Alphabetical Reference Index to IEC 950
Alphabetical Reference Index to IEC 950

(IEC 950 second edition, including amendments 1, 2, 3 and 4)
Brief history

IEC 950, the safety standard for Information Technology equipment, is a large and complex document dealing with subjects as diverse as electrical safety, chemical safety, protection from heat and connection to telecommunication networks. It was considered that an index would be useful to facilitate the use of IEC 950 for both designers and test agencies.

In April 1993, ECMA TC12 (Safety for ITE) had the opportunity to organise this work. It was agreed that the document should take the form of a formal ECMA Technical Report, and as such, once approved, it would be made available free to any person or organisation requesting it. Incorporation of the Index in other documents is permitted, and subject to quoting the origin of the document. To this effect, a soft version is available from ECMA.

This Index, modified as necessary, is also part of the second edition of Standard ECMA-129, “Information Technology Equipment - Safety”.

Liaison was maintained with IEC/TC74, and this third edition of ECMA TR/63 takes into account Amendment 4 to IEC 950.

Comments by users of this index on its usefulness and completeness will assist ECMA in the preparation of any future edition, and will be welcomed.

Introduction

This index has been prepared under the auspices of ECMA/TC12 - Product Safety. It relates to IEC 950 - Safety of Information Technology Equipment, second edition (1991), including amendments 1, 2, 3 and 4.

This index is for information only and the selection of indexed items does not imply any particular importance.

Location references are clause or sub-clause numbers or annex letters.

Principal references are printed Bold.

References to the Introduction (Principles of Safety) are indicated as Introduction.

If a term is defined in the standard, its definition is indicated in the index by an asterisk, e.g. RATED VOLTAGE 1.2.1.1*.

A

abnormal conditions Introduction, 1.3.1, 5.4
heating elements 4.3.20
overload protection 5.4.1, 5.4.3
sequence of testing 1.4.3
simulated 5.4.6
fan not running 4.4.8
general 4.4.1
one at a time 1.4.12

tests under abnormal conditions of

electrical components 5.4.6

electromechanical components 5.4.5
heating thermoplastic parts 5.4.10
motors 5.4.2, 2.2
thermostats K.6
thermal cutout operates 1.2.11.4
within FIRE ENCLOSURES 4.4.6

abnormal operating conditions see abnormal conditions

abrasion resistance test 2.9.5

access, accessibility by

OPERATORS see OPERATOR ACCESS AREAS
SERVICE PERSONNEL see SERVICE ACCESS AREAS

definitions 1.2.7
means OPERATOR access (area) 1.2.7.1
prevention by interlock 1.2.7.6
restricted 1.2.8.8, 2.1.4.1, 2.1.4.2, 6.2.2

through openings in ENCLOSURES 2.1.2, annex F (figure F.14, point A)

to

controls 4.3.2
ELV CIRCUITS see ELV CIRCUITS, accessibility
energized parts 2.1.1
handles, levers, knobs 2.1.8, 4.3.5
interlocks 2.8.3, 2.8.5
internal wiring 2.1.3, 2.9.4.4
lasers 4.3.12, IEC 825
plugs and sockets 4.3.17
moving parts 2.8.2, 4.1.2, 4.1.3
sharp edges 4.1.4
TELECOMMUNICATION NETWORKS 6.3.1, 6.4.1

terminals 3.2.8

TNV CIRCUITS see TNV CIRCUITS, accessibility

with a TOOL 1.7.18
see also RESTRICTED ACCESS LOCATIONS

accessibility see access

actuators, mechanical, in interlock systems 2.8.7

additional requirements outside the standard 1.1.2

adhesive

ageing test 4.3.22
application 2.9.6

adjustment

marking

for rated voltage 1.7.4
for thermostats etc 1.7.13

must not create a hazard 4.3.1, 4.3.2

worst case conditions for tests 1.4.4, 1.4.9, 2.1.2, annex H

air filters, flammability 4.4.3.1, 4.4.3.6

air gaps

CLEARANCES applicable 2.5.1, 2.9.2 (table 3 condition 6,

CLEARANCES not applicable 3.2.4

table 5 condition 7)

disconnect devices 2.6.2
interlock switches 2.8.6
tip of test finger if voltage is over 1 kV 2.1.2,

annex F (figure F.14 point A)

altitude (elevation)
during operation 1.1.2
during testing 5.3.2

ampacity of

protective earthing conductors 2.3.3.3, 2.5.11
power supply cords 3.2.4

telecommunication wiring 6.5
terminals 3.3.5, 3.3.6

wires and cables 3.1.1, 6.5

apertures see openings

appliance couplers see appliance couplers

as disconnect devices see disconnection for servicing

as means of connection to power 3.2.1
fault testing 5.4.6

in PLUGGABLE EQUIPMENT 1.2.5.1, 1.2.5.2

on detachable power supply cords 1.2.5.4
reversible (unpolarized) 2.6.6, 4.3.20
that fill aperture in ENCLOSURES 4.4.4
see also appliance couplers

applicability
of requirements and tests 1.4.1, 1.5.2
of standard 1.1.1

arcing
as energy hazard Introduction 4.4.3.6
causing ignition of air filter annex K
during tests for thermal controls
FIRE ENCLOSURE required 4.4.4, 4.4.5.1
high current ignition tests 4.4.4, A.3

asbestos, not to be used as insulation 2.2.2

B

backup
overcurrent protection 2.7.3
sources of power 1.1.3, 2.6.12, 3.2.1, 5.2.2, G.2

baffles in bottoms of FIRE ENCLOSURES 4.4.6

ball-pressure test on thermoplastic parts 5.4.10, figure 21 (page 241)

barriers
for electrical separation 2.3.3.1, 3.3.2
for special power connections 3.3.2
in bottoms of FIRE ENCLOSURES 4.4.6
no mechanical strength test
within MECHANICAL ENCLOSURES 4.2.1
secured with adhesive 4.3.22
to prevent ignition 4.4.3.3, 4.4.3.6, 4.4.6

BASIC INSULATION
Introduction, 1.2.9.2*, 1.2.9.3, 1.2.9.4, 1.2.9.5
application in 2.1.1, 2.1.2, 2.1.8, 2.2.6
SELV CIRCUITS 2.3.3, 2.3.3.2, 2.3.3.3, 2.3.5
TNV CIRCUITS 6.2.1.2, 6.2.1.4, 6.2.1.5
wound components 2.9.4.4
on coated printed boards 2.9.5, annex F (figure F.13)
briding see bridging of insulation
consequences of failure 2.3.1, 2.3.3, 2.4.1, 2.5.11, 6.2.1.2
dimensions 2.9.2, 2.9.3, 2.9.4, annex F, R.1, R.2
electric strength 5.3.2
failure to be simulated 1.4.12
integrity after a test 5.4.4, 5.4.9
in service 3.3.9
interchanged with SUPPLEMENTARY INSULATION 2.2.6
one element of DOUBLE INSULATION 2.2.7.1, 5.4.9
short-circuited before test 6.2.1.2
WORKING VOLTAGE 2.2.7

batteries
as SECONDARY CIRCUITS 1.2.8.2
in limited power sources 2.1.1
lithium and similar, requirements 4.3.21
lithium, marking 1.7.17
battery backup systems, not in Scope of standard 1.1.3
battery compartments, access to TNV CIRCUITS 6.2.2.2

bends, ceramic OPERATOR access 3.1.7
 belts 2.1.2, 4.3.6, 4.4.3.3, A.6.2
bibliography annex Q
BODY (of equipment) insulation 1.2.7.5*, 1.6.3, 2.2.6 (table 0.1 condition 6)
body, current through a human
see also leakage current
BOUNDING SURFACES 1.2.10.1, 1.2.10.2, 1.2.10.3*
briding of insulation by capacitors 1.5.6, 1.6.4, 2.2.8.1
resistors 2.2.8, 5.3.2 (note 3)
surge suppressors 6.3.3.1
components removed for test permitted with conditions 2.2.8, 2.3.5, 2.4.3, 6.2.1.5
under fault conditions 3.1.8, 3.3.2, 3.3.9, C.2
see also energy hazards

building installations (fixed wiring) 1.2.5.1, 1.2.5.2, 1.2.5.3, 2.7.4 (note)
disconnect device in not in Scope of standard 1.7.2, 2.7.1, 2.7.3
building wiring see building installations
BUILDING-IN, EQUIPMENT FOR 1.2.3.5*, 2.1.2, 5.1
bus-bars
as internal wiring 3.1.1
as protective earthing conductors 2.5.5
bushings in metal 3.1.2
power cord 3.2.5, 3.2.6, 3.2.7
flamability 4.4.3.5

cables
earthling conductors in multicore 2.5.5, 2.5.11
earthling conductors in ribbon 2.5.5
power 3.2.2, 3.3.5, annex P (IEC 227, IEC 245, IEC 885)
power, FIRE ENCLOSURES not required 4.4.5.2
TV distribution 1.2.14.7
CABLES, INTERCONNECTING 1.2.11.7*, 1.5.5, 2.10.1
calibre of conductors see ampacity

capacitors
casings, isolation 2.1.9
class U (IEC 364-14) 2.2.8.1
class X (IEC 364-14) 1.5.6
class Y (IEC 364-14) 1.6.4, 2.2.8.1
connected to IT POWER SYSTEMS 1.6.4
IEC 65 1.5.6
in FIRE ENCLOSURES 4.4.5.1
mains filters 1.5.6, 1.6.4
discharging motors 2.1.10
not protected by fuses B.5, B.8

