and it is not possible for operations on one to affect the
other.

Note: When a variable is a ref or out parameter, it does not have its own storage but references the
storage of another variable. In this case, the ref or out variable is effectively an alias for another
variable and not a distinct variable. end note

C#’s type system is unified such that a value of any type can be treated as an object. Every type in C#
directly or indirectly derives from the object class type, and object is the ultimate base class of all types.
Values of reference types are treated as objects simply by viewing the values as type object. Values of
value types are treated as objects by performing boxing and unboxing operations (§8.3.12).

For convenience, throughout this specification, some library type names are written without using their
full name qualification. Refer to §C.5 for more information.

8.2 Reference types

8.2.1 General
A reference type is a class type, an interface type, an array type, a delegate type, or the dynamic type.

reference_type
: class_type
| interface_type
| array_type
| delegate type
| 'dynamic’

class_type

69

ECMA-334

: type_name

| 'object’

| 'string'

5
interface_type

. type_name

.
)

array_type

: non_array_type rank_specifier+

.
B

non_array_type

value_type

class_type
interface_type
delegate_type

type_parameter
pointer_type // unsafe code support

|
|
|
| 'dynamic'
|
|
5

rank_specifier
I[I 1 I*
3

.
)

delegate_type
: type_name
5

pointer_type is available o

‘T

nly in unsafe code (§22.3).

A reference type value is a reference to an instance of the type, the latter known as an object. The special
value null is compatible with all reference types and indicates the absence of an instance.

8.2.2 Class types

A class type defines a data structure that contains data members (constants and fields), function
members (methods, properties, events, indexers, operators, instance constructors, finalizers, and static

constructors), and nested
can extend and specialize

types. Class types support inheritance, a mechanism whereby derived classes
base classes. Instances of class types are created using

object_creation_expressions (§11.7.15.2).

Class types are described in §14.

Certain predefined class types have special meaning in the C# language, as described in the table below.

Class type
System.Object
System.String

Description
The ultimate base class of all other types. See §8.2.3.
The string type of the C# language. See §8.2.5.

System.ValueType

System.Enum

70

The base class of all value types. See §8.3.2.
The base class of all enum types. See §18.5.

Chapter 8 Types

System.Array The base class of all array types. See §16.2.2.
System.Delegate | The base class of all delegate types. See §19.1.
System.Exception ' The base class of all exception types. See §20.3.

8.2.3 The object type

The object class type is the ultimate base class of all other types. Every type in C# directly or indirectly
derives from the object class type.

The keyword object is simply an alias for the predefined class System.0Object.

8.2.4 The dynamic type

The dynamic type, like object, can reference any object. When operations are applied to expressions of
type dynamic, their resolution is deferred until the program is run. Thus, if the operation cannot
legitimately be applied to the referenced object, no error is given during compilation. Instead, an
exception will be thrown when resolution of the operation fails at run-time.

The dynamic type is further described in §8.7, and dynamic binding in §11.3.1.

8.2.5 The string type

The string type is a sealed class type that inherits directly from object. Instances of the string class
represent Unicode character strings.

Values of the string type can be written as string literals (§6.4.5.6).

The keyword string is simply an alias for the predefined class System.String.

8.2.6 Interface types

An interface defines a contract. A class or struct that implements an interface shall adhere to its contract.
An interface may inherit from multiple base interfaces, and a class or struct may implement multiple
interfaces.

Interface types are described in §17.

8.2.7 Array types

An array is a data structure that contains zero or more variables, which are accessed through computed
indices. The variables contained in an array, also called the elements of the array, are all of the same type,
and this type is called the element type of the array.

Array types are described in §16.

8.2.8 Delegate types

A delegate is a data structure that refers to one or more methods. For instance methods, it also refers to
their corresponding object instances.

Note: The closest equivalent of a delegate in C or C++ is a function pointer, but whereas a function
pointer can only reference static functions, a delegate can reference both static and instance
methods. In the latter case, the delegate stores not only a reference to the method’s entry point, but
also a reference to the object instance on which to invoke the method. end note

Delegate types are described in §19.

71

ECMA-334

8.3 Value types

8.3.1 General

A value type is either a struct type or an enumeration type. C# provides a set of predefined struct types
called the simple types. The simple types are identified through keywords.

value_type
: non_nullable_value_type
| nullable value type

B

non_nullable value_type
¢ struct_type
| enum_type

B

struct_type
: type_name
| simple_type

.
)

simple_type
: numeric_type
| 'bool’

.
)

numeric_type
: integral_type
| floating_point_type
| 'decimal’

)

integral_type
'sbyte’

| 'byte’

| 'short'

| 'ushort'

| "int'

| 'uint'

| 'long’

| 'ulong'

| 'char'

floating_point_type
'float'
| 'double'

)

enum_type
: type_name

)

nullable_value_type

72

Chapter 8 Types

: non_nullable_value_type '?’
Unlike a variable of a reference type, a variable of a value type can contain the value null only if the value
type is a nullable value type (§8.3.11). For every non-nullable value type there is a corresponding nullable
value type denoting the same set of values plus the value null.

Assignment to a variable of a value type creates a copy of the value being assigned. This differs from
assignment to a variable of a reference type, which copies the reference but not the object identified by
the reference.

8.3.2 The System.ValueType type

All value types implicitly inherit from the class System.ValueType, which, in turn, inherits from class
object. It is not possible for any type to derive from a value type, and value types are thus implicitly
sealed (§14.2.2.3).

Note that System.ValueType is not itself a value_type. Rather, it is a class_type from which all value_types
are automatically derived.

8.3.3 Default constructors

All value types implicitly declare a public parameterless instance constructor called the default
constructor. The default constructor returns a zero-initialized instance known as the default value for
the value type:

e Forall simple_types, the default value is the value produced by a bit pattern of all zeros:
o For sbyte, byte, short, ushort, int, uint, long, and ulong, the default value is @.
o For char, the default value is ' \x0000"'.
o For float, the default value is 0. of.
o Fordouble, the default value is 0. od.
o For decimal, the default value is @m (that is, value zero with scale 0).
o Forbool, the default value is false.
o For an enum_type E, the default value is 0, converted to the type E.

e For astruct_type, the default value is the value produced by setting all value type fields to their
default value and all reference type fields to null.

e For anullable_value_type the default value is an instance for which the Hasvalue property is false.
The default value is also known as the null value of the nullable value type. Attempting to read the
Value property of such a value causes an exception of type System.InvalidOperationException to
be thrown (§8.3.11).

Like any other instance constructor, the default constructor of a value type is invoked using the new
operator.

Note: For efficiency reasons, this requirement is not intended to actually have the implementation
generate a constructor call. For value types, the default value expression (§11.7.19) produces the
same result as using the default constructor. end note

Example: In the code below, variables i, j and k are all initialized to zero.

73

ECMA-334

class A
{
void F()
{
int i = 0;
int j = new int();
int k = default(int);
}
}
end example

8.3.4 Struct types

A struct type is a value type that can declare constants, fields, methods, properties, events, indexers,

described in §15.

8.3.5 Simple types

namespace, as described in the table below.

Keyword Aliased type
sbyte System.SByte
byte System.Byte
short System.Intl6
ushort System.UIntl6
int System.Int32
uint System.UInt32
long System.Int64
ulong System.UInt64
char System.Char
float System.Single
double System.Double
bool System.Boolean
decimal System.Decimal

System.Object, and the following statements are permitted:

int i = int.MaxValue; // System.Int32.MaxValue constant
string s = i.ToString(); // System.Int32.ToString() instance method
string t = 123.ToString(); // System.Int32.ToString() instance method

74

Chapter 8 Types

end example

Note: The simple types differ from other struct types in that they permit certain additional
operations:

e Mostsimple types permit values to be created by writing literals (§6.4.5), although C# makes
no provision for literals of struct types in general. Example: 123 is a literal of type int and 'a"
is a literal of type char. end example

e When the operands of an expression are all simple type constants, it is possible for the
compiler to evaluate the expression at compile-time. Such an expression is known as a
constant_expression (§11.20). Expressions involving operators defined by other struct types
are not considered to be constant expressions

o Through const declarations, it is possible to declare constants of the simple types (§14.4). Itis
not possible to have constants of other struct types, but a similar effect is provided by static
readonly fields.

e Conversions involving simple types can participate in evaluation of conversion operators
defined by other struct types, but a user-defined conversion operator can never participate in
evaluation of another user-defined conversion operator (§10.5.3).

end note.

8.3.6 Integral types

C# supports nine integral types: sbyte, byte, short, ushort, int, uint, long, ulong, and char. The integral
types have the following sizes and ranges of values:

The sbyte type represents signed 8-bit integers with values from -128 to 127, inclusive.

The byte type represents unsigned 8-bit integers with values from o to 255, inclusive.

The short type represents signed 16-bit integers with values from -32768 to 32767, inclusive.
The ushort type represents unsigned 16-bit integers with values from @ to 65535, inclusive.

The int type represents signed 32-bit integers with values from -2147483648 to 2147483647,
inclusive.

The uint type represents unsigned 32-bit integers with values from 0 to 4294967295, inclusive.

The long type represents signed 64-bit integers with values from -9223372036854775808 to
9223372036854775807, inclusive.

The ulong type represents unsigned 64-bit integers with values from 0 to 18446744073709551615,
inclusive.

The char type represents unsigned 16-bit integers with values from 0 to 65535, inclusive. The set of
possible values for the char type corresponds to the Unicode character set.

Note: Although char has the same representation as ushort, not all operations permitted on one
type are permitted on the other. end note

All signed integral types are represented using two’s complement format.

The integral_type unary and binary operators always operate with signed 32-bit precision, unsigned 32-
bit precision, signed 64-bit precision, or unsigned 64-bit precision, as detailed in §11.4.7.

The char type is classified as an integral type, but it differs from the other integral types in two ways:

75

ECMA-334

e There are no predefined implicit conversions from other types to the char type. In particular, even
though the byte and ushort types have ranges of values that are fully representable using the char
type, implicit conversions from sbyte, byte, or ushort to char do not exist.

e Constants of the char type shall be written as character _literals or as integer_literals in combination
with a cast to type char.

Example: (char)10 is the same as ' \x@00A'. end example

The checked and unchecked operators and statements are used to control overflow checking for integral-
type arithmetic operations and conversions (§11.7.18). In a checked context, an overflow produces a
compile-time error or causes a System.OverflowException to be thrown. In an unchecked context,
overflows are ignored and any high-order bits that do not fit in the destination type are discarded.

8.3.7 Floating-point types

C# supports two floating-point types: float and double. The float and double types are represented
using the 32-bit single-precision and 64-bit double-precision IEC 60559 formats, which provide the
following sets of values:

e Positive zero and negative zero. In most situations, positive zero and negative zero behave
identically as the simple value zero, but certain operations distinguish between the two (§11.9.3).

e Positive infinity and negative infinity. Infinities are produced by such operations as dividing a non-
zero number by zero.
Example:
1.0 / 0.0 yields positive infinity, and -1.0 / 0.0 yields negative infinity.
end example

e The Not-a-Number value, often abbreviated NaN. NaNs are produced by invalid floating-point
operations, such as dividing zero by zero.

e The finite set of non-zero values of the form s x m x 2° where sis 1 or -1, and m and e are
determined by the particular floating-point type: For float, 0 < m < 2?* and -149 < e < 104, and for
double, 0 <m < 2%* and -1075 < e < 970. Denormalized floating-point numbers are considered valid
non-zero values. C# neither requires nor forbids that a conforming implementation support
denormalized floating-point numbers.

The float type can represent values ranging from approximately 1.5 x 107*° to 3.4 x 103® with a
precision of 7 digits.

The double type can represent values ranging from approximately 5.0 x 10732* to 1.7 x 103°% with a
precision of 15-16 digits.

If either operand of a binary operator is a floating-point type then standard numeric promotions are
applied, as detailed in §11.4.7, and the operation is performed with float or double precision.

The floating-point operators, including the assignment operators, never produce exceptions. Instead, in
exceptional situations, floating-point operations produce zero, infinity, or NaN, as described below:

e The result of a floating-point operation is rounded to the nearest representable value in the
destination format.

e Ifthe magnitude of the result of a floating-point operation is too small for the destination format,
the result of the operation becomes positive zero or negative zero.

76

Chapter 8 Types

e Ifthe magnitude of the result of a floating-point operation is too large for the destination format, the
result of the operation becomes positive infinity or negative infinity.

e Ifafloating-point operation is invalid, the result of the operation becomes NaN.

e Ifone or both operands of a floating-point operation is NaN, the result of the operation becomes
NaN.

Floating-point operations may be performed with higher precision than the result type of the operation.
To force a value of a floating-point type to the exact precision of its type, an explicit cast (§11.8.7) can be
used.

Example: Some hardware architectures support an “extended” or “long double” floating-point type
with greater range and precision than the double type, and implicitly perform all floating-point
operations using this higher precision type. Only at excessive cost in performance can such
hardware architectures be made to perform floating-point operations with less precision, and rather
than require an implementation to forfeit both performance and precision, C# allows a higher
precision type to be used for all floating-point operations. Other than delivering more precise
results, this rarely has any measurable effects. However, in expressions of the form x * y / z,
where the multiplication produces a result that is outside the double range, but the subsequent
division brings the temporary result back into the double range, the fact that the expression is
evaluated in a higher range format can cause a finite result to be produced instead of an infinity. end
example

8.3.8 The Decimal type

The decimal type is a 128-bit data type suitable for financial and monetary calculations. The decimal type
can represent values including those in the range at least -7.9 x 10728 to 7.9 x 1028, with at least 28-digit
precision.

The finite set of values of type decimal are of the form (-1)" x ¢ x 107°, where the sign vis 0 or 1, the
coefficient c is given by 0 < ¢ < Cmax, and the scale e is such that Emin < e < Emax, where Cmax is at least 1
x 10?8, Emin < 0, and Emax > 28. The decimal type does not necessarily support signed zeros, infinities, or
NaN'’s.

A decimal is represented as an integer scaled by a power of ten. For decimals with an absolute value less
than 1.0m, the value is exact to at least the 28th decimal place. For decimals with an absolute value
greater than or equal to 1.0m, the value is exact to at least 28 digits. Contrary to the float and double data
types, decimal fractional numbers such as ©.1 can be represented exactly in the decimal representation.
In the float and double representations, such numbers often have non-terminating binary expansions,
making those representations more prone to round-off errors.

If either operand of a binary operator is of decimal type then standard numeric promotions are applied,
as detailed in §11.4.7, and the operation is performed with double precision.

The result of an operation on values of type decimal is that which would result from calculating an exact
result (preserving scale, as defined for each operator) and then rounding to fit the representation. Results
are rounded to the nearest representable value, and, when a result is equally close to two representable
values, to the value that has an even number in the least significant digit position (this is known as
“banker’s rounding”). That is, results are exact to at least the 28th decimal place. Note that rounding may
produce a zero value from a non-zero value.

If a decimal arithmetic operation produces a result whose magnitude is too large for the decimal format,
a System.OverflowException is thrown.

77

ECMA-334

The decimal type has greater precision but may have a smaller range than the floating-point types. Thus,
conversions from the floating-point types to decimal might produce overflow exceptions, and
conversions from decimal to the floating-point types might cause loss of precision or overflow exceptions.
For these reasons, no implicit conversions exist between the floating-point types and decimal, and
without explicit casts, a compile-time error occurs when floating-point and decimal operands are directly
mixed in the same expression.

8.3.9 The Bool type

The bool type represents Boolean logical quantities. The possible values of type bool are true and false.

No standard conversions exist between bool and other value types. In particular, the bool type is distinct
and separate from the integral types, a bool value cannot be used in place of an integral value, and vice
versa.

Note: In the C and C++ languages, a zero integral or floating-point value, or a null pointer can be
converted to the Boolean value false, and a non-zero integral or floating-point value, or a non-null
pointer can be converted to the Boolean value true. In C#, such conversions are accomplished by
explicitly comparing an integral or floating-point value to zero, or by explicitly comparing an object
reference to null. end note

8.3.10 Enumeration types

An enumeration type is a distinct type with named constants. Every enumeration type has an underlying
type, which shall be byte, sbyte, short, ushort, int, uint, long or ulong. The set of values of the
enumeration type is the same as the set of values of the underlying type. Values of the enumeration type
are not restricted to the values of the named constants. Enumeration types are defined through
enumeration declarations (§18.2).

8.3.11 Nullable value types

A nullable value type can represent all values of its underlying type plus an additional null value. A
nullable value type is written T?, where T is the underlying type. This syntax is shorthand for
System.Nullable<T>, and the two forms can be used interchangeably.

Conversely, a non-nullable value type is any value type other than System.Nullable<T> and its
shorthand T? (for any T), plus any type parameter that is constrained to be a non-nullable value type (that
is, any type parameter with a value type constraint (§14.2.5)). The System.Nullable<T> type specifies the
value type constraint for T, which means that the underlying type of a nullable value type can be any non-
nullable value type. The underlying type of a nullable value type cannot be a nullable value type or a
reference type. For example, int?? and string? are invalid types.

An instance of a nullable value type T? has two public read-only properties:
e AHasValue property of type bool
e AValue property of type T

An instance for which HasValue is true is said to be non-null. A non-null instance contains a known value
and Value returns that value.

An instance for which HasValue is false is said to be null. A null instance has an undefined value.
Attempting to read the Value of a null instance causes a System.InvalidOperationException to be
thrown. The process of accessing the Value property of a nullable instance is referred to as unwrapping.

78

Chapter 8 Types

In addition to the default constructor, every nullable value type T? has a public constructor with a single
parameter of type T. Given a value x of type T, a constructor invocation of the form

new T?(x)

creates a non-null instance of T? for which the value property is x. The process of creating a non-null
instance of a nullable value type for a given value is referred to as wrapping.

Implicit conversions are available from the null literal to T? (§10.2.7) and from T to T? (§10.2.6).

The nullable type T? implements no interfaces (§17). In particular, this means it does not implement any
interface that the underlying type T does.

8.3.12 Boxing and unboxing

The concept of boxing and unboxing provide a bridge between value_types and reference_types by
permitting any value of a value_type to be converted to and from type object. Boxing and unboxing
enables a unified view of the type system wherein a value of any type can ultimately be treated as an
object.

Boxing is described in more detail in §10.2.9 and unboxing is described in §10.3.6.

8.4 Constructed types

8.4.1 General

A generic type declaration, by itself, denotes an unbound generic type that is used as a “blueprint” to
form many different types, by way of applying type arguments. The type arguments are written within
angle brackets (< and >) immediately following the name of the generic type. A type that includes at least
one type argument is called a constructed type. A constructed type can be used in most places in the
language in which a type name can appear. An unbound generic type can only be used within a

typeof expression (§11.7.16).

Constructed types can also be used in expressions as simple names (§11.7.4) or when accessing a member
(§11.7.6).

When a namespace_or_type_name is evaluated, only generic types with the correct number of type
parameters are considered. Thus, it is possible to use the same identifier to identify different types, as
long as the types have different numbers of type parameters. This is useful when mixing generic and non-
generic classes in the same program.

Example:
namespace Widgets
{

class Queue {...}

class Queue<TElement> {...}
}
namespace MyApplication
{

using Widgets;

class X

{

Queue q1i; // Non-generic Widgets.Queue

79

ECMA-334

Queue<int> q2; // Generic Widgets.Queue

}

end example

The detailed rules for name lookup in the namespace_or_type_name productions is described in §7.8. The
resolution of ambiguities in these productions is described in §6.2.5. A type_name might identify a
constructed type even though it doesn’t specify type parameters directly. This can occur where a type is
nested within a generic class declaration, and the instance type of the containing declaration is implicitly
used for name lookup (§14.3.9.7).

Example:

class Outer<T>

{

public class Inner {...}

public Inner i; // Type of i is Outer<T>.Inner

}

end example

A non-enum constructed type shall not be used as an unmanaged._type (§8.8).

8.4.2 Type arguments
Each argument in a type argument list is simply a type.

type_argument_list
'<' type_arguments '>'

1
)

type_arguments
: type_argument (',

' type_argument)*

J

type_argument
: type

A type_argument shall not be a pointer type (§22). Each type argument shall satisfy any constraints on the
corresponding type parameter (§14.2.5).
8.4.3 Open and closed types

All types can be classified as either open types or closed types. An open type is a type that involves type
parameters. More specifically:

e Atype parameter defines an open type.
e Anarray type is an open type if and only if its element type is an open type.

e A constructed type is an open type if and only if one or more of its type arguments is an open type. A
constructed nested type is an open type if and only if one or more of its type arguments or the type
arguments of its containing type(s) is an open type.

A closed type is a type that is not an open type.

80

Chapter 8 Types

At run-time, all of the code within a generic type declaration is executed in the context of a closed
constructed type that was created by applying type arguments to the generic declaration. Each type
parameter within the generic type is bound to a particular run-time type. The run-time processing of all
statements and expressions always occurs with closed types, and open types occur only during compile-
time processing.

Each closed constructed type has its own set of static variables, which are not shared with any other
closed constructed types. Since an open type does not exist at run-time, there are no static variables
associated with an open type. Two closed constructed types are the same type if they are constructed
from the same unbound generic type, and their corresponding type arguments are the same type.

8.4.4 Bound and unbound types

The term unbound type refers to a non-generic type or an unbound generic type. The term bound type
refers to a non-generic type or a constructed type.

An unbound type refers to the entity declared by a type declaration. An unbound generic type is not itself
a type, and cannot be used as the type of a variable, argument or return value, or as a base type. The only
construct in which an unbound generic type can be referenced is the typeof expression (§11.7.16).

8.4.5 Satisfying constraints

Whenever a constructed type or generic method is referenced, the supplied type arguments are checked
against the type parameter constraints declared on the generic type or method (§14.2.5). For each where
clause, the type argument A that corresponds to the named type parameter is checked against each
constraint as follows:

e Ifthe constraintis a class type, an interface type, or a type parameter, let C represent that
constraint with the supplied type arguments substituted for any type parameters that appear in the
constraint. To satisfy the constraint, it shall be the case that type A is convertible to type C by one of
the following:

o An identity conversion (§10.2.2)
o An implicit reference conversion (§10.2.8)
o Aboxing conversion (§10.2.9), provided that type A is a non-nullable value type.
o An implicit reference, boxing or type parameter conversion from a type parameter A to C.
o I[fthe constraint is the reference type constraint (class), the type A shall satisfy one of the following:

o Aisan interface type, class type, delegate type, array type or the dynamic type.
Note: System.ValueType and System. Enum are reference types that satisfy this constraint. end
note

o Aisatype parameter that is known to be a reference type (§8.2).
o I[fthe constraint is the value type constraint (struct), the type A shall satisfy one of the following:

o Aisa struct type or enum type, but not a nullable value type.
Note: System.ValueType and System. Enum are reference types that do not satisfy this constraint.
end note

o Ais atype parameter having the value type constraint (§14.2.5).

e I[fthe constraint is the constructor constraint new(), the type A shall not be abstract and shall have
a public parameterless constructor. This is satisfied if one of the following is true:

81

ECMA-334

o Aisavalue type, since all value types have a public default constructor (§8.3.3).
o Ais atype parameter having the constructor constraint (§14.2.5).
o Ais atype parameter having the value type constraint (§14.2.5).

o Aisaclass thatis not abstract and contains an explicitly declared public constructor with no
parameters.

o Aisnotabstract and has a default constructor (§14.11.5).

A compile-time error occurs if one or more of a type parameter’s constraints are not satisfied by the given
type arguments.

Since type parameters are not inherited, constraints are never inherited either.

Example: In the following, D needs to specify the constraint on its type parameter T so that T satisfies
the constraint imposed by the base class B<T>. In contrast, class E need not specify a constraint,
because List<T> implements IEnumerable for any T.

class B<T> where T: IEnumerable {...}

class D<T> : B<T> where T: IEnumerable {...}
class E<T> : B<List<T>> {...}

end example

8.5 Type parameters

A type parameter is an identifier designating a value type or reference type that the parameter is bound
to at run-time.
type_parameter
: identifier
5
Since a type parameter can be instantiated with many different type arguments, type parameters have
slightly different operations and restrictions than other types.

Note: These include:

e A type parameter cannot be used directly to declare a base class (§14.2.4.2) or interface
(§17.2.4).

e The rules for member lookup on type parameters depend on the constraints, if any, applied to
the type parameter. They are detailed in §11.5.

e The available conversions for a type parameter depend on the constraints, if any, applied to
the type parameter. They are detailed in §10.2.12 and §10.3.8.

e Theliteral null cannot be converted to a type given by a type parameter, except if the type
parameter is known to be a reference type (§10.2.12). However, a default expression
(§11.7.19) can be used instead. In addition, a value with a type given by a type parameter can
be compared with null using == and !=(§11.11.7) unless the type parameter has the value
type constraint.

e Anewexpression (§11.7.15.2) can only be used with a type parameter if the type parameter is
constrained by a constructor_constraint or the value type constraint (§14.2.5).

e A type parameter cannot be used anywhere within an attribute.

82

Chapter 8 Types

e A type parameter cannot be used in a member access (§11.7.6) or type name (§7.8) to identify
a static member or a nested type.

e A type parameter cannot be used as an unmanaged_type (§8.8).
end note

As a type, type parameters are purely a compile-time construct. At run-time, each type parameter is
bound to a run-time type that was specified by supplying a type argument to the generic type declaration.
Thus, the type of a variable declared with a type parameter will, at run-time, be a closed constructed type
§8.4.3. The run-time execution of all statements and expressions involving type parameters uses the type
that was supplied as the type argument for that parameter.

8.6 Expression tree types

Expression trees permit lambda expressions to be represented as data structures instead of executable
code. Expression trees are values of expression tree types of the form
System.Ling.Expressions.Expression<TDelegate>, where TDelegate is any delegate type. For the
remainder of this specification we will refer to these types using the shorthand Expression<TDelegate>.

If a conversion exists from a lambda expression to a delegate type D, a conversion also exists to the
expression tree type Expression<TDelegate>. Whereas the conversion of a lambda expression to a
delegate type generates a delegate that references executable code for the lambda expression, conversion
to an expression tree type creates an expression tree representation of the lambda expression. More
details of this conversion are provided in §10.7.3.

Example: The following program represents a lambda expression both as executable code and as an
expression tree. Because a conversion exists to Func<int, int>, a conversion also exists to
Expression<Func<int,int>>:

Func<int,int> del = x => x + 1; // Code
Expression<Func<int,int>> exp = x => x + 1; // Data

Following these assignments, the delegate del references a method that returns x + 1, and the
expression tree exp references a data structure that describes the expression x => x + 1.

end example

Expression<TDelegate> provides an instance method Compile which produces a delegate of type
TDelegate:

Func<int,int> del2 = exp.Compile();

Invoking this delegate causes the code represented by the expression tree to be executed. Thus, given the
definitions above, del and del2 are equivalent, and the following two statements will have the same
effect:
int i1
int i2

del(1);
del2(1);

After executing this code, i1 and i2 will both have the value 2.

The API surface provided by Expression<TDelegate> is implementation-specific beyond the requirement
for a Compile method described above.

Note: While the details of the API provided for expression trees are implementation-specific, it is
expected that an implementation will:

83

ECMA-334

e Enable code to inspect and respond to the structure of an expression tree created as the result
of a conversion from a lambda expression

e Enable expression trees to be created programatically within user code

end note

8.7 The dynamic type

The type dynamic uses dynamic binding, as described in detail in §11.3.2, as opposed to static binding
which is used by all other types.

dynamic is considered identical to object except in the following respects:
e Operations on expressions of type dynamic can be dynamically bound (§11.3.3).
o Typeinference (§11.6.3) will prefer dynamic over object if both are candidates.
e dynamic cannot be used as
o thetype in an object_creation_expression (§11.7.15.2)
o apredefined_type in a member_access (§11.7.6.1)
o the operand of the typeof operator
o an attribute argument
o aconstraint
o an extension method type
o any part of a type argument within struct_interfaces (§15.2.4) or interface_type_list (§14.2.4.1).
Because of this equivalence, the following holds:

e There is an implicit identity conversion between object and dynamic, and between constructed
types that are the same when replacing dynamic with object.

e Implicit and explicit conversions to and from object also apply to and from dynamic.

e Signatures that are the same when replacing dynamic with object are considered the same
signature.

e The type dynamic is indistinguishable from object at run-time.

e An expression of the type dynamic is referred to as a dynamic expression.

8.8 Unmanaged types

unmanaged_type
: value_type
| pointer_type // unsafe code support

)

An unmanaged_type is any type that isn’t a reference_type, a type_parameter, or a constructed type, and
contains no fields whose type is not an unmanaged_type. In other words, an unmanaged_type is one of the
following:

e sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, decimal, or bool.

84

Chapter 8 Types

Any enum_type.

Any user-defined struct_type that is not a constructed type and contains fields of unmanaged_types
only.

In unsafe code (§22.2), any pointer_type (§22.3).

85

Chapter 9 Variables

9. Variables

9.1 General

Variables represent storage locations. Every variable has a type that determines what values can be
stored in the variable. C# is a type-safe language, and the C# compiler guarantees that values stored in
variables are always of the appropriate type. The value of a variable can be changed through assignment
or through use of the ++ and - - operators.

