Standard ECMA-149

4th Edition - December 1997

ECMA

Standardizing Information and Communication Systems

Portable Common Tool
Environment (PCTE) -
Abstract Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch

Standard ECMA-149

4th Edition - December 1997

ECMA

Standardizing Information and Communication Systems

Portable Common Tool
Environment (PCTE) -
Abstract Specification

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - URL: http://www.ecma.ch - Internet: helpdesk@ecma.ch
IW ECMA-149.D0C 22-02-99 16,17

@

@

®

(O]

(©)

()

U]

Brief History

PCTE, Portable Common Tool Environment, is an interface standard. The interface is designe
support program portability by providing machine-independent access to a set of facilities. The
facilities, which are described in this standard, are designed particularly to provide :
infrastructure for programs which may be part of environments supporting systems engineer
projects. Such programs, which are used as aids to systems development, are often referred
tools.

PCTE has its origin in the European Strategic Programme for Research and Developmen
Information Technology (ESPRIT) project 32, called "A Basis for a Portable Common Toc
Environment”. That project produced a specification for a tool interface, an initia
implementation, and some tools on that implementation. The interface specifications we
produced in the C Language. A number of versions of the specifications were produc:
culminating in the fourth edition known as "PCTE Version 1.4". That was in two volumes
volume 2 covered the user interface and volume 1 covered everything else. Subsequently,
Commission of the European Communities (CEC) commissioned Ada versions of the tv
volumes of the PCTE specification.

The CEC established the PCTE Interface Management Board (PIMB) in 1986 to maintain PC
and promote its use. Through its subsidiary PCTE Interface Control Group (PICG) PIM
conducted a widespread public review, and published a revision known as PCTE 1.5.

PIMB established an ad hoc task group to consider the form of the standard; this group reporte
June 1988, strongly recommending that the standard should comprise an abstract (langu
independent) specification and separate dependent bindings to whatever languages were chos

In 1986 several nations of the Independent European Programme Group, under Technical Are
(IEPG TA-13), embarked on a collaborative programme to enhance PCTE to make it eque
suitable for military as for civil use. This project was called PCTE+; the result of the definitio
phase was an enhanced specification called PCTE+ issue 3, published in October 1988.
consisted of both Ada and C versions of volume 1, volume 2 being the same as PCTE 1.5 voll
2. PCTE+ issue 3 was the basis for the assessment phase, which ended in December 1992.
ECMA PCTE standardization process has benefited greatly from close liaison with the PCTI
programme; in particular through the availability of PCTE+ documents.

Upon request from the PIMB, ECMA undertook to continue the development of PCTE to bring
into a form suitable for publication as an ECMA Standard. ECMA/TC33 was formed in Februa
1988 with this objective. Initially it was intended to base ECMA PCTE on PCTE 1.4, but this we
soon changed to PCTE+ issue 3. The report of the PIMB task group on the form of the stanc
was accepted by TC33, and a task group (Task Group for ECMA PCTE, TGEP) was formed
November 1988, charged with producing the Abstract Specification and bindings for Ada and C

In 1989 attempts were made to standardize the user interface of tools on the basis of PCTE
volume 2. However it soon became apparent that it would be better for PCTE tools to L
emerging general-purpose user interface standards, and the issue of a specific PCTE user inte
was considered out of scope.

®) Following acceptance of the first edition as an ECMA Standard in December 1990 (and of the
bindings in 1991), review by international experts led to the production of second editions of all
three standards. The second editions were accepted by the General Assembly of June 1993, and

were submitted as a draft standard (in 3 parts) to ISO/IEC JTC1 for fast-track processing to
international standardization.

©) During the fast-track processing, which was successfully completed in September 1994,
comments from National Bodies resulted in a number of changes to the draft standard. Some
further editorial changes were requested by JTC1 ITTF. All these were incorporated in the

published international standard, ISO/IEC 13719, with which the third editions of the ECMA
standards were aligned.

(10) This fourth edition incorporates the resolutions of all comments received too late for consideration
during the fast-track processing, or after, and the contents of Standards ECMA-227 (Extensions

for Support of Fine-Grain Objects) and ECMA-255 (Object Orientation Extensions). It is aligned
with the second edition of ISO/IEC 13719-1.

Adopted as 4th Edition of Standard ECMA-149 by the General Assembly of December 1997.

Contents

1 Scope

2 Conformance

2.1 Conformance of binding
2.2 Conformance of implementation

2.3 Conformance of DDL texts and processors

3 Normative references

4 Definitions

4.1 Technical terms
4.2 Other terms

5 Formal notations

6 Overview of PCTE

6.1 PCTE structural architecture

6.2 Object management system

6.3 Object base

6.4 Schema management

6.5 Self-representation and predefined SDSs
6.6 Object contents

6.7 Process execution

6.8 Monitoring

6.9 Communication between processes
6.10 Notification

6.11 Concurrency and integrity control
6.12 Distribution

6.13 Replication

6.14 Security

6.15 Accounting

6.16 Implementation limits

10
10

6.17 Support of fine-grain objects

6.18 Support of object-orientation

7 Outline of the Standard

8 Foundation

8.1 The state

8.2 The object base
8.2.1 Objects
8.2.2 Attributes
8.2.3 Links

8.3 Types
8.3.1 Object types
8.3.2 Attribute types
8.3.3 Link types
8.3.4 Enumeral types

8.4 Types in SDS
8.4.1 Object types in SDS
8.4.2 Attribute types in SDS
8.4.3 Link types in SDS
8.4.4 Enumeral types in SDS

8.5 Types in working schema
8.5.1 Object types in working schema
8.5.2 Attribute types in working schema
8.5.3 Link types in working schema
8.5.4 Enumeral types in working schema

8.6 Types in global schema

8.7 Operations
8.7.1 Calling process
8.7.2 Direct and indirect effects
8.7.3 Errors
8.7.4 Operation serializability

9 Object management

9.1 Object management concepts
9.1.1 The basic type "object"
9.1.2 The common root
9.1.3 Datatypes for object management

9.2 Link operations
9.3 Object operations

9.4 Version operations

10
11

11

12

12

13
13
14

15

16
16
17

18
22

22
24
24

24

25

25
26
26

27

27

27

28
28
28
30
31

32

32
32
36

36

36
45
59

10 Schema management

10.1 Schema management concepts

10.1.1 Schema definition sets and the SDS directory

10.1.2 Types

10.1.3 Object types
10.1.4 Attribute types
10.1.5 Link types
10.1.6 Enumeral types

10.1.7 Datatypes for schema management

10.2 SDS update operations
10.3 SDS usage operations
10.4 Working schema operations

11 Volumes, devices, and archives

11.1 Volume, device, and archiving concepts
11.1.1 Volumes
11.1.2 Administration volumes
11.1.3 Devices
11.1.4 Archives

11.2 Volume, device, and archive operations
12 Files, pipes, and devices

12.1 File, pipe, and device concepts
12.2 File, pipe, and device operations

13 Process execution

13.1 Process execution concepts
13.1.1 Static contexts
13.1.2 Foreign execution images
13.1.3 Execution classes
13.1.4 Processes
13.1.5 Initial processes

13.1.6 Profiling and monitoring concepts

13.2 Process execution operations
13.3 Security operations

13.4 Profiling operations

13.5 Monitoring operations

14 Message queues

14.1 Message queue concepts

66

66

67
69
69
71
72
72

73
101
108

113

113
113
114
114
115

116

124

124
127

135

135
135
136
136
137
144
144

145
159
164
165

167

167

-V -

14.2 Message queue operations
15 Notification

15.1 Notification concepts
15.1.1 Access events and notifiers
15.1.2 Notification messages
15.1.3 Time of sending notification messages
15.1.4 Range of concerned message queues

15.2 Notification operations
16 Concurrency and integrity control

16.1 Concurrency and integrity control concepts
16.1.1 Activities
16.1.2 Resources and locks
16.1.3 Lock modes
16.1.4 Inheritance of locks
16.1.5 Establishment and promotion of locks
16.1.6 Implied locks
16.1.7 Conditions for establishment or promotion of a lock
16.1.8 Releasing locks
16.1.9 Permanence of updates
16.1.10 Tables for locks

16.2 Concurrency and integrity control operations

17 Replication

17.1 Replication concepts
17.1.1 Replica sets
17.1.2 Replicated objects
17.1.3 Selection of an appropriate replica
17.1.4 Administration replica set

17.2 Replication operations
18 Network connection

18.1 Network connection concepts
18.1.1 Execution sites
18.1.2 Workstations
18.1.3 Foreign systems
18.1.4 Network partitions
18.1.5 Accessibility
18.1.6 Workstation closedown

18.2 Network connection operations

18.3 Foreign system operations

170

176

176
176
177
178
178

178

180

180
180
182
185
187
187
189
189
190
191
192

194

200

200
200
201
202
203

203

210

210
210
210
213
214
214
216

217
222

18.4 Time operations
19 Discretionary security

19.1 Discretionary security concepts
19.1.1 Security groups
19.1.2 Access control lists
19.1.3 Discretionary access modes
19.1.4 Access control lists on object creation

19.2 Operations for discretionary access control operation

19.3 Discretionary security administration operations
20 Mandatory security

20.1 Mandatory security concepts
20.1.1 Mandatory classes
20.1.2 The mandatory class structure
20.1.3 Labels and the concept of dominance
20.1.4 Mandatory rules for information flow
20.1.5 Multi-level security labels
20.1.6 Floating security levels
20.1.7 Implementation restrictions
20.1.8 Built-in policy aspects

20.2 Operations for mandatory security operation
20.3 Mandatory security administration operations

20.4 Mandatory security operations for processes
21 Auditing

21.1 Auditing concepts
21.1.1 Audit files
21.1.2 Audit selection criteria

21.2 Auditing operations
22 Accounting
22.1 Accounting concepts

22.1.1 Consumers and accountable resources
22.1.2 Accounting logs and accounting records

22.2 Accounting administration operations

22.3 Consumer identity operations
23 Common binding features

23.1 Mapping of types

223

225

225
225
229

231
234

234
238

243

243
243
245
246
247
251
254
256
256

258
263
268

270

270
270
272

273
277
277
277
279
282
287

288

288

-Vi-

23.1.1 Mapping of predefined PCTE datatypes 288
23.1.2 Mapping of designators and nominators 290
23.1.3 Mapping of other values 298
23.2 Object reference operations 299
23.3 Link reference operations 301
23.4 Type reference operations 305
24 Implementation limits 307
24.1 Bounds on installation-wide limits 307
24.2 Bounds on workstation-dependent limits 309
24.3 Limit operations 309
24.3.1 Datatypes for limit operations 309
Annex A - VDM Specification Language for the Abstract Specification 311
Annex B - The Data Definition Language (DDL) 317
Annex C - Specification of Errors 327
Annex D - Auditable Events 349
Annex E - The Predefined Schema Definition Sets 357
Annex F - The fine-grain objects module 375
Annex G - The object-orientation module 389
Index of Operations 413
Index of Error Conditions 419

Index of Technical Terms 427

@

@

®

@

®)

2
2.1
@

@

®

@
®)

(6)
™

2.2

@

@

Scope

This ECMA Standard specifies PCTE in abstract, programming-language-independent, terms.
specifies the interface supported by any conforming implementation as a set of abstract opere
specifications, together with the types of their parameters and results. It is supported by a nun
of standardindings i.e. representations of the interface in standard programming languages.

The scope of this ECMA Standard is restricted to a single PCTE installation. It does not spec
the means of communication between PCTE installations, nor between a PCTE installation
another system.

A number of features are not completely defined in this ECMA Standard, some freedom bei
allowed to the implementor. Some of theseiarglementatiorimits, for which constraints are
defined (see clause 24). The other implementation-dependent and implementation-defil
features are specified in the appropriate places in this Standard.

PCTE is an interface to a set of facilities that forms the basis for constructing environmer
supporting systems engineering projects. These facilities are designed particularly to provide
infrastructure for programs which may be part of such environments. Such programs, which
used as aids to systems development, are often referred to as tools.

This ECMA Standard also includes (in annex B) a language standard for the PCTE D:
Description Language (DDL), suitable for writing PCTE schema definition sets.

Conformance
Conformance of binding

A binding conforms to this ECMA Standard if and only if:

- it consists of a set of operational interfaces and datatypes, with a mapping from the operati
and datatypes of this ECMA Standard,;

- each operation of this ECMA Standard is mapped to one or more sequences of one or n
operations of the binding (distinct operations need not be mapped to distinct sets of sequel
of binding operations);

- each datatype of this ECMA Standard is mapped to one or more datatypes of the binding;

- each named error of this ECMA Standard is mapped to one or more error values (sts
values, exceptions, or the like) of the binding;

- the conditions of clause 23 on common binding features are satisfied;

- the conditions for conformance of an implementation to the binding are defined, a
achievable, and are not in conflict with the conditions in 2.2 below.

Conformance of implementation

The functionality of PCTE is divided into the following modules:

- The core module consists of the datatypes and operations defined in clauses 8 to 19 (ex
13.1.6, 13.4, and 13.5) and 23.

®

@
®)
(6)

™

®)
©

(10)
(1)
(12)
(13)
(14)

(15)

(16)
(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

@7

- The mandatory access control module consists of the datatypes and operations defined in
clause 20.

- The auditing module consists of the datatypes and operations defined in clause 21.
- The accounting module consists of the datatypes and operations defined in clause 22.

- The profiling module consists of the datatypes defined in 13.1.6 and the operations defined in
13.4.

- The monitoring module consists of the datatype Address defined in 13.1.6 and operations
defined in 13.5.

- The fine-grain objects module consists of the following extensions defined in annex F:
extensions to the semantics of operations to cater for fine-grain objects;
new operations;
new error conditions;
additions to the predefined SDS system.

- The object-orientation module consists of the following extensions defined in annex G:
additions to the predefined SDSs metasds and system;

an extension to the semantics of the operation SDS_REMOVE_TYPE to cater for the new
classes of type;

new operations;
new error conditions.

An implementation of PCTE conforms to this ECMA Standard if and only if it implements the
core module.

An implementation of PCTE conforms to this ECMA Standard with mandatory access control
level 1 or 2 if it implements the core module and in addition:

- for level 1: the mandatory access control module except the floating security levels features
defined in 20.1.6;

- for level 2: the mandatory access control module.

An implementation of PCTE conforms to this ECMA Standard with auditing if and only if it
implements the core module and in addition the auditing module.

An implementation of PCTE conforms to this ECMA Standard with accounting if and only if it
implements the core module and in addition the accounting module.

An implementation of PCTE conforms to this ECMA Standard with profiling if and only if it
implements the core module and in addition the profiling module.

An implementation of PCTE conforms to this ECMA Standard with monitoring if and only if it
implements the core module and in addition the monitoring module.

An implementation of PCTE conforms to this ECMA Standard with fine-grain objects if and only
if it implements the core module and in addition, implements the fine-grain objects module.

An implementation of PCTE conforms to this ECMA Standard with object-orientation if and
only if it implements the core module and in addition the object-orientation module.

(28)

(29)

(30)

@D

(32)

(33)

(34)

(39)

(36)

2.3

@

@

@

@

(©)

4)

By 'an implementation implements a module' is meant that, for the clauses of the module:

- the implementation conforms to a binding of this ECMA Standard which itself conforms t
this ECMA Standard and which is itself an ECMA Standard;

- if an operation of this ECMA Standard is mapped to a set of sequences of operations in
binding:

case 1: operation_A,; operation_B; ... operation_F;
case 2: operation_G; operation_H; ...operation_M;
etc.

then in each case the sequence of invocations of the operations of the implementation n
have the effect of the original operation of this ECMA Standard;

- the relevant limits on quantities specified in clause 24 are no more restrictive than the vall
specified there;

- the implementations of the implementation-defined features in this ECMA Standard are .
defined.

An implementation of PCTE does not conform to this ECMA Standard if it implements any c
the following, whether or not the PCTE entity mentioned is in a module which the
implementation implements:

- an operation with same name as a PCTE operation but with different effect;
- an SDS with the same name as a PCTE predefined SDS but with different contents;
- an error condition with the same name as a PCTE error condition but with different meaning

Conformance of DDL texts and processors

A DDL definition conforms to this ECMA Standard if it conforms to the syntax and obeys th
constraints of the DDL definition in annex B.

A DDL processor conforms to this ECMA Standard if it accepts any conforming DDL definitior
and processes it in conformance with the meaning of DDL as defined in annex B.

Normative references

The following standards contain provisions which, through reference in this text, constitu
provisions of this ECMA Standard. At the time of publication, the editions indicated were vali
All standards are subject to revision, and parties to agreements based on this ECMA Standarc
encouraged to investigate the possibility of applying the most recent editions of the standa
indicated below. Members of IEC and ISO maintain registers of currently valid Internation
Standards.

ISO/IEC 2022 Information Technology - Character code structure and extension techniqt
(1994)
ISO 8601 Data elements and interchange formats - Information interchange

Representation of dates and times (1988)

ISO 8859-1 Information processing — 8-bit single-byte coded graphic charactersets
Part 1 : Latin alphabet No. 1 (1987)

®)

(6)

™

®

4
4.1

®

4.2

@

ISO/IEC 10646-1 Information Technology - Universal Multiple-Octet Coded Character Set
(UCS) - Part 1: Architecture and Basic Multilingual Plane (1993)

ISO/IEC 11404 Information technology - Programming languages, their environments and
system software interfaces - Language-independent datatypes (1996)

ISO/IEC 13303-1 Information technology - Programming languages, their environments and
system software interfaces - Vienna Development Method/Specification
language - Part 1 : Basic Language (1995)

ISO/IEC 14977 Information technology - Programming languages, their environments and
system software interfaces - Extended BNF (1996)

Definitions
Technical terms

All technical terms used in this ECMA Standard, other than a few in widespread use, are defined
in the text, usually in a formal notation. All identifiers defined in VDM-SL or in DDL (see
clause 5) are technical terms; apart from those, a defined technical term is printed in italics at the
point of its definition, and only there. For the use of technical terms defined in VDM-SL and
DDL see clause A.3 and clause B.9 respectively. All defined technical terms are listed in an
index, with references to their definitions.

Other terms

For the purposes of this ECMA Standard, the following definitions apply.

4.2.1 implementation-defined Possibly differing between PCTE implementations, but defined
for any particular PCTE implementation.

4.2.2 implementation-dependentPossibly differing between PCTE implementations and not
necessarily defined for any particular PCTE implementation.

4.2.3 binding-defined Possibly differing between language bindings, but defined for any
particular language binding.

4.2.4 datatype The type of a parameter or result of an operation defined in this ECMA
Standard, or used to define such a type. Where, as in clause 23, it is necessary to distinguish
these types from datatypes defined elsewhere, theREME datatypes used.

4.2.5 operation a name plus a signature that is used in the context of an invocation to trigger
the execution of a specific method.

4.2.6 interface a set of operations; interfaces are a convenient way to group operations so that
they can be referred to together, e.g. to define other interfaces by inheritance.

4.2.7 method the set of actions triggered by an operation.

®
@

®

@

®)

@

@

6.1

@

@

(©)

6.2

@

Formal notations

Four formal notations are used in this ECMA Standard.

For datatypes and for operation signatures, a small subset dighea Development Method
Specification Languager VDM-SL is used; it is defined in annex A. This subset of VDM-SL is
also used to define some types used for operation parameters and results.

The Data Definition Languager DDL is used to define types; it is defined in annex B. Where a
concept is defined in both VDM-SL and DDL, the same identifier is used.

To define the error conditions detected by operations, a parameterized notation is used; i
defined in annex C.

The BSI syntactic notation (BS 6154 : 1981) is used to define the syntax of VDM-SL and DD
and in a few other places where the syntax of strings is defined.

Overview of PCTE

PCTE is designed to support program portability by providing machine-independent access to a
of facilities. These facilities, which are described in this ECMA Standard, are designe
particularly to provide an infrastructure for programs to support systems engineering projects.

The PCTE architecture is described in two dimensions:sthactural architectureand the
functional architecture The structural architecture is described in 6.1, and shows how a PCT
installation is built of a system of communicating workstations and how the software providing tl
PCTE interfaces is structured. The functional architecture is described in 6.2 onwards, and g
an outline of the functional components of PCTE and the facilities they provide.

PCTE structural architecture

The preferred structural architecture for a PCTE installation is a set of workstations a
associated resources communicating over a network, though other architectures are poss
There is no hierarchy or ordering of workstations within a PCTE installation. If a workstation
part of a PCTE installation then the PCTE installation appears to the workstation's user a
conceptually single machine, although each workstation can act as an autonomous unit. Su
user has access to the total resources of a PCTE installation, subject to the necessary a
controls.

The PCTE database (called tludject basg is partitioned into volumes. Volumes are
dynamically allocated tonfounted oj particular workstations, and, once mounted, are globally
available in that PCTE installation.

The program writer does not need to be aware of the distribution architecture, but the PC
interfaces do provide all the facilities needed to configure a PCTE installation and control
distribution. The PCTE interfaces appear to the tool writer as available within a PCT
installation irrespective of the tool's physical location within a PCTE installation and independe
of any particular network topology.

Object management system

An aspect of PCTE that is of major importance to the process of constructing and integrat
portable tools is the provision of the object base and a set of functions to manipulate the vari

@

6.3

@

@

(©)

4)

(®)

(6)

6.4

@

@

®

@

objects in the object base. The object base is the repository of the data used by the tools of a
PCTE installation, and th®bject Management SysteanOMS of PCTE provides the functions
used to access the object base.

In a general sense, the users and programs of the PCTE installation have the ability to manage
entities that are known to, and can be designated in, a particular PCTE installation. These may be
files in the traditional sense, or peripherals, interprocess message queues or pipes, or the
description of processes themselves or of the static context of a process. Tools supporting user
applications establish classes of objects defined by the user: these can represent information items
such as project milestones, tasks, and change requests.

Object base

The basic OMS model is derived from the Entity Relationship data model and adfjeeisand
links as being the basic items of a PCTE object base.

Objects are entities (in the Entity Relationship sense) which can be designated, and can optionally
have:

- Contentsa storage of data representing the traditional file concept;

- Attributes primitive values representing specific properties of an object which can be named
individually;

- Links representations of associations between objects. Links may have attributes, which may
be used to describe properties of the associations or as keys to distinguish between links of the
same type from the same object.

Designation of links is the basis for the designation of objects: the principal means for accessing
objects in most OMS operations is to navigate the object base by traversing a sequence of links.

Schema management

Entities used by the user and those used by the system that are represented by objects in the
object base can be treated in a uniform manner, and facilities to control their structure, to store
and to designate these objects, are provided by PCTE.

The object base of each PCTE installation is governed by a typing mechanism. All entities in the
object base are typed and the data must conform to the corresponding type rules. Type rules are
defined for objects, for links, and for attributes.

PCTE is designed to allow, but not to require, distributed and devolved management of the object
base. To this end the definition of the typing rules which govern an object, a link, or an attribute
in the object base may be split up among a numbecligma definition se{®r SDS$. Some
properties of an object, a link, or an attribute must be the same in every SDS which contributes to
the definition of the typing rules for that object, link, or attribute: these are propertiestgbehe

Other properties may differ for different SDSs: these are properties typhén SDS

Each SDS provides a consistent and self-contained view of the data in the object base. A process,
at any one time, views the data in the object base throughiking schema.A working schema

is obtained as a composition of SDSs in an ordered list. The effect of such a composition is to
provide a union of all the types contained in the listed SDSs. A uniform naming algorithm,
dependent on the ordering of the SDSs, is applied to all the contained types.

®)

(6)

6.5

@

@

6.6

®

@

6.7

@

@

6.8

@
@

The object base of a PCTE installation has a notigiodlal schemacomposed of all the SDSs.
The global schema is not directly represented in the object base, and the concept is used mair
state certain consistency constraints on the object base as a whole.

Child types of object types can be defined with the effect of implicit inheritance of all propertie
of their parent types. Additionally, child types can have properties of their own.

Self-representation and predefined SDSs

Many of the entities in a PCTE installation are represented by objects in the object base.
types of these objects are definedpmedefined SDSswvhich are available in any conforming
implementation; for example processes are represented by objects of type "process" whicl
defined in the predefined SDS 'system'. This property of PCTE is callietepresentation In
general, in this ECMA Standard, the name of an entity is used also to refer to the object t
represents it.

In some cases an object of a type representing some kind of entity requires initializing, or mus:
created by a particular operation, before it can be used in operations to represent an entity of
kind. Such an object which has been initialized or correctly created is referred tmasra
entity of that kind (i.e. known to the PCTE installation); any other object of that type is referre
to as an unknown entity. For example an object of type "process" created by
PROCESS_CREATE is a known process, while one created by OBJECT_CREATE is
unknown process.

Object contents

A set of operations is provided to access the contents of some types of objects (files, pipes,
devices). These operations provide conventional input-output facilities on files and pipes &
control of input and output on devices. These contents are not interpreted by PCTE.

Other types of objects (accounting logs and audit files) have contents with structure that
defined by PCTE and for access to which special operations are provided.

Process execution

PCTE is an interface to support programs. When a program,ishis is either thexecutionof

the program itself, or the execution of an interpreter which interprets the program. An executi
of a program is grocess Processes are represented by objects in the object base, so |
hierarchy of processes, the environment in which a process runs, the parameters it has |
passed, and the various stages of the program execution can be controlled, manipulated
examined.

These facilities can be used also to control processes runnifgeagn systems A foreign
systemcan be a foreign development system, a target system running a real-time operat
system, or even a PCTE workstation in another PCTE installation.

Monitoring

PCTE provides three sets of features to support debugging and monitoring of processes.
- To measure the amount of time spent in selected parts of the code.

®
@

6.9

@

@
(©)
4)

(®)

(6)

6.10

@

@

6.11

@

@

(©)

4)

- To observe, and modify, the execution of a child process.
- To measure the processor usage of the calling process.

Communication between processes

PCTE provides a number of different mechanisms for communicating between processes. The
principal ones supplied are:

- the objects, links and attributes in the database;
- message queues;

- pipes.
Message queues and pipes are essentially special forms of object. Thus both pipes and message
gqueues are special cases of the general use of the object has&Epoocess communication

Pipes and message queues also provide communication between PCTE processes and foreign
processes running on foreign systems (if the foreign systems allow it).

Notification

In PCTE there is a mechanism that allows the designation of objects so that certain types of
access result in a message being posted in a message queue which can be accessed by the proce
requesting the notification.

The notification mechanism allows a process to specify events, corresponding to operations on
objects, of which it wants to be notified.

Concurrency and integrity control

The object base is subject to concurrent access by users, and is liable to underlying system
failure.

PCTE provides locking facilities to control the strength of object base concurrency and
consistency, ranging from unprotected behaviour, through protected behaviour, to protected
atomic and serializable transaction activities. PCTE ensures object base consistency and object
base integrity for atomic and serializable transactions.

Each user carrying out a transaction on the object base sees some grouping of operations as an
atomic operation which transforms the object base from one consistent state to another. |If
transactions are run one at a time then each transaction sees the consistent state left by its
predecessor. When transactions are run concurrently PCTE ensures that the effect on the object
base is as though they were run serially. With a few exceptions, such as messages sent to or
received from a message queue, the effect of a sequence of operations performed within a
transaction is atomic: either all the operations are performed or none are performed.

Another important aspect of activities arises in composition of programs. A single program
carrying out an atomic transaction on the object base can be regarded as performing a single
function. More powerful functions can be built up by an outer program invoking a set of other,
inner, programs, each of which carries out its own specific function. PCTE prowede=d
activitiesto allow each inner activity to behave in an atomic way, and at the same time to allow
the whole function to be atomic. Thus the outer program can start a transaction, which may be

6.12

@

@

6.13

®

6.14

@

@

(©)

4)

either committed or aborted, and finally the whole outer transaction is committed or aborte
Each such inner program could itself invoke further nested programs, and so on.

Distribution

PCTE is based on a community of workstations of possibly differing types connected together
a network. The community is normally seen by the user as a single environment, group
together the facilities, services and resources of all the different workstations, though in so
circumstances a PCTE installation may be temporarily divided into separated partitions, eact
which supports useful work.

Objects, including processes, are distributed throughout a PCTE installation. A user is able
disregard both the location of objects on volumes in the network and that of the workstati
concerned in executing processes. Alternatively a user may choose to exercise control ovelr
location of objects on volumes and the location of processes. On creation of an object a volt
can be specified to indicate its location. Every process executes on a particular workstation al
user can specify which workstation by either static or dynamic means: the static context o
program has an execution class identifying the range of workstations upon which the ste
context may be executed; the workstation on which a process executes can be specifiec
invocation.

Replication

As it is possible that one or more workstations of a PCTE installation become temporar
unavailable, certain installation-wide objects must still be accessible. Replication facilities &
available whereby a copy of an object's contents, attributes and links are made to e
workstation. Installation-wide objects are predefined as replicated and other objects can
added. This feature is intended for non-volatile, rarely varying, widely consulted objects.

Security

A PCTE installation has to support many users and many projects. Different users are expe:
to have different roles within projects and to be authorized to access different objects. The L
accesses objects using programs (themselves modelled as static contexts within the object ba

The purpose of security is to prevent the unauthorized disclosure, amendment or deletior
information. Security facilities are provided to support the definition of the different
authorizations of users and programs.

Security in PCTE is provided by discretionary and mandatory access controls. Access control
defined in the security clauses form one aspect of the correct operation of the installation w
regard to the integrity of the information held and the correctness of its use. In this regard,
facilities described in the security clauses complement the data modelling facilities of the ON
and schema management, and the transaction and concurrency control facilities.

Each OMS object is associated wattcess control listeshich define which types of access to the
object are permitted for designated users or programs. Access control lists are expressed in t
of discretionary access rightehich are explicitly granted or denied to designated individual
users, user groups or program groups. Access rights on a particular object are combined in c
to determine a process's permission to perform each particular operation on the object.

®)

(6)

0]

6.15

@

@

6.16

®

@

6.17

@

@

(©)
4)
(®)
(6)
U]
®)

©)

-10 -

Mandatory access controls cover batandatory confidentialittand mandatory integrity with
distinct controls. Mandatory access controls are additional to discretionary access controls.

Mandatory confidentiality controls prevent the disclosure of information to unauthorized users.
They prevent the flow of information to the unauthorized user directly, by controlling read access
(simple confidentiality and indirectly, by controlling the flow of information between objects
(confidentiality confinemet

Mandatory integrity controls prevent unauthorized sources from contributing to the information
in an object. They prevent the flow of information from the unauthorized user directly, by
controlling write accesssimple integrity, and indirectly, by controlling the flow of information
between objectsrtegrity confinement

Accounting

The accounting facilities of PCTE allow the automatic recording of the consumption of selected
installation resources by users, groups of users, or groups of programs.

Authorized users may designate selected objects like programs, files, pipes, message queues,
devices, workstations, and SDSs as being accountable resources. Access to an accountable
resource by a process implies the automatic logging of usage information into the associated
accounting log on completion of the operation.

Implementation limits

PCTE permits the user to examine the implementation-defined limits for the PCTE installation in
which a program executes.

Minimal values are defined for limits, so that a program respecting those values is portable to any
PCTE installation.

Support of fine-grain objects

The notion of support of fine-grain objects is mostly concerned with improved performance time
for creating and accessing PCTE objects. Object granularity is not dependent on type. It is
described in terms of the amount of processing that has to be done to access an object.

To enhance performance, the concept of cluster is introducectluster is an object that
represents the set of fine-grain objects that share the same values for certain PCTE properties and
with some specific restrictions:

- Usage restrictions on concurrency allow them to be cached in the main memory of processes.
- Time attributes of all fine-grain objects residing in a cluster are shared.

- Notification is not applicable to fine-grain objects.

- Security properties are also shared and only checked once at the level of the cluster.

- Auditing has limitations which decreases the controls to be made on fine-grain objects.

- Fine-grain objects are not accountable resources.

- Fine-grain objects have the same replicated state as their cluster.

-11 -

6.18 Support of object-orientation

®

@

®

®

@

®

@

®)

(6)

™

®

One of the prominent characteristics of PCTE is its ability to define any user data model and
use a self-referential approach to describe its metadata. The object-orientation facilities folloy
similar approach and describe everything as an extension of the metabase or of the object bas

The data model supporting the object-orientation facilities can be partitioned into three parts:
interface part, the module part, and the method mapping patrt.

The interface part of this data model is described as an extension of the metasds SDS, while
other two parts are extensions of the system SDS. The reason is that the instances of the inte
part are additional information contained in a user SDS, while the instances of the two other p
are user data stored in the object base, as executable programs or loadable modules.

Outline of the Standard

Clause 6 gives an informal, non-normative explanation of the concepts of PCTE. Clause 7 gi
an overview of the document and of the structure of the definition.

The partly formal, normative definition of PCTE is in clauses 8 to 24 and annexes Ato C. Itis
two main parts. The first main part is #o@indation(clause 8) which defines the concept Object

and its parts, for example Attribute and Link, and the concepts of the associated typi
mechanism, for example Type and Type in SDS. This uses a subset of VDM-SL; see annex A.

The second main part of the definition is the interface definition (clauses 9-22). This defines 1
other concepts of PCTE, for example Process and Workstation, as specializations of the con
Object (clauses 11-22). This definition is in terms of the typing structure associated with the
specializations, that is in terms of the typing concepts of the foundation. A language for t
definition of types and types in SDS, call@dta Definition Languager DDL, is defined in annex

B.

The concept Object is itself further specialized, i.e. details not necessary for the foundation
added, in clause 9. (The na@bjectis used in both the foundation and the interface definition
because it is the same concept although only a few of its details are defined in the foundation.)

Thus the foundation is a relatively simple general model that is specialized in later clauses
provide the PCTE interface definition.

Instances of the PCTE concepts are cadletitiesand they are referred to by the names of the
underlying concepts, for example instances of Object are called objects. All the entities existing
a time are called thstateof the PCTE installation. PCTE is defined in terms of the permissible
values of the state and the permissible operations on the state. The foundation defines part o
state, namely that part concerned with entities of the foundation concepts; the interface definit
defines the rest of the state and all the operations.

The concepts of the typing mechanism cannot be treated as specializations of the concept O
because the definition of PCTE would then be circular. They can howevepiasentedby
specializations of Object so that tools can determine the current state of the typing mechan
using the operations provided for determining the current state of objects. Operations
manipulating the state of the typing mechanism also manipulate the representing obje
automatically and equivalently. The representations and operations of the typing mechanism
defined in clause 10.

The interface is defined by operations grouped according to function. For each group so
concepts are defined first in DDL and possibly VDM-SL, as described above. There follow tl

©

(10)

(11

(12)

(13)

(14)
(15)

(16)

8
8.1

®

@
®
@

(®)

(6)

-12 -

operation definitions; a VDM-SL definition of the signature, an informal English description of the
normal action of the operation, and a list of the possible error conditions (using an abbreviated
notation defined in annex C).

Other ECMA Standards define application programming interfaces to PCTE in terms of specific
programming languages by defining the mapping of datatypes, operations, and error conditions of
the abstract specification to datatypes, operations, and error conditions respectively of the
programming language (see 3.1). Such mapping specifications are lwatigtgs Clause 23
defines a number of features to which all bindings must conform.

Clause 24 defines the limits on the sizes and numbers of various entities which a conforming
PCTE implementation must respect. These are given as minima which an implementation must
meet or exceed.

Annexes A to C define various notations used in the Abstract Specification. Annex A defines the
subset of VDM-SL used for type definitions and operation signatures; annex B defines DDL; and
annex C defines the notation for operation error conditions.

Annex D contains a list of auditable events classified by event type.

Annex E is provided for information; it collects the DDL definitions of the types in the predefined
schema definition sets.

Annex F is normative and contains the definition of the fine-grain objects module.
Annex G is normative and contains the definition of the object-orientation module.

Clauses 8 to 24 contain commentary (headed NOTE or NOTES) which is not normative and is
intended as a help to the reader in understanding the definition.

Foundation
The state
state PCTE_Installation of
SYSTEM_TIME : Time
OBJECT_BASE : map Object_designator to Object
PROCESSES : set of Process
MESSAGE_QUEUES : set of Message_queue

CONTENTS_HANDLES : map Contents_handle to Current_position
CURRENT_POSITIONS : map Current_position to Natural
WORKSTATIONS : set of Workstation

end

Name = Text
Name_sequence = seq of Name

Working_schema ::
VISIBLE_TYPES : set of Type_in_working_schema

SDS_NAMES : Name_sequence

Process ::
PROCESS OBJECT : Object_designator
WORKING_SCHEMA : Working_schema
OPEN_CONTENTS : set of Open_contents

Message_queue ::
QUEUE_OBJECT : Object_designator
MESSAGES : seq of Message

U]

®)

©)

(10)

(11

(12

(13)

(14

(15)

(16)

@an

(18)

8.2

-13 -

Workstation ::
WORKSTATION_OBJECT : Object_designator
AUDIT_CRITERIA : set of Selection_criterion

Instances of the PCTE concepts are cadlatties they are referred to by the names of the
underlying concepts. The state comprises the entities of a PCTE installation that endure from
operation call to another. The effect of an operation call is to modify the state, or to return valt
derived from the state (and any parameters), or both.

The system time is the date and time of day at any instant, as given by some system clock.
the format of the time see 23.1.1.5. Tdwerent timefor an operation is a value of the system
time at some moment between the start and end of the operation.

The object base is a set of objects identified by object desigiiseers.2.1).

A working schema is associated with a process (see clause 13) and consists of a set of typ
working schema, derived from a sequence of SDSs. The types in working schema in the work
schema of the calling process are callsible types For the creation of a working schema for a
process see 13.2.12.

The initial value of the state consists of the following objects:

- at least one workstation, at least one device managed by that workstation, at least one vol
mounted on that device, and at least one process running on that workstation (see 18.
11.1.3,11.1.1, and 13.1.5);

- the administration replica set, the common root, and the administrative objects (see 17.1.4
9.1.2);

- atleast one user (see 19.1.1);

- at least the schema definition sets system, metasds, discretionary securi
mandatory_security (if implemented), and accounting (if implemented) (see 10.1);

- the predefined user group ALL_USERS, and the predefined program groups PCTE_AUDI
PCTE_REPLICATION, PCTE_EXECUTION, PCTE_SECURITY, PCTE_HISTORY,
PCTE_CONFIGURATION, and PCTE_SCHEMA_UPDATE (see 19.1.1).

NOTE - It is intended that the system time should be as near as possible the same throughout a PCTE installatiol

The object base

8.2.1 Objects

@

@
®
@
®)

Object ::
OBJECT_TYPE : Object_type _nominator
ATTRIBUTES : set of Attribute
LINKS : set of Link
DIRECT_COMPONENTS : set of Object
PREFERRED_LINK_TYPE :[Link_type_nominator]
PREFERRED_LINK_KEY [Text]
CONTENTS : [Contents]

Object_designator :: Token
Object_designators = set of Object_designator
Contents = Structured_contents | Unstructured_contents

Structured_contents = Accounting_log | Audit_file

(6)
U]
®
©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

(18)

(19)

(20)

-14 -

Unstructured_contents = File | Pipe | Device
Object_scope = ATOMIC | COMPOSITE

The object type constrains the properties of the object (see 8.3.1).

No two attributes of an object have the same attribute type. There is a basic set of attributes
which all objects have; it is defined in 9.1.1.

The preferred link type and preferred link kay present, are used as defaults in the
identification of a link of the object (see 8.2.3). The preferred link key has the syntax of a key
(see 23.1.2.7).

Every direct component of an object is the destination of a composition link of the object, and
vice versa.

An outer objeciof an object A is an object of which A is a component.

The atomic objectassociated with an object comprises the links, attributes, preferred link type,
preferred link key, and contents of the object. almmsof an object are the atomic objects
associated with the object and all its components.

A componenbf an object is a direct component of the object or of a component of the object.
An object which is a component of each of two distinct objects, neither of which is a component
of the other, is called shared componerf those two objects.

An internal link of an object is a link of the object or of one of its components for which the
destination is either a component of the object or the object itsex#ennal linkof an object

is a direct or indirect outgoing link of the object which is not an internal link of the object. An
object is called therigin of each of its links.

An object is specified by an object designator, or by a specialization of object designator defined
as follows: if "X" is an object type (that is, it is a descendant of "system-object”, see 9.1.1) then
'X_designator' (with capital initial) stands for 'Object_designator' with the condition that the
value must designate an object of type "X" or a descendant of "X". For the mapping of object
designators to the language bindings, see 23.1.2.2.

An object scope is used to indicate whether the effect of an operation applies to an object
(COMPOSITE) or to the atomic object of the object (ATOMIC).

NOTES

1 An object can be a component of itself. Similarly two objects can be components of each other; in that case there
are two distinct objects with the same atoms.

2 General operations are provided for handling unstructured contents (see clause 12) as a sequence of octets, the
meaning of which is not further defined in this ECMA Standard. Specific operations are provided for handling
structured contents, which has a defined meaning in each case (see clauses 21 and 22).

3 When an object is created, so are all its attributes in the global schema. When a new attribute type is applied to
the object's type in an SDS, effectively all objects of that type and its descendants gain a new attribute with its
initial value. If the application of an attribute type to that object type is removed from all SDSs, the attribute
remains on each object of that type until deleted by OBJECT_DELETE_ATTRIBUTE.

8.2.2 Attributes

@

@

Attribute ::
ATTRIBUTE_TYPE : Attribute_type_nominator
ATTRIBUTE_VALUE : Attribute_value

Attribute_value = Integer | Natural | Boolean | Time | Float | String

(©)
@
®)
(6)
0]
®)

©)

(10)

(11

(12

(13)

(14)

-15-

Attribute_designator :: Token

Attribute_designators = set of Attribute_designator

Attribute_selection = Attribute_type_nominators | VISIBLE_ATTRIBUTE_TYPES
Attribute_assignments = map Attribute_designator to Attribute_value

String = seq of Octet

The value of an enumeration attribute is represented by its position within the enumeration va
type (see 8.3.2).

An attribute is specified as follows:

- for an attribute of an object: an object designator which specifies the object, and an attrib
designator which specifies the attribute relative to the object;

- for an attribute of a link: an object designator which specifies the origin of the link, a linl
designator which specifies the link relative to the object (see 8.2.3), and an attribt
designator which specifies the attribute relative to the link.

NOTES

1 Each attribute in the object base is a key or non-key attribute of a link in theb@geair a direct attribute of an
object in the object base.

2 An implementation may impose constraints on the values of attributes (see clause 24). An attribute may take
value of its value type within those constraints; for example, a string attribute may take any string value up to
maximum allowed length, whatever its present value may be.

3 For the types Integer, Natural, Boolean, Time, Float, and String see 23.1.1.

8.2.3 Links
1) Link ::
LINK_TYPE : Link_type_nominator
DESTINATION . [Object_designator]
KEY_ATTRIBUTES : seq of Attribute
NON_KEY_ATTRIBUTES : set of Attribute
REVERSE : [Link_designator]

@
®
4)
(®)
(6)
™
®
©)
(10)

(11

(12)

(13)

Link_designator :: Token

Actual_key = seql of (Text | Natural)

Link_designators = set of Link designator

Link_selection = Link_type_nominators | VISIBLE_LINK_TYPES | ALL_LINK_TYPES
Link_descriptor = Object_designator * Link_designator

Link_descriptors = set of Link_descriptor

Link_set_descriptor = Object_designator * Link_designators

Link_set_descriptors = set of Link_set_descriptor

Link_scope = INTERNAL_LINKS | EXTERNAL_LINKS | ALL_LINKS

The key attributes and the non-key attributes are together calledttitbeites of the linkNo
two attributes of a link have the same attribute type.

Two distinct links of the same type from the same object must have different key attributes (|
the two sequences of key attribute values must be different).

The reverse link of the reverse link of a link is that link.

(14)

(15)

(16)

(1)

(18)

8.3

®
@

®
@
®)
(6)
U]
®
©)
(10)
(11

(12

(13)

-16 -

A link is said to bdrom its origin andto its destination.

A series of linkgrom object A to object B is a sequence of 1 or more links L1, L2, ..., Ln such
that A is the origin of L1, B is the destination of Ln, and otherwise the destination of each link is
the origin of the next in sequence.

A link is specified by an object designator which specifies the origin of the link and a link
designator which specifies the link relative to the object. For the mapping of link designators to
the language bindings, see 23.1.2.4.

NOTES
1 Each link in the object base is a link of exactly one object in the object base; i.e. each link has exactly one origin.

2 When a link is created, so are all its attributes in the global schema. When a new attribute type is applied to the
link's type in an SDS, effectively all links of that type gain a new attribute with its initial value. If the application of

an attribute type to that link type is removed from all SDSs, the attribute remains on each link of that type until
deleted by LINK_DELETE_ATTRIBUTE.

Types

Type = Object_type | Attribute_type | Link_type | Enumeral_type

Type_nominator = Object_type_nominator | Attribute_type nominator | Link_type_nominator |
Enumeral_type_nominator

Object_type_nominator :: Token

Attribute_type_nominator :: Token

Link_type_nominator :: Token

Enumeral_type_nominator :: Token

Type_nominators = set of Type_nominator

Object_type_nominators = set of Object_type_nominator

Attribute_type_nominators = set of Attribute_type nominator

Link_type_nominators = set of Link_type_nominator

Type_kind = OBJECT_TYPE | ATTRIBUTE_TYPE | LINK_TYPE | ENUMERAL_TYPE

A typeis a template defining common basic properties of a set of instancemsidrecesof a
type are those whose type nominator identifies that type.

A type is specified by a type nominator, which may be specialized to an object type nominator,
an attribute type nominator, a link type nominator, or an enumeral type nominator. A type
nominator may be further specialized as folloiivsX" is an object type, attribute type, link type,

or enumeral type then 'X_type nominator' stands for 'Object_type_nominator' etc. with the
condition that the value must designate type "X" or a descendant of "X". For the mapping of type
nominators to language bindings see 23.1.2.5 and 23.1.2.

8.3.1 Object types

@

Object_type ::
TYPE_NOMINATOR : Object_type_nominator
CONTENTS_TYPE :[Contents_type]
PARENT_TYPES : Object_type_nominators
CHILD_TYPES : Object_type_nominators
represented by object_type

@

®

@

®)

(6)

@

@

(©)
4)
®)

(6)

™

-17 -

Contents_type = FILE_TYPE | PIPE_TYPE | DEVICE_TYPE | AUDIT_FILE_TYPE |
ACCOUNTING_LOG_TYPE

The contents type, if present, specifies the type of contents of instances of the object type. I
contents type is supplied, instances of the object type have no contents.

The parent typesdefine inheritance rules governing the properties of object types in working
schema (see 8.5.1). The parent types of an object type, their parent types, and so on, exclt
the object type itself, are called thecestor typesf the object type

The child typesare the object types which have this object type as parent type. The child typ
of an object type, their child types, and so on, excluding the object type itself, are called t
descendant typex the object type

The parent/child relation between object types forms a directed acyclic graph, with the obj
type "object" (see 9.1.1) as the root.

8.3.2 Attribute types

Attribute_type ::

TYPE_NOMINATOR : Attribute_type_nominator
VALUE_TYPE_IDENTIFIER : Value_type_identifier
INITIAL_VALUE . [Attribute_value]
DUPLICATION : Duplication

represented by attribute_type

Value_type_identifier = INTEGER | NATURAL | BOOLEAN | TIME | FLOAT | STRING |
Enumeration_value_type_identifier

Enumeration_value_type_identifier = seql of Enumeral_type_nominator
Duplication = DUPLICATED | NON_DUPLICATED

The value type identifier identifies thalue typeof the instances of the attribute type, i.e. the
datatype of their possible attribute values (see table 1). See 23.1.1 for the mapping of value
integers, naturals, Booleans, times, floats, and strings. An enumeration value type identifier |
non-empty sequence of enumeral types.

The initial value, which is a value of the value type, is the initial value of any attribute of thi
attribute type after creation and before any value has been assigned to it. If no initial value
supplied, the default initial value for the value type is used (see table 1).

If the duplication is DUPLICATED, then every instance of the attribute typedsgpéicable
attribute, i.e. the value of the attribute is copied whenever an object or link with the attribute
copied; if it is NON_DUPLICATED then every instance im@nduplicableattribute, i.e. the
value of the copy of the attribute reverts to the initial value.

-18 -

Table 1 - Value types

Value type identifier | Value type Default initial value

INTEGER Integer 0

NATURAL Natural 0

BOOLEAN Boolean false

TIME Time 1980-01-01T00:00:00Z

FLOAT Float 0.0

STRING String " (empty string)

Enumeration value typeEnumeral type 1st enumeral type of the enumeration
identifier value type identifier

8.3.3 Link types

@

@
(©)
@
®)
(6)
U]

®)

©)

(10)

(11

Link_type ::
TYPE_NOMINATOR : Link_type_nominator
CATEGORY : Category
LOWER_BOUND, UPPER_BOUND :[Natural]
EXCLUSIVENESS : Exclusiveness
STABILITY : Stability
DUPLICATION : Duplication
KEY_ATTRIBUTE_TYPES - Key_types
REVERSE_LINK _TYPE : [Link_type_nominator]

represented by link_type
Key_types = seq of Attribute_type_nominators
Category = COMPOSITION | EXISTENCE | REFERENCE | DESIGNATION | IMPLICIT
Categories = set of Category
Exclusiveness = SHARABLE | EXCLUSIVE
Stability = ATOMIC_STABLE | COMPOSITE_STABLE | NON_STABLE

All instances of a link type have the category, exclusiveness, stability, and duplication of the
link type.

The lower bound of a link type defines the number below which the number of links of that link
type from any instance of an object type with that link type cannot be reduced. If absent, the
lower bound is taken as 0. The lower bound is only checked when an attempt is made to delete a
link, so that on creation of an object the number of links of a type may be less than the lower
bound for that type.

The upper bound of a link type is an optional natural defining the maximal number of links of
that link type from any instance of an object type with that link type. If present, it must be
greater than 0 and not less than the lower bound. If absent, there is no upper bound.

A link type is said to bef cardinality onef its upper bound is 1. A link type of cardinality one
has an empty sequence of key attribute types.

A link type is said to beof cardinality manyif it is not of cardinality one. A link type of
cardinality many has a non-empty sequence of key attribute types.

(12)

(13)

(14)

(15)

(16)
(1)
(18)
(19)

(20)

()

(22)

(23)
(24)

(29)

(26)

@7

(28)

(29)
(30)

@D

(32)

-19 -

The sequence of key attribute types defines the attribute types of the sequence of key attrib
of an instance of the link type. It does not contain any repeated attribute type nominators.
key attribute has value type Natural or String.

The optional reverse link type is the link type which reverses the link type, i.e. whenever a i
of this link type exists from object A to object B, a link of the reverse type exists from object
to object A, and vice versa. The reverse link type is not allowed if the category
DESIGNATION, and must be present otherwise.

The term complementaryis used of pairs of links, each having the other's origin as its
destination, which are not reverses of each other.

All link types of category IMPLICIT and cardinality many have lower bound 0, no upper bounc
and a single key attribute of the predefined attribute type "system_key". The values
"system_key" attributes are implementation-dependent: each such key value is different fr
the value of every other "system_key" attribute of a link of the same link type from the san
object.

All link types of category EXISTENCE and cardinality many have lower bound 0.
The category identifies certagmnopertiesof instances of the link type, as follows:
- relevance to the originFor a link with this property:

The link may be created and deleted explicitly.

APPEND_LINKS discretionary access right to the origin is required in order to create tt
link, and WRITE_LINKS discretionary access right to the origin is required in order tc
delete the link.

The link cannot be created or deleted if its origin is a stable object.

The creation and deletion of the link assign the current system time to the la
modification time of the origin.

The link may have non-key attributes.
For a link without the relevance to the origin property:

The link may only be created and deleted implicitly, i.e. as the reverse of a link with tr
relevance to the origin property.

APPEND_IMPLICIT discretionary access right to the origin is required in order to creat
the link, and WRITE_IMPLICIT discretionary access right to the origin is required in
order to delete the link.

The link can be created or deleted even if its origin is a stable object.
The_ creation and deletion of the link have no effect on the last modification time of tr
origin.
The link may not have non-key attributes.
- referential integrity. For a link with this property:

If the link exists then so does its destination, i.e. the existence of the link prevents t
deletion of its destination.

The link always has a reverse link with the referential integrity property.

(33)
(34)
(39)
(36)
@7
(38)

(39)

(40)

41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)

(50)

(61)
(52)

(53)

-20 -

existence propertyFor a link with this property:
An object can be created as destination of the link.
The deletion of the link can imply the deletion of its destination.

composition propertyFor a link with this property:
The destination of the link is a component of its origin.
The categories are defined in terms of these properties as follows:

- COMPOSITION: relevance to the origin, referential integrity, existence property,
composition property. Links with this category are cafleshposition links

- EXISTENCE: relevance to the origin, referential integrity, existence property. Links with
this category are callezkistence links

- REFERENCE: relevance to the origin, referential integrity. Links with this category are
calledreference links

- IMPLICIT: referential integrity. Links with this category are callegplicit links.

- DESIGNATION: relevance to the origin. Links with this category are calkesignation
links.

If the stability of a link type is ATOMIC_STABLE, each instance of the link type is an
atomically stabilizinglink, i.e. the destination of the link (excluding its components other than
itself) cannot be modified or deleted.

If the stability of a link type is COMPOSITE_STABLE, each instance of the link type is a
compositely stabilizingink, i.e. the destination of the link (including its components) cannot be
modified or deleted.

If the stability of a link type is NON_STABLE, each instance of the link typenisrstabilizing
link, i.e. the existence of the link does not prevent the modification or deletion of its destination
or its components.

Modification of an object is defined in 9.1.1. sfableobject is the destination of an atomically
or compositely stabilizing link, or a component of the destination of a compositely stabilizing
link.

Exclusiveness applies only to composition link types. If it is EXCLUSIVE, each instance of the
link type is anexclusivecomposition link, i.e. no other composition link can share the same
destination. If it is SHARABLE, each instance of the link type gharablecomposition link,

i.e. other composition links can share the same destination.

If duplication is DUPLICATED, each instance isdaplicable link, i.e. the link is copied
whenever its origin is copied; if it is NON_DUPLICATED, each instance n®reduplicable
link, i.e. a copy of the object has no copy of the link. An implicit link cannot be duplicable.

A component of an object is duplicable componentf it is the destination of at least one
duplicable internal composition link whose origin is either the object or a duplicable component
of the object.

A link type of category IMPLICIT or DESIGNATION must be nonstabilizing.
The following relations hold between properties of a link type and of its reverse link type:
- if one link type has category IMPLICIT, then the other does not;

(54)

(55)

(56)

(67)

(58)

(59)

(60)
(61)
(62)
(63)
(64)
(65)

(66)

(67)
(68)

(69)

(70)

-21 -

- if one link type has the existence property (i.e. has category EXISTENCE c
COMPOSITION) then the other does not;

- if one link type has stability ATOMIC_STABLE or COMPOSITE_STABLE then the other
has category IMPLICIT.

A link type of category DESIGNATION cannot have a reverse link type.

Links of the following types are termemsage designation link®ecause they are not checked
by the normal security rules: "running_process”, "in_working_schema_of"
"consumer_process”, "user_identity_of", "adopted_user_group_of", "reserved_by
"locked_by", "lock", "opened_by", "mounted_on", and "listened_to". Usage designation link
have the following properties:

- creation or deletion implies only a bitwise write access on the origin object from
mandatory security point of view (see 20.1.8.2);

- creation or deletion requires one unspecified discretionary access permission on the ori
object;

creation or deletion is possible for an object on a read-only volume;

creation or deletion is possible for a copy object as origin;

- creation or deletion does not require the establishment of locks on the links;

- they are not copied by REPLICATED_OBJECT_DUPLICATE;

- they can be implicitly deleted by network failure and workstation closedown;

- creation or deletion does not change the last modification time of the origin object.

Links of the following types are termegrvice designation linkbecause they indicate that the
destination provides a service to the origin (usually a process). "executed or

"sds_in_working_schema", "consumer_identity", "user_identity", "adopted_user_group
"reserved_message_queue”, "open_object”, "process_waiting_for", "referenced_objec
"adoptable_user_group", "mounted_volume", "is_listener", "notifier", and

"executed_static_context". Service designation links have the following properties:
- creation or deletion does not require the establishment of locks on the links;
- they are implicitly deleted by workstation failure;

- for navigation along these links to replicated objects, replication redirection applies to tl
state of the object base at the time the link was created rather than when it is navige
through.

NOTES

1 The properties of links of various categories are summarized in table 2.

(71)

@

@

8

@

@

(©)

4)
(®)
(6)
U]
®
©)

(10)

-22 -

Table 2 - Properties of link categories

Property Composition | Existence Reference Implicit links | Designation

links links links links
relevance to origin | yes yes yes no yes
referential integrity | yes yes yes yes no
existence yes yes no no no
composition yes no no no no
atomic stability optional optional optional no no
composite stability | optional optional optional no no
exclusiveness optional no no no no
duplication optional optional optional no optional
has a reverse link yes yes yes yes no

2 The reason why the lower bound of an existence link is 0 is that if there existed an existence link type L with a
lower bound of 2, for example, and an object X had two outgoing links of type L, it would be impossible to delete
either link directly using LINK_DELETE. Indirect deletion of these links by deletion of object X would also be
impossible because X would have outgoing existence links. This means that the destinations of these links could
never be deleted. This would be an undesirable situation. The same problem does not exist with composition links
because a composite object can be deleted in a single operation, OBJECT-DELETE.

8.3.4 Enumeral types

Enumeral_type ::
TYPE_NOMINATOR : Enumeral_type_nominator
represented by enumeral_type

An enumeral type is used as a possible value of an enumeration attribute. It has no instances.

4 Typesin SDS

Type_in_sds = Object_type in_sds | Attribute_type_in_sds | Link_type_in_sds |
Enumeral_type_in_sds

Type_in_sds_common_part ::
ASSOCIATED_TYPE : Type_nominator
LOCAL_SDS : Object_designator
LOCAL_NAME : [Name]

Type_nominator_in_sds = Object_type nominator_in_sds | Attribute_type_nominator_in_sds |
Link_type_nominator_in_sds | Enumeral_type_nominator_in_sds

Object_type_nominator_in_sds . Token
Attribute_type_nominator_in_sds . Token
Link_type_nominator_in_sds :: Token
Enumeral_type_nominator_in_sds :: Token

Type_nominators_in_sds = set of Type_nominator_in_sds
Object_type_nominators_in_sds = set of Object _type nominator_in_sds

Attribute_type_nominators_in_sds = set of Attribute_type nominator_in_sds

(11
(12)

(13)

(14)

(15)

(16)

@an

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

-23 -

Link_type_nominators_in_sds = set of Link_type_nominator_in_sds
Enumeral_type_nominators_in_sds = set of Enumeral_type_nominator_in_sds

Definition_mode_value = CREATE_MODE | DELETE_MODE | READ_MODE | WRITE_MODE |
NAVIGATE_MODE

Definition_mode_values = set of Definition_mode_value

Definition_modes ::
USAGE_MODE : Definition_mode_values
EXPORT_MODE : Definition_mode_values
MAXIMUM_USAGE_MODE : Definition_mode_values

A type inSDS(plural 'types in SDS') is a template defining a set of properties which apply to a
instances of its type, in addition to the basic properties of that type. A type in 8B sated
with one type; a type i@ssociated wittone or more types in SDS.

A schema definition s€br SDS is an object of type "sds" (see 10.1.1), and is specified by ar
object designator. A type in SIfelongs toor isin, a particular SDS, called its local SDS.

The local name identifies the type in SDS, and hence the associated type, uniquely within
local SDS. Theomplete namef a type in SDS is the name of the SDS, followed by a hyphen
"', followed by the local name of the type in SDS.

The definition modes specify restrictions on the usage of the type in SDS. The usage m
specifies the permitted kinds of access to instances of the type in SDS by a process which
adopted its local SDS in its working schema. The export mode specifies the maximum us:
mode of the copy of the type in SDS which is created when the type in SDS is exported
another SDS; it is a subset of the usage mode. The maximum usagespeodies which
definition mode values can be included in the usage mode and export mode; it is set on cree
of the type in SDS and cannot be changed. The definition modes of a link and of its reverse n
be the same. Enumeral types in SDS do not have definition modes.

The accesses controlled by definition modes are as follows.

- READ_MODE controls reading from attributes by the operations OBJECT_GET.
ATTRIBUTE, OBJECT_GET_SEVERAL_ATTRIBUTES, LINK_GET_ATTRIBUTE, and
LINK_GET_SEVERAL_ATTRIBUTES.

- WRITE_MODE controls writing to attributes by the operations OBJECT_SET_
ATTRIBUTE, OBJECT_SET_SEVERAL_ATTRIBUTES, LINK _SET_ATTRIBUTE,
LINK_SET_SEVERAL_ATTRIBUTES, OBJECT_RESET ATTRIBUTE, and LINK_
RESET_ATTRIBUTE.

- CREATE_MODE controls creation of objects and links by the operations
OBJECT_CREATE, OBJECT_COPY, OBJECT_CONVERT, VERSION_REVISE,
VERSION_SNAPSHOT, DEVICE_CREATE, and PROCESS_CREATE; and creation o
links by the operations LINK_CREATE and LINK_REPLACE.

- DELETE_MODE controls deletion of objects and links by the operation OBJECT _DELETE
and deletion of links by the operations LINK_DELETE and LINK_REPLACE.

- NAVIGATE_MODE controls the use of link references in pathnames in the evaluation c
object references (see 23.1.2.2).

Types in SDS are specialized to object types in SDS, attribute types in SDS, link types in SI
and enumeral types in SDS; the associated types are object types, attribute types, link types,
enumeral types respectively.

@7

(28)

8.4.1

@

@

(©)

4)

(®)

8.4.2

@

@

8.4.3

@

@

-24 -

A type in SDS is specified by a type nominator in SDS, which may be specialized to an object
type nominator in SDS, an attribute type nominator in SDS, a link type nominator in SDS, or an
enumeral type nominator in SDS. A type nominator in SDS may be further specialized as
follows: if "X" is an object type, attribute type, link type, or enumeral type then
'X_type_nominator_in_sds' stands for 'Object_type _nominator_in_sds' etc. with the condition
that the value must designate a type in SDS associated with type "X" or a descendant of "X". For
the mapping of type nominators in SDS to language bindings see 23.1.2.5.

NOTE - The properties of a type and of an associated type in SDS can be specified by means of the Data Definition
Language (see annex B).