4.8
stored charge 2.1.10, 2.4
cathode ray tubes, mechanical strength 4.2.8
CCITT Recommendations see ITU-T Recommendations
cemented joints in insulation 2.9.7, figures F.5, F.6, F.7
ceramic and glass insulation on printed boards 2.9.4.3
temperature during tests 2.9.3 (table 6 condition 6), 5.1 (table 16 part 2), 5.4.9
see also beads, ceramic
CFR 47, part 68 M.3, annex P
chemical hazards Introduction see also corrosion and ozone
circuit characteristics (definitions) 1.2.8*
circuits interconnection 2.10.1, 2.10.2
ELV see ELV CIRCUITS
LIMITED CURRENT see LIMITED CURRENT CIRCUITS
PRIMARY see PRIMARY CIRCUITS
SECONDARY see SECONDARY CIRCUITS
SELV see SELV CIRCUITS
TNV see TNV CIRCUITS
CLASS I and CLASS II EQUIPMENT in same system 2.5.4
CLASS I EQUIPMENT 1.2.4.1*, 1.7.2, 2.3.2, 5.4.9 (note)
BASIC INSULATION to be tested 5.4.9
earth ing 2.5.1, 6.3.2
marking of earthing terminals 1.7.7.1
leakage current 5.2.5, 6.3.4, G.5
CLASS II EQUIPMENT 1.2.4.2*, 1.7.1
different from IEC 536 term 1.2.4.2 (note)
earth ing 2.5.2
leakage current 5.2.2, 6.3.4, G.2
CLASS III EQUIPMENT 1.2.4.3*
no requirement for electric shock 1.3.3
classification of equipment 1.3.3
CLEARANCES 1.2.10.2*, 2.2.1, 2.9.1, 2.9.2, annex F
see also IEC 664, interpolation, and separation distances
1.5 kV transients assumed 2.9.2.2 (note)
as OPERATIONAL INSULATION 5.4.4
at high altitudes 5.3.2 (table 18 condition 2)
behind conductive ENCLOSURES 2.1.6
between uninsulated conductors 3.1.4
divided by floating parts 2.9.1, annex F (figure F.15)
in encapsulated parts 2.9.7
enclosed parts 2.9.6
PRIMARY CIRCUITS 2.9.2.1
SECONDARY CIRCUITS 2.9.2.2
increased by coatings 2.9.8
integrity in service 2.9.1, C.2
measured through openings 2.9.1, annex F (figure F.14 point B)
must be adequate 2.2.4
reduced R.2
variable 2.9.9, 5.3.2
WORKING VOLTAGES 2.2.7
in PRIMARY CIRCUITS 2.2.7.2
in SECONDARY CIRCUITS 2.2.7.3
coated printed boards 2.9.5, annex F (figure F.13), R.1
colours controls and indicators 1.7.8.2, annex P (IEC 73, ISO 3864)
flexible printed wiring 2.5.5
protective earthing conductors 2.5.5, 3.1.6, 3.2.4
comparative tracking index see c.t.i. 1.2.11*
bridging insulation see bridging of insulation 2.8.4, 5.4.5
electro-magnetic 1.6.3, 1.6.4
mains voltage rating 1.5.4, 4.4
selection 1.4.3, 2.2.3
separate testing wound 2.9.4.4, 2.9.6, annex U
see also transformers 1.4.10
conductive liquids 1.7.7, 3.3
conductor sizes see ampacity
connection terminals 1.2.5, 1.2.12
between circuits 2.3.5, 2.4.3, 6.2.1.2
INTERCONNECTING CABLES 1.2.11.7, 1.5.5, 3.1.1
to functional earth 2.5.2
o ther equipment 2.5.4, 2.10, 6.4.1
power supply 1.4.9, 3.1.3, 3.2, 3.3
protective earth 2.5, 3.1.6
TELECOMMUNICATION NETWORKS 2.3.1, 2.3.2 (note), clause 6, annex P (CFR 47, part 68)
connectors 2.3.4, 3.2.1, 3.2.3, 4.3.17
contact by test probe 6.2.2.1, 6.4.1
protective earthing contacts in see also appliance couplers, mains plugs, plugs, socket-outlets, and sockets 2.5.6, 2.5.7
construction details 4.3
contact gaps see air gaps 3.1.8, 3.1.9, 3.1.10, 3.3.7
reliability K.1
touching see access
CONTINUOUS OPERATION 2.9.2.3*, 5.1
control, quality see quality control
controls see also colours 1.7.8, 4.3.1
mains voltage adjustment manual 4.3.2
accessibility fixing 4.3.5
operation isolation 2.1.7, 2.1.8
operated during test 5.2.3, 5.2.4, G.3.2, G.4.2, annex H
marking 1.7.8
temperature 5.3.2 (table 16 part 2)
thermal 1.2.11, 1.4.4, 1.5.2, 5.4.8, annex K

cord anchorage bushings, flammability 4.4.3.5

cord anchorages, power cord 3.2.5

cord guards, power cord 3.2.7
integral with cord 1.2.5.5
on CLASS II EQUIPMENT 3.2.6

cords, power supply see power (supply) cords

corrosion
by consumable materials 4.3.4
of protective earthing terminals 2.5.10

country notes

 general 1.1.2, 3.2.2, 3.2.4, M.1
 Austria 6.4.2.1
 Canada 4.4.5.2
 CENELEC countries 2.7.1
 Denmark 2.5.2, 6.2.1.2, 6.3.3.1
 Finland 6.2.1.4
 Norway 1.6.4, 1.7.2, 2.9.1, 5.4.9, 6.2.1.2, 6.2.1.4, 6.2.1.5, 6.3.3.2
 Sweden 1.7.2, 6.3.3.1
 United Kingdom 3.2.1
 United States of America 4.4.4, 4.4.5.2

coverings, protective, in place during tests 5.4.7

covers see also doors and covers
of supply wiring space 3.2.8
transparent 4.2.1, 4.4.2

Creepage distances 1.2.10.1*, 2.2.1, 2.9.1, 2.9.3, annex F
as operational insulation 5.4.4
between uninsulated conductors 3.1.4
divided by floating parts 2.9.1, annex F (figure F.15)
in encapsulated parts 2.9.7
in enclosed parts 2.9.6
increased by coatings 2.9.8
integrity in service C.2
measured through openings 2.9.1, annex F (figure F.14 point B)

must be adequate 2.2.4
variable 2.9.9, 5.3.2

Working voltages 2.2.7.4
see also IEC 664, interpolation, and separation distances

C.T.I. 2.9.3 (table 6), annex P (IEC 112)

current see also rated current
in human body Introduction, annex Q (IEC 479)
input determination 1.4.9
input maximum 1.6.1
leakage
 high Introduction, 5.2, 6.3.4, annex D, annex G
 maximum 1.7.12, 5.2.5, G.5
locked rotor B.1, B.5
maximum ringing signal M.2, M.3
r.m.s. value implied unless otherwise specified 1.2
to telecommunication wiring 6.5

current-carrying capacity see ampacity

Cut-outs, thermal 1.2.11.4*, 4.2.7, 4.3.20, 5.4, B.2, C.1
Automatic reset 1.2.11.5*, 4.1.2

Manual reset
Cleargances not applicable 2.9.1
reliability K.5

D

d.c. component of waveform see also ripple 1.4.11, 6.2.1.1

d.c. current for tests 2.5.11

d.c. motors, testing B.1, B.7, B.10

D.C. Voltage
Introduction, 1.2.14.3*
for tests, instead of a.c. testing capacitors 5.3.2
supply 1.4.5, 1.7.1, 5.1 (table 18 conditions 6, 7 and 8)
see also ripple

Decorative parts see also enclosures 1.2.6.5*, 4.4.4

definitions annex V
changed miscellaneous 1.2.14

Detachable power supply cords see power (supply) cords

Direct plug-in equipment 1.2.3.6*, 3.2.1, 4.2.5, 4.2.7, 4.3.18

disconnect devices see disconnection for servicing

disconnection automatic 2.7, 4.3.20, 5.4.2
by interlocks 2.8
for servicing (isolation) 2.6
disconnect devices 2.6.2, 2.6.6, 2.6.7
appliance couplers 2.5.7
heating elements 4.3.20
in building installations 2.6.3, 2.6.6, 2.6.7
switches 2.6.5, 2.6.8
three-phase 2.6.7
multiple sources, marking 1.7.9
from telecommunications networks 6.2.2.2

distances through insulation 2.5, 2.9.4.1
ELV CIRCUITS 2.1.3.1
must be adequate 2.2.4
printed boards 2.9.4.3
variable 2.9.9, 5.3.2

doors and covers 4.2.2, 4.3.1.5, 4.3.16, 4.4.7
access through 2.1.2, 2.8.2, 2.8.3
marking on 1.7.1

doors, position during stability tests 4.1.1

Double insulation
Introduction, 1.2.4.1, 1.2.4.2, 1.2.9.4*
application 1.2.9.5
in CLASS I EQUIPMENT 1.2.4.1, 2.5.1
CLASS II EQUIPMENT 1.2.4.2, 2.5.2
HAZARDOUS VOLTAGE circuits 2.1.3.2
internal wiring 2.1.3.2
SELV CIRCUITS 2.3.3, 2.3.3.1, 2.3.5
TNV CIRCUITS 6.2.1.4, 6.2.1.5
wound components 2.9.4.4
on coated printed boards 2.9.5, annex F (figure F.14)
BASIC and SUPPLEMENTARY can be interchanged 2.2.6
bridging see bridging of insulation

care while testing 5.3.2
dimensions 2.9.2 (table 3 condition 3, table 5 condition 2)
see also BASIC and SUPPLEMENTARY INSULATION

internal wiring 2.13.2
integrity
after a test 5.4.9
in service 3.5.9
unearthed parts within 2.2.6
WORKING VOLTAGES 2.2.7
meaning, for DOUBLE INSULATION 2.2.7.1

drop test 4.2.5, 4.2.7
duty cycles, marking short-time intermittent 1.7.3
dust
additional requirements if present 1.1.3, 4.3.4
explosion limit 1.2.13.10
excluded in pollution degree 1 2.9.1