A variable shall be definitely assigned (§9.4) before its value can be obtained.

As described in the following subclauses, variables are either initially assigned or initially unassigned.
An initially assigned variable has a well-defined initial value and is always considered definitely assigned.
An initially unassigned variable has no initial value. For an initially unassigned variable to be considered
definitely assigned at a certain location, an assignment to the variable shall occur in every possible
execution path leading to that location.

9.2 Variable categories

9.2.1 General

C# defines seven categories of variables: static variables, instance variables, array elements, value
parameters, reference parameters, output parameters, and local variables. The subclauses that follow
describe each of these categories.

Example: In the following code

class A

{

public static int x;
int y;

void F(int[] v, int a, ref int b, out int c)

{
int i = 1;
C = a + b++;

}

x is a static variable, y is an instance variable, v[@] is an array element, a is a value parameter, b is a
reference parameter, c is an output parameter, and i is a local variable.

end example

9.2.2 Static variables

A field declared with the static modifier is a static variable. A static variable comes into existence before
execution of the static constructor (§14.12) for its containing type, and ceases to exist when the
associated application domain ceases to exist.

The initial value of a static variable is the default value (§9.3) of the variable’s type.

87

ECMA-334

For the purposes of definite assignment checking, a static variable is considered initially assigned.

9.2.3 Instance variables

9.2.3.1 General

A field declared without the static modifier is an instance variable.

9.2.3.2 Instance variables in classes

An instance variable of a class comes into existence when a new instance of that class is created, and
ceases to exist when there are no references to that instance and the instance’s finalizer (if any) has
executed.

The initial value of an instance variable of a class is the default value (§9.3) of the variable’s type.

For the purpose of definite assignment checking, an instance variable of a class is considered initially
assigned.

9.2.3.3 Instance variables in structs

An instance variable of a struct has exactly the same lifetime as the struct variable to which it belongs. In
other words, when a variable of a struct type comes into existence or ceases to exist, so too do the
instance variables of the struct.

The initial assignment state of an instance variable of a struct is the same as that of the containing struct
variable. In other words, when a struct variable is considered initially assigned, so too are its instance
variables, and when a struct variable is considered initially unassigned, its instance variables are likewise
unassigned.

9.2.4 Array elements

The elements of an array come into existence when an array instance is created, and cease to exist when
there are no references to that array instance.

The initial value of each of the elements of an array is the default value (§9.3) of the type of the array
elements.

For the purpose of definite assignment checking, an array element is considered initially assigned.

9.2.5 Value parameters

A parameter declared without a ref or out modifier is a value parameter-.

A value parameter comes into existence upon invocation of the function member (method, instance
constructor, accessor, or operator) or anonymous function to which the parameter belongs, and is
initialized with the value of the argument given in the invocation. A value parameter normally ceases to
exist when execution of the function body completes. However, if the value parameter is captured by an
anonymous function (§11.16.6.2), its lifetime extends at least until the delegate or expression tree created
from that anonymous function is eligible for garbage collection.

For the purpose of definite assignment checking, a value parameter is considered initially assigned.

9.2.6 Reference parameters

A parameter declared with a ref modifier is a reference parameter.

A reference parameter does not create a new storage location. Instead, a reference parameter represents
the same storage location as the variable given as the argument in the function member or anonymous

88

Chapter 9 Variables

function invocation. Thus, the value of a reference parameter is always the same as the underlying
variable.

The following definite assignment rules apply to reference parameters.
Note: The rules for output parameters are different, and are described in (§9.2.7). end note

e Avariable shall be definitely assigned (§9.4) before it can be passed as a reference parameter in a
function member or delegate invocation.

e Within a function member or anonymous function, a reference parameter is considered initially
assigned.

For a struct type, within an instance method or instance accessor (§11.2.1) or instance constructor with
a constructor initializer, the this keyword behaves exactly as a reference parameter of the struct type
(§11.7.12).

9.2.7 Output parameters
A parameter declared with an out modifier is an output parameter.

An output parameter does not create a new storage location. Instead, an output parameter represents the
same storage location as the variable given as the argument in the function member or delegate
invocation. Thus, the value of an output parameter is always the same as the underlying variable.

The following definite assignment rules apply to output parameters.
Note: The rules for reference parameters are different, and are described in (§9.2.6). end note

e Avariable need not be definitely assigned before it can be passed as an output parameter in a
function member or delegate invocation.

e Following the normal completion of a function member or delegate invocation, each variable that
was passed as an output parameter is considered assigned in that execution path.

e Within a function member or anonymous function, an output parameter is considered initially
unassigned.

e Every output parameter of a function member or anonymous function shall be definitely assigned
(§9.4) before the function member or anonymous function returns normally.

Within an instance constructor of a struct type, the this keyword behaves exactly as an output or
reference parameter of the struct type, depending on whether the constructor declaration includes a
constructor initializer (§11.7.12).

9.2.8 Local variables

A local variable is declared by a local_variable_declaration, foreach_statement, or specific_catch_clause of
a try_statement. For a foreach_statement, the local variable is an iteration variable (§12.9.5). For a
specific_catch_clause, the local variable is an exception variable (§12.11). A local variable declared by a
foreach_statement or specific_catch_clause is considered initially assigned.

A local_variable_declaration can occur in a block, a for_statement, a switch_block, or a using_statement.

The lifetime of a local variable is the portion of program execution during which storage is guaranteed to
be reserved for it. This lifetime extends from entry into the scope with which it is associated, at least until
execution of that scope ends in some way. (Entering an enclosed block, calling a method, or yielding a
value from an iterator block suspends, but does not end, execution of the current scope.) If the local
variable is captured by an anonymous function (§11.16.6.2), its lifetime extends at least until the delegate

89

ECMA-334

or expression tree created from the anonymous function, along with any other objects that come to
reference the captured variable, are eligible for garbage collection. If the parent scope is entered
recursively or iteratively, a new instance of the local variable is created each time, and its
local_variable_initializer, if any, is evaluated each time.

Note: A local variable is instantiated each time its scope is entered. This behavior is visible to user
code containing anonymous methods. end note

Note: The lifetime of an iteration variable (§12.9.5) declared by a foreach_statement is a single
iteration of that statement. Each iteration creates a new variable. end note

Note: The actual lifetime of a local variable is implementation-dependent. For example, a compiler
might statically determine that a local variable in a block is only used for a small portion of that
block. Using this analysis, the compiler could generate code that results in the variable’s storage
having a shorter lifetime than its containing block.

The storage referred to by a local reference variable is reclaimed independently of the lifetime of
that local reference variable (§7.9).

end note

Alocal variable introduced by a local_variable_declaration is not automatically initialized and thus has no
default value. Such a local variable is considered initially unassigned.

Note: A local_variable_declaration that includes a local_variable_initializer is still initially unassigned.
Execution of the declaration behaves exactly like an assignment to the variable (§9.4.4.5). It is
possible to use a variable without executing its local_variable_initializer; e.g., within the initializer
expression itself or by using a goto_statement to bypass the initialization:

goto L;
int x = 1; // never executed

L: x += 1; // error: x not definitely assigned

Within the scope of a local variable, it is a compile-time error to refer to that local variable in a
textual position that precedes its local_variable_declarator.

end note

9.3 Default values
The following categories of variables are automatically initialized to their default values:
e Static variables.
e Instance variables of class instances.
e Array elements.
The default value of a variable depends on the type of the variable and is determined as follows:

e For avariable of a value_type, the default value is the same as the value computed by the
value_type’s default constructor (§8.3.3).

e Foravariable of a reference_type, the default value is null.

90

Chapter 9 Variables

Note: Initialization to default values is typically done by having the memory manager or garbage
collector initialize memory to all-bits-zero before it is allocated for use. For this reason, it is
convenient to use all-bits-zero to represent the null reference. end note

9.4 Definite assignment

9.4.1 General

At a given location in the executable code of a function member or an anonymous function, a variable is
said to be definitely assigned if the compiler can prove, by a particular static flow analysis (§9.4.4), that
the variable has been automatically initialized or has been the target of at least one assignment.

Note: Informally stated, the rules of definite assignment are:
e An initially assigned variable (§9.4.2) is always considered definitely assigned.

e An initially unassigned variable (§9.4.3) is considered definitely assigned at a given location if
all possible execution paths leading to that location contain at least one of the following:

o Asimple assignment (§11.18.2) in which the variable is the left operand.

o Aninvocation expression (§11.7.8) or object creation expression (§11.7.15.2 that passes
the variable as an output parameter.

o Foralocal variable, a local variable declaration for the variable (§12.6.2) that includes a
variable initializer.

The formal specification underlying the above informal rules is described in §9.4.2, §9.4.3, and
§9.4.4.

end note

The definite assignment states of instance variables of a struct_type variable are tracked individually as
well as collectively. In additional to the rules above, the following rules apply to struct_type variables and
their instance variables:

An instance variable is considered definitely assigned if its containing struct_type variable is
considered definitely assigned.

A struct_type variable is considered definitely assigned if each of its instance variables is considered
definitely assigned.

Definite assignment is a requirement in the following contexts:

A variable shall be definitely assigned at each location where its value is obtained.

Note: This ensures that undefined values never occur. end note

The occurrence of a variable in an expression is considered to obtain the value of the variable,
except when

o the variable is the left operand of a simple assignment,
o thevariable is passed as an output parameter, or
o thevariable is a struct_type variable and occurs as the left operand of a member access.

A variable shall be definitely assigned at each location where it is passed as a reference parameter.
Note: This ensures that the function member being invoked can consider the reference parameter
initially assigned. end note

91

ECMA-334

All output parameters of a function member shall be definitely assigned at each location where the
function member returns (through a return statement or through execution reaching the end of the
function member body).

Note: This ensures that function members do not return undefined values in output parameters,
thus enabling the compiler to consider a function member invocation that takes a variable as an
output parameter equivalent to an assignment to the variable. end note

The this variable of a struct_type instance constructor shall be definitely assigned at each location
where that instance constructor returns.

9.4.2 Initially assigned variables

The following categories of variables are classified as initially assigned:

Static variables.

Instance variables of class instances.

Instance variables of initially assigned struct variables.
Array elements.

Value parameters.

Reference parameters.

Variables declared in a catch clause or a foreach statement.

9.4.3 Initially unassigned variables

The following categories of variables are classified as initially unassigned:

Instance variables of initially unassigned struct variables.

Output parameters, including the this variable of struct instance constructors without a
constructor initializer.

Local variables, except those declared in a catch clause or a foreach statement.

9.4.4 Precise rules for determining definite assignment

9.4.4.1 General

In order to determine that each used variable is definitely assigned, the compiler shall use a process that
is equivalent to the one described in this subclause.

The compiler processes the body of each function member that has one or more initially unassigned
variables. For each initially unassigned variable v, the compiler determines a definite assignment state
for v at each of the following points in the function member:

At the beginning of each statement

At the end point (§12.2) of each statement

On each arc which transfers control to another statement or to the end point of a statement
At the beginning of each expression

At the end of each expression

The definite assignment state of v can be either:

92

Chapter 9 Variables

e Definitely assigned. This indicates that on all possible control flows to this point, v has been
assigned a value.

e Not definitely assigned. For the state of a variable at the end of an expression of type bool, the state
of a variable that isn’t definitely assigned might (but doesn’t necessarily) fall into one of the
following sub-states:

o Definitely assigned after true expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as true, but is not necessarily assigned if the Boolean expression
evaluated as false.

o Definitely assigned after false expression. This state indicates that v is definitely assigned if the
Boolean expression evaluated as false, but is not necessarily assigned if the Boolean expression
evaluated as true.

The following rules govern how the state of a variable v is determined at each location.

9.4.4.2 General rules for statements
e visnotdefinitely assigned at the beginning of a function member body.

e The definite assignment state of v at the beginning of any other statement is determined by checking
the definite assignment state of v on all control flow transfers that target the beginning of that
statement. If (and only if) v is definitely assigned on all such control flow transfers, then v is
definitely assigned at the beginning of the statement. The set of possible control flow transfers is
determined in the same way as for checking statement reachability (§12.2).

e The definite assignment state of v at the end point of a block, checked, unchecked, if, while, do, for,
foreach, lock, using, or switch statement is determined by checking the definite assignment state
of v on all control flow transfers that target the end point of that statement. If v is definitely assigned
on all such control flow transfers, then v is definitely assigned at the end point of the statement.
Otherwise, v is not definitely assigned at the end point of the statement. The set of possible control
flow transfers is determined in the same way as for checking statement reachability (§12.2).

Note: Because there are no control paths to an unreachable statement, v is definitely assigned at the
beginning of any unreachable statement. end note

9.4.4.3 Block statements, checked, and unchecked statements

The definite assignment state of v on the control transfer to the first statement of the statement list in the
block (or to the end point of the block, if the statement list is empty) is the same as the definite
assignment statement of v before the block, checked, or unchecked statement.

9.4.4.4 Expression statements
For an expression statement stmt that consists of the expression expr:
e v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

o I[fvifdefinitely assigned at the end of expr, it is definitely assigned at the end point of stmt;
otherwise, it is not definitely assigned at the end point of stmt.

9.4.4.5 Declaration statements

e Ifstmtis a declaration statement without initializers, then v has the same definite assignment state
at the end point of stmt as at the beginning of stmt.

93

ECMA-334

If stmt is a declaration statement with initializers, then the definite assignment state for v is
determined as if stmt were a statement list, with one assignment statement for each declaration
with an initializer (in the order of declaration).

9.4.4.6 If statements

For an if statement stmt of the form:

if (expr) then_stmt else else_stmt

v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to then_stmt and to either else_stmt or to the end-point of stmt if there is no else clause.

If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to then_stmt, and not definitely assigned on the control flow
transfer to either else_stmt or to the end-point of stmt if there is no else clause.

If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to else_stmt, and not definitely assigned on the control flow
transfer to then_stmt. It is definitely assigned at the end-point of stmt if and only if it is definitely

assigned at the end-point of then_stmt.

Otherwise, v is considered not definitely assigned on the control flow transfer to either the
then_stmt or else_stmt, or to the end-point of stmt if there is no else clause.

9.4.4.7 Switch statements

In a switch statement stmt with a controlling expression expr:

The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

The definite assignment state of v on the control flow transfer to a reachable switch block statement
list is the same as the definite assignment state of v at the end of expr.

9.4.4.8 While statements

For a while statement stmt of the form:

while (expr) while_body

v has the same definite assignment state at the beginning of expr as at the beginning of stmt.

If v is definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to while_body and to the end point of stmt.

If v has the state “definitely assigned after true expression” at the end of expr, then it is definitely
assigned on the control flow transfer to while_body, but not definitely assigned at the end-point of
stmt.

If v has the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to while_body.

9.4.4.9 Do statements

For a do statement stmt of the form:

do do_body while (expr) ;

94

Chapter 9 Variables

e v has the same definite assignment state on the control flow transfer from the beginning of stmt to
do_body as at the beginning of stmt.

e v has the same definite assignment state at the beginning of expr as at the end point of do_body.

o Ifvis definitely assigned at the end of expr, then it is definitely assigned on the control flow transfer
to the end point of stmt.

e Ifvhas the state “definitely assigned after false expression” at the end of expr, then it is definitely
assigned on the control flow transfer to the end point of stmt, but not definitely assigned on the
control flow transfer to do_body.

9.4.4.10 For statements
Definite assignment checking for a for statement of the form:
for (for_initializer ; for_condition ; for_iterator) embedded_statement

is done as if the statement were written:

{
«for_initializer» ;
while («for_condition»)
{
«embedded_statement» ;
LLoop: «for_iterator» ;
}
}

with continue statements that target the for statement being translated to goto statements targeting the
label LLoop. If the for_condition is omitted from the for statement, then evaluation of definite assignment
proceeds as if for_condition were replaced with true in the above expansion.

9.4.4.11 Break, continue, and goto statements

The definite assignment state of v on the control flow transfer caused by a break, continue, or goto
statement is the same as the definite assignment state of v at the beginning of the statement.

9.4.4.12 Throw statements
For a statement stmt of the form
throw expr ;

the definite assignment state of v at the beginning of expr is the same as the definite assignment state of v
at the beginning of stmt.

9.4.4.13 Return statements
For a statement stmt of the form
return expr ;

e The definite assignment state of v at the beginning of expr is the same as the definite assignment
state of v at the beginning of stmt.

e Ifvis an output parameter, then it shall be definitely assigned either:
o after expr

o oratthe end of the finally block of a try-finally or try-catch-finally that encloses the
return statement.

95

ECMA-334

For a statement stmt of the form:
return ;
e Ifvisan output parameter, then it shall be definitely assigned either:
o before stmt

o oratthe end of the finally block of a try-finally or try-catch-finally that encloses the
return statement.

9.4.4.14 Try-catch statements
For a statement stmt of the form:

try «try_block»
catch (...) «catch_block 1»

catch (...) «catch_block n»

e The definite assignment state of v at the beginning of try_block is the same as the definite
assignment state of v at the beginning of stmt.

e The definite assignment state of v at the beginning of catch_block_i (for any i) is the same as the
definite assignment state of v at the beginning of stmt.

o The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) v is
definitely assigned at the end-point of try_block and every catch_block_i (for every i from 1 to n).

9.4.4.15 Try-finally statements
For a try statement stmt of the form:
try try_block finally finally_block

e The definite assignment state of v at the beginning of try_block is the same as the definite
assignment state of v at the beginning of stmt.

e The definite assignment state of v at the beginning of finally_block is the same as the definite
assignment state of v at the beginning of stmt.

e The definite assignment state of v at the end-point of stmt is definitely assigned if (and only if) at
least one of the following is true:

o vis definitely assigned at the end-point of try_block
o vis definitely assigned at the end-point of finally_block

If a control flow transfer (such as a goto statement) is made that begins within try_block, and ends outside
of try_block, then v is also considered definitely assigned on that control flow transfer if v is definitely
assigned at the end-point of finally_block. (This is not an only if—if v is definitely assigned for another
reason on this control flow transfer, then it is still considered definitely assigned.)
9.4.4.16 Try-catch-finally statements
Definite assignment analysis for a try-catch-finally statement of the form:

try «try_block»

catch (...) «catch_block_1»

catch (...) «catch_block _n»
finally «finally block»

96

Chapter 9 Variables

is done as if the statement were a try-finally statement enclosing a try-catch statement:

try
{
try «try_block»
catch (...) «catch_block 1»
catch (...) «catch_block n»
}

finally «finally block»

Example: The following example demonstrates how the different blocks of a try statement (§12.11)
affect definite assignment.

class A
{
static void F()
{
int i, j;
try
{
goto LABEL;
// neither i nor j definitely assigned
i=1;
// i definitely assigned
}
catch
{
// neither i nor j definitely assigned
i=3;
// i definitely assigned
}
finally
{
// neither i nor j definitely assigned
j=5;
// j definitely assigned
}
// 1 and j definitely assigned
LABEL:
// Jj definitely assigned
}
}
end example

9.4.4.17 Foreach statements

For a foreach statement stmt of the form:
foreach (type identifier in expr) embedded_statement

e The definite assignment state of v at the beginning of expr is the same as the state of v at the

point of stmt is the same as the state of v at the end of expr.

97

ECMA-334

9.4.4.18 Using statements

For a using statement stmt of the form:
using (resource_acquisition) embedded_statement

e The definite assignment state of v at the beginning of resource_acquisition is the same as the state of
v at the beginning of stmt.

e The definite assignment state of v on the control flow transfer to embedded_statement is the same as
the state of v at the end of resource_acquisition.

9.4.4.19 Lock statements
For a lock statement stmt of the form:
lock (expr) embedded_statement

e The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

e The definite assignment state of v on the control flow transfer to embedded_statement is the same as
the state of v at the end of expr.

9.4.4.20 Yield statements
Forayield return statement stmt of the form:
yield returnexpr ;

o The definite assignment state of v at the beginning of expr is the same as the state of v at the
beginning of stmt.

o The definite assignment state of v at the end of stmt is the same as the state of v at the end of expr.
Ayield break statement has no effect on the definite assignment state.

9.4.4.21 General rules for constant expressions

The following applies to any constant expression, and takes priority over any rules from the following
sections that might apply:

For a constant expression with value true:
o Ifvis definitely assigned before the expression, then v is definitely assigned after the expression.
e Otherwise vis “definitely assigned after false expression” after the expression.

Example:

int x;
if (true) {}
else

{
}

end example

Console.WritelLine(x);

For a constant expression with value false:
e Ifvis definitely assigned before the expression, then v is definitely assigned after the expression.

e Otherwise vis “definitely assigned after true expression” after the expression.

98

Chapter 9 Variables

Example:

int x;
if (false)
{

}

end example

Console.WritelLine(x);

For all other constant expressions, the definite assignment state of v after the expression is the same as
the definite assignment state of v before the expression.

9.4.4.22 General rules for simple expressions

The following rule applies to these kinds of expressions: literals (§11.7.2), simple names (§11.7.4),
member access expressions (§11.7.6), non-indexed base access expressions (§11.7.13), typeof
expressions (§11.7.16), default value expressions (§11.7.19), and nameof expressions (§11.7.20).

e The definite assignment state of v at the end of such an expression is the same as the definite
assignment state of v at the beginning of the expression.

9.4.4.23 General rules for expressions with embedded expressions

The following rules apply to these kinds of expressions: parenthesized expressions (§11.7.5), element
access expressions (§11.7.10), base access expressions with indexing (§11.7.13), increment and
decrement expressions (§11.7.14, §11.8.6), cast expressions (§11.8.7), unary +, -, ~, * expressions, binary
4,5 %, 1, % <<, 5>, <, <=, >, >=, ==, |=,1i5, as, &, |, ~ expressions (§11.9,§11.10,8§11.11, §11.12), compound
assignment expressions (§11.18.3), checked and unchecked expressions (§11.7.18), array and delegate
creation expressions (§11.7.15), and await expressions (§11.8.8).

Each of these expressions has one or more subexpressions that are unconditionally evaluated in a fixed
order.

Example: The binary % operator evaluates the left hand side of the operator, then the right hand side.
An indexing operation evaluates the indexed expression, and then evaluates each of the index
expressions, in order from left to right. end example

For an expression expr, which has subexpressions expr;, expr, ..., expry, evaluated in that order:

o The definite assignment state of v at the beginning of expr; is the same as the definite assignment
state at the beginning of expr.

o The definite assignment state of v at the beginning of expr; (i greater than one) is the same as the
definite assignment state at the end of expr;_;.

o The definite assignment state of v at the end of expr is the same as the definite assignment state at
the end of exprs.

9.4.4.24 Invocation expressions and object creation expressions

If the method to be invoked is a partial method that has no implementing partial method declaration, or is
a conditional method for which the call is omitted (§21.5.3.2), then the definite assignment state of v after
the invocation is the same as the definite assignment state of v before the invocation. Otherwise the
following rules apply:

For an invocation expression expr of the form:

primary_expression (args;, argz, ... , argy)

99

ECMA-334

or an object creation expression expr of the form:

new type (args, argz, ..., argx)

For an invocation expression, the definite assignment state of v before primary_expression is the
same as the state of v before expr.

For an invocation expression, the definite assignment state of v before arg; is the same as the state
of v after primary_expression.

For an object creation expression, the definite assignment state of v before arg; is the same as the
state of v before expr.

For each argument aryg;, the definite assignment state of v after arg; is determined by the normal
expression rules, ignoring any ref or out modifiers.

For each argument arg; for any i greater than one, the definite assignment state of v before arg; is
the same as the state of v after arg;_;.

If the variable v is passed as an out argument (i.e., an argument of the form “out v”) in any of the
arguments, then the state of v after expr is definitely assigned. Otherwise, the state of v after expr is
the same as the state of v after argy.

For array initializers (§11.7.15.5), object initializers (§11.7.15.3), collection initializers (§11.7.15.4)
and anonymous object initializers (§11.7.15.7), the definite assignment state is determined by the
expansion that these constructs are defined in terms of.

9.4.4.25 Simple assignment expressions

For an expression expr of the form:

w = expr._rhs

100

The definite assignment state of v before w is the same as the definite assignment state of v before
expr.

The definite assignment state of v before expr_rhs is the same as the definite assignment state of v
after w.

If w is the same variable as v, then the definite assignment state of v after expr is definitely assigned.
Otherwise, if the assignment occurs within the instance constructor of a struct type, and wis a
property access designating an automatically implemented property P on the instance being
constructed and v is the hidden backing field of P, then the definite assignment state of v after expr is
definitely assigned. Otherwise, the definite assignment state of v after expr is the same as the
definite assignment state of v after expr._rhs.

Example: In the following code

class A
{
static void F(int[] arr)
{
int x;
arr[x = 1] = x; // ok
}

}

the variable x is considered definitely assigned after arr[x = 1] is evaluated as the left hand side of
the second simple assignment.

Chapter 9 Variables

end example

9.4.4.26 && expressions

For an expression expr of the form:

expr_first && expr_second

The definite assignment state of v before expr._first is the same as the definite assignment state of v
before expr.

The definite assignment state of v before expr_second is definitely assigned if and only if the state of
v after expr_first is either definitely assigned or “definitely assigned after true expression”.
Otherwise, it is not definitely assigned.

The definite assignment state of v after expr is determined by:

o Ifthe state of v after expr._first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after
expr_first is “definitely assigned after false expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned or “definitely assigned after
true expression”, then the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr._first is “definitely assigned after false expression”, and the
state of v after expr_second is “definitely assigned after false expression”, then the state of v after
expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

class A
{
static void F(int x, int y)
{
int i;
if (x >= 0 & (i =y) >= 0)
{
// 1 definitely assigned
}
else
{
// 1 not definitely assigned
}
// 1 not definitely assigned
}

}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method F, the variable i is definitely assigned
in the first embedded statement because execution of the expression (i = y) always precedes
execution of this embedded statement. In contrast, the variable i is not definitely assigned in the
second embedded statement, since x >= @ might have tested false, resulting in the variable i’s being
unassigned.

101

ECMA-334

end example

9.4.4.27 || expressions

For an expression expr of the form:

expr_first | | expr_second

102

The definite assignment state of v before expr._first is the same as the definite assignment state of v
before expr.

The definite assignment state of v before expr_second is definitely assigned if and only if the state of
v after expr_first is either definitely assigned or “definitely assigned after true expression”.
Otherwise, it is not definitely assigned.

The definite assignment statement of v after expr is determined by:

o Ifthe state of v after expr._first is definitely assigned, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned, and the state of v after
expr_first is “definitely assigned after true expression”, then the state of v after expr is definitely
assigned.

o Otherwise, if the state of v after expr_second is definitely assigned or “definitely assigned after
false expression”, then the state of v after expr is “definitely assigned after false expression”.

o Otherwise, if the state of v after expr_first is “definitely assigned after true expression”, and the
state of v after expr_ second is “definitely assigned after true expression”, then the state of v after
expr is “definitely assigned after true expression”.

o Otherwise, the state of v after expr is not definitely assigned.

Example: In the following code

class A
{
static void G(int x, int y)
{
int i;
if (x >=0 || (1 =y) >=0)
{
// 1 not definitely assigned
}
else
{
// 1 definitely assigned
}
// 1 not definitely assigned
}

}

the variable i is considered definitely assigned in one of the embedded statements of an if
statement but not in the other. In the if statement in method G, the variable i is definitely assigned
in the second embedded statement because execution of the expression (i = y) always precedes
execution of this embedded statement. In contrast, the variable i is not definitely assigned in the
first embedded statement, since x >= @ might have tested true, resulting in the variable i’s being
unassigned.

Chapter 9 Variables

end example
9.4.4.28 | expressions
For an expression expr of the form:
! expr_operand

e The definite assignment state of v before expr_operand is the same as the definite assignment state
of v before expr.

e The definite assignment state of v after expr is determined by:

o Ifthe state of v after expr_operand is definitely assigned, then the state of v after expr is
definitely assigned.

o Otherwise, if the state of v after expr_operand is “definitely assigned after false expression”, then
the state of v after expr is “definitely assigned after true expression”.

o Otherwise, if the state of v after expr_operand is “definitely assigned after true expression”, then
the state of v after expr is “definitely assigned after false expression”.

o Otherwise, the state of v after expr is not definitely assigned.
9.4.4.29 ?? expressions
For an expression expr of the form:
expr._first ?? expr_second

o The definite assignment state of v before expr._first is the same as the definite assignment state of v
before expr.

e The definite assignment state of v before expr_second is the same as the definite assignment state of
v after expr._first.

e The definite assignment statement of v after expr is determined by:

o Ifexpr_firstis a constant expression (§11.20) with value null, then the state of v after expr is the
same as the state of v after expr._second.

o Otherwise, the state of v after expr is the same as the definite assignment state of v after
expr._first.