Object types in SDS

Object_type_in_sds :: Type_in_sds_common_part &&

DIRECT_ATTRIBUTE_TYPES_IN_SDS : Attribute_type_nominators_in_sds
DIRECT_OUTGOING_LINK_TYPES_IN_SDS : Link_type_nominators_in_sds
DIRECT_COMPONENT_TYPES IN_SDS : Object_type _nominators_in_sds
DEFINITION_MODES : Definition_modes

represented by object_type in_sds
The only allowed definition mode value for an object type in SDS is CREATE_MODE.

The direct attribute types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the visible attribute types of object types in working schema; see
8.5.1.

The direct outgoing link types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the visible link types of object types in working schema; see
8.5.1. The object type in SDS is called tregin object type in SD®f each of the direct
outgoing link types in SDS.

The direct component types in SDS must be in the same SDS as the object type in SDS. They
participate in the definition of the direct component types of object types in working schema;
see 8.5.1.

Attribute types in SDS

Attribute_type_in_sds :: Type_in_sds_common_part &&
DEFINITION_MODES : Definition_modes
represented by attribute_type_in_sds

The only allowed definition mode values for an attribute type in SDS are READ_MODE and
WRITE_MODE.

Link types in SDS

Link_type in_sds :: Type_in_sds_common_part &&

DESTINATION_OBJECT_TYPES IN_SDS : Object_type _nominators_in_sds
NON_KEY_ATTRIBUTE_TYPES_IN_SDS : Attribute_type_nominators_in_sds
DEFINITION_MODES : Definition_modes

represented by link_type_in_sds

The only allowed definition mode values for a link type in SDS are CREATE_MODE,
DELETE_MODE, and NAVIGATE_MODE.

-25-

@®) The destination object types in SDS must be in the same SDS as the link type in SDS. T
participate in the definition of the destination object types of link types in working schema; s
8.5.3.

@ The non-key attribute types in SDS must be in the same SDS as the link type in SDS. Tl
participate in the definition of the visible attribute types of link types in working schema,; se
8.5.3.

8.4.4 Enumeral types in SDS

@ Enumeral_type_in_sds :: Type_in_sds_common_part &&
IMAGE : Text
represented by enumeral_type_in_sds

@ An enumeral type in SDS associates with the enumeral type a string called its image.

8.5 Types in working schema

@ Type_in_working_schema = Object_type in_working_schema |
Attribute_type_in_working_schema | Link_type_in_working_schema |
Enumeral_type_in_working_schema

@ Type_in_working_schema_common_part ::

ASSOCIATED_TYPE : Type_nominator
CONSTITUENT_TYPES_IN_SDS : seq of (Composite_name * Type_nominator_in_sds)

@) Composite_name ::
SDS_NAME : Name
LOCAL_NAME : [Name]

@) A type in working schemes a template defining common properties for a set of instances of it:
type. The properties of a type in working schema are derived from the properties of one or m
types in SDS (see 8.5.1 to 8.5.4). Types in working schema occur in working schemas, see
For the construction of working schemas, see 13.2.12.

®) The constituent types in SDS of a type in working schema must all have the same associ
type, which is the typassociated witlthe type in working schema.

®) A type in working schema has several composite nhames, one for each constituent type in S
For each composite name, the SDS name is the name of the local SDS of the corresponding
in SDS, and the local name, if any, is the local name of the type in SDS in its local SDS.

@ Let C1 and C2 be composite names, and T1 and T2 be type nominators in SDS. Then for
two constituent types in SDS (C1, T1), (C2, T2) of a type in working schema, if the SDS name
C1 precedes the SDS name of C2 in the SDS names of the working schema containing the tyj
working schema, then (C1, T1) precedes (C2, T2).

®) Types in working schema are specialized to object types in working schema, attribute types
working schema, link types in working schema, and enumeral types in working schema; th
associated types are object types, attribute types, link types, and enumeral types respectively.

©) The value of a type in SDS cannot be changed while it is part of a type in working schema.
(10) A type in working schema is specified by a type nominator, see 8.3.

-26 -

8.5.1 Object types in working schema

@

@

®

@

®)

(6)

0]

®

©

(10)

(11

Object_type_in_working_schema :: Type_in_working_schema_common_part &&

CHILD_TYPES : Object_type _nominators
PARENT_TYPES : Object_type _nominators
APPLIED _ATTRIBUTE_TYPES : Attribute_type nominators
APPLIED_LINK_TYPES : Link_type_nominators
VISIBLE_ATTRIBUTE_TYPES : Attribute_type nominators
VISIBLE_LINK_TYPES : Link_type_nominators
DIRECT_COMPONENT_TYPES : Object_type nominators
USAGE_MODES : Definition_mode_values

The set of constituent types in SDS of the child types is the union of the sets of child types of
the constituent types in SDS of the type in working schema.

The set of constituent types in SDS of the parent types is the union of the sets of parent types of
constituent types in SDS of the type in working schema.

The applied attribute types are the attribute types in working schema which have a constituent
type in SDS of a direct attribute type in SDS of one of the constituent types in SDS of the object
type in working schema.

The applied link types are the link types in working schema which have a constituent type in
SDS of a direct outgoing link type in SDS of one of the constituent types in SDS of the object
type in working schema.

The direct component types are the object types in working schema which have a constituent
type in SDS of a direct component type in SDS of one of the constituent types in SDS of the
object type in working schema.

The set of visible attribute types is the union of the set of applied attribute types and the sets of
the visible attribute types of all the parent types.

The set of visible link types is the union of the set of applied link types and the sets of the
visible link types of all the parent types.

The constituent types in SDS must be object types in SDS.

If the type of an object is not visible, the object is considered as an instance of any of its object
type's ancestor types which is visible.

The set of usage modes is the union of the sets of definition modes of all constituent types in
SDS of the object type in working schema.

8.5.2 Attribute types in working schema

@

@

(©)

Attribute_type_in_working_schema :: Type_in_working_schema_common_part &&
USAGE_MODES : set of Definition_mode_values

The constituent types in SDS must be attribute types in SDS.

The set of usage modes is the union of the sets of definition modes of all constituent types in
SDS of the attribute type in working schema.

8.5.3

@

@

®

@
®)

(6)

™

8.5.4

@

@

®

8.6

@

@

(©)

4)

(®)

-27 -

Link types in working schema

Link_type_in_working_schema :: Type_in_working_schema_common_part &&
DESTINATION_OBJECT_TYPES : Object_type _nominators
VISIBLE_DESTINATION_OBJECT _TYPES : Object_type _nominators
KEY_ATTRIBUTE_TYPES : Key_types
APPLIED _ATTRIBUTE_TYPES : Attribute_type_nominators
REVERSE : [Link_type_nominator]
USAGE_MODES : Definition_mode_values

The set of constituent types in SDS of the applied attribute types is the union of the sets of n
key attribute types of the constituent types in SDS of the link type in working schema.

The set of constituent types in SDS of the destination object types is the union of the sets
destination object types of the constituent types in SDS of the link type in working schema.

The constituent types in SDS must be link types in SDS.

The set of visible destination object types is the union of the set of destination object types :
the set of visible descendants of the visible destination object types.

The sequence of key attribute types is the same as the sequence of key attribute types o
associated type.

The set of usage modes is the union of the sets of definition modes of all constituent type:
SDS of the link type in working schema.

Enumeral types in working schema

Enumeral_type_in_working_schema :: Type_in_working_schema_common_part &&
IMAGE : Text

The image of an enumeral type in working schema T1 is the image of the first of its types
SDS which has an image, unless another enumeral type in working schema T2 belonging to
same enumeration attribute type in working schema as T1 but with a lower position already |
the same image, in which case T1 has no image.

The constituent types in SDS must be enumeral types in SDS.

Types in global schema

Theglobal schemas the working schema constituted by all the SDSs of a PCTE installation; th
order is irrelevant as it affects only the type names, which are of no concern heype A
global schemads a type in working schema in the global schema; it follows that each type i
associated with one type in global schema. The global schema is a notional working schema
to state the following consistency rules applying to the whole object base; it is not necessarily
working schema of any process.

An object must be compatible with its associated object type in global schema, i.e.:

- The link types in global schema of the links of the object must be among the visible link typ
in global schema of the object type in global schema.

- The attribute types in global schema of the attributes of the object must be among the visi
attribute types in global schema of the object type in global schema.

- The object types in global schema of the direct components of the object must be among
direct component object types in global schema of the object type in global schema.

(6)

™

®
©)

(10)

(11

(12)

8.7
8.7.1

@

8.7.2

@

@

(©)

4)

(®)

(6)

-28 -

- The preferred link type of the object, if present, must be one of the applied link types of the
object type in global schema.

- The preferred link key of the object, if present, must have the same value types (String or
Natural), in the same order, as the key attribute types of the preferred link type of the object.

A link must be compatible with its associated link type in global schema, i.e.:

- The object type in global schema of the destination of the link must be among the visible
destination types of the link type in global schema.

- The key attributes of the link, if any, must have the same value types (String or Natural) in the
same order as the key attribute types of the link type in global schema.

- The non-key attributes of the link must be among the applied attribute types of the link type in
global schema.

- The link type in global schema of the reverse link, if any, must be the reverse of the link type
in global schema.

Operations
Calling process

The operations defined in clauses 9 to 22 take effect when thexeroatedy a process (see
13.1.4). The process is known as tiading proces=f the operation. The effects on the state

of the PCTE installation are global, i.e. can be observed by other processes. Results returned by
operations which are designators are local to the calling process.

Direct and indirect effects

The effects of an operation on the state of the PCTE installation comprise direct effects and
indirect effects.Direct effectsare described in the relevant operation descriptions (including the
error descriptions).Indirect effectsare described elsewhere in clauses 9 to 22. The operations
of clause 23 do not affect the state.

Indirect effects occur by means @fents Events are of several classes, described below. An
operation mayaisean event. Depending on the state of the PCTE installation, the raising of an
event may result either in the effect of another operation being different to what it would
otherwise be, or in some other change of state.

An operation has a finite non-zero duration, and an event that is raised during the operation may
have an effect on that operation.

In general, the raising of an event is not explicitly described in the operation that raises the

event, but instead in the part of the interface definition that may be affected by the event. It

must nevertheless be understood that the description of an operation may need to be implicitly
extended by the description of the raising of events. The processing of an event takes place
asynchronously.

There are several different classes of event, as described below.

- Access eventThis is described in clause 15. Access events are raised by operations which
perform certain kinds of access to objects. If an appropriate notifier has been established,
then the raising of the event causes an appropriate message to be sent.

™

®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

-29.-

Lock release eventA lock release event occurs when a lock is released (see 16.1.8).
some other operation is waiting to acquire a lock on the same resource, then that opera
may proceed. If there is more than one such operation then which operation acquires
lock is implementation-dependent. There is no further description of this event in th
ECMA Standard.

Process timeout evenfThis event is raised when the duration of an operation has exceeds
the process timeout value for that process. When this event is raised, the error condif
OPERATION_HAS TIMED_OUT holds for that operation, and the operation terminate:
with that error. This event is described in 13.1.4.

Process alarm eventThis event is raised when the time left until alarm has expired. Whet
this event is raised, a message of message type WAKE is sent to the process and the pre
is resumed. This event and its effect are described in 13.1.4 and 13.2.6.

Interrupt operation event This is described in 13.2.4. This event is raised by
PROCESS_INTERRUPT_OPERATION or by PROCESS_TERMINATE. If the interrupted
process is executing an operation or waiting for an event when this error is raised, then
error condition OPERATION_IS_INTERRUPTED holds for that operation and it terminate:
with that error.

Audit event These events are described in clause 21. Audit events are raised by operati
which carry out object access, and for exploiting audit records, copying audit recorc
carrying out certain security operations, and at explicit user request (see 21.2.5). If the e\
type is selected and auditing is enabled (or the event type is always audited) then an a
record is written as described in 21.1.1.

Accounting eventAccounting events are divided into start events and end events. These :
raised as a result of certain operations, and if the resource is accountable and accountir
enabled then an accounting record is written (see 22.1.2).

Message queue eventThese events are described in 14.1. They are raised by th
appearance in a message queue of a message, which may be caused
MESSAGE_SEND_WAIT, MESSAGE_SEND _NO_WAIT, or QUEUE_RESTORE. If
there is a handler for the event then that handler is executed.

Resource availability eventThese events do not occur as a result of operations, but ma
occur at any moment. They model changes in the availability of hardware resources.
effect of a resource availability event on the directly affected objects is implementatiol
dependent. The set of directly affected objects for an event is implementation-defined. T
effect on access from other objects is defined as follows for the various resource availabi
events.

Volume failure an accessible volume becomes inaccessible. Attempted access to obje
on the volume (including replicas in the case of an administration volume) fails with th
error OBJECT_IS_INACCESSIBLE. Attempts to commit transactions which have
started and which involve objects on the volume also fail.

Device failure an accessible device becomes inaccessible. Attempted access to the
contents of the device fails. Volume failure is raised for any volume mounted on tf
device.

Network failure an accessible workstation becomes inaccessible. There is no distinctic
between a workstation failing and a network failing so that communication with the
workstation is lost. The inaccessible workstation ceases to be in its current netwc

(18)

(19)

(20)

()

(22)

@

@

8.7.3

-30 -

partition. Associated devices and volumes become inaccessible with consequences as
above.

Network repair a workstation joins a network partition. This has no immediate effect,
but the workstation becomes accessible when the other conditions are met.

Process termination event This event is raised when a process is terminated by
PROCESS_TERMINATE, explicitly or implicitly or by normal or abnormal process
termination. If a PROCESS WAIT _FOR_CHILD or PROCESS WAIT FOR_ANY_
CHILD operation of the parent process is waiting for that process or any sibling process to
terminate, then it may proceed. If more than one such operation exists (for different threads)
then all may proceed.

Data available event This event is raised when data is written to a device contents, pipe
contents, or message queue. If an operation is waiting on a CONTENTS_READ on a pipe
or device which is not non-blocking, and data is written to that pipe or device, then that
operation may proceed. If an operation is waiting on a MESSAGE_RECEIVE_WAIT on a
message queue, and a message is received of a type included in the set of types specified by
that MESSAGE_RECEIVE_WAIT, then the operation may proceed. If more than one
operation is waiting on that event, which operation receives the data and ceases to wait is
implementation-dependent. AUDIT_FILE_READ and ACCOUNTING_LOG_READ do

not wait for data to be available.

Data space available eveniThis event is raised when space becomes available in a device
contents, pipe contents, or message queue. If an operation is waiting on a
CONTENTS_WRITE on a pipe or device which is not non-blocking, and data is removed
from that pipe or device, then that operation may proceed if sufficient space has been made
available. If an operation is waiting on a MESSAGE_SEND_WAIT on a message queue and

a message is removed from the queue then the operation may proceed if sufficient space has
been made available. If an operation is waiting to write to the audit file or accounting log and
the audit file or accounting log becomes available, then the operation proceeds. If more than
one operation is waiting on that event for a contents or message queue, which operation
writes or sends the data and ceases to wait is implementation-dependent.

Security attribute change This event is raised by OBJECT_SET_CONFIDENTIALITY_
LABEL, OBJECT_SET INTEGRITY_LABEL, or OBJECT SET_ACL_ENTRY, or
changes to labels as a result of floating. If a CONTENTS_READ, CONTENTS_WRITE,
MESSAGE_RECEIVE_WAIT or MESSAGE_SEND_WAIT operation is waiting and a
security attribute changes such that the process no longer has permission to access the
contents or message queue object in the required mode, then the operation ceases to wait and
terminates in an appropriate mandatory or discretionary access mode error (see C.4).

Errors

Execution of an operation mégrminateafter carrying out thaormal behaviouas described in
the main subclause, or may terminate ireamor.

The list of errors in the subclauBerors of each abstract operation definition defines the set of
error conditionswhich apply to that operation. Other error conditions, which apply to several
operations, are defined in clause 23. The error conditions OPERATION_HAS_TIMED_OUT
and OPERATION_IS INTERRUPTED (see 8.7.2) and SECURITY_POLICY_WOULD_BE__
VIOLATED (see 20.1.8) apply to all operations. If an operation terminates in an error then the

®

@

®)

(6)

0]

®

©

@

@

®

-31-

associated error condition holds. If any error condition holds then the operation terminates
none of the error conditions hold, the normal behaviour occurs.

Error conditions are distinguished for the purpose of helping tool writers. Language bindin
may add further error conditions. An implementation may not add further error condition
except as specified in this ECMA Standard.

No precedences are defined in this ECMA Standard between error conditions which he
simultaneously. Implementations which aim for high security must define such a precedence
as to address the problem of covert channels.

Error conditions arising from type mismatches between actual and formal parameters
operations are not explicitly defined in the abstract operation definitions. Language bindin
may need to make these error conditions explicit, depending on the strength of type-check
provided by the language. This does not apply to the following cases:

- a check by an operation that an object belongs to a particular subset of instances of a t
e.g. that a security group is not a subgroup, or that an attribute is not applied to a speci
object;

- a check by an operation where a specialization of Object_designator is specified and
object reference is supplied (see 23.1.2.2).

If an operation terminates with an error condition, then the operation may have acquired s
locks. The locks acquired are implementation-dependent, but in no case may a lock be acqt
on a resource (object or link) which is stronger than the lock that would be acquired on tf
resource if the normal behaviour had occurred. Their duration is determined in the same wa
for other locks. No other state changes occur, except that possibly auditing and accoun
records are created.

Calls to operations which are part of optional modules which are not implemented by
implementation return with no error and no effect.

8.7.4 Operation serializability

In general, operations are serializable with all other concurrent operations. An operation may
considered to be composed of one or more ataetionswhich change the state of the PCTE
installation. That a set of operations is serializable means that for each operation a single p
in time can be determined, lying between the actual time the operation is called and the time
the return from the operation, where all the actions of the operation can be deemed to take p
and without any different effect on the state of the PCTE installation to that which actual
occurs. This point of time is called tim@minal serialization point The following specific
exceptions to serializability apply.

- If an operation enters a waiting state then the actions before the operation waits constil
one operation for purposes of serialization and the actions after leaving the waiting state u
entering a further waiting state or the end of the operation constitute another operation.

- The values of the "last access _time", "last_modification_time", "last_change_time
"last_composite_access_time", "last_composite_modification_time", and "last_composit
change_time" attributes are updated within an operation to a point of time between the s
and end of the operation and not necessarily to any nominal serialization point. The tir
values set on different objects by a single operation are not necessarily the same.

-32-

@ - If PROCESS_INTERRUPT_OPERATION is used on a process between the start of an
operation and the nominal serialization point then the operation is interrupted; if it is used
after the nominal serialization point then it has no effect.

®) - Serializability does not apply to PROCESS_SUSPEND for the calling process; nor to
WORKSTATION_CHANGE_CONNECTION with the parameferce set totrue and any
affected concurrent operations.

®) - PROCESS_TERMINATE interrupts other ongoing operations (if any) in the same way as
PROCESS INTERRUPT_OPERATION.
NOTES
@ 1 Serializability is often enforced by locking. However, this is not true for two or more operations running on

behalf of the same activity or on behalf of competing unprotected activities. As an example of operation
serializability, consider two concurrent invocations of OBJECT_MOVE on the same object, moving it to two
different volumes. The result should be that the entire object resides on one or the other volume, rather than some
components residing on each volume according to the order in which they were moved.

®) 2 Evaluation of parameters which are references counts as part of operation execution for serialization.

9 Object management
9.1 Object management concepts

9.1.1 The basic type "object"

@ sds system:

@ volume_identifier: (read) non_duplicated natural
®@) locked_link_name: (read) string ;

@) lock_identifier: (read) string ;

(5) exact_identifier: (read) non_duplicated string ;
(6) number: natural ;

) name: string ;

®) system_key: (read) natural ;

©

(10)
(11

(12)

(13)

(14)

(15)

(16)
(1)

(18)

-33-

object: with
attribute
exact_identifier;
volume_identifier;
replicated_state: (read) non_duplicated enumeration (NORMAL, MASTER, COPY) =
NORMAL;
last_access_time: (read) non_duplicated time ;
last_modification_time: (read) non_duplicated time ;
last_change_time: (read) non_duplicated time ;
last_composite_access_time: (read) non_duplicated time ;
last_composite_modif_time: (read) non_duplicated time ;
last_composite_change_time: (read) non_duplicated time ;
num_incoming_links: (read) non_duplicated natural ;
num_incoming_composition_links: (read) non_duplicated natural
num_incoming_existence_links: (read) non_duplicated natural ;
num_incoming_reference_links: (read) non_duplicated natural
num_incoming_stabilizing_links: (read) non_duplicated natural ;
num_outgoing_composition_links: (read) non_duplicated natural
num_outgoing_existence_links: (read) non_duplicated natural ;
link
predecessor: (navigate) non_duplicated composite stable existence link
(predecessor_number: natural) to object reverse successor;
successor: (navigate) implicit link (system_key) to object reverse predecessor;
opened_by: (navigate) non_duplicated designation link ~ (number) to process;
locked_by: (navigate) non_duplicated designation link (lock_identifier) to activity
with attribute
locked_link_name;
end locked_by;
end object;

end system;
"Object" is the common ancestor type of all objects in the object base.

The exact identifier uniquely identifies the object in the object bases of all PCTE installatior
It is composed of a prefix and a suffix separated by "' (colon). The prefix is the same for
objects created within a PCTE installation. The suffix uniquely identifies the object within th
object base of a particular PCTE installation. The exact identifier of an object that has be
deleted is never reassigned to an object created later.

The volume identifier identifies the volume on which the object resides, or, for a copy object,
which it is a replica. It uniquely identifies a volume within a PCTE installation.

The replicated state indicates whether the object is normal, a master or a copy (see 17.1).
MASTER for the master of a replicated object, COPY for a copy of a replicated object, at
NORMAL for a non-replicated object. This attribute can be changed only by the operatio
which manage replicated objects.

The last access time is the date and time of day of the last read access to the contents
object. It is set to the system time when the object is created and by the following operatic
(unless the object is on a read-only volume or is a component of an object on a read-c
volume):

- QUEUE_RESTOREdueugfile) for file;
- CONTENTS_READ;
- AUDIT_FILE_READ;

(19)

(20)

()

(22)

(23)

(24)

(29)
(26)

@7

(28)
(29)
(30)

@D

(32)
(33)

(34)

(39)
(36)
@7
(38)
(39)

(40)

(41)
(42)

(43)

(44)

-34-

- ACCOUNTING_RECORD_READ:;

- CONTENTS_COPY_TO_FOREIGN_SYSTEMil¢, foreign_systemforeign_parameters
foreign_namgfor file.

The last modification time is the date and time of day of thenlasiificationto the object. Itis
set to the system time when the object is created and by the following operations:

- LINK_CREATE and LINK_REPLACE for the origin of the created link when the created
link is not implicit;

- LINK_DELETE and LINK_REPLACE for the origin of the deleted link when the deleted
link is not implicit;

- any operation which results in the creation or deletion of a link which is not implicit, except
for usage designation links and "object_on_volume" links;

- OBJECT_CONVERT;
- OBJECT_SET ATTRIBUTE and OBJECT_SET_SEVERAL_ATTRIBUTES;

- LINK_SET_ATTRIBUTE and LINK_SET_SEVERAL_ATTRIBUTES, for the origins of
the links;

- OBJECT_SET PREFERENCE;
- QUEUE_SAVE (ueuefile) for file;
- CONTENTS_WRITE and CONTENTS_TRUNCATE;

- CONTENTS_COPY_FROM_FOREIGN_SYSTENMI¢, foreign_system
foreign_parameterdoreign_namgfor file;

- any operation resulting in the creation of an audit record for the audit file;
- any operation resulting in the creation of an accounting record for the accounting log;

The last change time is the date and time of day of theHasigeto the object. It is set by any
operation which sets the last modification time, and the following operations:

- creation of an implicit link;

- deletion of an implicit link;

- OBJECT_MOVE for an object which has been moved to another volume;

- operations which change the discretionary access control lists of an object;
- operations which change the mandatory labels of an object;

- operations which change the mandatory label ranges of multi-level secure devices (see
20.1.5);

- PROCESS_SET_CONFIDENTIALITY_LABELprocesslabel) for process
- PROCESS_SET_INTEGRITY_LABELpfocesslabel) for process

The last composite access time is the date and time of day of the last read access to the contents
of the object or of any component of the object (but is not updated if the object or component is
on a read-only volume).

The last composite modiffication] time is the date and time of day of the last modification to the
object or to any component of the object.

(45)

(46)

(47)

(48)

(49)
(50)

(61)

(52)

(53)

(54)

(55)

(56)

(67)

(58)

(59)

(60)

-35-

The last composite change time is the date and time of day of the last change made to the o
or to any component of the object.

An operation which updates the last modification time of an object is satdrimcally modify
the object. An operation which updates the last composite modification time of an objectis s
to compositely modifthe object.

The num (number of) incoming links is the number of non-designation links to the object (and
also the number of non-designation links of the object since every non-designation link ha:
reverse link).

The num (number of) incoming composition links is the number of composition links to th
object.

The num (number of) incoming existence links is the number of existence links to the object.
The num (number of) incoming reference links is the number of reference links to the object.

The num (number of) incoming stabilizing links is the number of atomically stabilizing links tc
the object plus the number of compositely stabilizing links to the object and to its outer object:

The num (number of) outgoing composition links is the number of composition links of th
object.

The num (number of) outgoing existence links is the number of existence links of the object.

The destinations of the "predecessor” links are the immediate predecessor versions of the ob
the destinations of the "successor" links are the immediate successor versions of the ob]
These are used in version control operations; see 9.4. The directed graph of versions create
these links must be acyclic.

The destination of the "opened_by" link is the process that opened the object; see 12.1.

The destination of the "locked_by" link is the activity that has locked the object or a link of th
object; see 16.1.2.

There are also attributes defined in the security SDS representing the security properties of
object (see 19.1.2 and 20.1.1); and attributes defined in the accounting SDS representing
accounting properties of the object (see 22.1.1).

The attribute types "number”, "name" and "system_key" are predefined. "number" and "nan
are used for numeric and string keys, respectively; names are non-empty. "system_key" is
attribute type of system-assigned keys of implicit links (see 8.3.3).

NOTES

1 The prefix of the object exact identifier is intended to be unique among all PCTE installations, past, present,
future; but the administration of prefix assignment is outside the scope of this ECMA Standard.

2 The last composite access, maodification, and change time may be calculated when required as the most rec
the last access, modification, and change time respectively of the object and its components.

@
@

(©)
@

®)
(6)

@

@

®

9.2

@

@
(©)
4)
(®)
(6)
U]

®)

-36 -

9.1.2 The common root

sds system:

common_root: child type of object with

link
archives: (navigate) existence link to archive_directory reverse archives_of;
execution_sites: (navigate) existence link to execution_site_directory reverse

execution_sites_of;

ground: (protected) existence link to common_root;
replica_sets: (navigate) existence link to replica_set_directory reverse replica_sets_of;
volumes: (navigate) existence link to volume_directory reverse volumes_of;

end common_root;

end system;

The common root has an existence link to each ofattinistrative objectof the PCTE
installation: the SDS directory (see 10.1.1), the volume directory (see 11.1.1), the archive
directory (see 11.1.4), the replica set directory (see 17.1.1), the execution site directory, (see
18.1.1), the security group directory (see 19.1.1), the mandatory directory (see 20.1.1), and the
accounting directory (see 22.1.1).

The "ground” link is to allow deletion of other existence links to the common root (see 9.2.2).

The common root and the administrative objects are predefined replicated objects (see 17.1.4).

9.1.3 Datatypes for object management

Type_ancestry = EQUAL_TYPE | ANCESTOR_TYPE | DESCENDANT_TYPE |
UNRELATED_TYPE

Version_relation = ANCESTOR_VSN | DESCENDANT_VSN | SAME_VSN | RELATED_VSN |
UNRELATED_VSN

These datatypes are used as parameter and result types of operations in 9.3 and 9.4.

Link operations

9.2.1 LINK_CREATE

LINK_CREATE (

origin : Object_designator,
new_link : Link_designator,
dest : Object_designator,
reverse_key [Actual_key]

)

LINK_CREATE creates a new linlknk of origin as follows:

the link type is as specified by the link designaiew _link

the destination is the objedést

the key attributes are as specified by the link desigmatar link

the non-key attributes aset to their initial values;

the category, exclusiveness, stability, and duplication are set according to the link type.

If the type oflink has a reverse link type, LINK_CREATE also creates the reverse link
reverse_linkof link and adds it to the links olest

©
(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)
@7

(28)

-37 -

- the link type ofreverse_links the reverse of the link type lirfk;
- the destination ofeverse_linkis origin;

- the category, exclusiveness, stability, and duplicatioevérse_linkare set according to the
link type.

- the non-key attributes oéverse_linkare set to their initial values;

- if the type ofreverse_linkis of cardinality many and of category IMPLICIT then the key
attribute ofreverse_linkis set to a new system-generated key.

If the type ofreverse_linkis of category COMPOSITION, REFERENCE or EXISTENCE, two
cases arise:

- if desthas a preferred link type which is the link type of the reverse link, then the ke
attributes ofreverse_linkare derived fronreverse_keyand from the preferred link key of
dest if any, as defined in 23.1.2.7;

- if desthas no preferred link type or if the preferred link typdextis not the link type of the
reverse link, then the key of the reverse link is se¢verse _key

If new_linkis a composition link, then any security group that has OWNER granted or denied
origin has OWNER or CONTROL_DISCRETIONARY granted or denied respectivedg$d
similarly if reverse_links a composition link, then any security group that has OWNER grantet
or denied todest has OWNER or CONTROL_DISCRETIONARY granted or denied
respectively toorigin. This requires the process to have OWNER rightsdest or origin
respectively. See 19.1.2 for details.

Write locks of the default mode are obtained on the new links. A read lock of the default mo
is obtained ororigin if the interpretation ohew_linkimplies the evaluation of any '+' or '++'
key attribute values (see 23.1.2.7). A read lock of the default mode is obtaidedtdrnthe
interpretation ofeverse_keymplies the evaluation of any '+' or '++' key attribute values.

A write lock of the default mode is obtained @estand each of its components if the OWNER
discretionary access right is granted or denied for one or more groopgito and different
OWNER discretionary access rights exist for one or more of those same grdeps to

Errors

ACCESS_ERRORSofigin, ATOMIC, MODIFY, APPEND_LINKS)
If reverse_links implicit:
ACCESS_ERRORSest ATOMIC, CHANGE, APPEND_IMPLICIT)

If reverse_links not implicit:
ACCESS_ERRORSest ATOMIC, MODIFY, APPEND_LINKS)

If new_linkis atomically stabilizing:
ACCESS_ERRORSest ATOMIC, CHANGE, STABILIZE)

If new_linkis compositely stabilizing:
ACCESS_ ERRORSest COMPOSITE, CHANGE, STABILIZE)

CATEGORY_IS_BAD 6rigin, new_link (COMPOSITION, EXISTENCE , REFERENCE,
DESIGNATION))

COMPONENT_ADDITION_ERRORSdest new_link)
COMPONENT_ADDITION_ERRORSqfigin, reverse_linK
DESTINATION_OBJECT_TYPE_IS_INVALID @rigin, new_link des}

(29)

(30)

@D

(32)
(33)
(34
(39)
(36)
@7

(38)

9.2.2

@

@
®

@

®)

(6)

™

®

©

(10)

(11

(12

-38 -

LINK_EXISTS (origin, new_link

If link is atomically or compositely stabilizing:
OBJECT_CANNOT_BE_STABILIZEDdes)

If link is compositely stabilizing:
OBJECT_CANNOT_BE_STABILIZED (component dés)
REVERSE_KEY_IS_BAD grigin, new_link dest reverse_key
REVERSE_KEY_IS_NOT_SUPPLIED(igin, new_link des})
REVERSE_KEY_IS _SUPPLIEDéverse_key
REVERSE_LINK_EXISTS ¢rigin, new_link dest, reverse_key)
UPPER_BOUND_WOULD_BE_VIOLATEDdest reverse_link
UPPER_BOUND_WOULD_BE_VIOLATEDdrigin, new_link

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdfrigin, new_link
CREATE_MODE)

LINK_DELETE

LINK_DELETE (
origin : Object_designator,
link : Link_designator

)
LINK_DELETE deletes the link specified lmyigin andlink.
Let dest be the destination olink, and reverse_linkbe the reverse link ofink (if any).

LINK_DELETE deletedink from the links oforigin and deleteseverse_link(if any) from the
links of dest

destis deleted from the object basdirik is the last composition or existence linkdtest

origin is deleted from the object basaeéfverse_linkis the last composition or existence link to
origin.

For each deleted object the "object_on_volume" link from the volume on which the deleted
object was residing to the deleted object is also deleted.

If either deleted object is opened by one or more processes (see 12.1), the deletion of its contents
is postponed until all processes have closed the contents. An operation using a contents handle
to access its contents is not affected by the deletion until the contents handle is closed.

Write locks of the default mode are obtained on the deleted objects (if any) and on the deleted
links except the "object_on_volume" link. A read lock of the default mode is obtaireyon

if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values (see
23.1.2.7).

Errors

ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)

If link is atomically stabilizing:

ACCESS_ERRORSJest ATOMIC, CHANGE, STABILIZE)
If link is compositely stabilizing:

ACCESS_ERRORSIest COMPOSITE, CHANGE, STABILIZE)
If reverse_links implicit:

ACCESS_ERRORSdest ATOMIC, CHANGE, WRITE_IMPLICIT)

-39 -

(13) If reverse_linkis not implicit:
ACCESS_ERRORSdest ATOMIC, MODIFY, WRITE_LINKS)

(14) If link is the last composition or existence linkdtest
ACCESS_ERRORSdest ATOMIC, MODIFY, DELETE)

(15) If reverse_linkis the last composition or existence linkoragin:
ACCESS_ERRORSofigin, ATOMIC, MODIFY, DELETE)

(16) For each origin X of an implicit link to a deleted object:
ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)

a7 For each compositely stabilizing link L of a deleted object:
ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)

(18) CATEGORY_IS_BAD 6rigin, link, (COMPOSITION, EXISTENCE, REFERENCE,

DESIGNATION))

(19) If link is not a designation link:
DESTINATION_OBJECT_TYPE_IS_INVALID drigin, link, des})

(20) LOWER_BOUND_WOULD_BE_VIOLATED 6rigin, link)

@1) LOWER_BOUND_WOULD_BE_VIOLATED (est reverse_link

22) If reverse_links the last existence or composition linkotagin:
OBJECT_HAS_LINKS_PREVENTING_DELETIONofigin)

(23) If link is the last existence or composition linkdiest
OBJECT_HAS_LINKS_PREVENTING_DELETIONJES)

@4) If link is the last composition or existence linkdtest
OBJECT_IS_IN_USE_FOR_DELETIHés)

(25) If reverse_linkis the last composition or existence linkotagin:
OBJECT_IS_IN_USE_FOR_DELET®Igin)

(26) USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdrigin, link,

DELETE_MODE)

9.2.3 LINK_DELETE_ATTRIBUTE

[} LINK_DELETE_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,

attribute : Attribute_designator

)

@ LINK_DELETE_ATTRIBUTE deletes the non-key attribugtribute of the link link of the
object origin, if the "attribute_type" object representing the attribute typatwibute is no
longer in the object base.

@®) A write lock of the default mode is obtainedlork. A read lock of the default mode is obtained
onorigin if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors
%) ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)
®) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
®) REFERENCED_OBJECT_IS_NOT_MUTABLE (key lifk)

@ NOTE - It is the responsibility of the user to ensure that the attribute type is no longer in the object base.

-40 -

9.2.4 LINK_GET_ATTRIBUTE

@

@

®

@
(®)

9.2.5

@

@

®

@

®)

(6)

™

®

LINK_GET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator

result . Attribute_value

LINK_GET_ATTRIBUTE returns the value of the non-key attribat&ibute of the linklink of
the objecbrigin.

A read lock of the default mode is obtainedliok. A read lock of the default mode is obtained
onorigin if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

ACCESS_ERRORS(igin, ATOMIC, READ, READ_LINKS)

USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDofigin, link, attribute,
READ_MODE)

LINK_GET_DESTINATION_VOLUME

LINK_GET_DESTINATION_VOLUME (

origin : Object_designator,
link : Link_designator

)
destination : Volume_info

LINK_GET_DESTINATION_VOLUME returns the volume identifiarolume_identifierand
the volume accessibilitpnountedof the volume on which the destinatidastof the linklink of
the objecbrigin resides. The returned valuembunteds as follows:

- ACCESSIBLE if the volume on whiclestresides is mounted and is accessible in the
network partition that contains the calling procedure's workstation. In this case,
volume_identifieiis the volume identifier of the volume on whidbstresides.

- INACCESSIBLE if the PCTE implementation is able to determine on which volume the

object resides, and that volume is not accessible (either because the volume is not mounted

or because the volume is mounted in a network partition which does not contain the calling
process's workstation). In this cagelume_identifieis the volume identifier of the volume
on which the object resides.

- UNKNOWN if the PCTE implementation is unable to determine on which volume the object
resides. In this caseplume_identifieris the volume identifier of a volume which is not
currently accessible.

The situations in which UNKNOWN is returned rather than INACCESSIBLE, and vice versa,
are implementation-defined, as is the general meaning of the volume identifier returned for
UNKNOWN. In any particular situation, the choice is implementation-dependent.

Read locks of the default mode are obtainedirdg and onorigin if the interpretation ofink
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors
ACCESS_ ERRORSofigin, ATOMIC, READ, READ_LINKS)

©
(10)

(11

(12

9.2.6

@

@

®

@
(®)

9.2.7

@

@

®

@
(®)
(6)
U]
®

-41 -

LINK_DESTINATION_DOES_NOT_EXIST ljnk)
OBJECT _IS_ARCHIVED (destination difk)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdigin, link,
NAVIGATE_MODE)

NOTE - Some implementations may be able to guarantee that only ACCESSIBLE or INACCESSIBLE is returne
For implementations that return UNKNOWN, the volume identifier returned should be that of the volume whic
should be made accessible prior to repeating the call. The destination object may reside on this volume, or it
contain implementation-dependent details of the volume on which the object resides, or of a further volume to
made accessible. Although the operation may require access to other volumes, no error condition is raised
result.

LINK_GET_KEY

LINK_GET_KEY (
origin : Object_designator,
link : Link_designator

)
key :[Actual_key]

LINK_GET_KEY returns inkeythe complete sequence of key attribute values (if any) of the
link link of the objecorigin.

Read locks of default mode are obtainedliok, and onorigin if the interpretation ofink
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

ACCESS_ERRORS(igin, ATOMIC, READ, READ_LINKS)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdfigin, link,
NAVIGATE_MODE)

LINK_GET _REVERSE
LINK_GET_REVERSE (
origin : Object_designator,
link : Link_designator
)
reverse_link [Link_designator],
dest : Object_designator

LINK_GET_REVERSE returns ineverse_linkthe reverse link (if there is one) of the litikk
of the objectorigin, and indestthe destination dlink. If link has no reverse link, no value is
returned irreverse_link

Read locks of the default mode are obtainedirdg and onorigin if the interpretation ofink
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

Errors

ACCESS_ERRORSofigin, ATOMIC, READ, READ_LINKS)
ACCESS_ERRORS (destinationlafk, ATOMIC, READ, READ_LINKS)
LINK_DESTINATION_DOES_NOT_EXIST ljnk)
LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA
REFERENCE_CANNOT BE_ALLOCATED

©

9.2.8

®

@

(©)

4)

(®)

(6)

U]
®

9.2.9

®

@

(©)

@
®)
(6)

=42 -

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDGigin, link,
NAVIGATE_MODE)

LINK_GET_SEVERAL_ATTRIBUTES

LINK_GET_SEVERAL_ATTRIBUTES (
origin : Object_designator,
link : Link_designator,
attributes : Attribute_selection

values . Attribute_assignments

LINK_GET_SEVERAL_ATTRIBUTES returns ivaluesa set of attribute assignments of the
link link of the objecbrigin.

The returned set of attributes is determinecitbybutes

- a set of attribute designators: the set of non-key attributes, as for LINK_GET_ATTRIBUTE
(origin, link, A) for each attribute A ddttributes

- VISIBLE_ATTRIBUTE_TYPES: all non-key attributes dfnk visible in the working
schema of the calling process and with usage mode including READ_MODE.

Read locks of the default mode are obtainedirdg and onorigin if the interpretation ofink
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).
Errors

ACCESS_ERRORSofigin, ATOMIC, READ, READ_LINKS)

If attributesis not VISIBLE_ATTRIBUTE_TYPES:
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDofigin,
link, each element afttributes READ_MODE)

LINK_REPLACE

LINK_REPLACE (

origin : Object_designator,
link : Link_designator,
new_origin : Object_designator,
new_link : Link_designator,

new_reverse_key : [Actual_key]

)

LINK_REPLACE replaces the composition or existence link of the objecbrigin by a new
composition or existence link as specified bgw_link from new_origin with the same
destinatiordest

The new link fromnew_originto destis created andink is deleted in the same way as the
following sequence of operations, ignoring any temporary violation of link bounds or
composition exclusivity odest

LINK_CREATE (new_origin, new_link, dest, new_reverse_key);
LINK_DELETE (origin, link)

Write locks of the default mode are obtained on the links to be deleted and on the new links. A
read lock of the default mode is obtainednamv_originif the interpretation olink or new_link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7). A read lock of the

™

@
(©)
@

(®)

(6)

U]

®

©)

(10)
(1)
(12)
(13)
(14)

(15)

(16)
an
(18)
(19)
(20)
(1)
(22)

(23)

(24)

-43 -

default mode is obtained atestif the interpretation ohew_reverse_keynplies the evaluation
of any '+' or '++' key attribute values.

A write lock of the default mode is obtained @estand each of its components if the OWNER
discretionary access right is granted or denied for one or more groupswtarigin and
different OWNER discretionary access rights exist for one or more of those same grbegis to

Errors

ACCESS_ERRORSew_origin, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)

If the reverse link ohew _linkis implicit:
ACCESS_ERRORSest ATOMIC, CHANGE, APPEND_IMPLICIT)

If the reverse link ohew_linkis not implicit:
ACCESS_ERRORSest ATOMIC, MODIFY, APPEND_LINKS)

If the reverse link ofink is implicit:
ACCESS_ERRORSest ATOMIC, CHANGE, WRITE_IMPLICIT)

If the reverse link ofink is not implicit:
ACCESS_ERRORSest ATOMIC, MODIFY, WRITE_LINKS)

If new_linkis atomically stabilizing anlink is not, or vice versa:
ACCESS_ERRORSest ATOMIC, CHANGE, STABILIZE)

If new_linkis compositely stabilizing ardhk is not, or vice versa:
ACCESS_ERRORSest COMPOSITE, CHANGE, STABILIZE)

CATEGORY_IS_BAD few_origin,new_link (COMPOSITION, EXISTENCE))
CATEGORY_IS_BAD 6rigin, link, (COMPOSITION, EXISTENCE))
COMPONENT_ADDITION_ERRORSdest new_link
DESTINATION_OBJECT_TYPE_IS_INVALID ifew_origin new_link dest)
DESTINATION_OBJECT_TYPE_IS_INVALID @rigin, link, des}

If new_linkis of category COMPOSITION, ametw_originhas OWNER granted or denied:
LINK_EXISTS (new_origin,new_link

LINK_EXISTS (dest new_reverse_key
LOWER_BOUND_WOULD_BE_VIOLATED 6rigin, link)
OBJECT_CANNOT_BE_STABILIZEDdes)

REVERSE_KEY_IS_BAD few_origin,new_link new_reverse_key
REVERSE_KEY_IS_NOT_SUPPLIEéw_origin,new_link des)
UPPER_BOUND_WOULD_BE_VIOLATEDdest reverse link ohew_link
UPPER_BOUND_WOULD_BE_VIOLATEDr{ew_origin new_link

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdfrigin, link,
DELETE_MODE)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDr{ew_origin new_link
CREATE_MODE)

-44 -

9.2.10 LINK_RESET_ATTRIBUTE

) LINK_RESET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,

attribute : Attribute_designator

)
@ LINK_RESET_ATTRIBUTE resets the non-key attribatiéribute of the linklink of the object
origin to its initial value.

@®) A write lock of the default mode is obtainedlork. A read lock of the default mode is obtained
onorigin if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors

@ ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)

®) KEY_UPDATE_IS_FORBIDDEN 4ttribute)

®) REFERENCED_OBJECT_IS_NOT_MUTABLE (key lifk)

™ USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDofigin, link, attribute,
WRITE_MODE)

9.2.11 LINK_SET_ATTRIBUTE

) LINK_SET_ATTRIBUTE (
origin : Object_designator,
link : Link_designator,
attribute : Attribute_designator,
value : Attribute_value
)
@ LINK_SET_ATTRIBUTE assigns the valualueto the non-key attributattribute of the link

link of the objecorigin.

@®) A write lock of the default mode is obtainedlork. A read lock of the default mode is obtained
onorigin if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors
@ ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)
®) ENUMERATION_VALUE_IS_OUT_OF_RANGEValue values ofattribute)
® KEY_UPDATE_IS_FORBIDDEN drigin, link, attribute)
@ If link is a "referenced_object" link:
REFERENCED_OBJECT_IS_NOT_MUTABLE (key lifik)
®) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDofigin, link, attribute,
WRITE_MODE)
© VALUE_LIMIT_ERRORS {alug
(10) The following implementation-dependent error may be raised:

VALUE_TYPE_IS_INVALID (value origin, link, attribute)

-45 -

9.2.12 LINK_SET_SEVERAL_ATTRIBUTES

[} LINK_SET_SEVERAL_ATTRIBUTES (
origin : Object_designator,
link : Link_designator,

attributes : Attribute_assignments

)

@ For each element A in the domain attributes LINK_SET _SEVERAL_ATTRIBUTES sets
the value of the attribute A of the liikk of the objecbrigin to the valueattributes(A), in the
same way as:

@3) LINK_SET_ATTRIBUTE (origin, link, A, attributes (A))

@ A write lock of the default mode is obtainedlork. A read lock of the default mode is obtained
onorigin if the interpretation ofink implies the evaluation of any '+' or '++' key attribute values
(see 23.1.2.7).

Errors
©) ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)
®) For each element A in the domainatfributes

ENUMERATION_VALUE_IS_OUT_OF RANGEd(ttribute(A), values of A)
KEY_UPDATE_IS_FORBIDDEN ¢rigin, link, A)
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDoigin,
link, A, WRITE_MODE)

VALUE_LIMIT_ERRORS @ttributes(A))

@ The following implementation-dependent error may be raised for each element A in the doma
of attributes
VALUE_TYPE_IS_INVALID (attributes(A), origin, link, A)
9.3 Object operations

9.3.1 OBJECT_CHECK_TYPE

@) OBJECT_CHECK_TYPE(
object : Object_designator,
type2 : Object_type_nominator
relation : Type_ancestry
@ OBJECT_CHECK_TYPE compares the object tyygme1of the objecbbjectagainst the object
typetype2 and returns imelation a value defined as follows:
@®) - EQUAL_TYPE iftypelis the same aype2
@ - ANCESTOR_TYPE iftypelis an ancestor aype2
®) - DESCENDANT_TYPE iftypelis a descendant type tyfpe2in the working schema of the
calling process;
®) - UNRELATED_TYPE in all other cases.
@ The visibility of the type obbjectdoes not affect the result of the operation.

®) A read lock of the default mode is obtainedodject

©)
(10)

(11

9.3.2

@

@

®
@

®)
(6)
0]
®)
©)
(10)

(11

9.3.3

@

@

(©)

4)

(®)

- 46 -

Errors

ACCESS_ERRORSopject ATOMIC, READ)
OBJECT_TYPE_IS_UNKNOWNtyped
VOLUME_IS_INACCESSIBLE ¢bject ATOMIC)

OBJECT_CONVERT

OBJECT_CONVERT(
object : Object_designator,
type :Object_type nominator
)

OBJECT_CONVERT changes the object type of the olgbmctto the descendant object type
type

The operation has no effect if the current typelgéctis alreadytype

A write lock of the default mode is obtained aject

Errors

ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_OBJECT)
OBJECT_IS_NOT_CONVERTIBLE adbjec)
OBJECT_IS_STABLEbjec)

OBJECT_TYPE_IS_INVALID type
OBJECT_TYPE_IS_UNKNOWNTtypg
TYPE_IS_NOT_DESCENDANT (object type object type

If objectis not of typetype
USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED (current type of object,

type

OBJECT_COPY

OBJECT_COPY (
object : Object_designator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key [Actual_key],
on_same_volume_as [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

OBJECT_COPY creates an objeetw_objects acopyof object More precisely:

- If objectis a file, an accounting log, or an audit file, then the contem®wf objecis the
same as the contentsalfject if objectis a pipe then the contentsredw_objects empty.

- For each duplicable attribute X object,there is an attribute afew_objectwhich is a copy
of X.

- For each duplicable direct component Xobjfect there is a direct componentreéw_object
which is a copy of X.

(6)

™

®

©

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

(18)

-47 -

- For each duplicable internal link A objectwhose destination is a duplicable component,
there is an internal link B afiew_objectsuch that the destination of B is the copy of the
destination of A and all other properties of B are the same as for A.

- For each duplicable external link A object, there is a corresponding external link of
new_objectvhich is a copy of A.

- For each non-duplicable attribute object, there exists a corresponding attribute of
new_objectwhose value is either set to the initial value of the attribute type or, for the
following predefined attributes: the exact identifier, volume identifier, replicated state
contents type, last access time, last modification time, last change time, last compo:
access time, last composite modification time, last composite change time, number
incoming links, number of incoming composition links, number of incoming existence links
number of incoming reference links, number of incoming stabilizing links, number o
outgoing composition links, number of outgoing existence links, atomic ACL, composit
ACL, confidentiality label, and integrity label, is set to a value corresponding to the newl
created object. In particular, since the attribute "replicated_state" is not copied, the copy
replicated object is not replicated.

- For each non-duplicable non-key attribute of a copied link, there exists a corresponding nt
key attribute of the copied link whose value is set to the initial value of the attribute type.

A copyof an attribute A is an attribute which has the same attribute type, attribute value, a
attribute properties as A.

A copyof a link A is a link which has the same link type, key attributes, duplicable non-ke
attributes, link properties, and destination as A.

A copyof a component X of an object A is a component Y of a copy B of A such that Y is
copy of X as an object, and the composition link from B to Y is a copy of the composition lin
from X to A

OBJECT_COPY createslink link of the objechew_origin as specified bypew _link and with
new_objectas destination, and its reverse lirdverse_linkwith origin new_objectand key
derived fromreverse_kews described in 23.1.2.7.

access_masis used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite AChewi_objectand its
components. See 19.1.4 for more details.

If new_linkis a composition link, then any security group that has OWNER granted or denied
new_originhas OWNER granted or denied respectivelgdst similarly if reverse_linkis a
composition link, then any security group that has OWNER granted or denidesthas
OWNER granted or denied respectivelyntw_origin

If new_linkis a composition link, then any security group that has OWNER granted or denied
origin has OWNER granted or denied respectivelydast similarly if reverse_linkis a
composition link, then any security group that has OWNER granted or denidesthas
OWNER granted or denied respectivelyotayin.

new_objecthas the same integrity and confidentiality labelbbgectand each component of
new_objechas the same integrity and confidentiality labels as the corresponding component
object

If on_same_volume_ais supplied,new_objectresides on the same volume as the object
on_same_volume_asOtherwise hew_objectresides on the same volume @gect and each
component ohew_objectesides on the same volume as its corresponding comporcdjéeat

(19)

(20)

()

(22)
(23)
(24)
(25
(26)

@7

(28)

(29
(30)

(1)

(32)

(33)

(34)

(35
(36)
@7
(38)
(39)
(40)

(41)

(42)

(43)
(44)
(45)

(46)

-48 -

An "object_on_volume" link is created from the volume on whimw_objectresides to
new_object and similarly for all its components. Each created link is keyed by the exact
identifier of its destination object.

Read locks of the default mode are obtaineadlgectand on all its components; write locks of

the default mode are obtained on the new objects and links except the new "object_on_volume™
links. A read lock of the default mode is obtainechew_objecif the interpretation of the link
new_linkimplies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

If objectis an accounting log, its contents is preserved.

Errors

ACCESS_ERRORSew_origin ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSopject, COMPOSITE, READ, READ_LINKS)
ACCESS_ERRORSopject COMPOSITE, READ, READ_ATTRIBUTES)
ACCESS_ERRORSopject COMPOSITE, READ, READ_CONTENTS)
ACCESS_ERRORSofi_same_volume_aBTOMIC, SYSTEM_ACCESS)
If new_linkis compositely stabilizing:

ACCESS_ERRORSéw_object COMPOSITE, CHANGE, STABILIZE)

If reverse_links compositely stabilizing:
ACCESS_ERRORSew_origin COMPOSITE, CHANGE, STABILIZE)

For each destination X of a duplicable external link L of a duplicated component:
ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)

If L is atomically stabilizing:
ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)

If L is compositely stabilizing:
ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)
CATEGORY_IS_BAD (ew_origin new_link (COMPOSITION, EXISTENCE))

If objectis a component of itself, amstw_linkis a composition link:
COMPONENT_ADDITION_ERRORSnew_objectnew_Iink

CONTROL_WOULD_NOT_BE_GRANTEDHew_object
DESTINATION_OBJECT_TYPE_IS_INVALID few_origin new_link new_object
EXTERNAL_LINK_IS_BAD (object COMPOSITE)
EXTERNAL_LINK IS NOT_DUPLICABLE (bject)

LABEL_IS_OUTSIDE_RANGE few_objectvolume on whiclon_same_volume_assides)
LINK_EXISTS (new_origin new_link
OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(new_objeadt

If objectis not a component of itsetliew_linkis a composition link, andew_originhas

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOM_objedt

REFERENCE_CANNOT_BE_ALLOCATED
REVERSE_KEY_IS_BADfew_origin new_link new_objectreverse_key
REVERSE_KEY_IS_NOT_SUPPLIEéw_origin new_link new_object
REVERSE_KEY_IS_SUPPLIEDéverse_key

(47)
(48)

(49)

(50)
(61)

(52)

9.34

@

@
®
@
®)

(6)

™

®

©)

(10)

(11

(12)

-49 -

REVERSE_LINK_EXISTSiiew_origin new_link new_objectreverse_key
TYPE_OF_OBJECT_IS_INVALIDd¢bject COMPOSITE)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDrew_origin,new_link
CREATE)

USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("object", typeatdfjec)
VOLUME_IS_FULL (volume on whiclon_same_volume_assides)

NOTE - Key values of reverse links (which must be implicit of cardinality many) are system-generated, becalt
they must be different from key values of other links of the same types from the same origins.

OBJECT_CREATE

OBJECT_CREATE (
type : Object_type nominator,
new_origin : Object_designator,
new_link : Link_designator,
reverse_key : [Actual_key],
on_same_volume_as [Object_designator],
access_mask : Atomic_access_rights

)
new_object : Object_designator

OBJECT_CREATE creates an objeetw_objecas follows:
- the object type ofiew_objecis type
- the contents afiew_objects empty;

- the value of each attribute oew_objects the initial value of its attribute type, except for
some predefined attributes, set as defined below.

A composition or existence linkas specified bynew_link is created fromnew_origin to
new_objecttogether with its reverse limeverse_linkwith keyreverse _key

access_masis used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite AQtewf object See 19.1.4
for more details.

If new_linkis a composition link, then any security group that has OWNER granted or denied
new_originhas OWNER granted or denied respectivelpgw_objectsimilarly if reverse_link

is a composition link, then any security group that has OWNER granted or deniad tobject
has OWNER granted or denied respectivelgdw _origin

The confidentiality label ohew_objecis set to the current confidentiality context of the calling
process and the integrity labelméw_objecis set to the current integrity context of the calling
process.

If on_same_volume_ais supplied,new_objectresides on the same volume as the object
on_same_volume_a®therwisenew_objectesides on the same volumenasv_origin.

An "object_on_volume" link is created from the volume on whigw_objectresides to
new_object Each created link is keyed by the exact identifier of its destination object.

Write locks of the default mode are obtainechew_objecand omew_link A read lock of the
default mode is obtained arew_originif the interpretation ohew_linkimplies the evaluation
of any '+' or '++' key attribute values (see 23.1.2.7).

(13)

(14)

(15)

(16)

an
(18)
(19)
(20)
(1)
(22)

(23)

(24)
(25

(26)

@7

(28)
(29
(30)
@1
(32)

(33)

(34)

9.3.5

()]

@

(©)
4)

(®)

-50 -

Errors

ACCESS_ERRORSew_origin ATOMIC, MODIFY, APPEND_LINKS)

If new_linkis atomically stabilizing:
ACCESS_ERRORSéw_objectATOMIC, CHANGE, STABILIZE)

If new_linkis compositely stabilizing:
ACCESS_ERRORSéw_object COMPOSITE, CHANGE, STABILIZE)

If reverse_links compositely stabilizing:
ACCESS_ERRORSew_origin COMPOSITE, CHANGE, STABILIZE)

ACCESS_ERRORSof_same_volume_a8TOMIC, SYSTEM_ACCESYS)
CATEGORY_IS_BAD (ew_origin new_link (COMPOSITION, EXISTENCE)
CONTROL_WOULD_NOT_BE_GRANTEDHew_object
DESTINATION_OBJECT_TYPE_IS_INVALID few_origin new_link new_object
LABEL_IS_OUTSIDE_RANGE few_objectvolume on whiclon_same_volume_assides)
LINK_EXISTS (new_origin new_link
OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
(new_objeadt

OBJECT_TYPE_IS_INVALID type

OBJECT_TYPE_IS_UNKNOWNItype

If new_linkis a composition link andew_originhas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOM_objedt

If reverse_links a composition link andew_objechas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIQN_object

REFERENCE_CANNOT_BE_ALLOCATED
REVERSE_KEY_IS_NOT_SUPPLIEéw_origin new_link new_object
REVERSE_KEY_IS_BADfew_origin new_link new_objectreverse_key
REVERSE_KEY_IS SUPPLIEDéverse_key
UPPER_BOUND_WOULD_BE_VIOLATEDrew_origin new_link

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDrew_origin new_link
CREATE_MODE)

USAGE_MODE_ON_OBJECT TYPE_WOULD_BE_VIOLATED ("objectype

OBJECT_DELETE

OBJECT_DELETE (
origin : Object_designator,
link : Link_designator

)

OBJECT_DELETE deletes the composition or existence limk of the objectorigin, its
reverse linkeverse_linkand possibly its destinatiaest More precisely:

- the linklink of the objecbrigin is deleted; the reverse linkverse_linkof link is deleted,;
- if link is the last existence or composition linkdist thendestis deleted.

To deletean object X entails the deletion of all components of X except components Y for
which there is an incoming external link with the existence property to Y or to an enclosing

(6)
™

®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

an
(18)
(19)
(20)
(1)
(22)

(23)

(24)

-51-

object of Y, and the deletion of all links from and to those deleted objects (except designati
links to them).

Non-implicit links of components which are not deleted are not affected.

If origin or any of its components is opened by one or more processes (see 12.1), the deletio
its contents is postponed until all processes have closed the contents: i.e. the object is no lo
accessible but an operation using a contents handle to access its contents is not affected b
deletion until the contents handle is closed.

For each deleted object, if any, the "object_on_volume" link from the volume on which tr
deleted object resided to the deleted object is also deleted.

Write locks of the default kind are obtained on the deleted objects, if any, and on the dele
links except the deleted "object_on_volume" links; and a read lock of the default mode
obtained onorigin if the interpretation ofink implies the evaluation of any '+ or '++' key
attribute values (see 23.1.2.7).

Errors
If the conditions hold for the deletion dést

ACCESS_ ERRORSestand its deleted components, ATOMIC, MODIFY, DELETE)
ACCESS_ERRORSofigin, ATOMIC, MODIFY, WRITE_LINKS)

If reverse_links not implicit:
ACCESS_ERRORSest ATOMIC, MODIFY, WRITE_LINKS)
If reverse_links implicit:
ACCESS_ERRORSdest ATOMIC, CHANGE, WRITE_IMPLICIT)

For each origin X of an implicit incoming external link to a deleted object:
ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)

For each atomically stabilizing external link L of a deleted object:
ACCESS_ERRORS (destination of L, ATOMIC, CHANGE, STABILIZE)

For each compositely stabilizing external link L of a deleted object:
ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)

CATEGORY_IS_BAD 6rigin, link, (EXISTENCE, COMPOSITION))
DESTINATION_OBJECT TYPE_IS_INVALID grigin, link, des)
LOWER_BOUND_WOULD_BE_VIOLATED ¢rigin, link)
OBJECT_HAS_EXTERNAL_LINKS_PREVENTING_DELETIONIES)
OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETIONJES)
OBJECT_IS_IN_USE_FOR_DELETHE¢s)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATEDdfigin, link,
DELETE_MODE)

NOTE - OBJECT_DELETE works exactly like LINK_DELETEdgsthas no direct components.

9.3.6 OBJECT_DELETE_ATTRIBUTE

@

OBJECT _DELETE_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

@

®

@
(®)
(6)

9.3.7

@

@

®

@
(®)

(6)

9.3.8

()]

@

(©)

4)

-52 -

OBJECT_DELETE_ATTRIBUTE removes the attribustribute from the attributes of the
object object if the "attribute type" object representing the attribute typatwibute is no
longer in the object base.

A write lock of the default mode is obtained aject

Errors

ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)
PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

NOTE - It is the responsibility of the user to ensure that the attribute type is no longer in the object base.