E

earth, earthing 2.5
functional 2.5.2, 5.4.4
protective see protective earth, and protective earthing
permanent connection 6.3.3.2
potential 2.3.1, 6.1
voltage measurements to 1.4.13

earth fault protection 2.7
earth leakage current, see leakage current

electric shock
caused by
heat damage 5.4.4
overload 5.4.1
stored charge 2.1.10
touching bare conductive parts 2.1.1

classification of equipment for
protection 1.2.4, 1.3.3
by insulation 1.2.9
by interlocks 2.8.2
by TNV CIRCUITS 6.2
two levels Introduction 1.7.18

warning marks 1.7.18

electric strength tests 5.3
WORKING VOLTAGES for 2.2.7.1, 2.2.7.5
NOTE - electric strength tests are required in numerous places in the standard

ELECTRICAL ENCLOSURES 1.2.4.2, 1.2.6.4*, 1.2.10.3, 2.1.2, 4.3.15, 4.3.16, 4.4.4
see also ENCLOSURES

accessibility 2.1.1.1, 2.1.2, 2.1.4.1, 2.1.7, 3.2.1
in SERVICE ACCESS AREAS 2.1.4.1
of insulation 2.1.3.1
as interconnection circuits 2.10.2, 2.10.3
insulation 2.2.6
reed switches in 2.8.6.3
e.m.c. see electrical filters
enamel, not adequate safety insulation 2.1.2, 2.9.4.2, 2.9.7
encapsulated parts 2.9.7
enclosed parts 2.9.6

ENCLOSURES 4.2, 4.4.4, 4.5.9
bottoms 4.3.16, 4.4.6, A.5.1
definitions 1.2.6*
conductive 2.1.6, 2.9.2.1 (table 3 condition 6)
flammability A.1, A.2, A.5
inlet bushings in 3.2.6
openings in 2.1.2, 2.9.1, 4.3.14, 4.3.15, 4.3.16, 4.3.22
see also ELECTRICAL ENCLOSURES, FIRE ENCLOSURES,
MECHANICAL ENCLOSURES, DECORATIVE PARTS,
IEC 529, and IEC 1032

energy hazards
Introduction, 5.4.9
disconnection 2.6.11
in
LIMITED CURRENT CIRCUITS 2.4.2
OPERATOR ACCESS AREAS 2.1.1, 2.1.5
SERVICE ACCESS AREAS 2.1.4.1
RESTRICTED ACCESS LOCATIONS 2.1.4.2
multiple sources 1.7.9
reduced by interlocks 2.8.2
within ENCLOSURES 2.1.6

ENERGY LEVELS, HAZARDOUS
equipment electrical ratings (definitions) 1.2.1
EQUIPMENT FOR BUILDING-IN 1.2.3.5*, 2.1.2, 5.1
equivalent materials permitted 1.4.14

explosion
(implosion) of cathode ray tube 4.2.8
of battery 1.7.17, 4.3.21, 4.4.8
of high pressure lamp 4.1.5
limit see LIMIT, EXPLOSION

F

failures
consequences of
components
Introduction, 2.3.3, 5.4.6
in LIMITED CURRENT CIRCUITS 2.4.1, 2.4.3
in SELV CIRCUITS 2.3.1, 2.3.5
in TNV CIRCUITS 6.2.1.1, 6.2.1.2, 6.2.1.5
ENCLOSURES 4.1.2, 4.2.4, 4.2.7
equipment to operate 4.4.6, 5.4.5
motor capacitors B.8
screwed connections 4.3.13
mechanical 5.4.5

see also faults

fault conditions

difference between ELV CIRCUITS and SELV CIRCUITS 2.3.3
protection required 2.7.1, 2.7.3, 2.7.4, 4.4.3.3

fault current 2.3.3.3, 2.7.3, 2.7.4

faults

affecting air filters 4.4.3.6
consequential Introduction, 1.4.12, 1.5.3, 2.4.1
earth 2.7.1, 2.7.4
in capacitors 1.4.12, 4.4.1, 4.4.3.3
CLASS I EQUIPMENT 2.5.1
LIMITED CURRENT CIRCUITS 1.2.8.6, 2.4.1
limited power sources 2.11
power distribution systems

1.2.14.7 (note 2), 2.3.1, 6.1, annex V
protective earthing connections 5.2, annex G
ringing signal circuits M2, M3.3
not covered in 5.4

2.7.2
simulated
single
limits to be maintained 2.3.1, 2.11, 6.2.1.1, 6.2.1.2
no hazard Introduction, 1.2.8.5, 1.2.8.6

see also abnormal conditions and failure

FCC Rules, Part 68 M3, annex P
FEP (fluoro ethylene propylene) 2.9.4.4, 4.4.3.4, 4.4.5.2, 4.4.6
filters, air, flammability 4.4.3.1, 4.4.3.6
filters, electrical see electrical filters and capacitors, filter

FIRE ENCLOSURES

1.2.6.2*
air filters in 4.4.3.6
components in 4.4.5
construction 4.4.6, 4.4.7, A.1, A.2, A.5
required 4.4.5

see also ENCLOSURES

fire protection equipment, not in Scope of standard 1.1.3
fire risks

Introduction, 1.3.1, 4.4.2, annex P (IEC 695)
caused by
batteries 4.3.21
flammable liquids 4.4.8
ingress of water annex T
OPERATIONAL INSULATION 5.4.4
overloads 5.4.1

FIXED EQUIPMENT 1.2.3.4*, 1.7.1

fixed wiring see building installations

fixing (securing) of parts

adhesives 4.3.22
cord guards 3.2.7
conductors 3.3.2, 3.3.4, 3.3.7
controls 4.3.5
insulation 2.5.1, 2.9.6, 3.1.7
inlet bushings 3.2.6
minor parts 4.3.9
two fixings not Loose at the same time 3.3.4, 4.3.9, C.2
wiring 2.1.3.1, 2.1.3.2, 2.2.3.1
units of equipment 1.2.3.4, 4.1.1

FLAMMABILITY CLASS

SV 1.2.13.5*, A.9
applications 1.2.13.1, 4.4.1, 4.4.4
HB 1.2.13.8*, A.8
applications 1.2.13.1, 4.4.3.3, 4.4.3.5, 4.4.3.6, 4.4.1, 4.4.4
HBF (foamed material) 1.2.13.9*, A.7
applications 1.2.13.1, 4.4.3.3, 4.4.3.6, 4.4.1
HF-1 (foamed material) 1.2.13.6*, A.7
applications 1.2.13.1, 4.4.1
HF-2 (foamed material) 1.2.13.7*, A.7
applications 1.2.13.1, 4.4.1
V-0 1.2.13.2*, A.6
applications 1.2.13.1, 4.4.1, A.3.6
V-1 1.2.13.3*, A.6
applications 1.2.13.1, 4.4.1, 4.4.2, 4.4.3.3, 4.4.3.6, 4.4.4, 4.4.5, 4.4.6, 5.4.4
V-2 1.2.13.4*, A.6
applications 1.2.13.1, 1.5.4, 4.4.1, 4.4.3.2, 4.4.3.3, 4.4.3.4, 4.4.3.6

flammability

better class permitted 1.4.14
exemptions 4.4.3.3
tests A.1, A.2, A.6, A.7, A.8, A.9
for FIRE ENCLOSURES A.1, A.2

floating parts and windings see unearthed parts and windings

foil (conductive)
in definitions 1.2.7.5, 1.2.10.3
in tests 2.9.1, 2.9.7, 5.3.2, 6.4.2
10 cm x 20 cm 5.2.2, G.2
on wire 3.1.5

frequency

in LIMITED CURRENT CIRCUITS 2.4.2
of supply 1.4.11, 1.7.1, 2.6.12, 3.2.1, C.1
during tests 1.4.6
of test voltages 5.3.2, 6.4.2.2, R.1, R.2
of WORKING VOLTAGES 2.2.2, 2.9.1
of ringing signals M2, M3
in TNV CIRCUITS 6.2.1.1 b, 6.4.2.1
FREQUENCY, RATED 1.2.1.4*, 1.4.6, 1.7.1, 1.7.4
FREQUENCY RANGE, RATED 1.2.1.5*, 1.4.6, 1.7.1, 1.7.4

fuses

annex Q (IEC 127)
breaking capacity 2.7.3
in neutral conductors 2.7.6
location 1.7.11, 2.7.4
marking 1.7.6
minimum number 2.7.4
not allowed in protective earthing conductors 2.5.3
operating during motor tests B.2
performance 2.11 (table 9 condition 4)
protecting capacitors 5.4.8
warning to SERVICE PERSONNEL 2.7.6