9.4.4.30 ?: expressions
For an expression expr of the form:
expr_cond ? expr_true : expr._false
e The definite assignment state of v before expr_cond is the same as the state of v before expr.

e The definite assignment state of v before expr_true is definitely assigned if the state of v after
expr_cond is definitely assigned or “definitely assigned after true expression”.

e The definite assignment state of v before expr._false is definitely assigned if the state of v after
expr_cond is definitely assigned or “definitely assigned after false expression”.

o The definite assignment state of v after expris determined by:

o Ifexpr_cond is a constant expression (§11.20) with value true then the state of v after expr is the
same as the state of v after expr._true.

103

ECMA-334

o Otherwise, if expr_cond is a constant expression (§11.20) with value false then the state of v
after expr is the same as the state of v after expr_false.

o Otherwise, if the state of v after expr_true is definitely assigned and the state of v after expr_false
is definitely assigned, then the state of v after expr is definitely assigned.

o Otherwise, the state of v after expr is not definitely assigned.

9.4.4.31 Anonymous functions

For a lambda_expression or anonymous_method_expression expr with a body (either block or expression)

body:

104

The definite assignment state of a parameter is the same as for a parameter of a named method
(8§89.2.6,8§9.2.7).

The definite assignment state of an outer variable v before body is the same as the state of v before
expr. That is, definite assignment state of outer variables is inherited from the context of the
anonymous function.

The definite assignment state of an outer variable v after expr is the same as the state of v before
expr.

Example: The example

delegate bool Filter(int i);
void F()

{
int max;
// Error, max is not definitely assigned
Filter £ = (int n) => n < max;
max = 5;
DoWork (f);
}

generates a compile-time error since max is not definitely assigned where the anonymous function
is declared.

end example
Example: The example

delegate void D();

void F()

{
int n;
Dd=() =>{n=1; }
d();

// Error, n is not definitely assigned
Console.WriteLine(n);

}

also generates a compile-time error since the assignment to n in the anonymous function has no
affect on the definite assignment state of n outside the anonymous function.

end example

Chapter 9 Variables

9.5 Variable references

A variable_reference is an expression that is classified as a variable. A variable_reference denotes a storage
location that can be accessed both to fetch the current value and to store a new value.

variable_reference
. expression
5

Note: In C and C++, a variable_reference is known as an Ivalue. end note

9.6 Atomicity of variable references

Reads and writes of the following data types shall be atomic: bool, char, byte, sbyte, short, ushort, uint,
int, float, and reference types. In addition, reads and writes of enum types with an underlying type in
the previous list shall also be atomic. Reads and writes of other types, including long, ulong, double, and
decimal, as well as user-defined types, need not be atomic. Aside from the library functions designed for
that purpose, there is no guarantee of atomic read-modify-write, such as in the case of increment or
decrement.

105

10. Conversions

10.1 General

A conversion causes an expression to be converted to, or treated as being of, a particular type; in the
former case a conversion may involve a change in representation. Conversions can be implicit or explicit,
and this determines whether an explicit cast is required.

Chapter 10 Conversions

Example: For instance, the conversion from type int to type long is implicit, so expressions of type
int can implicitly be treated as type long. The opposite conversion, from type long to type int, is
explicit and so an explicit cast is required.

int a = 123;

long b = a; // implicit conversion from int to long
int ¢ = (int) b; // explicit conversion from long to int

end example

Some conversions are defined by the language. Programs may also define their own conversions (§10.5).

Some conversions in the language are defined from expressions to types, others from types to types. A
conversion from a type applies to all expressions that have that type.

Example:

enum Color { Red, Blue,
Color c@ = 0; //
Color c1 = (Color)i; //
String x = null; //
Func<int, int> square =
type

end example

Green }

The expression @ converts implicitly to enum types

other int expressions need explicit conversion

Conversion from null expression (no type) to String

X => x * x; // Conversion from lambda expression to delegate

10.2 Implicit conversions

10.2.1 General

The following conversions are classified as implicit conversions:

Identity conversions

Implicit numeric conversions

Implicit enumeration conversions

Implicit interpolated string conversions

Implicit reference conversions

Boxing conversions

Implicit dynamic conversions

107

ECMA-334

e Implicit type parameter conversions

e Implicit constant expression conversions
e User-defined implicit conversions

e Anonymous function conversions

e Method group conversions

e Null literal conversions

e Implicit nullable conversions

o Lifted user-defined implicit conversions

Implicit conversions can occur in a variety of situations, including function member invocations (§11.6.6),
cast expressions (§11.8.7), and assignments (§11.18).

The pre-defined implicit conversions always succeed and never cause exceptions to be thrown.

Note: Properly designed user-defined implicit conversions should exhibit these characteristics as
well. end note

For the purposes of conversion, the types object and dynamic are considered equivalent.

However, dynamic conversions (§10.2.10 and §10.3.7) apply only to expressions of type dynamic (§8.2.4).

10.2.2 Identity conversion

An identity conversion converts from any type to the same type. One reason this conversion exists is so
that a type T or an expression of type T can be said to be convertible to T itself.

Because object and dynamic are considered equivalent there is an identity conversion between object
and dynamic, and between constructed types that are the same when replacing all occurrences of dynamic
with object.

In most cases, an identity conversion has no effect at runtime. However, since floating point operations
may be performed at higher precision than prescribed by their type (§8.3.7), assignment of their results
may result in a loss of precision, and explicit casts are guaranteed to reduce precision to what is
prescribed by the type (§11.8.7).

10.2.3 Implicit numeric conversions

The implicit numeric conversions are:
e From sbyte to short, int, long, float, double, or decimal.
e From byte to short, ushort, int, uint, long, ulong, float, double, or decimal.
e From short to int, long, float, double, or decimal.
e Fromushort to int, uint, long, ulong, float, double, or decimal.
e From int to long, float, double, or decimal.
e Fromuint to long, ulong, float, double, or decimal.
e From longto float, double, or decimal.

e Fromulong to float, double, or decimal.

108

Chapter 10 Conversions

e From char to ushort, int, uint, long, ulong, float, double, or decimal.
e From float to double.

Conversions from int, uint, long or ulong to float and from long or ulong to double may cause a loss of
precision, but will never cause a loss of magnitude. The other implicit numeric conversions never lose any
information.

There are no predefined implicit conversions to the char type, so values of the other integral types do not
automatically convert to the char type.

10.2.4 Implicit enumeration conversions

An implicit enumeration conversion permits a constant_expression (§11.20) with any integer type and the
value zero to be converted to any enum_type and to any nullable_value_type whose underlying type is an
enum_type. In the latter case the conversion is evaluated by converting to the underlying enum_type and
wrapping the result (§8.3.11).

10.2.5 Implicit interpolated string conversions

An implicit interpolated string conversion permits an interpolated_string_expression (§11.7.3) to be
converted to System.IFormattable or System.FormattableString (which implements
System.IFormattable). When this conversion is applied, a string value is not composed from the
interpolated string. Instead an instance of System.FormattableString is created, as further described in
§11.7.3.

10.2.6 Implicit nullable conversions

The implicit nullable conversions are those nullable conversions (§10.6.1) derived from implicit
predefined conversions.

10.2.7 Null literal conversions

An implicit conversion exists from the null literal to any reference type or nullable value type. This
conversion produces a null reference if the target type is a reference type, or the null value (§8.3.11) of
the given nullable value type.

10.2.8 Implicit reference conversions
The implicit reference conversions are:
e From any reference_type to object and dynamic.
e From any class_type S to any class_type T, provided S is derived from T.
e From any class_type S to any interface_type T, provided S implements T.
e From any interface_type S to any interface_type T, provided S is derived from T.

e From an array_type S with an element type S; to an array_type T with an element type T;, provided
all of the following are true:

o Sand T differ only in element type. In other words, S and T have the same number of
dimensions.

o Animplicit reference conversion exists from S; to T;.

109

ECMA-334

From a single-dimensional array type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and their base interfaces, provided that there is
an implicit identity or reference conversion from S to T.

From any array_type to System.Array and the interfaces it implements.
From any delegate_type to System.Delegate and the interfaces it implements.
From the null literal (§6.4.5.7) to any reference-type.

From any reference_type to a reference_type T if it has an implicit identity or reference conversion to
a reference_type To and Te has an identity conversion to T.

From any reference_type to an interface or delegate type T if it has an implicit identity or reference
conversion to an interface or delegate type To and T is variance-convertible (§17.2.3.3) to T.

Implicit conversions involving type parameters that are known to be reference types. See §10.2.12
for more details on implicit conversions involving type parameters.

The implicit reference conversions are those conversions between reference_types that can be proven to
always succeed, and therefore require no checks at run-time.

Reference conversions, implicit or explicit, never change the referential identity of the object being
converted.

Note: In other words, while a reference conversion can change the type of the reference, it never
changes the type or value of the object being referred to. end note

10.2.9 Boxing conversions

A boxing conversion permits a value_type to be implicitly converted to a reference_type. The following
boxing conversions exist:

From any value_type to the type object.

From any value_type to the type System.ValueType.

From any enum_type to the type System.Enum.

From any non_nullable_value_type to any interface_type implemented by the non_nullable_value_type.

From any non_nullable_value_type to any interface_type I such that there is a boxing conversion
from the non_nullable_value_type to another interface_type I, and I, has an identity conversion to I.

From any non_nullable_value_type to any interface_type I such that there is a boxing conversion
from the non_nullable_value_type to another interface_type Io, and I, is variance-convertible
(§17.2.3.3) to I.

From any nullable_value_type to any reference_type where there is a boxing conversion from the
underlying type of the nullable_value_type to the reference_type.

From a type parameter that is not known to be a reference type to any type such that the conversion
is permitted by §10.2.12.

Boxing a value of a non-nullable-value-type consists of allocating an object instance and copying the value
into that instance.

Boxing a value of a nullable_value_type produces a null reference if it is the null value (HasValue is false),
or the result of unwrapping and boxing the underlying value otherwise.

110

Chapter 10 Conversions

Note: The process of boxing may be imagined in terms of the existence of a boxing class for every
value type. For example, consider a struct S implementing an interface I, with a boxing class called
S_Boxing

interface I

{
void M();
}
struct S : I
{
public void M() { ... }
}
sealed class S Boxing : I
{
S value;
public S_Boxing(S value)
{
this.value = value;
}
public void M()
{
value.M();
}
}

Boxing a value v of type S now consists of executing the expression new S_Boxing(v) and returning
the resulting instance as a value of the target type of the conversion. Thus, the statements

S s = new S();
object box = s;

can be thought of as similar to:

S s = new S();
object box = new S _Boxing(s);

The imagined boxing type described above does not actually exist. Instead, a boxed value of type S
has the runtime type S, and a runtime type check using the is operator with a value type as the right
operand tests whether the left operand is a boxed version of the right operand. For example,
int 1 = 123;
object box = ij;
if (box is int) {

Console.Write("Box contains an int");

}

will output the string “Box contains an int” on the console.

A boxing conversion implies making a copy of the value being boxed. This is different from a
conversion of a reference_type to type object, in which the value continues to reference the same
instance and simply is regarded as the less derived type object. For example, given the declaration

struct Point

{

111

ECMA-334

public int x, y;

public Point(int x, int y)
{
this.x
this.y

X5
y;

}

the following statements

Point p = new Point(10, 10);
object box = p;

p.x = 20;
Console.Write(((Point)box).x);

will output the value 10 on the console because the implicit boxing operation that occurs in the
assignment of p to box causes the value of p to be copied. Had Point been declared a class instead,
the value 20 would be output because p and box would reference the same instance.

The analogy of a boxing class should not be used as more than a helpful tool for picturing how
boxing works conceptually. There are numerous subtle differences between the behavior described
by this specification and the behavior that would result from boxing being implemented in precisely
this manner.

end note

10.2.10 Implicit dynamic conversions

An implicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion
is dynamically bound §11.3.3, which means that an implicit conversion will be sought at run-time from
the run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

This implicit conversion seemingly violates the advice in the beginning of §10.2 that an implicit
conversion should never cause an exception. However, it is not the conversion itself, but the finding of the
conversion that causes the exception. The risk of run-time exceptions is inherent in the use of dynamic
binding. If dynamic binding of the conversion is not desired, the expression can be first converted to
object, and then to the desired type.

Example: The following illustrates implicit dynamic conversions:

object o = "object"”;

dynamic d = "dynamic";

string sl = o; // Fails at compile-time - no conversion exists

string s2 = d; // Compiles and succeeds at run-time

int i = d; // Compiles but fails at run-time - no conversion exists

The assignments to s2 and i both employ implicit dynamic conversions, where the binding of the
operations is suspended until run-time. At run-time, implicit conversions are sought from the run-
time type of d(string) to the target type. A conversion is found to string but not to int.

end example

10.2.11 Implicit constant expression conversions

An implicit constant expression conversion permits the following conversions:

112

Chapter 10 Conversions

e A constant_expression (§11.20) of type int can be converted to type sbyte, byte, short, ushort,
uint, or ulong, provided the value of the constant_expression is within the range of the destination

type.

e A constant_expression of type long can be converted to type ulong, provided the value of the
constant_expression is not negative.

10.2.12 Implicit conversions involving type parameters

For a type_parameter T that is known to be a reference type (§14.2.5), the following implicit reference
conversions (§10.2.8) exist:

e From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.

e From T to an interface_type I in T’s effective interface set and from T to any base interface of I.

e From T to a type parameter U provided that T depends on U (§14.2.5).
Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will
always be a reference type, even if U is not known to be a reference type at compile-time. end note

e From the null literal (§6.4.5.7) to T.

For a type_parameter T that is not known to be a reference type §14.2.5, the following conversions
involving T are considered to be boxing conversions (§10.2.9) at compile-time. At run-time, if T is a value
type, the conversion is executed as a boxing conversion. At run-time, if T is a reference type, the
conversion is executed as an implicit reference conversion or identity conversion.

e From T to its effective base class C, from T to any base class of C, and from T to any interface
implemented by C.
Note: C will be one of the types System.Object, System.ValueType, or System.Enum (otherwise T
would be known to be a reference type). end note

e From T to an interface_type I in T’s effective interface set and from T to any base interface of I.

For a type_parameter T that is not known to be a reference type, there is an implicit conversion from T to a
type parameter U provided T depends on U. At run-time, if T is a value type and U is a reference type, the
conversion is executed as a boxing conversion. At run-time, if both T and U are value types, then T and U
are necessarily the same type and no conversion is performed. At run-time, if T is a reference type, then U
is necessarily also a reference type and the conversion is executed as an implicit reference conversion or
identity conversion (§14.2.5).

The following further implicit conversions exist for a given type parameter T:

e From T to areference type S if it has an implicit conversion to a reference type Se and Se has an
identity conversion to S. At run-time, the conversion is executed the same way as the conversion
to Se.

e From T to an interface type I if it has an implicit conversion to an interface type I, and I, is
variance-convertible to I (§17.2.3.3). At run-time, if T is a value type, the conversion is executed as a
boxing conversion. Otherwise, the conversion is executed as an implicit reference conversion or
identity conversion.

In all cases, the rules ensure that a conversion is executed as a boxing conversion if and only if at run-time
the conversion is from a value type to a reference type.

113

ECMA-334

10.2.13 User-defined implicit conversions

A user-defined implicit conversion consists of an optional standard implicit conversion, followed by
execution of a user-defined implicit conversion operator, followed by another optional standard implicit
conversion. The exact rules for evaluating user-defined implicit conversions are described in §10.5.4.

10.2.14 Anonymous function conversions and method group conversions

Anonymous functions and method groups do not have types in and of themselves, but they may be
implicitly converted to delegate types. Additionally, some lambda expressions may be implicitly
converted to expression tree types. Anonymous function conversions are described in more detail in
§10.7 and method group conversions in §10.8.

10.3 Explicit conversions

10.3.1 General
The following conversions are classified as explicit conversions:
e All implicit conversions
e Explicit numeric conversions
e Explicit enumeration conversions
e Explicit nullable conversions
e Explicit reference conversions
e Explicit interface conversions
e Unboxing conversions
e Explicit type parameter conversions
e Explicit dynamic conversions
o User-defined explicit conversions
Explicit conversions can occur in cast expressions (§11.8.7).
The set of explicit conversions includes all implicit conversions.

Note: This, for example, allows an explicit cast to be used when an implicit conversion to the same
type exists, in order to force the selection of a particular method overload. end note

The explicit conversions that are not implicit conversions are conversions that cannot be proven always
to succeed, conversions that are known possibly to lose information, and conversions across domains of
types sufficiently different to merit explicit notation.

10.3.2 Explicit numeric conversions

The explicit numeric conversions are the conversions from a numeric_type to another numeric_type for
which an implicit numeric conversion (§10.2.3) does not already exist:

e From sbyte to byte, ushort, uint, ulong, or char.
e From byte to sbyte or char.

e From short to sbyte, byte, ushort, uint, ulong, or char.

114

Chapter 10 Conversions

From ushort to sbyte, byte, short, or char.

From int to sbyte, byte, short, ushort, uint, ulong, or char.

From uint to sbyte, byte, short, ushort, int, or char.

From long to sbyte, byte, short, ushort, int, uint, ulong, or char.

From ulong to sbyte, byte, short, ushort, int, uint, long, or char.

From char to sbyte, byte, or short.

From float to sbyte, byte, short, ushort, int, uint, long, ulong, char, or decimal.

From double to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or decimal.

From decimal to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, or double.

Because the explicit conversions include all implicit and explicit numeric conversions, it is always
possible to convert from any numeric_type to any other numeric_type using a cast expression (§11.8.7).

The explicit numeric conversions possibly lose information or possibly cause exceptions to be thrown. An
explicit numeric conversion is processed as follows:

For a conversion from an integral type to another integral type, the processing depends on the
overflow checking context (§11.7.18) in which the conversion takes place:

o Inachecked context, the conversion succeeds if the value of the source operand is within the
range of the destination type, but throws a System.OverflowException if the value of the source
operand is outside the range of the destination type.

o Inanunchecked context, the conversion always succeeds, and proceeds as follows.

e Ifthe source type is larger than the destination type, then the source value is truncated by
discarding its “extra” most significant bits. The result is then treated as a value of the
destination type.

o Ifthe source type is the same size as the destination type, then the source value is treated as
a value of the destination type

For a conversion from decimal to an integral type, the source value is rounded towards zero to the
nearest integral value, and this integral value becomes the result of the conversion. If the resulting
integral value is outside the range of the destination type, a System.OverflowException is thrown.

For a conversion from float or double to an integral type, the processing depends on the overflow-
checking context (§11.7.18) in which the conversion takes place:

o Inachecked context, the conversion proceeds as follows:
e Ifthe value of the operand is NaN or infinite, a System.OverflowException is thrown.

e Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

e Otherwise, a System.OverflowException is thrown.
o Inanunchecked context, the conversion always succeeds, and proceeds as follows.

e I[f the value of the operand is NaN or infinite, the result of the conversion is an unspecified
value of the destination type.

115

ECMA-334

e Otherwise, the source operand is rounded towards zero to the nearest integral value. If this
integral value is within the range of the destination type then this value is the result of the
conversion.

e Otherwise, the result of the conversion is an unspecified value of the destination type.

For a conversion from double to float, the double value is rounded to the nearest float value. If
the double value is too small to represent as a float, the result becomes zero with the same sign as
the value. If the magnitude of the double value is too large to represent as a float, the result
becomes infinity with the same sign as the value. If the double value is NaN, the result is also NaN.

For a conversion from float or double to decimal, the source value is converted to decimal
representation and rounded to the nearest number if required (§8.3.8).

o Ifthe source value is too small to represent as a decimal, the result becomes zero, preserving
the sign of the original value if decimal supports signed zero values.

o Ifthe source value’s magnitude is too large to represent as a decimal, or that value is infinity,
the result is infinity preserving the sign of the original value, if the decimal representation
supports infinities; otherwise a System.OverflowException is thrown.

o Ifthe source value is NaN, the result is NaN if the decimal representation supports NaNs;
otherwise a System.OverflowException is thrown.

For a conversion from decimal to float or double, the decimal value is rounded to the nearest
double or float value. If the source value’s magnitude is too large to represent in the target type, or
that value is infinity, the result is infinity preserving the sign of the original value. If the source value
is NaN, the result is NaN. While this conversion may lose precision, it never causes an exception to
be thrown.

Note: The decimal type is not required to support infinities or NaN values but may do so; its range
may be smaller than the range of float and double, but is not guaranteed to be. For decimal
representations without infinities or NaN values, and with a range smaller than float, the result of a
conversion from decimal to either float or double will never be infinity or NaN. end note

10.3.3 Explicit enumeration conversions

The explicit enumeration conversions are:

From sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or decimal to any
enum_type.

From any enum_type to sbyte, byte, short, ushort, int, uint, long, ulong, char, float, double, or
decimal.

From any enum_type to any other enum_type.

An explicit enumeration conversion between two types is processed by treating any participating
enum_type as the underlying type of that enum_type, and then performing an implicit or explicit numeric
conversion between the resulting types.

116

Example: Given an enum_type E with and underlying type of int, a conversion from E to byte is
processed as an explicit numeric conversion (§10.3.2) from int to byte, and a conversion from byte
to E is processed as an implicit numeric conversion (§10.2.3) from byte to int. end example

Chapter 10 Conversions

10.3.4 Explicit nullable conversions

The explicit nullable conversions are those nullable conversions (§10.6.1) derived from explicit and
implicit predefined conversions.

10.3.5 Explicit reference conversions

The explicit reference conversions are:

From object and dynamic to any other reference_type.
From any class_type S to any class_type T, provided S is a base class of T.

From any class_type S to any interface_type T, provided S is not sealed and provided S does not
implement T.

From any interface_type S to any class_type T, provided T is not sealed or provided T implements S.
From any interface_type S to any interface_type T, provided S is not derived from T.

From an array_type S with an element type S; to an array_type T with an element type T;, provided
all of the following are true:

o Sand T differ only in element type. In other words, S and T have the same number of
dimensions.

o An explicit reference conversion exists from S; to Ti.
From System.Array and the interfaces it implements, to any array_type.

From a single-dimensional array_type S[] to System.Collections.Generic.IList<T>,
System.Collections.Generic.IReadOnlyList<T>, and its base interfaces, provided that there is an
identity conversion or explicit reference conversion from S to T.

From System.Collections.Generic.IList<S>, System.Collections.Generic.IReadOnlyList<S>,
and their base interfaces to a single-dimensional array type T[], provided that there is an identity
conversion or explicit reference conversion from S to T.

From System.Delegate and the interfaces it implements to any delegate_type.

From a reference type S to a reference type T if it has an explicit reference conversion from S to a
reference type To and T and there is an identity conversion from Te to T.

From a reference type S to an interface or delegate type T if it there is an explicit reference
conversion from S to an interface or delegate type To and either To is variance-convertible to T or T is
variance-convertible to T, §17.2.3.3.

From D<S;...S,> to D<T:...T,> where D<X;. . .X,> is a generic delegate type, D<S;...S,> is not
compatible with or identical to D<T;. . . T,>, and for each type parameter X; of D the following holds:

o IfX; is invariant, then S; is identical to T:.

o IfX; is covariant, then there is an identity conversion, implicit reference conversion or explicit
reference conversion from S; to T;.

o IfX;is contravariant, then S; and T; are either identical or both reference types.

Explicit conversions involving type parameters that are known to be reference types. For more
details on explicit conversions involving type parameters, see §10.3.8.

117

ECMA-334

The explicit reference conversions are those conversions between reference_types that require run-time
checks to ensure they are correct.

For an explicit reference conversion to succeed at run-time, the value of the source operand shall be null,
or the type of the object referenced by the source operand shall be a type that can be converted to the
destination type by an implicit reference conversion (§10.2.8). If an explicit reference conversion fails, a
System.InvalidCastException is thrown.

Note: Reference conversions, implicit or explicit, never change the value of the reference itself
(§8.2.1), only its type; neither does it change the type or value of the object being referenced. end
note

10.3.6 Unboxing conversions

An unboxing conversion permits a reference_type to be explicitly converted to a value_type. The following
unboxing conversions exist:

e From the type object to any value_type.

e From the type System.ValueType to any value_type.

e From the type System.Enum to any enum_type.

e From any interface_type to any non-nullable_value_type that implements the interface_type.

e From any interface_type I to any non_nullable_value_type where there is an unboxing conversion
from an interface_type I, to the non_nullable_value-type and an identity conversion from I to Te.

e From any interface_type I to any non_nullable_value_type where there is an unboxing conversion
from an interface_type Io to the non_nullable_value_type and either either I, is variance_convertible
to I or I is variance-convertible to I, (§17.2.3.3).

e From any reference_type to any nullable_value_type where there is an unboxing conversion from
reference_type to the underlying non_nullable_value_type of the nullable_value_type.

e From a type parameter which is not known to be a value type to any type such that the conversion is
permitted by §10.3.8.

An unboxing operation to a non_nullable_value_type consists of first checking that the object instance is a
boxed value of the given non_nullable_value_type, and then copying the value out of the instance.

Unboxing to a nullable_value_type produces the null value of the nullable_value_type if the source operand
is null, or the wrapped result of unboxing the object instance to the underlying type of the
nullable_value_type otherwise.

Note: Referring to the imaginary boxing class described in §10.2.9, an unboxing conversion of an
object box to a value_type S consists of executing the expression ((S_Boxing)box).value. Thus, the
statements

object box = new S();
S s = (S)box;

conceptually correspond to

object box = new S Boxing(new S());
S s = ((S_Boxing)box).value;

end note

118

Chapter 10 Conversions

For an unboxing conversion to a given non_nullable_value_type to succeed at run-time, the value of the
source operand shall be a reference to a boxed value of that non_nullable_value_type. If the source operand
isnull a System.NullReferenceException is thrown. If the source operand is a reference to an
incompatible object, a System.InvalidCastException is thrown.

For an unboxing conversion to a given nullable_value_type to succeed at run-time, the value of the source
operand shall be either null or a reference to a boxed value of the underlying non_nullable_value_type of
the nullable_value_type. If the source operand is a reference to an incompatible object, a
System.InvalidCastException is thrown.

10.3.7 Explicit dynamic conversions

An explicit dynamic conversion exists from an expression of type dynamic to any type T. The conversion is
dynamically bound (§11.3.3), which means that an explicit conversion will be sought at run-time from the
run-time type of the expression to T. If no conversion is found, a run-time exception is thrown.

If dynamic binding of the conversion is not desired, the expression can be first converted to object, and
then to the desired type.

Example: Assume the following class is defined:

class C

{

int i;

public C(int i)

{
this.i = i;
}
public static explicit operator C(string s)
{
return new C(int.Parse(s));
}

}
The following illustrates explicit dynamic conversions:

object o = "1";

dynamic d = "2";

var cl = (C)o; // Compiles, but explicit reference conversion fails
var c2 = (C)d; // Compiles and user defined conversion succeeds

The best conversion of o to C is found at compile-time to be an explicit reference conversion. This
fails at run-time, because "1" is not in fact a C. The conversion of d to C however, as an explicit
dynamic conversion, is suspended to run-time, where a user defined conversion from the run-time
type of d (string) to C is found, and succeeds.

end example

10.3.8 Explicit conversions involving type parameters

For a type_parameter T that is known to be a reference type (§14.2.5), the following explicit reference
conversions (§10.3.5) exist:

e From the effective base class C of T to T and from any base class of C to T.

e From any interface_type to T.

119

ECMA-334

e From T to any interface_type I provided there isn’t already an implicit reference conversion from T
to I.

e From a type_parameter U to T provided that T depends on U (§14.2.5).
Note: Since T is known to be a reference type, within the scope of T, the run-time type of U will
always be a reference type, even if U is not known to be a reference type at compile-time. end note

For a type_parameter T that is not known to be a reference type (§14.2.5), the following conversions
involving T are considered to be unboxing conversions (§10.3.6) at compile-time. At run-time, if T is a
value type, the conversion is executed as an unboxing conversion. At run-time, if T is a reference type, the
conversion is executed as an explicit reference conversion or identity conversion.

e From the effective base class C of T to T and from any base class of Cto T.
Note: C will be one of the types System.0Object, System.ValueType, or System.Enum (otherwise T
would be known to be a reference type). end note

e From any interface_type to T.

For a type_parameter T that is not known to be a reference type (§14.2.5), the following explicit
conversions exist:

e From T to any interface_type I provided there is not already an implicit conversion from T to I. This
conversion consists of an implicit boxing conversion (§10.2.9) from T to object followed by an
explicit reference conversion from object to I. At run-time, if T is a value type, the conversion is
executed as a boxing conversion followed by an explicit reference conversion. At run-time, if T is a
reference type, the conversion is executed as an explicit reference conversion.

e From atype parameter U to T provided that T depends on U (§14.2.5). At run-time, if T is a value type
and U is a reference type, the conversion is executed as an unboxing conversion. At run-time, if both
T and U are value types, then T and U are necessarily the same type and no conversion is performed.
At run-time, if T is a reference type, then U is necessarily also a reference type and the conversion is
executed as an explicit reference conversion or identity conversion.

In all cases, the rules ensure that a conversion is executed as an unboxing conversion if and only if at run-
time the conversion is from a reference type to a value type.

The above rules do not permit a direct explicit conversion from an unconstrained type parameter to a
non-interface type, which might be surprising. The reason for this rule is to prevent confusion and make
the semantics of such conversions clear.