OBJECT_GET_ATTRIBUTE

OBJECT_GET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

)

value : Attribute_value

OBJECT_GET_ATTRIBUTE returns the valualue of the attributeattribute of the object
object

A read lock of the default mode is obtainedaiject If attribute is a predefined composite
time, a read lock of the default mode is also obtained on all componetecif
Errors

ACCESS_ERRORSopject ATOMIC, READ, READ_ATTRIBUTES)

If attributeis the last composite access time, last composite modification time, or last composite
change time:
ACCESS_ERRORSpject COMPOSITE, READ, READ_ATTRIBUTES)

USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDopject attribute,
READ_ MODE)

OBJECT_GET_PREFERENCE

OBJECT_GET_PREFERENCE (
object : Object_designator
)

key :[Text],
type :[Link_type_nominator]

OBJECT_GET_PREFERENCE returns the preferred linkkegyand preferred link typey/pe
if any, of the objecbbject

A read lock of the default mode is obtainedotect

Errors
ACCESS ERRORSopject ATOMIC, READ, READ_ATTRIBUTES)

-53-

9.3.9 OBJECT_GET_SEVERAL_ATTRIBUTES

@ OBJECT_GET_SEVERAL_ATTRIBUTES (
object : Object_designator,
attributes : Attribute_selection

)

values . Attribute_assignments
@ OBJECT_GET_SEVERAL_ATTRIBUTES returns a set of attribute assignnvahigsof the
objectobject
@®) The returned set of attributes is determinecitbybutes
@) - a set of attribute designators: the set of attributes, as for OBJECT_GET_ATTRIBUT
(object A) for each attribute A adttributes
®) - VISIBLE_ATTRIBUTE_TYPES: all attributes obbject visible in the working schema of
the calling process and with usage mode including READ_MODE.
®) A read lock of the default mode is obtainedaiject If any of the attributes is a predefined
composite time, a read lock of the default mode is also obtained on all compora)éexof
Errors
@ ACCESS_ ERRORSopject ATOMIC, READ, READ_ATTRIBUTES)
®) If attributescontains one or more of last composite access time, last composite modification

time, or last composite change time, aatifibutesis VISIBLE_ATTRIBUTE_TYPES and one
or more of those attributes are visible in the working schema of the calling process with usage
mode READ_MODE:

ACCESS_ERRORSpject COMPOSITE, READ, READ_ATTRIBUTES)

©) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDopject an element of
attributes READ_MODE)

9.3.10 OBJECT GET_TYPE

@ OBJECT_GET_TYPE (
object : Object_designator
)

type : Object_type_nominator

@ OBJECT_GET_TYPE returns the typge of the objectobject i.e. the actual type afbject
whether or not it is visible.

@®) A read lock of the default mode is obtainedotect
Errors

@ CONFIDENTIALITY_WOULD_BE_VIOLATED (objec)

®) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED 6bjec)

®) OBJECT_IS_ARCHIVED @gbjec)

(7) VOLUME_IS_INACCESSIBLE ¢bject ATOMIC)

-54 -

9.3.11 OBJECT_IS_COMPONENT

@ OBJECT _IS_COMPONENT (
object1 : Object_designator,
object? : Object_designator

)

value : Boolean
@ OBJECT_IS_COMPONENT testsabjectlis a component ajbject2
@®) If objectlis a component ajbject? valueis true, otherwise it ialse
@ Read locks of the default mode are obtainedobjectl and onobject2 and on accessed
components obbject2
Errors
®) ACCESS_ERRORSopject2 COMPONENTS, READ, READ_LINKS)

9.3.12 OBJECT_LIST_LINKS

@ OBJECT_LIST_LINKS (
origin : Object_designator,
extent : Link_scope,
scope : Object_scope,

categories : [Categories],
visibility ~ : Link_selection

)

links : Link_set_descriptors

@ OBJECT_LIST_LINKS returns iinks a set of links of the objedrigin and possibly of its
components determined bytent scope categoriesandvisibility.

@) extentaffects the returned set of links as follows:

@ - INTERNAL_LINKS: only internal links are returned.

®) - EXTERNAL_LINKS: only external links are returned.

®) - ALL_LINKS: both internal and external links are returned.

@ In the lists of links returned, designation links to deleted objects appear onlyewtesnis
ALL_LINKS or EXTERNAL_LINKS.

®) scopeaffects the returned set of links as follows:

©) - ATOMIC: only links oforigin are returned.

(10) - COMPOSITE: links obrigin and of all components ofigin are returned.

(11) categoriesmay be omitted i¥isibility is a set of link type nominators, and is ignored in that case
if supplied. In other cases only link types with category in theategoriesare returned.

(12) visibility restricts the returned set of links as follows:

(13) - VISIBLE_LINK_TYPES: only links with link type which is visible in the calling process's

working schema are returned;
(14) - ALL_LINK TYPES: all links are returned;
(15) - aset of link type nominators: only links with link type identified by an element of the set are

returned.

(16)

(1)
(18)

(19)

(20)

21

(22)

(23)

-55 -

A read lock of the default mode is obtainedarigin, and ifscopeis COMPOSITE read locks
of the default mode are obtained on all its components.

Errors

ACCESS_ERRORSofigin, scope READ, READ_LINKS)
LINK_NAME_IS_TOO_LONG_IN_CURRENT_WORKING_SCHEMA
REFERENCE_CANNOT_BE_ALLOCATED

NOTES

1 Whenscopeis ATOMIC ororigin has no components, the object designator in each returned link designates tt
objectorigin. In other cases, the designated objects may include the obggntand its components.

2 Each object designator returned in a link set descriptorksfcan be used with each link designator of that link
set descriptor to retrieve information about the volume on which the object resides, by means
LINK_GET_DESTINATION_VOLUME.

3 If scopeis COMPOSITE, links obrigin and of all components afrigin are returned. It is possible that the
origins of some of the returned links are not accessible drigm through paths of visible links.

4 OBJECT_LIST_LINKS does not prevent a process from seeing data structures which are inconsistent with
visibility restrictions of its working schema.

9.3.13 OBJECT_LIST_VOLUMES

@

@

®

@
(®)
(6)

U]

OBJECT_LIST_VOLUMES(
object : Object_designator
)

volumes :Volume_infos

OBJECT_LIST_VOLUMES returns the set of volume identifiers of volumes holding
components obbject (except for any components to which there are composition links fromn
components on unmounted volumes), with an indication of the mounted state of each volume

A read lock of the default mode is obtainedodect

Errors

ACCESS_ERRORSopject COMPOSITE, READ, READ_LINKS)
OBJECT_IS_ARCHIVED (component objec)

USAGE_MODE_ON_LINK_TYPE_WOULD_BE_VIOLATED (component object direct
outgoing composition link of that component, NAVIGATE_MODE)

NOTE - The note of 9.2.5 applies for each componenbject

9.3.14 OBJECT_MOVE

@

@
(©)

4)

OBJECT_MOVE (

object : Object_designator,
on_same_volume_as : Object_designator,
scope : Object_scope

)
OBJECT_MOVE movesbjectto the volumerolumeon whichon_same_volume_assides.

If scopeis ATOMIC:
- If objectalready resides ovolume it is not affected.

®)
(6)
™

®

©

(10)

(11

(12)

(13)

(14

(15)

(16)

(1)

-56 -

Otherwise pbjectis moved tovolume

If scopeis COMPOSITE:

Each of object and the components afbject which already reside omolume are not
affected.

All other of object and thecomponents ofbject are moved tovolume and the space
previously occupied by those components is freed.

The effect oimovingan object A to a volume V is as follows.

The attributes and links of A are unchanged, except for the predefined attributes
"volume_identifier" which is set to the volume identifier of V, and "last_change_time" and
"last_composite_change_time", which are set to the current system time.

For object (if moved) and each moved component, the "object_on_volume" link to it from
the volume on which the component was previously residing is deleted, and a new
"object_on_volume" link is created to it frooolume The created link is keyed by the exact
identifier of its destination object.

A write lock of the default mode is obtained on each moved object. An implementation may set
a write lock of the default mode on each link to a moved object (except the "object_on_volume"
links) if the link is modified by the operation.

Errors
If scopeis ATOMIC:

ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_OBJECT)

If scopeis COMPOSITE:

ACCESS_ERRORSobject COMPOSITE, READ, READ_LINKS)
ACCESS_ERRORSopjectand its moved components, ATOMIC, CHANGE,
CONTROL_OBJECT)

ACCESS_ERRORSofi_same_volume_aBTOMIC, SYSTEM_ACCESS)
If objector some of its components are moved:

OBJECT_IS_IN_USE_FOR_MOVbjec)
OBJECT_IS_INACCESSIBLY_ARCHIVEDdbject scopé
OBJECT_IS_LOCKED{bject scop@
OBJECT_IS_NOT_MOVABLE @bject scopé
OBJECT_IS_REPLICATEDdbject scopé
TYPE_OF_OBJECT_IS_INVALIDdbject scopé
VOLUME_IS_FULL (volume ofon_same_volume_ps

The following implementation-dependent errors may be raised for any object X with a link to
object

OBJECT_IS_INACCESSIBLY_ARCHIVED (X)
VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

9.3.15 OBJECT_RESET_ATTRIBUTE

@

OBJECT_RESET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator

-57 -

@ OBJECT_RESET_ATTRIBUTE resets the attribatttribute of the objectobjectto its initial
value.

@®) A write lock of the default mode is obtained aject
Errors

@) ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)

®) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDobject attribute,
WRITE_MODE)

9.3.16 OBJECT_SET_ATTRIBUTE

@) OBJECT_SET_ATTRIBUTE (
object : Object_designator,
attribute : Attribute_designator,
value : Attribute_value
)
@ OBJECT_SET_ATTRIBUTE assigns the valualue to the attributeattribute of the object
object
@®) A write lock of the default mode is obtained aject
Errors
@ ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) ENUMERATION_VALUE_IS_OUT_OF_RANGEValue values ofattribute)
®) USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDobject attribute,
WRITE_MODE)
@ VALUE_LIMIT_ERRORS {alug
®) The following implementation-dependent error may be raised:

VALUE_TYPE_IS_INVALID (value object attribute)

9.3.17 OBJECT_SET_PREFERENCE

1) OBJECT_SET_PREFERENCE (
object : Object_designator,
type :[Link_type_ nominator],
key :[Text]
)
@ OBJECT_SET_PREFERENCE sets the preferred link type of the afjg=ttto the link type

type(if supplied), and preferred link key objectto key (if supplied).

@) If both typeandkeyare supplied, the preferred link typeaifjectis set tatypeand the preferred
link key of objectis set takey

@) If typeis supplied an#teyis not, the preferred link type objectis set tatypeand the preferred
link key of objectis unset.

®) If typeis not supplied anlleyis supplied, then the preferred link typeobijectmust already be

set (else the error condition PREFERRED_LINK _TYPE_IS_UNSET is raised); the preferre

link key is set tkey

©) If key andtype are not supplied, the preferred link type and preferred link kegbjafct are
unset.

-58 -

@ A write lock of the default mode is obtained aject
Errors

®) ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)

© CARDINALITY_IS_INVALID (type

(10) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_SIZE)

(11) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)

(12) LINK_TYPE_IS _UNKNOWN type

(13) PREFERRED_LINK_KEY_IS_BADKey, typeor preferred link type obbjectif typeis not
supplied)

(14) If typeis not supplied ankeyis supplied:

PREFERRED_LINK_TYPE_IS _UNSETbjec)

9.3.18 OBJECT_SET_SEVERAL_ATTRIBUTES

@ OBJECT_SET_SEVERAL_ATTRIBUTES (
object : Object_designator,
attributes : Attribute_assignments

)

@ For each element A difie domain ofttributes OBJECT_SET_SEVERAL_ATTRIBUTES sets
the value of the attribute A abjectto attributes(A) in the same way as:

® OBJECT_SET_ATTRIBUTE (object, A, attributes (A)).

@ A write lock of the default mode is obtained anject
Errors

®) ACCESS_ERRORSopject ATOMIC, MODIFY, WRITE_ATTRIBUTES)

®) For each element A ehe domain ohttributes

ENUMERATION_VALUE_IS_OUT_OF RANGEdttributegA), values of A)
USAGE_MODE_ON_ATTRIBUTE_TYPE_WOULD_BE_VIOLATEDopject A,
WRITE_MODE)

VALUE_LIMIT_ERRORS (@ttributes(A))

@ The following implementation-dependent error may be raised for each elemettteddaimain
of attributes
VALUE_TYPE_IS_INVALID (attributes(A), object A)

9.3.19 OBJECT_SET_TIME_ATTRIBUTES

@) OBJECT_SET_TIME_ATTRIBUTES(
object : Object_designator,
last_access ;[Time],
last_modification [Time],
scope : Object_scope
)
@ OBJECT_SET_TIME_ATTRIBUTES sets the time attributes of the objgietictas follows.
@®) If scopeis ATOMIC:
@ - the last access time objectis set tdast_acces# supplied, otherwise to the current system

time;

®)

(6)
™

®

©)

(10)

(11

(12)

-59 -

- the last modification time obbjectis set tolast_modificationif supplied, otherwise to the
current system time;

If scopeis COMPOSITE:

- the last composite access timeatfject and the last access time of each component of

object are set tdast_acces# supplied, otherwise to the current system time;

- the last composite modification time object and the last modification time of each
component obbject are set tdast_modificationf supplied, otherwise to the current system
time;

A write lock of the default mode is obtained aject

Errors

ACCESS_ERRORSopject scope MODIFY, WRITE_ATTRIBUTES)

If last_acces®rlast_modifications supplied:
PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)

LIMIT_WOULD_BE_EXCEEDED (MAX_TIME_ATTRIBUTE, MIN_TIME_ATTRIBUTE)

9.3.20 VOLUME_LIST_OBJECTS

®

@

(©)

4)

(®)
(6)

9.4

VOLUME_LIST_OBJECTS (

volume : Volume_designator,

types : Object_type _nominators
)

objects : Object_designators

VOLUME_LIST_OBJECTS returns iabjectsa set of object designators determinedympes

An object designator is returnedabjectsfor each object which resides wolume whose type
in working schema is an elementtgpes

A read lock of the default mode is obtainedvofume

Errors

ACCESS_ERRORS/plume ATOMIC, READ, READ_LINKS)
REFERENCE_CANNOT_BE_ALLOCATED

Version operations

9.4.1 VERSION_ADD_PREDECESSOR

@

@

®

VERSION_ADD_ PREDECESSOR (
version : Object_designator,
new_predecessor : Object_designator

)
VERSION_ADD_PREDECESSOR addsw_predecessoas a predecessor @krsionin a

graph of versions, by creating a "predecessor” link with key the next available natural val

from versionto new_predecessor
Write locks of the default mode are obtained on the new links.

-60 -

Errors
@ ACCESS_ERRORSew_predecesspATOMIC, CHANGE, STABILIZE)
®) ACCESS_ERRORSvérsion ATOMIC, MODIFY, APPEND_LINKS)
®) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
@ OBJECT_CANNOT_BE_STABILIZED (component gérsior)
®) PRIVILEGE_IS _NOT_GRANTED (PCTE_HISTORY)
© VERSION_GRAPH_IS_INVALID yersion new_predecesspr

9.4.2 VERSION_IS_CHANGED

@ VERSION_IS_CHANGED (
version : Object_designator,
predecessor : Natural

)
changed : Boolean
@ VERSION_IS_CHANGED tests whetheersionhas been changed since being created as a new
version of its predecessqiredecessorby comparing the values of the last composite
modification time forversionandpredecessor If it has been changed, i.e. the last composite
modification times are different, thehangeds true, otherwise it idalse

@®) Read locks of the default mode are obtained/ension on all components ofersion and on
predecessor
Errors

@ ACCESS_ERROR(edecessQqrCOMPONENTS, READ, (READ_LINKS,
READ_ATTRIBUTES, READ_CONTENTS))

®) ACCESS_ERRORSvérsion COMPONENTS, READ, (READ_LINKS,
READ_ATTRIBUTES, READ_CONTENTS))

®) ACCESS_ERRORSv/gérsion COMPOSITE, CHANGE)

@ LINK_DOES_NOT_EXIST yersion "predecessor" link with kegredecessqr

9.4.3 VERSION_REMOVE

&) VERSION_REMOVE (
version : Object_designator
)
@ VERSION_REMOVE removesersionfrom its graph of versions.
@) For X asversionand each component eérsion
@ - If X has external successors and predecessors then a "predecessor” link is created from each
successor of X to each predecessor of X, and all the "predecessor” links to and from X are
deleted.
®) - If X has only external successors: then all the "predecessor” links to X are deleted.
®) - If X has only external predecessors then all the "predecessor” links from X are deleted.

@ Write locks of the default mode are obtained on the deleted links and on the created links.

®)

©

(10)

(11

(12)
(13)
(14)
(15)
(16)

(1)

9.4.4

®

@

(©)

4)
®)

(6)
0]
®)

©

-61-

Errors
ACCESS_ERRORSVErsion COMPOSITE, MODIFY, (WRITE_LINKS,
WRITE_IMPLICIT))

For each component X gersionwhich has more than one successor:
ACCESS_ERRORS (predecessor of X, COMPOSITE, CHANGE, STABILIZE)

ACCESS_ERRORS (predecessowefsion ATOMIC, CHANGE, (WRITE_IMPLICIT,
APPEND_IMPLICIT))

ACCESS_ERRORS (successoefsion ATOMIC, CHANGE, (WRITE_LINKS,
APPEND_LINKS))

ACCESS_ERRORSVErsionand its deleted components, ATOMIC, MODIFY, DELETE)
OBJECT_HAS EXTERNAL_LINKS PREVENTING_DELETION/érsion
OBJECT_HAS_INTERNAL_LINKS_PREVENTING_DELETIONvérsior)

OBJECT_IS IN_USE_FOR_DELETHRérsion

PRIVILEGE_IS _NOT_GRANTED (PCTE_HISTORY)
VERSION_IS_REQUIREDVersion COMPOSITE)

VERSION_REMOVE_PREDECESSOR

VERSION_REMOVE_PREDECESSOR (
version : Object_designator,
predecessor : Object_designator

)

VERSION_REMOVE_PREDECESSOR removes the obpetdecessomlms a predecessor of
versionin the graph of versions, by deleting the "predecessor” link tensionto predecessor
and its reverse "successor" link.

Write locks of the default mode are obtained on the deleted links.

Errors

ACCESS_ERROR¢edecessqQrATOMIC, CHANGE, STABILIZE)

If predecessois to be deleted:
ACCESS ERRORfedecessoand its deleted components, ATOMIC, MODIFY,
DELETE)

ACCESS_ERROR¢edecessqrCOMPOSITE, CHANGE)
ACCESS_ERRORSy/gérsion ATOMIC, MODIFY, WRITE_LINKS)

If there is no "predecessor” link betweersionandpredecessor
LINK_DOES_NOT_EXIST yersion "predecessor" link)

PRIVILEGE_IS_NOT_GRANTED (PCTE_HISTORY)

-62 -

9.4.5 VERSION_REVISE

@

@
®

4)

(®)

(6)

U]

®)

©)

(10)

(11

(12)
(13)

(14

(15)

(16)

(1)

VERSION_REVISE (

version : Object_designator,

new_origin : Object_designator,

new_link : Link_designator,

on_same_volume _as [Object_designator],

access_mask : Atomic_access_rights
)

new_version : Object_designator

VERSION_REVISE creates a new updatable versiae\(sior) of version That is:
- A copynew_versiorof versionis created in the same way as
OBJECT_COPY (version, new_origin, new_link, nil, on_same_volume_as, access _mask)
wherereverse_keys not supplied.

- "predecessor" links with key 1 (one) are created froew_versionand each of its
components toversion and each of its corresponding components. As a consequence,
new_versiorand each of its components becomes a new succesgns@nand each of its
corresponding components (i.e. a reverse "successor" link with a system-generated key is
created).

Since the "predecessor” links are compositely stabiliziagsionand its components are made
stable.

access_masik used in conjunction with the default atomic ACL and default object owner of the
calling process to specify the atomic ACL and the composite AClewf versionnew_version

and its components have the same integrity and confidentiality labels as the objects they have
been copied from.

If on_same_volume_ass supplied the new_versionresides on the same volume as
on_same_volume_a¥therwisenew_versiomresides on the same volumevassionand each
component ofnew_versionresides on the same volume as the corresponding component of
version

If a replicated component is revised, its revision is not replicated.

Read locks of the default mode are obtained on all componewtssidnand write locks of the
default mode are obtained on the new links and componené&woiversion

A read lock of the default mode is obtained r@w_originif the interpretation ohew_link
implies the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

If versionis an accounting log, its contents is preserved.

Errors

ACCESS_ERRORSew_origin ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSVérsion COMPOSITE, CHANGE, APPEND_IMPLICIT)

ACCESS_ERRORSVérsion COMPOSITE, READ, (READ_LINKS, READ_ATTRIBUTES,
READ_CONTENTS))

ACCESS_ERRORSvérsion COMPOSITE, CHANGE, STABILIZE)

If the reverse ohew_linkis compositely stabilizing:
ACCESS_ERRORew_origin COMPOSITE, CHANGE, STABILIZE)

ACCESS_ERRORSofi_same_volume_aBTOMIC, SYSTEM_ACCESS)

(18)
(19)

(20)

(21)

(22)
(23)

(24)

(25
(26)
@7
(28)

(29)

(30)

@1
(32)
(33)
(34)
(35

(36)

-63 -

For each destination X of a duplicable external link L of a duplicated component:
ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)

If L is atomically stabilizing:
ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)

If L is compositely stabilizing:
ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)
CATEGORY_IS _BAD @ew_origin new_link (COMPOSITION, EXISTENCE))
CATEGORY_IS_BAD (destination afew_link reverse ofiew_link IMPLICIT)

If versionis a component of itself, ameew_linkis a composition link:
COMPONENT_ADDITION_ERRORSnew_versionnew_link

CONTROL_WOULD_NOT_BE_GRANTEDr(ew_versioh
EXTERNAL_LINK_IS_BAD (version COMPOSITE)

LINK_EXISTS (new_origin new_link

OBJECT_CANNOT_BE_STABILIZED (component wérsior)
OBJECT_OWNER_VALUE WOULD BE_INCONSISTENT _WITH_ATOMIC_ACL
(new_objeact

If versionis not a component of itseliew_linkis a composition link andew_originhas

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION_versioh

REFERENCE_CANNOT_BE_ALLOCATED

TYPE_OF_OBJECT_IS_INVALIDVersion COMPOSITE)
UPPER_BOUND_WOULD_BE_VIOLATEDr{ew_origin new_Ilink
USAGE_MODE_ON_OBJECT_TYPE_WOULD_ BE_VIOLATED ("object", typewvefrsior
VALUE_LIMIT_ERRORS feverse_key

VOLUME_IS_FULL (volume on whiclon_same_volume_assides)

9.4.6 VERSION_SNAPSHOT

@

@

(©)

@

VERSION_SNAPSHOT (

version : Object_designator,

new _link_and _origin : [Link_descriptor],

on_same_volume_as [Object_designator],

access_mask : Atomic_access_rights
)

new_version : Object_designator

VERSION_SNAPSHOT creates a new stable versiorsn@pshot of version That is, if
new_origin and new_link are the object designator and link designator respectively of
new_link_and_origin
- A copynew_versiorof versionis created in the same way as

OBJECT_COPY (version, new_origin, new_link, nil, on_same_volume_as, access_mask).

wherereverse_linkis not suppliedgxcept that ilnew_link_and_origiris not supplied, then
no new link ofnew_originis created

- The set of predecessors of each componenewaf versions the set of predecessors of its
corresponding component vérsion Then a "predecessor” link with key 1 (one) is created

®)

(6)

0]
®

©

(10)
(11

(12)

(13)

(14)
(15)

(16)

@an

(18)

(19)

(20)

(1)
(22)
(23)

(24)

(25)

-64 -

in such a way that each componentnefv_versionbecomes the first predecessor of its
corresponding component wérsion

All the granted write and append discretionary access rights are suppressed (i.e. set to
UNDEFINED) for all the components aew_version

The components ofersionare still updatable.access_masiks used in conjunction with the
default atomic ACL and default object owner of the calling process to specify the atomic ACL
and the composite ACL of the created objects.

The components afew_versiorare stabilized.

The created objects have the same integrity and confidentiality labels as the objects they have
been copied from.

If on_same_volume_ass supplied the new_versionresides on the same volume as
on_same_volume_aftherwisenew versiorresides on the same volumevassionand each
component ofnew_versionresides on the same volume as the corresponding component of
version

If a component ofersionis replicated, its snapshot is not replicated.
The predecessor links are created even if their origins are stable.

Read locks of the default mode are obtained on all componevessidnto be copied and write
locks of the default mode are obtained on the new links and componamsy oversion A
read lock of the default mode is obtainednemv_originif the interpretation ohew_linkimplies
the evaluation of any '+' or '++' key attribute values (see 23.1.2.7).

If versionis an accounting log, its contents is preserved.

Errors

ACCESS_ERRORSew_origin ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSy/érsion COMPOSITE, MODIFY, APPEND_LINKS)

If versionor any component afersionalready has a predecessor:
ACCESS_ERRORSvérsion COMPOSITE, MODIFY, WRITE_LINKS)

ACCESS_ERRORSVérsion COMPOSITE, READ, (READ_LINKS, READ_ATTRIBUTES,
READ_CONTENTS))

ACCESS_ERRORSew_versionCOMPOSITE, CHANGE, STABILIZE)

If versionhas a predecessor, than for each predecessor X of each compmeesipaf
ACCESS_ERRORS (X, ATOMIC, CHANGE, (APPEND_IMPLICIT,
WRITE_IMPLICIT))

If new_linkis provided and its reverse is compositely stabilizing:
ACCESS_ERRORSew_origin COMPOSITE, CHANGE, STABILIZE)

ACCESS_ERRORSofi_same_volume_a&TOMIC, SYSTEM_ACCESS)
For each destination X of a duplicable external link L of a duplicated component:
ACCESS_ERRORS (X, ATOMIC, CHANGE, APPEND_IMPLICIT)

If L is atomically stabilizing:
ACCESS_ERRORS (X, ATOMIC, CHANGE, STABILIZE)
If L is compositely stabilizing:
ACCESS_ERRORS (X, COMPOSITE, CHANGE, STABILIZE)

(26)

@7

(28)

(29
(30)
@1
(32)
(33)

(34)

(35)

(36)
@7
(38)
(39)

(40)

-65 -

CATEGORY_IS_BAD few_origin new_link (COMPOSITION, EXISTENCE,
REFERENCE, DESIGNATION))

If new_linkhas a reverse link:
CATEGORY_IS_BAD (destination afew_link reverse ofiew_link IMPLICIT)

If versionis a component of itself, ameew_linkis a composition link:
COMPONENT_ADDITION_ERRORSnew_versionnew_link

CONTROL_WOULD_NOT_BE_GRANTEDr(ew_versioh

EXTERNAL_LINK IS _BAD (version COMPOSITE)

REFERENCE_CANNOT _BE_ALLOCATED

LINK_EXISTS (new_origin new_link

OBJECT_CANNOT_BE_STABILIZED (component @érsior)

OBJECT_OWNER_VALUE_WOULD BE_INCONSISTENT WITH_ATOMIC_ACL
(new_objeadt

If versionis not a component of itseliew_linkis a composition link andew_originhas

OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIQOM_versioh

TYPE_OF_OBJECT_IS_INVALIDVersion COMPOSITE)
UPPER_BOUND_WOULD_BE_VIOLATEDr{ew_origin new_Ilink
USAGE_MODE_ON_OBJECT_TYPE_WOULD_ BE_VIOLATED ("object", typewvefrsion
VALUE_LIMIT_ERRORS feverse_key

VOLUME_IS_FULL (volume on whiclon_same_volume_assides)

9.4.7 VERSION_TEST_ANCESTRY

®

@

(©)

4)

(®)

(6)

U]

®)

©)

VERSION_TEST_ANCESTRY (
versionl : Object_designator,
version2 : Object_designator

)

ancestry :Version_relation

VERSION_TEST_ANCESTRY tests the ancestry of the objeetsionlandversion2in their
graphs of versions. That is, it returnsimcestry

- ANCESTOR_VSN if there exists a series of "predecessor" links ¥ension2to versionl,

- DESCENDANT_VSN if there exists a series of "predecessor” links fremsionl to
version2;

- SAME_VSN ifversionlis the same object asrsion2;

- RELATED_VSN if there exist an object X which is neitiersionlnorversion2 a series of
"predecessor" links fromersion1to X, and a series of "predecessor"” links freension2to
X;

UNRELATED_VSN otherwise.

Read locks of the default mode are obtainedensionland onversion2and on all the origins
and destinations of the links in the series of links.

Errors
ACCESS ERRORSVErsion1 ATOMIC, READ, READ_LINKS)

(10)
(11

(12)

- 606 -

ACCESS_ERRORS (element of version grapkestion] ATOMIC, READ, READ_LINKS)
ACCESS_ERRORSVérsion2 ATOMIC, READ, READ_LINKS)
ACCESS_ERRORS (element of version grapkesktion2 ATOMIC, READ, READ_LINKS)

9.4.8 VERSION_TEST_DESCENT

®

@

(©)
4)
(®)

(6)

U]

®)

©)
(10)
(11

(12)

10

VERSION_TEST_DESCENT (
versionl : Object_designator,
version2 : Object_designator

)

descent :\Version_relation

VERSION_TEST_DESCENT tests the descent of the objestsionland version2in their
graphs of versions. That is, it returns:

- ANCESTOR_VSN if there exists a series of "successor" links frersion1to version2
- DESCENDANT_VSN if there exists a series of "successor" links frersion2to versionl
- SAME_VSN ifversionlis the same object asrsion2

- RELATED_VSN if there exist an object X which is neitiersionlnorversion2 a series of
"successor" links fromrersion1to X, and a series of "successor" links freension2to X.

UNRELATED_VSN otherwise.

Read locks of the default mode are obtainedversionland onversion2and on the all the
origins and destinations of the links in the series of links.

Errors

ACCESS_ERRORSvérsion1 ATOMIC, READ, READ_LINKS)
ACCESS_ERRORS (element of version grapkestion] ATOMIC, READ, READ_LINKS)
ACCESS_ERRORSvérsion2 ATOMIC, READ, READ_LINKS)
ACCESS_ERRORS (element of version grapkestion2 ATOMIC, READ, READ_LINKS)

Schema management

10.1 Schema management concepts

10.1.1 Schema definition sets and the SDS directory

@
@
(©)
@
(®)

sds metasds:

import object type system-object, system-process, system-common_root;
import attribute type system-number, system-system_key;
type_identifier: (read) string ;

sds_directory: child type of object with

link
known_sds: (navigate) non_duplicated existence link (sds_name: string) to sds;
schemas_of: (navigate) implicit link to common_root reverse schemas;

end sds_directory;

(6)

U]

®)
©)

(10)

(11

(12)

(13)

(14

-67 -

sds: child type of object with
link
named_definition: (navigate) reference link (local_name: string) to type_in_sds
reverse named_in_sds;
in_working_schema_of: (navigate) non_duplicated designation link (number) to
process;
component
definition: (navigate) exclusive composition link (type_identifier) to type_in_sds
reverse in_sds;
end sds;

extend object type common_root with
link

schemas: (navigate) existence link to sds_directory reverse schemas_of;
end common_root;

end metasds;
The SDS directory is an administrative object (see 9.1.2).

The "sds" components of the SDS directory represent the known SDSs of the PCTE installa
(see 8.4):

- The "sds_name" key of the "known_sds" link from the SDS directory represents the SL
name of the SDS.

- The definition components of an SDS represent the types in SDS of the SDS (see 8.3).
key of the "named_definition" link is the local name of the type in SDS. The destinations
the "named_definition" links are a subset of the SDS object components. The destination:
the "in_working_schema" links are the known processes which are neither ready r
terminated and have included the SDS in their working schemas.

The destinations of the "in_working_schema" links are the known non-terminated proces:
which have included the SDS in their working schemas (see 8.5). An SDS and its types in S
cannot be modified by using the operations defined in 10.2 while the SDS is included in t
working schema of such a process.

NOTE - The predefined SDSs 'system’, 'metasds’, 'discretionary_security’, ‘'mandatory_security’, ‘auditing’,

‘accounting' are protected against modification, and so they cannot be extended directly. However, the predef
types can be imported into other SDSs and then extended, thus achieving the same effect. See 20.1.8.1.

10.1.2 Types

@
@

sds metasds:

type: (protected) child type of object with
attribute
type_identifier;
link
has_type_in_sds: (navigate) implicit link (system_key) to type_in_sds reverse of_type;
end type;

®

4)
®)
(6)
0]
®)
©)

(10)

(11

(12

(13)

(14

(15)

(16)

@an

(18)

(19)

-68 -

type_in_sds: (protected) child type of object with
attribute
annotation: string ;
creation_or_importation_time: (read) time;;
link
in_sds: (navigate) implicit link to sds reverse definition;
of_type: (navigate) existence link to type reverse has_type_in_sds;
named_in_sds: (navigate) implicit link to sds reverse hamed_definition;
end type_in_sds;

usage_mode: (read) natural ;
export_mode: (read) natural ;
maximum_usage_mode: (read) natural ;
end metasds;
A "type" object represents a type (see 8.3):
- The "type_identifier" attribute represents the type identifier.

- The destinations of the "has_type in_sds" links represent types in SDS associated with this
type.

Further attribute types and link types are particular to the object types "object type" (see
10.1.3), "attribute type" (see 10.1.4), "link type" (see 10.1.5), and "enumeral_type" (see
10.1.6).

A "type_in_sds" object represents a type in SDS (see 8.4):
- The destination of the "in_sds" link represents the SDS to which the type in SDS belongs.

- The destination of the "named_in_sds" link represents the SDS in which the type in SDS has
a local name. It is the same as the destination of the "in_sds" link.

- The destination of the "of type" link represents the type associated with the type in SDS.

- The usage mode, export mode, and maximum usage mode represent the definition modes of
the type in SDS. A set of definition mode values is represented as the sum of the powers of
2 representing its elements as follows:

CREATE 1
DELETE :2
READ 4
WRITE : 8
NAVIGATE : 16

- The annotation is the complete name of the type when it is created, but may be changed by
the user.

- The creation or importation time is the system time when the type in SDS was created or
imported into the SDS.

Further attribute types and link types are particular to the object types "object_type in_sds" (see
10.1.3), “attribute_type in_sds" (see 10.1.4), "link type_in_sds" (see 10.1.5), and
"enumeration_type_in_sds" (see 10.1.6).

@
@

®

@
®)
(6)
™
®
©

(10)

(11

@
@
®
4)

10.1.3

- 69 -

Object types

sds metasds:

object_type: (protected) child type of type with
attribute
contents_type: (read) enumeration (FILE_TYPE, PIPE_TYPE, DEVICE_TYPE,
AUDIT_FILE_TYPE, ACCOUNTING_LOG_TYPE, NO_CONTENTS_TYPE) :=
NO_CONTENTS_TYPE;
link
parent_type: (navigate) reference link (number) to object_type reverse child_type;
child_type: (navigate) implicit link (system_key) to object_type reverse parent_type;
end object_type;

object_type_in_sds: (protected) child type of type_in_sds with
attribute
usage_mode;
export_mode;
maximum_usage_mode;
link
in_attribute_set: (navigate) reference link (number) to attribute_type_in_sds reverse
is_attribute_of;
in_link_set: (navigate) reference link (number) to link_type_in_sds reverse is_link_of;
is_destination_of: (navigate) reference link (number) to link_type_in_sds reverse
in_destination_set;
end object_type_in_sds;

end metasds;

An "object_type" object represents an object type (see 8.3.1):

The destinations of the "parent_type" links represent the parent types of the object type.
The destinations of the "child_type" links represent the child types of the object type.

An "object_type_in_sds" object represents an object type in SDS (see 8.4.1):

The destinations of the "in_attribute_set" links represent the direct attribute types in SDS
the object type in SDS.

The destinations of the "in_link_set" links represent the direct outgoing link types in SDS
the object type in SDS. The component object types of the object type in SDS &
represented by the destinations of the "in_destination_set" links of the destinations of 1
"in_link_set" links with category COMPOSITION.

The destinations of the "is_destination_of" links represent the link types in SDS of whic
this object type is a destination object type.

10.1.4 Attribute types

sds metasds:
duplication: (read) enumeration (DUPLICATED, NON_DUPLICATED):= DUPLICATED;
key_attribute_of: (navigate) implicit link (system_key) to link_type reverse key_attribute;

attribute_type: (protected) child type of type with
attribute

duplication;
end attribute_type;

-70 -

®) string_attribute_type: (protected) child type of attribute_type with
attribute
string_initial_value: (read) string ;
link
key_attribute_of;
end string_attribute_type;

6) integer_attribute_type: (protected) child type of attribute_type with
attribute
integer_initial_value: (read) integer ;
end integer_attribute_type;

@ natural_attribute_type: (protected) child type of attribute_type with
attribute
natural_initial_value: (read) natural ;
link
key_attribute_of;
end natural_attribute_type;

®) float_attribute_type: (protected) child type of attribute_type with
attribute
float_initial_value: (read) float ;
end float_attribute_type;

© boolean_attribute_type: (protected) child type of attribute_type with
attribute
boolean_initial_value: (read) boolean ;
end boolean_attribute_type;

(20 time_attribute_type: (protected) child type of attribute_type with
attribute
time_initial_value: (read) time;
end time_attribute_type;

1) enumeration_attribute_type: (protected) child type of attribute_type with
attribute
initial_value_position: (read) natural ;
component
enumeral: (navigate) composition link [1 ..] (position: natural) to enumeral_type
reverse enumeral_of;
end enumeration_attribute_type;

12) attribute_type_in_sds: (protected) child type of type_in_sds with

attribute
usage_mode;
export_mode;
maximum_usage_mode;

link
is_attribute_of: (navigate) reference link (number) to object_type_in_sds,

link_type_in_sds reverse in_attribute_set;
end attribute_type_in_sds;

(13) end metasds;

(14) "Attribute_type" objects represent attribute types (see 8.3.2). They are divided into child types
according to value type.

(15) - The initial value attribute represents the initial value of the attribute type. For string, integer,
natural, float, boolean, and time attribute types, it is an actual value of the value type. For an
enumeration attribute type, it is a non-negative integer defining the position of the initial
value within the enumeration type.

-71 -

(16) - For a natural or a string attribute type, the destinations of the "key_attribute_of" link
represent the link types for which this attribute type is a key attribute type.

a7 - For an enumeration attribute type, the destinations of the "enumeral” links represent f
enumeral types of the value type. The "position” key attribute represents the ordering of
enumeral types: it must take successive values 0, 1, 2, 3,

(18) An "attribute_type_in_sds" object represents an attribute type in SDS (see 8.4.2):

(19) - The destinations of the "in_attribute_set" links represent the object types in SDS and i
types in SDS for which the attribute type is a direct attribute type.

10.1.5 Link types

1) sds metasds:
@ link_type : (protected) child type of type with
attribute

category: (read) enumeration (COMPOSITION, EXISTENCE, REFERENCE, IMPLICIT,
DESIGNATION) := COMPOSITION;
lower_bound: (read) natural :=0;
upper_bound: (read) natural := MAX_NATURAL_ATTRIBUTE;
stability: (read) enumeration (ATOMIC_STABLE, COMPOSITE_STABLE, NON_STABLE)
:= NON_STABLE;
exclusiveness: (read) enumeration (SHARABLE, EXCLUSIVE) := SHARABLE;
duplication;
link
reverse: (navigate) reference link to link_type;
key_attribute: (navigate) reference link (key_number: natural) to string_attribute_type,
natural_attribute_type reverse key_attribute of;
end link_type;

@) link_type_in_sds: child type of type_in_sds with
attribute
usage_mode;
export_mode;
maximum_usage_mode;
link
in_attribute_set;
is_link_of: (navigate) reference link (number) to object_type_in_sds reverse
in_link_set;
in_destination_set: (navigate) reference link (number) to object_type_in_sds reverse
is_destination_of;
end link_type_in_sds;

@ end metasds;

®) A "link_type" object represents a link type (see 8.3.3):

®) - The "category" attribute represents the category of the link type.

@ - The "lower_bound" and "upper_bound" attributes represent the lower bound and upy
bound, respectively, of the link type. For MAX_NATURAL_ATTRIBUTE see 24.1.

®) - The "stability" attribute represents the stability of the link type.

© - The "exclusiveness" attribute represents the exclusiveness of the link type.

(10) - The "duplication” attribute represents the duplication property of the link type.

(11) - The destination of the "reverse" link represents the reverse link type of the link type.

-72-

(12) - The destinations of the "key_attribute" links represent the key attribute types of the link type.

(13) A "link_type_in_sds" object represents a link type in SDS (see 8.4.3):

(14) - The destinations of the "in_attribute_set" links represent the non-key attribute types of the
link type in SDS.

(15) - The destinations of the "is_link_of" links represent the origin object types in SDS of the link
type in SDS.

(16) - The destinations of the "in_destination_set" links represent the destination object types in

SDS of the link type in SDS.

10.1.6 Enumeral types

1) sds metasds:
@ enumeral_type: (protected) child type of type with
link

enumeral_of: (navigate) implicit link (system_key) to enumeration_attribute_type
reverse enumeral;
end enumeral_type;

®) enumeral_type_in_sds: (protected) child type of type_in_sds with
attribute
image: (read) string ;
end enumeral_type_in_sds;

(4 end metasds;
®) An "enumeral_type" object represents an enumeral type (see 8.3.4).
®) The destinations of the "enumeral_of" links represent the attribute types of which the enumeral

type is a possible value.

@ An "enumeral_type in_sds" object represents an enumeral type in SDS (see 8.4.4); the "image
attribute represents the image of the enumeral type in SDS.

10.1.7 Datatypes for schema management

@ Enumeration_values = seql of Enumeral_type_nominator_in_sds

@ Key types_in_sds = seq of Attribute_type nominator_in_sds

@) Attribute_scan_kind = OBJECT | OBJECT_ALL | LINK_KEY | LINK_NON_KEY

@ Link_scan_kind = ORIGIN | ORIGIN_ALL | DESTINATION | DESTINATION_ALL | KEY |
NON_KEY

©) Object_scan_kind = CHILD | DESCENDANT | PARENT | ANCESTOR | ATTRIBUTE |

ATTRIBUTE_ALL | LINK_ORIGIN | LINK_ORIGIN_ALL | LINK_DESTINATION |
LINK_DESTINATION_ALL

®) These datatypes are used as parameter and result types of operations defined in 10.2, 10.3, anc
10.4.

-73-

10.2 SDS update operations

10.2.1 SDS_ADD_DESTINATION

@

@

®
@

®)

(6)

™

®)

©

(10)
(11
(12)
(13)
(14)
(15)
(16)

(1)

SDS_ADD_DESTINATION (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object type : Object_type_nominator_in_sds

SDS_ADD_DESTINATION extends the set of destination object types of the link type in SD
link_type_in_sdsssociated with the link typenk_typein the SDSsdsto include the object
type in SDSobject_type_in_sdassociated with the object typbject_typen sds.

If link_typehas a reverse link typeverse thenreverseis applied tmbject_type

An "in_destination_set" link fromlink_type_in_sdsto object type in_sdsnd its reverse
"is_destination_of" link are created.

If link_typehas a reverse link typeversethen an "in_link_set" link fronobject_type_in_sd®
the "link_type_in_sds" objeakverse_link_type in_sdsssociated withieversein sds and its
reverse "is_link_of" link, are created

Write locks of the default mode are obtained on the created links.

Errors

ACCESS_ERRORSopject_type_in_sdATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSIfk_type_in_sdsATOMIC, MODIFY, APPEND_LINKS)
ACCESS ERRORSs(ls ATOMIC, READ, NAVIGATE)
ACCESS_ERRORS#¢verse_link_type _in_sdATOMIC, MODIFY, APPEND_LINKS)
OBJECT _TYPE_IS_ALREADY_IN_DESTINATION_SETifk type object_typg
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A WORKING_SCHEMAgdY

SDS_IS_PREDEFINEDs(9

SDS_IS_UNKNOWN ¢d9

TYPE_IS_UNKNOWN_IN_SDSgds link_type
TYPE_IS_UNKNOWN_IN_SDSgds object_typg

10.2.2 SDS_APPLY_ATTRIBUTE_TYPE

@

@

(©)

4)

SDS_APPLY_ATTRIBUTE_TYPE (

sds : Sds_designator,
attribute_type : Attribute_type_nominator_in_sds,
type : Object_type _nominator_in_sds | Link_type_nominator_in_sds

)

SDS_APPLY_ATTRIBUTE_TYPE extends the object type or link tiygee by the application
of the attribute typattribute_typan the SDSsds

An "in_attribute_set" link and its reverse "is_attribute_of" link are created between the type
SDStype_in_sdsssociated witlypein sdsand the attribute type in SDtribute_type_in_sds
associated witlttribute typean sds

Write locks of the default mode are obtained on the created links.

(®)
(6)
U]
®
©)

(10)
(1)
(12)
(13)
(14)
(15)
(16)

@an

-74 -

Errors

ACCESS_ERRORSype_in_sdsATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSaftribute_type_in_SJsATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSs(ls ATOMIC, READ, NAVIGATE)
KEY_ATTRIBUTE_TYPE_APPLY_IS_FORBIDDENGd(tribute_typg

LINK_TYPE_CATEGORY_IS_BAD (ink_type (COMPOSITION, EXISTENCE,
REFERENCE, DESIGNATION))

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A_WORKING_SCHEMA4d9
SDS_|IS_PREDEFINEDs{9

SDS_IS_UNKNOWN ¢d9

TYPE_CANNOT_BE_APPLIED _TO_LINK_TYPE type attribute_typé
TYPE_IS_ALREADY_APPLIED ¢ds attribute_typetypée
TYPE_IS_UNKNOWN_IN_SDSgqds attribute_type
TYPE_IS_UNKNOWN_IN_SDSgds type

10.2.3 SDS_APPLY_LINK_TYPE

@

@

®

@

®)
(6)
™
®)
©
(10)
(11
(12)
(13)

(14

SDS_APPLY_LINK_TYPE (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object type : Object_type_nominator_in_sds

)

SDS_APPLY_LINK_TYPE extends the object tymbject typein the SDSsds by the
application of the link typdink_type If link_type has a reverse link typeeversethen the
destination set akverseis extended to include the object tyggect type

An "in_link_set" link from the object type in SD$bject type in_sdsassociated with
object_typean sdsto the link type in SD3nk_type_in_sdsassociated withink_typein sds and
its reverse "is_link_of" link, are created. llhk_type has a reverse link typeeverse an
"in_destination_set" link from the link type in SDS associated weétherse in sds to
object_type_in_sdand its reverse "is_destination_of" link, are created.

Write locks of the default mode are obtained on the created links.

Errors

ACCESS_ERRORSifk_type_in_sdsATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSopject_type_in_sgATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSs(ls ATOMIC, READ, NAVIGATE)

ACCESS_ERRORS (reverselofk_type_in_sdsATOMIC, MODIFY, APPEND_LINKS)
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A_WORKING_SCHEMAYdS

SDS_IS_PREDEFINEDs{S

SDS_IS_UNKNOWN $d9

TYPE_IS_ALREADY_APPLIED §ds link_type object_typg
TYPE_IS_UNKNOWN_IN_SDSgds object_typg

(15)

-75 -

TYPE_IS_UNKNOWN_IN_SDSgds link_typ8

10.2.4 SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE

@

@

(©)

4)

(®)

(6)

U]

®)

©)

(10)
(11

(12

(13)
(14)
(15)
(16)
(1)

(18)

SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE (

sds : Sds_designator,
local_name :[Name],
initial_value [Boolean],
duplication : Duplication
)
new_type . Attribute_type_nominator_in_sds

SDS_CREATE_BOOLEAN_ATTRIBUTE_TYPE creates a new boolean attribute type
new_typeand its associated attribute type in Sig8®_type_in_sds the SDSsds

The operation creates a "definition" link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of _type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication redw_typeis set toduplication The
boolean initial value ohew_typas set tanitial_valueif supplied, and otherwise false

The three definition mode attributes ofew_type_in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the syster
time. Iflocal_names supplied, the annotation néw_type_in_sdis set to the complete name
of the created type; otherwise it is set to the empty string.

The new objects reside on the same volumsdas Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiali
labels and integrity labels are set to be equal to the current confidentiality context and integ!
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the
"object_on_volume" links.

Errors

ACCESS_ERRORSs@is ATOMIC, MODIFY, APPEND_LINKS)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sdgs

PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs@9

SDS_IS_UNKNOWN ¢d9

TYPE_NAME_IN_SDS_ IS DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_name¢

-76 -

10.2.5 SDS_CREATE_DESIGNATION_LINK_TYPE

) SDS_CREATE_DESIGNATION_LINK_TYPE (
sds : Sds_designator,
local nhame :[Name],

lower_bound : [Natural],
upper_bound : [Natural],
duplication : Duplication,
key types : Key _types_in_sds
)
new_type : Link_type_nominator_in_sds
@ SDS CREATE_DESIGNATION_LINK_TYPE creates a new designation link typs_type
and its associated link type in SD8w_type_in_sds the SDSsds

@®) The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

@ If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

®) The type identifier ohew_types set to an implementation-defined value which identifies the
type within the PCTE installation.

®) The three definition mode attributes ofew_type in_sdsare set to 19, representing
CREATE_MODE, DELETE_MODE, and NAVIGATE_MODE, and its creation or importation
time is set to the system time. ldcal_nameis supplied, the annotation néw_type_in_sds
set to the complete name of the created type; otherwise it is set to the empty string.

@ The lower bound, upper bound (if provided), and duplicatiomest typeare set from the
parameters of the same names.ndiv_typeis of cardinality many, for each attribute type of
key typesa "key_attribute” link is created fromew_typeto that attribute type. The keys of
these links correspond to the order of the key attribute typésyintypesstarting at 0 and
incremented by 1. The categoryraw_typas set to DESIGNATION.

®) The sets of origin object types in SDS and destination object types in SB&wvofypeare
initially empty.
© The new objects reside on the same volums&das Their access control lists are built using the

default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

(10) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(11) Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.
Errors

12) ACCESS_ERRORS (elementkdy typesATOMIC, CHANGE, APPEND_IMPLICIT)

(13) ACCESS_ERRORSs@ls ATOMIC, MODIFY, APPEND_LINKS)

(14) KEY_TYPE_IS BAD (element ofey_typeks

(15) KEY_TYPES_ARE_MULTIPLE key_types

16) LIMIT_ WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

(1)

(18)

(19)

(20)
()
(22)
(23)
(24
(29)

(26)

-77 -

LINK_TYPE_PROPERTIES_ARE_INCONSISTENT (DESIGNATIONwer_bound
upper_boundSHARABLE, NON_STABLE duplication

LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT (DESIGNATION,
lower_boundupper_boundSHARABLE, NON_STABLE duplication key_typeps

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ ON_COMPONENT_CREATION
(new_type_in_sds

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

SDS_IS IN_A WORKING_SCHEMAHd9

SDS_IS_PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_IS_UNKNOWN_IN_SDS4qds element okey_types

TYPE_NAME_IN_SDS_IS DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_name¢

10.2.6 SDS_CREATE_ENUMERAL_TYPE

@

@

®

@

®)

(6)

™

®

©

(10)

SDS_CREATE_ENUMERAL_TYPE (

sds : Sds_designator,
local name :[Name]
)
new_type : Enumeral_type_nominator_in_sds

SDS_CREATE_ENUMERAL_TYPE creates a new enumeral typ& typeand its associated
enumeral type in SDBew_type_in_sd® the SDSsds

The operation creates a "definition” link fradsto new_type_in_sdsthe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation.

The creation or importation time oew_type_in_sds set to the system time. Itfical_names
supplied, the annotation afew_type_in_sds set to the complete name of the created type;
otherwise it is set to the empty string. The imageesi_type_in_sds set to the empty string.

The new objects reside on the same volums&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiali
labels and integrity labels are set to be equal to the current confidentiality context and integ
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the r
"object_on_volume" links.

Errors
ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

(11

(12

(13)
(14)
(15)
(16)
(1)

(18)

-78 -

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sdgs

PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_NAME_IN_SDS_IS DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_nam¢

10.2.7 SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE

@

@

®

@

®)

(6)

™

®

©

SDS_CREATE_ENUMERATION_ATTRIBUTE_TYPE (

sds : Sds_designator,
local nhame :[Name],
values : Enumeration_values,
duplication : Duplication,
initial_value [Natural]
)
new_type : Attribute_type_nominator_in_sds

SDS _CREATE_ENUMERATION_ATTRIBUTE_TYPE creates a new enumeration attribute
typenew_typeand its associated attribute type in Sig8®_type_in_sds the SDSsds

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

"enumeral” links are created fromew_typeto the enumeral types specified values The
"position” key attributes of the links are set according to the sequential order of the type
nominators invalue starting at 0 and incremented by 1 for each enumeral type. The reverse
"enumeral_of" links are also created.

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplicatiomefv_typas set toduplication The initial
value position ohew_typas set tanitial_valueif supplied, and otherwise to 0.

The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. Iflocal_names supplied, the annotation néw_type_in_sdis set to the complete name

of the created type; otherwise it is set to the empty string.

The new objects reside on the same volum&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

(10)

(11

(12)
(13)

(14)

(15)
(16)
an
(18)
(19)
(20)

(21)

(22)
(23)
(24)
(25
(26)
@7

(28)

-79 -

Write locks of the default mode are obtained on the created objects and links except the r
"object_on_volume" links.

A write lock of the default mode is obtained on any enumeral type specifiealuasif the
OWNER discretionary access right is granted for a grouyevo type(the default object owner
group), and a different OWNER discretionary access right exists for the same group to tl
enumeral type.

Errors

ACCESS_ERRORSs@ls ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (elementwdlues ATOMIC, CHANGE, APPEND_IMPLICIT)

For each enumeral type in SDS E associated with an elemesitiet
ACCESS_ERRORS (E, ATOMIC, READ, READ_ATTRIBUTES)

COMPONENT_ADDITION_ERRORS (enumeral type, "enumeral” link)
ENUMERAL_TYPES ARE_MULTIPLE yalue3
ENUMERATION_ATTRIBUTE_WOULD_HAVE_NO_ENUMERAL_TYPESvaluesg
ENUMERATION_VALUE_IS OUT_OF_RANGEifitial_value, valueg
IMAGE_IS_DUPLICATED {alues sd9

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sdgs

PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_IS_UNKNOWN_IN_SDSds element ovalueg

TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_namég

10.2.8 SDS_CREATE_FLOAT ATTRIBUTE_TYPE

®

@

(©)

4)

SDS_CREATE_FLOAT_ATTRIBUTE_TYPE (

sds : Sds_designator,
local_name :[Name],
initial_value [Float],
duplication : Duplication
)
new_type . Attribute_type_nominator_in_sds

SDS_CREATE_FLOAT_ATTRIBUTE_TYPE creates a new float attribute typ& typeand
its associated attribute type in SD8w_type_in_sds the SDSsds

The operation creates a "definition" link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of _type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

®)

(6)

0]

®

©)

(10)
(11

(12)

(13)
(14)
(15)
(16)
a7)
(1)

(19)

-80 -

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplicationnefw_typds set toduplication The float
initial value ofnew_typas set tanitial_valueif supplied, and otherwise to 0.0 (zero).

The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. Iflocal_names supplied, the annotation néw_type _in_sdis set to the complete name

of the created type; otherwise it is set to the empty string.

The new objects reside on the same volums&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS ON_COMPONENT_CREATION
(new_type_in_sds

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

SDS_IS_IN_A WORKING_SCHEMASd9

SDS_IS_PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_namég

VALUE_LIMIT_ERRORS (nitial_value)

10.2.9 SDS_CREATE_INTEGER_ATTRIBUTE_TYPE

@

@

®

@

SDS_CREATE_INTEGER_ATTRIBUTE_TYPE (

sds : Sds_designator,
local nhame :[Name],
initial_value [Integer],
duplication : Duplication
)
new_type : Attribute_type_nominator_in_sds

SDS CREATE_INTEGER_ATTRIBUTE_TYPE creates a new integer attributentgpe type
and its associated attribute type in SIEv_type in_sds the SDSsds

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

®)

(6)

0]

®

©)

(10)
(11

(12)

(13)
(14)
(15)
(16)
a7)
(1)

(19)

-81-

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication rw_typeis set toduplication The
integer initial value ohew _typas set tanitial_valueif supplied, and otherwise to 0 (zero).

The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the syster
time. Iflocal_names supplied, the annotation néw_type_in_sdis set to the complete name
of the created type; otherwise it is set to the empty string.

The new objects reside on the same volum&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiali
labels and integrity labels are set to be equal to the current confidentiality context and integ
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the r
"object_on_volume" links.

Errors

ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS ON_COMPONENT_CREATION
(new_type_in_sds

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

SDS_IS_IN_A WORKING_SCHEMASd9

SDS_IS_UNKNOWN ¢d9

SDS_IS_PREDEFINEDs(9

TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_namég

VALUE_LIMIT_ERRORS (nitial_value)

10.2.10 SDS_CREATE_NATURAL_ATTRIBUTE_TYPE

@

@

®

@

SDS_CREATE_NATURAL_ATTRIBUTE_TYPE (

sds : Sds_designator,
local_ name :[Name],
initial_value [Natural],
duplication : Duplication
)
new_type : Attribute_type_nominator_in_sds

SDS_CREATE_NATURAL_ATTRIBUTE_TYPE creates a new natural attribute type
new_typeand its associated attribute type in Si2g8® _type_in_sds the SDSsds

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

-82-

®) The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplication rw_typeis set toduplication The
natural initial value ohew_typeas set tanitial_valueif supplied, and otherwise to O (zero).

®) The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. Iflocal_names supplied, the annotation néw_type _in_sdis set to the complete name
of the created type; otherwise it is set to the empty string.

% The new objects reside on the same volum&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

®) For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

© Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.
Errors

(10) ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

(11) LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

(12) If sdshas OWNER granted or denied:

OWNER_PROPAGATION_ERRORS ON_COMPONENT_CREATION
(new_type_in_sds

(13) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
14 SDS_IS_IN_A WORKING_SCHEMAgdY

(15) SDS_IS_PREDEFINEDs(@9

(16) SDS_IS_UNKNOWN ¢d9

a7) TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég

(18) TYPE_NAME_IS_INVALID (local_namég

(19) VALUE_LIMIT_ERRORS (nitial_value)

10.2.11 SDS_CREATE_OBJECT_TYPE

@) SDS_CREATE_OBJECT_TYPE (
sds : Sds_designator,
local nhame :[Name],
parents : Object_type _nominators_in_sds
)
new_type : Object_type _nominator_in_sds
@ SDS_CREATE_OBJECT_TYPE creates a new object hge_typeand its associated object
type in SDShew_type_in_sds the SDSsds
@®) The contents type afew_typas determined as followslf one or more of the object types in

parentshas a contents type (if more than one, they must all have the same contents type) then
new_typehas that contents type; otherwrsaw_typehas no contents type.

@ The type identifier ohew_types set to an implementation-defined value which identifies the
type within the PCTE installation.

®)

(6)

0]

®

©)

(10)

(11
(12)
(13)
(14)

(15)

(16)
(1)
(18)
(19)
(20)
(1)
(22)

(23)

-83-

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link. "parent_type" links ar
created froomew_typdo each oparents together with their reverse "child_type" links.

The three definition mode attributes afew type_in_sdsare set to 1, representing
CREATE_MODE, and its creation or importation time is set to the system tink@calf name

is supplied, the annotation oew_type in_sds set to the complete name of the created type;
otherwise it is set to the empty string.

The new objects reside on the same volum&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process and their confidentiali
labels and integrity labels are set to be equal to the current confidentiality context and integ
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the r
"object_on_volume" links.

Errors

ACCESS_ERRORS (element jpdrents ATOMIC, CHANGE, APPEND_IMPLICIT)

ACCESS_ERRORSs@ls ATOMIC, MODIFY, APPEND_LINKS)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

OBJECT_TYPE_WOULD_HAVE_NO_PARENT_TYPpdrent3

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ ON_COMPONENT_CREATION

(new_type_in_sds

PARENT_BASIC_TYPES_ARE_MULTIPLEparent3

PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs@9

SDS_IS_UNKNOWN ¢d9

TYPE_IS_UNKNOWN_IN_SDS4qds element ofparent9

TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_namég

-84 -

10.2.12 SDS_CREATE_RELATIONSHIP_TYPE

[} SDS_CREATE_RELATIONSHIP_TYPE (
sds : Sds_designator,
forward local _name : [Name],
forward_category : Category,
forward_lower _bound : Natural,
forward_upper_bound : [Natural],
forward_exclusiveness . Exclusiveness,
forward_stability . Stability,
forward_duplication : Duplication,
forward_key types [Key_types_in_sds],
reverse_local _name : [Name],
reverse_category : Category,
reverse_lower _bound : Natural,
reverse_upper_bound : [Natural],
reverse_exclusiveness . Exclusiveness,
reverse_stability . Stability,
reverse_duplication : Duplication,
reverse_key _types [Key_types_in_sds]

)

new_forward_type : Link_type_nominator_in_sds,
new_reverse_type : Link_type_nominator_in_sds

@ SDS_CREATE_RELATIONSHIP_TYPE creates two new non-designation link types

new_forward_type and new_reverse type and their associated types in SDS
new_forward_type_in_sdandnew_reverse_type in_sds the SDSsds. The new link types
are the reverse of each other.

@®) The operation creates "definition" links fronsds to new_forward_type in_sdsand
new_reverse_type_in_sdand their reverse "type_in_sds" links; the keys of the "definition"
links are the system-assigned type identifiersea_forward_typendnew_reverse_typeThe
operation also creates "of _type" links frovew_forward_type_in_sde new_forward_typand
from new_reverse_type_in_stisnew_reverse_typand their reverse "has_type_in_sds" links.

@ If forward_local_nameis supplied, a "named_definition" link is created frosds to
new_forward_type_in_sdgith forward_local_names key. Ifreverse local _namis supplied,
a "named_definition" link is created fronsds to new_reverse_type_in_sdwwith
reverse_local_namas key, together with its reverse "named_in_sds" link.

®) The type identifiers ohew_forward_type and new_reverse_typare set to implementation-
dependent values which identify the types within the PCTE installation.

®) Two "reverse" links are created betwewmw_forward_typ@ndnew_reverse_typ®ne in each
direction.

™ The three definition mode attributesrdw_forward_type_in_sdmdnew_reverse_type_in_sds

are set to 19, representing CREATE_MODE, DELETE_MODE, and NAVIGATE_MODE, and
their creation or importation times are set to the system timeforward_local _nameis
supplied, the annotation aew_forward_type_in_sds set to the complete name of the created
type; otherwise it is set to the empty stringrelferse_local_namis supplied, the annotation of
new_reverse_type_in_sdsset to the complete name of the created type; otherwise it is set to
the empty string.