G

gap see air gap

gas discharge tubes 5.3, 6.4.2.3

see also surge arrestors
gas flames for flammability testing

H

HAND-HELD EQUIPMENT

leakage current 5.2.2, G.2
maximum RATED VOLTAGE 250 V 1.6.2
mechanical strength 4.2.3
power cords 3.2.7, 3.2.8
separation from TELECOMMUNICATION NETWORKS 6.4.1 c)

handles

conductive 2.1.8
must be reliably fixed 4.3.5
no mechanical strength test 4.2.1
shafts of 2.1.7
temperature rise 5.1

HAZARDOUS ENERGY LEVEL

see also energy hazards

HAZARDOUS VOLTAGE circuits

insulation 2.1.3.2

see also HAZARDOUS VOLTAGES

HAZARDOUS VOLTAGES

multiples sources 1.7.9, 2.6.11
not to be accessible after tests 4.2.4, 5.4.9
at appliance inlets 3.2.3
at connectors 3.2.1
in OPERATOR ACCESS AREAS 2.1
on thermoplastic parts 5.4.10
protection by earthing 2.5.1, 2.5.2
separation from SELV CIRCUITS 2.3.3, 2.3.4
TNV CIRCUITS 6.2.1.4, 6.2.1.5
warning notices 1.7.9, 2.7.6

hazards

access using a TOOL 1.7.18
basis of design Introduction, 1.3.1
energy see energy hazards
fire see fire risks
information to the USER 1.3.2
not to be accessible after tests 4.2.4, 5.4.9

heat hazards

Introduction, 1.7.7.2
red, ceramic curing temperature 2.9.4.3
shock test U.2.3
sinks 5.1

see also fire hazards

heating

5.1

heating elements

4.3.20

high current arcing ignition tests 4.4.4, A.3

high voltage components 1.5.4

hot flaming oil tests 4.4.6, A.5

hot wire ignition tests 4.4.4, A.4

humidity

2.2.2

additional requirements if high conditioning (treatment) 2.2.2, 2.2.3, 2.9.5, 2.9.6

relative (r.h.) during tests 4.2.6, 4.3.22, A.6.3, A.7.3, A.8.3, A.9.3, U.2

hygroscopic material, not to be used as insulation 2.2.2

ICRP 15

annex H, annex Q

IEC 65

1.5.4, 4.2.8, annex P

IEC 73

1.7.8.2, annex P

IEC 83

1.7.5, 2.1.2, 2.3.4, annex P

IEC 85

1.4.7, 5.1 (table 16 condition 2), annex P

IEC 112

2.9.3, annex P

IEC 127

2.7.3, annex Q

IEC 227

3.2.4, annex P

IEC 245

3.2.4, annex P

IEC 309

1.2.5.2, 3.2.3, annex P

IEC 320

2.3.4, 3.2.3, 3.2.4, annex P

IEC 364

1.2.8.5, annex P

IEC 364-7-707

1.7.12, annex Q

IEC 384-14

1.5.6, 2.2.8.1, annex P

IEC 410

annex O, R.1, R.2

IEC 417

1.7.1, 1.7.7.1, 1.7.8.3, annex P

IEC 479

M.2, annex Q

IEC 529

annex Q

IEC 529, extract

annex T

IEC 536

1.2.4.2, annex Q

IEC 664

1.1.2, 2.9.1, 2.9.2.1 (table 3), annex P

IEC 695-2-2

A.2.7, annex P

IEC 707

1.2.13.5, 1.7.12, annex Q

IEC 730-1

2.11, annex P
IEC 825 4.13.12, annex P
IEC 851 annex P, U.2, U.3
IEC 885-1 3.1.5, annex P
IEC 1032 Figure 19 (p. 239), Figure 20 (p. 241), annex Q
IEC 1058-1 2.6.2, 2.8.6, annex P
ignition tests 4.4.4, A.3, A.4, A.5
impact tests 4.2.4, 4.2.7
implosion of cathode ray tubes 4.2.8
impulse tests see tests, impulse
indicators
 colours 1.7.8.2, annex P (IEC 73, ISO 3864)
 marking 1.7.8
 lamps exempt from flammability requirements 4.4.3.3
information technology equipment, connection to TELECOMMUNICATION NETWORKS clause 6
 examples in Scope of standard 1.1.1
INTERCONNECTING CABLES 1.2.11.7, 1.5.5
interconnection of equipment 2.10
internal wiring 2.1.3
ingress of water 1.1.2, 2.9.6, 2.9.7, annex T
ink 4.4.8
ink tubes 4.4.3.3
inlet bushings, power cord 3.2
installations, building see building installations
installation categories see transients (overvoltage categories)
installation instructions 1.7.2, 1.7.4
 disconnect devices 2.6.3, 2.6.6, 2.6.7, 2.6.9
 physical 4.1.1, annex T
 RESTRICTED ACCESS LOCATIONS 1.7.19
 wiring
 earth 6.2.1.2, 6.3.2, 6.3.3.2
 power 1.7.7.2, 1.7.10, 1.7.11
 telecommunication 6.5
instructions 1.7.2, 2.5.10, annex R
 see also installation instructions and operating instructions
insulation 1.2.9, 2.2
 application 2.2.5, 2.2.6
 BASIC see BASIC INSULATION
 better grade permitted 1.4.14
 bridging see bridging of insulation
 dimensions 2.2.7, 2.9
 DOUBLE see DOUBLE INSULATION
 for more than one requirement 6.1 (note 3)
 in transformers 2.2.6, 2.2.7.1, 2.9.9, C.2
 on winding wire see winding wire
 OPERATIONAL see OPERATIONAL INSULATION
 printed boards see printed boards
 REINFORCED see REINFORCED INSULATION
 SUPPLEMENTARY see SUPPLEMENTARY INSULATION
 tests with varying dimensions 5.3.2, 6.3.3, 6.4.2
 interconnection see connections
interleaved insulation in wound components 2.9.4.1, 2.9.4.2, 2.9.4.4, annex U
INTERLOCKS see SAFETY INTERLOCKS
INTERMITTENT OPERATION 1.2.2.5*, 5.1, 5.4.8
interpolation
 insulation spacings 2.9.1, 2.9.2 (tables 3 and 5), 2.9.3, 2.9.5 (table 7)
 electric strength test voltages 5.3.2 (table 18)
ionizing radiation
 Introduction, 4.3.12, annex H
 ISO 216 1.1.3, annex P
 ISO 261 3.3.3, annex P
 ISO 262 3.3.3, annex P
 ISO 2859 annex Q, R.1, R.2
 ISO 3864 1.7.18, annex P
 ISO 4046 B.7, annex P
 ISO 7000 1.7.1, annex P
isolation (from the supply) see disconnection for servicing
IT POWER SYSTEMS 1.2.12.3*
 heating elements 4.3.20
 leakage current annex G
 marking of equipment 1.7.10
 primary power isolation (three phase) 2.6.7
 protective devices 2.7.4
 voltage rating of components 1.6.4
ITU-T Recommendation K.11 6.1, annex Q
ITU-T Recommendation K.17 annex N, annex P
ITU-T Recommendation K.21
 NOTE - ITU-T Recommendations were formerly CCITT Recommendations
K
 knobs see handles
L
 labels see warning labels
 lamps
 high pressure 4.1.5
 left in place during tests 2.1.2
 no flammability requirement 4.4.3.3
 languages for instructions and marking 1.7.14
lasers
 Introduction, 4.3.12, annex P (IEC 825)
 leakage current 5.2, 6.3.4, annex G
 high 1.7.12, 5.2.5, G.2.5
 IT POWER SYSTEMS
 measuring instrument annex G
 annex D
to and from TELECOMMUNICATION NETWORKS

legal requirements

see also country notes

levers see handles

lightning see transients

LIMIT, EXPLOSION

1.2.13.10*, 4.4.8

limits see maximum

LIMITED CURRENT CIRCUITS

1.2.8.6*, 2.4,

2.2.6 (table 0.1 condition 6)

connections to other equipment

in OPERATOR ACCESS AREAS

2.10.2

2.1.1, 2.2.8.3

limited power sources

2.11, 4.4.5.1, 4.4.5.2

LIMITERS, TEMPERATURE

1.2.11.3*, annex K

liquids

conductive

1.4.10

flammable

4.3.12, 4.4.8

parts in contact

5.1

loosening see fixing

louvres

4.3.16

see also openings

M

mains

5.3.2

as telecommunication transmission medium

1.2.14.7

capacitors

1.5.6, 2.1.10

earth

2.5.11

frequency

1.4.11

neutral

2.6.6

plugs

1.2.3.6, 2.5.7, 3.2.1, 4.3.18

transients

1.1.2

voltage

1.6.5, 1.7.1, 2.9.2.1

adjustment

1.7.4

d.c.