Example: Consider the following declaration:

class X<T>
{
public static long F(T t)
{
return (long)t; // Error
}

}

If the direct explicit conversion of t to long were permitted, one might easily expect that
X<int>.F(7) would return 7L. However, it would not, because the standard numeric conversions
are only considered when the types are known to be numeric at binding-time. In order to make the
semantics clear, the above example must instead be written:

class X<T>

{

120

Chapter 10 Conversions

public static long F(T t)
{

}

return (long)(object)t; // Ok, but will only work when T is long

}

This code will now compile but executing X<int>.F(7) would then throw an exception at run-time,
since a boxed int cannot be converted directly to a long.

end example

10.3.9 User-defined explicit conversions

A user-defined explicit conversion consists of an optional standard explicit conversion, followed by
execution of a user-defined implicit or explicit conversion operator, followed by another optional
standard explicit conversion. The exact rules for evaluating user-defined explicit conversions are
described in §10.5.5.

10.4 Standard conversions

10.4.1 General

The standard conversions are those pre-defined conversions that can occur as part of a user-defined
conversion.

10.4.2 Standard implicit conversions
The following implicit conversions are classified as standard implicit conversions:
e Identity conversions (§10.2.2)
e Implicit numeric conversions (§10.2.3)
e Implicit nullable conversions (§10.2.6)
e Null literal conversions (§10.2.7)
e Implicit reference conversions (§10.2.8)
e Boxing conversions (§10.2.9)
e Implicit constant expression conversions (§10.2.11)
e Implicit conversions involving type parameters (§10.2.12)

The standard implicit conversions specifically exclude user-defined implicit conversions.

10.4.3 Standard explicit conversions

The standard explicit conversions are all standard implicit conversions plus the subset of the explicit
conversions for which an opposite standard implicit conversion exists.

Note: In other words, if a standard implicit conversion exists from a type A to a type B, then a
standard explicit conversion exists from type A to type B and from type B to type A. end note

121

ECMA-334

10.5 User-defined conversions

10.5.1 General

C# allows the pre-defined implicit and explicit conversions to be augmented by user-defined conversions.
User-defined conversions are introduced by declaring conversion operators (§14.10.4) in class and struct

types.

10.5.2 Permitted user-defined conversions

C# permits only certain user-defined conversions to be declared. In particular, it is not possible to
redefine an already existing implicit or explicit conversion.

For a given source type S and target type T, if S or T are nullable value types, let Se and T, refer to their
underlying types, otherwise Se and Te are equal to S and T respectively. A class or struct is permitted to
declare a conversion from a source type S to a target type T only if all of the following are true:

e Sgand T are different types.

e Either Se or Te is the class or struct type in which the operator declaration takes place.

e Neither Se nor Te is an interface_type.

e Excluding user-defined conversions, a conversion does not exist from S to T or from T to S.

The restrictions that apply to user-defined conversions are specified in §14.10.4.

10.5.3 Evaluation of user-defined conversions

A user-defined conversion converts a source expression, which may have a source type, to another type,
called the target type. Evaluation of a user-defined conversion centers on finding the most-specific user-
defined conversion operator for the source expression and target type. This determination is broken into
several steps:

¢ Finding the set of classes and structs from which user-defined conversion operators will be
considered. This set consists of the source type and its base classes, if the source type exists, along
with the target type and its base classes. For this purpose it is assumed that only classes and structs
can declare user-defined operators, and that non-class types have no base classes. Also, if either the
source or target type is a nullable-value-type, their underlying type is used instead.

e From that set of types, determining which user-defined and lifted conversion operators are
applicable. For a conversion operator to be applicable, it shall be possible to perform a standard
conversion (§10.4) from the source expression to the operand type of the operator, and it shall be
possible to perform a standard conversion from the result type of the operator to the target type.

e From the set of applicable user-defined operators, determining which operator is unambiguously
the most-specific. In general terms, the most-specific operator is the operator whose operand type
is “closest” to the source expression and whose result type is “closest” to the target type. User-
defined conversion operators are preferred over lifted conversion operators. The exact rules for
establishing the most-specific user-defined conversion operator are defined in the following
subclauses.

Once a most-specific user-defined conversion operator has been identified, the actual execution of the
user-defined conversion involves up to three steps:

e First, if required, performing a standard conversion from the source expression to the operand type
of the user-defined or lifted conversion operator.

122

Chapter 10 Conversions

Next, invoking the user-defined or lifted conversion operator to perform the conversion.

Finally, if required, performing a standard conversion from the result type of the user-defined
conversion operator to the target type.

Evaluation of a user-defined conversion never involves more than one user-defined or lifted conversion
operator. In other words, a conversion from type S to type T will never first execute a user-defined
conversion from S to X and then execute a user-defined conversion from X to T.

Exact definitions of evaluation of user-defined implicit or explicit conversions are given in the
following subclauses. The definitions make use of the following terms:

If a standard implicit conversion (§10.4.2) exists from a type A to a type B, and if neither A nor B are
interface_type s, then A is said to be encompassed by B, and B is said to encompass A.

If a standard implicit conversion (§10.4.2) exists from an expression E to a type B, and if neither B
nor the type of E (if it has one) are interface_type s, then E is said to be encompassed by B, and B is
said to encompass E.

The most-encompassing type in a set of types is the one type that encompasses all other types in
the set. If no single type encompasses all other types, then the set has no most-encompassing type.
In more intuitive terms, the most-encompassing type is the “largest” type in the set—the one type to
which each of the other types can be implicitly converted.

The most-encompassed type in a set of types is the one type that is encompassed by all other types
in the set. If no single type is encompassed by all other types, then the set has no most-encompassed
type. In more intuitive terms, the most-encompassed type is the “smallest” type in the set—the one
type that can be implicitly converted to each of the other types.

10.5.4 User-defined implicit conversions

A user-defined implicit conversion from an expression E to a type T is processed as follows:

Determine the types S, Se and To.
o IfE hasatype, let S be that type.

o IfsorTare nullable value types, let S; and T; be their underlying types, otherwise let S; and T;
be S and T, respectively.

o IfS;or T; are type parameters, let Se and T, be their effective base classes, otherwise let Se and To
be Sy and T;, respectively.

Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of Se (if Se exists and is a class or struct), the base classes of S, (if So exists and is a class),
and T (if Te is a class or struct). A type is added to the set D only if an identity conversion to another
type already included in the set doesn’t exist.

Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the
user-defined and lifted implicit conversion operators declared by the classes or structs in D that
convert from a type encompassing E to a type encompassed by T. If U is empty, the conversion is
undefined and a compile-time error occurs.

o Ifs exists and any of the operators in U convert from S, then Sy is S.

o Otherwise, Sy is the most-encompassed type in the combined set of source types of the
operators in U. If exactly one most-encompassed type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

123

ECMA-334

Find the most-specific target type, Ty, of the operators in U:
o Ifany of the operators in U convert to T, then T, is T.

o Otherwise, T« is the most-encompassing type in the combined set of target types of the
operators in U. If exactly one most-encompassing type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

Find the most-specific conversion operator:

o IfU contains exactly one user-defined conversion operator that converts from S to T, then this
is the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from S to T,, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.
Finally, apply the conversion:

o IfE does not already have the type S,, then a standard implicit conversion from E to Sy is
performed.

o The most-specific conversion operator is invoked to convert from Sy to T.

o IfTyisnotT, then a standard implicit conversion from T to T is performed.

A user-defined implicit conversion from a type S to a type T exists if a user-defined implicit conversion
exists from a variable of type Sto T.

10.5.5 User-defined explicit conversions

A user-defined explicit conversion from an expression E to a type T is processed as follows:

124

Determine the types S, Se and To.
o IfE has atype, let S be that type.

o IfSorTare nullable value types, let S; and T: be their underlying types, otherwise let S; and T;
be S and T, respectively.

o IfS;or T; are type parameters, let Sp and Te be their effective base classes, otherwise let Se and T
be S; and T;, respectively.

Find the set of types, D, from which user-defined conversion operators will be considered. This set
consists of Se (if Se exists and is a class or struct), the base classes of S, (if Se exists and is a class), Te
(if To is a class or struct), and the base classes of T, (if Te is a class). A type is added to the set D only if
an identity conversion to another type already included in the set doesn’t exist.

Find the set of applicable user-defined and lifted conversion operators, U. This set consists of the
user-defined and lifted implicit or explicit conversion operators declared by the classes or structs
in D that convert from a type encompassing E or encompassed by S (if it exists) to a type
encompassing or encompassed by T. If U is empty, the conversion is undefined and a compile-time
error occurs.

Find the most-specific source type, Sy, of the operators in U:
o IfS exists and any of the operators in U convert from S, then Sy is S.

o Otherwise, if any of the operators in U convert from types that encompass E, then Sy is the most-
encompassed type in the combined set of source types of those operators. If no most-

Chapter 10 Conversions

encompassed type can be found, then the conversion is ambiguous and a compile-time error
occurs.

o Otherwise, Sy is the most-encompassing type in the combined set of source types of the
operators in U. If exactly one most-encompassing type cannot be found, then the conversion is
ambiguous and a compile-time error occurs.

¢ Find the most-specific target type, Ty, of the operators in U:
o Ifany of the operators in U convert to T, then T, is T.

o Otherwise, if any of the operators in U convert to types that are encompassed by T, then Ty is the
most-encompassing type in the combined set of target types of those operators. If exactly one
most-encompassing type cannot be found, then the conversion is ambiguous and a compile-time
error occurs.

o Otherwise, T« is the most-encompassed type in the combined set of target types of the operators
in U. If no most-encompassed type can be found, then the conversion is ambiguous and a
compile-time error occurs.

e Find the most-specific conversion operator:

o IfU contains exactly one user-defined conversion operator that converts from S, to T,, then this
is the most-specific conversion operator.

o Otherwise, if U contains exactly one lifted conversion operator that converts from S to Ty, then
this is the most-specific conversion operator.

o Otherwise, the conversion is ambiguous and a compile-time error occurs.
e Finally, apply the conversion:

o IfE does not already have the type S, then a standard explicit conversion from E to Sy is
performed.

o The most-specific user-defined conversion operator is invoked to convert from S to T,.
o IfT«isnotT, then a standard explicit conversion from T, to T is performed.

A user-defined explicit conversion from a type S to a type T exists if a user-defined explicit conversion
exists from a variable of type Sto T.

10.6 Conversions involving nullable types

10.6.1 Nullable Conversions

Nullable conversions permit predefined conversions that operate on non-nullable value types to also be
used with nullable forms of those types. For each of the predefined implicit or explicit conversions that
convert from a non-nullable value type S to a non-nullable value type T (§10.2.2, §10.2.3, §10.2.4,
§10.2.11, §10.3.2 and §10.3.3), the following nullable conversions exist:

e Animplicit or explicit conversion from S? to T?
e An implicit or explicit conversion from S to T?
e An explicit conversion from S? to T.

A nullable conversion is itself classified as an implicit or explicit conversion.

125

ECMA-334

Certain nullable conversions are classified as standard conversions and can occur as part of a user-
defined conversion. Specifically, all implicit nullable conversions are classified as standard implicit
conversions (§10.4.2), and those explicit nullable conversions that satisfy the requirements of §10.4.3 are
classified as standard explicit conversions.

Evaluation of a nullable conversion based on an underlying conversion from S to T proceeds as follows:
e I[fthe nullable conversion is from S? to T?:
o Ifthe source value is null (Hasvalue property is false), the result is the null value of type T?.

o Otherwise, the conversion is evaluated as an unwrapping from S? to S, followed by the
underlying conversion from S to T, followed by a wrapping from T to T?.

e Ifthe nullable conversion is from S to T?, the conversion is evaluated as the underlying conversion
from S to T followed by a wrapping from T to T?.

e I[fthe nullable conversion is from S? to T, the conversion is evaluated as an unwrapping from S? to S
followed by the underlying conversion from S to T.

10.6.2 Lifted conversions

Given a user-defined conversion operator that converts from a non-nullable value type S to a non-nullable
value type T, a lifted conversion operator exists that converts from S? to T?. This lifted conversion
operator performs an unwrapping from S? to S followed by the user-defined conversion from S to T
followed by a wrapping from T to T?, except that a null valued S? converts directly to a null valued 72. A
lifted conversion operator has the same implicit or explicit classification as its underlying user-defined
conversion operator.

10.7 Anonymous function conversions

10.7.1 General

An anonymous_method_expression or lambda_expression is classified as an anonymous function (§11.16).
The expression does not have a type, but can be implicitly converted to a compatible delegate type. Some
lambda expressions may also be implicitly converted to a compatible expression tree type.

For the purpose of brevity, this subclause uses the short form for the task types Task and Task<T>
(§14.15.1).

Specifically, an anonymous function F is compatible with a delegate type D provided:
e IfF contains an anonymous_function_signature, then D and F have the same number of parameters.

e If F does not contain an anonymous_function_signature, then D may have zero or more parameters of
any type, as long as no parameter of D has the out parameter modifier.

e IfF has an explicitly typed parameter list, each parameter in D has the same type and modifiers as
the corresponding parameter in F.

e If F has an implicitly typed parameter list, D has no ref or out parameters.

e I[fthe body of F is an expression, and either D has a void return type or F is async and D has the return
type Task, then when each parameter of F is given the type of the corresponding parameter in D, the
body of F is a valid expression (w.r.t §11) that would be permitted as a statement_expression (§12.7).

126

Chapter 10 Conversions

If the body of F is a block, and either D has a void return type or F is async and D has the return type
Task, then when each parameter of F is given the type of the corresponding parameter in D, the body
of F is a valid block (w.r.t §12.3) in which no return statement specifies an expression.

If the body of F is an expression, and either F is non-async and D has a non-void return type T, or F is
async and D has a return type Task<T>, then when each parameter of F is given the type of the

convertible to T.

If the body of F is a block, and either F is non-async and D has a non-void return type T, or F is async
and D has a return type Task<T>, then when each parameter of F is given the type of the
corresponding parameter in D, the body of F is a valid block (w.r.t §12.3) with a non-reachable end

Example: The following examples illustrate these rules:

delegate void D(int x);

D d1 = delegate { }; // Ok

D d2 = delegate() { }; // Error, signature mismatch

D d3 = delegate(long x) { }; // Error, signature mismatch

D d4 = delegate(int x) { }; // Ok

D d5 = delegate(int x) { return; }; // 0k

D d6 = delegate(int x) { return x; }; // Error, return type mismatch

delegate void E(out int x);

E el = delegate { }; // Error, E has an out parameter
E e2 = delegate(out int x) { x = 1; }; // 0k
E e3 = delegate(ref int x) { x = 1; }; // Error, signature mismatch
delegate int P(params int[] a);
P pl = delegate { }; // Error, end of block reachable
P p2 = delegate { return; }; // Error, return type mismatch
P p3 = delegate { return 1; }; // 0Ok
P p4 = delegate { return "Hello"; }; // Error, return type mismatch
P p5 = delegate(int[] a) // Ok
{
return a[0];
s
P p6 = delegate(params int[] a) // Error, params modifier
{
return a[0];
¥
P p7 = delegate(int[] a) // Error, return type mismatch
{
if (a.Length > @) return a[@];
return "Hello";
¥
delegate object Q(params int[] a);
Q g1 = delegate(int[] a) // 0Ok
{

if (a.Length > @) return a[@];
return "Hello";

}s

end example

127

ECMA-334

Example: The examples that follow use a generic delegate type Func<A,R> that represents a function
that takes an argument of type A and returns a value of type R:

delegate R Func<A,R>(A arg);

In the assignments

Func<int,int> f1 = x => x + 1; // Ok
Func<int,double> f2 = x => x + 1; // 0k
Func<double,int> f3 = x => x + 1; // Error
Func<int, Task<int>> f4 = async x => x + 1; // 0Ok

the parameter and return types of each anonymous function are determined from the type of the
variable to which the anonymous function is assigned.

The first assignment successfully converts the anonymous function to the delegate type
Func<int, int> because, when x is given type int, x + 1is a valid expression that is implicitly
convertible to type int.

Likewise, the second assignment successfully converts the anonymous function to the delegate type
Func<int,double> because the result of x + 1 (of type int) is implicitly convertible to type double.

However, the third assignment is a compile-time error because, when x is given type double, the
result of x + 1 (of type double) is not implicitly convertible to type int.

The fourth assignment successfully converts the anonymous async function to the delegate type
Func<int, Task<int>> because the resultof x + 1 (of type int) is implicitly convertible to the
effective return type int of the async lambda, which has a return type Task<int>.

end example

A lambda expression F is compatible with an expression tree type Expression<D> if F is compatible with
the delegate type D. This does not apply to anonymous methods, only lambda expressions.

Anonymous functions may influence overload resolution, and participate in type inference. See §11.6 for
further details.

10.7.2 Evaluation of anonymous function conversions to delegate types

Conversion of an anonymous function to a delegate type produces a delegate instance that references the
anonymous function and the (possibly empty) set of captured outer variables that are active at the time of
the evaluation. When the delegate is invoked, the body of the anonymous function is executed. The code
in the body is executed using the set of captured outer variables referenced by the delegate. A
delegate_creation_expression (§11.7.15.6) can be used as an alternate syntax for converting an anonymous
method to a delegate type.

The invocation list of a delegate produced from an anonymous function contains a single entry. The exact
target object and target method of the delegate are unspecified. In particular, it is unspecified whether the
target object of the delegate is null, the this value of the enclosing function member, or some other
object.

Conversions of semantically identical anonymous functions with the same (possibly empty) set of
captured outer variable instances to the same delegate types are permitted (but not required) to return
the same delegate instance. The term semantically identical is used here to mean that execution of the
anonymous functions will, in all cases, produce the same effects given the same arguments. This rule
permits code such as the following to be optimized.

128

Chapter 10 Conversions

delegate double Function(double x);

class Test

{
static double[] Apply(double[] a, Function f)
{
double[] result = new double[a.Length];
for (int i = @; i < a.Length; i++)
{
result[i] = f(a[i]);
}
return result;
}
static void F(double[] a, double[] b)
{
a = Apply(a, (double x) => Math.Sin(x));
b = Apply(b, (double y) => Math.Sin(y));
}
}

Since the two anonymous function delegates have the same (empty) set of captured outer variables, and
since the anonymous functions are semantically identical, the compiler is permitted to have the delegates
refer to the same target method. Indeed, the compiler is permitted to return the very same delegate
instance from both anonymous function expressions.

10.7.3 Evaluation of lambda expression conversions to expression tree types

Conversion of a lambda expression to an expression tree type produces an expression tree (§8.6). More
precisely, evaluation of the lambda expression conversion produces an object structure that represents
the structure of the lambda expression itself.

Not every lambda expression can be converted to expression tree types. The conversion to a compatible
delegate type always exists, but it may fail at compile-time for implementation-specific reasons.

Note: Common reasons for a lambda expression to fail to convert to an expression tree type include:
e [t has ablock body
e It has the async modifier
e [t contains an assignment operator
e It contains an out or ref parameter
e [t contains a dynamically bound expression

end note

10.8 Method group conversions

An implicit conversion exists from a method group (§11.2) to a compatible delegate type (§19.4).If Dis a
delegate type, and E is an expression that is classified as a method group, then D is compatible with E if
and only if E contains at least one method that is applicable in its normal form (§11.6.4.2) to any argument
list (§11.6.2) having types and modifiers matching the parameter types and modifiers of D, as described in
the following.

129

ECMA-334

The compile-time application of the conversion from a method group E to a delegate type D is described in
the following. Note that the existence of an implicit conversion from E to D does not guarantee that the
compile-time application of the conversion will succeed without error.

130

A single method M is selected corresponding to a method invocation (§11.7.8.2) of the form E(A),
with the following modifications:

o The argument list A is a list of expressions, each classified as a variable and with the type and
modifier (ref or out) of the corresponding parameter in the formal_parameter:_list of D —
excepting parameters of type dynamic, where the corresponding expression has the type object
instead of dynamic.

o The candidate methods considered are only those methods that are applicable in their normal
form and do not omit any optional parameters (§11.6.4.2). Thus, candidate methods are ignored
if they are applicable only in their expanded form, or if one or more of their optional parameters
do not have a corresponding parameter in D.

A conversion is considered to exist if the algorithm of §11.7.8.2 produces a single best method M
having the same number of parameters as D.

Even if the conversion exists, a compile-time error occurs if the selected method M is not compatible
(§19.4) with the delegate type D.

If the selected method M is an instance method, the instance expression associated with E
determines the target object of the delegate.

If the selected method M is an extension method which is denoted by means of a member access on
an instance expression, that instance expression determines the target object of the delegate.

The result of the conversion is a value of type D, namely a delegate that refers to the selected
method and target object.

Example: The following demonstrates method group conversions:

delegate string D1l(object 0);

delegate object D2(string s);

delegate object D3();

delegate string D4(object o, params object[] a);
delegate string D5(int i);

class Test

{
static string F(object o) {...}
static void G()
{
D1 dl1 = F; // Ok
D2 d2 = F; // 0Ok
D3 d3 = F; // Error - not applicable
D4 d4 = F; // Error - not applicable in normal form
D5 d5 = F; // Error - applicable but not compatible
}
}

The assignment to d1 implicitly converts the method group F to a value of type D1.

The assignment to d2 shows how it is possible to create a delegate to a method that has less derived
(contravariant) parameter types and a more derived (covariant) return type.

Chapter 10 Conversions

The assignment to d3 shows how no conversion exists if the method is not applicable.
The assignment to d4 shows how the method must be applicable in its normal form.

The assignment to d5 shows how parameter and return types of the delegate and method are
allowed to differ only for reference types.

end example

As with all other implicit and explicit conversions, the cast operator can be used to explicitly perform a
particular conversion.

Example: Thus, the example

object obj = new EventHandler(myDialog.OkClick);
could instead be written

object obj = (EventHandler)myDialog.OkClick;
end example

A method group conversion can refer to a generic method, either by explicitly specifying type arguments
within E, or via type inference (§11.6.3). If type inference is used, the parameter types of the delegate are
used as argument types in the inference process. The return type of the delegate is not used for inference.
Whether the type arguments are specified or inferred, they are part of the method group conversion
process; these are the type arguments used to invoke the target method when the resulting delegate is
invoked.

Example:
delegate int D(string s, int i);
delegate int E();

class X

{
public static T F<T>(string s, T t) {...}
public static T G<T>() {...}

static void Main()

{
D dl1 = F<int>; // Ok, type argument given explicitly
D d2 = F; // 0Ok, int inferred as type argument
E el = Gint>; // Ok, type argument given explicitly
E e2 = G; // Error, cannot infer from return type
}
}
end example

Method groups may influence overload resolution, and participate in type inference. See §11.6 for further
details.

The run-time evaluation of a method group conversion proceeds as follows:

e Ifthe method selected at compile-time is an instance method, or it is an extension method which is
accessed as an instance method, the target object of the delegate is determined from the instance
expression associated with E:

131

ECMA-334

132

o The instance expression is evaluated. If this evaluation causes an exception, no further steps are
executed.

o Ifthe instance expression is of a reference_type, the value computed by the instance expression
becomes the target object. If the selected method is an instance method and the target object is
null, a System.NullReferenceException is thrown and no further steps are executed.

o Ifthe instance expression is of a value_type, a boxing operation (§10.2.9) is performed to convert
the value to an object, and this object becomes the target object.

Otherwise, the selected method is part of a static method call, and the target object of the delegate is
null.

A delegate instance of delegate type D is obtained with a reference to the method that was
determined at compile-time and a reference to the target object computed above, as follows:

The conversion is permitted (but not required) to use an existing delegate instance that already
contains these references.

If an existing instance was not reused, a new one is created (§19.5). If there is not enough memory
available to allocate the new instance, a System.OutOfMemoryException is thrown. Otherwise the
instance is initialized with the given references.

Chapter 11 Expressions

11. Expressions

11.1 General

An expression is a sequence of operators and operands. This clause defines the syntax, order of evaluation
of operands and operators, and meaning of expressions.

11.2 Expression classifications

11.2.1 General

The result of an expression is classified as one of the following:

A value. Every value has an associated type.
A variable. Every variable has an associated type, namely the declared type of the variable.

A null literal. An expression with this classification can be implicitly converted to a reference type or
nullable value type.

An anonymous function. An expression with this classification can be implicitly converted to a
compatible delegate type or expression tree type.

A property access. Every property access has an associated type, namely the type of the property.
Furthermore, a property access may have an associated instance expression. When an accessor of
an instance property access is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12).

An indexer access. Every indexer access has an associated type, namely the element type of the
indexer. Furthermore, an indexer access has an associated instance expression and an associated
argument list. When an accessor of an indexer access is invoked, the result of evaluating the
instance expression becomes the instance represented by this (§11.7.12), and the result of
evaluating the argument list becomes the parameter list of the invocation.

Nothing. This occurs when the expression is an invocation of a method with a return type of void.
An expression classified as nothing is only valid in the context of a statement_expression (§12.7) or
as the body of a lambda_expression (§11.16).

For expressions which occur as subexpressions of larger expressions, with the noted restrictions, the
result can also be classified as one of the following:

A namespace. An expression with this classification can only appear as the left-hand side of a
member_access (§11.7.6). In any other context, an expression classified as a namespace causes a
compile-time error.

A type. An expression with this classification can only appear as the left-hand side of a
member_access (§11.7.6). In any other context, an expression classified as a type causes a compile-
time error.

A method group, which is a set of overloaded methods resulting from a member lookup (§11.5). A
method group may have an associated instance expression and an associated type argument list.

133

ECMA-334

When an instance method is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12). A method group is permitted in an invocation_expression
(§11.7.8) or a delegate_creation_expression (§11.7.15.6), and can be implicitly converted to a
compatible delegate type (§10.8). In any other context, an expression classified as a method group
causes a compile-time error.

e Aneventaccess. Every event access has an associated type, namely the type of the event.
Furthermore, an event access may have an associated instance expression. An event access may
appear as the left-hand operand of the += and -= operators (§11.18.4). In any other context, an
expression classified as an event access causes a compile-time error. When an accessor of an
instance event access is invoked, the result of evaluating the instance expression becomes the
instance represented by this (§11.7.12).

A property access or indexer access is always reclassified as a value by performing an invocation of the
get_accessor or the set_accessor. The particular accessor is determined by the context of the property or
indexer access: If the access is the target of an assignment, the set_accessor is invoked to assign a new
value (§11.18.2). Otherwise, the get_accessor is invoked to obtain the current value (§11.2.2).

An instance accessor is a property access on an instance, an event access on an instance, or an indexer
access.

11.2.2 Values of expressions

Most of the constructs that involve an expression ultimately require the expression to denote a value. In
such cases, if the actual expression denotes a namespace, a type, a method group, or nothing, a compile-

time error occurs. However, if the expression denotes a property access, an indexer access, or a variable,
the value of the property, indexer, or variable is implicitly substituted:

e The value of a variable is simply the value currently stored in the storage location identified by the
variable. A variable shall be considered definitely assigned (§9.4) before its value can be obtained,
or otherwise a compile-time error occurs.

e The value of a property access expression is obtained by invoking the get_accessor of the property. If
the property has no get_accessor, a compile-time error occurs. Otherwise, a function member
invocation (§11.6.6) is performed, and the result of the invocation becomes the value of the
property access expression.

e The value of an indexer access expression is obtained by invoking the get_accessor of the indexer. If
the indexer has no get_accessor, a compile-time error occurs. Otherwise, a function member
invocation (§11.6.6) is performed with the argument list associated with the indexer access
expression, and the result of the invocation becomes the value of the indexer access expression.

11.3 Static and Dynamic Binding

11.3.1 General

Binding is the process of determining what an operation refers to, based on the type or value of
expressions (arguments, operands, receivers). For instance, the binding of a method call is determined
based on the type of the receiver and arguments. The binding of an operator is determined based on the
type of its operands.

In C# the binding of an operation is usually determined at compile-time, based on the compile-time type
of its subexpressions. Likewise, if an expression contains an error, the error is detected and reported by
the compiler. This approach is known as static binding.

134

Chapter 11 Expressions

However, if an expression is a dynamic expression (i.e., has the type dynamic) this indicates that any
binding that it participates in should be based on its run-time type rather than the type it has at compile-
time. The binding of such an operation is therefore deferred until the time where the operation is to be
executed during the running of the program. This is referred to as dynamic binding.

When an operation is dynamically bound, little or no checking is performed by the compiler. Instead if the
run-time binding fails, errors are reported as exceptions at run-time.

The following operations in C# are subject to binding:
e Member access: e.M
e Method invocation: e.M(e1,...,ey)
e Delegate invocation: e(es, ...,ey)
e Element access: e[es, ...,e/]

e Object creation: new C(eq,...,ey)

e Overloaded unary operators: +, -, !, ~, ++, - -, true, false
e Overloaded binary operators: +, -, *, /,%,& &&, |, | |, 22, *, <<, >>,==5, 1=, >, ¢, >=,<=
e Assignment operators: =, +=, -=, *=, /=, %=, &=, | =, =, <<=, >>=

e Implicit and explicit conversions

When no dynamic expressions are involved, C# defaults to static binding, which means that the compile-
time types of subexpressions are used in the selection process. However, when one of the subexpressions
in the operations listed above is a dynamic expression, the operation is instead dynamically bound.