®) The category, lower and upper bounds, exclusiveness, stability, and duplication of
new_forward_typeare set fromforward category forward lower_bound forward_upper_
bound forward_exclusivenesdorward_stability and forward_duplication respectively; the

©)

(10)

(11

(12)

(13)

(14)

(15)
(16)
an
(18)
(19)

(20)

(21)

(22)

(23)

(24)

(25)

-85 -

category, lower and upper bounds, exclusiveness, stability, and duplicatiew afeverse_type
are set from reverse_category reverse_lower _bound reverse_upper_bound
reverse_exclusivenesgverse_stabilityandreverse_duplicationrespectively. Furthermore, if
for either link type the cardinality is MANY, for each attribute typefamivard _key typesr
reverse_key types a ‘"key_attribute” link is created fromnew_forward_type or
new_reverse_typeespectivelyto that attribute type. The keys of these links correspond to the
order of the key attribute types forward_key type®r reverse_key typestarting at 0 and
incremented by 1.

The new objects reside on the same volum&das Their access control lists are built using the
default access control list of the calling process, and their confidentiality labels and integr
labels are set to be equal to the current confidentiality context and integrity conte:
respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links (except the r
"object_on_volume" links).

Errors

ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

ACCESS _ERRORS (elementfoirward_key typesATOMIC, CHANGE,
APPEND_IMPLICIT)

ACCESS_ERRORS (element@verse_key typeATOMIC, CHANGE,
APPEND_IMPLICIT)

KEY_TYPE_IS_BAD (element diorward_key_typas

KEY_TYPE_IS BAD (element ofeverse_key_typgs

KEY_TYPES_ARE_MULTIPLE forward_key_typés

KEY_TYPES_ARE_MULTIPLE feverse_key_typgs
LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
LINK_TYPE_CATEGORY_IS_BAD forward_link_type (COMPOSITION, EXISTENCE,
REFERENCE, IMPLICIT))

LINK_TYPE_CATEGORY_IS_BAD (everse_link_type(COMPOSITION, EXISTENCE,
REFERENCE, IMPLICIT))

LINK_TYPE_PROPERTIES_ARE_INCONSISTENTofward_category
forward_lower_boungdforward_upper_boundorward_exclusivenestrward_stability
forward_duplication
LINK_TYPE_PROPERTIES_ARE_INCONSISTENTe{erse_category
reverse_lower_boundeverse upper_boundeverse exclusivenessverse_stability
reverse_duplication
LINK_TYPE_PROPERTIES_AND_KEY_TYPES_ARE_INCONSISTENT
(forward_categoryforward_lower_boundforward_upper_boundorward_exclusiveness
forward_stability forward_duplicationforward_key typés
LINK_TYPE_PROPERTIES_AND KEY_TYPES_ ARE_INCONSISTENEVerse category
reverse_lower_boundeverse upper_boundeverse exclusivenessverse_stability
reverse_duplicatioyreverse_key_typgs

(26)

@7

(28)

(29
(30)
@1
(32)
(33)
(34)
(35
(36)

(37

-86 -

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type in sds of
forward_link_typé
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (type in sds of
reverse_link_type

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

RELATIONSHIP_TYPE_PROPERTIES_ARE_INCONSISTEN®r{vard_category
forward_lower_boungdforward_upper_boundorward_exclusivenestrward_stability
forward_duplicationreverse_categoryeverse_lower_boundeverse_upper_bound
reverse_exclusivenessverse_stabilityreverse_duplication

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_IS_UNKNOWN_IN_SDSgqds element oforward_key _typés
TYPE_IS_UNKNOWN_IN_SDS4qds element ofeverse_key_typgs
TYPE_NAME_IN_SDS_IS_DUPLICATEforward_local_namg
TYPE_NAME_IN_SDS_IS_DUPLICATEréverse_local_name
TYPE_NAME_IS_INVALID (forward_local_namg
TYPE_NAME_IS_INVALID (reverse_local_name

10.2.13 SDS_CREATE_STRING_ATTRIBUTE_TYPE

@

@

®

@

®)

(6)

™

SDS_CREATE_STRING_ATTRIBUTE_TYPE (

sds : Sds_designator,
local name :[Name],
initial_value [String],
duplication : Duplication
)
new_type : Attribute_type_nominator_in_sds

SDS CREATE_STRING_ATTRIBUTE_TYPE creates a new string attribute mgve type
and its associated attribute type in SIEv_type in_sds the SDSsds

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplicatiomefn_typds set toduplication The string
initial value ofnew_typas set tanitial_valueif supplied, and otherwise to the empty string.

The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the system
time. Iflocal_names supplied, the annotation néw_type in_sdis set to the complete name

of the created type; otherwise it is set to the empty string.

The new objects reside on the same volums&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality

®

©

(10)
(11

(12)

(13)
(14)
(15)
(16)
an
(18)

(19)

-87-

labels and integrity labels are set to be equal to the current confidentiality context and integ
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which t
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the r
"object_on_volume" links.

Errors

ACCESS_ ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)
LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS ON_COMPONENT_CREATION
(new_type_in_sds
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A WORKING_SCHEMASd9
SDS_IS_PREDEFINEDs(@9
SDS_IS_UNKNOWN ¢d9
TYPE_NAME_IN_SDS_IS_DUPLICATEgds local_namég
TYPE_NAME_IS_INVALID (local_namég
VALUE_LIMIT_ERRORSiInitial_value)

10.2.14 SDS_CREATE_TIME_ATTRIBUTE_TYPE

@

@

®

@

®)

(6)

SDS_CREATE_TIME_ATTRIBUTE_TYPE (

sds : Sds_designator,
local nhame :[Name],
initial_value :[Time],
duplication : Duplication
)
new_type : Attribute_type_nominator_in_sds

SDS_CREATE_TIME_ATTRIBUTE_TYPE creates a new time attribute tye _typeand its
associated attribute type in SD8w_type_in_sds the SDSsds

The operation creates a "definition” link frasdsto new_type_in_sdshe key of the link is the
system-assigned type identifier méw_type The operation also creates an "of type" link from
new_type_in_sd® new_type

If local_nameis supplied, a "named_definition" link is created fredsto new_type_in_sds
with local_nameas key, together with its reverse "named_in_sds" link.

The type identifier ohew_typeis set to an implementation-defined value which identifies the
type within the PCTE installation. The duplicationnaiw_typds set toduplication The time
initial value of new_typeis set toinitial_value if supplied, and otherwise to 1980-01-
01T00:00:00Z.

The three definition mode attributes ofew type in_sdsare set to 12, representing
READ_MODE and WRITE_MODE, and its creation or importation time is set to the syster
time. Iflocal_names supplied, the annotation néw_type _in_sdis set to the complete name
of the created type; otherwise it is set to the empty string.

™

®

©

(10)
(11
(12)

(13)

(14)
(15)
(16)
an
(18)
(19)

(20)

-88-

The new objects reside on the same volums&das Their access control lists are built using the
default atomic ACL and the default object owner of the calling process, and their confidentiality
labels and integrity labels are set to be equal to the current confidentiality context and integrity
context, respectively, of the calling process.

For each created object, an "object_on_volume" link is created from the volume on which the
object resides to the object. The key of the link is the exact identifier of the object.

Write locks of the default mode are obtained on the created objects and links except the new
"object_on_volume" links.

Errors

ACCESS_ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

ATTRIBUTE_VALUE_LIMIT_WOULD_BE_EXCEEDED ({nitial_value)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)

If sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION
(new_type_in_sdgs

PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)

SDS_IS_IN_A_WORKING_SCHEMA4d9

SDS_IS PREDEFINEDs(@9

SDS_IS_UNKNOWN ¢d9

TYPE_NAME_IN_SDS_IS DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_nam¢

VALUE_LIMIT_ERRORS (nitial_value)

10.2.15 SDS_GET_NAME

@

@
(©)

4)

(®)
(6)
U]

SDS_GET_NAME (
sds :Sds_designator
)

name : Name
SDS_GET_NAME returns the name of the SaiS
The returned nameameis the key of the "known_sds" link from the SDS directorgds
A read lock of the default mode is obtained on that link.

Errors

ACCESS_ERRORS (the SDS directory, ATOMIC, READ, READ_LINKS)
SDS_IS_PREDEFINEDs(9
SDS_IS_UNKNOWN $dg

-89 -

10.2.16 SDS_IMPORT_ATTRIBUTE_TYPE

@

@

®

@

®)

(6)

™

®
©

(10)

(11

(12)

(13)
(14)

(15)

SDS_IMPORT_ATTRIBUTE_TYPE (

to_sds : Sds_designator,

from_sds : Sds_designator,

type : Attribute_type_nominator_in_sds,
local name :[Name]

)

SDS_IMPORT_ATTRIBUTE_TYPE imports the attribute tyjypefrom the SDSrom_sdsto
the SDSto_sds along with the associated enumeral typetype is an enumeration attribute

type.

If typeis an enumeration attribute type, all its enumeral types are implicitly imported, if nc
already into_sds The implicitly imported enumeral types have the same imagedrasnnsds
but do not have local namestm sds

The operation creates an attribute type in $fJ#_in_sdsn to_sdsassociated withype If
typeis an enumeration attribute type, it also creates an enumeral type in SB&associated
with each enumeral type ¢ype (unless one already exists). For each of the created types i
SDS a "definition" link is created fromo_sdswhose key is the type identifier of the associated

type.
An "of type" link from each new type in SDS to its associated type and its revers
"has_type in_sds" link are created.

If local_nameis supplied, or iftype has a local name ifrom_sds a "named_definition" link
from to_sdsto type_in_sdsand its reverse "named_in_sds" link are created. The key of th
"named_definition"” link idocal_namef supplied, otherwise the local nametgbein from_sds

Each of the three definition mode attributestygfe_in_sdds set to the export mode of the
corresponding type in SDS from_sds

The creation or importation time of each new type in SDS is set to the system time.

The annotation of each new type in SDS is the same as the annotation of the corresponding
in SDS infrom_sds

The new types in SDS reside on the same volunte_asls. Their access control lists are built
using the default atomic ACL and default object owner of the calling process, and the
confidentiality labels and integrity labels are set to be equal to the current confidentiality conte
and integrity context, respectively, of the calling process.

An "object_on_volume" link is created to each new type in SDS from the volume on which
resides. The key of the link is the exact identifier of the new type in SDS.

Read locks of the default mode are obtained on the types in SEinsds Write locks of the
default mode are obtained on the new types in SDS and links (except the ne
"object_on_volume" links).

Errors

ACCESS_ERRORSiom_sds ATOMIC, READ, NAVIGATE)
ACCESS_ERRORS@_sds ATOMIC, MODIFY, APPEND_LINKS)

ACCESS_ERRORS (the type in SDS associated tygbin from_sds ATOMIC, READ,
EXPLOIT_SCHEMA)

-90 -

(16) ACCESS_ERRORS (the type in SDS associated tyghin from_sds ATOMIC, READ,
READ_ATTRIBUTES)

17) ACCESS_ERRORS (the "type" object associated tyjeg ATOMIC, CHANGE,
APPEND_IMPLICIT)

(18) If typeis an enumeration attribute type, for each enumeral type in SDS S associatgdeuith
from_sds

ACCESS_ERRORS (S, ATOMIC, READ, EXPLOIT_SCHEMA)
(19) If typeis an enumeration attribute type, for each enumeral type E associatégpeitbt

already present ito_sds
ACCESS_ERRORS (E, ATOMIC, CHANGE, APPEND_IMPLICIT)

(20) If typeis an enumeration attribute type:
IMAGE_IS_DUPLICATED (enumeral types tfpe to_sd$
1) If to_sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOHpE_in_sds
@2) PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA UPDATE)
23) SDS_IS_IN_A_WORKING_SCHEMAt6_sd3
(24) SDS_IS PREDEFINEDs(@9
25) SDS_IS_UNKNOWN {o_sd$
26) SDS_IS_UNKNOWN from_sd$
@7) TYPE_IS_ALREADY_KNOWN_IN_SDStype to_sd3
28) If local_nameis supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEt¢_ sdslocal_namé
(29) If local_nameis not supplied:
TYPE_NAME_IN_SDS_IS _DUPLICATEt(_sdslocal name ofypein from_sd$
(30) TYPE_IS_UNKNOWN_IN_SDSffom_sdstype
(31) TYPE_NAME_IS_INVALID (local_nam¢

10.2.17 SDS_IMPORT_ENUMERAL_TYPE

(1) SDS_IMPORT_ENUMERAL_TYPE (
to_sds : Sds_designator,
from_sds : Sds_designator,
type : Enumeral_type_nominator_in_sds,
local name :[Name]
)
@ SDS_IMPORT_ENUMERAL_TYPE imports the enumeral typeefrom the SDSrom_sdgo
the SDS0_sds
@®) The operation creates an enumeral type in 8[p8 in_sdsn to_sdsassociated witllype A

"definition” link is created fromo_sdsto type_in_sdsvhose key is the type identifier tfpe
together with its reverse "in_sds" link.

@ An "of _type" link is created fromtype_in_sdsto type together with its reverse
"has_type_in_sds" link.

®) If local_nameis supplied, or itypehas a local name ifmtom_sds a "named_definition" link is
created fronto_sdsto type_in_sdstogether with its reverse "named_in_sds" link. The key of
the "named_definition" link idocal_nameif supplied, otherwise the local name type in
from_sds

(6)
™

®

©

(10)

(11
(12)

(13)

(14

(15)

(16)

(1)
(18)
(19)
(20)
()
(22)
(23)

(24)

(29)

(26)

-91 -

The creation or importation time tfpe_in_sdss set to the system time.

The annotation dfype_in_sdss the same as the annotation of the corresponding type in SDS i
from_sds

type_in_sdgesides on the same volumetassds. Its access control lists are built using the
default atomic ACL and the default object owner of the calling process, and its confidentiali
label and integrity label is set to be equal to the current confidentiality context and integri
context, respectively, of the calling process.

An "object_on_volume" link is created tgpe_in_sdg$rom the volume on which it resides. The
key of the link is the exact identifier tfpe_in_sds

Read locks of the default mode are obtained on the type in Sib@rinsds Write locks of the
default mode are obtained otype_in_sdsand the created links (except the new
"object_on_volume" link).

Errors

ACCESS_ERRORSiom_sds ATOMIC, READ, NAVIGATE)
ACCESS_ERRORS@_sds ATOMIC, MODIFY, APPEND_LINKS)

ACCESS_ERRORS (the type in SDS associated tyghin from_sds ATOMIC, READ,
EXPLOIT_SCHEMA)

ACCESS_ERRORS (the type in SDS associated tygin from_sds ATOMIC, READ,
READ_ATTRIBUTES)

ACCESS_ERRORS (the "type" object associated tyjple ATOMIC, CHANGE,
APPEND_IMPLICIT)

If to_sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOHpE_in_sds

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A_WORKING_SCHEMALt6_sd3
SDS_IS_PREDEFINEDt¢_sd$

SDS_IS_UNKNOWN {o_sd$

SDS_IS_UNKNOWN from_sd$
TYPE_IS_ALREADY_KNOWN_IN_SDStfype to_sd$
TYPE_IS_UNKNOWN_IN_SDSffom_sdstype

If local_names supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEt(_sdslocal_namé

If local_nameis not supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEt¢_sdslocal name ofypein from_sd3}

TYPE_NAME_IS_INVALID (local_namg

10.2.18 SDS_IMPORT_LINK_TYPE

@

SDS_IMPORT_LINK_TYPE (

to_sds : Sds_designator,
from_sds : Sds_designator,
type : Link_type_nominator_in_sds,

local name :[Name]

-92 -

@ SDS_IMPORT_LINK_TYPE imports the link typgype from the SDSfrom_sdsto the SDS
to_sds
@®) All the key attribute types ofype and its reverse link type with all its key attributes, are

implicitly imported, if not already irto_sds The imported link types have the same key
attributes as ifrom_sds The link and the key attribute types implicitly imported do not have
local names assigned to them witton sds

@ The importation of a type (either explicitly or implicitly) results in the creation of a type in SDS
in to_sdsassociated with the imported type, with a "definition” link frivom_sdswvhose key is
the type identifier of the imported type. An "of_type" link from the new type in SDS to the
imported type and its reverse "has_type_in_sds" link are created.

®) If local_names supplied or itypehas a name ifrom_sdsa "named_definition" link is created
from to_sdsto the new link type in SDS associated witlpe together with its reverse
"named_in_sds" link. The key of the "named_definition" linklasal_nameif supplied,
otherwise it is the local name tyjpein the SDSrom_sds

®) Each of the three definition mode attributes of each new type in SDS is set to the export mode of
the corresponding type in SDSfrom_sds

@ The creation or importation time of each new type in SDS is set to the system time.

®) The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS infrom_sds

© The new types in SDS reside on the same volunte asis. Their access control lists are built

using the default atomic ACL and default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

(10) An "object_on_volume" link is created to each new type in SDS from the volume on which it
resides. The key of the link is the exact identifier of the new type in SDS.

(1) Read locks of the default mode are obtained on the types in SEinsds Write locks of the
default mode are obtained on the new types in SDS and links (except the new
"object_on_volume" links).

Errors
(12) ACCESS ERRORS1om_sdsATOMIC, READ, NAVIGATE)
(13) ACCESS_ERRORS@_sds ATOMIC, MODIFY, APPEND_LINKS)
(14) ACCESS_ERRORS (type in SDS associated tyiplein from_sds ATOMIC, READ,
EXPLOIT_SCHEMA)
(15) ACCESS_ERRORS (the type in SDS associated tygin from_sds ATOMIC, READ,
READ_ATTRIBUTES)
(16) For each attribute type in SDS A associated with a key attribute typpeof
ACCESS _ERRORS (A, ATOMIC, READ, EXPLOIT_SCHEMA)
17) ACCESS_ERRORS (the "type" object associated tyjey ATOMIC, CHANGE,
APPEND_IMPLICIT)
(18) For each key attribute type K tyfpenot already present io_sds
ACCESS_ERRORS (K, ATOMIC, CHANGE, APPEND_IMPLICIT)
(19) If type has a reverse link type R not already presettt iads

(20) ACCESS_ERRORS (R, ATOMIC, CHANGE, APPEND_IMPLICIT)

()

(22)

(23)

(24
(29)
(26)
@7
(28)
(29)

(30)

@D

(32

(33)

-93 -

For each key attribute type K1 of R not already presetat isds
ACCESS_ERRORS (K1, ATOMIC, CHANGE, APPEND_IMPLICIT)

If to_sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOHpE_in_sds

If to_sdshas OWNER granted or denied dimk_typehas a reverse link type:
OWNER_PROPAGATION_ERRORS _ON_COMPONENT_CREATION (reverse of

type_in_sdp
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A WORKING_SCHEMAt0_sd3
SDS_IS_PREDEFINED¢_sd3
SDS_IS_UNKNOWN {o_sd3
SDS_IS_UNKNOWN from_sd3}
TYPE_IS_ALREADY_KNOWN_IN_SDSt{pe to_sd3

If local_names supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEt¢_sdslocal_namé

If local_nameis not supplied:
TYPE_NAME_IN_SDS_IS DUPLICATELt¢_sdslocal name ofypein from_sd3}

TYPE_NAME_IS_INVALID (local_nam¢
TYPE_IS_UNKNOWN_IN_SDSffom_sdstype

10.2.19 SDS_IMPORT_OBJECT TYPE

®

@

(©)

4)

(®)

(6)

U]

SDS_IMPORT_OBJECT_TYPE (

to_sds : Sds_designator,

from_sds : Sds_designator,

type : Object_type _nominator_in_sds,
local_name :[Name]

)

SDS_IMPORT_OBJECT_TYPE imports the object tygpe from the SDSfrom_sdsto the
SDSto_sds

The importation of an object type implies the implicit importation of all its ancestor types if nc
already into_sds The attribute and link types applied to the explicitly or implicitly imported
types are not imported, nor is the notion of their application. The object types implicitl
imported do not have a local name assigned to them withiads

The importation of an object type (either explicit or implicit) results in the creation of an obje
type in SDS irto_sdswith a "definition" link fromto_sdswhose key is the type identifier of the
imported type. An "of _type" link from the new object type in SDS to the imported type and it
reverse "has_type_in_sds" link are created.

If local_nameis supplied or if the importedype has a name in the originating SDS, a
"named_definition" link is created fromo_sdsto the new object type in SDS associated with
link_type together with its reverse "named_in_sds" link. The key of the "named_definition
link is local_namdf supplied, otherwise it is the local nametghein from_sds

Each of the three definition mode attributes of each new type in SDS is set to the export mod:
the corresponding type in SDSfrom_sds

The creation or importation time of each new type in SDS is set to the system time.

®

©

(10)

(11

(12)
(13)

(14)

(15)

(16)

@an

(18)

(19)

(20)
(1)
(22)
(23)
(24)
(25

(26)

@7

(28)

(29)

-94 -

The annotation of each new type in SDS is the same as the annotation of the corresponding type
in SDS infrom_sds

The new types in SDS reside on the same volunte_&sls. Their access control lists are built
using the default atomic ACL and default object owner of the calling process, and their
confidentiality labels and integrity labels are set to be equal to the current confidentiality context
and integrity context, respectively, of the calling process.

An "object_on_volume" link is created to each new type in SDS from the volume on which it
resides. The key of the link is the exact identifier of the new type in SDS.

Read locks of the default mode are obtained on the types in SEinsds Write locks of the
default mode are obtained on the new types in SDS and links (except the new
"object_on_volume" links).

Errors

ACCESS_ERRORSiom_sds ATOMIC, READ, NAVIGATE)
ACCESS_ERRORS@_sds ATOMIC, MODIFY, APPEND_LINKS)

ACCESS_ERRORS (the type in SDS associated with /type/ in /from_sds/, ATOMIC, READ,
READ_ATTRIBUTES)

For each object type in SDS S associated with the ancestor types of
ACCESS_ERRORS (S, ATOMIC, READ, EXPLOIT_SCHEMA)

ACCESS_ERRORS (object type in SDS associatedtyitbin from_sds ATOMIC, READ,
EXPLOIT_SCHEMA)

ACCESS_ERRORS (the "type" object associated tyjey ATOMIC, CHANGE,
APPEND _IMPLICIT)

For each ancestor object type Atgibenot already present io_sds
ACCESS_ERRORS(A, ATOMIC, CHANGE, APPEND_IMPLICIT)

If to_sdshas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATIOHpE_in_sds

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS IS IN_A WORKING_SCHEMAt6 sd3
SDS_IS_PREDEFINEDt¢_sd$

SDS IS _UNKNOWN {o_sd$

SDS_IS_UNKNOWN from_sd$

TYPE_ IS ALREADY_KNOWN_IN_SDSt{pe to_sd3

If local_nameis supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEt¢_ sdslocal_namég

If local_nameis not supplied:
TYPE_NAME_IN_SDS_IS _DUPLICATEt(_sds local name ofypein from_sd$

TYPE_IS_UNKNOWN_IN_SDSffom_sdstype
TYPE_NAME_IS_INVALID (local_nam¢

-95 -

10.2.20 SDS_INITIALIZE

@

@

®

@
(®)
(6)

U]
®
©)
(10)
(11
(12)

(13)

SDS_INITIALIZE (
sds : Sds_designator,
name :Name

)
SDS_INITIALIZE establishes the SD&Isas a known SDS by creating a "known_sds" link
with key namefrom the master of the SDS directorysiis

A read lock of the default mode is obtained saisand a write lock of the default mode is
obtained on the created link.

Errors

ACCESS_ERRORSs@ls ATOMIC, CHANGE, APPEND_IMPLICIT)
ACCESS_ERRORS (master of the SDS directory, ATOMIC, MODIFY, APPEND_LINKS)

If sdshas successors or predecessors:
ACCESS_ERRORS (successor or predecesssiipATOMIC, SYSTEM_ACCESS)

LIMIT_WOULD_BE_EXCEEDED (MAX_DEFINITION_NAME_SIZE)
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_KNOWN $d9

SDS_IS_NOT_EMPTY_NOR_VERSIONdS
SDS_IS_PREDEFINEDs{l9

SDS_NAME_IS_DUPLICATE iame

SDS_NAME_IS_INVALID (name

10.2.21 SDS_REMOVE

@

@
®

@

®)
(6)
™

®)

©

(10)

SDS_REMOVE (
sds : Sds_designator

)
SDS_REMOVE removes the SB8sfrom the set of known SDSs.
The "known_sds" link tosds from the SDS directory is deleted. |If that link is the last

composition or existence link teds then the "sds" objectdsis deleted. In that case, the
"object_on_volume" link from the volume on whistiswas residing t@dsis also deleted.

A read lock of the default mode is obtainedsisif it is not deleted; a write lock otherwise.
Write locks of the default mode are obtained on the deleted links except the delet
"object_on_volume" link.

Errors

ACCESS_ERRORS (the SDS directory, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSs@is ATOMIC, CHANGE, WRITE_IMPLICIT)

If the conditions hold for deletion of the "sds" objsdt
ACCESS ERRORSsfls COMPOSITE, MODIFY, DELETE)

If sdshas predecessors or successors:
ACCESS_ERRORS (predecessor or successstpATOMIC, SYSTEM_ACCESS)

OBJECT_HAS_LINKS_PREVENTING_DELETIONs(S
OBJECT_IS_IN_USE_FOR_DELETE(Y

-96 -

a PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
) SDS_IS_IN_A_ WORKING_SCHEMAYdS

1) SDS_IS_NOT_EMPTY_NOR_VERSIONdS

) SDS_IS_PREDEFINEDs(9

) SDS_IS_UNKNOWN ¢dg

10.2.22 SDS_REMOVE_DESTINATION

@ SDS_REMOVE_DESTINATION(
sds : Sds_designator,
link _type : Link_type_nominator_in_sds,

object type :Object_type_nominator_in_sds
)
@ SDS_REMOVE_DESTINATION removes the object type in Sh®ject type in_sds
associated witlobject_typen the SDSsdsfrom the destination object types of the link type in
SDSIink_type_in_sdssssociated withink_typein sds

@®) As a result, the "in_destination_set" link frdmk_type_in_sdgo object_type_in_sdand its
reverse "is_destination_of" link are deleted.

@) If link_type has a reverse Ilink typereverse then reverse is unapplied (see
SDS_UNAPPLY_LINK_TYPE) and the "in_link_set" link existing betwexdmect_type_in_sds
and the "link_type_in_sds" objectverse_link_type in_sdsssociated witlreversein sdsis

deleted.
®) Write locks of the default mode are obtained on the deleted links.
Errors
®) ACCESS ERRORSsfis ATOMIC, READ, NAVIGATE)
™ ACCESS_ ERRORSopject_type_in_sdfATOMIC, MODIFY, WRITE_LINKS)
®) ACCESS_ERRORSifik _type in_sdsATOMIC, MODIFY, WRITE_LINKS)
©) ACCESS ERRORSéverse_link_type_in_sdATOMIC, MODIFY, WRITE_LINKS)
(10) OBJECT_TYPE_IS_NOT_IN_DESTINATION_SETirk type object_typg
(11) PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA _ UPDATE)
(12) SDS IS_IN_A WORKING_SCHEMA4dS
(13) SDS_|IS_PREDEFINEDs(@9
(14) SDS IS _UNKNOWN $d9
(15) TYPE_IS_UNKNOWN_IN_SDSgds link_type
(16) TYPE_IS_UNKNOWN_IN_SDS4qds object_typg

10.2.23 SDS_REMOVE_TYPE

) SDS_REMOVE_TYPE (
sds : Sds_designator,
type :Type_nominator_in_sds
)
@ SDS_REMOVE_TYPE removes from the SB&the type in SDSype_in_sdsssociated with
typein sds

®

@

®)

(6)
0]

®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

@an

(18)

(19)

-97 -

When a link type is removed from an SDS, the type in 88rse_link_type_in_sdssociated
with the reverse typeeverse_typef type(if any) is also removed from that SDS.

If type_in_sdsis the last type in SDS associated wigipe in any SDS, thenype is also
removed. Ifreverse_link_type_in_sdexists and is the last type in SDS associated with
reverse_typen any SDS, themeverse_types also removed. The type identifier of a removed
type is never reassigned.

A type can be removed while there are instances of the type in the object base. Instances o
removed type are not directly affected by this operation: objects, attributes and links retain
type properties of the type. The description of the type is however lost; the implications are:

- noinstances of a removed type can be created;

- attributes of a removed type are inaccessible. They can however still be consulted or rese
their initial value using the system-generated type identifier of the deleted type (s
23.1.2.5);

- links of a removed type can still be navigated through or deleted using the type identifier
the deleted type;

- objects of a removed type can still be accessed as instances of visible ancestor types o
removed type.

The removal of a type in SDS consists of the deletion of the "definition" link and
"named_definition" link (if any) between the SDS and the type in SDS. The deletion of tt
"definition" link may result in the deletion of the type in SDS.

The deletion of a type in SDS also entails the deletion of the "of type" link from the type |
SDS. In the case where this link is the last "of _type" link to the type (i.e. if the last occurren
of the type in SDS is to be deleted) the type is also removed.

In turn, the removal of a type entails the loss of all the typing information held on its associat
type object (such as the "parent_type", "key_attribute”, "reverse" or "enumeral” links startir
from that object) and may imply the deletion of the type itself (if the "of_type" link to be delete
is the last existence link to it and if there are no composition links to it).

For each deleted object, the "object_on_volume" link from the volume on which the delet
object was residing to the deleted object is also deleted. A write lock of the default mode
obtained onsdsand on the deleted objects and links (except the deleted "object_on_volum
links).

Errors

ACCESS_ERRORSs@ls ATOMIC, MODIFY, WRITE_LINKS)

ACCESS_ERRORSype_in_sdsATOMIC, MODIFY, (WRITE_LINKS,
WRITE_IMPLICIT))
If the deletion of a type or type in SDS is implied:
ACCESS_ERRORS (destination object of a link from the type or type in SDS to be deletec
which has an implicit reverse link, ATOMIC, CHANGE, WRITE_IMPLICIT)

If conditions hold for the deletion ¢ype_in_sds
ACCESS_ERRORS3ype_in_sdsCOMPOSITE, MODIFY, DELETE)

ACCESS_ERRORS ("type" object associated wyfie ATOMIC, CHANGE,
WRITE_IMPLICIT)

ACCESS_ERRORSype_in_sdsCOMPOSITE, MODIFY, DELETE)

-08 -

20) If the conditions for the deletion of the "type" object T associatedtyibare satisfied:
21) ACCESS_ERRORS (T, COMPOSITE, MODIFY, DELETE)
@2) If T is an object type, for each parent type P of T:
ACCESS_ERRORS (P, ATOMIC, CHANGE, WRITE_IMPLICIT)
@3) If T is a link type, for each each key attribute type K of T:
ACCESS_ERRORS (K, ATOMIC, CHANGE, WRITE_IMPLICIT)
(24) If T is a link type with a reverse link type R:
25) ACCESS_ERRORS (R, COMPOSITE, MODIFY, DELETE)
26) For each each key attribute type K1 of R:
ACCESS_ERRORS (K1, ATOMIC, CHANGE, WRITE_IMPLICIT)
@7) If T is an enumeration attribute type, for each associated enumeral type E:
ACCESS_ERRORS (E, ATOMIC, CHANGE, WRITE_IMPLICIT)
28) If the deletion of a type or type in SDS is implied:
OBJECT_HAS_LINKS_PREVENTING_DELETION (type or type in SDS to be deleted)
(29) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
(30) SDS_IS IN_A WORKING_SCHEMAHd9
(31) SDS_IS_PREDEFINEDs(9
(32) SDS_IS_UNKNOWN ¢d9
(33) TYPE_HAS DEPENDENCIESs@s type
(34) TYPE_IS_UNKNOWN_IN_SDSgds type

10.2.24 SDS_SET_ENUMERAL_TYPE_IMAGE

@) SDS_SET_ENUMERAL_TYPE_IMAGE (
sds :Sds_designator,
type : Enumeral_type_nominator_in_sds,
image :[Text]
)
@ SDS_SET _ENUMERAL_TYPE_IMAGE sets the image of the enumeral type in SDS
type_in_sdsassociated with the enumeral tyjype in the SDSsdsto the text valuemage if
supplied; ifimageis not supplied, the image tfpe_in_sdsis set to the empty text value.

@®) A write lock of the default mode is obtainedtype_in_sds.
Errors
@ ACCESS_ERRORSs@is ATOMIC, READ, NAVIGATE)
®) ACCESS ERRORSype_in_sds ATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) IMAGE_IS_ALREADY_ASSOCIATED {mage sds typg
@ PRIVILEGE_IS NOT_GRANTED (PCTE_SCHEMA_ UPDATE)
®) SDS _IS_IN_A_WORKING_SCHEMA4d9
© SDS_|IS_PREDEFINEDs(@9
(10) SDS_IS_UNKNOWN ¢d9

a1 TYPE_IS_UNKNOWN_IN_SDSgds type

-99 -

10.2.25 SDS_SET_TYPE_MODES

(1) SDS_SET_TYPE_MODES (
sds : Sds_designator,
type : Object_type _nominator_in_sds | Attribute_type_nominator_in_sds |

Link_type_nominator_in_sds,
usage_mode : [Definition_mode_values],
export_mode : [Definition_mode_values]

)

@ SDS _SET_TYPE_MODES sets the usage mode and export mode of the type in S
type_in_sdsassociated with the typgype in the SDSsdsto the values oftisage_modeand
export_modeespectively, if supplied; if, for either parameter, no value is supplied, then th
corresponding value is left unchanged.

@®) If typeis a link type with a reverse link typeverse the usage mode and export mode of the
link type in sdgreverse_type_in_sdsssociated witleversein sdsare set (or not) in the same
way.

@ Write locks of the default mode are obtained on the modified "type_in_sds" objects.

Errors

®) ACCESS ERRORSs(ls ATOMIC, READ, NAVIGATE)

®) ACCESS_ERRORSype_in_sdsCOMPOSITE, MODIFY, WRITE_ATTRIBUTES)

@ If typehas a reverse link type in SD&/erse_type_in_sds

ACCESS ERRORS¢verse_type_in_sdaTOMIC, MODIFY, WRITE_ATTRIBUTES)

® DEFINITION_MODE_VALUE_WOULD_BE_INVALID (export_modgtypé

©) DEFINITION_MODE_VALUE_WOULD_BE_INVALID (usage_modeype

(10) MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED fype usage_mode

1) MAXIMUM_USAGE_MODE_WOULD_BE_EXCEEDED ffype export_modg

(12) PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

(13) SDS _IS_IN_A WORKING_SCHEMA4d9

(14) SDS_IS_PREDEFINEDs(9

(15) SDS_IS_UNKNOWN ¢d9

(16) TYPE_IS_UNKNOWN_IN_SDSgds type

10.2.26 SDS_SET_TYPE_NAME

) SDS_SET_TYPE_NAME (
sds : Sds_designator,
type : Type_nominator_in_sds,
local name :[Name]
)
@ SDS_SET_TYPE_NAME sets the local name of the type in 88 in_sdsassociated with

the typetypein the SDSsdsto local_name if supplied, and otherwise deletes the local name of
type_in_sdgif any).

@®) If local_nameis supplied, a "named_definition" link is created fraus to type in_sds.
local_names used as the key of the new link.

@ If type_in_sdslready had a local name, the corresponding "named_definition" link is deleted.

®)

(6)
U]

®

©)

(10)

(11
(12)
(13)
(14)
(15)

(16)

@an

-100 -

Write locks of the default mode are obtained on the deleted links (if any) and write locks of the
default mode are obtained on the created links (if any).

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, NAVIGATE)

If type_in_sdslready has a local name:
ACCESS_ERRORSs@is ATOMIC, MODIFY, WRITE_LINKS)

If local_names supplied:
ACCESS_ ERRORSs(ls ATOMIC, MODIFY, APPEND_LINKS)

If type_in_sdslready has a local name:
ACCESS_ERRORSype_in_sdsATOMIC, CHANGE, WRITE_IMPLICIT)

If local_nameis supplied:
ACCESS_ERRORSype_in_sdsATOMIC, CHANGE, APPEND_IMPLICIT)

PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A WORKING_SCHEMAYdS
SDS_IS_PREDEFINEDs(9

SDS_IS_UNKNOWN $d9

TYPE_IS_UNKNOWN_IN_SDSgds type

If local_names supplied:
TYPE_NAME_IN_SDS_IS DUPLICATEgds local_namég

TYPE_NAME_IS_INVALID (local_namg

10.2.27 SDS_UNAPPLY_ATTRIBUTE_TYPE

@

@

®

@

®)
(6)
™
®)
©
(10)
(11

(12

SDS_UNAPPLY_ATTRIBUTE_TYPE (

sds : Sds_designator,
attribute_type : Attribute_type_nominator_in_sds,
type : Object_type_nominator_in_sds | Link_type_nominator_in_sds

)

SDS_UNAPPLY_ATTRIBUTE_TYPE removes the application of the attribute type in SDS
attribute_type_in_sdassociated with the attribute typ#éribute typein the SDSsdsfrom the
type in SDSype_in_sdsssociated with the object or link typgein sds

The "in_attribute_set" link betweetype_in_sdsand attribute_type in_sdsand its reverse
"is_attribute_of" link are deleted.

Write locks of the default mode are obtained on the deleted links.

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, NAVIGATE)
ACCESS_ERRORSype_in_sdsATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSaftribute_type_in_SgATOMIC, MODIFY, WRITE_LINKS)
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)
SDS_IS_IN_A WORKING_SCHEMAYdS

SDS_IS_PREDEFINEDs(9

SDS_IS_UNKNOWN $d9

TYPE_IS_NOT_APPLIED4ds attribute_typetype

(13)

(14

-101 -

TYPE_IS_UNKNOWN_IN_SDSgqds attribute_typé
TYPE_IS_UNKNOWN_IN_SDSgds type

10.2.28 SDS_UNAPPLY_LINK_TYPE

@

@

®

@

®)

(6)
U]
®
©)
(10)
(11
(12)
(13)
(14)
(15)

(16)

SDS_UNAPPLY_LINK_TYPE (
sds : Sds_designator,
link_type : Link_type_nominator_in_sds,
object type : Object_type_nominator_in_sds

)

SDS_UNAPPLY_LINK_TYPE removes the application of the link type in SDS
link_type_in_sdsssociated with the link typenk _typein the SDSsdsfrom the object type in
SDSobject_type_in_sdassociated with the object typbject_typen sds.

The "in_link_set" link betweernobject _type in_sdsand link_type in_sdsand its reverse
"is_link_of" link are deleted.

If link_typehas a reverse link typeverse thenobject_typeis removed from the destination
object types ofreverse (see SDS_REMOVE_DESTINATION) and the "in_destination_set"
link between the link type in SDeverse_link_type_in_sdsssociated witleversein sdsand
object_type_in_sds deleted.

Write locks of the default mode are obtained on the deleted links.

Errors

ACCESS_ERRORSopject_type_in_sg#ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSifik _type in_sdsATOMIC, MODIFY, WRITE_LINKS)
ACCESS ERRORS#éverse_link_type_in_sdATOMIC, MODIFY, WRITE_LINKS)
ACCESS ERRORSsfis ATOMIC, READ, NAVIGATE)
PRIVILEGE_IS_NOT_GRANTED (PCTE_SCHEMA_UPDATE)

SDS IS_IN_A WORKING_SCHEMA4dg

SDS_IS_PREDEFINEDs(9

SDS IS _UNKNOWN $d9

TYPE_IS_NOT_APPLIEDgds link_type object_typg

TYPE_IS _UNKNOWN_IN_SDSgds link_type
TYPE_IS_UNKNOWN_IN_SDSgds object_typg

10.3 SDS usage operations

10.3.1 SDS_GET_ATTRIBUTE_TYPE_PROPERTIES

@

@

SDS_GET_ATTRIBUTE_TYPE_PROPERTIES (

sds : Sds_designator,

type : Attribute_type_nominator_in_sds
)

duplication : Duplication,

value_type : Value_type,
initial_value : Attribute_value

SDS _GET_ATTRIBUTE_TYPE_PROPERTIES returns the duplication, value type identifier
and initial value of the attribute type in SDS identifiectygyein the SDSsds

®

@
(®)

(6)
U]

@

@

®

@
(®)

(6)
U]

@

@

®

@
(®)

-102 -

Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

SDS_IS_UNKNOWN $dg
TYPE_IS_UNKNOWN_IN_SDSgds type

10.3.2 SDS_GET_ENUMERAL_TYPE_IMAGE

SDS_GET_ENUMERAL_TYPE_IMAGE (
sds : Sds_designator,
type :Enumeral_type_nominator_in_sds

image . Text
SDS_GET_ENUMERAL_TYPE_IMAGE returns the imaigeageof the enumeral type in SDS
identified bytypein the SDSsds

Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

SDS_IS_UNKNOWN $d9
TYPE_IS_UNKNOWN_IN_SDS<ds type

10.3.3 SDS_GET_ENUMERAL_TYPE_POSITION

SDS_GET_ENUMERAL_TYPE_POSITION (

sds : Sds_designator,
typel : Enumeral_type_nominator_in_sds,
type2 : Attribute_type_nominator_in_sds
)
position . Natural

SDS_GET_ENUMERAL_TYPE_POSITION returns the positpositionof the enumeral type

in SDS identified bytypelin the SDSsds in the value type of the attribute type in SDS
identified bytype2in sds i.e. the key of the "enumeral” link from the "type" object associated
with type2to the "type" object associated wittpel

Read locks of the default mode are obtained on the "type" and "type_in_sds" objects associated
with typelandtype2in sdsand on the "enumeral” link.
Errors

ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

ACCESS_ERRORS ("type" and "type_in_sds" objects associatedypéhandtype2
ATOMIC, READ, READ_ATTRIBUTES)

-103 -

© ENUMERAL_TYPE_IS _NOT_IN_ATTRIBUTE_VALUE_TYPEtype] type2
(7) SDS_IS_UNKNOWN $d9

® TYPE_IS_UNKNOWN_IN_SDSgds type)

© TYPE_IS_UNKNOWN_IN_SDSgds type2

10.3.4 SDS_GET_LINK_TYPE_PROPERTIES

[} SDS_GET_LINK_TYPE_PROPERTIES (
sds : Sds_designator,
type : Link_type_nominator_in_sds
)
category : Category,

lower_bound : Natural,
upper_bound : Natural,
exclusiveness : Exclusiveness,

stability : Stability,
duplication : Duplication,
key types - Key_types,
reverse : [Link_type_nominator_in_sds]
@ SDS_GET_LINK_TYPE_PROPERTIES returns the category, lower and upper bound

exclusiveness, stability, duplication, key attribute types, and reverse link type (if any) of the lir
type in SDS identified byypein the SDSsds

@®) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds

Errors

@ ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

®) ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

®) SDS _IS_UNKNOWN ¢d9

™ TYPE_IS_UNKNOWN_IN_SDSgds type

10.3.5 SDS_GET_OBJECT_TYPE_PROPERTIES

) SDS_GET_OBJECT_TYPE_PROPERTIES (
sds : Sds_designator,
type : Object_type _nominator_in_sds

contents_type : [Contents_type],

parents : Object_type _nominators_in_sds,
children : Object_type _nominators_in_sds
@ SDS_GET_OBJECT_TYPE_PROPERTIES returns the contents type, parents, and childrer
the object type in SDS identified bypein the SDSsds
@®) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects

associated wittypein sds

Errors
%) ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

- 104 -

®) ACCESS_ERRORS ("type" and "type_in_sds" objects associatedyyweghPATOMIC, READ,
(READ_ATTRIBUTES, READ_LINKS))

©) SDS_IS_UNKNOWN ¢d9

@ TYPE_IS_UNKNOWN_IN_SDSgds type

10.3.6 SDS_GET_TYPE_KIND

@ SDS_GET_TYPE_KIND (
sds : Sds_designator,
type : Type_nominator_in_sds

)
type kind : Type_kind

@ SDS_GET_TYPE_KIND returns the kind of the type in SDS identifietypgin the SDSsds

@) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds
Errors

@ ACCESS_ERRORSsfls ATOMIC, READ, READ_LINKS)

®) ACCESS_ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

®) SDS_IS_UNKNOWN ¢d9

@ TYPE_IS_UNKNOWN_IN_SDSqds type

10.3.7 SDS_GET_TYPE_MODES

) SDS_GET_TYPE_MODES (
sds : Sds_designator,
type : Object_type_nominator_in_sds | Attribute_type_nominator_in_sds |

Link_type_nominator_in_sds

)

usage_mode : Definition_mode_values,
export_mode : Definition_mode_values,
max_usage_mode : Definition_mode_values

@ SDS_GET_TYPE_MODES returns umsage _modeexport_modeand max_usage _modehe
usage mode, export mode, and maximum usage mode, respectively, of the type in SDS
identified bytypein the SDSsds

@®) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds

Errors

@ ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

®) ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

®) SDS _IS_UNKNOWN ¢d9

o TYPE_IS_UNKNOWN_IN_SDSgds type

-105 -

10.3.8 SDS_GET _TYPE_NAME
) SDS_GET_TYPE_NAME (
sds : Sds_designator,
type :Type_nominator_in_sds

name [Name]

@ SDS_GET_TYPE_NAME returns the full type namameof the type in SDS identified kype
in the SDSsds

@®) If no name is associated witypein sdsno value is returned.

@ Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittypein sds
Errors

®) ACCESS_ ERRORSs(ls ATOMIC, READ, READ_LINKS)

®) ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_ATTRIBUTES)

@ SDS_IS_UNKNOWN ¢d9

®) TYPE_IS_UNKNOWN_IN_SDSgds type

10.3.9 SDS_SCAN_ATTRIBUTE_TYPE

@) SDS_SCAN_ATTRIBUTE_TYPE (
sds : Sds_designator,
type : Attribute_type_nominator_in_sds,
scanning_kind : Attribute_scan_kind
)
types : Object_type_nominators_in_sds | Link_type nominators_in_sds
@ SDS_SCAN_ATTRIBUTE_TYPE returns a set of typgpes determined bytype sds and
scanning_kind.
@®) The returned set of types is determined as follows. It is limited to types associated with type:
SDS in the SDSdsand byscanning_kindas follows.
@ - OBJECT: object types to whichtype has been applied by means of
SDS_APPLY_ATTRIBUTE_TYPE.
®) - OBJECT_ALL: object types of whictypeis an attribute type, i.e. the union of the object
types defined by OBJECT and all their descendants.
®) - LINK_KEY: link types of which theypeis a key attribute type.
% - LINK_NON_KEY: link types of which theypeis a non-key attribute type.
®) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated with the returned types in SDS.
Errors
© ACCESS ERRORSs(ls ATOMIC, READ, READ_LINKS)
(10) ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,

READ_ATTRIBUTES)
a SDS_IS_UNKNOWN $dg

- 106 -

12) TYPE_IS_UNKNOWN_IN_SDSgds type

10.3.10 SDS_SCAN_ENUMERAL_TYPE

@) SDS_SCAN_ENUMERAL_TYPE (
sds : Sds_designator,
type : Enumeral_type_nominator_in_sds
)
types : Attribute_type_nominators_in_sds
@ SDS_SCAN_ENUMERAL_TYPE returns a set of enumeration attribute types, determined by
sdsand the enumeral typgpe
@®) The returned set of types is limited to types with an associated type ityB®3n_sdsn the
SDSsdsand to enumeration attribute types with value type contatype
@) Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated with the returned types in SDS.
Errors
®) ACCESS_ERRORSs(@ls ATOMIC, READ, READ_LINKS)
®) ACCESS_ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_LINKS)
™ SDS_IS_UNKNOWN ¢d9
®) TYPE_IS_UNKNOWN_IN_SDSqds type
©) The following implementation-defined error may be raised:

ACCESS_ERRORS ("type" and "type_in_sds" objects associatedypwéh ATOMIC,
READ, READ_LINKS)

10.3.11 SDS_SCAN_LINK_TYPE

) SDS_SCAN_LINK_TYPE (
sds : Sds_designator,
type : Link_type_nominator_in_sds,

scanning_kind : Link_scan_kind

)

types : Object_type_nominators_in_sds | Attribute_type _nominators_in_sds
@ SDS_SCAN_LINK_TYPE returns a set of attribute or object tyypesdetermined bysds
type andscanning_kind.
@®) The returned set of types is determined as follows. It is limited to types with an associated type
in SDStype_in_sdsn the SDSsdsand byscanning_kindas follows.
@ - ORIGIN: object types which have been defined as origin types type by
SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the reverse link type.
®) - ORIGIN_ALL: object types which are valid origins type i.e. the object types as specified
by scanning_kind= ORIGIN, plus all their descendants.
®) - DESTINATION: object types which have been defined as destination typggeby
SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the reverse link type.
@ - DESTINATION_ALL: object types which are valid destinationgygde i.e. the object types

as specified bgcanning_kind= DESTINATION plus all their descendants.

®
©

(10)

(11

(12

(13)
(14)

(15)

-107 -

- KEY: key attribute types diype

- NON_KEY: non-key attribute types oype i.e. attribute types which have been applied to
typeby SDS_APPLY_ATTRIBUTE_TYPE.

Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_LINKS)

SDS_IS_UNKNOWN $dg
TYPE_IS_UNKNOWN_IN_SDSgds type

The following implementation-defined error may be raised:
ACCESS_ERRORS ("type" and "type_in_sds" objects associatedywel ATOMIC,
READ, READ_LINKS)

10.3.12 SDS_SCAN_OBJECT_TYPE

®

@

(©)

4)
(®)
(6)
U]

®)

©)

(10)

(11

SDS_SCAN_OBJECT_TYPE (
sds : Sds_designator,
type : Object_type _nominator_in_sds,
scanning_kind : Object_scan_kind

types : Object_type_nominators_in_sds | Attribute_type_nominators_in_sds |
Link_type_nominators_in_sds

SDS_SCAN_OBJECT_TYPE returns a set of typgsesdetermined byobject_type sdsand
scanning_kind.

The returned set of types is determined as follows. It is limited to types with associated type:
SDStype_in_sdsn the SDSsdsand byscanning_kindas follows.

- CHILD: object types which are children obbject_type

- DESCENDANT: object types which are descendantsbgdct_type
- PARENT: object types which are parentbjfect_type

- ANCESTOR: object types which are ancestorslgéct_type

- ATTRIBUTE: attribute types which have been applied tobject type by
SDS_APPLY_ATTRIBUTE_TYPE.

- ATTRIBUTE_ALL: attribute types ofobject_type i.e. attribute types which have been
applied toobject_typeor to the ancestors object_type

- LINK_ORIGIN: link types which have been applied dbject_type(object_typebecoming
its origin type) by SDS_APPLY_LINK _TYPE or by SDS_ADD_DESTINATION on the
reverse link type.

- LINK_ORIGIN_ALL: link types which haveobject_typeas an origin type, i.e. link types
which have been applied tdject_typeor to its ancestors.

(12)

(13)

(14)

(15)

(16)

(1)

(18)

-108 -

- LINK_DESTINATION: link types whose destination set has been extended to include
object_typeby SDS_ADD_DESTINATION or by SDS APPLY_LINK TYPE on the
reverse link type.

- LINK_DESTINATION_ALL: link types which haveobject_typeas a destination type, i.e.
link types which have been added to the destination sdtjeft typeor to its ancestors.

Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated with the returned types in SDS.

Errors

ACCESS_ERRORSs(ls ATOMIC, READ, READ_LINKS)

ACCESS ERRORS ("type" and "type_in_sds" objects associatedyywdhATOMIC, READ,
READ_LINKS)

SDS_IS_UNKNOWN $dg
TYPE_IS_UNKNOWN_IN_SDS<ds object_typ

10.3.13 SDS_SCAN_TYPES

@

@

®

@

®)
(6)

SDS_SCAN_TYPES (
sds : Sds_designator,
kind :[Type_kind]
)
types : Type_nominators_in_sds
SDS_SCAN_TYPES returns all the types with associated types in SDS in thedSE the
kinds given bykind.

If kind is not supplied, all such types are returned; otherwise all such object types, attribute
types, link types, or enumeral types are returned accordinginasis OBJECT_TYPE,
ATTRIBUTE_TYPE, LINK_TYPE, or ENUMERAL_TYPE respectively.

Read locks of the default mode are obtaineddsand on the "type" and "type_in_sds" objects
associated wittype
Errors

ACCESS_ERRORSsls COMPOSITE, READ, READ_LINKS)
SDS_IS_UNKNOWN $d9

10.4 Working schema operations

10.4.1 WS_GET_ATTRIBUTE_TYPE_PROPERTIES

@

@

WS_GET_ATTRIBUTE_TYPE_PROPERTIES (
type . Attribute_type_nominator
)

duplication : Duplication,
value_type : Value_type,
initial_value : Attribute_value

WS _GET_ATTRIBUTE_TYPE_PROPERTIES returns the duplication, value type identifier,
and initial value of the attribute type in working schema associated with theypg@e the
current working schema.

-109 -

Errors
®) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype

10.4.2 WS_GET_ENUMERAL_TYPE_IMAGE

@ WS_GET_ENUMERAL_TYPE_IMAGE (
type : Enumeral_type_nominator

image . Text
@ WS_GET_ENUMERAL_TYPE_IMAGE returns the imagmage of the type in working
schema associated with the enumeral typein the current working schema.
Errors
@®) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAtypée

10.4.3 WS_GET_ENUMERAL_TYPE_POSITION

@ WS_GET_ENUMERAL_TYPE_POSITION (
typel : Enumeral_type_nominator,
type2 . Attribute_type_nominator
)
position : Natural
@ WS_GET_ENUMERAL_TYPE_POSITION returns the positjwosition of the enumeral type

in working schema associated witypelin the value type of the attribute type in working
schema associated witype2 i.e. the key of the "enumeral” link frotype2to typel

Errors
®) ENUMERAL_TYPE_IS NOT_IN_ATTRIBUTE_VALUE_TYPEtypel type?
@) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAtype)
®) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype?

10.4.4 WS_GET_LINK_TYPE_PROPERTIES

@ WS_GET_LINK_TYPE_PROPERTIES (
type : Link_type_nominator
)
category : Category,

lower_bound : Natural,
upper_bound : Natural,
exclusiveness : Exclusiveness,

stability : Stability,
duplication : Duplication,
key types - Key_types,
reverse : [Link_type_nominator]
@ WS_GET_LINK_TYPE_PROPERTIES returns the category, lower and upper bound

exclusiveness, stability, duplication, key types, and reverse link type (if any) of the link type
working schema associated with the tyyee

Errors
®) ACCESS_ ERRORSype ATOMIC, READ, READ_ATTRIBUTES)

-110 -

@ TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAtype

10.4.5 WS_GET_OBJECT_TYPE_PROPERTIES

@ WS_GET_OBJECT_TYPE_PROPERTIES (
type : Object_type_nominator
)

contents_type : [Contents_type],
parents : Object_type_nominators,
children : Object_type_nominators

@ WS GET_OBJECT_TYPE_PROPERTIES returns the contents type, parents, and children of
the object type in working schema associated with thetiygee
Errors

@) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype

10.4.6 WS_GET_TYPE_KIND

@ WS _GET_TYPE_KIND (
type : Type_nominator

)
type_kind : Type_kind

@ WS_GET_TYPE_KIND returns the kind of the type in working schema associated with the type
typein the current working schema.
Errors

® TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype

10.4.7 WS_GET_TYPE_MODES

@ WS_GET_TYPE_MODES (
type : Type_nominator
)

usage _mode : Definition_mode_values

@ WS _GET_TYPE_MODES returns the usage mode of the type in working schema associated
with the typetypein the current working schema.
Errors

@) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAtype

10.4.8 WS_GET_TYPE_NAME

@ WS _GET_TYPE_NAME (
type :Type_nominator
name [Name]

@ WS_GET_TYPE_NAME returns the first non-null composite naa®eof the type in working
schema, considering the sequence of SDSs in the working schema, associated withtype type
in the current working schema.

@®) If no name is associated witypein the current working schema, no value is returned.

-111 -

Errors
@) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype

10.4.9 WS_SCAN_ATTRIBUTE_TYPE

@) WS_SCAN_ATTRIBUTE_TYPE (
type : Attribute_type_nominator,
scanning_kind : Attribute_scan_kind
)
types : Object_type _nominators | Link_type nominators
@ WS_SCAN_ATTRIBUTE_TYPE returns a set of typégpes determined bytype and
scanning_kind.
@®) The returned set of types is determined as follows. It is limited to types associated with type:
working schema in the working schema of the calling process, asthbying_kindas follows.
@ - OBJECT: object types to whichtype has been applied by means of
SDS_APPLY_ATTRIBUTE_TYPE.
®) - OBJECT_ALL: object types of whictypeis an attribute type, i.e. the union of the object
types defined by OBJECT and all their descendants.
®) - LINK_KEY: link types of which theypeis a key attribute type.
% - LINK_NON_KEY: link types of which theypeis a non-key attribute type.
Errors
®) TYPE_IS _UNKNOWN_IN_WORKING_SCHEMAtype

10.4.10 WS_SCAN_ENUMERAL_TYPE

@ WS_SCAN_ENUMERAL_TYPE (
type : Enumeral_type_nominator
)

types : Attribute_type nominators

@ WS _SCAN_ENUMERAL_TYPE returns a set of enumeration attribute types, determined
the enumeral typgy/pe

@®) The returned set of types is limited to types with an associated type in working schema in
working schema of the calling process, and to enumeration attribute types with value ty
containingtype

Errors
@) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMALtype

10.4.11 WS_SCAN_LINK_TYPE

) WS_SCAN_LINK_TYPE (
type : Link_type_nominator,
scanning_kind : Link_scan_kind
)
types : Object_type _nominators | Attribute_type nominators
@ WS_SCAN_LINK_TYPE returns a set of attribute or object tyigpss determined byypeand

scanning_kind.

-112 -

@®) The returned set of types is determined as follows. It is limited to types with an associated type
in working schema in the working schema of the calling process, arstdmnning_kindas
follows.

@ - ORIGIN: object types which have been defined as origin types type by

SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the reverse link type.

®) - ORIGIN_ALL: object types which are valid origins type i.e. the object types as specified

by scanning_kind= ORIGIN plus all their descendants.

®) - DESTINATION: object types which have been defined as destination typggeby

SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the reverse link type.

@ - DESTINATION_ALL: object types which are valid destinationgygde i.e. the object types

as specified bgcanning_kind= DESTINATION plus all their descendants.

®) - KEY: key attribute types diype

© - NON_KEY: non-key attributes diype i.e. attribute types which have been appliedyjoe

by SDS_APPLY_ATTRIBUTE_TYPE.
Errors
(10) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAt{pe

10.4.12 WS_SCAN_OBJECT TYPE

@) WS_SCAN_OBJECT_TYPE (
object type : Object_type _nominator,
scanning_kind : Object_scan_kind
)
types : Object_type_nominators | Attribute_type_nominators |
Link_type nominators
@ WS_SCAN_OBJECT_TYPE returns a set of typgpes determined byobject_type and
scanning_kind.
@®) The returned set of types is determined as follows. It is limited to types with associated types in
working schema in the working schema of the calling process, asthbying_kinds follows.
@ - CHILD: object types which are children obbject_type
®) - DESCENDANT: object types which are descendantsbggct_type
®) - PARENT: object types which are parentbjfect_type
@ - ANCESTOR: object types which are ancestorslgéct_type
®) - ATTRIBUTE: attribute types which have been applied tobject type by
SDS_APPLY_ATTRIBUTE_TYPE.
©) - ATTRIBUTE_ALL: attribute types ofobject_type i.e. attribute types which have been

applied toobject_typeor to the ancestors object_type

(10) - LINK_ORIGIN: link types which have been applied dbject_type(object_typebecoming
its origin type) by SDS_APPLY_LINK_TYPE or by SDS_ADD_DESTINATION on the
reverse link type.

(11) - LINK_ORIGIN_ALL: link types which haveobject_typeas an origin type, i.e. link types
which have been applied tdject_typeor to its ancestors.

-113 -

(12) - LINK_DESTINATION: link types which have hadbject_typeadded to their destination
object types by SDS_ADD_DESTINATION or by SDS_APPLY_LINK_TYPE on the
reverse link type.

(13) - LINK_DESTINATION_ALL: link types which have hadbject_typeor to its ancestors
added to their destination object types.

Errors
(14) TYPE_IS_UNKNOWN_IN_WORKING_SCHEMAdbject_typg

10.4.13 WS_SCAN_TYPES

@ WS_SCAN_TYPES (
kind :[Type_kind]
)

types : Type_nominators

@ WS_SCAN_TYPES returns all the types of the type kind givekitywith associated types in
working schema in the current working schema.

@) If kind is not supplied, all such types are returned; otherwise all such object types, attribl
types, link types, or enumeral types are returned accordinginasis OBJECT_TYPE,
ATTRIBUTE_TYPE, LINK_TYPE, or ENUMERAL_TYPE respectively.

Errors
) None.

11 Volumes, devices, and archives
11.1 Volume, device, and archiving concepts

11.1.1 Volumes

1) Volume_identifier = Natural
@ Volume_accessibility = ACCESSIBLE | INACCESSIBLE | UNKNOWN
©) Volume_info = Volume_identifier * Volume_accessibility
@) Volume_infos = set of Volume_info
(5) Volume_status ::

TOTAL_BLOCKS : Natural

FREE_BLOCKS : Natural

BLOCK_SIZE : Natural

NUM_OBJECTS : Natural

VOLUME_IDENTIFIER : Volume_identifier
(6) sds system:
@ volume_directory: child type of object with

link
known_volume: (navigate) non_duplicated existence link (volume_identifier) to
volume;

volumes_of: implicit link to common_root reverse volumes;
end volume_directory;

®

©)

(10)

(11

(12)

-114 -

volume: child type of object with
attribute
volume_characteristics: (read) string ;
link
object_on_volume: (navigate) non_duplicated designation link (exact_identifier) to
object;
mounted_on: (navigate) non_duplicated designation link to
device_supporting_volume with
attribute
read_only: (read) boolean ;
end mounted_on;
end volume;

end system;

The volume directory is an administrative object (see 9.1.2); it represents the set of known
volumes, each with a unique volume identifier which is assigned to the volume on creation and
uniquely identifies the volume within the PCTE installation.

The destinations of the "object_on_volume" links from a volume are called the obdiag

on that volume. The value of the "exact_identifier" attribute is the exact identifier of the object
(see 9.1.1). The volumensountedf there is a "mounted_on" link; the destination of the link is
the device that the volume is mounted(see 11.1.3). The "read_only" attribute indicates that
the volume may not be written to (except for usage designation links, see 8.3.3). A known
volume resides on itself; it is the only known volume residing on a volume and it is the first
object created on that volume.

The "volume_characteristics" attribute is an implementation-defined string specifying
implementation-dependent characteristics of the volume.