1.4.5, 1.7.1, 5.1 (table 18 conditions 6, 7 and 8)

defined as phase to neutral

2.9.1

see also PRIMARY CIRCUITS

marking

1.7

see also warning labels

battery compartments

6.2.2.2

durability

1.7.15

equipment in RESTRICTED ACCESS LOCATIONS

1.7.19

equipment that must be earthed

6.3.3.2

high leakage current

1.7.2

labels see warning labels

lithium batteries

1.7.17

mating of plugs and sockets

4.3.17

multiple sources

2.6.12

of stabilizing devices

4.1.1

T-marking

5.1

unearthed parts in SERVICE ACCESS AREAS

2.5.1

mass

of equipment, criterion for test

1.2.3.1, 2.1.2,

3.2.4, 3.2.5, 4.1.1, 4.2.5, 4.4.4, A.1, A.2

cord guard test

3.2.7

steel ball test

4.2.4

material group (tracking) see c.t.i.

materials

to be reliable

use of better materials permitted

Introduction

1.4.14

maximum

amount of flammable liquid

4.4.8

current to telecommunication wiring

6.5

input current

1.6.1

ionizing radiation

4.3.12, annex H

leakage current

5.2.2, 6.3.4, G.2

LIMITED CURRENT CIRCUIT levels

2.4

limited power source levels

2.11

ozone level

1.7.2

RATED VOLTAGE

600 V in Scope of standard

1.1.1

250 V for HAND-HELD EQUIPMENT

1.6.2

ringing signal level

M.2, M.3

ripple, see ripple

SELV CIRCUIT voltages

normal

2.3.2

fault conditions

2.3.3

temperature (rise)

1.4.7, 5.1

in OPERATOR ACCESS AREAS

of

conductors

3.1.1

insulation during tests

5.4.9

materials and components

5.1

motors

B.3

transformers

C.1

windings

1.4.8, annex E

TNV CIRCUIT voltages

TNV-1 CIRCUITS

6.2.1.1 a)

TNV-2 and TNV-3 CIRCUITS

6.2.1.1 b)

transients see transients

MECHANICAL ENCLOSURES

1.2.6.3*, 4.1.2, 4.1.5, 4.4.4

see also ENCLOSURES

mechanical hazards

Introduction, 2.8.2, 4.1

mechanical shock

affecting CLEARANCES

2.9.1

affecting interlocks

2.8.3

mechanical strength

cathode ray tubes

4.2.8

handles

4.2.1

no test in MECHANICAL ENCLOSURES

4.2.1

mechanical stress, on insulation

2.9.4.1, 2.9.4.4

mechanically operated interlock switches

2.8.4, 2.8.6

mobility of equipment (definitions)

1.2.3

moisture see humidity and water ingress

motor overload

5.4.2

motor tests

annex B

motor-generator sets, not in Scope of standard

1.1.3

motors

requirements

5.4.2

tests

annex B
at RATED VOLTAGE

B.2

d.c. motors

B.6, B.7

locked rotor

B.5

running overload

B.4

series motors

B.10

stepper motors

B.1

three-phase motors

B.9

MOovable EQUIPMENT

1.2.3.1*, 1.2.3.3

FIRE ENCLOSUREs

4.4.4, A.1, A.2

leakage current

5.2.2, 6.3.4, G.2

power supply cord flexing test

3.2.4

movable parts of equipment

2.9.1

moving parts of equipment

2.8.2, 4.1.2, 4.1.3

multiple power sources

1.1.3, 2.6.12

N

national requirements see country notes

neoprene

4.4.3.4, 4.4.5.2, 4.4.6

see also rubber, synthetic

networks see TELECOMMUNICATION NETWORKS

neutral conductors

1.6.3

disconnection by disconnect devices

2.6.6, 2.6.7

disconnection by protective devices

2.7.4, 4.3.20

fuses in neutral, warning required

2.7.6

marking of terminals

1.7.7.2

reliably identified

2.6.6, 2.7.4

nominal mains voltages

2.9.2.1 (tables 3 and 5)

NON-Detachable POWER Supply CORDS

see power (supply) cords

NORMAL LOAD conditions

1.2.2.1*, 1.6.1, 5.1, annex L

normative references

annex P

O

oil

4.3.11, 4.4.8

hot flaming oil test

A.5

see also liquids

openings

4.3.14

access through

2.1.2, 4.1.2

for power cords

3.2.6, 3.2.7

in FIRE ENCLOSUREs

4.4.3.3, A.2.1

in sides of ENCLOSURES

4.3.16

in tops of ENCLOSURES

4.3.15

measuring through

2.9.1

ventilation

4.4.3.3, A.2.1

operating conditions (definitions)

1.2.2

operating instructions

1.2.2.1, 1.2.7.1, 1.4.4, 1.7.2,
1.7.17, 4.4.7, 4.4.8, 6.2.22, annex L

OPERATION, CONTINUOUS

1.2.2.3*, 5.1

OPERATION, INTERMITTENT

1.2.2.5*, 5.1, 5.4.2

OPERATION, SHORT-TIME

1.2.2.4*, 5.1, 5.4.2, 5.4.8

OPERATIONAL INSULATION

1.2.9.1*

application

2.1.1, 2.1.2, 2.2.6

bridging see bridging of insulation

dimensions

2.9.2, 2.9.3, 2.9.4.1, annex F

electric strength

5.3.2

failure to be simulated

5.4.4 e)

smaller spacings permitted

2.9.1, 5.4.4

WORKING VOLTAGES

2.2.7

OPERATORS (or USERS)

1.2.14.5*

information supplied to

1.3.2, 1.7.2

of telecommunications equipment

6.3, 6.4

servicing by OPERATOR

2.9.4.2

handling insulation

4.1.5

high pressure lamps

4.1.1

stability

1.4.3

test samples to be as supplied to USERS

1.4.3

OPERATOR ACCESS AREAS

Introduction, 1.2.7.1*, 2.1

access probes

2.1.2, 6.2.2.1, 6.2.2.2

batteries in

1.7.17

cmpared with RESTRICTED ACCESS LOCATIONS

1.2.7.3

doors in FIRE ENCLOSUREs

4.4.7

energy hazards in

Introduction, 2.1.5

fuses

1.7.6

insulation

of ELV CIRCUITS

2.1.3.1

of HAZARDOUS VOLTAGE circuits

2.1.3.2

ionizing radiation in

Introduction, 4.3.12, annex H

LIMITED CURRENT CIRCUITS

2.4.1

marking for lithium batteries

1.7.17

marking of power outlets

1.7.5

markings to be visible

1.7.1

TOOL required for access

1.2.7.1, 1.7.18

overcurrent and earth fault protection

Introduction, 2.7

overcurrent protection devices

air gaps

2.9.1

in limited power sources

2.11

not damaged during tests

4.2.7

overcurrent protection for telecommunication wiring

6.5

overcurrent protection for transformers

5.4.3, C.1

overriding interlocks

2.8.5

overheating of telecommunication wiring

6.5

overload

mechanical

5.4.1

electrical

3.1.1, 5.4.1, 6.2.1, 6.5

see also overcurrent

motors

5.4.2, B.2 (table B.2), B.4, B.5, B.6, B.7

tests

5.4.6

transformers

5.4.3, C.1, C.2

overvoltage categories see transients (overvoltage categories)

overvoltages

1.1.2, 1.2.8.9, 1.2.8.10, 1.2.8.11,
2.3.2, (note), 6.1 (note 1),
annex Q (ITU-T Recommendation K.11)

see also transients

ozone

1.7.2
Part 68, FCC Rules

passive devices, not in Scope of standard 1.1.3
peak, overvoltage 2.9.1, 2.9.2.1, 2.9.2.2, 6.1, 6.4.2.5
peak voltage, repetitive 2.2.7.2, 2.9.2.1
PERMANENTLY CONNECTED EQUIPMENT

discharge of capacitors 2.1.10
disconnect devices 2.6.3
marking 1.7.2, 1.7.7.2, 1.7.11
leakage current 5.2.2, 5.2.5, G.2, G.5
overcurrent protection 1.7.11, 2.7.3
terminals 3.2.2, 3.3.1

permission to connect to TELECOMMUNICATION NETWORKS
see legal requirements
personnel, network service 6.3
PERSONNEL, SERVICE see SERVICE PERSONNEL
plating, protective earthing components 2.5.10
PLUGGABLE EQUIPMENT

discharging filter capacitors 2.1.10
isolation 2.6.2, 2.6.6
leakage current 5.2.2, G.2
overcurrent protection 2.7.3, 2.7.4
TYPE A 1.2.5.1*
test BASIC INSULATION 5.4.9
TYPE B 1.2.5.2*, 1.7.11, 2.7.3, 5.2.5, G.5
plugs
mismating 2.3.4
see also mains plugs
pollution (degree) 2.2.2, 2.9.1, 2.9.3
pollution degree 1 applies 2.9.6, 2.9.7
polyimide insulating material 2.9.4.3 (note 2), 2.9.4.4, 4.4.5.2
powder
containers 4.3.4
4.4.3.3
power
connections to equipment 3.2
distribution (definitions) 1.2.12
see also IT, TT, and TN POWER SYSTEMS
factor A.3.3
interfaces 1.6
no power required, excluded from Scope 1.1.3
outlets on equipment see socket-outlets on equipment supply to telecommunication wiring
rating, marking 1.7.1, 1.7.4
sources for equipment any, included in Scope 1.1.1
multiple 2.6.12
marking 1.7.9
power (supply) cords 2.5.9, 3.2.1, 3.2.4
DETACHABLE POWER SUPPLY CORDS 1.2.5.4*
marking of wiring terminals 1.7.7
NON-DETACHABLE POWER SUPPLY CORDS 1.2.5.5*,
2.9.1, 3.2.2, 3.2.5, 3.2.6, 3.2.7, 5.1 (table 16 part 1)

ordinary 1.7.7.2, 3.2.8, 3.3.1, 3.3.8
special 3.3.2
inside the equipment 3.1.5
screened 3.2.5
voltage drop not measured 1.4.13, 2.5.11
power supply (units) 1.7.7.1, 2.2.7 (note)

POWER SYSTEMS see IT, TN, and TT POWER SYSTEMS
single phase, three wire 1.2.12.1
prepreg 2.9.4.3 (note 1)