11.3.2 Binding-time

Static binding takes place at compile-time, whereas dynamic binding takes place at run-time. In the
following subclauses, the term binding-time refers to either compile-time or run-time, depending on
when the binding takes place.

Example: The following illustrates the notions of static and dynamic binding and of binding-time:

object o = 5;

dynamic d = 5;

Console.WriteLine(5); // static binding to Console.WritelLine(int)
Console.WritelLine(o); // static binding to Console.WritelLine(object)
Console.WriteLine(d); // dynamic binding to Console.WritelLine(int)

The first two calls are statically bound: the overload of Console.WriteLine is picked based on the
compile-time type of their argument. Thus, the binding-time is compile-time.

The third call is dynamically bound: the overload of Console.WriteLine is picked based on the run-
time type of its argument. This happens because the argument is a dynamic expression - its
compile-time type is dynamic. Thus, the binding-time for the third call is run-time.

end example

11.3.3 Dynamic binding
This subclause is informative.

Dynamic binding allows C# programs to interact with dynamic objects, i.e., objects that do not follow the
normal rules of the C# type system. Dynamic objects may be objects from other programming languages

135

ECMA-334

with different types systems, or they may be objects that are programmatically setup to implement their
own binding semantics for different operations.

The mechanism by which a dynamic object implements its own semantics is implementation-defined. A
given interface - again implementation-defined - is implemented by dynamic objects to signal to the

C# run-time that they have special semantics. Thus, whenever operations on a dynamic object are
dynamically bound, their own binding semantics, rather than those of C# as specified in this specification,
take over.

While the purpose of dynamic binding is to allow interoperation with dynamic objects, C# allows dynamic
binding on all objects, whether they are dynamic or not. This allows for a smoother integration of
dynamic objects, as the results of operations on them may not themselves be dynamic objects, but are still
of a type unknown to the programmer at compile-time. Also, dynamic binding can help eliminate error-
prone reflection-based code even when no objects involved are dynamic objects.

11.3.4 Types of subexpressions

When an operation is statically bound, the type of a subexpression (e.g., a receiver, and argument, an
index or an operand) is always considered to be the compile-time type of that expression.

When an operation is dynamically bound, the type of a subexpression is determined in different ways
depending on the compile-time type of the subexpression:

e A subexpression of compile-time type dynamic is considered to have the type of the actual value
that the expression evaluates to at run-time

e A subexpression whose compile-time type is a type parameter is considered to have the type which
the type parameter is bound to at run-time

e Otherwise, the subexpression is considered to have its compile-time type.

11.4 Operators

11.4.1 General

Expressions are constructed from operands and operators. The operators of an expression indicate which
operations to apply to the operands.

Example: Examples of operators include +, -, *, /, and new. Examples of operands include literals,
fields, local variables, and expressions. end example

There are three kinds of operators:

e Unary operators. The unary operators take one operand and use either prefix notation (such as -x)
or postfix notation (such as x++).

e Binary operators. The binary operators take two operands and all use infix notation (such as x + y).

e Ternary operator. Only one ternary operator, ? :, exists; it takes three operands and uses infix
notation (¢ ? x : y).

The order of evaluation of operators in an expression is determined by the precedence and associativity of
the operators (§11.4.2).

Operands in an expression are evaluated from left to right.

136

Chapter 11 Expressions

Example:InF(i) + G(i++) * H(i), method F is called using the old value of i, then method G is
called with the old value of i, and, finally, method H is called with the new value of i. This is separate
from and unrelated to operator precedence. end example

Certain operators can be overloaded. Operator overloading (§11.4.3) permits user-defined operator
implementations to be specified for operations where one or both of the operands are of a user-defined

class or struct type.

11.4.2 Operator precedence and associativity

When an expression contains multiple operators, the precedence of the operators controls the order in

which the individual operators are evaluated.

Note: For example, the expression x + y * zisevaluatedasx + (y * z) because the * operator
has higher precedence than the binary + operator. end note

The precedence of an operator is established by the definition of its associated grammar production.

Note: For example, an additive_expression consists of a sequence of multiplicative_expressions
separated by + or - operators, thus giving the + and - operators lower precedence than the *, /, and
% operators. end note

Note: The following table summarizes all operators in order of precedence from highest to lowest:

Subclause Category Operators
§11.7 Primary x.y x?.y f(x) a[x] a?[x] x++ X-- new typeof
default checked unchecked delegate
§11.8 Unary + -~ aax --x (T)x await x
§11.9 Multiplicative */%
§11.9 Additive + -
§11.10 Shift << >>
§11.11 Relational and type- <><=>=1isas
testing
§11.11 Equality ==l=
§11.12 Logical AND &
§11.12 Logical XOR n
§11.12 Logical OR |
§11.13 Conditional AND &&
§11.13 Conditional OR |
§11.14 Null coalescing PP
§11.15 Conditional [
§11.18 and Assignment and lambda = *=/=%=+= -= <<=>>=&= "= [= =>
§11.16 expression
end note

When an operand occurs between two operators with the same precedence, the associativity of the
operators controls the order in which the operations are performed:

137

ECMA-334

e Except for the assignment operators and the null coalescing operator, all binary operators are left-
associative, meaning that operations are performed from left to right.
Example: x + y + zisevaluatedas (x + y) + z.end example

e The assignment operators, the null coalescing operator and the conditional operator (?:) are right-
associative, meaning that operations are performed from right to left.
Example: x =y = zisevaluatedas x = (y = z).end example

Precedence and associativity can be controlled using parentheses.

Example: x + y * zfirst multiplies y by z and then adds the result to x, but (x + y) * z firstadds x
and y and then multiplies the result by z. end example

11.4.3 Operator overloading

All unary and binary operators have predefined implementations. In addition, user-defined
implementations can be introduced by including operator declarations (§14.10) in classes and structs.
User-defined operator implementations always take precedence over predefined operator
implementations: Only when no applicable user-defined operator implementations exist will the
predefined operator implementations be considered, as described in §11.4.4 and §11.4.5.

The overloadable unary operators are:

+ - ! ~ ++ -- true false

Note: Although true and false are not used explicitly in expressions (and therefore are not
included in the precedence table in §11.4.2), they are considered operators because they are
invoked in several expression contexts: Boolean expressions (§11.21) and expressions involving the
conditional (§11.15) and conditional logical operators (§11.13). end note

The overloadable binary operators are:
+ - ¥ /% & | M << > == l= > < <= »>=

Only the operators listed above can be overloaded. In particular, it is not possible to overload member
access, method invocation, or the =, &8, | |, ??, ?:, =>, checked, unchecked, new, typeof, default, as, and
is operators.

When a binary operator is overloaded, the corresponding compound assignment operator, if any, is also
implicitly overloaded.

Example: An overload of operator * is also an overload of operator *=. This is described further
in §11.18. end example

The assignment operator itself (=) cannot be overloaded. An assignment always performs a simple store
of a value into a variable (§11.18.2).

Cast operations, such as (T)x, are overloaded by providing user-defined conversions (§10.5).
Note: User-defined conversions do not affect the behavior of the is or as operators. end note

Element access, such as a[x], is not considered an overloadable operator. Instead, user-defined indexing
is supported through indexers (§14.9).

In expressions, operators are referenced using operator notation, and in declarations, operators are
referenced using functional notation. The following table shows the relationship between operator and
functional notations for unary and binary operators. In the first entry, «op» denotes any overloadable
unary prefix operator. In the second entry, «op» denotes the unary postfix ++ and - - operators. In the
third entry, «op» denotes any overloadable binary operator.

138

Chapter 11 Expressions

Note: For an example of overloading the ++ and - - operators see §14.10.2. end note

Operator notation = Functional notation
«op» X operator «op»(x)
X «op» operator «op»(x)
X «op» Yy operator «op»(X, Vy)

User-defined operator declarations always require at least one of the parameters to be of the class or
struct type that contains the operator declaration.

Note: Thus, it is not possible for a user-defined operator to have the same signature as a predefined
operator. end note

User-defined operator declarations cannot modify the syntax, precedence, or associativity of an operator.

Example: The / operator is always a binary operator, always has the precedence level specified in
§11.4.2, and is always left-associative. end example

Note: While it is possible for a user-defined operator to perform any computation it pleases,
implementations that produce results other than those that are intuitively expected are strongly
discouraged. For example, an implementation of operator == should compare the two operands for
equality and return an appropriate bool result. end note

The descriptions of individual operators in §11.8 through §11.18 specify the predefined implementations
of the operators and any additional rules that apply to each operator. The descriptions make use of the
terms unary operator overload resolution, binary operator overload resolution, numeric promotion,
and lifted operator definitions of which are found in the following subclauses.

11.4.4 Unary operator overload resolution

An operation of the form «op» x or x «op», where «op» is an overloadable unary operator, and x is an
expression of type X, is processed as follows:

The set of candidate user-defined operators provided by X for the operation operator «op»(x) is
determined using the rules of §11.4.6.

If the set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator «op» implementations,
including their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. The predefined
operators provided by an enum or delegate type are only included in this set when the binding-time
type—or the underlying type if it is a nullable type—of either operand is the enum or delegate type.

The overload resolution rules of §11.6.4 are applied to the set of candidate operators to select the
best operator with respect to the argument list (x), and this operator becomes the result of the
overload resolution process. If overload resolution fails to select a single best operator, a binding-
time error occurs.

11.4.5 Binary operator overload resolution

An operation of the form x «op» y, where «op» is an overloadable binary operator, x is an expression of
type X, and y is an expression of type Y, is processed as follows:

The set of candidate user-defined operators provided by X and Y for the operation operator
«op»(x, y) is determined. The set consists of the union of the candidate operators provided by X

139

ECMA-334

and the candidate operators provided by Y, each determined using the rules of §11.4.6. For the
combined set, candidates are merged as follows:

o IfxXandY are the same type, or if X and Y are derived from a common base type, then shared
candidate operators only occur in the combined set once.

o Ifthere is an identity conversion between X and Y, an operator «op»Y provided by Y has the same
return type as an «op»X provided by X and the operand types of «op»Y have an identity
conversion to the corresponding operand types of «op»X then only «op»X occurs in the set.

o I[fthe set of candidate user-defined operators is not empty, then this becomes the set of candidate
operators for the operation. Otherwise, the predefined binary operator «op» implementations,
including their lifted forms, become the set of candidate operators for the operation. The predefined
implementations of a given operator are specified in the description of the operator. For predefined
enum and delegate operators, the only operators considered are those provided by an enum or
delegate type that is the binding-time type of one of the operands.

e The overload resolution rules of §11.6.4 are applied to the set of candidate operators to select the
best operator with respect to the argument list (x, y), and this operator becomes the result of the
overload resolution process. If overload resolution fails to select a single best operator, a binding-
time error occurs.

11.4.6 Candidate user-defined operators

Given a type T and an operation operator «op»(A), where «op» is an overloadable operator and A is an
argument list, the set of candidate user-defined operators provided by T for operator «op»(A) is
determined as follows:

e Determine the type Te. If T is a nullable value type, To is its underlying type; otherwise, Te is equal
toT.

o Forall operator «op» declarations in T, and all lifted forms of such operators, if at least one
operator is applicable (§11.6.4.2) with respect to the argument list A, then the set of candidate
operators consists of all such applicable operators in Te.

e Otherwise, if To is object, the set of candidate operators is empty.
e Otherwise, the set of candidate operators provided by Te is the set of candidate operators provided

by the direct base class of To, or the effective base class of T if Te is a type parameter.

11.4.7 Numeric promotions
11.4.7.1 General
This subclause is informative.
§11.4.7 and its subclauses are a summary of the combined effect of:
e the rules for implicit numeric conversions (§10.2.3);
e the rules for better conversion (§11.6.4.6); and
e the available arithmetic (§11.9), relational (§11.11), and integral logical (§11.12.2) operators.

Numeric promotion consists of automatically performing certain implicit conversions of the operands of
the predefined unary and binary numeric operators. Numeric promotion is not a distinct mechanism, but
rather an effect of applying overload resolution to the predefined operators. Numeric promotion

140

Chapter 11 Expressions

specifically does not affect evaluation of user-defined operators, although user-defined operators can be
implemented to exhibit similar effects.

As an example of numeric promotion, consider the predefined implementations of the binary * operator:

int operator *(int x, int y);

uint operator *(uint x, uint y);

long operator *(long x, long y);

ulong operator *(ulong x, ulong y);

float operator *(float x, float y);
double operator *(double x, double y);
decimal operator *(decimal x, decimal y);

When overload resolution rules (§11.6.4) are applied to this set of operators, the effect is to select the first
of the operators for which implicit conversions exist from the operand types.

Example: For the operation b * s, where b is a byte and s is a short, overload resolution selects
operator *(int, int) asthe best operator. Thus, the effect is that b and s are converted to int,
and the type of the resultis int. Likewise, for the operation i * d, whereiisanintanddisa
double, overload resolution selects operator *(double, double) as the best operator. end
example

End of informative text.
11.4.7.2 Unary numeric promotions
This subclause is informative.

Unary numeric promotion occurs for the operands of the predefined +, -, and ~ unary operators. Unary
numeric promotion simply consists of converting operands of type sbyte, byte, short, ushort, or char to
type int. Additionally, for the unary - operator, unary numeric promotion converts operands of type uint
to type long.

End of informative text.
11.4.7.3 Binary numeric promotions
This subclause is informative.

Binary numeric promotion occurs for the operands of the predefined +, -, *, /,%,&, |, , ==, !5, >, <, >=, and
<= binary operators. Binary numeric promotion implicitly converts both operands to a common type
which, in case of the non-relational operators, also becomes the result type of the operation. Binary
numeric promotion consists of applying the following rules, in the order they appear here:

o Ifeither operand is of type decimal, the other operand is converted to type decimal, or a binding-
time error occurs if the other operand is of type float or double.

e Otherwise, if either operand is of type double, the other operand is converted to type double.
e Otherwise, if either operand is of type float, the other operand is converted to type float.

e Otherwise, if either operand is of type ulong, the other operand is converted to type ulong, or a
binding-time error occurs if the other operand is of type sbyte, short, int, or long.

e Otherwise, if either operand is of type long, the other operand is converted to type long.

e Otherwise, if either operand is of type uint and the other operand is of type sbyte, short, or int,
both operands are converted to type long.

e Otherwise, if either operand is of type uint, the other operand is converted to type uint.

141

ECMA-334

Otherwise, both operands are converted to type int.

Note: The first rule disallows any operations that mix the decimal type with the double and float
types. The rule follows from the fact that there are no implicit conversions between the decimal
type and the double and float types. end note

Note: Also note that it is not possible for an operand to be of type ulong when the other operand is
of a signed integral type. The reason is that no integral type exists that can represent the full range
of ulong as well as the signed integral types. end note

In both of the above cases, a cast expression can be used to explicitly convert one operand to a type that is
compatible with the other operand.

Example: In the following code

decimal AddPercent(decimal x, double percent) => x * (1.0 + percent / 100.0);

a binding-time error occurs because a decimal cannot be multiplied by a double. The error is
resolved by explicitly converting the second operand to decimal, as follows:

decimal AddPercent(decimal x, double percent) => x * (decimal)(1.0 + percent /
100.0);

end example

End of informative text.

11.4.8 Lifted operators

Lifted operators permit predefined and user-defined operators that operate on non-nullable value types
to also be used with nullable forms of those types. Lifted operators are constructed from predefined and
user-defined operators that meet certain requirements, as described in the following:

142

For the unary operators +, ++, -, --, !, and ~, a lifted form of an operator exists if the operand and
result types are both non-nullable value types. The lifted form is constructed by adding a single

? modifier to the operand and result types. The lifted operator produces a null value if the operand
is null. Otherwise, the lifted operator unwraps the operand, applies the underlying operator, and
wraps the result.

For the binary operators +, -, *, /, %, &, |, *, <<, and >>, a lifted form of an operator exists if the
operand and result types are all non-nullable value types. The lifted form is constructed by adding a
single ? modifier to each operand and result type. The lifted operator produces a null value if one
or both operands are null (an exception being the & and | operators of the bool? type, as described
in §11.12.5). Otherwise, the lifted operator unwraps the operands, applies the underlying operator,
and wraps the result.

For the equality operators == and !=, a lifted form of an operator exists if the operand types are both
non-nullable value types and if the result type is bool. The lifted form is constructed by adding a
single ? modifier to each operand type. The lifted operator considers two null values equal, and a
null value unequal to any non-null value. If both operands are non-null, the lifted operator
unwraps the operands and applies the underlying operator to produce the bool result.

For the relational operators <, >, <=, and >=, a lifted form of an operator exists if the operand types
are both non-nullable value types and if the result type is bool. The lifted form is constructed by
adding a single ? modifier to each operand type. The lifted operator produces the value false if one
or both operands are null. Otherwise, the lifted operator unwraps the operands and applies the
underlying operator to produce the bool result.

Chapter 11 Expressions

11.5 Member lookup

11.5.1 General

A member lookup is the process whereby the meaning of a name in the context of a type is determined. A
member lookup can occur as part of evaluating a simple_name (§11.7.4) or a member_access (§11.7.6) in
an expression. If the simple_name or member_access occurs as the primary_expression of an
invocation_expression (§11.7.8.2), the member is said to be invoked.

If a member is a method or event, or if it is a constant, field or property of either a delegate type (§19) or
the type dynamic (§8.2.4), then the member is said to be invocable.

Member lookup considers not only the name of a member but also the number of type parameters the
member has and whether the member is accessible. For the purposes of member lookup, generic methods
and nested generic types have the number of type parameters indicated in their respective declarations
and all other members have zero type parameters.

A member lookup of a name N with K type arguments in a type T is processed as follows:
e First, a set of accessible members named N is determined:

o IfTisatype parameter, then the set is the union of the sets of accessible members named N in
each of the types specified as a primary constraint or secondary constraint (§14.2.5) for T, along
with the set of accessible members named N in object.

o Otherwise, the set consists of all accessible (§7.5) members named N in T, including inherited
members and the accessible members named N in object. If T is a constructed type, the set of
members is obtained by substituting type arguments as described in §14.3.3. Members that
include an override modifier are excluded from the set.

e Next, ifK is zero, all nested types whose declarations include type parameters are removed. If K is
not zero, all members with a different number of type parameters are removed. When K is zero,
methods having type parameters are not removed, since the type inference process (§11.6.3) might
be able to infer the type arguments.

e Next, if the member is invoked, all non-invocable members are removed from the set.

e Next, members that are hidden by other members are removed from the set. For every member S.M
in the set, where S is the type in which the member M is declared, the following rules are applied:

o IfMis a constant, field, property, event, or enumeration member, then all members declared in a
base type of S are removed from the set.

o IfMis atype declaration, then all non-types declared in a base type of S are removed from the
set, and all type declarations with the same number of type parameters as M declared in a base
type of S are removed from the set.

o IfMis a method, then all non-method members declared in a base type of S are removed from
the set.

e Next, interface members that are hidden by class members are removed from the set. This step only
has an effect if T is a type parameter and T has both an effective base class other than object and a
non-empty effective interface set (§14.2.5). For every member S.Min the set, where S is the type in
which the member Mis declared, the following rules are applied if S is a class declaration other than
object:

143

ECMA-334

o IfMis a constant, field, property, event, enumeration member, or type declaration, then all
members declared in an interface declaration are removed from the set.

o IfMis amethod, then all non-method members declared in an interface declaration are removed
from the set, and all methods with the same signature as M declared in an interface declaration
are removed from the set.

e Finally, having removed hidden members, the result of the lookup is determined:

o Ifthe set consists of a single member that is not a method, then this member is the result of the
lookup.

o Otherwise, if the set contains only methods, then this group of methods is the result of the
lookup.

o Otherwise, the lookup is ambiguous, and a binding-time error occurs.

For member lookups in types other than type parameters and interfaces, and member lookups in
interfaces that are strictly single-inheritance (each interface in the inheritance chain has exactly zero or
one direct base interface), the effect of the lookup rules is simply that derived members hide base
members with the same name or signature. Such single-inheritance lookups are never ambiguous. The
ambiguities that can possibly arise from member lookups in multiple-inheritance interfaces are described
in§17.4.6.

Note: This phase only accounts for one kind of ambiguity. If the member lookup results in a method
group, further uses of method group may fail due to ambiguity, for example as described in
§11.6.4.1 and §11.6.6.2. end note

11.5.2 Base types

For purposes of member lookup, a type T is considered to have the following base types:
e IfTisobject or dynamic, then T has no base type.

e IfTis an enum_type, the base types of T are the class types System.Enum, System.ValueType, and
object.

o If Tis astruct_type, the base types of T are the class types System.ValueType and object.
Note: A nullable_value_type is a struct_type (§8.3.1). end note

o If Tisaclass_type, the base types of T are the base classes of T, including the class type object.
e IfTisan interface_type, the base types of T are the base interfaces of T and the class type object.
o IfTisan array_type, the base types of T are the class types System.Array and object.

o IfTisadelegate_type, the base types of T are the class types System.Delegate and object.

11.6 Function members

11.6.1 General

Function members are members that contain executable statements. Function members are always
members of types and cannot be members of namespaces. C# defines the following categories of function
members:

e Methods

144

Chapter 11 Expressions

e Properties

e Events

e Indexers

o User-defined operators
e Instance constructors

e Static constructors

e Finalizers

Except for finalizers and static constructors (which cannot be invoked explicitly), the statements
contained in function members are executed through function member invocations. The actual syntax for
writing a function member invocation depends on the particular function member category.

The argument list (§11.6.2) of a function member invocation provides actual values or variable references
for the parameters of the function member.

Invocations of generic methods may employ type inference to determine the set of type arguments to pass
to the method. This process is described in §11.6.3.

Invocations of methods, indexers, operators, and instance constructors employ overload resolution to
determine which of a candidate set of function members to invoke. This process is described in §11.6.4.

Once a particular function member has been identified at binding-time, possibly through overload
resolution, the actual run-time process of invoking the function member is described in §11.6.6.

Note: The following table summarizes the processing that takes place in constructs involving the six
categories of function members that can be explicitly invoked. In the table, e, %, y, and value indicate
expressions classified as variables or values, T indicates an expression classified as a type, F is the
simple name of a method, and P is the simple name of a property.

Construct Example Description
Method F(x, y) Overload resolution is applied to select the best method F in
invocation the containing class or struct. The method is invoked with the

argument list (x, y).If the method is not static, the instance
expression is this.

T.F(x, y) | Overload resolution is applied to select the best method F in
the class or struct T. A binding-time error occurs if the method
is not static. The method is invoked with the argument list
(X5 y).

e.F(x, y) Overload resolution is applied to select the best method F in
the class, struct, or interface given by the type of e. A binding-
time error occurs if the method is static. The method is
invoked with the instance expression e and the argument list

(X5 ¥).
Property P The get accessor of the property P in the containing class or
access struct is invoked. A compile-time error occurs if P is write-

only. If P is not static, the instance expression is this.

145

ECMA-334

146

Event access

Indexer access

P = value The setaccessor of the property P in the containing class or
struct is invoked with the argument list (value). A compile-
time error occurs if P is read-only. If P is not static, the
instance expression is this.

T.P The get accessor of the property P in the class or struct T is
invoked. A compile-time error occurs if P is not static or if P
is write-only.

T.P = The set accessor of the property P in the class or struct T is

value invoked with the argument list (value). A compile-time error
occurs if P is not static or if P is read-only.

e.p The get accessor of the property P in the class, struct, or
interface given by the type of E is invoked with the instance
expression e. A binding-time error occurs if P is static or if P
is write-only.

e.P = The set accessor of the property P in the class, struct, or

value interface given by the type of E is invoked with the instance
expression e and the argument list (value). A binding-time
error occurs if P is static or if P is read-only.

E += The add accessor of the event E in the containing class or

value struct is invoked. If E is not static, the instance expression is
this.

E -= The remove accessor of the event E in the containing class or

value struct is invoked. If E is not static, the instance expression is
this.

T.E += The add accessor of the event E in the class or struct T is

value invoked. A binding-time error occurs if E is not static.

T.E -= The remove accessor of the event E in the class or struct T is

value invoked. A binding-time error occurs if E is not static.

e.E += The add accessor of the event E in the class, struct, or interface

value given by the type of E is invoked with the instance expression
e. A binding-time error occurs if E is static.

e.E -= The remove accessor of the event E in the class, struct, or

value interface given by the type of E is invoked with the instance
expression e. A binding-time error occurs if E is static.

e[x, yl Overload resolution is applied to select the best indexer in the
class, struct, or interface given by the type of e. The get
accessor of the indexer is invoked with the instance
expression e and the argument list (x, y). A binding-time
error occurs if the indexer is write-only.

e[x, yl = Overload resolution is applied to select the best indexer in the

value

class, struct, or interface given by the type of e. The set
accessor of the indexer is invoked with the instance
expression e and the argument list (x, y, value).A binding-
time error occurs if the indexer is read-only.

Chapter 11 Expressions

Operator -X Overload resolution is applied to select the best unary
invocation operator in the class or struct given by the type of x. The
selected operator is invoked with the argument list (x).

X +y Overload resolution is applied to select the best binary
operator in the classes or structs given by the types of x and y.
The selected operator is invoked with the argument list

(X, y).
Instance new T(X, Overload resolution is applied to select the best instance
constructor y) constructor in the class or struct T. The instance constructor is
invocation invoked with the argument list (x, y).

11.6.2 Argument lists

11.6.2.1 General

Every function member and delegate invocation includes an argument list, which provides actual values
or variable references for the parameters of the function member. The syntax for specifying the argument
list of a function member invocation depends on the function member category:

For instance constructors, methods, indexers and delegates, the arguments are specified as an
argument_list, as described below. For indexers, when invoking the set accessor, the argument list
additionally includes the expression specified as the right operand of the assignment operator.
Note: This additional argument is not used for overload resolution, just during invocation of the set
accessor. end note

For properties, the argument list is empty when invoking the get accessor, and consists of the
expression specified as the right operand of the assignment operator when invoking the set
accessor.

For events, the argument list consists of the expression specified as the right operand of the += or -
= operator.

For user-defined operators, the argument list consists of the single operand of the unary operator or
the two operands of the binary operator.

The arguments of properties (§14.7), events (§14.8), and user-defined operators (§14.10) are always
passed as value parameters (§14.6.2.2). The arguments of indexers (§14.9) are always passed as value
parameters (§14.6.2.2) or parameter arrays (§14.6.2.5). Reference and output parameters are not
supported for these categories of function members.

The arguments of an instance constructor, method, indexer, or delegate invocation are specified as an
argument_list:

argument_list
: argument (',

argument)*
5
argument
: argument_name? argument_value
5
argument_name
: identifier

ECMA-334

)

argument_value
. expression
| 'ref' variable reference
| 'out' variable reference

5
An argument_list consists of one or more arguments, separated by commas. Each argument consists of an
optional argument_name followed by an argument_value. An argument with an argument_name is referred

to as a named argument, whereas an argument without an argument_name is a positional argument. It
is an error for a positional argument to appear after a named argument in an argument_list.

The argument_value can take one of the following forms:
e An expression, indicating that the argument is passed as a value parameter (§14.6.2.2).

o The keyword ref followed by a variable_reference (§9.5), indicating that the argument is passed as a
reference parameter (§14.6.2.3). A variable shall be definitely assigned (§9.4) before it can be
passed as a reference parameter.

e The keyword out followed by a variable_reference (§9.5), indicating that the argument is passed as
an output parameter (§14.6.2.4). A variable is considered definitely assigned (§9.4) following a
function member invocation in which the variable is passed as an output parameter.

The form determines the parameter-passing mode of the argument: value, reference, or output,
respectively.

Passing a volatile field (§14.5.4) as a reference parameter or output parameter causes a warning, since
the field may not be treated as volatile by the invoked method.

11.6.2.2 Corresponding parameters

For each argument in an argument list there has to be a corresponding parameter in the function member
or delegate being invoked.

The parameter list used in the following is determined as follows:

e For virtual methods and indexers defined in classes, the parameter list is picked from the first
declaration or override of the function member found when starting with the static type of the
receiver, and searching through its base classes.

e For partial methods, the parameter list of the defining partial method declaration is used.

e For all other function members and delegates there is only a single parameter list, which is the one
used.

The position of an argument or parameter is defined as the number of arguments or parameters
preceding it in the argument list or parameter list.

The corresponding parameters for function member arguments are established as follows:
e Arguments in the argument _list of instance constructors, methods, indexers and delegates:

o A positional argument where a parameter occurs at the same position in the parameter list
corresponds to that parameter, unless the parameter is a parameter array and the function
member is invoked in its expanded form.