11.1.2 Administration volumes

@
@

(©)
@

®)

(6)

sds system:

administration_volume: (protected) child type of volume with
link

administration_volume_of: non_duplicated designation link (number) to workstation;
end administration_volume;

end system;

Each administration volume is either the master volume or a copy volume of the administration
replica set. See 17.1.4.

Each administration volume is associated with one or more workstations (the destinations of the
"administration_volume_of" links), and is mounted on a device controlled by one of them.

There is exactly one master administration volume in a PCTE installation. It is the master
volume of the administration replica set (see 17.1.4), and has volume identifier 0. The master
administration volume is part of the initial value of the state (see 8.1).

11.1.3 Devices

@

Device_identifier = Natural

@
(©)

4)
®)

(6)

@
@
®
4)

(®)

(6)
™

®

©

-115-

sds system:

device_supporting_volume: child type of device with
link

mounted_volume: (navigate) non_duplicated designation link to volume;
end device_supporting_volume;

end system;

A device supporting volume is a device (see 12.1) that may have an associated volume,
destination of the "mounted_volume" link, called the volunmnted orthe device.

A device supporting volume resides on the administration volume of the workstation controllir
it.

11.1.4 Archives

Archive_selection = Object_designators | ALL
Archive_status = PARTIAL | COMPLETE
sds system:

archive_directory: child type of object with
link
saved_archive: (navigate) non_duplicated existence link (archive_identifier: natural)
to archive;
archives_of: implicit link to common_root reverse archives;
end archive_directory;

archive: child type of object with
attribute
archiving_time: (read) time;
link
archived_object: (navigate) non_duplicated designation link (exact_identifier) to
object;
end archive;

end system;

The archive directory is an administrative object (see 9.1.2); it represents the set of kno
archives (the destinations of the "saved_archive" links), each with a unique archive identif
which is assigned to the archive on creation and uniquely identifies the archive within the PC
installation.

An archive consists of a set of objects (the destinations of the "archived_object" links), calle
the objectsarchived orthe archive.

The archiving time of an archive is the system time at which objects are saved in the archi
An archive may only be used once to save objects in it.

-116 -

11.2 Volume, device, and archive operations

11.2.1 ARCHIVE_CREATE

@) ARCHIVE_CREATE (
archive_identifier : Natural,
on_same_volume_as : Object_designator,
access_mask : Atomic_access_rights,
)
new_archive : Archive_designator
@ ARCHIVE_CREATE creates a new archimew_archiveresiding on the same volume as the
objecton_same_volume_as
@®) A new "known_archive" link with kegrchive_identifieris created from the archive directory to
new_archive
@ An "object_on_volume" link is created from the volume on whinhsame_volume_assides

to new_archive The key of the link is the exact identifierredw_archive access_masis used

in conjunction with the default atomic ACL and default object owner of the calling process to
define the atomic ACL and the composite ACL which are to be associated with the created
object (see 19.1.4).

®) The labels ohew_archiveare set to the mandatory context of the calling process.

®) Write locks of the default kind are obtainedrew_archiveand the new "known_archive" link.
Errors

) ACCESS_ERRORS (the archive directory, ATOMIC, MODIFY, APPEND_LINKS)

®) ARCHIVE_EXISTS g@rchive_identifiey

©) CONTROL_WOULD_NOT_BE_GRANTEDr(ew_archive

(10) LABEL_IS_OUTSIDE_RANGE few_archivevolume on whiclon_same_volume_assides)

(11) PRIVILEGE_IS NOT_GRANTED (PCTE_CONFIGURATION)

(12) REFERENCE_CANNOT_BE_ALLOCATED

(13) VOLUME_IS_FULL (volume on whiclon_same_volume_assides)

11.2.2 ARCHIVE_REMOVE

&) ARCHIVE_REMOVE (
archive : Archive_designator
)
@ ARCHIVE_REMOVE removes the archiachive from the archive directory by deleting the
"known_archive" link taarchivefrom the archive directory.
@) Write locks of the default kind are obtainedarshiveand the deleted "known_archive" link.
Errors
@ ACCESS_ERRORSafchive ATOMIC, CHANGE, WRITE_IMPLICIT)
®) ACCESS_ERRORSafchive ATOMIC, MODIFY, DELETE)
®) ACCESS_ERRORSfchive ATOMIC, MODIFY, WRITE_LINKS)
% ACCESS_ERRORS (the archive directory, ATOMIC, MODIFY, WRITE_LINKS)

® ARCHIVE_HAS_ARCHIVED_OBJECTSérchive

©
(10)
(11

(12

-117 -

ARCHIVE_IS_UNKNOWN @rchive
OBJECT_IS_IN_USE_FOR_DELETE(chive
OBJECT_IS_INACCESSIBLEafchive ATOMIC)

If the conditions hold for deletion of the "archive" objanthive
PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

11.2.3 ARCHIVE_RESTORE

@

@

®

@
®)
(6)

0]

®
©

(10)

(11

(12)
(13)
(14)

(15)

(16)

@an

ARCHIVE_RESTORE (

device : Device_designator,
archive : Archive_designator,
scope : Archive_selection,

on_same_volume _as : Object_designator

)

restoring_status : Archive_status

ARCHIVE_RESTORE restores a set of objemtgectsspecified byscopeto the volumesolume
on whichon_same_volume_assides from the archivachive.

If scopeis a set of object designators, the specified set of objects to be restored (called
'specified set' in this clause) is the intersection of the set of objects archiaechom and the
set of objects iscope.

If scopeis ALL, the specified set is the set of all the objects archiveatarve
The objects to be restored are taken from the contedesvafe.

The objects and their components are moveblome in an undefined order; as many objects
and their components as possible are restoreddewice and reside omolume

If not all the objects of the specified set can be restored by this operation, as many as pos:¢
are restored anckstoring_statuss set to PARTIAL. If all the objects of the specified set are
restored,restoring_statusis set to COMPLETE. If no objects of the specified set can be
restored, the error condition VOLUME_IS_FULL is raised.

The "archived_object" links frorarchiveto the restored objects are deleted.

For each of the objects which are restoreddiome an "object_on_volume" link with key the
exact identifier of the object is created.

If any of the objects specified to be restored has not been archived or is already restorec
volume then it is not affected.

Write locks of the default mode are obtainedaochiveand on the moved objects and links. A
read lock of the default mode is obtaineddewice

Errors

ACCESS_ERRORSgvice ATOMIC, READ, READ_CONTENTS)
ACCESS_ERRORS (an elementsabpe COMPOSITE, CHANGE, CONTROL_OBJECT)
ARCHIVE_IS_INVALID_ON_DEVICE (device archive

LABEL IS _OUTSIDE_RANGE (an element of the specified set or a component of such an
elementyolume

PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
PROCESS_IS_IN_TRANSACTION

(18)
(19)
(20)

(21)

-118 -

VOLUME_IS_FULL (volume
VOLUME_IS_INACCESSIBLE {¢olumg
VOLUME_IS_READ_ONLY &copge COMPOSITE)
The following implementation-dependent errors may be raised for any object X with a link to an
object ofobjects
OBJECT_IS_INACCESSIBLY_ARCHIVED (X)

VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

11.2.4 ARCHIVE_SAVE

@

@
®
@
®)

(6)

™

®

©

(10)
(11

(12)

(13)
(14)
(15)
(16)

@an

ARCHIVE_SAVE (

device : Device_designator,
archive : Archive_designator,
objects : Object_designators

)

archiving_status : Archive_status
ARCHIVE_SAVE moves a set of objects to the contentdevice
The archivearchiveis updated as follows:
- the archiving time is set to the current system time;

- "archived_object" links are created frarchive to the archived objects and to each of their
components. The keys of the created links are the suffixes of the exact identifier of the
destination objects.

For each archived object, the "object_on_volume" link from the volume on which the object
resides to the object is deleted.

If devicehas insufficient space to hold all the objectsobjectsand their components, the
operation archives as many objects as possibleaastdving_statusis set to PARTIAL. If
devicehas insufficient space to hold any objectsobjectswith their components, the error
condition DEVICE_SPACE_IS_FULL occurs. Otherwisarchiving_status is set to
COMPLETE.

The operation has no effect on objects or components which are already archived, either on the
same archive or on another one.

Read locks of the default mode are obtained on the objects to be archived. Write locks of the
default mode are obtained archiveand ondevice

Errors

ACCESS_ERRORSdevice ATOMIC, MODIFY, WRITE_CONTENTS)
ACCESS_ERRORSychive ATOMIC, MODIFY, APPEND_LINKS)

ACCESS_ERRORS (elementsaijjectsand theircomponents that are to be archived,
ATOMIC, CHANGE, CONTROL_OBJECT)

ARCHIVE_HAS_ ARCHIVED_OBJECTS4drchive

DEVICE_SPACE_IS_FULLdevicg

LABEL_IS_OUTSIDE_RANGE (an element or a component of an elemeotijetts device
OBJECT_ARCHIVING_IS_INVALID (bjects

PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

-119 -

®) PROCESS_IS_IN_TRANSACTION

(19) The following implementation-dependent errors may be raised for any object X with a link to &
object ofobjects
OBJECT_IS_INACCESSIBLY_ARCHIVED (X)
VOLUME_IS_INACCESSIBLE (volume on which X resides)
VOLUME_IS_READ_ONLY (volume on which X resides)

(20) NOTE - It is intended that the space previously occupied by the archived objects be freed.

11.2.5 DEVICE_CREATE

) DEVICE_CREATE (
station : Workstation_designator,
device_type : Device_type_nominator,
access_mask : Atomic_access_rights,
device_identifier : Natural,

device_characteristics : String

)

new_device : Device_designator

@ DEVICE_CREATE creates a devioew_devicef typedevice_typavith a "controlled_device"
link to it from station The value ofdevice identifieris the key of the created link. The
"device_of" reverse link created from the new objedtédiondesignates the workstation which
controls the device. The "device characteristics" attribute nelv_deviceis set to
device_characteristics

@®) device_identifieris a value which uniquely identifies the new device within the devices
controlled bystation Its value is assigned to the "device_identifier" attributeesi_device

@ new_deviceresides on the same volume station (i.e. the local administration volume of
station) and cannot be moved to another volume.

®) access_masis used in conjunction with the default atomic ACL and default object owner of the
calling process to define both the atomic ACL and the composite ACL which are to k
associated with the created object (see 19.1.4).

®) An "object_on_volume" link is created from the administration volume stition to
new_device The created link is keyed by the exact identifienef_device

@ The security labels ofew_deviceand the labels defining its security ranges are set to the
mandatory context of the calling process.

®) Write locks (of the default kind) are obtained mew_deviceand on the new links (except the
new "object_on_volume" link).
Errors

©) ACCESS_ERRORSsfation ATOMIC, MODIFY, APPEND_LINKS)

(10) CONTROL_WOULD_NOT_BE_GRANTEDHew_devicg

(11) DEVICE_CHARACTERISTICS_ARE_INVALID {evice-characteristigs

(12) DEVICE_EXISTS (levice_identifier

(13) LABEL_IS_OUTSIDE_RANGE few_devicgstation

(14) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)

(15) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(16) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

-120 -

an REFERENCE_CANNOT_BE_ALLOCATED
a9 USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("objectlevice_typp
19) WORKSTATION_IS_UNKNOWN tation)

11.2.6 DEVICE_REMOVE

@ DEVICE_REMOVE (
device : Device_designator
)

@ DEVICE_REMOVE removes the device objevicefrom the set of devices of a workstation.
As a result, the device objedevicedoes not represent a physical device and its associated
device identifier can be reused.

@) The "controlled_device" link from the workstationdeviceis deleted. If it is the only existence
link to deviceand there are no composition linksdevice deviceis also deleted. In that case,
the "object_on_volume" link from the volume on whidbvicewas residing taleviceis also

deleted.
@) A write lock (of the default kind) is obtained deviceif it is deleted and on the deleted links
(except the "object_on_volume" link).
Errors
®) ACCESS_ERRORSdevice ATOMIC, MODIFY, WRITE_LINKS)
®) ACCESS_ERRORSsfation ATOMIC, MODIFY, WRITE_LINKS)
@ If conditions hold for the deletion afevice
® ACCESS_ERRORSevice COMPOSITE, MODIFY, DELETE)
©) For each origin X of an implicit link tdevice
ACCESS_ERRORS (X, ATOMIC, CHANGE, WRITE_IMPLICIT)
(10) For each atomically stabilizing link L aevice
ACCESS_ERRORS (destination of L, ATOMIC, CHANGE, STABILIZE)
(11) For each compositely stabilizing link L dévice
ACCESS_ERRORS (destination of L, COMPOSITE, CHANGE, STABILIZE)
(12) DEVICE_IS_IN_USE device
(13) DEVICE_IS_UNKNOWN ¢evice
(14) If conditions hold for the deletion afevice

OBJECT_HAS_LINKS_PREVENTING_DELETIONdgvice
OBJECT_IS_IN_USE_FOR_DELETHE#vice

(15) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

(16) NOTE - This operation prevents further use of the device.

11.2.7 LINK_GET_DESTINATION_ARCHIVE

) LINK_GET_DESTINATION_ARCHIVE (
origin : Object_designator,
link : Link_designator

)

archive_identifier : Archive_identifier

-121 -

@ LINK_GET_DESTINATION_ARCHIVE returns the archive identifier of the destination object
of the direct outgoing linknk of the objecbrigin.

@®) A read lock of default mode is obtainedlok.
Errors

@ ACCESS_ERRORSofigin, ATOMIC, READ, READ_LINKS)

®) OBJECT_IS_NOT_ARCHIVED (destination objectlwfk)

11.2.8 VOLUME_CREATE

) VOLUME_CREATE (
device : Device_supporting_volume_designator,
volume_identifier : Natural,
access_mask : Atomic_access_rights,
volume_characteristics : String
)
new_volume : Volume_designator
@ VOLUME_CREATE creates a new volunmew_volumeand mounts it on the devidevice

new_volumeesides on itself.

@®) A new "known_volume" link with kewolume_identifieris created from the master of the
volume directory tamew_volume

@ A "mounted_on" link with "read_only" attribute setfadse and its reverse are created between
new_volumenddevice

®) An "object_on_volume" link is created fromew_volumeo itself. The key of the link is the
exact identifier ofnew_volume access_maslks used in conjunction with the default atomic
ACL and default object owner of the calling process to define the atomic ACL and th
composite ACL which are to be associated with the created object (see 19.1.4).

®) The labels of the volume and the labels defining its security ranges are set to the manda
context of the calling process. Each security range of the created volume must lie within f
corresponding security rangedsvice(see 20.1.5).

™ The "volume_characteristics" attributeradw_volumes set tovolume_characteristics

®) Write locks of the default mode are obtainednew_volumeand the new links (except the new
"object_on_volume" link).
Errors

© ACCESS ERRORSevice ATOMIC, MODIFY, EXPLOIT_DEVICE)

(10) ACCESS_ ERRORS (the directory of volumes, ATOMIC, MODIFY, APPEND_LINKS)

(11) CONTROL_WOULD_NOT_BE_GRANTEDr(ew_versioh

(12) DEVICE_IS_BUSY (evice volume_identifiex

(13) DEVICE_IS_UNKNOWN @evicé

(14) LABEL_IS_OUTSIDE_RANGE fiew_volumgdevice

(15) LIMIT_WOULD_BE_EXCEEDED (MAX_KEY_VALUE)

(16) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

a7 PRIVILEGE_IS NOT_GRANTED (PCTE_CONFIGURATION)

(18) PROCESS_IS_IN_TRANSACTION

(19)
(20)

()

-122 -

REFERENCE_CANNOT_BE_ALLOCATED
VOLUME_EXISTS {olume_identifier

NOTE - The new volume may need toibiialized by a system tool before this operation is called.

11.2.9 VOLUME_DELETE

@

@

®

@
®)
(6)
0]

®
©)
(10)
(11

(12)

(13)
(14)
(15)
(16)
a7)

(18)

VOLUME_DELETE (
volume : Volume_designator
)

VOLUME_DELETE unmounts the volumeolume and deletes the "known_volume" link to
volumefrom the master of the volume directory and the "mounted_volume" link from the device
on whichvolumeis mounted.

volumemust be the only object residing ealume and there must be only the following three
links fromvolume

- the reverse link of the "known_volume" link¥olumefrom the volume directory;
- the "object_on_volume" link fromolumeto itself;
- the "mounted_on" link fromolume

Write locks (of the default kind) are obtained wolumeand the deleted links (except the
"object_on_volume" link); however the locks salumeand on the links fronvolumedo not
prevent the unmounting of the volume.

Errors

ACCESS_ERRORSdevice ATOMIC, MODIFY, EXPLOIT_DEVICE)
ACCESS_ERRORS (the volume directory, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORS/plume ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORS/plume ATOMIC, CHANGE, WRITE_IMPLICIT)

If the conditions hold for deletion of the "volume" objgotume
ACCESS_ERRORSvflume ATOMIC, MODIFY, DELETE)

PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
PROCESS _IS_IN_TRANSACTION
VOLUME_HAS_OTHER_LINKS golumg
VOLUME_HAS_OTHER_OBJECTSvplumg
VOLUME_IS_INACCESSIBLE yolumg
VOLUME_IS_UNKNOWN (/olume

11.2.10 VOLUME_GET _STATUS

@

@
(©)

4)

VOLUME_GET_STATUS (
volume : Volume_designator
)

status : Volume_status
VOLUME_GET_STATUS returns information about the mounted voluoleme as follows.
- TOTAL_BLOCKS:I s the total number of blocks of data availablevolume.
- FREE_BLOCKS is the number of blocks of data which are fre@bhme

-123 -

®) - BLOCK_ SIZEis the size of a block of data @nlume in octets.
®) - NUM_OBJECTS is the number of objects currently residingaame
) - VOLUME_IDENTIFIER is the volume identifier ofolume.
®) A read lock of the default mode is obtainedvoiume
Errors
©) ACCESS_ERRORSvflume ATOMIC, READ, READ_ATTRIBUTES)
10 VOLUME_IS_INACCESSIBLE yolumé
@ VOLUME_IS_UNKNOWN (olumeg

11.2.11 VOLUME_MOUNT

& VOLUME_MOUNT (
device : Device_supporting_volume_designator,
volume_identifier : Volume_identifier,
) read_only : Boolean

@ VOLUME_MOUNT causes the volumeolumeidentified byvolume_identifieto be mounted

on the devicelevice
@) The operation creates a "mounted_on" link framlumeto device with "read_only" attribute set

to read_only and its reverse "mounted_volume" link.
@ A lock of external and internal mode READ_SEMIPROTECTED is establishedwoe
®) Write locks (of the default kind) are obtained on the created links.

Errors
®) ACCESS_ERRORSJevice ATOMIC, MODIFY, EXPLOIT_DEVICE)
@ ACCESS_ERRORSvflume ATOMIC, READ, NAVIGATE)
®) DEVICE_IS_BUSY (evice
© DEVICE_IS_UNKNOWN ¢evice
(10) LIMIT_WOULD_BE_EXCEEDED (MAX_MOUNTED_VOLUMES)
(1) PROCESS IS _IN_TRANSACTION
(12) RANGE_IS_OUTSIDE_RANGE (volume associated witiume device
(13) VOLUME_CANNOT_BE_MOUNTED_ON_DEVICE\olume device
(14) VOLUME_IS_ALREADY_MOUNTED {olumg
(15) VOLUME_IS_UNKNOWN (volume
(16) NOTE - When appropriate, the operation causes the physical mounting of the corresponding physical volume

the corresponding physical device.rdad_onlyis true then the physical volume is mounted for reading only.

11.2.12 VOLUME_UNMOUNT

(1) VOLUME_UNMOUNT (
volume : Volume_designator
)

@ VOLUME_UNMOUNT causes the volumalumeto be unmounted.

®

@

®)
(6)
™
®)
©
(10)

(11

12

- 124 -

The "mounted_on" link fromvolumeto the devicedevice on which volumeis mounted is
deleted.

Write locks (of the default kind) are obtained on the volume and on the deleted link; however
the locks on the volume and on the link from that object do not prevent the unmounting of the
volume.

Errors

ACCESS_ERRORSJevice ATOMIC, MODIFY, EXPLOIT_DEVICE)
ACCESS_ERRORS/plume ATOMIC, READ, NAVIGATE)
PROCESS_IS_IN_TRANSACTION
VOLUME_HAS_OBJECTS_IN_USEvplume
VOLUME_IS_ADMINISTRATION_VOLUME (volumg
VOLUME_IS_INACCESSIBLE yolumg

VOLUME_IS_UNKNOWN (volumg

Files, pipes, and devices

12.1 File, pipe, and device concepts

@

@
®
@
®)
(6)
™
®

©)

(10)

(11
(12)
(13)
(14)

(15)

Open_contents ::
OPEN_OBJECT_KEY : Natural
CURRENT_POSITION: Current_position

Current_position :: Token

Contents_handle :: Token

Position_handle :: Token

Contents_access_mode = READ_WRITE | READ_ONLY | WRITE_ONLY | APPEND_ONLY
Seek_position = FROM_BEGINNING | FROM_CURRENT | FROM_END

Set_position = AT_BEGINNING | AT_POSITION | AT_END

File = seq of Octet
represented by file

Pipe = seq of Octet
represented by pipe

Device = seq of Octet
represented by device

Control_data = seq of Octet

Positioning_style = SEQUENTIAL | DIRECT | SEEK

sds system:

positioning: (read) enumeration (SEQUENTIAL, DIRECT, SEEK) := SEQUENTIAL;

file: child type of object with
contents file;
attribute
contents_size: (read) natural ;
positioning;
end file;

(16)

@an

(18)

(19)

(20)

(21)

(22)

(23)

(24)

(25)

(26)

@7

(28)

(29)

(30)
(1)

(32

-125 -

pipe: child type of object with
contents pipe;
end pipe;
device: child type of object with
contents device;
attribute
device_characteristics: (read) string ;
positioning;
link
device_of: (navigate) reference link to workstation reverse controlled_device;
end device;

end system;

The contents of a file, pipe, or device may be accessed by a process as a sequence of octets
openedoy the process. The file, pipe, or device is then callezpan object

The opening of a file, pipe, or device by a process is represented by an "open_object" link fr
the process to the file, pipe, or device, and an "opened_by" link from the file, pipe or device
the process.

The "open_object_key" key attribute of the "open_object" link uniquely identifies the open obje
among the other objects opened by the process.

The opening of an object's contents and the operation
CONTENTS_GET_HANDLE_FROM_KEY result in the creation atantents handlewhich is

an implementation-dependent reference to the open contents of an object. A separate
contents value exists for each process that opens a particular contents. The open contents co
of the following:

- An open object kewhich is the key of an "open_object" link to the open object.

- A current positionwhich specifies one octet of the sequence within the logical sequence ¢
octets. The position of the first octet is called FIRST, and of the last octet is called LAST.
current position can be shared by several open contents.

The "device_characteristics" attribute of a device is a string with an implementation-define
syntax specifying implementation-dependent characteristics of the device.

The "positioning" attribute of files and devices can be set only by
CONTENTS_SET_PROPERTIES. It is defined as follows:

- SEQUENTIAL indicates that the current position can be changed only by writing or readir
octets in a sequential way.

- DIRECT indicates that the current position can be changed either as by SEQUENTIAL or |
means of a previously saved position, represented by an implementation-de pesdent
handle

- SEEK indicates that the current position can be changed either as by DIRECT or by an off
from another position.

The contents of a pipe is always accessed sequentially.
The contents size of a file is 0O if the file is empty and otherwise LAST - FIRST + 1.

The "open_object” link has an "opening_mode" attribute which defines how the current positi
is updated by the contents operations. Let CP be the current position, amth€mpesition of

-126 -

the nth octet after the current position. An operation is allowed for any opening mode unless
otherwise stated below.

(33) In READ_WRITE opening mode:

(34) - opening the contents by CONTENTS_OPEN sets CP to FIRST,;

(35) - successfully reading N octets by CONTENTS_READ returns the octets at positions CP,
CP+1, ... CP+N-1, and changes CP to CP+N;

(36) - successfully writing N octets by CONTENTS_WRITE replaces or adds octets at positions
CP, CP+1, ... CP+N-1, and changes CP to CP+N; and if LAST < CP+N, changes LAST to
CP+N.

@37) In READ_ONLY opening mode:

(38) - opening the contents with CONTENTS_OPEN sets CP to FIRST,;

(39) - successfully reading N octets by CONTENTS_READ returns the octets at positions CP,

CP+1, ... CP+N-1, and changes CP to CP+N. For pipesreamtonce devicese.g.
keyboards, the sequence of octets is changed to identify as FIRST the new current position.
Which devices are read-once is implementation-defined.

(40) - CONTENTS_WRITE and CONTENTS_TRUNCATE are not allowed.

(41) In WRITE_ONLY opening mode:

(42) - opening the contents by CONTENTS_OPEN sets CP to FIRST;

(43) - CONTENTS_READ is not allowed;

(44) - successfully writing N octets by CONTENTS_WRITE replaces or adds octets at positions
CP, CP+1, ... CP+N-1, and changes CP to CP+N; and if LAST < CP+N, changes LAST to
CP+N.

(45) In APPEND_ONLY opening mode:

(46) - opening the contents by CONTENTS_OPEN sets CP to LAST+1;

@7) - CONTENTS_READ is not allowed;

(48) - successfully writing N octets by CONTENTS_WRITE sets CP to LAST+1, adds octets at
positions LAST+1, LAST+2, ..., LAST+N, and changes LAST to LAST+N;

(49) - CONTENTS_SET_POSITION, CONTENTS_SEEK, and CONTENTS_TRUNCATE are not
allowed.

(50) In READ_ONLY, WRITE_ONLY and READ_WRITE opening modes:

(51) - if positioning is DIRECT or SEEK, positioning with CONTENTS_SET_POSITION sets CP
to a position identified by a position handle;

(52) - if positioning is SEEK, positioning with CONTENTS_SEEK sets CP to a position identified

by an offset from another position.
(53) Pipes can be opened only in READ_ONLY or APPEND_ONLY mode.

(54) The "open_object" link has an "inheritable" attribute; if itrise, then a link of the same type,
key, non-key system attributes, and destination object is created from any process created by the
process origin of the link.

(55) The "open_object" link has a "non_blocking_io" attribute which defines the behaviour of the
operations CONTENTS_READ and CONTENTS_WRITE. This property is alivagsfor a

(56)

(67)

(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

-127 -

file, but istrue for a pipe or a device only if it supports non-blocking input-output, i.e. a read o
write operation does not wait until all data can be read or written, but reads or writes as muct
it can. If it istrue, then the destination pipe or device is said tadreblocking(for the opening
process).

If an "open_object” link is inheritable, the associated contents handle is duplicated in the cf
process. As a consequence, the parent and child process share the current position.

The effect of changing the current position by the operations CONTENTS_ REALC
CONTENTS_WRITE, CONTENTS_TRUNCATE, CONTENTS_SEEK, and
CONTENTS_SET_POSITION is visible to all processes sharing that current position.

NOTES

1 The "open_object" links keyed by 0, 1, and 2 are caltaddard inputstandard outpytandstandard error
respectively. Conventionally, standard input is used by the process for the reading of commands or input d
standard output is used for the output of data, and standard error is used for the output of error diagnostics.

2 After creating a process, an "opened_object" link is created for each "open_object” link which has the inherite
property set to true. The designated object is however not open until the process is started: the starting of the pr
creates a link of type "open_by" from the designated object to the process.

3 In APPEND_ONLY opening mode, the current position is always LAST + 1. Several processes can append to
same file, pipe, or device and therefore concurrently modify the LAST position subject to locking rules.

4 On pipes and some kinds of devices (e.g. keyboards), the reading of a sequence of octets deletes the octe
sequence of octets read is no longer readable and the new current position identifies as FIRST the next unread
in the sequence. Several processes can concurrently read the same pipe or device in this way.

5 There are various situations allowing one or more contents handles to be associated with the same object in s
way that the CONTENTS_READ, CONTENTS_WRITE and CONTENTS_TRUNCATE operations performed or
the two contents handles may interfere:

- two contents handles opened within the context of the same activity, either within the same process or wit
different processes;

- contents handles obtained from objects locked within concurrent activities but with compatible locks.

6 An application needing to manage such interferences without using separate activities and appropriate locks |
use its own synchronization mechanisms.

7 The contents of pipes and devices are not affected by transaction rollback.

12.2 File, pipe, and device operations

12.2.1 CONTENTS_CLOSE

@

@
®

@

CONTENTS_CLOSE (
contents : Contents_handle
)

CONTENTS_CLOSE deletes the contents handle contents, releasing any associated resourc

The "open_object" link keyed by the open object keycoftentsand its complementary
"opened_by" link (see 12.2.6) are deleted.

Errors
CONTENTS_IS _NOT_OPEN:bntent}

-128 -

12.2.2 CONTENTS_GET_HANDLE_FROM_KEY

@ CONTENTS_GET_HANDLE_FROM_KEY (
open_object_key : Natural

contents : Contents_handle
@ CONTENTS_GET_HANDLE_FROM_KEY returns igontentsthe contents handle of the
calling process represented by the "open_object'lilkkwith keyopen_object_key
Errors
@®) LINK_DOES_NOT_EXIST (calling procesbnk)

12.2.3 CONTENTS_GET_KEY_FROM_HANDLE

@ CONTENTS_GET_KEY_FROM_HANDLE (
contents : Contents_handle
)

open_object key : Natural

@ CONTENTS_GET_KEY_FROM_HANDLE returns mwpen_object_kethe "open_object_key"
key attribute of the "open_object" link associated with the contents heomtlents

Errors
®) CONTENTS_IS_NOT_OPENcOntent3

12.2.4 CONTENTS_GET_POSITION

(1) CONTENTS_GET_POSITION (
contents : Contents_handle
)

position : Position_handle

@ CONTENTS_GET_POSITION returns osition a position handle representing the current
position ofcontents
Errors

@®) CONTENTS_IS_NOT_OPENcOntent$

@) If contentss a pipe, or itontentss a file or a device with positioning SEQUENTIAL:

CONTENTS_OPERATION_IS_INVALID ¢ontenty

12.2.5 CONTENTS_HANDLE_DUPLICATE

[} CONTENTS_HANDLE_DUPLICATE (
contents : Contents_handle,
new_key : [Natural],
inheritable : Boolean

)
new_contents : Contents_handle
@ CONTENTS_HANDLE_DUPLICATE creates a new open contents for the calling process and
the object associated wittontentsand returns a contents handle identifying méw_contents
A new "open_object" link from the calling process to the object identifiedooyents and a
complementary "opened_by" link, are created.

®

@

®)
(6)
™
®)

-129 -

The "inheritable" attribute of the new "open_contents" link is setheritable The key of the
new "open_object” link is set to is setnnew_key if provided, and otherwise to an unused
implementation-defined value. The "opening_mode" and "non_blocking_io" attributes of tt
new "open_object" link are set to the same values as for the "open_object” link from the calli
process associated witbhntents

The new open contents shares the current positioargénts

Errors

CONTENTS_IS_NOT_OPENc6Ontents

LIMIT_ WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS)

LIMIT_ WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS PER_PROCESS)
OPEN_KEY_IS_INVALID (new_key

12.2.6 CONTENTS_OPEN

@

@

®

@

®)
(6)

0]

®

©)

(10)

(11
(12)
(13)

(14)

CONTENTS_OPEN (

object : File_designator | Pipe_designator | Device_designator,
opening_mode : Contents_access_mode,
non_blocking_io : Boolean,
inheritable : Boolean
)
contents : Contents_handle

CONTENTS_OPEN opens the contents affject in the opening mod®pening_modeand
returns a contents handle for itdantents

An "open_object" link is created from the calling processhjectwith opening mode set to
opening_modejon-blocking io set taon_blocking_ipand inheritable set ioheritable

An "opened_by" link is created with an implementation-dependent key dlgect to the
calling process, complementary to the created "open_object” link.

If opening_modés READ_ONLY, a read lock of the default mode is obtainedlgact.

If opening_modeés WRITE_ONLY, READ_WRITE or APPEND_ONLY, a write lock of the
default mode is obtained amject.

After this operation, the object is operated on by the current activity and the lock establishec
not released before the contents is closed (see 16.1.8).

Errors
If opening_modées READ_ONLY or READ_WRITE:
ACCESS_ERRORSopject ATOMIC, READ, READ_CONTENTS)

If opening_modées WRITE_ONLY or READ_WRITE:
ACCESS_ERRORSobject ATOMIC, MODIFY, WRITE_CONTENTS)

If opening_modes APPEND_ONLY
ACCESS_ERRORSopject ATOMIC, MODIFY, APPEND_CONTENTS)

LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS)
LIMIT_WOULD_BE_EXCEEDED (MAX_OPEN_OBJECTS_PER_PROCESS)
NON_BLOCKING_IO_IS_INVALID (object non_blocking_id
OPENING_MODE_IS_INVALID pbject opening_mode

(15)

-130 -

STATIC_CONTEXT_IS_IN_USEdbjec)

12.2.7 CONTENTS_READ

®

@

(©)

4)

(®)
(6)

U]

®)

©)

(10)
(11
(12)

(13)

(14)
(15)

(16)

CONTENTS_READ (
contents : Contents_handle,
size : Natural

)

data : Unstructured_contents

CONTENTS_READ reads a sequencestde octets fromcontentsat the current position and
returns it indata, if available. If there are less thaizeoctets but at least one octet from the
current position to LAST inclusive, the operation returndatathat sequence of octets.

The current position is set to the position after the last read octet.

If contentsis a pipe or a read-once device, the position after the last read octet is identified as
FIRST after the operation.

If there are no octets available for reading:
- if contentds a non-blocking pipe or device, the operation fails.

- if contentsis a blocking device or a blocking pipe for which a contents handle is open in
APPEND_ONLY mode, then the operation waits until some octets are available for reading.
If, in the case of a pipe, the last contents handle open in APPEND_ONLY mode is closed
while the operation is waiting, an empty sequence of octets is returned.

- if contentds a file,datais set to the empty sequence.

Errors

CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined bgontents ATOMIC)
CONTENTS_IS_NOT_OPENc6ntents

CONTENTS_OPERATION_IS_INVALID ¢ontenty

DATA_ARE_NOT_AVAILABLE (content}

INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined bygntents
ATOMIC)

OBJECT_IS_INACCESSIBLE (object determineddnntents ATOMIC)
PIPE_HAS_NO_WRITERScontent3

VOLUME_IS_INACCESSIBLE (volume on which object determinedcbhytentsesides,
ATOMIC)

12.2.8 CONTENTS_SEEK

@

@

CONTENTS_SEEK (

contents : Contents_handle,
offset . Integer,
whence : Seek_position

)

new_position : Natural

CONTENTS_SEEK sets the current positioncohtentsto a position determined mffsetand
whenceand returns the new current position as an offset from FIRST.

®

@
®)
(6)
0]
®

©)

(10)
(11
(12)

(13)

-131 -

If contentgs a file or device which has the SEEK "positioning" property, the current position i
set to a position defined as follows:

- if whencas FROM_BEGINNING, the new position is FIRSToffset

- if whencas FROM_CURRENT, the new position is the current positiaffset
- if whencas FROM_END, the new position is LASToffset+ 1.

The resulting positiosannot be smaller than FIRST.

The resulting positioRP can be greater than LAST. In this case, if subsequent writing occur:
LAST and the "contents_size" attribute of the file are set to RP + number of written octets. T
octets which are between the previous LAST position and RP are returned as octets with
value 0 by subsequent calls of CONTENTS_READ. However, the file remains unchanged if
CONTENTS_WRITE occurs at the new RP position.

If contentsis a file or a device, the new value of the current position, offset from the beginnin
of the file, is returned inew_position

Errors

CONTENTS_IS_NOT_OPENcOntent$
CONTENTS_OPERATION_IS_INVALID ¢ontent$
OBJECT_IS_INACCESSIBLE (object determineddnpntents ATOMIC)
POSITION_IS_INVALID (resulting position)

12.2.9 CONTENTS_SET_POSITION

@

@

®

@

®)
(6)
™
®)

CONTENTS_SET_POSITION (

contents : Contents_handle,
position_handle : Position_handle,
set_mode : Set_position

)

CONTENTS_SET_POSITION sets the current positiocmftentsto a position determined by
set_modeandposition_handle

If set_ modas AT_BEGINNING or AT_END, the current position obntentsis set to FIRST
or LAST + 1 respectively.

If set_ modas AT_POSITION, the current position ocbntentss set to the position represented
by position_handle which must have been previously obtained by a call of
CONTENTS_GET_POSITION ocontents

Errors

CONTENTS_IS_NOT_OPENcOntent$
CONTENTS_OPERATION_IS_INVALID ¢ontent$
OBJECT_IS_INACCESSIBLE (object determineddnntents ATOMIC)
POSITION_HANDLE_IS_INVALID (position_handlecontent$

-132 -

12.2.10 CONTENTS_SET_PROPERTIES

@) CONTENTS_SET_PROPERTIES (
contents : Contents_handle,
positioning : Positioning_style
@ CONTENTS_SET_PROPERTIES sets the positioning of the open file or device determined by
contentgo positioning
@) If contentdetermines a file, its positioning can be changed only if the file is empty.
Errors
@ If contentsdetermines a file:
CONTENTS_IS_NOT_EMPTYdontent$
®) CONTENTS_IS_NOT_OPEN:Ontent$
®) If contentsdetermines a pipe, or a file or device open in mode READ_ONLY:
CONTENTS_OPERATION_IS_INVALID ¢ontent$
@ OBJECT_IS_INACCESSIBLE (object determineddpntents ATOMIC)
®) POSITIONING_IS_INVALID (contentspositioning
©) NOTE — The change of properties is made on behalf of the activity in which the contents was opened.

12.2.11 CONTENTS_TRUNCATE

) CONTENTS_TRUNCATE (
contents : Contents_handle
)

@ CONTENTS_TRUNCATE truncateontentdrom the current position to the end.

@®) The "contents_size" attribute obntentds set to indicate the new size.

@ LAST is reset to one less than the current position, which is unchanged, except when the current
position is FIRST, in which case LAST is undefined and the file is empty.

®) This operation applies only to files.
Errors

®) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents ATOMIC)

™ CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined bgontents ATOMIC)

@® CONTENTS_IS_NOT_FILE_CONTENTSOntent}

© CONTENTS_IS_NOT_OPENc6ntent$

(10) CONTENTS_OPERATION_IS_INVALID ¢ontent$

(11) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined bygntents
ATOMIC)

12) INTEGRITY_WOULD_BE_VIOLATED (object determined yontents ATOMIC)

(13) OBJECT_IS_INACCESSIBLE (object determineddpntents ATOMIC)

(14) VOLUME_IS_FULL (volume containing object determineddmntent$

(15) VOLUME_IS_INACCESSIBLE (volume containing object determinedcbgitents ATOMIC)

(16) NOTE - CONTENTS_TRUNCATE can affect the size of a file while other operations are accessing it.

-133 -

12.2.12 CONTENTS_WRITE

@

@

®

@

®)

(6)
0]

®

©)

(10)

(11

(12)

(13)

(14)

CONTENTS_WRITE (

contents : Contents_handle,

data : Unstructured_contents
)

actual _size : Natural

CONTENTS_WRITE writes some or all of a sequence of oclatato contentsat the current
position, and returns the number of octets actually written.

If contentsis a file with opening mode READ_WRITE, WRITE_ONLY, or APPEND_ONLY
and if writing to the file would not cause its size to exceed the MAX_FILE_SIZE, the sequent
of octetsdata is written from the current position, and the current position is changed to th
position following the last written octet. The contents sizeooitentss set to indicate the new
size.

If contentsis a pipe with opening mode APPEND_ONLY and if writing to the pipe would not
cause its size to exceed MAX_PIPE_SIZE, the sequence of aletietss written from the
position LAST + 1, and the current position is changed to the position following the last writte
octet.

If contents is a device with opening mode READ_WRITE, WRITE_ONLY, or
APPEND_ONLY and if writing to the device would not cause its size to exceed any devic
dependent maximum size limit, the sequence of odtesis written from the current position,
and the current position is changed to the position following the last written octet.

If the available space does not allow the wholdat&to be written tacontents:

- if contentsis a file and at least one octet can be written, as many octets as possible
written;

- if contentsis a file and no octet can be written (e.g. MAX_FILE_SIZE has been reached
the operation fails;

- if contentss a non-blocking pipe, as many octets frdataas there is room for are written;
if no octets can be written (i.e. MAX_PIPE_SIZE has been reached) the operation fails.

- if contentsis a pipe which is not non-blocking, the operation waits, but on normal
completion (i.e. after space has been made available in the pipe and no interrupt occur
the operation has written all the octets;

- if contentsis a device which is not non-blocking, the operation waits until octets can b
written;

- if contentss a non-blocking device, as many octets as there are room for are written; if r
octet can be written, the operation fails.

In all cases, the octets data are written in order starting with the first element, and the actual
number of octets written to contents is returnedatual _size

If a concurrent CONTENTS_TRUNCATE operation is performed on the object contents aft
contentsis openedgatais nevertheless written at the specified current position (i.e. there is n
interference implying that the current position is reset) as if prior to the write :
CONTENTS_SEEK operation had been performed with the current position as argument.

- 134 -

Errors
(15) CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents ATOMIC)
(16) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined bgyontents ATOMIC)
a7 CONTENTS_IS_NOT_OPENc6ontent$
(18) CONTENTS_OPERATION_IS_INVALID ¢ontent$
(19) DEVICE_LIMIT_WOULD_BE_EXCEEDED (lata content}
(20) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined bgntents
ATOMIC)
@1) INTEGRITY_WOULD_BE_VIOLATED (object determined lgontents ATOMIC)
@2) LIMIT_WOULD_BE_EXCEEDED ((MAX_FILE_SIZE, MAX_PIPE_SIZE))
@3) OBJECT_IS_INACCESSIBLE (object determineddpntents ATOMIC)
(24) If contentss a file:
PROCESS_FILE_SIZE_LIMIT_WOULD_BE_EXCEEDEDdta content}
@5) VOLUME_IS_FULL (volume containing object determineddnntent$
26) VOLUME_IS_INACCESSIBLE (volume containing object determinedccbgtent$

12.2.13 DEVICE_GET_CONTROL

@ DEVICE_GET_CONTROL (
contents : Contents_handle,
operation : Natural

)
control_data : Control_data
@ DEVICE_GET_CONTROL returns control information from the device conteatgentsin
control_data according tooperation The meanings obperation and control_data are
implementation-defined and may be device-dependent.

Errors

@®) CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined bgontents ATOMIC)

@ CONTENTS_IS_NOT_OPENcOntent$

®) DEVICE_CONTROL_OPERATION_IS_INVALID ¢ontentsoperation

®) INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined bgntents
ATOMIC)

@ OBJECT_IS_INACCESSIBLE (volume containing object determineddmtents ATOMIC)

®) VOLUME_IS_INACCESSIBLE (volume on which object determinedcbhytentsesides,
ATOMIC)

12.2.14 DEVICE_SET_CONTROL

@ DEVICE_SET_CONTROL (
contents : Contents_handle,
operation : Natural,

control_data : Control_data

)

@ DEVICE_SET_CONTROL performs a control operation on the device contamtents
according tooperation The parameters for the operation are specifiecbitrol_data The

®

4)
®)
(6)
™

®)
©
(10)

(11

13

-135-

meanings ofoperation and control_data are implementation-defined and may be device-
dependent.

Errors

CONFIDENTIALITY_CONFINEMENT_WOULD_BE_VIOLATED (object determined by
contents ATOMIC)

CONFIDENTIALITY_WOULD_BE_VIOLATED (object determined bgontents ATOMIC)
CONTENTS_IS _NOT_OPEN:Ontent}

DEVICE_CONTROL_OPERATION_IS_INVALID ¢ontentsoperatior)

INTEGRITY_CONFINEMENT _WOULD_BE_VIOLATED (object determined epntents
ATOMIC)

INTEGRITY_WOULD_BE_VIOLATED (object determined lgontents ATOMIC)
OBJECT_IS_INACCESSIBLE (object determineddnntents ATOMIC)
VOLUME_IS_FULL (volume containing object determineddnntent$
VOLUME_IS_INACCESSIBLE (volume containing object determined:bgitents ATOMIC)

Process execution

13.1 Process execution concepts

13.1.1 Static contexts

@
@

®
4)

(®)

(6)

U]

®)

sds system:

static_context: child type of file with
attribute
max_inheritable_open_objects: natural := 3;
interpretable: boolean :=false;
link
interpreter: reference link to static_context;
restricted_execution_class: reference link to execution_class;
end static_context;

end system;

The max(maximum number ofjnheritable open objects is the maximum number of open
objects that a process running the static context may inherit from the process which created it

A static context isnterpretableif "interpretable” idrue; otherwise it iexecutable

The interpreter of an interpretable static context is the destination of the "interpreter” link, i
there is one; it must not itself be interpretable.

A static context idoreign if it has a restricted execution class and that execution class (se
13.1.3) has a usable execution site which is a foreign system; otherwisativés

The execution clas®f an executable static context is the set of execution sites in which th
static context may run. If the static context has a "restricted_execution_class" link then
execution class contains just the destination object of that link; otherwise it contains all t
execution sites in the PCTE installation. The execution class of an interpretable static conte»
the intersection of that set and the execution class of the actual interpreter of the static conte»

©

(10)

(11

(12

(13)

(14)

-136 -

NOTES

1 A staticcontext (short for static context of a program) is an executable or interpretable program in a static form
that can be run by a process, either directly by loading and executing it (executable) or indirectly by running
another static context as an interpreter (interpretable). It may be run either by a PCTE implementation or by a
foreign system.

2 The default of 3 for maximum inheritable open objects allows inheritance of standard input, output and error
channels as supported by some operating systems. The number of open objects is limited to
MAX_OPEN_OBJECTS_PER_PROCESS (see clause 24) so this is the maximum effective value for maximum
inheritable open objects.

3 The format of the contents of an executable static context is implementation-defined by the PCTE
implementation (for workstations in the execution class) or the foreign system implementation (for foreign systems
in the execution class) of the execution site.

4 If an interpretable static context has no interpreter, a static context is selected to interpret it as described in
PROCESS_START.

5 A static context has other properties defined in the security SDS (see 19.1.1).

6 The fact that the interpreter of an interpretable static context is not interpretable is checked by
PROCESS_START and PROCESS_CREATE_AND_START, but not by LINK_CREATE,
OBJECT_SET_ATTRIBUTE, OBJECT_SET_SEVERAL_ATTRIBUTES, OBJECT_RESET_ATTRIBUTE, or
OBJECT_DELETE_ATTRIBUTE.

13.1.2 Foreign execution images

@
@

®
4)

(®)

(6)

™

sds system:

foreign_execution_image: child type of object with
attribute

foreign_name: string ;
link

on_foreign_system: reference link to foreign_system;
end foreign_execution_image;

end system;
The syntax and semantics of the foreign name are implementation-defined.

The "on_foreign_system" link defines a foreign system which may execute the foreign
execution image.

NOTES

1 A foreign execution image differs from a static context for use on a foreign system in that it is only a
representation of the image to be executed. The execution image itself is of undefined format and is not
represented in the object base.

2 The foreign name is intended to provide enough information to determine the foreign system object, e.g. a file,
which contains an execution image.

13.1.3 Execution classes

@
@
(©)

4)

sds system:
execution_site_identifier: natural ;

execution_class: child type of object with
link

usable_execution_site: reference link (execution_site_identifier) to execution_site;
end execution_class;

end system;

®)

(6)

™

®

©)

(10)

-137 -

An execution class specifies a set of execution sites (workstations or foreign systems) on wt
any static context with that execution class may be executed. Execution sites are definet
18.1.

NOTES

1 If a static context has no restricted execution class, the choice of execution site may be specified when the ¢
context is run; otherwise it is implementation-defined.

2 If an execution class has no usable execution site, a static context with that execution class as a restr
execution class is unable to run. Thus it is possible to (temporarily) prevent a static context from running.

3 The addition and removal of execution sites to and from an execution class is performed using operation
clause 9. An execution site is a usable execution site of an execution class if and only if there is
"usable_execution_site" link between the site and the class. The value of the key of such a link is unimportant.

4 While it is recommended that tools keep the "execution_site_identifier" key consistent with the execution s
identifier of the usable execution site in the execution site directory, a PCTE implementation is not required
enforce this consistency, nor even to ensure that the key is any execution site identifier in the execution
directory.

5 The definition of an execution class allows both workstations and foreign systems to be of the same execu
class. In practice, such a mixed class is unlikely to be useful.

13.1.4 Processes

@
@
(©)
@

(®)

(6)

™

Initial_status = RUNNING | SUSPENDED | STOPPED
sds system:
inheritable: boolean :=true;

referenced_object: (navigate) designation link (reference_name: string) to object with
attribute

inheritable;
end referenced_object;

open_object: (navigate) designation link (open_object_key: natural) to file, pipe, device with
attribute
opening_mode: (read) enumeration (READ_WRITE, READ_ONLY, WRITE_ONLY,
APPEND_ONLY) := READ_ONLY;
non_blocking_io: (read) boolean ;
inheritable;
end open_object;

is_listener: (navigate) non_duplicated designation link (number) to
message_queue with attribute
message_types: (read) string ;

end is_listener;

process_waiting_for: (navigate) designation link (number) to object with
attribute
waiting_type: (read) enumeration (WAITING_FOR_LOCK, WAITING_FOR_TERMINATION,
WAITING_FOR_WRITE, WAITING_FOR_READ) := WAITING_FOR_LOCK;
locked_link_name;
end process_waiting_for;

®

©)
(10)
(11

(12)

(13)

(14

(15)

-138 -

process: child type of object with
attribute
process_status: (read) non_duplicated enumeration (UNKNOWN, READY, RUNNING,
STOPPED, SUSPENDED, TERMINATED) := UNKNOWN;
process_creation_time: (read) time;
process_start_time: (read) time;
process_termination_time: (read) time;
process_user_defined_result: string ;
process_termination_status: (read) integer ;
process_priority: (read) natural ;
process_file_size limit: (read) natural ;
process_string_arguments: (read) string ;
process_environment: (read) string ;
process_time_out: (read) natural ;
acknowledged_termination: (read) boolean ;
deletion_upon_termination: (read) boolean :=true;
time_left_until_alarm: (read) non_duplicated natural ;
character_encoding: (read) non_duplicated natural ;
link
process_object_argument: designation link (number) to object;
executed_on: (navigate) designation link to execution_site;
referenced_object;
open_object;
reserved_message_queue: (navigate) designation link (number) to message_queue;
is_listener;
default_interpreter: designation link to static_context;
actual_interpreter: (navigate) designation link to static_context;
process_waiting_for;
parent_process: (navigate , delete) implicit link to process reverse child_process;
started_in_activity: (navigate) reference link to activity reverse process_started_in;
component
child_process: (navigate , delete) composition link (number) to process reverse
parent_process;
started_activity: (navigate) composition link (number) to activity reverse started_by;
end process;

end system;
sds metasds:
import object type system-process;

extend object type process with
link

sds_in_working_schema: (navigate) designation link (number) to sds;
end process;

end metasds;

A process is a means of running a static context or foreign execution in@xgation of a

process refers to the action of PROCESS_CREATE. A proaessthe static context
(executable or interpretable) or foreign execution image specified when the process is created.
A processexecuteghe static context or foreign execution image specified when the process is
created unless an interpretable static context is specified, in which case it executes another static
context which is executable.

A process executes by the execution of one or rloeads Within a process, threads may
execute in parallel (proceed independently), or execution may switch between threads, or both,
according to rules not defined in this ECMA Standard. A threadspendedi.e. its execution

(16)

(1)

(18)
(19)

(20)

()

(22)
(23)

(24)

(29)

(26)

@7

(28)

(29)

(30)

@D

(32)

(33)

-139 -

does not progress) when it is executing an operation which is waiting for the occurrence of
event (see 8.7.2). A binding must define the mapping of threads and of their suspension to
binding language. A binding may impose limitations on threads by the definition of the rule
for their interaction; in particular, a binding may specify that, except for the activation or wakin
of a handler (see 14.1), a process always executes by the execution of one and only one th
The activation of a handler normally involves execution of a separate thread, although there r
be special binding-defined rules governing this execution.

Whether other threads of a process (if any) can continue to execute while one threac
suspended, and whether such threads can issue from operation calls, are instances of bin
defined rules governing the execution of threads.

The process status is the status of the process with respect to execution. State transitions
as the result of operations in 13.2 or of events outside tool control, e.g. a thread reachin
breakpoint. The process status may have the following values:

- READY: ready to execute.
- RUNNING: executing: one or more threads of the process are running or suspended.

- STOPPED: stopped from execution: all threads of the process are stopped; this is for us:
process monitoring, see 13.5.

- SUSPENDED: suspended from execution: all threads of the process are suspended;
results from PROCESS_SUSPEND.

- TERMINATED: prevented from further execution.
The status value STOPPED is required only by the monitoring module (see 13.5).

In addition the process status has an initial value UNKNOWN which it is given if the process
created by operations in clause 9. Such a process is prevented from executing.

If one thread of a process is stopped, then all are, and similarly with suspension.

The termsready, running, stopped suspendedterminatedand unknownapply to a process
whose process status is READY, RUNNING, STOPPED, SUSPENDED, TERMINATED o
UNKNOWN, respectively. The terms 'running' and 'stopped' are also applied to a thread o
process. A procestartswhen its status changes from READY.

A breakpointis an implementation-defined marker defining a point in a process such that whe
execution reaches that point while the process is running, the process status is change
STOPPED.

If a handler is executed on behalf of a suspended listening process, the status of the liste
process is changed to RUNNING (see 14.1).

The precise time of a change of process status as recorded in the process creation, ste
termination time is implementation-dependent except that it is between the start and end of
operation that causes the change of process status.

The process creation time is the time when the process was created.

The process start time is the time when the process started to run a static context or for
execution image. Its value is the default value of time attributes if the process is ready.

The process termination time is the time when the process terminated. Its value is the def
value of time attributes unless the process is terminated.

The semantics of the process user defined result are not defined in this ECMA Standard.

(34)

(39)

(36)

@7

(38)

(39)

(40)

41)

(42)

(43)

(44)

(45)
(46)
(47)
(48)
(49)

(50)

(61)

(52)

- 140 -

The process termination status specifies the conditions under which the process terminated. Its
value is the default value of integer attributes unless the process is terminated. The process
termination status has two sets of named values, whose actual values are implementation-
defined. Other values may be set using PROCESS SET_TERMINATION_STATUS or
PROCESS_TERMINATE but are not defined in this Standard. The sets of named values are:

- Success:

EXIT_SUCCESS: The process has terminated normally, i.e. not as in the failure cases.
The process termination status has this value if a process terminates other than by
PROCESS_TERMINATE (explicitly or implicitly called), and the process termination
status has not been changed by PROCESS_SET_TERMINATION_STATUS.

- Failure:

EXIT_ERROR: The process has been terminated abnormally by itself (using
PROCESS_TERMINATE).

FORCED_TERMINATION: The process has been terminated abnormally by another
process (using PROCESS_TERMINATE).

SYSTEM_FAILURE: The process has been terminated abnormally by the PCTE
implementation.

ACTIVITY_ABORTED: The process has been terminated abnormally as a result of the
destination of its "started_in_activity" link being aborted by ACTIVITY_ABORT.

The process priority defines the priority of running the process relative to that of other
processes. The range of values is from 0O to the implementation-defined limit
MAX_PRIORITY_VALUE. Their effect is implementation-defined except that a greater
integer value indicates a greater priority.

The process file size limit defines the maximum contents size of each file to which the process
writes.

The value of the process string arguments is a string of the following syntax, which defines it as

a sequence of zero or more substrings. Each substring is an argument preceded by the length of
the argument in hexadecimal notation. The semantics of the sequence of arguments is not
defined in this ECMA Standard.

arguments = {substring};

substring= length, argument;

length = hex digit, hex digit, hex digit, hex digit;

hex digit="0"|'1"|'2"|'3"|'4"|'5"|'6"|'7"|'8"|'9'|'A"|'B'|'C'|'D'| 'E'| 'F}
argument = (*any sequence of graphic characters*);

The semantics of process environment is not defined in this ECMA Standard. The value has the
same syntax as the process string arguments.

The process time out limits the duration of eamhvisible operation, i.e. each operation whose
execution does not cause it to wait, and also of each operation whose execution causes the
creation of a "process_waiting_for" link from the calling process. If the value is O, the limit is
infinite, otherwise the limit is the value in seconds. An operation whose duration exceeds the
limit terminates with the error OPERATION_HAS TIMED_ OUT.

If the value is greater than 0, the time left until alarm defines the maximum duration in seconds
that a process will be suspended when it next suspends or, while the process is suspended, the

(53)

(54)

(55)

(56)

(67)
(58)

(59)

(60)

(61)

(62)

(63)

(64)

(65)

(66)

(67)

-141 -

maximum duration until it is resumed. If the process is resumed before the alarm goes off,
value of time left until alarm indicates the unexpired duration. Otherwise when the time expir
the process receives an implementation-defined alarm message of message type W/
(provided it has reserved a message queue and is handling wakeup messages) and is resum
there is more than one reserved message queue that has a handler enabled to handle W
messages, the system chooses in an implementation-defined way which message queue rec
the WAKE message.

The acknowledged termination titie when the process has terminated and the parent proces
has continued running after waiting for termination.

If deletion upon termination i'ue and the deletion conditions are satisfied, the process is
deleted automatically when it terminates, after acknowledged termination of this process |
been setrue by the parent process.

The character encoding defines the single- or multi-octet character set in terms of whi
pathnames, keys, and type names are interpreted. The default value of O refers to ISO 88¢
the interpretation of other values is implementation-defined. An unrecognised value is defaul
to O.

The "sds_in_working_schema" links specify by their key values a sequence of SDSs whi
determines the working schema of the process (see 8.1). The "sds_in_workin
schema" links are created when a process is created and may be changed
PROCESS_SET_WORKING_SCHEMA.

The semantics of the process object arguments is not defined in this ECMA Standard.
The destination of the "executed_on" link is calledekecution site of the process

Referenced objects are used in the construction of object designators through their refere
names (see clause 23). Referenced objects are created and deleted by PROCESS _
REFERENCED_OBJECT and PROCESS UNSET _REFERENCED_OBJECT respectivel
Reference name values are restricted to the values of key string value defined in 23.1.2.7.

The following reference names are reserved and refer to the given referenced objects:

- 'self: This process. This referenced object always exists, cannot be changed and
inheritability false

- 'static_context': The static context run by the process. This referenced object always exi
cannot be changed and has inheritabfbtge

- '‘common_root': The common root (see 9.1.2). This referenced object always exists, can
be changed and has inheritabilitye.

- 'home_object: The meaning of the 'home_object' referenced object is not defined in tl
ECMA Standard.

- 'current_object’: The meaning of the 'current_object' referenced object is not defined in t|
ECMA Standard. Conventions for using it are given in 23.1.2.2.

The referenced objects with reference names "static_context”, "common_root", "home_obje
and "current_object” are known as tatic context of the processommon rogthome object
andcurrent objectespectively.

If inheritability is true the referenced object is to be made a referenced object of each chi
process created by this process (and inheritability is to leusefor it). The inheritability of a
referenced object may be changed by operations in clause 9. An inherited "referenced_obj

(68)

(69)

(70)

(1)

(72)

(73)

(74)

(79)

(76)

7

(78)

(79)

(80)

(81)

(82)

(83)

(84)

(85)

- 142 -

link may be deleted by the child process but this does not affect the referenced objects of the
creating process.

An open object is an object opened for access to its contents (see clause 12). If inheritable is set
true, the open object is to be inherited as opened (and the corresponding current position is to be
shared) by each child process created by this process in the manner specified by the attributes of
the "open_object” link (and inheritable is to be see for the child's open object). The
inheritable attribute of an open object may be changed by operations in clause 9. An inherited
open object may be closed by the child process but this does not affect the open objects of the
creating process. The semantics of the other attributes of an open object are defined by the
operations in clause 12.

For open objects with keys 0, 1 and 2 see 12.1.

The default interpreter, if it exists, is a static context which will interpret the static context run
by a process if it is interpretable and has no interpreter. The value of the default interpreter may
be changed by operations in clause 9.

The actual interpreter is the static context that interprets an interpretable static context.
For reserved message queue and "is_listener” see 14.1.

The destination of the "process_waiting_for" link is a resource that a thread of the process is
waiting for; for further attributes see 16.1.2. A link of this type exists for each operation that is
waiting. The waiting type values are:

- WAITING_FOR_LOCK: waiting to establish a lock on a resource which already has an
incompatible lock.

- WAITING_FOR_TERMINATION: waiting for a child process to terminate.

- WAITING_FOR_WRITE: waiting to write to a full message queue, a full pipe, a device, an
audit file or an accounting log.

- WAITING_FOR_READ: waiting to read from a message queue containing no message of
the specified type, an empty pipe, or a device.

The started in activity is the activity which was the current activity of the parent process at the
time the process was created. Activities are defined in clause 16.

A process is either the initial process of a workstation (see 18.1.2) or a child process of one other
process.

The parent process is the process which created this process or another process nominated by the
creating process to be the parent.

For the started activities, see clause 16.

NOTES

1 The process user defined result is provided for tool-defined use, especially for a child process to pass back
results to its parent on termination.

2 The process priority is intended to be mapped to the process priority of an underlying operating system (if there
is one). The number of possible values should be a power of 2.

3 The process string arguments is intended for passing parameters in the form of strings to a child process running
a tool written in a language which specifies a mechanism for passing parameters to the tool. The specification of
the length in hexadecimal notation enables the maximum length of an argument to be stored in 2 octets.

4 The process environment is provided as a mechanism for modifying aspects of the environment in which a child
process is to run.

(86)

(87)

(88)

(89)

(90)

(o1)

(92)

(93)

(94)

(95)

(96)

- 143 -

5 If the acknowledged termination of a processue, then the process has terminated but could not be deleted,
e.g. because deletion upon terminatiofaise, or because there was a reference link to the process.

6 The "process_object_argument” link is intended for designating an object to a process, e.g. a print spooler, w
it is running. The process may use key values to distinguish the different objects so designated if it does not d
the link to each process object argument after it has been processed.

7 A process can only be moved (thus changing its volume number) while the process status is READY
TERMINATED. It is recommended that a ready process is only moved to a volume that is controlled by tl
execution site which is to execute the process or, if the execution site is a discless workstation, to one that ca
accessed efficiently.