PRIMARY CIRCUITS

CLEARANCES in 2.9.2.1
components in 5.4.6
fuses 2.7.3
interlock switches 2.8.6.1
filters in Introduction, 5.2, annex G
marking of switches 1.7.8.3
marking of terminals 1.7.7.2
protection 2.7.1
WORKING VOLTAGES in 2.2.7.1, 2.2.7.2

PRIMARY power
connections 3.2
isolation see disconnection
overload 3.1.1
principles of safety Introduction (page 17)
printed boards coated, CLEARANCES and CREEPAGE DISTANCES
2.9.5, annex F (figure F.13)
distances through insulation 2.9.4.3
metal core 2.9.5
multi-layer 2.9.4.3
quality control R.1
printed wiring see also printed boards
colours of flexible 2.5.5

protection against electric shock and energy hazards 2.1, clause 6
against overcurrent and earth faults 2.7
backup protection 2.7.2
provided by building installations 1.7.11, 2.7.1, 2.7.3, 2.7.4
in SERVICE ACCESS AREAS 2.1.4.1
in RESTRICTED ACCESS LOCATIONS 2.1.4.2
of network SERVICE PERSONNEL 6.3
of (telecommunication) equipment USERS 6.3, 6.4
of telecommunication wiring 6.5
protective coverings in place during tests 5.4.7
protective devices 1.7.11, 2.7.4
protective earth and TELECOMMUNICATION NETWORKS 6.3.2
protective earthing 2.5, 6.2.1.2
colour of insulation 2.5.5, 3.1.6
conductors 2.5.3, 3.2.5
voltage drop not measured 1.4.13, 2.5.11
continuity to be assured 2.5, 3.1.11, 6.2.1.2, 6.3.3.2
see also PLUGGABLE EQUIPMENT TYPE B
materials for conductors 2.5.10
reliance on 1.2.4.1, 1.2.4.2

PTFE, Polytetrafluoro ethylene 4.4.3.4, 4.4.5.2, 4.4.6

PVC, Polyvinyl chloride 3.2.4, 4.4.3.4, 4.4.3.5, 4.4.5.2, 4.4.6, 5.1, annex P (IEC 227)

Q

quality control 2.9.2 (table 3 condition 3, table 5 condition 2), 2.9.5, 2.9.8

quality control programmes annex R

R

radiation hazards Introduction, 4.3.12, annex H

radiation, laser 4.3.12, annex P, annex Q

range of conductor sizes 3.2.8, 3.3.5

current 1.7.1

frequency see RATED FREQUENCY RANGE voltage, see RATED VOLTAGE RANGE

RATED CURRENT 1.2.1.3*

input current not to exceed 1.6.1

marking 1.7.1

POWER SUPPLY CORD ampacity 3.2.4

purpose of marking 1.7.1

range 1.7.1

terminal sizes 3.3.6

rated current of overcurrent devices 1.7.6, 2.11

RATED FREQUENCY 1.2.1.4*, 1.4.6, 1.7.1, 1.7.4

RATED FREQUENCY RANGE 1.2.1.5*, 1.4.6, 1.7.1, 1.7.4

RATED OPERATING TIME 1.2.2.2*, 1.7.3, 5.1, 5.4.8

RATED VOLTAGE of equipment 1.2.1.1*

IT POWER SYSTEMS 1.6.4

marking 1.7.1

maximum value

600 V in Scope of standard 1.1.1

250 V for HAND-HELD EQUIPMENT 1.6.2

tolerance 1.6.5

used for tests 1.4.5, 5.2.2, B.2, G.2, annex K

when measuring input current 1.6.1

RATED VOLTAGE RANGE of equipment marking 1.2.1.2*

used for tests 1.4.5, 5.2.2, B.2, G.2, annex K

when measuring input current 1.6.1

rated voltage of components fuses 1.7.6

capacitors 1.6.4, 2.2.8.1

motors B.6

surge suppressors 6.3.3.1

redundant power supplies see backup sources of power reed switches, reliability tests 2.8.6.3

REINFORCED INSULATION application Introduction, 1.2.4.1, 1.2.4.2, 1.2.9.5* 2.1.8, 2.2.6

CLASS I EQUIPMENT 1.2.4.1, 2.5.1

CLASS II EQUIPMENT 1.2.4.2, 2.5.2

HAZARDOUS VOLTAGE circuits 2.1.3.2

internal wiring 2.1.3.2

printed boards 2.9.4.3

SELV CIRCUITS 2.3.3, 2.3.3.1, 2.3.5

TNV CIRCUITS 6.2.1.4, 6.2.1.5

wound components 2.9.4.4

on coated printed boards 2.9.5, annex F (figure F.13)

bridging see bridging of insulation dimensions 2.9.2, 2.9.3, 2.9.4, annex F, R.1, R.2

electric strength 5.3.2

integrity after tests 4.2.7, 5.4.4, 5.4.6, 5.4.9

in service 3.1.8, 4.3.9

WORKING VOLTAGES 2.2.7

relative humidity see humidity

relays in FIRE ENCLOSURES 1.5.1, 4.4.5.1

motor starting B.5

reliability interlock switches 2.8.6.3

thermal controls K.2, K.5

repetitive peak voltage 2.2.7.2, 2.9.2.1

resistance, protective earthing conductors 2.5.11

resistance to fire see fire risk

resistors bridging see bridging of insulation faults in 1.4.12

RESTRICTED ACCESS LOCATIONS 1.2.7.3*, 2.1.4.2, 6.2.2.1

compared with OPERATOR ACCESS AREAS 1.2.7.3, 2.1.4.2

installation instructions 1.7.19

temperature rise, exception for heat sinks 5.1

t.f.i. see electrical filters

ringing signals see telephone ringing signals

ripple in D.C. VOLTAGE, definition 1.2.14.3

in WORKING VOLTAGES 2.2.7.2, 2.2.7.3, 2.2.7.4

for CLEARANCE 2.9.2.2 (table 5 condition 4)

for electric strength tests 5.3.2

in limited power sources 2.1.1 (tables 8 and 9, condition 1)

r.m.s. values implicit unless otherwise specified B.2

ROUTINE TESTS 1.2.14.2*

coated printed boards 2.9.4.3, 2.9.5, annex R

reduced CLEARANCES 2.9.2.1 (table 3 condition 3), 2.9.2.2 (table 5 condition 2)

wound components without interleaved insulation 2.9.4.4, U.3

routing of wiring 2.1.3.1, 2.1.3.2, 2.3.3.1

rubber annex P (IEC 245)

natural, not to be used as insulation 2.2.2

rollers 4.4.3.3

synthetic, as insulation 3.2.4, 5.1 (table 16),
running overload tests
a.c. motors B.4
B.6
d.c. motors

S

SAFETY INTERLOCKS 2.8
fail-safe operation 2.8.4
mechanical actuators 2.8.6, 2.8.7
not damaged during tests 4.2.7
protection 2.8.1, 2.8.2, 2.8.3
overriding interlocks 2.8.5
by SERVICE PERSONNEL
TOOLS required 2.8.5
mechanical shock affecting 2.8.3
switches 2.8, 2.9.1
samples for test components 1.5.2
equipment 1.2.14.1, 1.4.3
scope of standard 1.1
screens conductive earthing 2.3.3.2, 2.3.5
for SELV CIRCUITS 6.2.1.4
for TNV CIRCUITS
unearthed 2.2.6 (table 0.1 condition 6), C.2
mechanical 4.2.1, 4.3.22, 4.4.3, 4.4.6
secured with adhesive 4.3.22
screw connections 3.1.8, 3.3.3, 4.3.13
screws in insulating material 3.1.19
thread cutting 3.1.11
sealed, sealing components 2.9.1, 2.9.6, 4.4.3.3
compounds 2.1.2, 4.3.5, 5.1
layers of tape U.1
liquid reservoirs 4.4.8
kits (against moisture) 3.1.11
SECONDARY CIRCUITS Introduction, 1.2.8.2*, 1.2.8.4, 1.2.8.5, 2.2.6
CLEARANCES in 2.9.2.2 (table 5)
electromagnetic components in 5.4.5
floating 2.9.1, 2.9.2.2
in SERVICE ACCESS AREAS 2.1.4.2
transients in 2.2.7.2, 2.9.1, 2.9.2.2
TNV CIRCUITS 1.2.8.8
where FIRE ENCLOSURE is not required 4.4.5.2
WORKING VOLTAGE 5.3.2 (table 18 condition 3)
between PRIMARY CIRCUITS and SECONDARY CIRCUITS 2.2.7.1
secondary winding overload tests C.1
securing see fixing SELV CIRCUITS Introduction, 1.2.8.5*, 2.3, annex V
accessibility 2.1.1
as interconnection circuits 2.10.2
barriers in 2.3.3.1
boundaries of 2.3.5
connected to TELECOMMUNICATION NETWORKS 2.3.1, 2.3.2 (note), 6.1, 6.3.1
connections to other circuits 2.3.5
connections to other equipment 2.10.1
connectors 2.3.4
different from the term SELV in IEC 364 1.2.8.5 (note 2)
earthed 2.5.11
faults 1.2.8.5*, 2.3.1, 2.3.3
insulation 2.2.6
maximum voltages 2.3.2
normal conditions 2.3.2
fault conditions 2.3.3, 6.2.1.2
methods of protecting 2.3.3
separation from TNV CIRCUITS 6.2.1.2
TELECOMMUNICATION NETWORKS, excluded from 1.2.14.7, 2.3.2 (note)
WORKING VOLTAGES 2.2.7.2
semiconductor devices see also components as surge arresters (S.3)
faults 1.4.12, 5.4.6
in FIRE ENCLOSURES 4.4.5.1
separation distances under coatings around terminals 2.9.8, annex F (figure F.12)
printed boards 2.9.5, R.1
SERVICE ACCESS AREAS see also SERVICE PERSONNEL 1.2.7.2*
service manuals 1.7.4
SERVICE PERSONNEL 1.2.14.4*
connectors accessible to of TELECOMMUNICATION NETWORKS 6.3
overriding interlocks 2.8.5
protection
by earthing 2.5.1
from unexpected hazards 2.1.4.1, 2.1.4.2, 2.6.4
mechanical hazards 4.1.2
stability 4.1.1
warning notices 1.7.9, 2.7.6
servicing controls 1.7.4
servicing instructions see also SERVICE PERSONNEL disconnection 2.6.12
fuse ratings 1.7.14
languages 1.7.17
lithium batteries 1.7.4
mains voltage adjustment
maintenance 1.7.2
sheaths (of power supply cords) 3.1.5, 3.2.4, 3.2.6
shields, see screens, electromagnetic shock, electric see electric shock
shock, mechanical see mechanical shock short-circuits 2.7
of limited power sources 2.11
batteries 4.3.21
insulation 2.2.7.1, 5.4.4, 6.2.1.2
motor capacitors B.8
parts with HAZARDOUS ENERGY LEVELS
Introduction, 2.1.4.1, 2.1.4.2, 2.1.5