148

Chapter 11 Expressions

o A positional argument of a function member with a parameter array invoked in its expanded
form, which occurs at or after the position of the parameter array in the parameter list,
corresponds to an element in the parameter array.

o A named argument corresponds to the parameter of the same name in the parameter list.

o For indexers, when invoking the set accessor, the expression specified as the right operand of
the assignment operator corresponds to the implicit value parameter of the set accessor
declaration.

e For properties, when invoking the get accessor there are no arguments. When invoking the set
accessor, the expression specified as the right operand of the assignment operator corresponds to
the implicit value parameter of the set accessor declaration.

e For user-defined unary operators (including conversions), the single operand corresponds to the
single parameter of the operator declaration.

e For user-defined binary operators, the left operand corresponds to the first parameter, and the right
operand corresponds to the second parameter of the operator declaration.

11.6.2.3 Run-time evaluation of argument lists

During the run-time processing of a function member invocation (§11.6.6), the expressions or variable
references of an argument list are evaluated in order, from left to right, as follows:

e For avalue parameter, the argument expression is evaluated and an implicit conversion (§10.2) to
the corresponding parameter type is performed. The resulting value becomes the initial value of the
value parameter in the function member invocation.

e For areference or output parameter, the variable reference is evaluated and the resulting storage
location becomes the storage location represented by the parameter in the function member
invocation. If the variable reference given as a reference or output parameter is an array element of
a reference_type, a run-time check is performed to ensure that the element type of the array is
identical to the type of the parameter. If this check fails, a System.ArrayTypeMismatchException is
thrown.

Methods, indexers, and instance constructors may declare their right-most parameter to be a parameter
array (§14.6.2.5). Such function members are invoked either in their normal form or in their expanded
form depending on which is applicable (§11.6.4.2):

e When a function member with a parameter array is invoked in its normal form, the argument given
for the parameter array shall be a single expression that is implicitly convertible (§10.2) to the
parameter array type. In this case, the parameter array acts precisely like a value parameter.

e When a function member with a parameter array is invoked in its expanded form, the invocation
shall specify zero or more positional arguments for the parameter array, where each argument is an
expression that is implicitly convertible (§10.2) to the element type of the parameter array. In this
case, the invocation creates an instance of the parameter array type with a length corresponding to
the number of arguments, initializes the elements of the array instance with the given argument
values, and uses the newly created array instance as the actual argument.

The expressions of an argument list are always evaluated in textual order.

Example: Thus, the example

class Test

{

static void F(int x, int y = -1, int z = -2) =>

149

ECMA-334

System.Console.WriteLine($"x = {x}, v = {y}, z = {z}");

static void Main()

{
int i = 0;
F(i++, i++, i++);
F(z: i++, x: i++);
}

}
produces the output

X=0,y=1, z =2
X=4,y=-1, z =3

end example

The array co-variance rules (§16.6) permit a value of an array type A[] to be a reference to an instance of
an array type B[], provided an implicit reference conversion exists from B to A. Because of these rules,
when an array element of a reference_type is passed as a reference or output parameter, a run-time check
is required to ensure that the actual element type of the array is identical to that of the parameter.

Example: In the following code

class Test

{
static void F(ref object x) {...}
static void Main()
{
object[] a = new object[10];
object[] b = new string[10];
F(ref a[e@]); // Ok
F(ref b[1]); // ArrayTypeMismatchException
}
}

the second invocation of F causes a System.ArrayTypeMismatchException to be thrown because the
actual element type of b is string and not object.

end example

When a function member with a parameter array is invoked in its expanded form with at least one
expanded argument, the invocation is processed as if an array creation expression with an array
initializer (§11.7.15.5) was inserted around the expanded arguments. An empty array is passed when
there are no arguments for the parameter array; it is unspecified whether the reference passed is to a
newly allocated or existing empty array.

Example: Given the declaration
void F(int x, int y, params object[] args);
the following invocations of the expanded form of the method

F(10, 20, 30, 40);
F(10, 20, 1, "hello", 3.0);

correspond exactly to

150

Chapter 11 Expressions

F(10, 20, new object[] { 30, 40 });
F(10, 20, new object[] { 1, "hello", 3.0 });

end example

When arguments are omitted from a function member with corresponding optional parameters, the
default arguments of the function member declaration are implicitly passed.

Note: Because these are always constant, their evaluation will not impact the evaluation of the
remaining arguments. end note

11.6.3 Type inference

11.6.3.1 General

When a generic method is called without specifying type arguments, a type inference process attempts to
infer type arguments for the call. The presence of type inference allows a more convenient syntax to be
used for calling a generic method, and allows the programmer to avoid specifying redundant type
information.

Example: Given the method declaration:

class Chooser

{

static Random rand = new Random();

public static T Choose<T>(T first, T second) => rand.Next(2) == @ ? first :
second;
}

it is possible to invoke the Choose method without explicitly specifying a type argument:

int i = Chooser.Choose(5, 213); // Calls Choose<int>
string s = Chooser.Choose("apple"”, "banana"); // Calls Choose<string>

Through type inference, the type arguments int and string are determined from the arguments to
the method.

end example

Type inference occurs as part of the binding-time processing of a method invocation (§11.7.8.2) and takes
place before the overload resolution step of the invocation. When a particular method group is specified
in a method invocation, and no type arguments are specified as part of the method invocation, type
inference is applied to each generic method in the method group. If type inference succeeds, then the
inferred type arguments are used to determine the types of arguments for subsequent overload
resolution. If overload resolution chooses a generic method as the one to invoke, then the inferred type
arguments are used as the type arguments for the invocation. If type inference for a particular method
fails, that method does not participate in overload resolution. The failure of type inference, in and of itself,
does not cause a binding-time error. However, it often leads to a binding-time error when overload
resolution then fails to find any applicable methods.

If each supplied argument does not correspond to exactly one parameter in the method (§11.6.2.2), or
there is a non-optional parameter with no corresponding argument, then inference immediately fails.
Otherwise, assume that the generic method has the following signature:

Te M<X1...XV>(T1 p1 ... Tx px)

With a method call of the form M(E: ...Ex) the task of type inference is to find unique type arguments
Si...Sy for each of the type parameters X. . . X, so that the call M<S;...S,>(E;. . .Ex) becomes valid.

151

ECMA-334

The process of type inference is described below as an algorithm. A conformant compiler may be
implemented using an alternative approach, provided it reaches the same result in all cases.

During the process of inference each type parameter X; is either fixed to a particular type S;: or unfixed
with an associated set of bounds. Each of the bounds is some type T. Initially each type variable X; is
unfixed with an empty set of bounds.

Type inference takes place in phases. Each phase will try to infer type arguments for more type variables
based on the findings of the previous phase. The first phase makes some initial inferences of bounds,
whereas the second phase fixes type variables to specific types and infers further bounds. The second
phase may have to be repeated a number of times.

Note: Type inference is also used in other contexts including for conversion of method groups
(§11.6.3.14) and finding the best common type of a set of expressions (§11.6.3.15). end note

11.6.3.2 The first phase
For each of the method arguments E;:
e IfE;is an anonymous function, an explicit parameter type inference (§11.6.3.8) is made from E; to T;

e Otherwise, if E; has a type U and x; is a value parameter (§14.6.2.2) then a lower-bound inference
(§11.6.3.10) is made from U to T;.

e Otherwise, if E; has a type U and x; is a reference (§14.6.2.3) or output (§14.6.2.4) parameter then an
exact inference (§11.6.3.9) is made from U to T;.

e Otherwise, no inference is made for this argument.
11.6.3.3 The second phase
The second phase proceeds as follows:
o All unfixed type variables X; which do not depend on (§11.6.3.6) any X. are fixed (§11.6.3.12).

e Ifno such type variables exist, all unfixed type variables X; are fixed for which all of the following
hold:

o There is at least one type variable X. that depends on X

o X; has a non-empty set of bounds
e Ifno such type variables exist and there are still unfixed type variables, type inference fails.
e Otherwise, if no further unfixed type variables exist, type inference succeeds.

e Otherwise, for all arguments E; with corresponding parameter type T; where the output types
(§11.6.3.5) contain unfixed type variables X. but the input types (§11.6.3.4) do not, an output type
inference (§11.6.3.7) is made from E; to T;. Then the second phase is repeated.

11.6.3.4 Input types

If E is a method group or implicitly typed anonymous function and T is a delegate type or expression tree
type then all the parameter types of T are input types of E with type T.

11.6.3.5 Output types

If E is a method group or an anonymous function and T is a delegate type or expression tree type then the
return type of T is an output type of E with type T.

152

Chapter 11 Expressions

11.6.3.6 Dependence

An unfixed type variable X; depends directly on an unfixed type variable X. if for some argument E, with
type T Xe occurs in an input type of E, with type T, and X; occurs in an output type of E, with type T..

Xe depends on X; if X. depends directly on X; or if X; depends directly on X, and X, depends on X.. Thus
“depends on” is the transitive but not reflexive closure of “depends directly on”.

11.6.3.7 Output type inferences
An output type inference is made from an expression E to a type T in the following way:

e IfEis an anonymous function with inferred return type U (§11.6.3.13) and T is a delegate type or
expression tree type with return type T, then a lower-bound inference (§11.6.3.10) is made from U
to T.

e Otherwise, if E is a method group and T is a delegate type or expression tree type with parameter
types Ti...T, and return type Ty, and overload resolution of E with the types T;. .. T, yields a single
method with return type U, then a lower-bound inference is made from U to T.

e Otherwise, if E is an expression with type U, then a lower-bound inference is made from U to T.
e Otherwise, no inferences are made.

11.6.3.8 Explicit parameter type inferences

An explicit parameter type inference is made from an expression E to a type T in the following way:

e IfE is an explicitly typed anonymous function with parameter types U;. . .U, and T is a delegate type
or expression tree type with parameter types V:. ..V, then for each U; an exact inference (§11.6.3.9)
is made from U; to the corresponding V;.

11.6.3.9 Exact inferences
An exact inference from a type U to a type V is made as follows:
e IfVis one of the unfixed X; then U is added to the set of exact bounds for X;.
e Otherwise, sets Vi...Veand Us. . .U. are determined by checking if any of the following cases apply:
o Visanarray type Vi[...] and Uis an array type Ui[...] of the same rank
o Visthe type Vi? and U is the type U;

o Visaconstructed type C<V:...V.>and U is a constructed type C<U;. . .Uc.>If any of these cases
apply then an exact inference is made from each U; to the corresponding V;.

e Otherwise, no inferences are made.
11.6.3.10 Lower-bound inferences
A lower-bound inference from a type U to a type V is made as follows:
e [fVis one of the unfixed X; then U is added to the set of lower bounds for X;.

e Otherwise, if V is the type V1? and U is the type U:? then a lower bound inference is made from U,
to V.

e Otherwise, sets U;...U. and V;. . .V, are determined by checking if any of the following cases apply:

o Visanarray type Vi[...]and Uis an array type Ui[. . . Jof the same rank

153

ECMA-334

V is one of IEnumerable<V;>, ICollection<V;>, IReadOnlyList<V;>>, IReadOnlyCollection<Vy>
or IList<V;> and U is a single-dimensional array type Ui[]

Vis a constructed class, struct, interface or delegate type C<Vi...V.> and there is a unique
type C<U;. . .Ue> such that U (or, if U is a type parameter, its effective base class or any member of
its effective interface set) is identical to, inherits from (directly or indirectly), or implements
(directly or indirectly) C<U;. . .Ue>.

(The “uniqueness” restriction means that in the case interface C<T>{} class U: C<X>, C<Y>{},
then no inference is made when inferring from U to C<T> because U, could be X or Y.)If any of
these cases apply then an inference is made from each U; to the corresponding V; as follows:

If U; is not known to be a reference type then an exact inference is made

Otherwise, if U is an array type then a lower-bound inference is made

Otherwise, if Vis C<V;. . .Ve> then inference depends on the i-th type parameter of C:
e Ifitis covariant then a lower-bound inference is made.

e I[fitis contravariant then an upper-bound inference is made.

e [fitis invariant then an exact inference is made.

Otherwise, no inferences are made.

11.6.3.11 Upper-bound inferences

An upper-bound inference from a type U to a type V is made as follows:

154

If v is one of the unfixed X; then U is added to the set of upper bounds for X;.

Otherwise, sets Vi...Ve and U;. . .Ue are determined by checking if any of the following cases apply:

O

O

Uis an array type Ui[...]and Vis an array type Vi[. . . Jof the same rank

U is one of IEnumerable<U.>, ICollection<Ue.>, IReadOnlylList<U.>, IReadOnlyCollection<Ue>
or IList<Ue.> and V is a single-dimensional array type V.[]

U is the type U1? and V is the type v1?

U is constructed class, struct, interface or delegate type C<U;...U.> and Vis a class, struct,
interface or delegate type which is identical to, inherits from (directly or indirectly), or
implements (directly or indirectly) a unique type C<V;. . .Ve>

(The “uniqueness” restriction means that if we have interface C<T>{} class V<Z>: C<X<Z>>,
C<Y<Z>>{}, then no inference is made when inferring from C<U;> to V<Q>. Inferences are not
made from U, to either X<Q> or Y<Q>.)If any of these cases apply then an inference is made from
each U; to the corresponding V; as follows:

If U; is not known to be a reference type then an exact inference is made

Otherwise, if V is an array type then an upper-bound inference is made

Otherwise, if Uis C<Us. . .Ue> then inference depends on the i-th type parameter of C:
e Ifitis covariant then an upper-bound inference is made.

e Ifitis contravariant then a lower-bound inference is made.

e I[fitisinvariant then an exact inference is made.

Chapter 11 Expressions

e Otherwise, no inferences are made.

11.6.3.12 Fixing

An unfixed type variable X; with a set of bounds is fixed as follows:
e The set of candidate types U. starts out as the set of all types in the set of bounds for X;.

e We then examine each bound for X; in turn: For each exact bound U of X; all types U. that are not
identical to U are removed from the candidate set. For each lower bound U of X; all types U. to which
there is not an implicit conversion from U are removed from the candidate set. For each upper-
bound U of X; all types Ue from which there is not an implicit conversion to U are removed from the
candidate set.

e [f among the remaining candidate types U. there is a unique type V to which there is an implicit
conversion from all the other candidate types, then X; is fixed to V.

e Otherwise, type inference fails.

11.6.3.13 Inferred return type

The inferred return type of an anonymous function F is used during type inference and overload
resolution. The inferred return type can only be determined for an anonymous function where all
parameter types are known, either because they are explicitly given, provided through an anonymous
function conversion or inferred during type inference on an enclosing generic method invocation.

The inferred effective return type is determined as follows:

e Ifthe body of F is an expression that has a type, then the inferred effective return type of F is the type
of that expression.

e Ifthe body of F is a block and the set of expressions in the block’s return statements has a best
common type T (§11.6.3.15), then the inferred effective return type of Fis T.

e Otherwise, an effective return type cannot be inferred for F.
The inferred return type is determined as follows:

e IfFisasyncand the body of F is either an expression classified as nothing (§11.2), or a block where
no return statements have expressions, the inferred return type is System.Threading.Tasks.Task.

e IfFisasync and has an inferred effective return type T, the inferred return type is
System.Threading.Tasks.Task<T>.

e [fFis non-async and has an inferred effective return type T, the inferred return type is T.
e Otherwise, a return type cannot be inferred for F.

Example: As an example of type inference involving anonymous functions, consider the Select
extension method declared in the System.Ling.Enumerable class:

namespace System.Ling

{

public static class Enumerable

{

public static IEnumerable<TResult> Select<TSource,TResult>(
this IEnumerable<TSource> source,
Func<TSource,TResult> selector)

foreach (TSource element in source)

155

ECMA-334

yield return selector(element);

}

Assuming the System.Ling namespace was imported with a using namespace directive, and given a
class Customer with a Name property of type string, the Select method can be used to select the
names of a list of customers:

List<Customer> customers = GetCustomerList();
IEnumerable<string> names = customers.Select(c => c.Name);

The extension method invocation (§11.7.8.3) of Select is processed by rewriting the invocation to a
static method invocation:

IEnumerable<string> names = Enumerable.Select(customers, c => c.Name);

Since type arguments were not explicitly specified, type inference is used to infer the type
arguments. First, the customers argument is related to the source parameter, inferring TSource to
be Customer. Then, using the anonymous function type inference process described above, c is given
type Customer, and the expression c.Name is related to the return type of the selector parameter,
inferring TResult to be string. Thus, the invocation is equivalent to

Sequence.Select<Customer,string>(customers, (Customer c) => c.Name)
and the result is of type IEnumerable<string>.

The following example demonstrates how anonymous function type inference allows type
information to “flow” between arguments in a generic method invocation. Given the method:

static Z F<X,Y,Z>(X value, Func<X,Y> f1, Func<Y,Z> f2)
{

}

Type inference for the invocation:

return f2(f1l(value));

double seconds = F("1:15:30", s => TimeSpan.Parse(s), t => t.TotalSeconds);

proceeds as follows: First, the argument “1:15:30” is related to the value parameter, inferring X to be
string. Then, the parameter of the first anonymous function, s, is given the inferred type string, and
the expression TimeSpan.Parse(s) is related to the return type of 1, inferring Y to be
System.TimeSpan. Finally, the parameter of the second anonymous function, t, is given the inferred
type System.TimeSpan, and the expression t.TotalSeconds is related to the return type of 2,
inferring Z to be double. Thus, the result of the invocation is of type double.

end example

11.6.3.14 Type inference for conversion of method groups

Similar to calls of generic methods, type inference shall also be applied when a method group M containing
a generic method is converted to a given delegate type D (§10.8). Given a method

Te M<X1...XV>(T1 X1 «.. Te Xe)

and the method group M being assigned to the delegate type D the task of type inference is to find type
arguments S;. . .S, so that the expression:

M<Si...Sv>

156

Chapter 11 Expressions

becomes compatible (§19.2) with D.

Unlike the type inference algorithm for generic method calls, in this case, there are only argument types,
no argument expressions. In particular, there are no anonymous functions and hence no need for multiple
phases of inference.

Instead, all X; are considered unfixed, and a lower-bound inference is made from each argument type U. of D
to the corresponding parameter type T. of M. If for any of the X; no bounds were found, type inference fails.
Otherwise, all X; are fixed to corresponding S;, which are the result of type inference.

11.6.3.15 Finding the best common type of a set of expressions

In some cases, a common type needs to be inferred for a set of expressions. In particular, the element
types of implicitly typed arrays and the return types of anonymous functions with block bodies are found
in this way.

The best common type for a set of expressions E;. . . E, is determined as follows:
e A new unfixed type variable X is introduced.
e For each expression Ei an output type inference (§11.6.3.7) is performed from it to X.
e Xis fixed (§11.6.3.12), if possible, and the resulting type is the best common type.
e Otherwise inference fails.
Note: Intuitively this inference is equivalent to calling a method void M<X>(X x1 ... X x,) with the

E; as arguments and inferring X. end note

11.6.4 Overload resolution

11.6.4.1 General

Overload resolution is a binding-time mechanism for selecting the best function member to invoke given
an argument list and a set of candidate function members. Overload resolution selects the function
member to invoke in the following distinct contexts within C#:

e Invocation of a method named in an invocation_expression (§11.7.8).
e Invocation of an instance constructor named in an object_creation_expression (§11.7.15.2).
e Invocation of an indexer accessor through an element_access (§11.7.10).

e Invocation of a predefined or user-defined operator referenced in an expression (§11.4.4 and
§11.4.5).

Each of these contexts defines the set of candidate function members and the list of arguments in its own
unique way. For instance, the set of candidates for a method invocation does not include methods marked
override (§11.5), and methods in a base class are not candidates if any method in a derived class is
applicable (§11.7.8.2).

Once the candidate function members and the argument list have been identified, the selection of the best
function member is the same in all cases:

o First, the set of candidate function members is reduced to those function members that are
applicable with respect to the given argument list (§11.6.4.2). If this reduced set is empty, a
compile-time error occurs.

e Then, the best function member from the set of applicable candidate function members is located. If
the set contains only one function member, then that function member is the best function member.

157

ECMA-334

Otherwise, the best function member is the one function member that is better than all other
function members with respect to the given argument list, provided that each function member is
compared to all other function members using the rules in §11.6.4.3. If there is not exactly one
function member that is better than all other function members, then the function member
invocation is ambiguous and a binding-time error occurs.

The following subclauses define the exact meanings of the terms applicable function member and better
function member.

11.6.4.2 Applicable function member

A function member is said to be an applicable function member with respect to an argument list A when
all of the following are true:

e Each argument in A corresponds to a parameter in the function member declaration as described in
§11.6.2.2, at most one argument corresponds to each parameter, and any parameter to which no
argument corresponds is an optional parameter.

e For each argument in A, the parameter-passing mode of the argument is identical to the parameter-
passing mode of the corresponding parameter, and

o for avalue parameter or a parameter array, an implicit conversion (§10.2) exists from the
argument expression to the type of the corresponding parameter, or

o foraref orout parameter, there is an identity conversion between the type of the argument
expression and the type of the corresponding parameter

For a function member that includes a parameter array, if the function member is applicable by the above
rules, it is said to be applicable in its normal form. If a function member that includes a parameter array
is not applicable in its normal form, the function member might instead be applicable in its expanded
form:

e The expanded form is constructed by replacing the parameter array in the function member
declaration with zero or more value parameters of the element type of the parameter array such
that the number of arguments in the argument list A matches the total number of parameters. If A
has fewer arguments than the number of fixed parameters in the function member declaration, the
expanded form of the function member cannot be constructed and is thus not applicable.

e Otherwise, the expanded form is applicable if for each argument in A the parameter-passing mode of
the argument is identical to the parameter-passing mode of the corresponding parameter, and

o for afixed value parameter or a value parameter created by the expansion, an implicit
conversion (§10.2) exists from the argument expression to the type of the corresponding
parameter, or

o foraref orout parameter, the type of the argument expression is identical to the type of the
corresponding parameter.

11.6.4.3 Better function member

For the purposes of determining the better function member, a stripped-down argument list A is
constructed containing just the argument expressions themselves in the order they appear in the original
argument list.

Parameter lists for each of the candidate function members are constructed in the following way:

e The expanded form is used if the function member was applicable only in the expanded form.

158

Chapter 11 Expressions

e Optional parameters with no corresponding arguments are removed from the parameter list

e The parameters are reordered so that they occur at the same position as the corresponding
argument in the argument list.

Given an argument list A with a set of argument expressions {E:, E,, ..., E,} and two applicable
function members M, and M, with parameter types {P:, P>, ..., Py}and {Q:, Q, ..., Q.}, M is defined
to be a better function member than M, if

e for each argument, the implicit conversion from E, to Q. is not better than the implicit conversion
from E, to P,, and

e for atleast one argument, the conversion from E, to P, is better than the conversion from E, to Q..

In case the parameter type sequences {P1, P>, ..., Py} and {Qi, Q., ..., Q,} are equivalent (i.e.,
each P; has an identity conversion to the corresponding Q:), the following tie-breaking rules are applied,
in order, to determine the better function member.

e [fM;is a non-generic method and M. is a generic method, then M; is better than Me.

e Otherwise, if M; is applicable in its normal form and M. has a params array and is applicable only in
its expanded form, then M; is better than M..

e Otherwise, if both methods have params arrays and are applicable only in their expanded forms,
and if the params array of M; has fewer elements than the params array of M, then M; is better
than M.

e Otherwise, if M, has more specific parameter types than M,, then M, is better than M,. Let {R1, R2,
., Rn}and {S1, S2, ..., Sn}representthe uninstantiated and unexpanded parameter types
of M, and M,. M,’s parameter types are more specific than M;s if, for each parameter, Rx is not less
specific than Sx, and, for at least one parameter, Rx is more specific than Sx:

o Atype parameter is less specific than a non-type parameter.

o Recursively, a constructed type is more specific than another constructed type (with the same
number of type arguments) if at least one type argument is more specific and no type argument
is less specific than the corresponding type argument in the other.

o Anarray type is more specific than another array type (with the same number of dimensions) if
the element type of the first is more specific than the element type of the second.

e Otherwise if one member is a non-lifted operator and the other is a lifted operator, the non-lifted
one is better.

e Ifneither function member was found to be better, and all parameters of M, have a corresponding
argument whereas default arguments need to be substituted for at least one optional parameter
in M, then M, is better than M,. Otherwise, no function member is better.

11.6.4.4 Better conversion from expression

Given an implicit conversion C; that converts from an expression E to a type T, and an implicit conversion
C, that converts from an expression E to a type T, C; is a better conversion than C, if one of the following
holds:

e E exactly matches T; and E does not exactly match T, (§11.6.4.5)

e E exactly matches both or neither of T, and T, and T, is a better conversion target than T, (§11.6.4.6)

159

ECMA-334

E is a method group (§11.2), T, is compatible (§19.4) with the single best method from the method
group for conversion C4, and T is not compatible with the single best method from the method
group for conversion C,

11.6.4.5 Exactly matching expression

Given an expression E and a type T, E exactly matches T if one of the following holds:

E has a type S, and an identity conversion exists from Sto T

E is an anonymous function, T is either a delegate type D or an expression tree type Expression<D>
and one of the following holds:

o Aninferred return type X exists for E in the context of the parameter list of D (§11.6.3.12), and an
identity conversion exists from X to the return type of D

o Either E is non-async and D has a return type Y or E is async and D has a return type Task<Y>,
and one of the following holds:

e The body of E is an expression that exactly matches Y

e The body of E is a block where every return statement returns an expression that exactly
matches Y

11.6.4.6 Better conversion target

Given two types T: and T,, T1 is a better conversion target than T, if one of the following holds:

An implicit conversion from T, to T, exists and no implicit conversion from T, to T, exists
T1is Task<S:>, T, is Task<S,>, and S; is a better conversion target than S,

T1is S1or S:? where S, is a signed integral type, and T is S; or S,? where S, is an unsigned integral
type. Specifically:

o Siissbyteands,is byte,ushort, uint, or ulong
o Siisshortands;isushort,uint, or ulong
o SiisintandS;isuint, orulong

o S:islongandS;isulong

11.6.4.7 Overloading in generic classes

160

Note: While signatures as declared shall be unique (§8.6), it is possible that substitution of type
arguments results in identical signatures. In such a situation, overload resolution will pick the most
specific (§11.6.4.3) of the original signatures (before substitution of type arguments), if it exists, and
otherwise report an error. end note

Example: The following examples show overloads that are valid and invalid according to this rule:

interface I1<T> {...}
interface I2<T> {...}

class G1<U>

{
int F1(U u); // Overload resulotion for G<int>.F1
int F1(int i); // will pick non-generic
void F2(I1<U> a); // Valid overload

void F2(I2<U> a);

Chapter 11 Expressions

}
class G2<U,V>
{
void F3(U u, V v); // Valid, but overload resolution for
void F3(V v, U u); // G2<int,int>.F3 will fail
void F4(U u, I1kV> v); // Valid, but overload resolution for
void F4(I1<V> v, U u); // G2<Il<int>,int>.F4 will fail
void F5(U ul, I1<cV> v2); // Valid overload
void F5(V vi1, U u2);
void F6(ref U u); // valid overload
void F6(out V v);
}
end example

11.6.5 Compile-time checking of dynamic member invocation

Even though overload resolution of a dynamically bound operation takes place at run-time, it is
sometimes possible at compile-time to know the list of function members from which an overload will be
chosen:

e Foradelegate invocation (§11.7.8.4), the list is a single function member with the same parameter
list as the delegate_type of the invocation

e For a method invocation (§11.7.8.2) on a type, or on a value whose static type is not dynamic, the set
of accessible methods in the method group is known at compile-time.

e For an object creation expression (§11.7.15.2) the set of accessible constructors in the type is
known at compile-time.

e Foranindexer access (§11.7.10.3) the set of accessible indexers in the receiver is known at compile-
time.

In these cases a limited compile-time check is performed on each member in the known set of function
members, to see if it can be known for certain never to be invoked at run-time. For each function
member F a modified parameter and argument list are constructed:

e First, if F is a generic method and type arguments were provided, then those are substituted for the
type parameters in the parameter list. However, if type arguments were not provided, no such
substitution happens.

e Then, any parameter whose type is open (i.e., contains a type parameter; see §8.4.3) is elided, along
with its corresponding parameter(s).

For F to pass the check, all of the following shall hold:
e The modified parameter list for F is applicable to the modified argument list in terms of §11.6.4.2.
e All constructed types in the modified parameter list satisfy their constraints (§8.4.5).
o Ifthe type parameters of F were substituted in the step above, their constraints are satisfied.

e [fF is a static method, the method group shall not have resulted from a member_access whose
receiver is known at compile-time to be a variable or value.

e IfFisan instance method, the method group shall not have resulted from a member_access whose
receiver is known at compile-time to be a type.

161

ECMA-334

If no candidate passes this test, a compile-time error occurs.

11.6.6 Function member invocation

11.6.6.1 General

This subclause describes the process that takes place at run-time to invoke a particular function member.
It is assumed that a binding-time process has already determined the particular member to invoke,
possibly by applying overload resolution to a set of candidate function members.

For purposes of describing the invocation process, function members are divided into two categories:

e Static function members. These are static methods, static property accessors, and user-defined
operators. Static function members are always non-virtual.

e Instance function members. These are instance methods, instance constructors, instance property
accessors, and indexer accessors. Instance function members are either non-virtual or virtual, and
are always invoked on a particular instance. The instance is computed by an instance expression,
and it becomes accessible within the function member as this (§11.7.12). For an instance
constructor, the instance expression is taken to be the newly allocated object.