8 The child processes of a process are components of that process, but this does not mean that operation:
process apply also to its child processes; e.g. terminating a process does not of itself terminate its child process

9 Many of the links of process that have no reverse link have a corresponding link which is effectively a reve
link except that only the link from the process exists before a process is started.

10 Operations specific to processes, i.e. those with names starting with "PROCESS ", do not establish any I
on the process, its links or its attributes (and thus these changes are not reversed if the transaction is aborted).

11 Operations specific to processes do not require discretionary access control on the calling process, its linl
its attributes.

12 A process has other properties defined in the security and accounting SDSs.

13 The implicit creation and deletion of a usage designation link is allowed by operations defined in clause
even if the origin object of the link resides on a read-only volume or is a copy object.

14 Table 3 shows the available transitions of process status.

Table 3 - Available transitions of process status

To
From Ready Running Suspended Stopped Terminated
(nonexistent) CR CS X X X
Ready N ST ST ST X
Running X N SuU BP TE
Suspended X RE,H N X TE
Stopped X Cco X N TE
Terminated X X X X N
Key
BP breakpoint
Cco PROCESS_CONTINUE
CR PROCESS_CREATE
Cs PROCESS_CREATE_AND_START
RE PROCESS_RESUME
ST PROCESS_START
SuU PROCESS_SUSPEND
TE PROCESS_TERMINATE
H execution of a message handler (see 14.1)
N null transition
X impossible transition

15 ltis intended that a PCTE implementation maintain its integrity against operation calls from concurrent three
In addition, the implementation may provide some degree of concurrency within operations, but that is r

(97

- 144 -

mandatory. Thus operations called in concurrent threads may block immediately until an operation called earlier
has terminated. Such implementation dependence is likely to apply to all language bindings supported by the
implementation in addition to binding dependences that result from the level of support for threads by the binding
language.

16 When a new process is created, it inherits the value of the character set of the calling process. Thus an
implementation can set the character set of the initial process to the preferred value; as all processes are derived
from the initial process, they would then work by default with this character set, and no further action would be
necessary to select the character set, unless another character set is required for some tools.

13.1.5 Initial processes

®

@

®

@
®)

(6)

™

®

©)

(10)

Each workstation in a PCTE installation hasratial process this is a process that is created by
implementation-dependent means such that, when it starts to run a tool, it is indistinguishable
from a process that has been created by PROCESS_CREATE and modified by other PCTE
operations, except that the initial process has no parent process. When the first static context
runs in the initial process, the initial process has the following particular values for attributes
and links:

- the volume on which the process resides is the administration volume of the execution site of
the initial process;

- the execution site of the process is the workstation for which the process is the initial
process;

- the static context of the process is the static context being run by the initial process;

- the destination of the "actual_interpreter” link is the static context being executed by the
initial process, if any;

- the destination of the "started_in_activity" is the outermost activity of the execution site (see
16.1.1);

- the static context of the initial process is a member of the predefined program group
PCTE_SECURITY or of a program group which has PCTE_SECURITY as one of its
program supergroups.

NOTE - The initial process of a workstation is intended to start one or more processes, each of which runs a static

context, typically a login or user authentication tool (which may be a portable tool), to perform various tasks when

a human user starts or ends a session at the workstation. It has no consumer identity. The tasks to be performed at
the start of the session may include, for example:

- authenticating the human user and setting the discretionary and mandatory context appropriate to that user by
calling PROCESS_SET_USER_AND_USER_GROUP_IDENTITY; this must be done before any processing
on behalf of the user to assure the security of the PCTE installation;

- initializing a general purpose environment for the running of tools by the user;

- tailoring the environment to the user, for example by setting the referenced object "home_object".

13.1.6 Profiling and monitoring concepts

@
@
®
4)
®)

Profile_handle :: Token
Buffer = seq of Natural
Address :: Token

Process_data = seq of Octet

These types are used in profiling and monitoring operations; see 13.4 and 13.5.

- 145 -

13.2 Process execution operations

13.2.1 PROCESS_CREATE

@

@
®

@
®)

(6)
0]
®

©

(10)
(11
(12)

(13)

(14)

(15)

(16)

(1)

(18)

PROCESS_CREATE (

static_context : Static_context_designator | Foreign_execution_image_designator,
process_type : Process_type_nominator,
parent : [Process_designator],
site : [Execution_site_designator],
implicit_deletion : Boolean,
access_mask : Atomic_access_rights
)
new_process : Process_designator

If no value is supplied fgparent parent designates the calling process.

PROCESS_CREATE creates a process that is able to run a static context. The new pro
becomes a child process pérent (either the calling process or an ancestor of the calling
process).

The new processew_processs of typeprocess_typavith attributes and links as defined below.

Attributes and links of type "object" defined in SDS 'system' as by OBJECT_CREATE
except that "volume_identifier" is set to "volume_identifierpafent if parentand the new
process have the same execution site, otherwise to "volume_identifier" of the new proce:
execution site.

Attributes and links of type "process" defined in SDS 'system':

"process_status" is set to READY;

"process_creation_time" is set to the current time (a value of system time between
start and end of the operation);

"process_priority" is set to "process_priority" of the calling process;
"process_file_size limit" is set to "process_file_size_limit" of the calling process;
"deletion_upon_termination” is setitaplicit_deletion

the character encoding is set to the character encoding of the calling process;

"sds_in_working_schema" links are created, each with the same destination and key
each of the "sds_in_working_schema" links of the calling process;

an "executed_on" link is createddite, or if siteis absent:

if static_contextis executable, to an implementation-dependent member of the
execution class dftatic_context

if static_contextis interpretable, to an implementation-dependent member of the
intersection of the execution classestatic _contexand its interpreter;

. if static_context is a foreign execution image, to the destination of the
"on_foreign_system" link frorstatic_context

for each "referenced_object” link of the calling process with inheritalbiliey (except

for the referenced objects "self" and "static_context”) a "referenced_object” link i
created with the same destination and key; in addition, "referenced_object" links wi
reference names "self" and "static_context" are created with destinations the new proc
andstatic_contextrespectively, and inheritabilifialse

(19)

(20)

1

(22)

(23)

(24)

(29)
(26)
@7
(28)

(29)

(30)
@D

(32)

(33)
(34)
(39)

(36)

@7

(38)

(39)

(40)

- 146 -

for each "open_object” link of the calling process with inherittiole an"open_object"”

link is created with the same destination and key, and with the same opening mode and
non-blocking io, in ascending order of key value, up to a Ilimit of
"max_inheritable_open_objects" sthtic_context

if the calling process has a default interpreter, a "default_interpreter” link is created to the
default interpreter of the calling process;

a "parent_process" link fmarentand its reverse "child_process" link are created;

a "started_in_activity" link to the current activity gbarent and its reverse
"process_started_in" link are created.

- Attributes and links of type "object" defined in SDS ‘'discretionary_security’ as by
OBJECT_CREATE wittaccess_maslexcept:

"atomic_acl" has two additional groups added, if not already present, and in any case
these two groups are granted all access rights. These groups are:

. the user of the new process;

. the predefined security group PCTE_EXECUTION;

"confidentiality label" is set to "confidentiality label" of the calling process;
"integrity_label" is set to "integrity_label" of the calling process.

- Attributes and links of type "process" defined in SDSs 'discretionary_security’ and
'mandatory_security":

"default_atomic_acl" is set to "default_atomic_acl" of the calling process;
"default_object_owner" is set to "default_object_owner" of the calling process;

"floating_confidentiality _level" is set to "floating_confidentiality level" of the calling
process;

"floating_integrity _level" is set to "floating_integrity_level” of the calling process;
a "user_identity" link is created to the user of the calling process;
an "adopted_user_group" link is created to the adopted user group of the calling process;

"adoptable_user_group" links are created, each with the same destination and key as each
of those "adoptable_user_group" links of the calling process with "adoptable_for_child"
true.

- Attributes and links of type "process" defined in SDS 'accounting":

a "consumer_identity" link is created to the consumer identity of the calling process, if
any.

PROCESS_CREATE returns a designator of the new processvaprocess

If the workstation controlling the device on which is mounted the volume on which
new_process resides becomes inaccessible beforew process is started, the
"sds_in_working_schema", "executed_on", "opened_objects", "user_identity",
"adopted_user_group”, "adoptable_user_group”, "referenced_object”, and "consumer_identity"
designation links fromnew_process are deleted, the status ofew_processis set to
TERMINATED and the exit status ofew_processs set to SYSTEM_FAILURE.

(41)

(42)

(43)
(44)

(45)

(46)
(47
(48)

(49)

(50)

(61)
(52)
(63)
(54)

(55)

(56)

(57)

(58)
(59)
(60)
(61)

(62)

(63)

- 147 -

Errors

ACCESS_ERRORSstatic_contextATOMIC, MODIFY, EXECUTE)

If static_contexts interpretable:
ACCESS_ERRORS (interpreter sthtic_contextATOMIC, READ, EXECUTE)

ACCESS_ERROR@rent ATOMIC, READ, APPEND_LINKS)
ACCESS_ERRORS (the current activitypzrent ATOMIC, MODIFY, APPEND_IMPLICIT)

EXECUTION_CLASS HAS _NO_USABLE_EXECUTION_SITES (execution class of
static_context

EXECUTION_SITE_IS_INACCESSIBLES{te)
EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASSsite static_context
EXECUTION_SITE_IS_UNKNOWN gite)

If static_contexts a foreign execution image:
FOREIGN_EXECUTION_IMAGE_HAS NO_SITEsfatic_context

LABEL IS _OUTSIDE_RANGE few_procesgshe volume on whichew_processvould
reside)

LABEL_IS_OUTSIDE_RANGE few_processhe would-be execution site méw_process
LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES)
LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES PER_USER)
OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

If parenthas OWNER granted or denied:
OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION_process

PROCESS_LACKS_REQUIRED_STATU®drent (READY, RUNNING, STOPPED,
SUSPENDED))

If parentis not the calling process:
PROCESS_IS_NOT_ANCESTOIR4ren)

PROCESS_IS_UNKNOWNp@ren

REFERENCE_CANNOT_BE_ALLOCATED
STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMORY¥fatic_context
USAGE_MODE_ON_OBJECT_TYPE_WOULD_BE_VIOLATED ("objecptocess_type

If processs the calling process:
VOLUME_IS_FULL (calling process)

NOTE - It is implementation-dependent which underlying resources (e.g. memory) required for process execut
are allocated by PROCESS_CREATE and which are allocated by PROCESS_START.

13.2.2 PROCESS_CREATE_AND_START

@

PROCESS_CREATE_AND_START (

static_context : Static_context_designator | Foreign_execution_image_designator,
arguments : String,

environment : String,

site : [Execution_site_designator],

implicit_deletion : Boolean,

access_mask : Atomic_access_rights

new_process : Process_designator

@

®
4)

(®)
(6)

U]

®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

@an

- 148 -

PROCESS_CREATE_AND_START creates and runs a process asynchronously in one single
operation.

The overall effect is as for the following sequence of operations.

new_process := PROCESS_CREATE (static_context, "process", nil, site,
implicit_deletion, access_mask);

PROCESS_START (new_process, arguments, environment, site, RUNNING);
PROCESS_CREATE_AND_START is an atomic operation for the calling process.

Errors

ACCESS_ERRORSstatic_contextATOMIC, MODIFY, EXECUTE)

For each SDSdswhich is the destination of an "in_working_schema_of" link from
new_process
ACCESS ERRORSs(ls ATOMIC, SYSTEM_ACCESS)
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_processds ATOMIC, EXPLOIT_SCHEMA)

For each open objeobjectwhich is the destination of an "open_object" link from the calling
process:

ACCESS_ERRORSopject ATOMIC, SYSTEM_ACCESS)

If the link's opening mode attribute is READ_ONLY or READ_WRITE,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_procesobject ATOMIC, READ, READ_CONTENTS)

If the link's opening mode attribute is WRITE_ONLY or READ_WRITE,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_processobject ATOMIC, READ, WRITE_CONTENTS)

If the link's opening mode attribute is APPEND_ONLY,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCESS
(new_processobject ATOMIC, READ, APPEND_CONTENTS)

For the activityactivity which is the destination of the "started_in_activity" link from the calling

process:
ACCESS_ERRORSativity, ATOMIC, SYSTEM_ACCESYS)
ACTIVITY_STATUS_IS_INVALID (activity, ACTIVE)

For the useuserwhich is the destination of the "user_identity" link from the calling process:
ACCESS_ERRORSuger, ATOMIC, SYSTEM_ACCESS)

For the user grougroupwhich is the destination of the "adopted_user_group" link from the
calling process:

ACCESS_ERRORSgfoup, ATOMIC, SYSTEM_ACCESYS)
For the consumer growugyoupwhich is the destination of the "consumer_identity" link from the
calling process:

ACCESS_ERRORSyfoup, ATOMIC, SYSTEM_ACCESS)

If static_contexhas an interpreter:
ACCESS_ERRORS (interpreter sthtic_contextATOMIC, MODIFY, EXECUTE)

CONTROL_WOULD_NOT_BE_GRANTEDrew_process

EXECUTION_CLASS HAS NO_USABLE_EXECUTION_SITES (execution class of
static_context

EXECUTION_SITE_IS_INACCESSIBLES{te)

- 149 -

(18) EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS{e static_context

(19) EXECUTION_SITE_IS_UNKNOWN gite)

(20) If static_contexts a foreign execution image:

FOREIGN_EXECUTION_IMAGE_HAS NO_SITEstatic_context

21) FOREIGN_SYSTEM_IS_INVALID (sitenew_processHAS EXECUTIVE_SYSTEM)

22) INTERPRETER_IS_ INTERPRETABLE (interpreter sthtic_context

23) INTERPRETER_IS_NOT_AVAILABLE §tatic_context

4) LABEL IS _OUTSIDE_RANGE few_procesgshe volume on whichew_processvould
reside)

@5) LABEL_IS_OUTSIDE_RANGE few_processhe would-be execution site méw_process

(26) LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES PER_USER)

@7) REFERENCE_CANNOT_BE_ALLOCATED

(28) OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL

(29) STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTEDBtatic_contextsite)

(30) STATIC_CONTEXT_IS_BEING_WRITTEN4tatic_context

(31) STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMOR¥fatic_context

(32) If processs the calling process:

VOLUME_IS_FULL (calling process)

13.2.3 PROCESS_GET_WORKING_SCHEMA

@) PROCESS_GET_WORKING_SCHEMA(
process : [Process_designator]
)
sds_sequence - Name_sequence
@ If no value is supplied fgorocessprocesslesignates the calling process.
@®) PROCESS_GET_WORKING_SCHEMA returnssds_sequencthe sequence of SDS names
of the SDSs forming the working schema of the propessess
@ If processs not the calling process a read lock of the default mode is establisheacess
Errors
®) If processs not the calling process:
ACCESS ERRORfocessATOMIC, READ, READ_LINKS)
®) PROCESS_LACKS_ REQUIRED_STATUS®rpcess (READY, RUNNING, SUSPENDED,
STOPPED))
@ PROCESS_IS_UNKNOWNpfoces$

13.2.4 PROCESS_INTERRUPT_OPERATION

@ PROCESS_INTERRUPT_OPERATION (
process : Process_designator

)
@ PROCESS_INTERRUPT_OPERATION interrupts a process.

®

@

®)

(6)
U]
®
©)

(10)

(11

- 150 -

There is no effect iprocesds not executing a PCTE operation; otherwise the interruption of all
operations currently being executed psocessis requested, with the following effect on
process

After a period of time, each such interrupted operatioprotess whether suspended or not, is
terminated with the error OPERATION_IS INTERRUPTED. For any waiting operation the
corresponding "process_waiting_for" link is deleted.

The time between the start of this operation and the end of the interruption of the operations of
procesdss implementation-dependent.

Errors

ACCESS_ERRORSfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)
PRIVILEGE_IS_NOT_GRANTED (PCTE_EXECUTION)
PROCESS_LACKS_ REQUIRED STATU®rocess RUNNING)

The following implementation-dependent error may be raised:
PROCESS_IS _THE_CALLERpfoces$

PROCESS_IS_UNKNOWNpfoces$

NOTE - This operation is intended to provide the means for a tool to control other tools, e.g. to cause an operation
of a deadlocked tool to be abandoned, or to interrupt a tool which is not itself controlling the duration of
operations.

13.2.5 PROCESS_RESUME

@

@

(©)
@

(®)
(6)
U]

PROCESS_RESUME (
process : Process_designator
)

PROCESS_RESUME resumes the suspended prquesess by changing its status to
RUNNING.

Errors

ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)

If the execution site gfrocesss a foreign system:
FOREIGN_SYSTEM_IS_INVALID (execution site grocessprocess
SUPPORTS_IPC_AND_CONTROL)

PROCESS_LACKS_ REQUIRED_STATU®rpcess SUSPENDED)
PROCESS IS THE_ CALLERx(oces3}
PROCESS_IS_UNKNOWNpfoces$

13.2.6 PROCESS_SET_ALARM

@

@

®

PROCESS_SET_ALARM (
duration : Natural
)

PROCESS_SET_ALARM changes the time left until alarm of the calling procdssation

Errors
None.

-151 -

13.2.7 PROCESS_SET_FILE_SIZE_LIMIT

@) PROCESS_SET_FILE_SIZE_LIMIT (
process [Process_designator],
fslimit : Natural
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_FILE_SIZE_LIMIT changes the process file size linpitaziesgo fslimit.
Errors
o) If process is not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) If fslimit is greater than the current value of the process file size liprbockss
PRIVILEGE_IS NOT_GRANTED (PCTE_EXECUTION)
®) PROCESS_IS_UNKNOWNpfoces3

13.2.8 PROCESS_SET_OPERATION_TIME_OUT

o) PROCESS_SET_OPERATION_TIME_OUT (
duration : Natural
)

@ PROCESS_SET_OPERATION_TIME_OUT sets the process time-out of the calling process
duration
Errors

@) None.

13.2.9 PROCESS_SET_PRIORITY

@) PROCESS_SET_PRIORITY (
process [Process_designator],
priority : Natural
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_PRIORITY sets the process priorifyrotessto MAX_PRIORITY_VALUE
if priority is greater than MAX_PRIORITY_VALUE, and fwiority otherwise.
Errors
@ If process is not the calling process:
ACCESS_ERROR¢ocessATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) If priority is greater than the current value of the process priorjpyoafess

PRIVILEGE_IS_NOT_GRANTED (PCTE_EXECUTION)
© PROCESS_IS_UNKNOWNpfocess

-152 -

13.2.10 PROCESS_SET_REFERENCED_OBJECT

@) PROCESS_SET_REFERENCED_OBJECT (

process : [Process_designator],

reference_name : Actual_key,

object : Object_designator

)

@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_REFERENCED_OBJECT sets a referenced objgocetg0 object
@ If a "referenced_object” link fronprocesswith the keyreference_namalready exists, its

destination is changed tibject Otherwise, a "referenced_object" link frgarocessto object
with the keyreference_names created.

Errors
®) If processs not the calling process:
ACCESS _ERRORfocess ATOMIC, MODIFY, APPEND_LINKS)
©) If processs not the calling process and there is a referenced objeotnce_name
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_LINKS)
@ If processs not the calling process:
PROCESS LACKS REQUIRED_STATU$®rpcess READY)
®) PROCESS_IS_UNKNOWNpfoces$
© REFERENCE_NAME_IS_INVALID feference_nanje
(10) REFERENCED_OBJECT_IS_NOT_MUTABLEdference_nanje
(11) If processs the calling process:

VOLUME_IS_FULL (calling process)

13.2.11 PROCESS_SET_TERMINATION_STATUS

@ PROCESS_SET_TERMINATION_STATUS (
termination_status : Integer
)

@ PROCESS_SET_TERMINATION_STATUS provides a vataemination_statuso be stored
in the process termination status of the calling process when it terminates, provided it is not
terminated by PROCESS_TERMINATE with a termination status parameter.

Errors
@®) VOLUME_IS_FULL (calling process)

13.2.12 PROCESS_SET_WORKING_SCHEMA

@) PROCESS_SET_WORKING_SCHEMA (
process : [Process_designator],
sds_sequence : Name_sequence
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_WORKING_SCHEMA sets the working schema of a process according to the

sequence of SDSs identified by the SDS namesl$h sequenceeplacing the current working
schema, if there is one.

@
®)

(6)

0]
®
©)

(10)
(11
(12)

(13)

(14)

(15)

(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

@7

- 153 -

If processs the calling process:

- the previous "sds_in_working_schema" links mbcessand the "in_working_schema_
of" links from each previous SDS in working schemartacessare deleted;

- for each SDSdsidentified bysds_sequen€®, an "sds_in_working_schema" link with key
| (starting from | = 1) fronprocessto sdsand an "in_working_schema_of" link frosalsto
processare created.

If processs not the calling process (apdocesss ready):
- the previous "sds_in_working_schema" linkpodcessare deleted;

- for each SDdsidentified sds_sequen¢g, an "sds_in_working_schema" link with key |
(starting from | = 1) fronprocesgo sdsis created.

A new working schema is created as follows:
- The sequence of SDS names is sst® sequence.
- The set of types in working schema is constituted as follows:

a type in working schema is created for each type associated with a type in SDS in
SDS ofsds_sequence

the types in SDS of each created type in working schema are set to the types in SDS \
the same associated type, and the composite names of those types in SDS;

the usage mode of each created type in working schema is set to the union of the us
modes of all its types in SDS;

the other properties of the created types in working schema are determined from th
types in SDS (see 8.5).

Errors
If processs not the calling process and an "sds_in_working_schema” link exists:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_LINKS)

If processs not the calling process:
ACCESS_ERROR¢ocessATOMIC, MODIFY, APPEND_LINKS)

ACCESS_ERRORS (SDS with namesibs_sequencATOMIC, SYSTEM_ACCESS)

If processs the calling process:
DISCRETIONARY_ACCESS_IS_NOT_GRANTED (SDS with name in
sds_sequencATOMIC, EXPLOIT_SCHEMA)

If processs not the calling process:
DISCRETIONARY_ACCESS IS _NOT_GRANTED_TO_PROCE$®%otess SDS
with name insds_sequencATOMIC, EXPLOIT_SCHEMA)

LIMIT_WOULD_BE_EXCEEDED (MAX_SDS_IN_WORKING_SCHEMA)

If processs not the calling process:
PROCESS_LACKS REQUIRED_ STATU$rocess READY)

PROCESS_IS_UNKNOWNpfocess

If process is the calling process:
SDS _IS_UNDER_MODIFICATION (SDS with name &als_sequenge

SDS_IS_UNKNOWN (SDS with name sds_sequenge
SDS_WOULD_APPEAR_TWICE_IN_WORKING_SCHEMAds_sequenge

- 154 -

28) If processs the calling process:
VOLUME_IS_FULL (calling process)
NOTES
(29) 1 A process need not have the predefined SDSs in its working schema in order to call operations except operations

defined in clause 9 operating on objects or links with types and types in SDS defined in the predefined SDSs.

(30) 2 Setting the working schema is independent of activities. In order to maintain the integrity of working schemas,
operations which affect the typing information contained in SDSs included in a working schema are explicitly
prohibited and a working schema which contains an SDS with uncommitted modifications of the typing
information may not be created.

13.2.13 PROCESS_START

@ PROCESS_START (
process : Process_designator,
arguments : String,
environment : String,
site : [Execution_site_designator],

initial_status : Initial_status

)

@ PROCESS_START starts the execution of the static context or foreign execution image
static_contexbf a process that has already been created.

@) If site is supplied the "executed_on" link pfocessis replaced (if different) by one with
destinatiorsite otherwisesiteis the destination of that link

@) The process status pfocesds changed tanitial_status providedprocesds ready.

®) A link is created tgprocesdrom each destination of the following links:

®) - "in_working_schema_of" from each destination of "sds_in_working_schema";

@ - "running_process" from the destination of "executed_on";

®) - "opened_by" from each destination of "open_object";

©) - "process_started_in" from the destination of "started_in_activity";

(10) - "user_identity_of" from the destination of "user_identity";

(11) - "adopted_user_group_of" from the destination of "adopted_user_group";

(12) - "consumer_process" from the destination of "consumer_identity", if any.

(13) These links are created even if any origin object is on a read-only volume or is a replicated copy.

(14) For each "open_object" link gfrocess the contents of the destination are opened and the

current position in the object contents is shared with the process that cpratsss
Furthermore, if the parent procesgodcesss not the calling process, then:

(15) - alock is acquired by the activity of the parent process on the opened object;

(16) - if the calling process has closed the object contents, then the current position of the opened
object is determined in the same way as by CONTENTS_OPEN, in the opening mode of the
"open_object" link.

a7 If static_contexis interpretable, an "actual_interpreter" link is created to the interpreter of the
interpretable static context, if it has one, else to the default interprgpeocdssif it has one,
else to the default interpreter of the home objeqrotess provided there is a home object and
it has a default interpreter.

(18)

(19)
(20)
()

(22)

(23)

(24
(29)

(26)

@7

(28)

(29)

(30)

@D

(32

(33)
(34
(39)
(36)

@7

(38)

- 155 -

The "process_string_arguments” and "process_environment" attribui@®asssare set to
argumentsandenvironmentespectively.

Errors

ACCESS_ERRORSsfatic_contextATOMIC, READ, EXECUTE)
ACCESS_ERRORS (any interpreter, ATOMIC, READ, EXECUTE)
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)

For each SDSdswhich is the destination of an "in_working_schema_of" link frmocess
ACCESS_ERRORSs@is ATOMIC, SYSTEM_ACCESS)
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCE®%0tess
sds ATOMIC, EXPLOIT_SCHEMA)

SDS_IS_UNDER_MODIFICATIONZd9
SDS_IS_UNKNOWN ¢d9

For the execution sitgite which is the destination of an "executed_on" link frorcess
ACCESS ERRORSs{te ATOMIC, SYSTEM_ACCESYS)

For each open objeobjectwhich is the destination of an "open_object" link frprocess
ACCESS_ERRORSopject ATOMIC, SYSTEM_ACCESS)
If the link's opening mode attribute is READ _ONLY or READ_WRITE,

DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCE®%o0tess
object ATOMIC, READ, READ_CONTENTS)

If the link's opening mode attribute is WRITE_ONLY or READ_WRITE,
DISCRETIONARY_ACCESS IS _NOT_GRANTED_TO_PROCE$®®tess
object ATOMIC, READ, WRITE_CONTENTS)

If the link's opening mode attribute is APPEND_ONLY,
DISCRETIONARY_ACCESS_IS_NOT_GRANTED_TO_PROCE®%0tess
object ATOMIC, READ, APPEND_CONTENTS)

For the activityactivity which is the destination of the "started_in_activity" link frprocess
ACCESS_ERRORSattivity, ATOMIC, SYSTEM_ACCESS)
ACTIVITY_STATUS_IS_INVALID (activity, ACTIVE)

For the useuserwhich is the destination of the "user_identity" link frpnocess
ACCESS_ERRORSuter, ATOMIC, SYSTEM_ACCESS)

For the user grougroupwhich is the destination of the "adopted_user_group" link from
process
ACCESS_ERRORSgfoup ATOMIC, SYSTEM_ACCESS)

For the consumer growgyoup which is the destination of the "consumer_identity" link from
process
ACCESS_ERRORSytoup ATOMIC, SYSTEM_ACCESS)

ACCESS_ERRORS (parent procespuaicessATOMIC, SYSTEM_ACCESS)
EXECUTION_SITE_IS_INACCESSIBLES(te)
EXECUTION_SITE_IS_NOT_IN_EXECUTION_CLASS{e static_context
EXECUTION_SITE_IS_UNKNOWN gite)

If siteis a foreign system:
FOREIGN_SYSTEM_IS_INVALID §ite, process (HAS_EXECUTIVE_SYSTEM,
SUPPORTS_EXECUTIVE_CONTROL, SUPPORTS_MONITOR))

INTERPRETER_IS_INTERPRETABLE (interpreter sthtic_context

(39)
(40)
41)
(42)
(43)
(44)
(45)

(46)

- 156 -

INTERPRETER_IS_NOT_AVAILABLE §tatic_conte)t
LABEL_IS_OUTSIDE_RANGE processsite)

LIMIT_WOULD_BE_EXCEEDED (MAX_PROCESSES)
PROCESS_LACKS_ REQUIRED_STATU®rpcess READY)
PROCESS_IS_UNKNOWNpfoces3
STATIC_CONTEXT_CONTENTS_CANNOT_BE_EXECUTEDBtatic_contextsite)
STATIC_CONTEXT_IS_BEING_WRITTEN4tatic_context
STATIC_CONTEXT_REQUIRES_TOO_MUCH_MEMOR¥fatic_context

13.2.14 PROCESS_SUSPEND

@

@
®
@

®)

(6)

U]

®

©)

(10)

PROCESS_ SUSPEND (
process [Process_designator],
alarm : [Natural]

)
If no value is supplied fgorocessprocessdesignates the calling process.

PROCESS_SUSPEND suspends a running process.

PROCESS_SUSPEND changes the statyzr@tessto SUSPENDED, provided it already has
the value RUNNING; and ilarm is supplied angbrocessis the calling process sets the value
of time left until alarm talarm.

If time left until alarm is non-zero, it defines a maximum duration in seconds for the suspension

of the process. If this duration expires, the process receives an implementation-dependent alarm
message of message type WAKE (provided it has reserved a message queue and is the listened-
to process for the message queue) and is resumed.

Errors
If process is not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)

If the execution site gfrocesss a foreign system:
FOREIGN_SYSTEM_IS_INVALID (execution site pfocessprocess
SUPPORTS_IPC_AND_CONTROL)

PROCESS_LACKS REQUIRED STATU®rocess RUNNING)

If alarmis supplied:
PROCESS_IS NOT_THE_CALLERIoces$

PROCESS_IS_UNKNOWNpfoces$

13.2.15 PROCESS_TERMINATE

@

@

(©)

PROCESS_TERMINATE (
process : [Process_designator],
termination_status s [Integer]

)
If no value is supplied fgorocessprocessdesignates the calling process.

PROCESS_TERMINATE terminates a process. In certain conditions this results in the
(composite) deletion of the process or its parent.

@

®)
(6)
™
®

©
(10)
(1)
(12)
(13)
(14)
(15)
(16)
@7
(1)

(19)

(20)

()

(22)

(23)

(24)

(29)

- 157 -

Any ongoing operations invoked frorprocess are interrupted in the same way as by
PROCESS_INTERRUPT_OPERATION.

PROCESS_TERMINATE changes the links and attributgs@fessas follows:
"process_status" is set to TERMINATED;
"process_termination_time" is set to the current time;

"process_termination_status" is set termination_status if supplied, otherwise to
EXIT_ERROR ifprocesss thecalling process or FORCED_TERMINATION if not.

Destinations of "open_object" links fropnocessare closed.

The following links fromprocessand their reverse links are deleted:
"sds_in_working_schema" links and their reverse "in_working_schema_of" links;

- "executed_on" links and their reverse "running_process" links;

- "opened_object" links and their reverse "opened_by" links;

- "reserved_message_queue” links and their reverse "reserved_by" links;

- "user_identity" links and their reverse "user_identity_of" links;

- "adopted_user_group" links and their reverse "adopted_user_group_of" links;

- "consumer_identity" links and their reverse "consumer_process" links.

The "adoptable_user_group” links frgprocessare deleted.

If the parent ofprocessis waiting for termination ofprocessthen the parent oprocess
discontinues waiting and "acknowledged_terminationdrotesss set tarue.

If "deletion_upon_termination” and "acknowledged_terminationprofcessare bothtrue, all
component processes pfocessare ready or terminated, and the conditions for the object
deletion ofprocesshold (see 9.3.5), thgrrocesss deleted.

If the parent of process is terminated, “"deletion_upon_termination" and
"acknowledged_termination” of the parentppbcessare bothtrue, all component processes of
the parent oprocess are ready or terminated, and the conditions for the object deletion of th
parent ofprocesshold (see 9.3.5), then the parenpodcesss deleted.

If deletion of a "process" object is not possible, then the "child_process” link remains.

If an activity is initiated by a process and no corresponding ACTIVITY_ABORT or
ACTIVITY_END call is made before termination of the process, then an ACTIVITY_END call
is implied if the termination status of the terminating process is EXIT_SUCCESS and
ACTIVITY_ABORT call is implied otherwise.

When a process is started, and "deletion_upon_terminatidnieisthen the activity in which
the process starts acquires a default delete lock on the process. If "delete_upon_terminatiol
false when the process starts and istag while the process is running then the delete lock is
acquired at that point.

Errors

If processs not the calling process:
ACCESS_ERRORfocessATOMIC, MODIFY, (WRITE_ATTRIBUTES,
WRITE_LINKS))

- 158 -

(26) PROCESS_LACKS REQUIRED STATUS®rpcess(READY, RUNNING, STOPPED,
SUSPENDED))

@7) PROCESS_IS_INITIAL_PROCESS®roces$

28) PROCESS_IS_UNKNOWNpfoces3

13.2.16 PROCESS_UNSET_REFERENCED_OBJECT

@ PROCESS_UNSET_REFERENCED_OBJECT (
process : [Process_designator],
reference_name : Actual_key

)

@ If no value is supplied fgorocessprocessdesignates the calling process.

@®) PROCESS_UNSET_REFERENCED_OBJECT unsets a referenced olpectess

@) If there is no "referenced_object" link fropnocesswith keyreference_namehe operation has
no effect. Otherwise, the "referenced_object" link frpracesswith key reference_names
deleted.
Errors

®) If processs not the calling process and there is a "referenced_object" linkph@mresswith

keyreference_name
ACCESS_ERROR¢ocessATOMIC, MODIFY, WRITE_LINKS)

®) If processs not the calling process:
PROCESS LACKS_REQUIRED_STATUS$rpocess READY)
@ PROCESS_IS_UNKNOWNpfoces$
® REFERENCE_NAME_IS_INVALID feference_nanje
© REFERENCED_OBJECT_IS_NOT_MUTABLEdference_nanje

13.2.17 PROCESS_WAIT_FOR_ANY_CHILD

@) PROCESS_WAIT_FOR_ANY_CHILD (
)
termination_status : Integer,
child : Natural
@ PROCESS_WAIT_FOR_ANY_CHILD sets the calling thread of the calling process waiting

until any of its child processes has terminated.

@®) If any child of the calling process has process status TERMINATED and acknowledged
terminationfalse, the acknowledged termination of the terminated child process is seeto
and that child process is deleted if it has deletion upon terminatienand the deletion
conditions (see 13.2.15) are satisfied. If more than one child process fulfils the condition, one is
selected in an implementation-defined manner to fill the role of terminated child process.

@ If no child of the calling process has process status TERMINATED, the operation waits and a
"process_waiting_for" link is created to the calling process with waiting type
WAITING_FOR_TERMINATION. The operation continues when the process status of any
child process changes to TERMINATED.

®) The process termination status of the terminated child is returrtednimation_statusunless
the confidentiality label of the calling process does not dominate that of the terminated child
process or the integrity label of the calling process is not dominated by that of the terminated

- 159 -

child process, in which casésrmination_statuss set to UNAVAILABLE (a binding-defined
value different from the named values of the "process_termination_status" attribute). The key
the "child_process" link from the calling process to the terminated child is returoleittin

Errors

®) DISCRETIONARY_ACCESS IS_NOT_GRANTED (the terminated child process, ATOMIC,
WRITE_ATTRIBUTES)

@ PROCESS_HAS _NO_UNTERMINATED_CHILD

13.2.18 PROCESS_WAIT_FOR_CHILD

) PROCESS_WAIT_FOR_CHILD (
child : Process_designator
)

termination_status : Integer

@ PROCESS_WAIT_FOR_CHILD sets the calling thread of the calling process waiting until th
nominated child process has terminated.
@) If child has process status TERMINATED and acknowledged terminafiase the

acknowledged termination ahild is set totrue andchild is deleted if it has deletion upon
terminationtrue and the deletion conditions (see 13.2.15) are satisfied.

@ Otherwise, the operation waits and a "process_waiting_for" link is creatdildavith waiting
type WAITING_FOR_TERMINATION. The operation continues when the process status c
child changes to TERMINATED.

®) PROCESS_WAIT_FOR_CHILD returns the process termination statusclold in
termination_statusunless the confidentiality label of the calling process does not dominate th
of child or the integrity label of the calling process is not dominated by theltilof in which
casedermination_statuss set to UNAVAILABLE (a binding-defined value different from the
named values of the "process_termination_status" attribute).

Errors

®) DISCRETIONARY_ACCESS_IS_NOT_GRANTELzljild, ATOMIC,
WRITE_ATTRIBUTES)

™ PROCESS IS _NOT_TERMINABLE_CHILDchild)

®) PROCESS_|IS_UNKNOWNchild)

©) PROCESS_TERMINATION_IS ALREADY_ACKNOWLEDGEDchild)

13.3 Security operations

13.3.1 PROCESS_ADOPT USER_GROUP

@) PROCESS_ADOPT_USER_GROUP (
process : [Process_designator],
user_group :User_group_designator
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_ADOPT_USER_GROUP changes the adopted user grogeessto user_group

@) Let G beuser_groupP beprocessand G' be the previous adopted user group.

®)
(6)
™
®
©

(10)

(1)
(12)
(13)
(14)
(15)
(16)
@7

(18)

(19)
(20)
()
(22)
(23)

(24)

(29)
(26)

@7

(28)

(29)

(30)

(1)

- 160 -

If processs the calling process:

- The following links are deleted:
"adopted_user_group” from P to G';
"adopted_user_group_of" from G' to P;
"adoptable_user_group” from P to G.

- The following links are created, setting the key values to the next available natural in each
case:

"adopted_user_group” from P to G;
"adopted_user_group_of" from G to P;
"adoptable_user_group" from P to G'.
- The effective security groups of the process are changed to consist of:
The usewuser of procesgno change);
user_group
all the supergroups ofser_group;

all the program groups to which the static contexts run or executed by the calling process
belong (no change);

all the supergroups to which these program groups belong (no change).
If processs not the calling process (and is ready):
- The following links are deleted:

"adopted_user_group” from P to G';

"adoptable_user_group"” from P to G.

- The following links are created, setting the key values to the next available natural in each
case:

"adopted_user_group"” from P to G;
"adoptable_user_group" from P to G'.

If P is the calling process, there is a "consumer_identity" link from P to a consumer group object
C, and if the new effective security groups are such that EVALUATE_PROCESS (P, C,
EXPLOIT_CONSUMER_IDENTITY) isfalse (see 19.1.2)then the "consumer_identity" link

from P to C and the "consumer_process" link from C to P are deleted.

The working schema qifrocesss reset to empty by deleting all "sds_in_working_schema" links
from processand their reverse "in_working_schema_of" links.
Errors

Access errors are determined on the basis of the discretionary context in force before the change
in the effective security groups which this operation produces.

If processs not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, APPEND_LINKS)

If processs not the calling process:
ACCESS_ERROR¢ocess ATOMIC, MODIFY, WRITE_LINKS)

(32)
(33)

(34)

(35
(36)
@7
(38)

(39)

(40)

(41)

-161 -

OBJECT_IS_INACCESSIBLEuUser_group ATOMIC)
OBJECT_IS_INACCESSIBLE (G', ATOMIC)

If processs not the calling process:
PROCESS_LACKS REQUIRED_STATU$rocess READY)

PROCESS_IS_UNKNOWNpfoces$
SECURITY_GROUP_IS _NOT_ADOPTABLHEiéer_group
SECURITY_GROUP_IS_UNKNOWNuUser_group
USER_IS NOT_MEMBERUYser, user_group
If processs the calling process:

VOLUME_IS_FULL (calling process)
NOTES

1 This operation changes the user group which is currently adopted by the designated process, and ther
changes the role in which the user is acting.

2 Users may be removed from user groups at any time. It is therefore necessary to check that the current u:
stil a member of the designated user group before adopting it. It is insufficient to rely on th
"adoptable_user_group" links.

13.3.2 PROCESS_GET_DEFAULT ACL

®

@

(©)

PROCESS_GET_DEFAULT_ACL (
)

acl : Acl
PROCESS_GET_DEFAULT_ACL returttse default atomic ACL of the calling processaab

Errors
None.

13.3.3 PROCESS_GET_DEFAULT_OWNER

@

@

®

@

@
®

PROCESS_GET_DEFAULT_OWNER (
)

group : Group_identifier

PROCESS_GET_DEFAULT_OWNER returns the group identifier of the default object owne
of the calling process agoup.

Errors
None.

13.3.4 PROCESS_SET_ADOPTABLE_FOR_CHILD

PROCESS_SET_ADOPTABLE_FOR_CHILD (
process : [Process_designator],
user_group :User_group_designator,
adoptability : Boolean

)
If no value is supplied fgorocessprocessdesignates the calling process.

PROCESS_SET_ADOPTABLE_FOR_CHILD changes the "adoptable_for_child" attribute c
the "adoptable_user_group" link frgpnocesgo user_groupto adoptability.

-162 -

Errors
@) If processs not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_LINKS)
®) If processs not the calling process:
PROCESS LACKS_REQUIRED_STATUS$rpocess READY)
®) PROCESS_IS_UNKNOWNpfoces$
™ SECURITY_GROUP_IS _UNKNOWNuUser_group
®) SECURITY_GROUP_IS_NOT_ADOPTABLHEIéer_groupproces$

13.3.5 PROCESS_SET_DEFAULT_ACL_ENTRY

@) PROCESS_SET_DEFAULT_ACL_ENTRY (
process [Process_designator],
group : Group_identifier,
modes : Atomic_access_rights
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET _DEFAULT_ACL_ENTRY changes the default atomic ACL of the process
process
@ The ACL entry forgroupin the "default_atomic_acl" attribute pfocesds set tanodes
Errors
®) If processs not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) DEFAULT_ACL_WOULD_BE_INVALID (processgroup, mode}
@ DEFAULT_ACL_WOULD_BE_INCONSISTENT_WITH_DEFAULT_OBJECT_OWNER
(processgroup)
®) If processs not the calling process:
PROCESS_LACKS_ REQUIRED_STATU®rpcess READY)
© PROCESS_IS_UNKNOWNpfoces3
(10) SECURITY_GROUP_IS_UNKNOWNgroup)

13.3.6 PROCESS_SET_DEFAULT_OWNER

@) PROCESS_SET_DEFAULT_OWNER (
process [Process_designator],
group : Group_identifier
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET _DEFAULT_OWNER changes the default object owngroafessto the
security group identifiegroup.
Errors
o) If processs not the calling process:

ACCESS_ERROR¢ocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)

®)

(6)
™

®)

- 163 -

DEFAULT_ACL_WOULD_BE_INCONSISTENT _WITH_DEFAULT_OBJECT_OWNER
(processgroup)
PROCESS_IS_UNKNOWNpfoces$

If processs not the calling process:
PROCESS_LACKS REQUIRED_STATU$rocess READY)

SECURITY_GROUP_IS_UNKNOWNgroup

13.3.7 PROCESS_SET_USER

@

@

®

@
)
®)
™
®)
©
(10)
(1)
(12)
(13)
(14)
(15)
(16)
@7
(1)
(19)

(20)

()

(22)

PROCESS_SET_USER (
user : User_designator,
user_group :User_group_designator

)

PROCESS_SET_USER sets the user of the calling procassitand changes the adopted user
group of the calling process tiser_group.

Let P be the calling process, U be the previous user of the process, G be the previous ado
user group, U' baser, and G' baiser_group

The following links are deleted:

- "user_identity" from P to U;

- "user_identity_of" from U to P;

- "adopted_user_group" from P to G;

- "adopted_user_group_of" from G to P;

- "adoptable_user_group” from P to the set of user groups currently so linked, excluding G.
The following links are created, setting the key values to the next available integer in each ca:
- "user_identity" from P to U’;

- "user_identity_of" from U'to P;

- "adopted_user_group" from P to G';

- "adopted_user_group_of" from G' to P;

- "adoptable_user_group” from P to each user group of which U' is a member, excluding G'.
The effective security groups of the process are changed to consist of:

- user

- user_group

- all the supergroups afser_group

- all the program groups to which the static contexts run or executed by the calling proce
belong, unchanged;

- all the supergroups to which these program groups belong (no change).

Let W be the execution site of P and V be the volume on which P resides, and let P' be F
updated by the operation. The confidentiality label of P is set to the confidentiality label

which is the conjunction of confidentiality low label of W and the confidentiality low label of V,
providing that the following are aitue (see 20.1.3, 20.1.4):

(23)
(24)
(29)

(26)

@7
(28)
(29)

(30)

@D

(32)

(39)
(34)
(35)
(36)
@37
(38)
(39)
(40)
(a1)

(42)

- 164 -

LABEL_DOMINATES (confidentiality clearance of user, C)
CONFIDENTIALITY_LABEL_WITHIN_RANGE (P', W)
CONFIDENTIALITY_LABEL_WITHIN_RANGE (P', V)
The integrity context of P is set to the integrity label | which is the disjunction of the user's

integrity clearance, the integrity high label of W, and the integrity high label of V, providing that
the following are altrue:

LABEL_DOMINATES (I, integrity clearance of user)

INTEGRITY_LABEL_WITHIN_RANGE (P', W)

INTEGRITY_LABEL_WITHIN_RANGE (P', V)
If there is a link of type "consumer_identity" from P to a consumer group C, and if the new
effective security groups are such that

EVALUATE_PROCESS (P, C, EXPLOIT_CONSUMER_IDENTITY)

is false then the "consumer_identity" link from P to C and the "consumer_process" link from C
to P are deleted.

The working schema of the calling process is reset to its initial value (empty) by deleting all
"sds_in_working_schema" links from the calling process and their reverse
"in_working_schema_of" links.

Errors

Error conditions are determined on the basis of the discretionary context in force before the
change in the effective security groups which this operation produces.
ACCESS_ERRORSu6er, ATOMIC, SYSTEM_ACCESS)
ACCESS_ERRORSuger_group ATOMIC, SYSTEM_ACCESS)
OBJECT_IS_INACCESSIBLE (U, ATOMIC)
OBJECT_IS_INACCESSIBLE (G, ATOMIC)

PRIVILEGE_IS NOT_GRANTED (PCTE_SECURITY)
PROCESS_LABELS_WOULD_BE_INCOMPATIBLEI6e)
SECURITY_GROUP_IS_UNKNOWNuse?
SECURITY_GROUP_IS_UNKNOWNuUser_group

USER_IS NOT_MEMBERUYser, user_group

NOTE - This operation establishes the user on behalf of which the current process will run, and the role in which
the user will act. Itis intended to be used by the user authentication tool.

13.4 Profiling operations

13.4.1 PROCESS_PROFILING_OFF

@

@

PROCESS_PROFILING_OFF (
handle : Profile_handle
)

buffer : Buffer

PROCESS_PROFILING_OFF terminates the profiling of the calling process initiated with the
profile handlenandle and returns the results wiffer.

(©)

@

@

®

@
®)

- 165 -

Errors
PROFILING_IS NOT_SWITCHED_ONnhandle

13.4.2 PROCESS_PROFILING_ON

PROCESS_PROFILING_ON (
start . Address,
end :Address,
count : Natural

)

handle : Profile_handle
PROCESS_PROFILING_ON initiates profiling of the calling process. Profiling is an

implementation-defined action. It continues until the operation PROCESS_PROFILING
OFF is called with the returned profile handindleor the calling process terminates.

If profiling is already initiated for the calling process, it is reinitiated with a new profiling buffer
identified by the returned profile handle.

Errors
MEMORY_REGION_IS_NOT_IN_PROFILING_SPACIHtart, end

NOTE - Profiling is implementation-defined but is intended to provide in each element of a profiling buffel
identified byhandlea count of the number of times the process was executing at, or accessing, a memory addi
associated with that elemerdtart andendspecify a region of the process memory to be profiled: the mapping to
elements of the buffers implementation-defined. Other calls of PROCESS_PROFILING_ON can request
profiling into other buffers.

13.5 Monitoring operations

@

@

(©)
@
(®)
(6)
U]
®

13.5.1 PROCESS_ADD_BREAKPOINT

PROCESS_ADD_BREAKPOINT (
process : Process_designator,
breakpoint : Address

)

PROCESS_ADD_BREAKPOINT adds a breakpointgoocess The effect is implementation-
defined.

Errors

ACCESS _ERRORfocessATOMIC, MODIFY, WRITE_CONTENTS)
MEMORY_ADDRESS _IS_OUT_OF_PROCES¢akpoint proces$
PROCESS LACKS REQUIRED_STATU$rocess STOPPED)
PROCESS IS _NOT_CHILDptoces$

PROCESS IS _UNKNOWNpfoces$

NOTE -The format of a breakpoint is implementation-defined but it is intended to define an instruction or da
address, access to which will cause the accessing thrpaokcesgo stop.

- 166 -

13.5.2 PROCESS_CONTINUE

) PROCESS_CONTINUE (
process : Process_designator
)

@ PROCESS_CONTINUE continues any stopped threads of a process.
@®) The status oprocesss set to RUNNING.

Errors
@) ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_CONTENTS)
®) PROCESS_LACKS_REQUIRED_STATU®rpcess STOPPED)
®) PROCESS _IS_NOT_CHILD (process)
@ PROCESS _IS_UNKNOWN (process)

13.5.3 PROCESS_PEEK

@) PROCESS PEEK (
process : Process_designator,
address : Address

)

value : Process_data
@ PROCESS_PEEK returns @aluethe contents addressof process
Errors
@®) ACCESS_ERRORfocess ATOMIC, READ, READ_CONTENTS)
@ MEMORY_ADDRESS_IS_OUT_OF_PROCES&d@ressproces$
®) PROCESS LACKS_REQUIRED_STATU$rpcess STOPPED)
®) PROCESS_IS_NOT_CHILDpfoces$
@ PROCESS_IS_UNKNOWNpfoces$

13.5.4 PROCESS_POKE

@ PROCESS_ POKE (
process : Process_designator,
address : Address,

value : Process_data
)

@ PROCESS_POKE modifiggocessataddresdo value

Errors
@®) ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_CONTENTS)
@ MEMORY_ADDRESS IS OUT_OF_PROCES&l(ressproces$
®) PROCESS LACKS_ REQUIRED_STATU$rpcess STOPPED)
®) PROCESS IS _NOT_CHILDpfoces3$

@ PROCESS_IS_UNKNOWNpfoces$

- 167 -

13.5.5 PROCESS_REMOVE_BREAKPOINT

) PROCESS_REMOVE_BREAKPOINT (
process : Process_designator,
breakpoint : Address

)

@ PROCESS_REMOVE_BREAKPOINT removes a breakpbretikpointof procesprocess
Errors

@) ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_CONTENTS)

@ BREAKPOINT_IS_NOT_DEFINED lfreakpoin}

©) PROCESS_LACKS_ REQUIRED_STATU$rbcess STOPPED)

®) PROCESS_IS_NOT_CHILDptoces$

@ PROCESS_IS_UNKNOWNpfoces3

13.5.6 PROCESS_WAIT_FOR_BREAKPOINT

@ PROCESS_WAIT_FOR_BREAKPOINT (
process : Process_designator

)
breakpoint : Address

@ PROCESS_ WAIT_FOR_BREAKPOINT sets the calling thread of the calling process waitin
until the procesprocesss stopped or terminated.

@) If process has process status TERMINATED, the error condition
PROCESS_LACKS_REQUIRED_STATUS occurs.
@ Otherwise, a "process_waiting_for" link is created pvocess with waiting type

WAITING_FOR_TERMINATION. The operation waits unpkocessreaches a breakpoint, in
which case the breakpoint is returnedieakpoint or the process status mfocesschanges to
TERMINATED, in which case the error condition PROCESS IS _TERMINATED occurs.

Errors

®) ACCESS _ERROR¢ocessATOMIC, MODIFY, READ_CONTENTS)

®) PROCESS IS _NOT_CHILDpfoces$

@ PROCESS LACKS REQUIRED_STATUS$®rocess (READY, RUNNING, STOPPED,
SUSPENDED))

®) PROCESS_IS_UNKNOWNpfoces3

14 Message queues

14.1 Message queue concepts

@ Message ::
DATA : seq of Octet
MESSAGE_TYPE : Message_type
) Received_message ::

MESSAGE : Message
POSITION : Natural

(©)

@
®)

(6)
0]
®
©

(10)

(11

(12)

(13)

(14)

(15)

(16)
(1)

(18)

- 168 -

Message_type = Standard_message_type | Notification_message_type
| Implementation_defined_message_type | Undefined_message_type

Message_types = set of Message_type | ALL_MESSAGE_TYPES

Standard_message_type = interrupt | quit | finish | suspend | end | abort |
deadlock | wake

Implementation_defined_message_type :: Token
Undefined_message_type :: Token

Handler :: Token

sds system:

message_queue: child type of object with
attribute
reader_waiting: (read) non_duplicated boolean ;
writer_waiting: (read) non_duplicated boolean ;
space_used: (read) non_duplicated natural
total_space: (read) natural ;
message_count: (read) non_duplicated natural
last_send_time: (read) non_duplicated time ;
last_receive_time: (read) non_duplicated time ;
link
reserved_by: (navigate) non_duplicated designation linkto process;
listened_to: (navigate) non_duplicated designation link to process;
notifier: (navigate) non_duplicated designation link (notifier_key: natural) to
object with
attribute
modification_event: (read) boolean ;
change_event: (read) boolean ;
delete_event: (read) boolean ;
move_event: (read) boolean ;
end notifier;
end message_queue;

end system;

Messages and message queues allow processes to communicate. A message queue has a
associated sequence of messages. A message contains data, and has a message type. The spe
occupied by a message is implementation-defined. For notification message types see 15.1.2.

Implementation_defined_message _type and Undefined_message type are implementation-
defined types disjoint from each other and from Standard_message type and

Notification_message_type. The meanings of implementation-defined message types are
implementation-defined. For the intended meanings of standard message types see Note 3 below.

The value ALL_MESSAGE_TYPES denotes the set of all message types, including
implementation-defined and undefined message types.

Each message in a message queue is assigragitian numbervhich it retains while it is in the
queue. The position numbers are positive naturals, monotonically increasing with time of arrival
in the queue but otherwise implementation-dependent.

Reader waiting isrue if and only if one or more processes are waiting to receive a message.
Writer waiting istrue if and only if one or more processes are waiting to send a message.

The space used is the space currently required by the message queue to hold its messages, ir
octets.

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)
27)
(28)
(29)
(30)
(31)
(32)
(33)
(34)

(35)

(36)

-169 -

The total space is the maximum possible size of the space used. This may vary between mes
gqueues and is initialized to an implementation-defined value which must not be less than f
times MAX_MESSAGE_SIZE (see clause 24). An implementation may place an upper limit c
the total space of a message queue; this must not be less th
MAX_MESSAGE_QUEUE_SPACE (see clause 24).

The message count is the number of messages in the message queue.

The last send time and last receive time record the system time on the last occasion th
message was sent to the queue and received from the queue, respectively. Initially they are ¢
to the default initial value for time attributes. If the last sent message was sent throu
MESSAGE_SEND_WAIT, the last send time is the system time when the message actu:
entered the queue (at the end of the waiting period). If the last received message was rece
through MESSAGE_RECEIVE_WAIT, last receive time is the system time when the messa
was actually received from the queue (at the end of the waiting period).

The destination of the "reserved_by" link, if any, is calledrédservingprocess of the message
queue; it is also said to haveservedthe message queue. The reserving process is the onl
process which can receive or peek messages from the message queue, and it must have ad
read access permission to the message queue. If there is no reserving process then any pi
can receive or peek messages, subject to access permission.

The destination of the "listened_to" link, if any, is the reserving process (which must exist), a
indicates that the reserving process has an associated procedure which is executed on the r:
of a message queue event by the appearance of a message of one of a specified set of me
types in the message queue. Such a procedure is cali@adier In this case the reserving
process is called thiestening proces®f the message queue. The "listened_to" link is reversec
by an "is_listener” link, with an attribute which defines the message types of messages for wt
the handler is executed. The handler is invoked with a single argument, which denotes
affected message queue in a binding-defined manner. The types of a handler and of its argut
are binding-defined.

Notifiers are described in 15.1.

NOTES

1 An implicit modification of predefined attributes of a message queue does not require a write lock on the mess
queue.

2 The intended meanings of the standard message types are as follows.

- INTERRUPT: user interruption;

- QUIT: user wants to quit;

- FINISH: the receiving process should terminate;

- SUSPEND: the receiving process should suspend itself;

- END: the current activity of the receiving process should be normally terminated,;

- ABORT: the current activity of the receiving process should be abnormally terminated;
- DEADLOCK: deadlock has been detected;

- WAKE: the receiving process's time left until alarm has expired (see 13.1.4).

3 A process can send messages to itself. A message queue can have several concurrent readers if there
reserving process. A message queue can have several concurrent writers. If more than one process is eligil
receive a message, it is not defined which of the eligible processes receives it.

4 The associated sequences of messages of message queues are not affected by transaction rollback.

-170 -

37) 5 The handler is executed and the listening process status is changed to RUNNING, even if the listening process is

suspended — see 14.1.

14.2 Message queue operations

®

@

(©)

4)

(®)
(6)
U]

@

@

®

@
(®)
(6)

14.2.1 MESSAGE_DELETE

MESSAGE_DELETE (
queue : Message_queue_designator,
position : Natural

)

MESSAGE_DELETE removes the message with message niyobgion from the message
gueuequeue The space used a@fueueis decremented by the space used by the removed
message, and the message couquefieis decremented by 1.

A read lock of the default mode is obtainedquieue
A read lock of the default mode is obtainedquieue

Errors
ACCESS_ERRORSyueug ATOMIC, MODIFY, WRITE_CONTENTS)
MESSAGE_POSITION_IS _NOT_VALIDgdosition queug
MESSAGE_QUEUE_IS_RESERVEID(eué

14.2.2 MESSAGE_PEEK

MESSAGE_PEEK (

queue : Message_queue_designator,
types : Message_types,
position [Natural]

)

message [Received_message]

MESSAGE_PEEK reads a message frii@ message quewgieuewithout removing it from
gueue typesspecifies the set of acceptable message typesition specifies a position in
queue if it is 0 or not supplied, the position is the beginninggokue otherwise it is the
position immediately before the message with position nudsEtion

If queuecontains no messages of an acceptable message type after the specified position, then
no message is returned. Otherwise a copy of the next message of an acceptable message type
after the specified position is returned. In either casmies unchanged.

Errors

ACCESS_ERRORSjlieue ATOMIC, READ, READ_CONTENTS)
MESSAGE_POSITION_IS_NOT_VALIDgosition queug
MESSAGE_QUEUE_IS_RESERVEDR(eug

-171 -

14.2.3 MESSAGE_RECEIVE_NO_WAIT

) MESSAGE_RECEIVE_NO_WAIT (
queue : Message_queue_designator,
types : Message_types,
position [Natural]

)

message [Received_message]

@ MESSAGE_RECEIVE_NO_WAIT reads and removesnassage from the message queue
gueue,but does not wait if there is no message of an acceptable messagedypaentypes
specifies the set of acceptable message typesitionspecifies a position iqueue if it is 0 or
not supplied, the position is the beginning of gaeue otherwise it is the position immediately
before the message with position numpesition

@®) If the queuecontains no messages of an acceptable message type after the specified posi
then no message is returned. Otherwise the first message of an acceptable type after
specified position is returned, and that message is removedjtrene The last receive time of
gueueis set to the system time, the space useyletieis decremented by the space used of the
removed message, and the message couputenfeis decremented by 1.

o) A read lock of the default mode is obtainedquieue
Errors
®) ACCESS_ ERRORSj(eug ATOMIC, MODIFY, WRITE_CONTENTS)
®) MESSAGE_POSITION_IS NOT_VALIDgdosition queu@
@ MESSAGE_QUEUE_IS_RESERVED(eu
® MESSAGE_TYPES NOT_FOUND_IN_QUEUReuetypes position

14.2.4 MESSAGE_RECEIVE_WAIT

& MESSAGE_RECEIVE_WAIT (
queue : Message_queue_designator,
types : Message_types,
position [Natural]

)

message : Received_message

@ MESSAGE_RECEIVE_WAITreads and removes a message from the message quews
waiting if necessary for a message of an acceptable message type totgp@aspecifies the
set of acceptable message typpssitionspecifies a position in the message quagueue if it
is 0 or not supplied, the position is the beginning of dbeue otherwise it is the position
immediately before the message with position nurplsition

@®) If the message quewgieuecontains one or more messages of an acceptable message type a
the specified position, the first such message is returned, and that message is removed fron
gueue. The last receive time giieueis set to the system time, the space useduelieis
decremented by the space used of the removed message, and the messageqoeuetisof
decremented by 1.

@ If queuecontains no messages of any acceptable message type after the specified position,
the operation waits and reader waiting tpreueis set totrue, until one of the following
happens.

®)

(6)

0]

®

©)

(10)

(11
(12)
(13)
(14)

(15)

- 172 -

A message of an acceptable type is placed on the queue. |If the calling process is the
listening process faqueueand the message type of the message is one of the specified set of
message types for the associated handler, then the handler is executed; otherwise the
operation proceeds as described above.

- A reserved message queue of the calling process receives a message of message type
WAKE. The error condition MESSAGE_QUEUE_HAS BEEN_WOKEN then holds.

- The message queue is removed from the object base. The error condition
MESSAGE_QUEUE_HAS_BEEN_DELETED then holds.

- The caller is denied mandatory read access, mandatory write access, or
WRITE_CONTENTS discretionary access taueue The error condition
CONFIDENTIALITY_WOULD_BE_

VIOLATED or INTEGRITY_CONFINEMENT WOULD_BE_VIOLATED then holds in
the first case, CONFIDENTIALITY _CONFINEMENT WOULD BE_ VIOLATED or
INTEGRITY_WOULD BE_VIOLATED in the second case, and DISCRETIONARY _
ACCESS IS _NOT_GRANTED in the third case (all under ACCESS_ERRORS).

- The message queue becomes reserved by another process. The error condition
MESSAGE_QUEUE_IS_RESERVED then holds.

A read lock of the default mode is obtainedquieue

Errors

ACCESS_ERRORSyieue ATOMIC, MODIFY, WRITE_CONTENTS)
MESSAGE_POSITION_IS_NOT_VALIDgosition queug
MESSAGE_QUEUE_IS RESERVEDReug
MESSAGE_QUEUE_HAS_BEEN_DELETERjgeu?
MESSAGE_QUEUE_HAS_BEEN_WOKENj(eug

14.2.5 MESSAGE_SEND_NO_WAIT

@

@

(©)

4)

(®)
(6)
U]

MESSAGE_SEND_NO_WAIT (
queue : Message_queue_designator,
message : Message

)
MESSAGE_SEND_NO_WAIT appends the messagssagéo the message quegaeue

The last send time afueueis set to the system time. The space usegletieis incremented
by the space used Inyessage The message count@fieueis incremented by 1.