temperature limiters in unattended equipment 5.4.8
transformers C.1
protection against
1.7.11, 2.7, 3.1.1, 5.4.1

SHORT-TIME OPERATION
1.2.2.4*, 5.1, 5.4.8

simulated conditions for test
1.4.9, 5.1, 5.4.7, 6.2.1.2, 6.2.1.5, 5.2.2, annex C, annex L, annex T

electrical requirements 6.2.1.3

interference annex N

sleeving as additional insulation 3.1.5, 4.3.7, 4.9.4.4

around insulation beads 3.1.7

small parts, flammability 4.4.3.3

socket-outlets in building installations

for DIRECT PLUG-IN EQUIPMENT 1.2.3.6, 4.3.18

for PLUGGABLE EQUIPMENT 1.2.5.1, 1.2.5.2, 1.7.2

protective earthing connection required 6.3.3.2

reversible 2.6.6, 4.3.20

on equipment 1.7.5

accessibility 2.1.2

loads to be taken into account 1.4.9, 5.4.6

sockets, multiway 2.3.4

mismating 4.3.17

softening of insulating materials 5.1 (table 16 condition 7)

solenoids 5.4.5

in FIRE ENCLOSURE 4.4.5.1

solid insulation 2.2.1, 2.5.1, 2.9.1, 2.9.4

electric strength 5.3.2 (table 18 condition 2)

see also distances through insulation

stability

of operation, thermal controls K.6

physical 4.1

stand-by condition, marking 1.7.8.3

STATIONARY EQUIPMENT
1.2.3.3*, 1.2.3.4, 4.4.4, 5.1 (table 16 part 1)

ENCLOSURES 4.4.4, A.1, A.2, A.5

leakage current 5.2.2, 5.2.5, G.2, G.5

temperature of earthing terminals 5.1 (table 16 part 1)

steady force tests, 10 or 30 N, when measuring CLEARANCE 2.9.1

steady force tests, 30 N 4.2.2, 4.2.7

steady force tests, 250 N 4.2.3, 4.2.7

steel ball impact tests 4.2.4, 4.2.7

strain relief on fluid containers 4.4.8

on power cords 3.2.5

stranded conductors power supply cord
soldered 1.2.5.5, 3.3.4, 3.3.9, 3.3.10

stress, mechanical, on insulation 2.9.4.1

stress relief test on plastic materials 4.2.6, 4.2.7

sub-assembly testing 1.4.3, 2.2.2, 5.4.6

SUPPLEMENTARY INSULATION
Introduction, 1.2.9.3*, 1.2.9.4, 1.2.9.5

application 2.1.8, 2.1.9, 2.2.6

as sleeving 3.1.5, 4.3.7

in

cord anchorages 3.2.5

internal wiring 2.1.3.1

printed boards 2.9.4.3

SELV CIRCUITS 2.3.3

wound components 2.9.4.4

on

coated printed boards 2.9.5, annex F (figure F.13)

power supply cords 3.1.5

capacitor casings 2.1.9

bridging see bridging of insulation consequences of failure 2.3.3, 2.4.1

dimensions 2.9.2, 2.9.3, 2.9.4, annex F, R.1, R.2

electric strength 5.3.2

integrity after a test 4.2.7, 5.4.4, 5.4.6, 5.4.9

in service 3.1.8, 3.3.9, 4.3.9

interchanged with BASIC INSULATION 2.2.6

one element of DOUBLE INSULATION 2.2.7.1, 5.4.9

WORKING VOLTAGES 2.2.7

surge arrestors (suppressors) 5.3, 6.1 (note 1), 6.3.3.1, 6.4.1, 6.4.2.2, 6.4.2.3, annex S

switch mode power supplies see also repetitive peak voltage 2.2.7 (note)

switches see also IEC 1058-1

arcing 4.4.4

as disconnect devices see disconnection for servicing forbidden in protective earthing conductors 2.5.3

functional 2.6.2

in FIRE ENCLOSURES 4.4.5

in PRIMARY CIRCUITS 5.4.6

isolating 2.6.2, 2.6.5, 2.6.8

marking 1.7.8, 4.3.5

microgap 2.9.1 (note 3)

reed 2.8.6.3

safety interlock 2.8, 2.9.1 (note 3)

terminals of thermal control annex K

symbols, marking 1.7.1, 1.7.7, 1.7.8.3, 5.1 (table 16 condition 6)

T

TELECOMMUNICATION NETWORKS 1.2.14.7*

connected to SELV CIRCUITS or TNV CIRCUITS 1.2.14.7 (note 1), 2.3.1, 2.3.2 (note), 6.1, 6.3.1

connections to 1.2.11.7, 2.3.1, 6.1, 6.3.1

equipment powered from, included in Scope of standard 1.1.1

leakage current, to and from 6.3.4

operating voltages generated in see also telephone ringing signals 6.2.1.3

protection by earthing 6.3.2

power limit 15 VA 4.4.5.2

separation from earth 6.3.3
hazardous voltages 6.3.1
parts of equipment 6.4
surge protection 6.1 (note 1), 6.4.1

telecommunication wiring, protection 6.5
telegraph signals 6.2.1.1 (note 3)
telephone ringing signals
considered as operating voltages 2.3.1
disregarded for CREEPAGE DISTANCES 2.2.7.4
frequency M.2 (note), M.3.1.1
maximum levels 6.2.1.1 b)
power supplies for 2.1.4.2

television distribution systems 1.2.14.7
temperature, temperature rise
ambient during tests 1.4.7, 4.3.22, B.5, annex E, U.2
applied to parts under test 2.2.2, 2.2.3, 2.9.5, 2.9.6,
maximum 2.9.7, 4.2.6, 5.3.1, 5.4.8, 5.4.10
heat sinks 5.1
maximum see maximum temperature (rise)
measurement 1.4.7, 1.4.8, 5.1

TEMPERATURE LIMITERS 1.2.11.3, annex K
temperature sensing devices 4.3.20
terminals see wiring terminals
test see also tests fingers 2.1.2, 2.1.4.2, 6.2.2.1, 6.4.1 b),
figure 19 (page 239), annex F (figure F.14 point A)
pins 2.1.2, figure 20 (page 241)
probes 6.2.2.1, 6.4.1 b), figure 16 (page 229)
tests abnormal conditions 5.4
abrasion resistance 2.9.5
adhesive ageing 4.3.22
ball-pressure 5.4.10, figure 21 (page 241)
current supplied to telecommunication wiring 6.5
drop 4.2.5, 4.2.7
flammability A.1, A.2, A.6, A.7, A.8, A.9
electric strength see electric strength tests
endurance
interlock switches 2.8.6.2
thermal controls K.3, K.4
high current arcing ignition tests 4.4.4, A.3
hot flaming oil 4.4.6, A.5
hot wire ignition 4.4.4, A.4
ignition 4.4.4, A.3, A.4, A.5
impact 4.2.4, 4.2.7
implosion tests (cathode ray tubes) 4.2.8
impulse 6.4.2.1, 6.4.2.2, 6.4.2.3, R.1, R.2, annex S
ing floating circuits 2.9.1, 2.9.2.1
test generators annex N
leakage current 5.2, 6.3.4, annex G
motors see motor tests ROUTINE see ROUTINE TESTS
steady force, 10 or 30 N, when measuring CLEARANCE 2.9.1
steady force, 30 N 4.2.2, 4.2.7
steady force, 250 N 4.2.3, 4.2.7
steel ball impact 4.2.4, 4.2.7
stress relief on plastic materials 4.2.6, 4.2.7
thermal ageing 2.9.4.3, 2.9.4.4, 2.9.5
thermal cycling 2.9.4.3, 2.9.4.4, 2.9.5, 2.9.6, 2.9.7
transformers see transformer testing TYPE 1.2.14.1*, 1.4.2, 1.5.2, U.2
TFE, tetratfluoroethylene 4.4.3.4, 4.4.5.2, 4.4.6
thermal ageing 2.9.4.3, 2.9.5
thermal cycling 2.9.4.3, 2.9.5, 2.9.6, 2.9.7
thermal controls 2.1.1, annex K, annex P (IEC 730-1)
THERMAL CUTOUTS 1.2.11.4*, annex K
contacts 2.9.1
integrity after tests 4.2.7
not to operate during heating tests 5.1
thermoplastic parts 5.4.10
THERMOSTATS 1.2.11.2*, 5.4.8, annex K
contacts 2.9.1

thickness of insulation, see distance through insulation
thin sheet insulating material 2.9.4.2, 2.9.4.3, 5.3.1, C.2
three-phase
disconnect devices 2.6.7
equipment
leakage current 5.2.4, 5.2.5, 6.3.4, G.4, G.5
protection 2.7.4
motors B.9
rotation, marking if critical 1.7.2
TIME, RATED OPERATING 1.2.2.2*, 1.7.3, 5.1, 5.4.8
TN POWER SYSTEMS 1.2.12.1*
leakage current 5.2.1
protective devices 2.7.4