The run-time processing of a function member invocation consists of the following steps, where M is the
function member and, if M is an instance member, E is the instance expression:

e IfMis a static function member:
o The argument list is evaluated as described in §11.6.2.
o Misinvoked.
e Otherwise, if the type of E is a value-type V, and M is declared or overridden in V:

o Eisevaluated. If this evaluation causes an exception, then no further steps are executed. For an
instance constructor, this evaluation consists of allocating storage (typically from an execution
stack) for the new object. In this case E is classified as a variable.

o IfEis not classified as a variable, then a temporary local variable of E’s type is created and the
value of E is assigned to that variable. E is then reclassified as a reference to that temporary local
variable. The temporary variable is accessible as this within M, but not in any other way. Thus,
only when E is a true variable is it possible for the caller to observe the changes that M makes to
this.

o The argument list is evaluated as described in §11.6.2.
o Misinvoked. The variable referenced by E becomes the variable referenced by this.
e Otherwise:
o Eisevaluated. If this evaluation causes an exception, then no further steps are executed.
o The argument list is evaluated as described in §11.6.2.

o Ifthe type of E is a value_type, a boxing conversion (§10.2.9) is performed to convert E to
a class_type, and E is considered to be of that class_type in the following steps. If the value_type is
an enum_type, the class_type is System.Enum; otherwise, it is System.ValueType.

o The value of E is checked to be valid. If the value of E is null, a System.NullReferenceException
is thrown and no further steps are executed.

o The function member implementation to invoke is determined:

162

Chapter 11 Expressions

o I[fthe binding-time type of E is an interface, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the interface mapping rules (§17.6.5) to
determine the implementation of M provided by the run-time type of the instance referenced
by E.

e Otherwise, if M is a virtual function member, the function member to invoke is the
implementation of M provided by the run-time type of the instance referenced by E. This
function member is determined by applying the rules for determining the most derived
implementation (§14.6.4) of M with respect to the run-time type of the instance referenced
by E.

e Otherwise, M is a non-virtual function member, and the function member to invoke is M itself.

o The function member implementation determined in the step above is invoked. The object
referenced by E becomes the object referenced by this.

The result of the invocation of an instance constructor (§11.7.15.2) is the value created. The result of the
invocation of any other function member is the value, if any, returned (§12.10.5) from its body.
11.6.6.2 Invocations on boxed instances

A function member implemented in a value_type can be invoked through a boxed instance of that
value_type in the following situations:

e When the function member is an override of a method inherited from type class_type and is invoked
through an instance expression of that class_type.
Note: The class_type will always be one of System.0Object, System.ValueType or System.Enum. end
note

e When the function member is an implementation of an interface function member and is invoked
through an instance expression of an interface_type.

e When the function member is invoked through a delegate.

In these situations, the boxed instance is considered to contain a variable of the value_type, and this
variable becomes the variable referenced by this within the function member invocation.

Note: In particular, this means that when a function member is invoked on a boxed instance, it is
possible for the function member to modify the value contained in the boxed instance. end note

11.7 Primary expressions

11.7.1 General
Primary expressions include the simplest forms of expressions.

primary_expression
: primary_no_array_creation_expression
| array_creation_expression

)

primary_no_array_creation_expression
: literal
| interpolated string expression
| simple_name

163

ECMA-334

| parenthesized expression

| member_access

| null_conditional_member_access
| invocation_expression

| element_access

| null_conditional_element_access
| this_access

| base_access

| post_increment_expression

| post_decrement_expression

| object_creation_expression

| delegate creation_expression
| anonymous_object creation_expression

| typeof expression

| sizeof expression

| checked_expression

| unchecked_expression

| default_value_expression

| nameof _expression

| anonymous_method_expression

| pointer_member_access // unsafe code support
| pointer_element_access // unsafe code support
3

Note: These grammar rules are not ANTLR-ready as they are part of a set of mutually left-recursive
rules (primary_expression, primary_no_array_creation_expression, member_access,
invocation_expression, element_access, post_increment_expression,
post_decrement_expression, pointer_member_access and pointer_element_access) which
ANTLR does not handle. Standard techniques can be used to transform the grammar to remove the
mutual left-recursion. This has not been done as not all parsing strategies require it (e.g. an LALR
parser would not) and doing so would obfuscate the structure and description.

pointer_member_access (§22.6.3) and pointer_element_access (§22.6.4) are only available in unsafe code
(822).

Primary expressions are divided between array_creation_expressions and
primary_no_array_creation_expressions. Treating array_creation_expression in this way, rather than listing
it along with the other simple expression forms, enables the grammar to disallow potentially confusing
code such as

object o = new int[3][1];
which would otherwise be interpreted as
object o = (new int[3])[1];

11.7.2 Literals

A primary_expression that consists of a literal (§6.4.5) is classified as a value.

11.7.3 Interpolated string expressions

An interpolated_string_expression consists of a $ character immediately followed by text within "
characters. Within the quoted text there are zero or more interpolations delimited by { and } characters,
each of which encloses an expression and optional formatting specifications.

164

Chapter 11 Expressions

Interpolated string expressions have two forms; regular (interpolated_regular_string_expression) and
verbatim (interpolated_verbatim_string_expression); which are lexically similar to, but differ semantically
from, the two forms of string literals (§6.4.5.6).

interpolated_string_expression
: interpolated_regular_string_expression
| interpolated_verbatim_string_expression

5
// interpolated regular string expressions

interpolated_regular_string_expression
: Interpolated_Regular_String Start Interpolated_Regular_String Mid?
('"{' regular_interpolation '}' Interpolated_Regular_String Mid?)*
Interpolated_Regular_String_End

.
)

regular_interpolation
: expression (',' interpolation_minimum_width)? Regular_Interpolation_Format?

5
interpolation_minimum_width

: constant_expression

)

Interpolated_Regular_String_Start
. |$u|

5
// the following three lexical rules are context sensitive, see details below

Interpolated_Regular_String Mid
: Interpolated_Regular_String_ Element+

J

Regular_Interpolation_Format
':' Interpolated_Regular_String Element+

)

Interpolated_Regular_String_End

T
J

fragment Interpolated_Regular_String_Element
Interpolated_Regular_String_Character
| Simple_Escape_Sequence
| Hexadecimal Escape_ Sequence
| Unicode Escape_Sequence
| Open_Brace Escape_Sequence
| Close_Brace_Escape_Sequence
)

fragment Interpolated_Regular_String_Character
// Any character except " (U+0022), \\ (U+005C),
// { (U+ee7B), } (U+eB7D), and New_Line_Character.

165

ECMA-334

: ~["\\{}\uoeoD\ueeLA\uee85\u2028\u2029]

5
// interpolated verbatim string expressions

interpolated_verbatim_string_expression
: Interpolated_Verbatim_String Start Interpolated_Verbatim_String Mid?
("{' verbatim_interpolation '}' Interpolated_ Verbatim_String Mid?)*
Interpolated_Verbatim_String End
5
verbatim_interpolation
: expression (',"' interpolation_minimum_width)? Verbatim_Interpolation_Format?

)

Interpolated_Verbatim_String_Start
1 $@II 1

5
// the following three lexical rules are context sensitive, see details below

Interpolated_Verbatim_String_Mid
: Interpolated_Verbatim_String Element+

)

Verbatim_Interpolation_Format
':' Interpolated_Verbatim_String_Element+

)

Interpolated_Verbatim_String_End

T
)

fragment Interpolated_Verbatim_String Element
: Interpolated_Verbatim_String_Character
| Quote_Escape_Sequence
| Open Brace Escape_Sequence
| Close Brace Escape_Sequence

)

fragment Interpolated Verbatim_String Character
: ~["{}] // Any character except " (U+0022), { (U+007B) and } (U+007D)

)

// lexical fragments used by both regular and verbatim interpolated strings

fragment Open_Brace_Escape_Sequence
g
5
fragment Close_Brace_Escape_Sequence
13
)

Six of the lexical rules defined above are context sensitive as follows:

166

Chapter 11 Expressions

Rule Contextual Requirements

Interpolated_Regular_String_Mid Only recognised after an
Interpolated_Regular_String_Start, between any following
interpolations, and before the corresponding
Interpolated_Regular_String_End.

Regular_Interpolation_Format Only recognised within a regular_interpolation and when
the starting colon (:) is not nested within any kind of
bracket (parentheses/braces/square).

Interpolated_Regular_String_End Only recognised after an Interpolated_Regular_String_Start
and only if any intervening tokens are either
Interpolated_Regular_String_Mids or tokens that can be
part of regular_interpolations, including tokens for any
interpolated_regular_string_expressions contained within
such interpolations.

Interpolated_Verbatim_String_Mid Recognition of these three rules follows that of the

Verbatim_Interpolation_Format corresponding rules above with each mentioned regular

Interpolated_Verbatim_String_End grammar rule replaced by the corresponding verbatim
one.

Note: The above rules are context sensitive as their definitions overlap with those of other tokens in
the language. end note

Note: The above grammar is not ANTLR-ready due to the context sensitive lexical rules. As with
other lexer generators ANTLR supports context sensitive lexical rules, for example using its lexical
modes, but this is an implementation detail and therefore not part of this Standard. end note

An interpolated_string_expression is classified as a value. If it is immediately converted to
System.IFormattable or System.FormattableString with an implicit interpolated string conversion
(§10.2.5), the interpolated string expression has that type. Otherwise, it has the type string.

Note: The differences between the possible types an interpolated_string_expression may be
determined from the documentation for System.String (§C.2) and System.FormattableString
(§C.3). end note

The meaning of an interpolation, both regular_interpolation and verbatim_interpolation, is to format the
value of the expression as a string either according to the format specified by the
Regular_Interpolation_Format or Verbatim_Interpolation_Format, or according to a default format for the
type of expression. The formatted string is then modified by the interpolation_minimum_width, if any, to
produce the final string to be interpolated into the interpolated_string_expression.

Note: How the default format for a type is determined is detailed in the documentation for
System.String (§C.2) and System.FormattableString (§C.3). Descriptions of standard formats,
which are identical for Regular_Interpolation_Format and Verbatim_Interpolation_Format, may be
found in the documentation for System.IFormattable (§C.4) and in other types in the standard
library (§C). end note

In an interpolation_minimum_width the constant_expression shall have an implicit conversion to int. Let
the field width be the absolute value of this constant_expression and the alignment be the sign (positive or
negative) of the value of this constant_expression:

167

ECMA-334

o Ifthe value of field width is less than or equal to the length of the formatted string the formatted
string is not modified.

e Otherwise the formatted string is padded with white space characters so that its length is equal to
field width:

o Ifthe alignment is positive the formatted string is right-aligned by prepending the padding,
o Otherwise it is left-aligned by appending the padding.

The overall meaning of an interpolated_string_expression, including the above formatting and padding of
interpolations, is defined by a conversion of the expression to a method invocation: if the type of the
expression is System.IFormattable or System.FormattableString that method is
System.Runtime.CompilerServices.FormattableStringFactory.Create (§C.3) which returns a value of
type System.FormattableString; otherwise the type must be string and the method is string.Format
(§C.2) which returns a value of type string.

In both cases, the argument list of the call consists of a format string literal with format specifications for
each interpolation, and an argument for each expression corresponding to the format specifications.

The format string literal is constructed as follows, where N is the number of interpolations in the
interpolated_string_expression. The format string literal consists of, in order:

e The characters of the Interpolated_Regular_String_Start or Interpolated_Verbatim_String_Start
e The characters of the Interpolated_Regular_String_Mid or Interpolated_Verbatim_String_Mid, if any
e ThenifN > 1for each number I from @ toN-1:
o A placeholder specification:
o Aleftbrace ({) character
o The decimal representation of I

e Then, if the corresponding regular_interpolation or verbatim_interpolation has a
interpolation_minimum_width, a comma (,) followed by the decimal representation of the
value of the constant_expression

e The characters of the Regular_Interpolation_Format or Verbatim_Interpolation_Format, if
any, of the corresponding regular_interpolation or verbatim_interpolation

e Arightbrace (}) character

o The characters of the Interpolated_Regular_String_Mid or Interpolated_Verbatim_String_Mid
immediately following the corresponding interpolation, if any

e Finally the characters of the Interpolated_Regular_String_End or Interpolated_Verbatim_String_End.
The subsequent arguments are the expressions from the interpolations, if any, in order.

When an interpolated_string_expression contains multiple interpolations, the expressions in those
interpolations are evaluated in textual order from the left to right.

Example:
This example uses the following format specification features:
e the X format specification which formats integers as uppercase hexadecimal,

e the default format for a string value is the value itself,

168

Chapter 11 Expressions

that {{ and }} are formatted as { and } respectively.

Given:
string text = "red";
int number = 14;
const int width = -4;
Then:
Interpolated String Expression Equivalent Meaning As string Value
$"{text}" string.Format("{0}", text) "red"
$"{{text}}" string.Format("{{text}}) "{text}"
$"{ text , 4 }" string.Format("{0,4}", text) " red"
$"{ text , width }" string.Format("{0,-4}", text) "red "
$"{number:X}" string.Format("{0:X}", number) "E"
$"{text + '?'} {number % 3}" string.Format("{0} {1}", text + '?', "red? 2"
number % 3)
$"{text + $"[{number}]"}" string.Format("{0}", text + "red[14]"
string.Format("[{0}]", number))
$"{(number==0?"Zero": "Non- string.Format("{0}", "Non-
zero")}" (number==0?"Zero":"Non-zero")) zero"
end example

11.7.4 Simple names

A simple_name consists of an identifier, optionally followed by a type argument list:

simple_name
: identifier type_argument_list?

)

A simple_name is either of the form I or of the form I<A;, ..., Ac.>, where I is a single identifier and

I<A1,

..., Ae¢>is an optional type_argument_list. When no type_argument_list is specified, consider e to

be zero. The simple_name is evaluated and classified as follows:

If e is zero and the simple_name appears within a block and if the block’s (or an enclosing block’s)

If e is zero and the simple_name appears within a generic method declaration but outside the
attributes of its method_header, and if that declaration includes a type parameter with name I, then
the simple_name refers to that type parameter.

declaration (if any):

169

ECMA-334

170

o Ifeiszero and the declaration of T includes a type parameter with name I, then the simple_name
refers to that type parameter.

o Otherwise, if a member lookup (§11.5) of I in T with e type arguments produces a match:

e IfTis the instance type of the immediately enclosing class or struct type and the lookup
identifies one or more methods, the result is a method group with an associated instance
expression of this. If a type argument list was specified, it is used in calling a generic
method (§11.7.8.2).

e Otherwise, if T is the instance type of the immediately enclosing class or struct type, if the
lookup identifies an instance member, and if the reference occurs within the block of an
instance constructor, an instance method, or an instance accessor (§11.2.1), the result is the
same as a member access (§11.7.6) of the form this.I. This can only happen when e is zero.

e Otherwise, the result is the same as a member access (§11.7.6) of the form T.I or T.I<A,,
., Ac>.

Otherwise, for each namespace N, starting with the namespace in which the simple_name occurs,
continuing with each enclosing namespace (if any), and ending with the global namespace, the
following steps are evaluated until an entity is located:

o Ifeiszeroand I is the name of a namespace in N, then:

e Ifthe location where the simple_name occurs is enclosed by a namespace declaration for N
and the namespace declaration contains an extern_alias_directive or using_alias_directive
that associates the name I with a namespace or type, then the simple_name is ambiguous
and a compile-time error occurs.

e Otherwise, the simple_name refers to the namespace named I in N.
o Otherwise, if N contains an accessible type having name I and e type parameters, then:

e I[feiszeroand the location where the simple_name occurs is enclosed by a namespace
declaration for N and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with a namespace or type, then the
simple_name is ambiguous and a compile-time error occurs.

e Otherwise, the namespace_or_type_name refers to the type constructed with the given type
arguments.

o Otherwise, if the location where the simple_name occurs is enclosed by a namespace declaration
for N:

e Ifeiszero and the namespace declaration contains an extern_alias_directive or
using_alias_directive that associates the name I with an imported namespace or type, then
the simple_name refers to that namespace or type.

e Otherwise, if the namespaces imported by the using_namespace_directives of the namespace
declaration contain exactly one type having name I and e type parameters, then the
simple_name refers to that type constructed with the given type arguments.

e Otherwise, if the namespaces imported by the using namespace_directives of the namespace
declaration contain more than one type having name I and e type parameters, then the
simple_name is ambiguous and a compile-time error occurs.

Note: This entire step is exactly parallel to the corresponding step in the processing of a
namespace_or_type_name (§7.8). end note

Chapter 11 Expressions

e Otherwise, the simple_name is undefined and a compile-time error occurs.

11.7.5 Parenthesized expressions
A parenthesized_expression consists of an expression enclosed in parentheses.
parenthesized_expression
"(' expression ')
5
A parenthesized_expression is evaluated by evaluating the expression within the parentheses. If the

expression within the parentheses denotes a namespace or type, a compile-time error occurs. Otherwise,
the result of the parenthesized_expression is the result of the evaluation of the contained expression.

11.7.6 Member access

11.7.6.1 General

A member_access consists of a primary_expression, a predefined_type, or a qualified_alias_member, followed

« »n

by a “.” token, followed by an identifier, optionally followed by a type_argument _list.

member_access
: primary_expression
| predefined_type '.'
| qualified_alias_member

' identifier type_argument_list?
identifier type_argument_list?
'.' identifier type_argument_list?

)

predefined_type
"bool"’ | 'byte' | 'char' | ‘'decimal' | 'double' | 'float' | 'int' |
'long'
| 'object' | 'sbyte' | 'short' | 'string' | 'uint' | 'ulong' | 'ushort'
5
The qualified_alias_member production is defined in §13.8.

A member_access is either of the form E. I or of the form E.I<A:, ..., Ac>, whereEisa
primary_expression, predefined_type or qualified_alias_member, 1 is a single identifier, and <A;, ..., Ac>
is an optional type_argument_list. When no type_argument_list is specified, consider e to be zero.

A member_access with a primary_expression of type dynamic is dynamically bound (§11.3.3). In this case,
the compiler classifies the member access as a property access of type dynamic. The rules below to
determine the meaning of the member_access are then applied at run-time, using the run-time type
instead of the compile-time type of the primary_expression. If this run-time classification leads to a
method group, then the member access shall be the primary_expression of an invocation_expression.

The member_access is evaluated and classified as follows:

e Ifeiszeroand E is a namespace and E contains a nested namespace with name I, then the result is
that namespace.

e Otherwise, if E is a namespace and E contains an accessible type having name I and K type
parameters, then the result is that type constructed with the given type arguments.

e IfEisclassified as a type, if E is not a type parameter, and if a member lookup (§11.5) of I in E with K
type parameters produces a match, then E. I is evaluated and classified as follows:
Note: When the result of such a member lookup is a method group and K is zero, the method group
can contain methods having type parameters. This allows such methods to be considered for type
argument inferencing. end note

171

ECMA-334

O

If T identifies a type, then the result is that type constructed with any given type arguments.

If T identifies one or more methods, then the result is a method group with no associated
instance expression.

If T identifies a static property, then the result is a property access with no associated instance
expression.

If T identifies a static field:

o I[fthe field is readonly and the reference occurs outside the static constructor of the class or
struct in which the field is declared, then the result is a value, namely the value of the static
field I in E.

e Otherwise, the result is a variable, namely the static field I in E.
If 1 identifies a static event:

e [fthe reference occurs within the class or struct in which the event is declared, and the
event was declared without event_accessor_declarations (§14.8.1), then E. I is processed
exactly as if T were a static field.

e Otherwise, the result is an event access with no associated instance expression.
If I identifies a constant, then the result is a value, namely the value of that constant.

If T identifies an enumeration member, then the result is a value, namely the value of that
enumeration member.

Otherwise, E. I is an invalid member reference, and a compile-time error occurs.

e IfEisaproperty access, indexer access, variable, or value, the type of which is T, and a member
lookup (§11.5) of I in T with K type arguments produces a match, then E. I is evaluated and
classified as follows:

O

172

First, if E is a property or indexer access, then the value of the property or indexer access is
obtained (§11.2.2) and E is reclassified as a value.

If I identifies one or more methods, then the result is a method group with an associated
instance expression of E.

If T identifies an instance property, then the result is a property access with an associated
instance expression of E and an associated type that is the type of the property. If T is a class
type, the associated type is picked from the first declaration or override of the property found
when starting with T, and searching through its base classes.

If T is a class_type and I identifies an instance field of that class_type:
e I[fthe value of E is null, then a System.NullReferenceException is thrown.

e Otherwise, if the field is readonly and the reference occurs outside an instance constructor
of the class in which the field is declared, then the result is a value, namely the value of the
field I in the object referenced by E.

e Otherwise, the result is a variable, namely the field I in the object referenced by E.

If T is a struct_type and I identifies an instance field of that struct_type:

Chapter 11 Expressions

o I[fEisavalue, or if the field is readonly and the reference occurs outside an instance
constructor of the struct in which the field is declared, then the result is a value, namely the
value of the field I in the struct instance given by E.

e Otherwise, the result is a variable, namely the field I in the struct instance given by E.
o IfIidentifies an instance event:

e Ifthe reference occurs within the class or struct in which the event is declared, and the
event was declared without event_accessor_declarations (§14.8.1), and the reference does
not occur as the left-hand side of a += or -= operator, then E. I is processed exactly as if I
was an instance field.

e Otherwise, the result is an event access with an associated instance expression of E.

e Otherwise, an attempt is made to process E.I as an extension method invocation (§11.7.8.3). If this
fails, E. I is an invalid member reference, and a binding-time error occurs.

11.7.6.2 Identical simple names and type names

In a member access of the form E. I, if E is a single identifier, and if the meaning of E as a simple_name
(§11.7.4) is a constant, field, property, local variable, or parameter with the same type as the meaning of E
as a type_name (§7.8.1), then both possible meanings of E are permitted. The member lookup of E. T is
never ambiguous, since I shall necessarily be a member of the type E in both cases. In other words, the
rule simply permits access to the static members and nested types of E where a compile-time error would
otherwise have occurred.

Example:
struct Color
{
public static readonly Color White = new Color(...);
public static readonly Color Black = new Color(...);
public Color Complement() {...}
}
class A
{
public Color Color; // Field Color of type Color
void F()
{
Color = Color.Black; // Refers to Color.Black static member
Color = Color.Complement(); // Invokes Complement() on Color fld
}
static void G()
{
Color ¢ = Color.White; // Refers to Color.White static member
}
}

Within the A class, those occurrences of the Color identifier that reference the Color type are
delimited by **, and those that reference the Color field are not.

end example

173

ECMA-334

11.7.7 Null Conditional Member Access

A null_conditional_ member_access is a conditional version of member_access (§11.7.6) and it is a binding
time error if the result type is void. For a null conditional expression where the result type may be void
see (§11.7.9).

A null_conditional_member_access consists of a primary_expression followed by the two tokens “?” and “.”,
followed by an identifier with an optional type_argument_list, followed by zero or more
dependent_accesses.

null conditional member_access
: primary_expression '?' '.' identifier type_argument_list? dependent_access*

)

dependent_access

'.' identifier type_argument_list? // member access
| '[' argument_list ']' // element access
| "(' argument_list? ')’ // invocation

.
)

null_conditional_projection_initializer
: primary_expression '?"' '.' identifier type_argument_list?

)

A null_conditional_ member_access expression E is of the form P?.A. Let T be the type of the expression
P.A. The meaning of E is determined as follows:

If T is a type parameter that is not known to be a reference type or a non-nullable value type, a
compile-time error occurs.

If T is a non-nullable value type, then the type of E is T?, and the meaning of E is the same as the
meaning of:

((object)P == null) ? (T?)null : P.A

Except that P is evaluated only once.

Otherwise the type of E is T, and the meaning of E is the same as the meaning of:
((object)P == null) ? null : P.A

Except that P is evaluated only once.

Note: In an expression of the form:

P?.Ao?.A;

then if P evaluates to null neither A, or A; are evaluated. The same is true if an expression is a
sequence of null_conditional_ member_access or null_conditional_element_access §11.7.11 operations.

end note

A null_conditional_projection_initializer is a restriction of null_conditional_ member_access and has the
same semantics. It only occurs as a projection initializer in an anonymous object creation expression
(§11.7.15.7).

11.7.8 Invocation expressions

11.7.8.1 General

An invocation_expression is used to invoke a method.

174

Chapter 11 Expressions

invocation_expression
: primary_expression '(' argument_list? ')’
An invocation_expression is dynamically bound (§11.3.3) if at least one of the following holds:
e The primary_expression has compile-time type dynamic.
e Atleast one argument of the optional argument_list has compile-time type dynamic.

In this case, the compiler classifies the invocation_expression as a value of type dynamic. The rules below
to determine the meaning of the invocation_expression are then applied at run-time, using the run-time
type instead of the compile-time type of those of the primary_expression and arguments that have the
compile-time type dynamic. If the primary_expression does not have compile-time type dynamic, then the
method invocation undergoes a limited compile-time check as described in §11.6.5.

The primary_expression of an invocation_expression shall be a method group or a value of a delegate_type.
If the primary_expression is a method group, the invocation_expression is a method invocation (§11.7.8.2).
If the primary_expression is a value of a delegate_type, the invocation_expression is a delegate invocation
(§11.7.8.4). If the primary_expression is neither a method group nor a value of a delegate_type, a binding-
time error occurs.

The optional argument_list (§11.6.2) provides values or variable references for the parameters of the
method.

The result of evaluating an invocation_expression is classified as follows:

e Ifthe invocation_expression invokes a method or delegate that returns void, the result is nothing. An
expression that is classified as nothing is permitted only in the context of a statement_expression
(§12.7) or as the body of a lambda_expression (§11.16). Otherwise a binding-time error occurs.

e Otherwise, the result is a value, with an associated type of the return type of the method or delegate
after any type argument substitutions (§11.7.8.2) have been performed. If the invocation is of an
instance method, and the receiver is of a class type T, the associated type is picked from the first
declaration or override of the method found when starting with T and searching through its base
classes.

11.7.8.2 Method invocations

For a method invocation, the primary_expression of the invocation_expression shall be a method group. The
method group identifies the one method to invoke or the set of overloaded methods from which to choose
a specific method to invoke. In the latter case, determination of the specific method to invoke is based on
the context provided by the types of the arguments in the argument_list.

The binding-time processing of a method invocation of the form M(A), where M is a method group
(possibly including a type_argument_list), and A is an optional argument_list, consists of the following
steps:

e The set of candidate methods for the method invocation is constructed. For each method F
associated with the method group M:

o If Fis non-generic, F is a candidate when:
e Mhas no type argument list, and
e Fisapplicable with respect to A (§11.6.4.2).

o IfFis generic and M has no type argument list, F is a candidate when:

175

ECMA-334

e Type inference (§11.6.3) succeeds, inferring a list of type arguments for the call, and

e Once the inferred type arguments are substituted for the corresponding method type
parameters, all constructed types in the parameter list of F satisfy their constraints (§8.4.5),
and the parameter list of F is applicable with respect to A (§11.6.4.2)

o IfFis generic and M includes a type argument list, F is a candidate when:

e F has the same number of method type parameters as were supplied in the type argument
list, and

e Once the type arguments are substituted for the corresponding method type parameters, all
constructed types in the parameter list of F satisfy their constraints (§8.4.5), and the
parameter list of F is applicable with respect to A (§11.6.4.2).

The set of candidate methods is reduced to contain only methods from the most derived types: For
each method C.F in the set, where C is the type in which the method F is declared, all methods
declared in a base type of C are removed from the set. Furthermore, if C is a class type other than
object, all methods declared in an interface type are removed from the set.

Note: This latter rule only has an effect when the method group was the result of a member lookup
on a type parameter having an effective base class other than object and a non-empty effective
interface set. end note

If the resulting set of candidate methods is empty, then further processing along the following steps
are abandoned, and instead an attempt is made to process the invocation as an extension method
invocation (§11.7.8.3). If this fails, then no applicable methods exist, and a binding-time error
occurs.

The best method of the set of candidate methods is identified using the overload resolution rules of
§11.6.4. If a single best method cannot be identified, the method invocation is ambiguous, and a
binding-time error occurs. When performing overload resolution, the parameters of a generic
method are considered after substituting the type arguments (supplied or inferred) for the
corresponding method type parameters.

Final validation of the chosen best method is performed:

o The method is validated in the context of the method group: If the best method is a static
method, the method group shall have resulted from a simple_name or a member_access through
a type. If the best method is an instance method, the method group shall have resulted from a
simple_name, a member_access through a variable or value, or a base_access. If neither of these
requirements is true, a binding-time error occurs.

o Ifthe best method is a generic method, the type arguments (supplied or inferred) are checked
against the constraints (§8.4.5) declared on the generic method. If any type argument does not
satisfy the corresponding constraint(s) on the type parameter, a binding-time error occurs.

Once a method has been selected and validated at binding-time by the above steps, the actual run-time
invocation is processed according to the rules of function member invocation described in §11.6.6.