A read lock of the default mode is obtainedquieue

Errors

ACCESS_ERRORSjlieue ATOMIC, MODIFY, APPEND_CONTENTS)
LIMIT_ WOULD_BE_EXCEEDED (MAX_MESSAGE_SIZE)
MESSAGE_QUEUE_WOULD_BE_TOO_BIGj@eus

-173 -

14.2.6 MESSAGE_SEND_WAIT

@

@

®

@

®)

(6)

0]

®

©

(10)
(11
(12)

(13)

MESSAGE_SEND_WAIT (
queue : Message_queue_designator,
message : Message

)

MESSAGE_SEND_WAIT appends the messagessagdo the message quegeeue, waiting
if necessary untifjueue has enough space for it.

If the space used of the message qupueuewould not exceed the total spacequieue the
messagenessagaes appendedo queue. The last send time ajueueis set to the system time
when the message is sent (at the end of the waiting period, if any). The spacequsaceisf
incremented by the space usedigssage The message count@fieueis incremented by 1.

If the space used gfueuewould exceed the total spacequieue then writer waiting ofjueueis
set totrue and the operation waits until one of the following occurs.

- The space used gueuewould no longer exceed the total spaceqyoéue The operation
then proceeds as described above.

- The calling process receives a message. of message type WAKE. The error condit
MESSAGE_QUEUE_HAS_BEEN_WOKEN then holds.

- The message queue is removed from the object base. The error conditi
MESSAGE_QUEUE_HAS_BEEN_DELETED then holds.

- The caller is denied mandatory read access, mandatory write access,
APPEND_CONTENTS discretionary access. The error condition CONFIDENTIALITY _
WOULD_BE_VIOLATED or INTEGRITY_CONFINEMENT _WOULD_ BE_VIOLATED
then holds in the first case, CONFIDENTIALITY_CONFINEMENT WOULD BE
VIOLATED or INTEGRITY_WOULD_BE VIOLATED in the second case, and
DISCRETIONARY_ACCESS IS NOT_GRANTED in the third case (all under
ACCESS_ERRORS).

A read lock of the default mode is obtainedquieue

Errors

ACCESS_ERRORSyieue ATOMIC, MODIFY, APPEND_CONTENTS)
LIMIT_ WOULD_BE_EXCEEDED (MAX_MESSAGE_SIZE)
MESSAGE_QUEUE_HAS BEEN_DELETERjjeug
MESSAGE_QUEUE_HAS BEEN_WOKENj(eug

14.2.7 QUEUE_EMPTY

@

@
®

@
(®)

QUEUE_EMPTY (
queue : Message_queue_designator
)

QUEUE_EMPTY empties the message quegueug i.e. removes all messages from it.
A read lock of the default mode is obtainedquieue

Errors

ACCESS_ERRORSytieue ATOMIC, MODIFY, WRITE_CONTENTS)
MESSAGE_QUEUE_IS_RESERVEDR(eug

- 174 -

14.2.8 QUEUE_HANDLER_DISABLE

) QUEUE_HANDLER_DISABLE (
queue : Message_queue_designator
)

@ QUEUE_HANDLER_DISABLE makes the calling process no longer the listening process for
the message quegeeue queuemust be reserved by the calling process.

@®) The "is_listener" link from the calling processgiweueand its reverse are deleted.
Errors

@ ACCESS_ERRORSj(ieue ATOMIC, MODIFY, WRITE_LINKS)

®) MESSAGE_QUEUE_HAS_NO_HANDLERyUeug

©) MESSAGE_QUEUE_IS_NOT_RESERVEQYeu¢

14.2.9 QUEUE_HANDLER_ENABLE

@) QUEUE_HANDLER_ENABLE (
gqueue : Message_queue_designator,
types : Message_types,
handler : Handler
)
@ QUEUE_HANDLER_ENABLE makes the calling process the listening process for the message
gueuequeue with associated message types specifietyjpgs and handlehandler.
@) An "is_listener" link is created from the calling procesgueue with "message_types" attribute
set to a value representitypes
@) The previous handler, if any, forqueue is disabled as by a prior call of
QUEUE_HANDLER_DISABLE.
Errors
®) ACCESS_ERRORSjueue ATOMIC, MODIFY, WRITE_LINKS)
®) MESSAGE_QUEUE_IS_NOT_RESERVEQYeu¢

14.2.10 QUEUE_RESERVE

@ QUEUE_RESERVE (
queue : Message_queue_designator
)

@ QUEUE_RESERVE reserves the message qupeiefor the calling process. Mueueis
already reserved for the calling process, QUEUE_RESERVE has no effect.

@®) A "reserved_message queue" link reversed by a "reserved_by" link is created from the calling
process t@ueue
Errors

@ ACCESS_ERROR$jueue ATOMIC, MODIFY, APPEND_LINKS)

© MESSAGE_QUEUE_IS RESERVEDR{eug

-175-

14.2.11 QUEUE_RESTORE

@) QUEUE_RESTORE (
queue : Message_queue_designator,
file : File_designator
)
@ QUEUE_RESTORE reconstructs the message queeeefrom the contents of the object
designated bfile.
@®) The last access time fie is set to the system time.
@ A write lock of the default mode is obtained guneueand a read lock of the default mode is
obtained orfile.
Errors
®) ACCESS_ ERRORSile, ATOMIC, READ, READ_CONTENTS)
®) ACCESS_ERRORSyueug ATOMIC, MODIFY, WRITE_CONTENTS)
@ CONTENTS_FORMAT _IS_INVALID file)
®) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_QUEUE_SPACE)
© MESSAGE_QUEUE_IS_BUSYqgueug
(10) MESSAGE_QUEUE_IS_RESERVEID(eué
(11) MESSAGE_QUEUE_WOULD_BE_TOO_BIG(eu¢

14.2.12 QUEUE_SAVE

& QUEUE_SAVE (
queue : Message_queue_designator,
file : File_designator
)
@ QUEUE_SAVE copies all the messages from the message queueto the contents of the

file file. The existing contents dfle is overwritten. The format of the contentsfié is
implementation-defined.

@) The message quegeeue is unaffected, except that any "notifier" links fropneueare deleted.
@) The last change time and last modification timélefare set to the system time of the call.
®) A write lock of the default mode is obtainedfda and a read lock oqueue

Errors
®) ACCESS_ERRORSi(e, ATOMIC, MODIFY, WRITE_CONTENTS)
) ACCESS ERRORSj(eue ATOMIC, READ, READ_CONTENTS)
® MESSAGE_QUEUE_IS_RESERVEID(eué

14.2.13 QUEUE_SET TOTAL_SPACE

@ QUEUE_SET_TOTAL_SPACE (
queue : Message_queue_designator,
total_space : Natural
)
@ QUEUE_SET_TOTAL_SPACE sets the total space of the message quewsto the value of

total_space

-176 -

@®) A write lock of the default mode is obtained qureue
Errors
@ ACCESS_ERRORSj(eue ATOMIC, CHANGE, CONTROL_OBJECT)
®) LIMIT_WOULD_BE_EXCEEDED (MAX_MESSAGE_QUEUE_SPACE)
®) MESSAGE_QUEUE_IS_RESERVED{eu
@ MESSAGE_QUEUE_TOTAL_SPACE_WOULD_BE_TOO_SMALjyeuetotal _spacg

14.2.14 QUEUE_UNRESERVE

) QUEUE_UNRESERVE (
queue : Message_queue_designator
)

@ QUEUE_UNRESERVE unreserves the message qgeeecfor the calling process. tfueueis
not reserved for the calling process, QUEUE_UNRESERVE has no effect.
@®) The "reserved_message_queue” and "reserved_by" links between the calling procgssiand

are deleted. If the calling process has an "is_listener” ligki¢oiethen that link and its reverse
"listened_to" link are deleted.

Errors
@ ACCESS_ERRORSj(eug ATOMIC, MODIFY, WRITE_LINKS)
(5) NOTE - The termination of a process implies the unreserving of all the process's reserved message queues.

15 Notification
15.1 Notification concepts

15.1.1 Access events and notifiers

@) Access_event = MODIFICATION_EVENT | CHANGE_EVENT | DELETE_EVENT | MOVE_EVENT
@ Access_events = set of Access_event
@®) A notifier is a "notifier” link from a message queue to an object with key attribute "notifier_key"

and the attributes "modification_event", "change_event", "delete_event", and "move_event",
referred to asonitored access attributessee 14.1 for the DDL definition of notifiers.

@ A monitored objecis a destination object of a notifier. The values of the monitored access
attributes of the notifier define the events on which the monitored object is monitored:

®) - Modification event istrue. Modification events: an operation implicitly sets the last
modification time of the object.

®) - Change event igue. Change events: an operation implicitly sets the last change time but
not the last modification time of the object. If the operation only sets the volume identifier
of the object, the CHANGE_EVENT event is not raised.

% - Delete event itrtue. Delete events: an operation results in the deletion of the object.

®) - Move event idrue. Move events: an operation results in a change to the volume identifier
of the object, including archiving the object and restoring it from archive.

©

(10)

(11

(12)

(13)

(14

(15)

(16)

-177 -

The notification mechanism sends notification messages to message queues when a spe
access is carried out on a monitored object. The specified access event is saalstediy

the operation that accessed the object. The notification mechanism is saidggdsedby the
raised event.

If there is a notifier from a message queue to any object then that message queue has a rese
process.

NOTES

1 The monitored access attributes of the notifier define the access events for which the destination of the notifi
to be monitored. Their initial value false For each attribute, if the value of the attributeruig, then the object
is being monitored for that event.

2 Each value of the notifier key identifies a specific notifier in the context of the associated message queue.
implied by the DDL specification, the notifier key is unique in the context of the associated message queue.

3 In order to carry out notification mechanism operations, a process must reserve the message queue which is
used as recipient of the notification messages, and in order to be notified, the message queue must remain res
by the process.

4 If a process unreserves a message queue then any notifiers from the message queue are deleted.

5 A process can reserve several different message queues for notification purposes. For each of these me
queues, it can create several notifiers (one for each object under monitoring). An object can be monitored u
several message queues by one process or by several processes.

6 There are additional possibilities for the deletion and moving of objects other than by the OBJECT_DELE"
and OBJECT_MOVE operations.

15.1.2 Notification messages

@

@

®

@
®)
(6)
™

®

Notification_message_type = MODIFICATION_MSG | CHANGE_MSG | DELETE_MSG |
MOVE_MSG | NOT_ACCESSIBLE_MSG | LOST_MSG

A notification messagés a message (see 14.1) sent by the notification mechanism to one

more message queues each time an object under monitoring is accessed in a way which has
specified to be monitored. The type of such a message specifies the access event that has
carried out on the monitored object or the information that the monitored object is no long
accessible or that modification messages have been lost. The possible values of the type
notification message are defined as follows:

- MODIFICATION_MSG: Notifies that a modification access event has been raised (exce
CONTENTS_WRITE or CONTENTS_TRUNCATE).

- CHANGE_MSG: Notifies that a change access event has been raised.
- DELETE_MSG: Notifies that a delete access event has been raised.
- MOVE_MSG: Notifies that a move access event has been raised.

- NOT_ACCESSIBLE_MSG: A message of this type is sent to a message queue each tir
monitored object becomes no longer accessible from the workstation on which that mess
gueue resides.

- LOST_MSG: When a message queue is full and there is not sufficient space on the queu
store a notification message, the notification messages to be sent by the notificat
mechanism are lost. In this case, when the message queue empties sufficiently to give s
for a notification message, a message is sent to the message queue by the notifice
mechanism saying that some messages have been lost.

-178 -

© The data of the message includes in an implementation-defined way the notifier key that
associates the message queue and the monitored object.

(10) At most four notification messages are sent to a message queue, one for each type of access
carried out on the object during the period it was explicitly locked. The order of these four
messages is implementation-defined.

(1) When a monitored object is archived, a message of type MOVE_MSG and a message of type
NOT_ACCESSIBLE_MSG are both sent; when a monitored object is restored from archive, a
message of type MOVE_MSG is sent.

15.1.3 Time of sending notification messages

@) The end of an operation and the releasing of a lock define the points in time at which the
notification messages are sent to processes as defined in 15.1.4.

@ At the appropriate point in time, the switched on access events are raised, triggering the
notification mechanism which sends the notification messages to the message queues associated
by notifiers with the object that has had been modified, changed, deleted, or moved.

@®) A message of message type NOT_ACCESSIBLE_MSG is sent by the notification mechanism
when WORKSTATION_REDUCE_CONNECTION or WORKSTATION_DISCONNECT is
called or when a network partition is detected, such that the monitored object becomes
inaccessible in the specified manner.

15.1.4 Range of concerned message queues

@) For an operation modifying, changing, deleting, or moving an object, a notification message is
sent to all the message queues associated with that object by a notifier when the update becomes
available to the process reserving the message queue.

@ If the message queue security labels are such that writing to the queue by the process accessing
the object would give rise to a mandatory security violation, then no notification message is
sent.

@®) On transaction rollback, notification messages are sent notifying rollback and no messages are

sent to non-enclosed activities.

15.2 Notification operations

15.2.1 NOTIFICATION_MESSAGE_GET_KEY

() NOTIFICATION_MESSAGE_GET_KEY(
message : Message,
)

notifier_key : Natural

@ NOTIFICATION_MESSAGE_GET_KEY returns a notifier keytifier_keyderived from the
data of the notification messagessage

@) notifier_keyis the notifier key of the notifier whose monitored object underwent the access
event which triggered the sendingméssage

Errors
@) MESSAGE_IS _NOT_A NOTIFICATION_MESSAGHMessage

(®)

-179 -

NOTE - The notifier identified byotifier_keymay no longer exist.

15.2.2 NOTIFY_CREATE

@

@

(©)

4)
(5)
(6)
@
®)
©)

(10)

(11

(12)

(13)

NOTIFY_CREATE (
notifier_key : Natural,
queue : Message_queue_designator,
object : Object_designator

)
NOTIFY_CREATE creates a notifier from the message qageeeecto the objecbbject

The notifier key of the notifier is set tootifier_key. The monitored access attributes of the
notifier are all set tdalse

Errors

ACCESS_ERRORSj(ieue ATOMIC, MODIFY, APPEND_LINKS)
CONFIDENTIALITY_WOULD_BE_VIOLATED (object ATOMIC)
INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED ¢bject ATOMIC)
MESSAGE_QUEUE_IS_NOT RESERVEQueug
NOTIFIER_KEY_EXISTS fotifier_key
OBJECT_IS_INACCESSIBLEqpject ATOMIC)

OBJECT _IS_ARCHIVED @bjec)

NOTES

1 The creation of a notifier from a message queue to an object means that a notification message will be sent t
message queue whenever the object is accessed with some specified access events.

2 Initially, on creation, the monitored access attributes are $alsto so no events are specified. The monitored
access events may be changed by NOTIFY_SWITCH_EVENTS.

3 As implied by the DDL specification, tmetifier_key value must be unique in the context of the message queue
and must be greater than or equal to zero; apart from these constraints, it may be freely chosen by the user.

15.2.3 NOTIFY_DELETE

®

@

(©)
@
(®)
(6)

NOTIFY_DELETE (
notifier_key : Natural,
queue : Message_queue_designator

)

NOTIFY_DELETE deletes the notifier with notifier keyotifier_keyfrom the message queue
queue.

Errors

ACCESS_ERRORSjlieue ATOMIC, MODIFY, WRITE_LINKS)
MESSAGE_QUEUE_IS_NOT_ RESERVEQueug
NOTIFIER_KEY_DOES_NOT_EXISTr{otifier_key

NOTE - The object which was monitored hgtifier may continue to be monitored by other notifiers into other
message queues. Other objects may continue to be monitored by other notifiers associgtesligvith

-180 -

15.2.4 NOTIFY_SWITCH_EVENTS

) NOTIFY_SWITCH_EVENTS (
notifier_key : Natural,
queue : Message_queue_designator,

access_events: Access_events
)
@ NOTIFY_SWITCH_EVENTS sets each of the monitored access attributes of the notifier with
notifier key notifier_keyfrom the message queuggeueto true if the corresponding access
event is inaccess_eventand tofalse otherwise.

Errors
®) ACCESS_ERRORSj(eug ATOMIC, MODIFY, WRITE_LINKS)
) MESSAGE_QUEUE_IS NOT_RESERVEDQuWeu¢
®) NOTIFIER_KEY_DOES_NOT_EXISTrotifier_key
(6) NOTE - Switching on an access event of a notifier (setting the attribute value to true) means that the associated

object is then under monitoring for that access event. Switching off an access event (setting the attribute value to
false) means that the associated object is no longer under monitoring for that access event.
16 Concurrency and integrity control
16.1 Concurrency and integrity control concepts

16.1.1 Activities

@ Activity_class = UNPROTECTED | PROTECTED | TRANSACTION

@ sds system:

@) activity_class: (read) enumeration (UNPROTECTED, PROTECTED, TRANSACTION) :=
UNPROTECTED;

@) activity _status: (read) non_duplicated enumeration (UNKNOWN, ACTIVE, COMMITTING,
ABORTING, COMMITTED, ABORTED) := UNKNOWN;

(5) activity: child type of object with

attribute

activity class;
activity _status;
activity_start_time: (read) time;;
activity _termination_start_time: (read) time;
activity_termination_end_time: (read) time;

link
started_by: (navigate) reference link to process reverse started_activity;
nested_in: (navigate) reference link to activity reverse nested_activity;
nested_activity: (navigate) implicit link (system_key) to activity reverse nested_in;
process_started_in: (navigate) implicit link (system_key) to process reverse

started_in_activity;

end activity;
(6) end system;
% An activity is the framework in which a set of related operations takes place. Each operation is

always carried out on behalf of just one activity. An activity is started at the time it is created
and remains in existence until the deactivation of the process which started it.

®

©

(10)

(11

(12)
(13)
(14)
(15)
(16)
@7
(18)
(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

@7

-181 -

The activity class of an activity describes the degree of protection which the activity requires:
affects the default level of concurrency control applicable to operations carried out on behalf
the activity. There are three activity classes:

- UNPROTECTED. Anunprotectedactivity, used when it is not necessary to protect data
from concurrent activities.

- PROTECTED. Aprotectedactivity, used when data to be accessed needs protection fror
concurrent activities.

- TRANSACTION. A transactionactivity (or transactior), used when the activity has a
significant effect on the object base and its integrity needs to be protected.

The activity status records the current state of the activity. The possible states of an activity &
- UNKNOWN. The "activity" object has been created by an operation defined in clause 9.

- ACTIVE. The activity is started and its termination is not yet initiated.

- COMMITTING. The activity's normal termination is initiated but not completed.

- ABORTING. The activity's abnormal termination is initiated but not completed

- COMMITTED. The activity is normally terminated.

- ABORTED. The activity is abnormally terminated.

The activity start time records the time when the activity was started.

The activity termination statime records the time when the termination of the activity was
started.

The activity termination end time records the time when the termination of the activity we
completed.

The "started_by" process is the process that started the activity.

The "nested_in" activity, called tlenclosing activityof the activity, is the activity within which
the activity was started. Theested activitieof an activity are the activities for which the
activity is the enclosing activity.

The "process_started_in" processes are the processes which were created while the activity
the current activity.

Within each process there is only anarent activity When a process is initiated, its current
activity is the current activity of its parent process. When an activity is started in a process
becomes the current activity of the process; the current activity is then the activity of the proc
with the highest key in the "started_activity" link from the process and which is still active
When an activity is terminated in a process its immediate enclosing activity becomes the curr
activity of the process.

Each workstation in a PCTE installation has an outermost activity.odteemost activityf a
workstation is an unprotected activity that is created by implementation-dependent means s
that it is indistinguishable from an activity created by ACTIVITY_START except that it has nc
"started_by" or "nested_in" link. It has a "process_started_in" link to the initial process.

Updates by an activity to a resource akailable if, when the updated resource is read by

another activity not enclosed by the updating activity, data derived from the updated state of
resource is obtained. Data derived from the updated state of the resource is obtained when
by the updating activity and by nested activities without necessarily being generally available.

(28)

(29)

(30)

@D

(32)

(33)

(34)

(39)

-182 -

NOTES

1 Activities can be internal to one process or can extend over several descendant processes. A process is free to
start an activity, but a process is only allowed to terminate activities that it has started.

2 Operations performed by a process, other than those on an open contents, are carried out on behalf of the current
activity of the process at the time the operation is called.

3 A nested transaction may be terminated without implying the termination of its enclosing transaction. When a
transaction is normally terminated then all the read locks it has acquired are released and all the write locks of
default mode it has acquired or inherited from its nested transactions are inherited by its enclosing transaction.
When a transaction is abnormally terminated then the changes made by it and all its nested transactions are unmade
(unless explicitly excluded from rollback) and all the locks it has acquired, including the write locks it has inherited
from its nested transactions, are released. This effect is transitive so that, in the case of successive normal
terminations of transactions nested one in another, nested transaction write locks are not released, and the changes
not committed, until the outermost transaction is normally terminated.

4 Protected or unprotected activities may also be nested within transactions. In this case, modifications made
within the nested activities are considered also to be changes made within their closest enclosing transaction.
Accordingly, when locks are acquired by nested protected or unprotected activities, locks are implicitly acquired at
the same time by their closest enclosing transaction (see 16.1.6)

5 In the same way when a lock whose mode is not the default write mode is acquired by a nested transaction, a
lock is implicitly acquired at the same time by the closest enclosing transaction.

6 A process running on behalf of a transaction can explicitly exclude from rollback changes made to certain
resources by explicitly locking such resources in unprotected or protected modes (i.e. not in default write modes)
(see 16.1.5). However creating or deleting of objects and links cannot be excluded from rollback.

7 The outermost activity of a workstation is implicitly set up by the system. It is intended to provide a valid

activity framework for the initial process of the workstation. Each workstation has its own outermost activity, i.e.

the outermost activity of a workstation cannot be the outermost activity of another workstation. An initial process
is initiated in the context of that activity. It is intended that the initial process should then start an activity suitable
for its own requirements.

8 Transactions do not protect the local data of a process, hence, for example, changes to contents handles, object
references, and other local variables made within the scope of a transaction are not reversed if the transaction is
aborted.

16.1.2 Resources and locks

@

@

®
@

(®)
(6)

Lock_internal_mode = READ_UNPROTECTED | READ_SEMIPROTECTED |
WRITE_UNPROTECTED | WRITE_SEMIPROTECTED | DELETE_UNPROTECTED |
DELETE_SEMIPROTECTED | READ_PROTECTED | DELETE_PROTECTED |
WRITE_PROTECTED

Lock set mode = Lock_internal_mode | WRITE_TRANSACTIONED |
DELETE_TRANSACTIONED | READ_DEFAULT | WRITE_DEFAULT | DELETE_DEFAULT

sds system:

lock_mode: READ_UNPROTECTED, READ_SEMIPROTECTED, WRITE_UNPROTECTED,
WRITE_SEMIPROTECTED, DELETE_UNPROTECTED, DELETE_SEMIPROTECTED,
READ_PROTECTED, DELETE_PROTECTED, WRITE_PROTECTED,
WRITE_TRANSACTIONED, DELETE_TRANSACTIONED;

lock_external_mode: (read) enumeration (lock_mode) := READ_UNPROTECTED,;

lock_internal_mode: (read) enumeration (lock_external_mode range
READ_UNPROTECTED .. WRITE_PROTECTED) := READ_UNPROTECTED;

0]

®)

©)

(10)
a1
(12)
(13)
(14)

(15)

(16)
@an
(18)
(19)
(20)
(21)

(22)

(23)

(24)

(25)

-183 -

extend object type activity with
link
lock: (navigate) non_duplicated designation link (lock_identifier) to object with attribute
locked_link_name;
lock_external_mode;
lock_internal_mode;
lock_explicitness: (read) enumeration (EXPLICIT, IMPLICIT) := IMPLICIT;
lock_duration: (read) enumeration (SHORT, LONG) := SHORT;
end lock;
end activity;

extend link type process_waiting_for with
attribute
lock_external_mode;
lock_internal_mode;
end process_waiting_for;

end system;
A resources either an object resource or a link resource.
An object resourcés an object restricted to the following:
- its contents,
- its type,
- its preferred link type and preferred link key,

- its attributes, except the predefined attributes "last access time", "last _change tim
"last_modification_time", "last_composite_access_time", "last_composite_change_time
"last_composite_modification_time", "num_incoming_links", "num_incoming_
composition_links", "num_incoming_existence_links", "num_incoming_reference_links"
"num_incoming_stabilizing_links", "num_outgoing_composition_links", and
"num_outgoing_existence_links",

- its incoming "object_on_volume" link.

A link resourceis a link, identified by its link name and restricted to the following:
- its link type,

- its sequence of key attributes,

- its set of non-key attributes,

- the object designator of its destination.

The fact that a resource is locked is represented by a "locked_by" link from the object resou
or the origin of a link resource to the activity which holds the lock. The locked link name of tr
link specifies whether the resource is an object resource or a link resource:

- if the locked resource is a link resource, the "locked_link_name" attribute is set to the lir
name in canonical form (see 23.1.2.4).

- if the locked resource is an object resource, the "locked_link_name" attribute is set to 1
empty string.

A lock is represented by a "lock” link from an activity to a resource; the activity is shado

the lockonthe resource. The link is created at the time the lock is established and remains u
the lock is released or inherited. Locks ensure the consistency of object base data ac
operations by controlling the synchronization of concurrent operations on the same resources

(26)

@7

(28)

(29)

(30)

@D

(32)

(33)

(34)

(39)

(36)

@7

(38)

(39)

(40)

41)

(42)

(43)

(44)

(45)

(46)

- 184 -

A lock is characterized by a unique lock identifier, the value of which is implementation-
dependent.

The concerned domairof a resource is the set of resources which can be affected by
modifications of that resource:

if the resource is an object, the concerned domain is the object resource and the set of links
(link resources) originating from the object.

if the resource is a link, the concerned domain is the link resource and the object (object
resource) from which the link starts.

A resource is said to lmperated orby an activity when:

either the resource is an object whose contents are currently open (see clause 12), by
CONTENTS_OPEN or PROCESS_START on behalf of that activity, in which case the
resource is operated on while the contents is open;

or the resource (i.e. object or link) is the subject of operations other than operations on
"lock" and "locked_by" links and on the contents of objects, in which case the resource is
operated on for the duration of the operation.

An activity can locka resource just once; i.e. two locks originating from the same activity
cannot have the same locked resource and the same destination.

A lock has the following attributes:

A lock external mode, which controls synchronization of resource accesses between an
activity and all other activities which are not nested (either directly or transitively) to it.

A lock internal mode, which controls synchronization of resource accesses between an
activity and all activities which are nested (either directly or transitively) to it.

The lock internal mode is equal to or weaker than the lock external mode (see below). See
below for a definition of lock modes.

A lock explicitness, which records how the lock was established:

EXPLICIT. An explicit lock, i.e. it was established explicitly by one of locking
operations.

IMPLICIT. An implicit lock, i.e. it was established implicitly as the resource was
implicitly acquired.

A lock duration, which records the duration of the lock:

LONG. Alonglock, i.e. one which, once established, holds until the termination of the
activity.

SHORT. Ashortlock, i.e. one which can be released before the termination of the
activity.

A long lock can be held only by a transaction.
A short lock can be held only by a protected or an unprotected activity.

NOTE - The incoming "object_on_volume" links of an object resource are created or deleted by operations which create,
move or delete objects. When these operations are performed in a transaction which is then rolled back, the creation or
deletion of these links is also rolled back.

®

@

®

@

®)

(6)

0]

®

©

(10)

(11

-185 -

16.1.3 Lock modes

The meanings of the lock modalues are as follows. The abbreviations shown are used in th
tables at the end of this clause.

READ_UNPROTECTED (RUN). The activity holding the lock can read the resource
Other activities can concurrently read or write to the same resource or delete it.

READ_SEMIPROTECTED (RSP) (for object resources only). The activity holding the loc}
can read the resource. Other activities can concurrently read from the same resource. C
activities can concurrently read or write to the same resource witl
WRITE_UNPROTECTED, WRITE_SEMIPROTECTED, WRITE PROTECTED or
WRITE_TRANSACTIONED locks but cannot delete it.

WRITE_UNPROTECTED (WUN). The activity holding the lock can read or write to the
resource.

If the resource is an object, other activities can concurrently read or write to the sar
resource or delete it with DELETE_UNPROTECTED or DELETE_SEMIPROTECTED
locks, other activities can concurrently read or write to the same resource wi
WRITE_UNPROTECTED or WRITE_SEMIPROTECTED locks and other activities can
concurrently read the resource with READ_UNPROTECTED or
READ_SEMIPROTECTED locks.

If the resource is a link, other activities can concurrently read or write to the same resou
or delete it with WRITE_UNPROTECTED locks and other activities can concurrently rea
the resource with READ_UNPROTECTED locks.

Updates to the resource are available if an enclosing activity does not hold a WTR or D
lock on the resource.

WRITE_SEMIPROTECTED (WSP) (for object resources only). The activity holding the
lock can read or write to the resource. Other activities can concurrently read or write to t
same resource with WRITE_UNPROTECTED or WRITE_SEMIPROTECTED locks but
cannot delete it and other activities can concurrently read the resource wi
READ_UNPROTECTED or READ_SEMIPROTECTED locks. Updates to the resource ar
available if an enclosing activity does not hold a WTR or DTR lock on the resource.

DELETE_UNPROTECTED (DUN) (for object resources only). The activity holding the
lock can read or write to the resource or delete it. Other activities can concurrently read
write to the same resource or delete it with DELETE_UNPROTECTED locks, othe
activities can concurrently read or write to the same resource witl
WRITE_UNPROTECTED and other activities can concurrently read the resource wit
READ_UNPROTECTED locks. Updates to the resource are available if an enclosir
activity does not hold a WTR or DTR lock on the resource.

DELETE_SEMIPROTECTED (DSP) (for object resources only). The activity holding the
lock can read or write to the resource or delete it. Other activities can concurrently read
write to the same resource with WRITE_UNPROTECTED locks but cannot delete it ar
other activities can concurrently read the resource with READ_UNPROTECTED lock:
Updates to the resource are available if an enclosing activity does not hold a WTR or D
lock on the resource.

READ_PROTECTED (RPR). The activity holding the lock can read the resource. Oth
activities can concurrently read the same resource with READ_UNPROTECTEL

(12)

(13)

(14)

(15)

(16)

(1)

(18)

(19)

(20)

()

(22)

- 186 -

READ_SEMIPROTECTED or READ PROTECTED locks. No other activities can
concurrently write to the same resource.

- WRITE_PROTECTED (WPR). The activity holding the lock can read or write to the
resource. Other activities can concurrently read the same resource with
READ_UNPROTECTED or READ_SEMIPROTECTED locks. No other activities can
concurrently write to the same resource. Updates to the resource are available if an
enclosing activity does not hold a WTR or DTR lock on the resource.

- DELETE_PROTECTED (DPR) (for object resources only). The activity holding the lock
can read or write to the resource or delete it. Other activities can concurrently read the same
resource with READ_UNPROTECTED locks. No other activities can concurrently write to
the same resource. Updates to the resource are available if an enclosing activity does not
hold a WTR or DTR lock on the resource.

- WRITE_TRANSACTIONED (WTR). Transaction holding the lock can read or write to the
resource. Other activities can concurrently read the same resource with
READ_UNPROTECTED or READ_SEMIPROTECTED locks. No other activities can
concurrently write to the same resource.

- DELETE_TRANSACTIONED (DTR) (for object resources only). Transaction holding the
lock can read or write to the resource or delete it. Other activities can concurrently read the
same resource with READ_UNPROTECTED locks. No other activities can concurrently
write to the same resource.

It is implementation-defined whether or not updates to a resource are available if the updates are
performed while an activity holds a WTR or DTR lock on the resource.

Locks of the following modes, whether internal or external, can be held only on an object
resource: READ_ SEMIPROTECTED, WRITE_SEMIPROTECTED, DELETE _
SEMIPROTECTED, DELETE_PROTECTED, DELETE_TRANSACTIONED.

The modes of a lock on a given resource must be compatible with the modes of locks held by
other activities on resources in the concerned domain of that resource. Its external mode must
be compatible with the external mode of all locks held on the resources in the concerned domain
by other activities which are not enclosing, nor nested to the issuing activity, and with the
internal mode of all locks already established by the enclosing activities on the resources in the
concerned domain. Its internal mode must be compatible with the external modes of all locks
already established by the nested activities on the resources in the concerned domain

The lock modes are grouped into two categories:

- Read lock mode®READ_UNPROTECTED, READ_SEMIPROTECTED,
READ_PROTECTED

- Write lock modesWRITE_PROTECTED, WRITE_TRANSACTIONED,
WRITE_UNPROTECTED, WRITE_SEMIPROTECTED, DELETE_PROTECTED,
DELETE_UNPROTECTED, DELETE_SEMIPROTECTED,
DELETE_TRANSACTIONED

There are three relations defined between lock madé&give strengthrelative weaknessand
compatibility The relative strength relation between lock modes is defined by table 4. The
relative weakness relation is the inverse of the relative strength relation (i.e. L1 is weaker than
L2 if and only if L2 is stronger than L1). The compatibility relation is defined by table 5.

(23)

(24)

(29)

(26)

-187 -

Updates to an accounting log or an audit file, the "message_count”, "last_send_time" &
"last_receive_time" attributes of a message queue, and the "last_access_time" attribute o
object, are never made on behalf of the current activity.

If the current activity is a transaction, it may be terminated in one of two ways:

- For updates performed on behalf of the current activity while transaction locks wel
established, the operation ACTIVITY_END, whicbmmitsthe transaction, results in those
updates becoming permanent, providing the transaction locks are not inherited (see 16.1.

- The operation ACTIVITY_ABORT, whichaborts the transaction, causes the updates
performed on behalf of the current activity while transaction locks were established to |
undone, apart from updates applied to contents of "pipe”, "message_queue”, and "devi
objects.

16.1.4 Inheritance of locks

®

@

(©)

Inheritance of locks occurs only between transactions nested one in the other. A transac
inherits write locks of default modes (i.e. locks of modes WTR or DTR) from its (immediate
nested transactions each time such a nested transaction terminates normally (i.e. whe
commits).

When a transaction T1 terminates, the lock it holds on a resource X is inherited by the nea
enclosing transaction T of T1. If T already holds a lock on X, the lock is promoted according
the rules of implicit promotion (see 16.1.5).

NOTE - Updates to a resource are committed or cancelled when there cease to be any WTR or DTR locks on
resource. When an enclosing transaction inherits WTR and DTR locks, it also inherits the updates. Norme
when there is no further enclosing transaction, updates are committed when the current transaction activity end
however the enclosing transaction Tl holds a non-transaction lock on a resource updated under encl
transaction T, then when T ends the transaction lock is not inherited and neither are the updates which
committed. An exception to this is when a transaction T2 enclosing T1 exists and has a WTR or DTR lock on
resource; in this case the updates are inherited by T2 when T ends and are not committed at that point.

16.1.5 Establishment and promotion of locks

@

@

(©)

4)

(®)

A lock isrequestedn a resource on behalf of an activity if an attempt is made to create a loc
on that resource on behalf of that activity.

A lock is establishedon a resource when a lock is requested on the resource on behalf of
activity and no lock has yet been acquired by the activity.

A lock is explicitly establishedby means of operation LOCK_SET_OBJECT. A lock is
implicitly establishedif the resource is implicitly acquired by some operation (other than
LOCK_SET_OBJECT) operating on the resource and carried out on behalf of the activit
Locks of mode RSP, WSP, and DSP can only be established explicitly.

The modes of a lock, once established, can evolve either implicitly, according to the way 1
resource is operated on, or explicitly by means of the lock set operations.

The following enumerates, for each activity class, the implicit lock modes which are request
depending on the access performed on the acquired resource. Locks on link resources
always implicit and therefore always adopt default modes.

™

®

©

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

-188 -

- Default external modes:

for unprotected activities the external mode is RUN when reading a resource, WUN
when creating or updating a resource or deleting a link resource, and DUN when deleting
an object resource;

for protected activities the external mode is RPR when reading a resource, WPR when
creating or updating a resource or deleting a link resource, and DPR when deleting an
object resource;

for transaction activities the external mode is RPR when reading a resource, WTR when
updating a resource or creating or deleting a link resource, and DTR when creating or
deleting an object resource.

- Default internal modes: for every activity class, internal modes are WUN for resources being
created or updated and link resources being deleted, DUN for object resources being deleted,
and RUN in all other cases.

The lock mode actually acquired depends on whether the lock is established or promoted. If it is
established then the lock mode acquired is the default lock mode. If a promotion occurs, see
below. Tables 8 and 9 summarize the default external modes.

When a lock is requested on a resource on behalf of an activity and a lock has already been
acquired by the activity, then the lock may be promoted.prbmotea mode of a lock is to
transform it to a stronger mode which is compatible (as for the establishment of a new lock)
with other locks on resources in the concerned domain. See table 6 and 16.1.7.

Implicit promotionof either or both the internal and the external modes of a lock occurs when an
operation performing a write access (e.g. OBJECT_SET_ATTRIBUTE or CONTENTS_OPEN
with an opening mode allowing write access) is applied to a resource already acquired by the
activity with a lock whose modes allow only read access to that resource, or when an operation
deleting an object (e.g. LINK_DELETE or OBJECT_DELETE) is applied to an object resource
already acquired by the activity with a lock whose modes do not allow deletion of that object
resource.

Explicit promotionof either the internal or the external lock mode occurs when the lock set

operations are applied to a resource already locked (either explicitly or implicitly) by the activity
on behalf of which the lock set operation is carried out. The new mode must obey the
promotion rules for lock modes (see below).

Any explicit attempt to promote an explicit or an implicit external or internal mode M1, or
implicit attempt to promote an implicit external or internal mode M1, to a mode M2 which has
no relation of relative strength with M1 is converted into an attempt to promote M1 to the
weakest mode which is stronger than both M1 and M2 (e.g. an attempt to promote a RPR mode
to a WUN mode is implicitly converted into an attempt to promote the mode to WPR). Table 6
defines the implicit promotion of lock modes when the prior lock is explicit; table 7 defines the
promotion of lock modes for the other cases.

In the operation definitions, the phraseriadelock of the default mode isbtainedon object
whereobjectis an object anchodeis 'read’ or ‘write’, is used to mean that an attempt is made to
establish an implicit lock on the object resounbgectof a mode given by table 8, depending on
the class of the current activity and the default lock mode of 'read’ or ‘write', and if ‘write’,
whetherobjectis being created, updated or deleted.

Similarly, the phrase 'modelock of the default mode is obtained lamk' wherelink is a link
andmodeis 'read’ or 'write', is used to mean that an attempt is made to establish an implicit lock

(18)

-189 -

on the link resourcdéink of a mode given by table 9, depending on the class of the currer
activity and the default lock mode of ‘read’ or 'write’, and if ‘write', whéitilers being created,
updated or deleted. lihk is a 'lock’ or 'locked_by' link then no lock is established on it.

If no lock currently exists on the resourodjector link) for that activity, an attempt is made to
establish the lock, otherwise implicit promotion is attempted.

16.1.6 Implied locks

®

@

®

@

®)

(6)

0]

®

Locks can be established or promoted on a resource as a result of establishing or promc
another lock.

When locks are acquired by nested activities, this implies that implicit locks are acquired at 1
same time by their closest enclosing transaction:

- The establishing of (or promotion to) a WUN, WSP, WPR external mode lock for an activit
also implies an implicit establishment (or implicit promotion) of a lock of external mode
WTR on the resource on behalf of the closest enclosing transaction.

- The establishing of (or promotion to) a DUN, DSP, DPR external mode lock for an activit
also implies an implicit establishment (or implicit promotion) of a lock of external mode
DTR on the resource on behalf of the closest enclosing transaction.

- The establishing of (or promotion to) a RUN, RSP, RPR, WTR, or DTR external mode loc
for an activity also implies an implicit establishment (or implicit promotion) of a lock of
external mode RPR on the resource on behalf of the closest enclosing transaction.

Establishing or promoting a lock on a link also implies the implicit establishment (or promotior
of a read lock of the default mode on the origin of that link for the current activity, if the lin
type of the link has an upper bound or a non-zero lower bound and the link is being deletec
created.

The establishing of (or promotion to) a write lock on the last composition or existence lir
leading to an object for the purpose of its deletion also implies the implicit establishment (
implicit promotion) of a write lock allowing deletion on this object for the current activity (i.e. a
DUN, DSP, DPR, or DTR lock according to the class of the activity and the promotion rules
The establishing of (or promotion to) a write lock on a composition or existence link for th
purpose of deletion of the link results in the implicit establishment (or implicit promotion) of :
read lock on the destination of the link.

In all these cases the internal lock mode of the implied lock is RUN.

16.1.7 Conditions for establishment or promotion of a lock

@
@

®
@

The following conditions must be satisfied to establish or promote a lock on a given resource:

- Access rights: the current activity of a process can explicitly or implicitly establish a lock o
a resource if and only if the process has at least one discretionary access right to the resc
if it is an object resource, or to its origin if it is a link resource.

- Lock mode compatibility: an activity can establish (or promote) a lock on a resource if

its external mode is compatible with the external mode of all locks held on the resourc
in the concerned domain by other activities which are not enclosing, nor nested to t
issuing activity;

®)

(6)

™
®

©

(10)

(11

-190 -

its external mode is compatible with the internal mode of all locks already established by
the enclosing activities on the resources in the concerned domain;

its internal mode is compatible with the external modes of all locks already established
by the nested activities on the resources in the concerned domain;

The implied lock (if any) must also be compatible with existing locks as defined above.

If the conditions do not hold, either the issuing operation waits, waiting for the resource to
become available, or the request returns an error without delay.

When an operation waits as a result of attempting to lock a resource in a mode which is
incompatible with the existing locks on that resource held by other discrete activities, the
operation is said to beaiting on the resource When an operation is waiting on a resource, a
"process_waiting_for" link is created from the process of the waiting operation to the resource.
The "waiting_type" attribute of that link is set to WAITING_FOR_LOCK, the required external
and internal modes of the lock set in the "lock external _mode" and "lock internal_mode"
attributes respectively of the link, and the "locked_link_name" attribute is set to the link name,
in canonical form, of the resource on which the lock is to be established if the resource is a link,
and to the empty string otherwise. The link is removed when the operation which is waiting on
the resource is interrupted, or the resource is acquired.

If a lock is held on an object resource by an activity, then any attempt to establish a lock on any
of its links by that activity has no effect unless the lock mode resulting from the request is
stronger than or has no relation of relative strength to the external mode of the lock on the
object.

If a lock is held on a link resource by an activity, then when a lock is established on its origin by
that activity the lock on the link is discarded, unless the external lock mode on the link is
stronger than or has no relation of relative strength to the external mode of the lock on the
origin.

16.1.8 Releasing locks

@

@

®
@

®)

A distinction is made betweediscarding a lock (to get rid of it) andeleasinga lock.
Releasing a lock implies discarding the lock for the current activity, and if the lock has a WTR
or a DTR mode then the closest enclosing transaction inherits the modifications to the resource.
If there is no such transaction then modificationscaramittedi.e. modifications can no longer

be discarded).

In any case, this results in the deletion of the "lock” link and of the "locked_by" link associated
with the released lock. In the case that the lock is inherited by the closest enclosing transaction,
if the resource was not already locked on behalf of that transaction, new "lock™ and "locked_by"
links are created between this activity and the locked resource, in order to represent the inherited
lock.

Long locks are released at the end of the activity. In the case of short locks two cases can apply:

- The lock was explicitly established: it is released either at the end of the activity or at the
explicit unlock of the resource, whichever occurs first.

- The lock was implicitly established: it is released as soon as the locked resource is no longer
being operated on behalf of the activity holding the lock (for example when the last open
contents handle to the object contents is closed by CONTENTS_CLOSE).

-191 -

®) When a lock on a resource is discarded, if one or more operations are waiting on the resol
then an attempt is made to establish or promote a lock on that resource in the modes givel
the attributes "lock_external_mode" and "lock_internal_mode" of a "process_waiting_for" lin
to that resource on behalf of the current activity of the process which is the origin of that link.
a lock can be established or promoted on behalf of one of those activities, then t
corresponding "process_waiting_for" link is deleted. If a lock can be established or promoted
behalf of more than one such activity, it is not defined on behalf of which activity it i
established or promoted. The resource on which the lock is established or promoted is
destination of the "process_waiting_for" link if the "locked_link_name" attribute of that link is
empty, otherwise it is the link with that attribute as link name.

NOTES
@ 1 The description of each of the operations defines the resources, if any, which are operated on by the operatic
®) 2 Nested parallel activities should be achieved by using parallel processes.
©) 3 The internal mode of a lock held by an activity affects only the activity and its nested activities.

16.1.9 Permanence of updates

@ When an update, whether made while a lock is established or not, isp®aadanent the
resulting change to objects in the object base is such that if a volume failure, device failure,
network failure event occurs so as to render one or more of those objects inaccessible,
objects retain their updated state. Conversely, if an update is not made permanent and sL
failure event occurs then the objects revert to a state which existed before the update. An up
to a link is considered to be an update to its origin.

@ If an update is made to an object or link while only non-transaction locks are established on t
object or link then the update is made permanent at the latest when the activity in which
update occurred is terminated.

@®) Updates made to objects or links, while WTR or DTR locks are established on those objects
links, are made permanent atomically when no transaction locks remain after a transaction er

@ Updates made which do not require a lock to be established on the object or link, for exam
some operations defined in clause 13 and updates to audit files and accounting logs, are n
permanent at an implementation-defined time.

16.1.10 Tables for locks

-192 -

Table 4 - Relative strength of lock modes

mode2
model | RUN |[RSP | WUN | WSP | RPR| WPR | WTR | DUN | DSP| DPR| DTR
RUN = < < < < < < < < < <
RSP > = - < < < < - < < <
WUN > - = < - < < < < < <
WSP > > > = - < < - < < <
RPR > > - - = < < - - < <
WPR > > > > > = < - < <
WTR > > > > > > = - - - <
DUN > - > - - - - = < < <
DSP > > > > - - - > = < <
DPR > > > > > > - > > = <
DTR > > > > > > > > > > =
Key
< modelis weaker thamode?2
> modelis stronger thamode2
= modelandmode2are the same
- there is no relation of relative strength betwe®mdelandmode2

Table 5 - Compatibility of lock modes

mode2
model | RUN |[RSP | WUN | WSP | RPR| WPR | WTR | DUN | DSP| DPR| DTR
RUN yes yes | yes yes yes| yes yes yes y&S yes ye
RSP yes yes | yes yes yes| yes yes no no no no
WUN yes yes | yes yes no no no yes yes no no
WSP yes yes | yes yes no no no no no ng no
RPR yes yes no no yes no no no no no no
WPR yes yes | no no no no no no no no no
WTR yes yes no no no no no no no no no
DUN yes no yes no no no no no no no no
DSP yes no yes no no no no no no no no
DPR yes no no no no no no no no no no
DTR yes no no no no no no no no no no
Key
yes model and mode2 are compatible
no model and mode2 are not compatible

-193 -

Table 6 - Implicit promotion of explicit lock of mode modelto mode2

mode?2

model | RUN | WUN |RPR|WPR |WTR [DUN |DPR |DTR

RUN no WUN | no WUN [WUN | DUN | DUN | DTR

RSP no WSP | no WSP| WSP| DSP DSH DTR

WUN no no no no no DUN| DUN| DTR

WSP no no no no no DSP DSP DTR

RPR no WPR | no WPR| WPR| DPR| DPR| DTR

WPR no no no no no DPR DPR| DPT

WTR - - - - no - - DTR

DUN no no no no no no no DTR

DSP no no no no no no no DTR

DPR no no no no no no no DTR

DTR - - - - no - - DTR

Key

no there is no promotion

- the case does not apply

Table 7 - Promotion ofmodelto mode2 other cases
mode2

model | RUN [RSP | WUN | WSP | RPR | WPR | WTR | DUN | DSP| DPR| DTR
RUN no RSP | WUN| WSP| RPR| WPR WTR DUN DSP DRR DTR
RSP no no WSP | WSP| RPR| WPR WTR DSR DSP DPR DTR
WUN no WSP| no WSP| WPR| WPR WTR DUN DSP DRHR DTR
WSP no no no no WPR| WPR| WTR| DSP DSP DRR DTR
RPR no no WPR | WPR| no WPR| WTR DPR| DPR DRR DTR
WPR no no no no no no WTR| DPR DPR DPR DTR
WTR no no no no no no no DTR| DTR DTR DTR
DUN no DSP | no DSP DPR| DPR| DTR| no DSP DRR DTR
DSP no no no no DPR DPR DTR| no no DPR DTR
DPR no no no no no no DTR| no no no DTR
DTR no no no no no no no no no no no

- 194 -

Table 8 - Default External Lock Modes for Object Resources

Default lock mode
Activity class Read Write
Update | Object creation Object deletion
UNPROTECTED | RUN WUN WUN DUN
PROTECTED RPR WPR WPR DPR
TRANSACTION RPR WTR DTR DTR

Table 9 - Default External Lock Modes for Link Resources

Default lock mode
Activity class Read Write
Update | Link creation Link deletion
UNPROTECTED | RUN WUN WUN WUN
PROTECTED RPR WPR WPR WPR
TRANSACTION RPR WTR WTR WTR

16.2 Concurrency and integrity control operations

®

@

(©)

4)

(®)

16.2.1 ACTIVITY_ABORT

ACTIVITY_ABORT (
)

ACTIVITY_ABORT terminates the current activity of the calling process and discards
uncommitted updates. The following actions are performed in order:

The activity status and activity start termination time of the current activity of the calling
process are set to ABORTING and the system current time respectively.

This implies abnormal termination of any process P which was initiated in the context of the
current activity and the execution of which has been started but not yet terminated (i.e a
process in one of the states RUNNING, SUSPENDED, and STOPPED), in the same way as
by calling PROCESS_TERMINATE (P, ACTIVITY_ABORTED).

ACTIVITY_ABORT waits until all those processes have terminated (i.e. have the state
TERMINATED). If while in this phase ACTIVITY_ABORT is interrupted, either because

the time-out period for the calling process has expired, or because another process has called
PROCESS_INTERRUPT_OPERATION for the calling process, then the current activity
and the associated resources are not affected. In particular, the activity status and activity
start termination time of the activity are reset to their previous values.

-195 -

®) - If the current activity is a transaction, all updates made on behalf of the activity to tt
resources acquired with WRITE_TRANSACTIONED or DELETE_TRANSACTIONED
external mode lock since the establishing of the locks or the promotion of their exterr
mode to WRITE_TRANSACTIONED (or DELETE_TRANSACTIONED for the locks
which were directly established or promoted to this mode) are discarded.

@ - All the locks held by the activity are discarded. This results in the deletion of the "lock™" ar
"locked_by" links associated with those locks.

®) - The activity status and activity start termination time of the activity are set to ABORTEL
and the current system time respectively. The activity remains in existence until the calli
process is deleted.

© As a result of these actions, the activity on whose behalf the aborted activity was initiat
becomes the calling process's current activity.

Errors
(10) ACTIVITY_WAS NOT _STARTED _BY_CALLING _PROCESS
1) ACTIVITY_IS_OPERATING_ON_A RESOURCE

16.2.2 ACTIVITY_END

@ ACTIVITY_END (
)

@ ACTIVITY_END terminates the current activity of the calling process normally. The effect o
this operation is immediately to commit all outstanding updates in the context of the enclosi
activities and to release all locks still held by the activity. The following actions are performe
in order:

@) - The activity status and activity start termination time of the current activity of the calling
process are set to COMMITTING and the current system time respectively.

@ The operation then waits until all the processes which were initiated on behalf of the activ
and the execution of which has been started but not yet terminated (i.e. processes which
running, suspended, or stopped) have terminated.

®) If, while in this phase, the operation is interrupted, either because the time-out period defir
for the calling process has expired or because another process has cal
PROCESS_INTERRUPT_OPERATION for the calling process, then the current activit
and the associated resources are not affected. In particular, the activity status and acti
start termination time of the activity are reset to their previous values.

®) - The locks still held by the activity are released. For locks established with external mo
WRITE_TRANSACTIONED or DELETE_TRANSACTIONED, all the updates made to the
locked resource on behalf of the activity since the establishment of the lock are committed
the context of the enclosing transactions. This means the WRITE_TRANSACTIONED ar
DELETE_TRANSACTIONED locks are inherited by the closest enclosing transaction i
any, otherwise the modification are committed (i.e. modification can no longer be discarde
and those locks are discarded (see 16.1.4 and 16.1.8). In any case, this results in the del
of the "lock™ and "locked_by" links associated with those locks.

@ - The activity status and activity start termination time of the activity are set to COMMITTEL
and the current system time respectively.

-196 -

®) The activity object remains in existence until the calling process is deleted. The activity on
whose behalf the terminated activity was initiated becomes the calling process's current activity.
Errors

© ACTIVITY_WAS_NOT_STARTED BY_CALLING_PROCESS

(10) ACTIVITY_IS_OPERATING_ON_A RESOURCE

@ TRANSACTION_CANNOT_BE_COMMITTED

16.2.3 ACTIVITY_START

@ ACTIVITY_START (
activity _class : Activity_class
)

@ ACTIVITY_START creates a new activity of activity classtivity class nested within the
current activity of the calling process.

@®) The activity is created on the same volume as the calling process, with a "started_activity" link
to it from the calling process. The activity has the same mandatory labels and the same atomic
and composite ACLs as the calling process.

@ A "nested_in" link and a "nested_activity" link are created between the new activity and the
current activity of the calling process.

®) The activity class and activity start time of the new activity are sectioity classand the
current system time respectively.

®) The new activity then becomes the current activity for the calling process.
Errors

% LIMIT_WOULD_BE_EXCEEDED (MAX_ACTIVITIES)

®) LIMIT_WOULD_BE_EXCEEDED (MAX_ACTIVITIES_PER_PROCESS)

©) If the calling process has OWNER granted or denied:

OWNER_PROPAGATION_ERRORS_ON_COMPONENT_CREATION (new activity)
(10) VOLUME_IS_FULL (volume on which the calling process resides)
(11) NOTE - The class of an activity influences system behaviour with respect to lock durations and the default external

mode of implicit locks.

16.2.4 LOCK_RESET_INTERNAL_MODE

) LOCK_RESET_INTERNAL_MODE (
object : Object_designator
)

@ LOCK_RESET_INTERNAL_MODE resets to READ_UNPROTECTED the internal mode of
the lock associated with the object resowiect

@) As result, the internal lock mode of the associated "lock"” link is set to the value
READ _UNPROTECTED.
Errors

@ DISCRETIONARY_ACCESS IS _NOT_GRANTEDKject ATOMIC)

© LOCK_IS_NOT_EXPLICIT pbjec)

(6)
U]

-197 -

OBJECT _IS_NOT_LOCKEDdbjec)
OBJECT_IS_OPERATED_ONbpject ATOMIC)

16.2.5 LOCK_SET_INTERNAL_MODE

@

@

®
@

®)

(6)

™

®

©

(10)
(11
(12)

(13)

LOCK_SET_INTERNAL_MODE (
object : Object_designator,
lock_mode : Lock_internal_mode,
wait_flag :Boolean

)
LOCK_SET_INTERNAL_MODE promotes the internal mode of the lock on the object resourc
designated bybject
If the required lock internal mode is weaker than the existing one, no action is performed.

If lock_modeis not stronger than the internal mode of the lock currently held by the activity o
object then, whenever possible, the operation results in an explicit promotion of the intern
mode of that lock to the weakest mode which is stronger than both the current internal mode
lock_mode E.g. if the current internal mode is READ_PROTECTED &k modeis
WRITE_UNPROTECTED then, if the operation succeeds, it results in the promotion of tf
internal mode of the existing lock to WRITE_PROTECTED.

Let new_lock_modde the actual value of this lock internal mode: either the specified valu
lock_mode or the value derived from it by the above promotion rule; then
LOCK_SET_INTERNAL_MODE sets the internal lock mode of the associated "lock" link to
new_lock_mode

In case of conflict between the required internal mode and other concurrent acquisitions of
resources in the concerned domain of the object resobijeet (see 16.1.7), the behaviour of
the operation depends on the valusvait_flag

- true : the operation waits on the resource until it acquires the resource or until the operati
is interrupted or until the process is terminated, whichever comes first;

- false the operation does not wait on the resource and the operation fails with the ert
condition LOCK_INTERNAL_MODE_CANNOT_BE_CHANGED and has no effect.

Errors

DISCRETIONARY_ ACCESS IS _NOT_GRANTEDkject ATOMIC)
LOCK_INTERNAL_MODE_CANNOT_BE_CHANGEDdbject lock_mod
LOCK_IS_NOT_EXPLICIT pbjec)
LOCK_MODE_IS_TOO_STRONGI¢ck_modeobjec)

OBJECT _IS_NOT_LOCKEDdbjec)

16.2.6 LOCK_SET_OBJECT

@

LOCK_SET_OBJECT (
object : Object_designator,
lock_mode : Lock_set_mode,
wait flag : Boolean,
scope : Object_scope

)

@

®

@

®)

(6)

0]

®

©

(10)
(11

(12)

(13)

-198 -

LOCK_SET_OBJECT either establishes a new lock on the object resulyjex if objectis

not yet assigned to the current activity, or promotes an existing lodbjent otherwise. If
scopeis COMPOSITE, LOCK_SET_OBJECT also does the same for the object resource of
each component of the objexiject

If lock_ modeis READ_DEFAULT, WRITE_DEFAULT or DELETE_DEFAULT, the external
mode of the lock is chosen according to the class of the current activity as shown in table 10.

Table 10 - Interpretation of default lock modes

Activity class READ_DEFAULT |WRITE_DEFAULT PELETE_DEFAULT
UNPROTECTED | RUN WUN DUN
PROTECTED RPR WPR DPR
TRANSACTION | RPR WTR DTR

The locks are established or promoted as follows, wies@urceis the object resouraabject
and each of the object resources of the componentsjedtif scopeis COMPOSITE.

If the current activity of the calling process has a lockesourcethen the lock's external mode
is promoted tdock_mode If this is weaker than the lock's current external mode, the operation
is successful but no action is performed.

The internal mode of a new lock is set to READ UNPROTECTED.lodk modeis not
stronger than the lock's current external mode, then the operation results in an explicit
promotion of the external mode of the lock according to the rule of explicit promotion of an
external mode defined in 16.1.5.

Let new_lock_modée the actual value of this lock mode: either the specified \@tkemode
or the value derived from it as defined by the above rule of explicit promoting an external mode.

If the current activity is enclosed in a transaction, LOCK_SET_OBJECT also results in an
attempt to implicitly establish or to implicitly promote a lock on the object resoesoeirceon

behalf of the closest enclosing transaction. The external nmoplkéed lock_modeof this
implied lock is derived fromlock mode as defined in 16.1.6, and its internal mode
implied_internal_lock_mods READ_UNPROTECTED.

If new locks are to be established, for each of these locks, LOCK_SET OBJECT creates a
"lock" and a "locked_by" link (each reversing the other) between the activity on behalf of which
the lock is established (i.e. the current activity of the calling process or its closest enclosing
transaction) and the locked object. The links remain in existence until the corresponding locks
are released or inherited. The keys of the "lock” and "locked_by" links are implementation-
dependent.

In this case LOCK_SET_OBJECT initializes the attributes of the new links as follows:
- Attributes of "lock" link of the current activity:

lock duration is set to LONG if the current activity is a transaction, otherwise it is set to
SHORT;

lock explicitness is set to EXPLICIT;

(14)

(15)
(16)
(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)
(26)
@7

(28)

(29)

(30)

-199 -

lock internal mode and lock external mode are set to READ_UNPROTECTED and 1
new_lock modeespectively.

- Attributes of "lock" link of the enclosing transaction:
lock duration is set to LONG;
lock explicitness is set to IMPLICIT,;
lock internal mode and lock external mode are sehpdied_internal_lock_modand to
implied_lock_modeespectively.
The locked resource of each of these links is not set and has its initial value which is the err
string.
If the locks are promoted then only the external lock mode and internal lock mode of tl
existing locks are modified; they are set as described above.

In case of conflict between the locks requiredbbjector on any of its components §topeis
COMPOSITE) and other concurrent acquisitions of the resources in the correspondi
concerned domain, the behaviour of the operation depends on the vahié fibg

- true: no lock is established or promoted by the operation, and the operation waits on t
resource until the resource becomes available, until the operation is interrupted, or until
process is terminated, whichever comes first;

- false no lock is established or promoted by the operation, the operation does not wait on
resource, and the operation fails with the LOCK_COULD_NOT_BE_ESTABLISHED error
condition.

If scopeis COMPOSITE, then none of the locks that the operation is trying to establish
promote are established or promoted until all of them can be established or promoted.

Errors

DISCRETIONARY_ACCESS _IS_NOT_GRANTEDject scopé
LOCK_COULD_NOT_BE_ESTABLISHEDdbject scopé
LOCK_MODE_IS NOT_ALLOWED lock modeg

If scopeis ATOMIC:
OBJECT_IS_ARCHIVED gbjec)

If scopeis COMPOSITE:
OBJECT_IS_ARCHIVED ¢bjector a component asbjec)

OBJECT _IS_INACCESSIBLEdbject scop

16.2.7 LOCK_UNSET_OBJECT

@

@

®

LOCK_UNSET_OBJECT (
object : Object_designator,
scope : Object_scope

)

LOCK _UNSET_OBJECT releases the lock established by the current activity of the callir
process on the object resounigect If scopeis COMPOSITE, LOCK_UNSET_OBJECT also
does the same thing for the object resource of each comporadjectf

This results in the deletion of the "lock™ and "locked_by" links associated with the released lo
or locks.