TNV CIRCUITS 1.2.8.3, 1.2.8.8*, 6.2, annex V
accessibility 2.1.4.1, 2.1.4.2 (note), 6.2.2.1
in battery compartments 6.2.2.2
via other circuits 6.4.1
as interconnection circuits 2.10.2
boundaries of 2.6.1.5
connected to SELV CIRCUITS 2.6.1.2
connected to TELECOMMUNICATION NETWORKS 6.1, 6.3.1
connections to other circuits 2.6.1.5
connections to other equipment 2.10.1
considered to be SECONDARY CIRCUITS 1.2.8.8
faults 6.2.1.1, 6.2.1.2
insulation 2.2.6, 2.2.12
maximum voltages 6.2.1.1
not requiring FIRE ENCLOSURES 4.4.5.2
separation from accessible parts 6.2.1.2
from HAZARDOUS VOLTAGES 6.2.1.4
from SELV CIRCUITS and other TNV CIRCUITS 6.2.1.2

TNV-1 CIRCUITS 1.2.9.9*, 6.2.1.1 a), annex V
separation from parts of equipment 6.4.1
treated as TNV-3 CIRCUITS 6.2.1.2

TNV-2 CIRCUITS 1.2.9.10*, 6.2.1.1 b), annex V
separation from parts of equipment 6.2.1.2

TNV-3 CIRCUITS 1.2.9.11*, 6.2.1.1 b), annex V
separation from parts of equipment 6.4.1
tolerances

frequency 1.4.6
manufacturing, effect on CLEARANCES 2.9.1
voltage 1.4.5, 1.6.5
during tests 5.2.2, G.2

TOOLS
not required for OPERATOR ACCESS AREAS 1.2.7.1
required for
access 1.2.7.3, 1.7.18, 3.2.8, annex T
adjustment 1.4.4, 4.3.1, 4.3.2
replacement of special cords 1.2.5.5
to
open battery compartments 6.2.2.2
override interlocks 2.8.5
remove bushings 3.2.6
remove guards against water ingress annex T
risk of short-circuits during servicing 2.3.4

touch current, see leakage current

tracking see c.t.i.

transformers 1.5.3
conductive foil as screens C.2
cores 2.2.6 (table 0.1 condition 6), C.2
enclosed 2.9.6
ferro-resonant 4.4.5.1
in FIRE ENCLOSURE insulation
varying dimensions 2.9.9, 5.3.2
isolating 2.11
in limited power source used for test 5.2.2, 6.3.4, G.2
maximum temperature C.1
not in Scope of standard unless integral in equipment 1.1.3
overload protection 5.4.3, C.1
screens 2.2.6 (table 0.1 condition 6), C.2
SECONDARY CIRCUITS 1.2.8.2
signal 6.4.2
tandem 2.3.3
testing 2.9.6, 5.4.6, C.1
winding wire see winding wire
WORKING VOLTAGES 2.2.7.1

transient voltage ratings 2.9.2.1 (tables 3 and 5)

transients see also tests, impulse

affecting WORKING VOLTAGE 2.2.7.2
attenuated 2.9.4.1
disregarded for CREEPAGE DISTANCES 2.2.7.4
overvoltage categories 1.1.2, 2.9.1, 2.9.2.1, 2.9.2.2

in
power distribution systems annex N
PRIMARY CIRCUITS 2.9.2.1
SECONDARY CIRCUITS 2.9.1, 2.9.2.2, 2.9.4.1
TNV CIRCUITS 1.2.8.9, 1.2.8.10, 1.2.8.11, annex V
not part of operating voltage 6.1
internally generated 2.9.2.2
measurement in floating SECONDARY CIRCUITS 2.9.1
on TELECOMMUNICATION NETWORKS 1.2.14.7 (note 2), 6.1
transport castors 4.1.1

conditions during 2.5.10, 2.9.1
precautions during 1.7.2

TT POWER SYSTEMS 1.2.12.2*
leakage current 5.2.1
protective devices 2.7.4
t.v. distribution systems 1.2.14.7

TYPE TESTS 1.2.14.1*, 1.4.2, 1.5.2, U.2

U
ultra-violet radiation Introduction, 4.3.12
unattended equipment, testing 5.4.8
unearthed (floating) 2.9.1, annex F (figure F.15)
meaning of term ENCLOSURES 2.2.6 (table 0.1 condition 6)
neutral in 3-phase systems 2.7.4 (table 2)
parts and windings 2.9.1, annex (figure F.15)
accessibility 2.1.1, 2.1.2, 2.1.3.1

and TELECOMMUNICATION NETWORKS 6.4.1
TNV CIRCUITS 6.2.1.2
internal wiring 2.1.3
not to be connected to capacitors 2.1.9
electric strength 5.3.2, C.2
in determination of WORKING VOLTAGES 1.4.13, 2.2.7.1
separation 2.1.1, 2.1.2
from stranded wire 3.3.9
within DOUBLE INSULATION 2.2.6
SECONDARY CIRCUITS 2.9.2.2
treated as PRIMARY CIRCUITS 2.9.1
testing 2.2.6
SELV CIRCUITS 2.3.4, 3.1.4, 3.2.8

UNINSULATED conductors and parts see also bus-bars

USERS 1.2.14.6*
instructed about hazards 1.2.7.3
of telecommunication equipment, see also OPERATORS which has the same meaning

USER information 1.3.2, 1.7.2

V
vapour 1.2.13.10
vertical burning tests 1.2.13, 4.4.1, A.6, A.9
vibration see mechanical shock

VOLTAGE, RATED see RATED VOLTAGE

VOLTAGE, WORKING see WORKING VOLTAGE

voltages

generated externally, in SELV CIRCUITS 2.3.1
TNV CIRCUITS 6.1, 6.2.1.3
measurements to earth 1.2
r.m.s. value implied unless otherwise specified selectors 1.7.4, 4.3.1, 5.3.2, G.3

W
warning labels Introduction, 1.7.12, 2.5.1, 2.6.11, 2.7.6, 5.1 (table 16 condition 6), 5.2.5, G.5
water ingress 1.1.2, 2.9.6, 2.9.7, annex T

see also IEC 529

weight see mass

wire, wiring Clause 3

see also building installations

access to
ELV CIRCUITS 2.1.3.1
HAZARDOUS VOLTAGE circuits 2.1.3.2
fixed securely 3.1.3
enamelled, not suitable as safety insulation 2.9.4.2
heating 5.1

insulation
flammability 4.4.3.4, A.6.2
in FIRE ENCLOSURES 4.4.5.1, 4.4.5.2
resistance to oil 4.3.11
internal 2.1.3
over-current protection 2.7.2, 3.1.1
printed 2.5.5, annex F (figure F.13)
sleeved 4.3.7

telecommunication 6.5
terminals 3.3

access 3.2.8
ampacity 3.3.5, 3.3.6
corrosion 2.5.10
marking
earthing conductors 1.7.7.1
power supply conductors 1.7.7.2

temperature 5.1
winding 2.9.4.4, annex U

wound components without interleaved insulation 2.9.4.4, annex U

see also motors, solenoids and transformers

WORKING VOLTAGES 1.2.9.6*, 1.4.11, 2.1.3.1c), 2.2.5, 2.2.7

affected by
transients 2.2.7.2
ripple 2.2.7.2, 2.2.7.3, 2.2.7.4
components 1.6.3, 1.6.4, 2.2.8
determination of 2.2.7
dimensioning of insulation 2.2.7, 2.9
electric strength tests 2.2.7.5, 5.3.2
in transformers 2.2.7.1
meaning, for DOUBLE INSULATION 2.2.7.1

X

x-rays see ionizing radiation
Printed copies can be ordered from:

ECMA
114 Rue du Rhône
CH-1204 Geneva
Switzerland

Fax: +41 22 849.60.01
Internet: helpdesk@ecma.ch

Files can be downloaded from our FTP site, ftp.ecma.ch, logging in as anonymous and giving your E-mail address as password. This Technical Report is available from library ECMA-TR as a compacted, self-expanding file in MSWord 6.0 format (file T063-DOC.EXE) and as a compacted, self-expanding PostScript file (file T063-PSC.EXE). File T063-EXP.TXT gives a short presentation of the Technical Report.

The ECMA site can be reached also via a modem. The phone number is +41 22 735.33.29, modem settings are 8/11. Telnet (at ftp.ecma.ch) can also be used.

ECMA

114 Rue du Rhône
CH-1204 Geneva
Switzerland

This Technical Report ECMA TR/63 is available free of charge in printed form and as a file.

See inside cover page for instructions