176

Note: The intuitive effect of the resolution rules described above is as follows: To locate the
particular method invoked by a method invocation, start with the type indicated by the method
invocation and proceed up the inheritance chain until at least one applicable, accessible, non-
override method declaration is found. Then perform type inference and overload resolution on the
set of applicable, accessible, non-override methods declared in that type and invoke the method
thus selected. If no method was found, try instead to process the invocation as an extension-method
invocation. end note

11.7.8

Chapter 11 Expressions

.3 Extension method invocations

In a method invocation (§11.6.6.2) of one of the forms

«expr» . «identifier» ()

«expr» . «identifier» («args»)

«expr» . «identifier» < «typeargs» > ()

«expr» . «identifier» < «typeargs» > («args»)

if the normal processing of the invocation finds no applicable methods, an attempt is made to process the
construct as an extension method invocation. If «expr» or any of the «args» has compile-time type

dynam

ic, extension methods will not apply.

The objective is to find the best type_name C, so that the corresponding static method invocation can take

place:

. «identifier» («expr»)

. «identifier» («expr» , «args»)

. «identifier» < «typeargs» > («expr»)

. «identifier» < «typeargs» > («expr» , «args»)

asNaNaNe)

An extension method C; . M. is eligible if:

C; is a non-generic, non-nested class
The name of M. is identifier
Me is accessible and applicable when applied to the arguments as a static method as shown above

An implicit identity, reference or boxing conversion exists from expr to the type of the first
parameter of M.

The search for C proceeds as follows:

Using

Starting with the closest enclosing namespace declaration, continuing with each enclosing
namespace declaration, and ending with the containing compilation unit, successive attempts are
made to find a candidate set of extension methods:

o Ifthe given namespace or compilation unit directly contains non-generic type declarations C;
with eligible extension methods Me, then the set of those extension methods is the candidate set.

o Ifnamespaces imported by using namespace directives in the given namespace or compilation
unit directly contain non-generic type declarations C; with eligible extension methods M., then
the set of those extension methods is the candidate set.

If no candidate set is found in any enclosing namespace declaration or compilation unit, a compile-
time error occurs.

Otherwise, overload resolution is applied to the candidate set as described in §11.6.4. If no single
best method is found, a compile-time error occurs.

C is the type within which the best method is declared as an extension method.
C as a target, the method call is then processed as a static method invocation (§11.6.6).

Note: Unlike an instance method invocation, no exception is thrown when expr evaluates to a null
reference. Instead, this null value is passed to the extension method as it would be via a regular
static method invocation. It is up to the extension method implementation to decide how to respond
to such a call. end note

177

ECMA-334

directive.
Example:
public static class E
{
public static void F(this object obj, int i) { }
public static void F(this object obj, string s) { }
}
class A { }
class B
{
public void F(int i) { }
}
class C
{
public void F(object obj) { }
}
class X
{
static void Test(A a, B b, C ¢)
{
a.F(1); // E.F(object, int)
a.F("hello"); // E.F(object, string)
b.F(1); // B.F(int)
b.F("hello"); // E.F(object, string)
c.F(1); // C.F(object)
c.F("hello"); // C.F(object)
}
}

public static class C

{
public static void F(this int
public static void G(this int
public static void H(this int
}
namespace N1
{
public static class D
{
public static void F(this
public static void G(this
}

178

i) => Console.WriteLine($"C.F({i})");
i) => Console.WriteLine($"C.G({i})");
i) => Console.WriteLine($"C.H({i})");

int i) => Console.WriteLine($"D.F({i})");
int i) => Console.WriteLine($"D.G({i})");

Chapter 11 Expressions

}
namespace N2
{
using N1,
public static class E
{
public static void F(this int i) => Console.WriteLine($"E.F({i})");
}
class Test
{
static void Main(string[] args)
{
1.F();
2.G();
3.H();
}
}
}
The output of this example is:
E.F(1)
D.G(2)
C.H(3)

D.G takes precendece over C.G, and E. F takes precedence over both D.F and C.F.
end example

11.7.8.4 Delegate invocations

For a delegate invocation, the primary_expression of the invocation_expression shall be a value of a
delegate_type. Furthermore, considering the delegate_type to be a function member with the same
parameter list as the delegate_type, the delegate_type shall be applicable (§11.6.4.2) with respect to the
argument_list of the invocation_expression.

The run-time processing of a delegate invocation of the form D(A), where D is a primary_expression of a
delegate_type and A is an optional argument_list, consists of the following steps:

e Dis evaluated. If this evaluation causes an exception, no further steps are executed.

o The argument list A is evaluated. If this evaluation causes an exception, no further steps are
executed.

e The value of D is checked to be valid. If the value of Dis null, a System.NullReferenceException is
thrown and no further steps are executed.

e Otherwise, D is a reference to a delegate instance. Function member invocations (§11.6.6) are
performed on each of the callable entities in the invocation list of the delegate. For callable entities
consisting of an instance and instance method, the instance for the invocation is the instance
contained in the callable entity.

See §19.6 for details of multiple invocation lists without parameters.

179

ECMA-334

11.7.9 Null Conditional Invocation Expression

A null_conditional_invocation_expression is syntactically either a null_conditional member_access (§11.7.7)
or null_conditional_element_access (§11.7.11) where the final dependent_access is an invocation
expression (§11.7.8).

A null_conditional_invocation_expression occurs within the context of a statement_expression (§12.7),
anonymous_function_body (§11.16.1), or method_body (§14.6.1).

Unlike the syntactically equivalent null_conditional member_access or null_conditional_element_access, a
null_conditional_invocation_expression may be classified as nothing.

null conditional invocation_expression
: null conditional_member_access '(' argument_list? ')
| null_conditional element_access '(' argument_list? '

) L}
5
A null_conditional_invocation_expression expression E is of the form P?A; where A is the remainder of the

syntactically equivalent null_conditional_ member_access or null_conditional_element_access, A will
therefore start with . or [. Let PA signify the concatention of P and A.

When E occurs as a statement_expression the meaning of E is the same as the meaning of the statement:
if ((object)P != null) PA
except that P is evaluated only once.

When E occurs as a anonymous_function_body or method_body the meaning of E depends on its
classification:

e IfE is classified as nothing then its meaning is the same as the meaning of the block:
{ if ((object)P != null) PA; }
except that P is evaluated only once.

e Otherwise the meaning of E is the same as the meaning of the block:
{ return E; }

and in turn the meaning of this block depends on whether E is syntactically equivalent to a
null_conditional_ member_access (§11.7.7) or null_conditional_element_access (§11.7.11).

11.7.10 Element access

11.7.10.1 General

An element_access consists of a primary_no_array_creation_expression, followed by a “[” token, followed by
an argument_list, followed by a “]” token. The argument _list consists of one or more arguments, separated
by commas.

element_access
: primary_no_array_creation_expression '[' argument_list ']’
5
The argument_list of an element_access is not allowed to contain ref or out arguments.
An element_access is dynamically bound (§11.3.3) if at least one of the following holds:

o The primary_no_array_creation_expression has compile-time type dynamic.

180

Chapter 11 Expressions

e Atleast one expression of the argument_list has compile-time type dynamic and the
primary_no_array_creation_expression does not have an array type.

In this case, the compiler classifies the element_access as a value of type dynamic. The rules below to
determine the meaning of the element_access are then applied at run-time, using the run-time type
instead of the compile-time type of those of the primary_no_array_creation_expression and argument_list
expressions which have the compile-time type dynamic. If the primary_no_array_creation_expression does
not have compile-time type dynamic, then the element access undergoes a limited compile-time check as
described in §11.6.5.

If the primary_no_array_creation_expression of an element_access is a value of an array_type, the
element_access is an array access (§11.7.10.2). Otherwise, the primary_no_array_creation_expression shall
be a variable or value of a class, struct, or interface type that has one or more indexer members, in which
case the element_access is an indexer access (§11.7.10.3).

11.7.10.2 Array access

For an array access, the primary_no_array_creation_expression of the element_access shall be a value of an
array_type. Furthermore, the argument_list of an array access is not allowed to contain named arguments.
The number of expressions in the argument _list shall be the same as the rank of the array_type, and each
expression shall be of type int, uint, long, or ulong, or shall be implicitly convertible to one or more of
these types.

The result of evaluating an array access is a variable of the element type of the array, namely the array
element selected by the value(s) of the expression(s) in the argument _list.

The run-time processing of an array access of the form P[A], where P is a
primary_no_array_creation_expression of an array_type and A is an argument _list, consists of the following
steps:

e P is evaluated. If this evaluation causes an exception, no further steps are executed.

e The index expressions of the argument _list are evaluated in order, from left to right. Following
evaluation of each index expression, an implicit conversion (§10.2) to one of the following types is
performed: int, uint, long, ulong. The first type in this list for which an implicit conversion exists is
chosen. For instance, if the index expression is of type short then an implicit conversion to int is
performed, since implicit conversions from short to int and from short to long are possible. If
evaluation of an index expression or the subsequent implicit conversion causes an exception, then
no further index expressions are evaluated and no further steps are executed.

e The value of P is checked to be valid. If the value of P is null, a System.NullReferenceException is
thrown and no further steps are executed.

e The value of each expression in the argument_list is checked against the actual bounds of each
dimension of the array instance referenced by P. If one or more values are out of range, a
System.IndexOutOfRangeException is thrown and no further steps are executed.

e The location of the array element given by the index expression(s) is computed, and this location
becomes the result of the array access.
11.7.10.3 Indexer access

For an indexer access, the primary_no_array_creation_expression of the element_access shall be a variable
or value of a class, struct, or interface type, and this type shall implement one or more indexers that are
applicable with respect to the argument _list of the element_access.

181

ECMA-334

The binding-time processing of an indexer access of the form P[A], where P is a
primary_no_array_creation_expression of a class, struct, or interface type T, and A is an argument_list,
consists of the following steps:

o The set of indexers provided by T is constructed. The set consists of all indexers declared in T or a
base type of T that are not override declarations and are accessible in the current context (§7.5).

o The setis reduced to those indexers that are applicable and not hidden by other indexers. The
following rules are applied to each indexer S.I in the set, where S is the type in which the indexer T
is declared:

o IfIisnotapplicable with respectto A (§11.6.4.2), then I is removed from the set.

o IfIisapplicable with respectto A (§11.6.4.2), then all indexers declared in a base type of S are
removed from the set.

o IfIisapplicable with respect to A (§11.6.4.2) and S is a class type other than object, all indexers
declared in an interface are removed from the set.

o [fthe resulting set of candidate indexers is empty, then no applicable indexers exist, and a binding-
time error occurs.

e The best indexer of the set of candidate indexers is identified using the overload resolution rules of
§11.6.4. If a single best indexer cannot be identified, the indexer access is ambiguous, and a binding-
time error occurs.

e The index expressions of the argument_list are evaluated in order, from left to right. The result of
processing the indexer access is an expression classified as an indexer access. The indexer access
expression references the indexer determined in the step above, and has an associated instance
expression of P and an associated argument list of A, and an associated type that is the type of the
indexer. If T is a class type, the associated type is picked from the first declaration or override of the
indexer found when starting with T and searching through its base classes.

Depending on the context in which it is used, an indexer access causes invocation of either the
get_accessor or the set_accessor of the indexer. If the indexer access is the target of an assignment, the
set_accessor is invoked to assign a new value (§11.18.2). In all other cases, the get_accessor is invoked to
obtain the current value (§11.2.2).

11.7.11 Null Conditional Element Access

A null_conditional_element_access consists of a primary_no_array_creation_expression followed by the two
tokens “?” and “[”, followed by an argument_list, followed by a “]” token, followed by zero or more
dependent_accesses.
null conditional_element_access
: primary_no_array_creation_expression '?' '[' argument_list ']’
dependent_access*

)

A null_conditional_element_access is a conditional version of element_access (§11.7.10) and it is a binding
time error if the result type is void. For a null conditional expression where the result type may be void
see (§11.7.9).

A null_conditional_element_access expression E is of the form P?[A]B; where B are the dependent_accesses,
if any. Let T be the type of the expression P[A]B. The meaning of E is determined as follows:

182

Chapter 11 Expressions

If T is a type parameter that is not known to be a reference type or a non-nullable value type, a
compile-time error occurs.

If T is a non-nullable value type, then the type of E is T?, and the meaning of E is the same as the
meaning of:

((object)P == null) ? (T?)null : P[A]B

Except that P is evaluated only once.

Otherwise the type of E is T, and the meaning of E is the same as the meaning of:
((object)P == null) ? null : P[A]B

Except that P is evaluated only once.

Note: In an expression of the form:

P?[Ao]?[A41]

if P evaluates to null neither Aq or A; are evaluated. The same is true if an expression is a sequence
of null_conditional_element_access or null_conditional_ member_access §11.7.7 operations.

end note

11.7.12 This access

A this_access consists of the keyword this.

this_access
"this'

)

A this_access is permitted only in the block of an instance constructor, an instance method, an instance
accessor (§11.2.1), or a finalizer. It has one of the following meanings:

When this is used in a primary_expression within an instance constructor of a class, it is classified as
a value. The type of the value is the instance type (§14.3.2) of the class within which the usage
occurs, and the value is a reference to the object being constructed.

When this is used in a primary_expression within an instance method or instance accessor of a
class, it is classified as a value. The type of the value is the instance type (§14.3.2) of the class within
which the usage occurs, and the value is a reference to the object for which the method or accessor
was invoked.

When this is used in a primary_expression within an instance constructor of a struct, it is classified
as a variable. The type of the variable is the instance type (§14.3.2) of the struct within which the
usage occurs, and the variable represents the struct being constructed.

o Ifthe constructor declaration has no constructor initializer, the this variable behaves exactly
the same as an out parameter of the struct type. In particular, this means that the variable shall
be definitely assigned in every execution path of the instance constructor.

o Otherwise, the this variable behaves exactly the same as a ref parameter of the struct type. In
particular, this means that the variable is considered initially assigned.

When this is used in a primary_expression within an instance method or instance accessor of a
struct, it is classified as a variable. The type of the variable is the instance type (§14.3.2) of the struct
within which the usage occurs.

183

ECMA-334

o Ifthe method or accessor is not an iterator (§14.14) or async function (§14.15), the this
variable represents the struct for which the method or accessor was invoked, and behaves
exactly the same as a ref parameter of the struct type.

o Ifthe method or accessor is an iterator or async function, the this variable represents a copy of
the struct for which the method or accessor was invoked, and behaves exactly the same as a
value parameter of the struct type.

Use of this in a primary_expression in a context other than the ones listed above is a compile-time error.
In particular, it is not possible to refer to this in a static method, a static property accessor, or in a
variable_initializer of a field declaration.

11.7.13 Base access

«w n

A base_access consists of the keyword base followed by either a “.” token and an identifier and optional
type_argument_list or an argument_list enclosed in square brackets:

base_access
'base’ identifier type_argument_list?
| 'base' '[' argument_list ']’

B
A base_access is used to access base class members that are hidden by similarly named members in the
current class or struct. A base_access is permitted only in the block of an instance constructor, an instance
method, an instance accessor (§11.2.1), or a finalizer. When base. I occurs in a class or struct, I shall
denote a member of the base class of that class or struct. Likewise, when base[E] occurs in a class, an
applicable indexer shall exist in the base class.

At binding-time, base_access expressions of the form base.I and base[E] are evaluated exactly as if they
were written ((B)this).I and ((B)this)[E], where B is the base class of the class or struct in which the
construct occurs. Thus, base.I and base[E] correspond to this.I and this[E], except this is viewed as
an instance of the base class.

When a base_access references a virtual function member (a method, property, or indexer), the
determination of which function member to invoke at run-time (§11.6.6) is changed. The function
member that is invoked is determined by finding the most derived implementation (§14.6.4) of the
function member with respect to B (instead of with respect to the run-time type of this, as would be usual
in a non-base access). Thus, within an override of a virtual function member, a base_access can be used to
invoke the inherited implementation of the function member. If the function member referenced by a
base_access is abstract, a binding-time error occurs.

Note: Unlike this, base is not an expression in itself. It is a keyword only used in the context of a
base_access or a constructor_initializer (§14.11.2). end note

11.7.14 Postfix increment and decrement operators

post_increment_expression

: primary_expression '++

)

post_decrement_expression

primary_expression '--

184

Chapter 11 Expressions

The operand of a postfix increment or decrement operation shall be an expression classified as a variable,
a property access, or an indexer access. The result of the operation is a value of the same type as the
operand.

If the primary_expression has the compile-time type dynamic then the operator is dynamically bound
(§11.3.3), the post_increment_expression or post_decrement_expression has the compile-time type dynamic
and the following rules are applied at run-time using the run-time type of the primary_expression.

If the operand of a postfix increment or decrement operation is a property or indexer access, the property
or indexer shall have both a get and a set accessor. If this is not the case, a binding-time error occurs.

Unary operator overload resolution (§11.4.4) is applied to select a specific operator implementation.
Predefined ++ and - - operators exist for the following types: sbyte, byte, short, ushort, int, uint, long,
ulong, char, float, double, decimal, and any enum type. The predefined ++ operators return the value
produced by adding 1 to the operand, and the predefined - - operators return the value produced by
subtracting 1 from the operand. In a checked context, if the result of this addition or subtraction is outside
the range of the result type and the result type is an integral type or enum type, a
System.OverflowException is thrown.

There shall be an implicit conversion from the return type of the selected unary operator to the type of
the primary_expression, otherwise a compile-time error occurs.

The run-time processing of a postfix increment or decrement operation of the form x++ or x- - consists of
the following steps:

e If xis classified as a variable:
o xis evaluated to produce the variable.
o The value of x is saved.

o The saved value of x is converted to the operand type of the selected operator and the operator
is invoked with this value as its argument.

o The value returned by the operator is converted to the type of X and stored in the location given
by the earlier evaluation of x.

o The saved value of x becomes the result of the operation.
e Ifxisclassified as a property or indexer access:

o The instance expression (if x is not static) and the argument list (if x is an indexer access)
associated with x are evaluated, and the results are used in the subsequent get and set accessor
invocations.

o The get accessor of x is invoked and the returned value is saved.

o The saved value of x is converted to the operand type of the selected operator and the operator
is invoked with this value as its argument.

o The value returned by the operator is converted to the type of x and the set accessor of x is
invoked with this value as its value argument.

o The saved value of x becomes the result of the operation.

The ++ and - - operators also support prefix notation (§11.8.6). Typically, the result of x++ or x- - is the
value of X before the operation, whereas the result of ++x or - -x is the value of X after the operation. In
either case, x itself has the same value after the operation.

185

ECMA-334

An operator ++ or operator - - implementation can be invoked using either postfix or prefix notation. It is
not possible to have separate operator implementations for the two notations.

11.7.15 The new operator

11.7.15.1 General

The new operator is used to create new instances of types.
There are three forms of new expressions:

e Object creation expressions and anonymous object creation expressions are used to create new
instances of class types and value types.

e Array creation expressions are used to create new instances of array types.
e Delegate creation expressions are used to obtain instances of delegate types.

The new operator implies creation of an instance of a type, but does not necessarily imply allocation of
memory. In particular, instances of value types require no additional memory beyond the variables in
which they reside, and no allocations occur when new is used to create instances of value types.

Note: Delegate creation expressions do not always create new instances. When the expression is
processed in the same way as a method group conversion (§10.8) or an anonymous function
conversion (§10.7) this may result in an existing delegate instance being reused. end note

11.7.15.2 Object creation expressions
An object _creation_expression is used to create a new instance of a class_type or a value_type.

object_creation_expression
"new' type '(' argument_list? ')' object_or_collection_initializer?
| "new' type object_or collection_initializer

)

object_or_collection_initializer
: object_initializer
| collection_initializer
5
The type of an object_creation_expression shall be a class_type, a value_type, or a type_parameter. The type
cannot be an abstract or static class_type.

The optional argument_list (§11.6.2) is permitted only if the type is a class_type or a struct_type.

An object creation expression can omit the constructor argument list and enclosing parentheses provided
itincludes an object initializer or collection initializer. Omitting the constructor argument list and
enclosing parentheses is equivalent to specifying an empty argument list.

Processing of an object creation expression that includes an object initializer or collection initializer
consists of first processing the instance constructor and then processing the member or element
initializations specified by the object initializer (§11.7.15.3) or collection initializer (§11.7.15.4).

If any of the arguments in the optional argument_list has the compile-time type dynamic then the
object_creation_expression is dynamically bound (§11.3.3) and the following rules are applied at run-time
using the run-time type of those arguments of the argument_list that have the compile-time type dynamic.
However, the object creation undergoes a limited compile-time check as described in §11.6.5.

186

Chapter 11 Expressions

The binding-time processing of an object_creation_expression of the form new T(A), where T is a
class_type, or a value_type, and A is an optional argument_list, consists of the following steps:

e IfTisavalue type and A is not present:

O

The object_creation_expression is a default constructor invocation. The result of the
object_creation_expression is a value of type T, namely the default value for T as defined in §8.3.3.

e Otherwise, if T is a type_parameter and A is not present:

O

If no value type constraint or constructor constraint (§14.2.5) has been specified for T, a
binding-time error occurs.

The result of the object_creation_expression is a value of the run-time type that the type
parameter has been bound to, namely the result of invoking the default constructor of that type.
The run-time type may be a reference type or a value type.

e Otherwise, if T is a class_type or a struct_type:

O

O

@)

If T is an abstract or static class_type, a compile-time error occurs.

The instance constructor to invoke is determined using the overload resolution rules of §11.6.4.
The set of candidate instance constructors consists of all accessible instance constructors
declared in T, which are applicable with respect to A (§11.6.4.2). If the set of candidate instance
constructors is empty, or if a single best instance constructor cannot be identified, a binding-
time error occurs.

The result of the object_creation_expression is a value of type T, namely the value produced by
invoking the instance constructor determined in the step above.

Otherwise, the object_creation_expression is invalid, and a binding-time error occurs.

Even if the object_creation_expression is dynamically bound, the compile-time type is still T.

The run-time processing of an object_creation_expression of the form new T(A), where T is class_type or a
struct_type and A is an optional argument_list, consists of the following steps:

e IfTisaclass_type:

O

A new instance of class T is allocated. If there is not enough memory available to allocate the
new instance, a System.OutOfMemoryException is thrown and no further steps are executed.

All fields of the new instance are initialized to their default values (§9.3).

The instance constructor is invoked according to the rules of function member invocation
(§11.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

o If Tisastruct_type:

O

An instance of type T is created by allocating a temporary local variable. Since an instance
constructor of a struct_type is required to definitely assign a value to each field of the instance
being created, no initialization of the temporary variable is necessary.

The instance constructor is invoked according to the rules of function member invocation
(§11.6.6). A reference to the newly allocated instance is automatically passed to the instance
constructor and the instance can be accessed from within that constructor as this.

11.7.15.3 Object initializers

An object initializer specifies values for zero or more fields, properties, or indexed elements of an object.

187

ECMA-334

object_initializer
'{' member_initializer_list? '}’
| "{' member_ initializer_ list ',' '}’

)

member_initializer list
: member_initializer (',

member_initializer)*

.
)

member_initializer
: initializer_target '=' initializer_value

.
B

initializer_target
: identifier
| '[" argument_list ']’

.
)

initializer_value
: expression
| object_or_collection_initializer

)

An object initializer consists of a sequence of member initializers, enclosed by { and } tokens and
separated by commas. Each member _initializer shall designate a target for the initialization. An identifier
shall name an accessible field or property of the object being initialized, whereas an argument _list
enclosed in square brackets shall specify arguments for an accessible indexer on the object being
initialized. It is an error for an object initializer to include more than one member initializer for the same
field or property.

Note: While an object initializer is not permitted to set the same field or property more than once,
there are no such restrictions for indexers. An object initializer may contain multiple initializer
targets referring to indexers, and may even use the same indexer arguments multiple times. end
note

Each initializer_target is followed by an equals sign and either an expression, an object initializer or a
collection initializer. It is not possible for expressions within the object initializer to refer to the newly
created object it is initializing.

A member initializer that specifies an expression after the equals sign is processed in the same way as an
assignment (§11.18.2) to the target.

A member initializer that specifies an object initializer after the equals sign is a nested object initializer,
i.e., an initialization of an embedded object. Instead of assigning a new value to the field or property, the
assignments in the nested object initializer are treated as assignments to members of the field or
property. Nested object initializers cannot be applied to properties with a value type, or to read-only
fields with a value type.

A member initializer that specifies a collection initializer after the equals sign is an initialization of an
embedded collection. Instead of assigning a new collection to the target field, property, or indexer, the
elements given in the initializer are added to the collection referenced by the target. The target shall be of
a collection type that satisfies the requirements specified in §11.7.15.4.

When an initializer target refers to an indexer, the arguments to the indexer shall always be evaluated
exactly once. Thus, even if the arguments end up never getting used (e.g., because of an empty nested
initializer), they are evaluated for their side effects.

188

Example: The following class represents a point with two coordinates:

public class Point

{
public int X { get; set; }
public int Y { get; set; }
}
An instance of Point can be created and initialized as follows:

Point a = new Point { X =0, Y =1 };

which has the same effect as

Point __a = new Point();
a.X = 9;

_a.Y = 1;

Point a = __a;

represents a rectangle created from two points:

public class Rectangle
{
public Point P1 { get; set; }
public Point P2 { get; set; }
}

Rectangle r = new Rectangle
{
P1
P2

new Point { X
new Point { X

9, Y
2, Y =

}s
which has the same effect as

Rectangle __r = new Rectangle();
Point __pl = new Point();

__pl.X = 0;

_pl.Y = 1;

_r.P1 = _ pl;

Point __p2 = new Point();
__p2.X = 2;

_p2.Y = 3;

_r.P2 = __p2;

Rectangle r = __ r;

public class Rectangle

{

public Point P1 { get; }
public Point P2 { get; }

new Point();
new Point();

}

Chapter 11 Expressions

189

ECMA-334

Rectangle r = new Rectangle
{
P1
P2

)

x X
I

{X=0,Y=1}
{ 2, Y=3}

B

}s
which has the same effect as

Rectangle _ r = new Rectangle();
_ r.P1.X =
_ r.P1.Y =
 r.P2.X =
__r.P2.Y =
Rectangle r

B

B

UJNI—‘®|

. e

)

end example

11.7.15.4 Collection initializers
A collection initializer specifies the elements of a collection.

collection_initializer
"{' element_initializer_list '}’
| '{' element_initializer_list ',' '}’

)

element_initializer_list
: element_initializer (',

element_initializer)*

)

element_initializer
: non_assignment_expression
| '{' expression_list '}

)

expression_list

: expression

| expression_list ',' expression

5
A collection initializer consists of a sequence of element initializers, enclosed by { and } tokens and
separated by commas. Each element initializer specifies an element to be added to the collection object
being initialized, and consists of a list of expressions enclosed by { and } tokens and separated by
commas. A single-expression element initializer can be written without braces, but cannot then be an
assignment expression, to avoid ambiguity with member initializers. The non_assignment_expression
production is defined in §11.19.

Example: The following is an example of an object creation expression that includes a collection
initializer:

List<int> digits = new List<int> { @, 1, 2, 3, 4, 5, 6, 7, 8, 9 };

end example

The collection object to which a collection initializer is applied shall be of a type that implements
System.Collections.IEnumerable or a compile-time error occurs. For each specified element in order,
normal member lookup is applied to find a member named Add. If the result of the member lookup is not a
method group, a compile-time error occurs. Otherwise, overload resolution is applied with the expression

190

Chapter 11 Expressions

list of the element initializer as the argument list, and the collection initializer invokes the resulting

name Add for each element initializer.
Example:The following class represents a contact with a name and a list of phone numbers:

public class Contact

{
public string Name { get; set; }
public List<string> PhoneNumbers { get; } = new List<string>();

}

A List<Contact> can be created and initialized as follows:

var contacts = new List<Contact>

{
new Contact
{
Name = "Chris Smith",
PhoneNumbers = { "206-555-0101", "425-882-8080" }
bs
new Contact
{
Name = "Bob Harris",
PhoneNumbers = { "650-555-0199" }
}
¥

which has the same effect as

var _ clist = new List<Contact>();
Contact __c1 = new Contact();
__cl.Name = "Chris Smith";
__cl.PhoneNumbers.Add("206-555-0101");
__cl.PhoneNumbers.Add("425-882-8080");
_clist.Add(__c1);

Contact __c2 = new Contact();
__c2.Name = "Bob Harris";
___c2.PhoneNumbers.Add("650-555-0199");
_clist.Add(__c2);

var contacts = _ clist;

end example

11.7.15.5 Array creation expressions

array_creation_expression
'new' non_array_type '[' expression_list ']' rank_specifier*
array_initializer?
| "new' array type array_initializer
| "new' rank_specifier array initializer

)

191

ECMA-334

An array creation expression of the first form allocates an array instance of the type that results from
deleting each of the individual expressions from the expression list.

Example: The array creation expression new int[10,20] produces an array instance of type int[,],
and the array creation expression new int[10][,] produces an array instance of type int[][,].
end example

Each expression in the expression list shall be of type int,