4)
®)
(6)

™

®)

©

(10)

17

- 200 -

Errors

DISCRETIONARY ACCESS_IS_NOT_GRANTEDkject scop@
LOCK_IS_NOT_EXPLICIT pbject)

If scopeis ATOMIC:
OBJECT_IS_ARCHIVED gbjec)

If scopeis COMPOSITE:
OBJECT_IS_ARCHIVED g¢bjector a component asbjec)

OBJECT_IS_INACCESSIBLEdbject scope
OBJECT_IS_OPERATED_ONbbject scope
UNLOCKING_IN_TRANSACTION_IS_FORBIDDEN

Replication

17.1 Replication concepts

17.1.1 Replica sets

@
@
(©)
@

®)

(6)

U]
®

©

Replica_set_identifier = Natural
sds system:
replica_set_identifier: natural ;

replica_set_directory: child type of object with
link
known_replica_set: (navigate) non_duplicated existence link (replica_set_identifier)
to replica_set reverse known_replica_set_of;
replica_sets_of: implicit link to common_root reverse replica_sets;
end replica_set_directory;

replica_set: child type of object with
link
master_volume: (navigate) reference link to administration_volume reverse
master_volume_of;
copy_volume: (navigate) reference link (volume_identifier) to administration_volume
reverse copy_volume_of;
known_replica_set_of: implicit link to replica_set_directory reverse known_replica_set;
end replica_set;

extend object type administration_volume with
link
master_volume_of: (navigate) reference link (replica_set_identifier) to replica_set
reverse master_volume;
copy_volume_of: (navigate) reference link (replica_set_identifier) to replica_set reverse
copy_volume;
end administration_volume;

end system;

The replica set directory represents the set of known replica sets. Each replica set has a unique
replica set identifier which is assigned to the replica set on creation and uniquely identifies the
replica set within the PCTE installation.

The replica set directory is the destination of a "replica_sets" link from the common root. Each
known replica set is the destination of a "known_replica_set" link from the replica set directory
whose key is the replica set identifier of that replica set.

(10)

(11

-201 -

A replica set has exactly one master volume which is chosen when the replica set is createc
also has a set of copy volumes. Master and copy volumes are administration volumes. The
of a "copy_volume" link is the volume identifier of its destination volume. The keys of
"master_volume" and "copy_volume" links are the replica set identifiers of their destinatic
replica sets.

A copy volume of a replicated set cannot also be the master volume for that same set.

17.1.2 Replicated objects

@
@

(©)

4)

®)
(6)

U]

®)

©)

(10)

(11

(12

(13)

(14

sds system:

extend object type replica_set with
link
includes_object: (navigate) reference link (exact_identifier) to object reverse
replicated_as_part_of;
end replica_set;

extend object type administration_volume with
link

replica: (navigate) reference link (exact_identifier) to object reverse replica_on;
end administration_volume;

extend object type object with

link
replicated_as_part_of: (navigate) implicit link to replica_set reverse includes_object;
replica_on: implicit link to administration_volume reverse replica;

end object;

end system;

Objects are classified a®mrmal masteror copy, according to the value of the replicated state
(see 9.1.1):

- A masterobject has replicated state MASTER; it belongs to exactly one replica set, and
resides on the master volume of that replica set.

- A copy object has replicated state COPY:; it belongs to exactly one replica set, and is
replica on a copy volume of that replica set, but does not reside on any volume (i.e. there
no "object_on_volume" link to it; see 11.1.1).

- A normal object has replicated state NORMAL; it belongs to no replica set, and can resit
on any volume.

For each master object there may be a corresponding copy object (with the same e>
identifier) on each of its replica set's copy volumes; for each copy object there is
corresponding master object on its replica set's master volume. Such a set of correspon
master and copy objects is calleceplicatedobject

Operations which modify a copy object are forbidden, and master objects can be modified o
by processes for which PCTE_REPLICATION is an effective security group.

The destinations of the "includes_object" links leaving a replica set are called the obje
replicated as part ofhat replica set. The key of an "includes_object" link is the exact identifiel
of its destination object.

If a link is created to a replicated object then the link is created to the master object.
A replica set is replicated as part of itself.

(15)

(16)

(1)

-202 -

The following objects cannot be replicated: processes, activities, pipes, devices, execution sites,
volumes, message queues, audit files, and accounting logs.

NOTES

1 There is intended to be a copy of each object of a replicated set on each of the copy volumes of the replicated
set.

2 The master and all copies of a replicated object are intended to be kept identical, except for the volume
identifier, last access time, replicated state, composite last access time, composite last change time, composite last
modification time and "replica_on" and usage designation links. It is expected that system tools automatically
propagate modifications and enforce convergence among the various copies in a PCTE installation. Instantaneous
updating of all copies of a replicated object as the master evolves is not expected, so that the replication mechanism
has to manage temporary inconsistencies among the various copies of the replicated objects, supporting suitable
procedures for the propagation of updates.

17.1.3 Selection of an appropriate replica

@
@

®
4)

(®)

(6)

U]

®)

©)

(10)

sds system:

extend object type workstation with
link
replica_set_chosen_volume: (navigate) designation link (replica_set_identifier) to
administration_volume;
end workstation;

end system;

At each moment for each workstation W and replica set S, there is a unique volume V called the
choservolumeof W for accessing S. This is defined as follows:

- it is an explicitty chosen volume This explicit choice is modelled as a
"replica_set_chosen_volume" link from W to V with the replica set identifier of S as its key.

- it is an implicitly chosen volume This implicit choice is made when there is no
"replica_set_chosen_volume" link from W with the replica set identifier of S as its key.

If a link destination resides on an administration volume this is considered to be a potential link
to a replicated object.

If a link identifies an object O that is replicated as part of a replica set S then replication
redirection may occur.Replication redirectionmeans that the object reached or navigated
through as the destination of a link (including "replica" links) is the copy object of O on the
chosen volume for accessing S of the execution site of the calling process (see 17.1.3) if such a
copy object exists, and the master object of O otherwise. There is an exception for service
designation links in that replication redirection applies to the state of the object base at the time
the link was created rather than when it is navigated through.

When an object is referenced using an internal object reference or a contents handle the
designated object is always the one that was reached at the time the corresponding pathname
evaluation was performed, regardless of whether a new local copy has been created or deleted
since that evaluation.

An object replicated as part of a replica set S can only be updated by processes having
PCTE_REPLICATION privilege and running on a workstation whose chosen volume for
accessing S is the master volume of S. If a link having referential integrity is created to a
replicated object then the calling process must have PCTE_REPLICATION privilege.

(11

(12)

(13)

(14)

- 203 -

NOTES

1 Since "replica_set_chosen_volume links" are designation links they may be replaced when the volumes that
designate become unavailable, thus allowing an alternative volume containing that replica set to be chosen.

2 A PCTE implementation may automatically decide which of the master or copy volumes of a replica set sho
be implicitly chosen for each workstation. This can be used to allow the PCTE implementation to minimi:
network load and to recover from machine or network failure.

3 A navigation to or from a replicated object should not fail because the master object is not accessible as lon
the chosen volume of the workstation of the process on whose behalf the navigation is being performed conta
copy of that object.

4 Access to a direct component of an object is made as if the corresponding composition link is navigated.

17.1.4 Administration replica set

@

@

®
@
(®)

There is exactly onadministration replica setlt has replica set identifier 0. Its master volume
is the master administration volume (see 11.1.2). Each administration volume other than
master administration volume is a copy volume of the administration replica set.

The administration replica set includes tredefined replicated objegtsepresenting certain
system entities; each predefined replicated object has a master on the master administre
volume and a copy on each other administration volume; a predefined replicated object may
have its replicated state changed. The predefined replicated objects are:

- the common root;
- the administrative objects.

NOTE - Copies of predefined replicated objects cannot be deleted.

17.2 Replication operations

17.2.1 REPLICA_SET_ADD_COPY_VOLUME

@

@

®

@

®)

(6)
U]

REPLICA_SET_ADD_COPY_VOLUME (
replica_set : Replica_set_designator,
copy_volume : Administration_volume_designator
)
REPLICA_SET_ADD_COPY_VOLUME addsopy_voluméo the set of copy volumes for the
replica seteplica_set

A "copy_volume" link with key equal to the volume identifieraafpy_volumas created from
replica_setto copy_volume The key of its reverse link is the replica set identifier of
replica_set

A copy ofreplica_setis created ircopy_volume A "replica” link with key equal to the exact
identifier ofreplica_setis created froncopy_voluméeo this copy object.

A read lock of the default mode is set of the mastaeplica_set Write locks of the default
modes are set on the created "copy_volume", "copy_volume_of", "replica" and "replica_o
links and the created copy i&plica_set

Errors

ACCESS_ERRORSc6py volumeATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (master i@plica_set ATOMIC, MODIFY, APPEND_LINKS)

®
©)
(10)
(11

(12)

(13)

- 204 -

ACCESS_ERRORS (master @plica_set ATOMIC, READ, READ_ATTRIBUTES)
ACCESS_ERRORS (master @plica_set ATOMIC, READ, READ_LINKS)
PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
REPLICA_SET_IS_NOT_KNOWNréplica_se}

VOLUME_IS_ALREADY_COPY_VOLUME_OF_REPLICA_ SETr¢plica_set
copy_volumg

VOLUME_IS_MASTER_VOLUME_OF REPLICA_SETiéplica_setcopy_volumg

17.2.2 REPLICA_SET_CREATE

@

@

®

@

®)

(6)

™
®)
©

(10)

REPLICA_SET_CREATE (

master_volume : Administration_volume_designator,
identifier : Natural

)
replica_set : Replica_set_designator

REPLICA_SET_CREATE creates replica seplica_setwith master volumenaster_volume
The newly created object residesroaster_volumeand is replicated as part of itself.

A "known_replica_set" link is created from the replica set directorseptica_setwith key
identifier, together with its reverse linkidentifier becomes the replica set identifier of the
replica set.

A "master_volume" link is created froreplica_setto master_volume The key of its reverse
link is assigned the valudentifier.

An "includes_object" link is created fromplica_setto replica_setwith key equal to the exact
identifier ofreplica_set Its reverse link is also created.

Write locks of the default modes are obtained oeplica set and the created
"known_replica_set", "known_replica_set of’, "master_volume"”, "master_volume_of",
"includes_object" and "replicated_as_part_of" links.

Errors

ACCESS_ERRORS (replica set directory, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORStfaster_volumeATOMIC, MODIFY, APPEND_LINKS)

LINK_EXISTS (replica set directory, "known_replica_set" link from replica set directory with
key identifier.)

PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)

17.2.3 REPLICA_SET_REMOVE

@

@
®

@

REPLICA_SET_REMOVE (
replica_set : Replica_set_designator
)

REPLICA_SET_REMOVE removes replica seplica_setfrom the replicated set directory.

The "master_volume" link fromeplica_setto its master volume is deleted, together with its
reverse link.

The "includes_object" link fromeplica_setto replica_setis deleted, together with its reverse
link.

- 205 -

®) The "known_replica_set" link from the replica set directorydplica_setis deleted, together
with its reverse link. If this link is the last existence link leadingefdica_set replica_setis
deleted.

®) Write locks of the default modes are setreplica_setand the deleted "known_replica_set",
"known_replica_set_of', "master_volume"”, "master_volume_of", "includes_object" ant
"replicated_as_part_of" links.
Errors

@ ACCESS_ERRORS (replica set directory, ATOMIC, MODIFY, WRITE_LINKS)

®) ACCESS_ERRORS#¢plica_set ATOMIC, MODIFY, WRITE_LINKS)

© ACCESS_ERRORS¢plica_set ATOMIC, CHANGE, WRITE_IMPLICIT)

(10) ACCESS_ERRORS (master volumereplica_set ATOMIC, MODIFY, WRITE_LINKS)

) OBJECT_HAS_LINKS_PREVENTING_DELETION¢plica_se}

(12) OBJECT_IS_IN_USE_FOR_DELETEeplica_se}

13) PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)

(14) REPLICA_SET_HAS COPY_VOLUMES#¢plica_se}

(15) REPLICA_SET_IS_NOT_EMPTYréplica_se}

(16) REPLICA_SET_IS_NOT_KNOWNTréplica_se}

17.2.4 REPLICA_SET_REMOVE_COPY_VOLUME

) REPLICA_SET_REMOVE_COPY_VOLUME (
replica_set : Replica_set_designator,
copy_volume : Administration_volume_designator

)

@ REPLICA_SET_REMOVE_COPY_VOLUME removesopy_volumefrom the set of copy
volumes of the replica set replica set. The copgplica_setoncopy_volumas deleted.

@®) The "copy_volume” link with key equal to the volume identifiecopy_volumeand its reverse
link are deleted.

@ The link of type "replica" fromcopy_volumeto the copy ofreplica_seton copy_volumes
deleted, as is its reverse link.

®) Write locks of the default modes are set on the deleted "copy_volume", "copy_volume_o
"replica” and "replica_on" links and the deleted copyeplica_set
Errors

®) ACCESS_ERRORS (master iplica_setf ATOMIC, MODIFY, WRITE_LINKS)

% ACCESS_ERRORS (deleted copyreplica_set ATOMIC, MODIFY)

@® ACCESS_ERRORS:0py_volumgATOMIC, MODIFY, WRITE_LINKS)

© PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)

(10) REPLICA_SET_COPY_IS_NOT_EMPT Ydplica_setcopy_volumg

a1 REPLICA_SET_IS_NOT_KNOWNTréplica_se}

(12) VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SETdplica_setcopy_volumg

- 206 -

17.2.5 REPLICATED_OBJECT_CREATE

@

@

®

@

®)

®)
™
®)
©
(10)
(1)
(12)
(13)
(14)

(15)

REPLICATED_OBJECT_CREATE (
replica_set : Replica_set_designator,
object : Object_designator
)
REPLICATED_OBJECT_CREATE converts the normal objetfect to a master object
belonging to replica seéplica_set The replicated state objectis set to MASTER.

A "replica" link is created from the master volumeeplica_setto objectwith key equal to the
exact identifier obbject Its reverse link is also created to the master volume.

An "includes_object" link is created fromeplica_setto object with key equal to the exact
identifier ofobject Its reverse link is also created.

A write lock of the default mode is obtained objectand a write lock of the default mode is
obtained on the created "replica” link.

Errors

ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_OBJECT)
ACCESS_ERRORSopject ATOMIC, CHANGE, APPEND_IMPLICIT)
ACCESS_ERRORS¢plica_set ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORS (master volumereplica_set ATOMIC, MODIFY, APPEND_LINKS)
OBJECT_IS_NOT_ON_MASTER_VOLUME_OF_REPLICA_SE#E(flica_setobjec)
OBJECT_IS_REPLICATEDdbjec)

OBJECT_IS _NOT_REPLICABLEdbjec)

PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
REPLICA_SET_IS_NOT_KNOWNTréplica_se}

The following implementation-dependent errors may be raised for any object X with a link to
object

VOLUME_IS_NOT_MOUNTED (X, ATOMIC)

VOLUME_IS_READ_ONLY (X, ATOMIC)

17.2.6 REPLICATED_OBJECT_DELETE_REPLICA

@

@

®

@

REPLICATED_OBJECT DELETE_REPLICA (
object : Object_designator,
copy_volume : Administration_volume_designator

)

REPLICATED_OBJECT _DELETE_REPLICA deletes the copy obgajectfrom the volume
copy_volume The "replica" link leading tobjectand its reverse "replica_on" link are deleted.

If the copy object has contents and this is currently opened by one or more processes, the
deletion of the contents is postponed until all processes have closed the contents; i.e. the object
is no longer accessible for example using internal object references or for replication redirection,
but an operation using a contents handle to access its contents is not affected by the deletion
until the contents handle is closed.

Write locks of the default mode are obtainedbjectand on the deleted replica link.

- 207 -

Errors
®) ACCESS_ERRORSOpy_volumeATOMIC, MODIFY, WRITE_LINKS)
®) OBJECT_IS_NOT_REPLICATED_ON_VOLUMEbbject copy_volumg
™ PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
®) OBJECT_IS PREDEFINED_REPLICATED®jec)
© OBJECT_IS_A_REPLICA_SETopjec)
(10) STATIC_CONTEXT_IS_IN_USEdbjec)
(11) The following implementation-dependent error may be raised:

ACCESS_ERRORS (master allject ATOMIC, CHANGE)

17.2.7 REPLICATED_OBJECT_DUPLICATE

[} REPLICATED _OBJECT_DUPLICATE (
object : Object_designator,
volume : Administration_volume_designator,

copy_volume : Administration_volume_designator

)

@ If volumeandcopy_volumeare the same, then REPLICATED _OBJECT_DUPLICATE has no
effect.
@®) If volumeand copy_volumeare not the same, and a copyobifect does not already exist in

copy_volumga copy is created and a "replica” link, keyed by the exact identifiebjett is
created frontopy_volumeo the new copy, together with its reverse "replica_on" link.

@ If volume and copy_volumeare not the same, and a copy abject already exists in
copy_volumgthe copy ircopy_volumes updated as defined below.
®) On completion, the atomic object of the copyxapy_volumes identical to the atomic object of
objectexcept for the following:
®) - The volume identifier of the copy object is set to the volume identifieopy_volume
@ - The last access time of the copy object is set to the value of the system clock at the time
call.
®) - The destination of its "replica_on" link é®py_volume
© - The replicated state of the copy object is set to COPY.
(10) - Usage designation links are not copied to the cogppy_volume
(1) - If objecthas contents and there is a copyobjectin copy_volumgthe effect is that of
CONTENTS_TRUNCATE followed by CONTENTS_WRITE with the contentslgkct
(12) A write lock of the default mode is obtained on the copy object, and a read lock of the defa

mode is obtained iobject Write locks of the default mode are obtained on the "replica” link
and its reverse "replica_on" link, if created.

Errors
(13) ACCESS_ERRORS (copy objectonvolume ATOMIC, READ)
(14) If a new "replica” link is created:

ACCESS _ERRORSbpy_ volumeATOMIC, MODIFY, APPEND_LINKS)
(15) OBJECT_IS _NOT_REPLICATED_ON_VOLUMEobject volumé

(16)
an
(18)

(19)

(20)

(21)

(22)

(23)

(24)

- 208 -

PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)
REPLICATED_COPY_IS_IN_USEopjec)
STATIC_CONTEXT_IS_IN_USEdbjec)
VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SEIo{(ume replica
set ofobjec)
VOLUME_IS_NOT_COPY_VOLUME_OF_REPLICA_SETd@py_volumereplica set of
objec)
VOLUME_IS_MASTER_VOLUME_OF_REPLICA_SETcopy_volumereplica set obbjec)
The following implementation-dependent error may be raised:

ACCESS_ERRORS (master abject ATOMIC, CHANGE)
NOTES

1 REPLICATED_OBJECT_DUPLICATE causes a copy of the atomic objecbyct to exist as the atomic
object of the copy object in the volurnepy_volume The copy object has the same componentbgset but the
components are not copied.

2 Updates to copy objects by this operation are subject to transaction rollback.

17.2.8 REPLICATED_OBJECT_REMOVE

®

@

(©)

4)
®)
(6)
™
®)
©
(10)
(11
(12)

(13)

REPLICATED_OBJECT_REMOVE (
object : Object_designator
)

REPLICATED_OBJECT_REMOVE removes the master ob@ygect from the replica set to
which it belongs by changing it into a normal object residing on the master volume of this
replica set. The replicated state object is set to NORMAL, and the "replica" and
"includes_object" links leading to the object are deleted, together with their reverse "replica_on"
and "replicated_as_part_of" links.

Write locks of the default mode are obtained on the deleted "replica”, "replica_on",
"includes_object" and "replicated_as_part_of" links, andlgact

Errors

ACCESS_ERRORS (master volumeotiect ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_OBJECT)
ACCESS_ERRORSopject ATOMIC, CHANGE, WRITE_IMPLICIT)
ACCESS_ERRORS (replica set containaigect ATOMIC, MODIFY, WRITE_LINKS)
OBJECT_HAS_COPIESobjec)

OBJECT _IS_A REPLICA_SETopjec)
OBJECT_IS_NOT_MASTER_REPLICATED_ OBJEC®hjec)

OBJECT _IS_PREDEFINED_REPLICATEDjec)
PRIVILEGE_IS_NOT_GRANTED (PCTE_REPLICATION)

The following implementation-dependent errors may be raised for any object X with a link to
object

VOLUME_IS_NOT_MOUNTED (X, ATOMIC)

VOLUME_IS_READ_ONLY (X, ATOMIC)

- 209 -

17.2.9 WORKSTATION_SELECT_REPLICA_SET_VOLUME

) WORKSTATION_SELECT_REPLICA_SET_VOLUME (
station : Workstation_designator,
replica_set : Replica_set_designator,
volume : Administration_volume_designator
)
@ WORKSTATION_SELECT REPLICA _SET _VOLUME selectslumeas the chosen volume
for accesses teplica set bystation
@®) If station has a "replica_set chosen_volume" link whose key is the replica set identifier
replica_setthat link is first deleted.
@ A "replica_set_chosen_volume" link with a key equal to the replica set identifieplida_set
is then created frorstationand leading tevolume
®) A write lock of the default mode is created on the "replica_set _chosen_volume" link.
Errors
®) If stationalready has a chosen volume for accessesptwa_set
ACCESS_ERRORSs{ation ATOMIC, MODIFY, WRITE_LINKS)
™ ACCESS_ERRORSstation ATOMIC, MODIFY, APPEND_LINKS)
®) PRIVILEGE_IS NOT_GRANTED (PCTE_REPLICATION)
© REPLICA_SET_IS_NOT_KNOWNTréplica_se}
(10) VOLUME_IS_NOT_MASTER_OR_COPY_VOLUME_OF_REPLICA_SErEplica_set
volumeg

17.2.10 WORKSTATION_UNSELECT_REPLICA_SET_VOLUME

@ WORKSTATION_UNSELECT_REPLICA_SET_VOLUME (
Station : Workstation_designator,
replica_set : Replica_set_designator

)

@ WORKSTATION_UNSELECT_REPLICA_SET_VOLUME deletes the
"replica_set_chosen_volume" link fromstation whose key is the replica set identifier of
replica_set

@®) A write lock of the default mode is created on the deleted "replica_set_chosen_volume" link.
Errors

@ ACCESS_ERRORSs{ation ATOMIC, MODIFY, WRITE_LINKS)

®) PRIVILEGE_IS NOT_GRANTED (PCTE_REPLICATION)

®) REPLICA_SET_IS_NOT_KNOWNTréplica_se}

@ WORKSTATION_HAS_NO_CHOICE_OF_VOLUME_FOR_REPLICA_SESidtion

replica_se}

-210 -

18 Network connection
18.1 Network connection concepts

18.1.1 Execution sites

1) sds system:
@ execution_site_directory: child type of object with
link

known_execution_site: non_duplicated existence link (execution_site_identifier) to
execution_site;
execution_sites_of: implicit link to common_root reverse execution_sites;
end execution_site_directory;

®) execution_site: child type of object with
link
running_process: (navigate) non_duplicated designation link (number) to process;
end execution_site;

(4) end system;

®) The execution site identifier is assigned to the execution site on creation and uniquely identifies
the execution site within the PCTE installation during its existence.

®) The destinations of the "running_process" links, if any, are the processes running on the
workstation (see 13.1.4).

% The execution site directory is an administrative object (see 9.1.2).

®) NOTE - An execution site is either a workstation (see 18.1.2) or a foreign system (see 18.1.3).

18.1.2 Workstations

@ Work_status = set of Work_status_item

@ Work_status_item = ACTIVITY_REMOTE_LOCKS | ACTIVITY_LOCAL_LOCKS |
TRANSACTION_REMOTE_LOCKS | TRANSACTION_LOCAL_LOCKS |
QUEUE_REMOTE | QUEUE_LOCAL | RECEIVE_REMOTE | RECEIVE_LOCAL |
CHILD_REMOTE | CHILD_LOCAL

©) Requested_connection_status = LOCAL | CLIENT | CONNECTED
@) Connection_status = Requested_connection_status | AVAILABLE
(5) Workstation_status = Connection_status * Work_status
(6) New_administration_volume ::

FOREIGN_DEVICE : String

ADMINISTRATION_VOLUME : Volume_identifier
VOLUME_CHARACTERISTICS : String
DEVICE : Device_identifier
DEVICE_CHARACTERISTICS : String

0]
®)

©

(10)

(11

(12

(13)

(14

(15)

(16)

@an

(18)

(19)

(20)

(21)

-211 -

sds system:

workstation: child type of execution_site with
attribute
connection_status: (read) non_duplicated enumeration ~ (LOCAL, CLIENT,
AVAILABLE, CONNECTED) := LOCAL;
PCTE_implementation_name: (read) non_duplicated string
PCTE_implementation_release: (read) non_duplicated string ;
PCTE_implementation_version: (read) non_duplicated string
node_name: (read) non_duplicated string ;
machine_name: (read) non_duplicated string
link
controlled_device: (navigate) non_duplicated existence link (device_identifier:
natural) to device reverse device_of;
associated_administration_volume: (navigate) non_duplicated designation link to
administration_volume;
initial_process: non_duplicated existence link (number) to process;
outermost_activity: (navigate) non_duplicated existence link (number) to activity;
end workstation;

end system;

The workstatus consists of a number of independent work status items as follows lgdaére
means residing on a volume mounted on a device controlled by this workstatiomeneotd
means residing on a volume mounted on a device controlled by some other workstation):

- ACTIVITY_REMOTE_LOCKS: at least one non-transaction activity started on the
workstation holds locks on remote objects,

- ACTIVITY_LOCAL_LOCKS: at least one non-transaction activity started on another
workstation has locks on local objects,

- TRANSACTION_REMOTE_LOCKS: at least one transaction started on the workstatiol
holds locks on remote objects,

- TRANSACTION_LOCAL_LOCKS: at least one transaction started on another workstatiol
has locks on local objects,

- QUEUE_REMOTE: at least one process on the workstation has a remote reserved mes:
queue,

- QUEUE_LOCAL: at least one process on a remote workstation has a message qu
reserved on the workstation,

- RECEIVE_REMOTE: at least one process on the workstation is waiting for the reception
a message from a remote message queue,

- RECEIVE_LOCAL: at least one process on another workstation is waiting for the receptic
of a message from a local message queue,

- CHILD_REMOTE: at least one process on the workstation has one or more unterminat
remote child processes,

- CHILD_LOCAL.: at least one process on another workstation has one or more unterminat
local child processes.

New administration volumes are used in WORKSTATION_CREATEhe meaning of
FOREIGN_DEVICE is implementation-defined. It is a string used to designate a new physic
resource (i.e. not yet represented by a device object).

(22)
(23)

(24)

(29)

(26)

@7

(28)

(29)

(30)

@D

(32)

(33)

(34)

(39)

(36)

@7

(38)

(39)

(40)
41)
(42)

(43)

-212 -

A workstation A is alient of a workstation B if at least one of the following is true:
- aprocess running on A has started a child process on B which is not yet terminated;

- aprocess running on A is accessing (i.e. reading from, writing to, or navigating through) an
object residing on a volume mounted on a device controlled by B;

- there is a service designation link to an object residing on a volume mounted on a device
controlled by B from a process running on A;

- a process running on A has reserved a message queue whose associated message queu
object resides on a volume mounted on a device managed by B.

Conversely, a workstation A isserverof a workstation B if B is a client of A.

The connection status denotes the status of the workstation with respect to other workstations of
the PCTE installation. The values have the following meanings (for the definitions of client and
server see below).

- LOCAL The workstation cannot be a client or a server for another workstation. It does not
respond to a call of WORKSTATION_CONNECT from another workstation.

- AVAILABLE The same as LOCAL except that the workstation responds to a connection
request from another workstation.

- CLIENT The workstation can be a client but not a server of another workstation. It does not
respond to a connection request from another workstation.

- CONNECTED The workstation can be a client or a server of another workstation.

The implementation name is the name of the particular implementation of PCTE running on the
workstation; it is implementation-defined.

The implementation release identifies of the release of the PCTE implementation running on the
workstation; it is implementation-defined.

The implementation version identifies of the version of the PCTE implementation running on
the workstation; it is implementation-defined.

The node name provides the mechanism to communicate to the network, e.g. the local area
network address; it is implementation-defined.

The machine name is the name of the particular machine type of the workstation; it is
implementation-defined.

The controlled devices are also called the devooedrolled bythe workstation. Each of the
devices is identified by a device identifier which is unique within the set of devices controlled
by the workstation.

For the administration volume, see 11.1.2. A workstation object resides on the administration
volume of the workstation.

For the initial process of the workstation, see 13.1.5.
For the outermost activity of the workstation, see 16.1.1.
For the associated accounting log, see 22.1.2.

A workstation isbusyif it has connection status CONNECTEdnd is a server of another
workstation, or has connection status CLIENT and is a client of another workstation.

(44)

(45)
(46)
(47

(48)

(49)

(50)

(51)

-213 -

Within an operation, théocal workstation is the workstation on which the calling process is
executed.

NOTES
1 The normal situation in a PCTE installation is one of the following, though abnormal situations may occur:

all workstations with connection status LOCAL;
one workstation with connection status AVAILABLE, all other workstations with connection status LOCAL;

two or more workstations with connection status CONNECTED or CLIENT, all other workstations with
connection status LOCAL;

all workstations with connection status CONNECTED or CLIENT.

2 In some implementations a workstation may have more than one "initial_process" or "outermost_activity" lir
Only the destinations with the highest key are the initial process and outermost activity of the workstatic
respectively. Destinations with other keys are remnants from previous sessions which allow an implementati
dependent tool to perform actions following workstation or system failure.

3 A workstation may access an administration volume shared with another workstation even if its connect
status is LOCAL.

18.1.3 Foreign systems

@
@

(©)
@

®)

(6)

™

®

©

(10)

sds system:

foreign_system: child type of execution_site with
attribute
system_class: enumeration (FOREIGN_DEVICE, BARE_MACHINE,
HAS_EXECUTIVE_SYSTEM, SUPPORTS_IPC_AND_CONTROL,
SUPPORTS_MONITOR) := BARE_MACHINE;
end foreign_system;

end system;

The system class indicates the level of interaction which is supported between PCTE proce:
and foreign processes started on the foreign system, as follows.

FOREIGN_DEVICE The foreign system can be used only as the foreign system f
operations defined in 18.3.

BARE_MACHINE The foreign system is a bare machine executing no code other than t
software under development. The only permitted operation by a PCTE process
PROCESS_CREATE. Any further communication is prevented by the absence of a
communication agent on the foreign system

HAS_EXECUTIVE_SYSTEM The foreign system is a foreign executive system whict
accepts the creation, starting, and termination of processes on it, and can signal the en
their execution to the creating host process.

SUPPORTS IPC_AND CONTROL As for HAS EXECUTIVE_SYSTEM and can also
support at least the message queue mechanisms represented by the operations (see clau
MESSAGE_RECEIVE_NO_WAIT, MESSAGE_RECEIVE_WAIT,
MESSAGE_SEND_NO_WAIT, and MESSAGE_SEND_WAIT, and the process control
mechanisms such as process suspension and resumption.

SUPPORTS_MONITOR As for SUPPORTS_IPC_AND_CONTROL and can also suppo
the monitoring operations of 13.5.

NOTE - On a foreign system of system class, BARE_MACHINE, PROCESS_CREATE is intended to downloz
the process but not to start its execution.

- 214 -

18.1.4 Network partitions

@) The execution sites of a PCTE installation may be connected together to share resources.

@ At any time, a set of workstations of a PCTE installation, each of which is running PCTE, and
which are connected together, is callethedwork partition The connection status of each
workstation in the network partition controls the use which one workstation may make of
resources controlled by another (see below).

@®) An implementation may impose restrictions on the sets of workstations which can form a
network partition. In particular, an implementation may or may not allow any single isolated
workstation to be a network partition, and an implementation may or may not allow more than
one network partition to exist at the same time (in this case the sets of workstations in the
network partitions are disjoint since the connectedness relation is transitive).

@ The specification of the abstract operations must always be understood to be in the context of
the calling process's network partition; for example, "an object is not accessible” must always be
understood to mean that the object is not accessible within the calling process's network
partition; the object may be accessible in some other network partition.

®) A network partition may rejoin other partitions by implementation-defined means so that
workstations in the partition are now accessible to workstations in other partitions. Although
the time at which the network failure is detected may be variable, the network failure must be
detected in all partitions before the network partitions can be rejoined.

18.1.5 Accessibility

@) In order for an operation to operate on an entity, that entity mwstdassible

@ The rules for accessibility are as follows; except as given by these rules, no entity in a PCTE
installation is accessible:

@®) - the local workstation is accessible;

o) - if the local workstation has connection status CLIENT or CONNECTED, all workstations in

the same network partition which have connection status CONNECTED are accessible;

®) - processes executing on accessible workstations are accessible;

®) - devices controlled by accessible workstations are accessible;

@ - volumes mounted on accessible devices are accessible;

®) - objects residing on accessible volumes, or which are replicas on accessible administration

volumes, and their direct attributes, direct outgoing links, contents, and associated sequences
of messages are accessible;

© - the atomic object associated with an accessible object is accessible;

(10) - locks on resources residing accessible volumes are accessible;

(11) - the accessibility of a foreign system is implementation-defined;

(12) - aprocess on an accessible foreign system is accessible;

(13) - the accessibility of a file residing on a foreign system is implementation-defined.

(14) A PCTE implementation may arrange that an operation succeeds even though some entity which

is used is not accessible according to the above rules. Otherwise an error is raised to indicate

(15)
(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

@7

(28)

(29)

(30)

-215 -

that the entity is not accessible, and the above rules indicate what must be done by the us
make the entity accessible.

An object is defined asnreachablef operations fail to access it because it is not accessible.

When a workstation &Aeases to be a clienf a workstation B the following actions occur:

All child processes running on B started by unreachable processes running on A
terminated in the same way as by caling PROCESS_TERMINATE (child proces:
FORCED_TERMINATION).

All objects residing on volumes mounted on devices controlled by B and with conten
opened by unreachable processes running on A are closed.

All locks on objects or links residing on volumes mounted on devices controlled by B, or c
deleted objects which resided on such volumes, and held by unreachable activities starte
processes running on A, are treated as for activity abortion. If such a lock had external me
WTR or DTR then any changes are rolled back.

Operations being executed by processes running on A accessing unreachable objects res
on volumes mounted on devices controlled by B may fail with the error conditior
OPERATION_IS INTERRUPTED.

All message queues residing on volumes mounted on devices controlled by B and reser
for unreachable processes running on A are unreserved, handlers on those message q
are disabled, and notifiers on those message queues are deleted.

Usage designation links from objects residing on volumes mounted on devices controlled
B to unreachable processes running on A are deleted.

When a station Aeases to be a servef a station B the following actions occur:

All unreachable objects residing on volumes mounted on devices controlled by A and w
contents opened by processes running on B are closed. Any subsequent reads and writ
the contents fail.

All locks on unreachable objects or links residing on volumes mounted on devices controll
by A held by activities started by processes running on B are released. These activities
not aborted immediately in their own workstations. However, any attempt to end
transaction activity which held such locks with external mode RPR, WTR or DTR results |
the error TRANSACTION_CANNOT_BE_COMMITTED.

Operations being executed by processes running on B accessing unreachable objects w
are residing on volumes mounted on devices controlled by A may fail with the errc
condition OPERATION IS _INTERRUPTED.

All unreachable message queues residing on volumes mounted on devices controlled b
and reserved for processes running on other workstations are unreserved.

All "process_waiting_for" links from processes running on B to unreachable objects residit
on volumes mounted on devices controlled by A are deleted, and the corresponding wait
operations in the processes fail with the error condition OBJECT_IS_INACCESSIBLE.

Service designation links from processes running on B to unreachable objects residing
volumes mounted on devices controlled by A are deleted.

For each "notifier" link whose origin message queue resides on a volume mounted or
device controlled by B and whose destination resides on a volume mounted on a dev
controlled by A, a NOT_ACCESSIBLE_MSG message is sent to its origin message queue

@D

- 216 -

If a network failure is detected by a workstation A then an inaccessible workstation B normally
ceases to be a client of A and also ceases to be a server of A, and A ceases to be a client or
server of B. However if B fails to detect the network failure (e.g. because it was only transient
and connection at the communications protocol level has been restored) then any subsequent
attempt by B to act as a server or client of A results in A responding so as to cause B to cease to
be a server or client of A.

18.1.6 Workstation closedown

®

@

®

@
®)

(6)

0]

®

©

(10)

(11

(12)

(13)

An orderly closedowrof a workstation occurs only when all the descendant processes of the
initial process associated with the workstation and any other processes executing on the
workstation, with the exception of the initial process, are terminated. The outermost activity is
terminated.

If a workstation is improperly terminated or fails, this is ternadthormal closedown On
abnormal closedown of a workstation, the following actions are taken:

- Each process P executing on the workstation at the time of workstation failure is terminated
as by PROCESS_TERMINATE (P, SYSTEM_FAILURE). In particular, all activities
started by the processes are aborted.

- The outermost activity of the workstation is terminated abnormally.

- Contents of an implementation-dependent set of pipes managed by the workstation are lost.
The messages and the values of the "reader_waiting", "writer_waiting”, "space_used",
"message_count”, "last_send _time", and “last_receive_time" attributes of an
implementation-dependent set of message queues managed by the workstation are lost.

- All locks on resources, residing on volumes mounted on devices controlled by the failed
workstation, and held by activities started by processes executing on other workstations, are
released as if the activities were abnormally terminated, and any updates performed under
WTR or DTR locks are rolled back.

- All objects residing on volumes mounted on devices controlled by the failed workstation
with contents opened by processes running on other workstations are closed.

- All message queues residing on volumes mounted on devices controlled by the failed
workstation and reserved for processes running on other workstations are unreserved,
handlers on those message queues are disabled, and notifiers on those message queues ar
deleted.

- Usage designation links from objects residing on volumes mounted on devices controlled by
the failed workstation to processes running on other workstations are deleted.

- Updates to objects residing on volumes mounted on devices controlled by the failed
workstation which had not been made permanent at the actual time of workstation failure are
lost.

- Updates to files not under WTR or DTR locks, and to audit files and accounting logs
residing on volumes mounted on devices controlled by the failed workstation are lost to an
implementation-defined degree.

- The workstation connection status is set to LOCAL.
The terminated outermost activity and the terminated initial process remain.

(14)

(15)

(16)

(1)
(18)

(19)

(20)

-217 -

Whether a workstation closes down in an abnormal or orderly manner, the contents of pir
messages in message queues, and audit criteria are lost.

When a workstation is restarted after abnormal or orderly closedown, a new outermost acti\
and a new initial process are created, and the previous, terminated, outermost activity and in
process are not reused.

NOTES

1 The actions described above at workstation abnormal closedown are performed by the implementation at s
point between the failure and restarting the workstation.

2 As a consequence of terminating all the processes on abnormal closedown, any active activities are aborted.
3 After abnormal closedown the previous initial process may have components, i.e. be a tree of process object:

4 The previously running initial process and the previously active outermost activity must be deleted explicit
This means that it is possible that there are several "initial_process” and several "outermost_activity" lir
emanating from a workstation. However, only one "initial_process" link leads to a running initial process and or
one "outermost_activity" link leads to an active outermost activity.

5 Implementations aiming for high security may wish to take special measures to ensure that workstation fail
does not result in any loss of data written to the audit file.

18.2 Network connection operations

18.2.1 WORKSTATION_CONNECT

@

@

®

@

®)

(6)

™
®)
©
(10)

(11

WORKSTATION_CONNECT (
status : Requested_connection_status
)

WORKSTATION_CONNECT has no effect if the connection status of the local workstation i
already the requested statsstatus Otherwise it connects the local workstation to the PCTE
installation, and sets its connection status as follows:

- If statusis CONNECTED and there is no other workstation in the PCTE installatior
available for connection, the connection status is set to AVAILABLE.

- If statusis CLIENT and there is no other workstation in the PCTE installation available fo
connection, the connection status is unchanged.

- If statusis CONNECTED or CLIENT and there is another workstation in the PCTE
installation available for connection, the connection status is staties The connection
status of all available workstations are automatically changed to CONNECTED.

There may be installation-defined procedures to be carried out before and after calling t
operation; such procedures are outside the scope of this ECMA Standard.

Errors

ACCESS_ERRORS (the local workstation, ATOMIC, MODIFY, WRITE_ATTRIBUTES)
CONNECTION_IS_DENIED

LAN_ERROR_EXISTS

PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

STATUS_IS BAD étatug

-218 -

18.2.2 WORKSTATION_CREATE

[} WORKSTATION_CREATE (

execution_site_identifier : Natural,

administration_volume : Volume_designator | New_administration_volume,

access_mask : Atomic_access_rights,

node_name : Text,

machine_name : Text

)

@ WORKSTATION_CREATE creates a new workstation in the PCTE installation, as follows.
@) If administration_volumés a volume designator:
@ - a "workstation" objechew_stations created oradministration_volumes destination of a

new "known_execution_site" link from the execution site directory keyed by
execution_site identifier

®) - an "object_on_volume" link is created framristing_administration_volume new_station
keyed by the exact identifier aew_station
®) If administration_volumés a new administration volume with foreign devioeeign_device
administration volume new_administration_volume volume characteristics

volume_characteristicglevicenew_deviceand device characteristidevice characteristics

@ - foreign_deviceis interpreted in an implementation-defined way to specify a device
containing a physical volume that has been prepared in an implementation-defined way to
become a new administration volume.

®) - an "administration_volume" object is created on the specified physical volume, with volume
characteristicwolume_characteristicsas destination of a new "known_volume" link from
the volume directory, keyed lmew_administration_volume

© - a "workstation" objechew_stationis created on the new volume, as destination of a new
"known_execution_site" link from the execution site directory keyed by
execution_site identifier

(10) - a "device_supporting_volume" object is created on the new volume, with device
characteristicslevice characteristicsaas destination of a new "controlled_device" link from
new_stationkeyed bynew_devicg

(11) - "object_on_volume" links are created from the new administration volume to itself, to
new_station and to the new "device_supporting_volume" object, keyed by the exact
identifiers of their destinations;

(12) - the labels of the created device and of the created volume are set to the mandatory context
of the calling process;

(13) - a"mounted_volume" link is created from the new device to the new administration volume;

(14) - a "copy_volume" link with keyvolume_identifieris created to the newly created

administration volume object, and is reversed by a "copy_volume_of" link with key 'O’
leading to the administration replica set. Copies of the master objects of the administration
replica set, the common root, the "system" schema, and the administrative objects are created
in the newly created administration volume.

(15)

(16)

(1)

(18)

(19)
(20)
()

(22)

(23)

(24)

(29)

(26)
@7

(28)

(29)

(30)

@1
(32)
(33)
(34)

(35)

(36)

(37

(38)

-219 -

In both cases:

- access_masiks used in conjunction with the default atomic ACL and default owner of the
calling process to define the atomic ACL and the composite ACL which are to be associa
with the created objects (see 19.1.4);

- the labels of the created workstation are set to the mandatory context of the calling proces

- an "associated_administration_volume" link is created from new_station
existing_administration_volume or new_administration_volume;

- aninitial process is created for the workstation;
- the attributes of the new workstation are set as follows:
the connection status is set to LOCAL;

the PCTE implementation name, PCTE implementation release, and PCT
implementation version are the same as for the local workstation;

the node name and machine name are set from the parametlsnameand
machine_name

If the auditing module is supported, there is at least one audit file for the new workstation (s
21.1.1), but auditing is initially disabled.

Write locks are obtained on the execution site directory, the volume directory, the creat
workstation and (if they are created) the new administration volume and device.

Errors

ACCESS_ERRORS (volume directory, ATOMIC, CHANGE, APPEND_LINKS)
ACCESS_ ERRORS (execution site directory, ATOMIC, CHANGE, APPEND _LINKS)

If administration_volumés a volume designator:
ACCESS_ERRORSa@ministration_volumeATOMIC, MODIFY, APPEND _LINKS)
ACCESS_ERRORS (existing device, ATOMIC, CHANGE, APPEND_IMPLICIT)
ACCESS_ERRORS (administration replica set, ATOMIC, MODIFY, APPEND_LINKS)
VOLUME_IS_UNKNOWN (@dministration_volume

CONTROL_WOULD_NOT_BE_GRANTEDrew._statio

If administration_volumes a new administration volume:
FOREIGN_DEVICE_IS_INVALID oreign_device
VOLUME_EXISTS few_administration_volume
VOLUME_IDENTIFIER_IS_INVALID (new_administration_volume

OBJECT_OWNER_VALUE_WOULD_BE_INCONSISTENT_WITH_ATOMIC_ACL
PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

PROCESS _IS_IN_TRANSACTION

WORKSTATION_EXISTS éxecution_site_identifigr
WORKSTATION_IDENTIFIER_IS_INVALID (execution_site_identifigr

NOTES

1 The new physical administration volume may need to be initialized by a system tool before this operatior
invoked.

2 For bootstrapping reasons, this operation cannot apply to the first workstation of a PCTE installation.

3 The new workstation is created but is not yet initialized. It is an implementation-defined procedure which
responsible for starting the initial process of the new created workstation.

(39)

-220 -

4 The ability to provide an existing administration volume is intended to cater for discless workstations and other
cases of shared administration volumes.

18.2.3 WORKSTATION_DELETE

@

@
®

@

®)

(6)
™
®
©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

WORKSTATION_DELETE (
station : Workstation_designator
)

WORKSTATION_DELETE deletes a workstation from the PCTE installation.

If the administration volume dtationis mounted on a device which is controlled by another
workstation (which implies that they share the same administration volume), the effect of the
workstation deletion is the same as:

OBJECT_DELETE (execution site directory, execution_site_link)

whereexecution_site_linkis the "known_execution_site" link from the execution site directory
to station

If the administration volume dftation is mounted on a device which is controlleddigtion
the workstation deletion is only possible if and only if:

- no other workstation has the same administration volume, i.e. there is only one
"associated_administration_volume" link to the administration volume;

- the only objects residing on or which are replicas on the administration volume are:
station
copies of the administration replica set;
the administration volume;

the "device_supporting_volume" object which is the destination of a "controlled_device"
link from station and the origin of the "mounted_volume" link to the administration
volume;

terminated processes and activities;

- there are no reference, composition, or existence links from an object residing on another
volume to the objects residing on the administration volume, except the "known_volume"
link from the volume directory to the administration volume, the "known_execution_site"
link from the execution site directory station and "audit” links fronstation

The objects residing on and which are replicas on the administration volume are deleted, the
space previously occupied by the volume is freed, the "copy_volume" link from the
administration replica set to the administration volume, and the "known_volume" link to the
administration volume and the "known_execution_site" linkstation are deleted. The
administration volume is unmounted.

Write locks are obtained on the deleted workstation, the deleted administration volume, the
deleted device supporting the administration volume, the administration replica set, and the
deleted links. These locks do not prevent the dismounting and deletion of the administration
volume.

Errors

ACCESS_ERRORS (execution site directory, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORS (volume directory, ATOMIC, MODIFY, WRITE_LINKS)

-221 -

a7 ACCESS_ERRORSsfation ATOMIC, CHANGE, WRITE_IMPLICIT)

(18) ACCESS ERRORSsfation ATOMIC, MODIFY, WRITE_CONTENTS)

(19) If the conditions hold for deletion of the "workstation" objstzttion
ACCESS_ERRORSsfation COMPOSITE, MODIFY, DELETE)

20) OBJECT_IS IN_USE_FOR_DELETIEtation

@1) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)

@2) PROCESS IS _IN_TRANSACTION

@3) VOLUME_HAS_OTHER_LINKS &dministration_volume

@4) VOLUME_HAS_OTHER_OBJECTSa@ministration_volumje

@5) VOLUME_HAS_OBJECTS_IN_USE (administration volumestétion

26) WORKSTATION_IS CONNECTED4tation

@7 WORKSTATION_IS_UNKNOWN étation

(28) NOTE - Additional implementation-defined restrictions may be defined for this operation.

18.2.4 WORKSTATION_DISCONNECT

@) WORKSTATION_DISCONNECT (
)
@ WORKSTATION_DISCONNECT changes the connection status of the local workstation t
LOCAL, unless the connection status is already LOCAL, in which case it has no effect.
Errors
@®) ACCESS ERRORS (local workstation, ATOMIC, WRITE)
@ PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
®) WORKSTATION_IS_BUSY (local workstation)

18.2.5 WORKSTATION_GET_STATUS

) WORKSTATION_GET_STATUS (
station : [Workstation_designator]

)

status : Workstation_status

@ WORKSTATION_GET_STATUS returns the current connection status and work status
station in status If stationis not supplied, the local workstation is assumed.

Errors
®) ACCESS_ ERRORSsfation ATOMIC, READ)
) WORKSTATION_IS_UNKNOWN étation

18.2.6 WORKSTATION_REDUCE_CONNECTION

@ WORKSTATION_REDUCE_CONNECTION (
station : [Workstation_designator],
status : Requested_connection_status,
force : Boolean

-222 -

@ WORKSTATION_REDUCE_CONNECTION reduces the connection status of the workstation
station to the connection statustatus If stationis not supplied, the local workstation is
assumed.

@®) If the required change of status isd#connection i.e. the current status dftation is

CONNECTED and the required status is CLIENT or LOCAL, or the current status is CLIENT
and the required status is LOCAL, thience has the following effect.

@ - true: The operation is performed whethstationis busy or not. If the connection status
change is from CLIENT to LOCAL, the station ceases to be a client. If the connection status
change is from CONNECTED to CLIENT, the station ceases to be a server. If the
connection status change is from CONNECTED to LOCAL, the station ceases to be a client

or a server.
®) - false The workstatiorstationmust not be busy (see 18.1.2).
®) In other caseforce has no effect.

Errors

@ ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_OBJECT)
®) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
© WORKSTATION_IS_BUSY sétation)
(10) WORKSTATION_IS_NOT_CONNECTEDstation
(11) WORKSTATION_IS _UNKNOWN étation)

18.3 Foreign system operations

18.3.1 CONTENTS_COPY_FROM_FOREIGN_SYSTEM

) CONTENTS_COPY_FROM_FOREIGN_SYSTEM (
file : File_designator,
foreign_system : Foreign_system_designator,
foreign_name : String,
foreign_parameters [String]
)
@ CONTENTS_COPY_FROM_FOREIGN_SYSTEM copies the file identifieddrgign_name

residing on the foreign systeroreign_systeminto the file contents of the objedie,
overwriting any previous contents

@®) The syntax and interpretation oforeign_name and foreign_parameters whether
foreign_parametersis required, and the interpretation of the process's mandatory and
discretionary context and the permissions requiredoogign_name are all implementation-
defined and may depend foreign_system

) A write lock of the default mode is obtainedfila. A read lock of the default mode is obtained
onforeign_system

Errors
®) ACCESS_ERRORSi(e, ATOMIC, MODIFY, WRITE_CONTENTS)
®) ACCESS_ERRORSYdreign_systemmATOMIC, READ, NAVIGATE)
@ FOREIGN_OBJECT_IS_INACCESSIBLEqreign_systenforeign_namg

® FOREIGN_SYSTEM_IS_INACCESSIBLEdreign_systein

©

(10)

@

@

®

@

®)
(6)
0]
®)
©)
(10)
(11

(12

-223 -

FOREIGN_SYSTEM_IS_UNKNOWNf¢reign_system
STATIC_CONTEXT_IS_IN_USEf{le)

18.3.2 CONTENTS_COPY_TO_FOREIGN_SYSTEM

CONTENTS_COPY_TO_FOREIGN_SYSTEM (

file : File_designator,
foreign_system : Foreign_system_designator,
foreign_name : String,

foreign_parameters [String]

)
CONTENTS_COPY_TO_FOREIGN_SYSTEM copies the file contents of the alipgmttinto
a file identified byforeign_nameon the foreign systemoreign_system

The syntax and interpretation oforeign_name and foreign_parameters whether
foreign_parametersis required, and the interpretation of the process's mandatory an
discretionary context and the permissions requiredoogign_name are all implementation-
defined and may depend foreign_system

A read lock of the default mode is obtainedfibmm A read lock of the default mode is obtained
onforeign_system

Errors

ACCESS_ERRORSi(e, ATOMIC, READ, READ_CONTENTS)
ACCESS_ERRORSYdreign_systemmPATOMIC, READ, NAVIGATE)
FOREIGN_OBJECT_IS_INACCESSIBLEqreign_systenforeign_namg
FOREIGN_EXECUTION_IMAGE_IS_BEING_EXECUTEDOdreign_systenforeign_namg
FOREIGN_SYSTEM_IS_INACCESSIBLEdreign_systemn
FOREIGN_SYSTEM_IS_UNKNOWNf¢reign_systemn

LABEL IS _OUTSIDE_RANGE file, foreign_system)

NOTE - It is implementation-defined whether the contenteljgéct overwrites or is appended to the contents of
the foreign file; this may depend on the propertieaign_systenand orforeign_parameters

18.4 Time operations

18.4.1 TIME_GET

@

@

(©)

TIME_GET (
)

time :Time
TIME_GET returns aimethe current value of the system time.

Errors
None.

18.4.2 TIME_SET

@

TIME_SET (
time :Time
)

- 224 -

@ TIME_SET sets the value of system timditoe.

Errors
@®) PRIVILEGE_IS_NOT_GRANTED (PCTE_CONFIGURATION)
@ The following implementation-defined error may be raised:

TIME_CANNOT_BE_CHANGED

-225 -

19 Discretionary security
19.1 Discretionary security concepts

19.1.1 Security groups

@ Group_identifier = Natural
) sds discretionary_security:
®@) import object type system-object, system-static_context, system-process, system-common_root;
@) import attribute type system-name, system-number;
(5) security_group_directory: child type of object with
link

known_security_group: (navigate) existence link (group_identifier: natural) to
security_group;
security_groups_of: implicit link to common_root reverse security_groups;
end security_group_directory;

(6) security_group: child type of object;
@ user: child type of security_group with
link

user_identity_of: (navigate) non_duplicated designation link (number) to process;
user_member_of: (navigate) reference link (number) to user_group reverse has_users;
end user;

®) user_group: child type of security_group with
link
has_users: (navigate) reference link (number) to user reverse user_member_of;
user_subgroup_of: (navigate) reference link (number) to user_group reverse
has_user_subgroups;
has_user_subgroups: (navigate) reference link (number) to user_group reverse
user_subgroup_of;
adopted_user_group_of: (navigate) non_duplicated designation link (number) to
process;
end user_group;

©) program_group: child type of security_group with
link
has_programs: (navigate) reference link (humber) to static_context reverse
program_member_of;
program_subgroup_of: (navigate) reference link (number) to program_group reverse
has_program_subgroups;
has_program_subgroups: (navigate) reference link (number) to program_group reverse
program_subgroup_of;
end program_group;

(10) extend object type static_context with
link
program_member_of: (navigate) implicit link (system_key) to program_group reverse
has_programs;
end static_context;

(11

(12

(13)
(14)
(15)

(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

-226 -

extend object type process with
link
user_identity: (navigate) designation link to user;
adopted_user_group: (navigate) designation link to user_group;
adoptable_user_group: (navigate) designation link (number) to user_group with
attribute
adoptable_for_child: (read) boolean :=true;
end adoptable_user_group;
end process;

extend object type common_root with
link
security_groups: (navigate) existence link to security_group_directory reverse
security_groups_of;
end common_root;

end discretionary_security;
The security group directory is an administrative object (see 9.1.2).
A user is anemberof a user group if there is a "has_users" link from the user group to the user.

A static context is anemberof a program group if there is a "has_programs” link from the
program group to the static context.

A user group A is aiser subgroupf a user group B if there is a "has_user_subgroups" link
from the user group B to the user group A. User group Bdiseat user supergroupf user
group A.

An indirect user supergroupf a user group is a direct user supergroup of a direct or indirect
user supergroup of the user group. uBer supergroupof a user group is a direct user
supergroup or an indirect user supergroup of that user group.

The set of user groups with the user-subgroup/user-supergroup relation forms an acyclic graph
with the predefined user group ALL_USERS as root.

A program group consists of a set of static contexts. A program group gkagram subgroup
of a program group B if there is a "has_program_subgroups" link from the program group B to
the program group A. Program group B dilect program supergroupf program group A.

An indirect program supergroupf a program group is a direct program supergroup of a direct
or indirect program supergroup of the program groupprégram supergroumf a program
group is a direct program supergroup or an indirect program supergroup of that program group.

Where there is no risk of ambiguity, a user subgroup or a program subgroup is called simply a
subgroup and a user supergroup or a program supergroup is called sisyggiroup

Discretionary groupsare security groups used for the purposes of discretionary access control.
Each process has the followieffectivesecuritygroups

- One user, the destination of the "user_identity" link from the process, tadlederof the
process.

- One user group, thedopted user groupf the process, of which the user is a member, and
all user supergroups of that user group (including the group ALL_USERS). The adopted
user group is the destination of the "adopted_user_group” link from the process.

- All program groups of which a non-interpretable static context run by a process (see 13.1.1)
is a member, and all their supergroups; and for an interpretable static context, the program
groups of which the interpreter is a member, and all their supergroups.

@7

(28)

(29)

(30)

@D

(32)

(33)

(34)

(39)
(36)

@7

-227 -

Each process also has an associated set of user groups calkgbitdbleuser groups which are
the destination of "adoptable_user_group"” links from the process; these are the set of
groups out of which the process may make effective one user group in place of the currer
adopted user group. Adoptable user groups must have the user as a member.

When a process creates a child process, its adoptable user groups are inherited except whe
"adoptable_for_child" attribute of the "adoptable_user_group” link from the parent process
false

No object type is a descendant type of more than one of the object types "user”, "user_grol
and "program_group".

The predefined user group ALL_USERS always exists, as do the predefined program gro
PCTE_SECURITY, PCTE_AUDIT, PCTE_EXECUTION, PCTE_REPLICATION,
PCTE_CONFIGURATION, PCTE_HISTORY, and PCTE_SCHEMA_ UPDATE, which are
objects in the initial state of the object base linked to the security group directory wit
predefined values of their group identifiers. Their security group identifiers are as follows:

- ALL_USERS 1

- PCTE_SECURITY 2
- PCTE_AUDIT 3
- PCTE_EXECUTION 4
- PCTE_REPLICATION 5
- PCTE_CONFIGURATION 6

- PCTE_HISTORY 7
- PCTE_SCHEMA UPDATE 8
Zero is not used as a security group identifier; it is used to denote absence of a security grouy

A user must be a member of a user group in order for a process to act on its behalf.
NOTES

1 Discretionary access to objects is controlled on the basis of the effective security groups of the acces
process. Security groups are of three types: users, user groups and program groups. Each process has one
which represents the user on behalf of whom the process is running. A user may play several different roles w
using the PCTE-based environment, and these roles are represented by the user groups to which the user be
The role the user is playing at any one time is given by the user group which is currently adopted plus
supergroups recursively. It is an important security requirement that a user adopts at most one role be
operations are carried out on its behalf. The subgroup structure is intended to reflect the organization of the prc
into working groups or teams and team membership.

2 Rights may also be granted to a program, which the user also obtains when the program executes on the
behalf provided that the user has the right to execute the program. Program groups may be used to deny as w
to grant access to specific data objects. In this way program groups may be used to model data abstractior
implement information hiding. They also provide a less specific way of restricting access. A process may only
on behalf of a single user and user group at any one time and which must be authenticated. Giving a right
program means that the right is given to any user who has the right to execute the program when the progra
executed on behalf of that user. Program groups also provide a means of expanding the number of effec
security groups without violating the constraint of there being only one user role effective at any one time.

3 A user which is a member of a user group need not be a member of a sub- or supergroup of that group.
4 The security group structure is intended to be used by tools, such as "login" tools, built on top of PCTE.

5 The predefined user group ALL_USERS is effective for all processes, as it is the root of the directed acy:
graph of user groups. Access rights which are effective for all users can be given to this user group.

-228 -

(38) 6 A process may have no effective program group.
(39) 7 The predefined program groups have the following meanings:
(40) - PCTE_AUDIT This program group is required by the following operations for the audit mechanism:

AUDIT_SWITCH_ON_SELECTION;
AUDIT_SWITCH_OFF_SELECTION;
AUDIT_ADD_CRITERION;
AUDIT_REMOVE_CRITERION;
AUDIT_GET_CRITERIA;
AUDIT_SELECTION_CLEAR;
AUDITING_STATUS;
AUDIT_FILE_COPY_AND_RESET.

(1) - PCTE_CONFIGURATION This program group is required when type identifiers are used to denote invisible
types in type references (see 23.1.2.5), and by the following operations which define devices or volumes or
which manage workstations or archives:

ARCHIVE_RESTORE;
ARCHIVE_SAVE;
DEVICE_CREATE;
DEVICE_REMOVE;
VOLUME_CREATE;
VOLUME_DELETE;
WORKSTATION_REDUCE_CONNECTION,;
WORKSTATION_CREATE;
WORKSTATION_CREATE;
WORKSTATION_CONNECT;
WORKSTATION_DELETE;

42) - PCTE_EXECUTION This program group may be required by the following operations for execution
mechanisms such as setting the file size limit for a process or changing the priority of a process:

PROCESS_SET_FILE_SIZE_LIMIT;
PROCESS_INTERRUPT_OPERATION;
PROCESS_SET_PRIORITY;
TIME_SET.

(43) - PCTE_HISTORY. This program group is required by the following operations to explicitly set the last access
time or last modification time of an object, or to manipulate the version graph:

OBJECT_SET_TIME_ATTRIBUTES;
VERSION_ADD_PREDECESSOR;
VERSION_REMOVE;
VERSION_REMOVE_PREDECESSOR.

(44) - PCTE_REPLICATION This program group is required by the operations of the replication clause and all the
operations which modify the object base when they apply to masters of replicated objects. These are a very
large subset of all PCTE operations (see C.3). They are not listed here.

(45) - PCTE_SECURITY This program group is required to use the operations which are critical to either the
consistency of the security group structure or to security (or both). These are the three operations:

(46)

-229 -

GROUP_REMOVE;
GROUP_RESTORE;
PROCESS_SET_USER.

- PCTE_SCHEMA_UPDATE. This program group is required by operations which update an SDS, i.e. tho
defined in 10.2.

19.1.2 Access control lists

@

@
(©)
@
(®)
(6)
0]

®)
©)

(10)

(11

(12

(13)

(14)

(15)

Discretionary_access_mode = APPEND_CONTENTS | APPEND_IMPLICIT | APPEND_LINKS |
CONTROL_DISCRETIONARY | CONTROL_MANDATORY | CONTROL_OBJECT |
DELETE | EXECUTE | EXPLOIT_CONSUMER_IDENTITY | EXPLOIT_DEVICE |
EXPLOIT_SCHEMA | NAVIGATE | OWNER | READ_ATTRIBUTES | READ_CONTENTS |
READ_LINKS | STABILIZE | WRITE_ATTRIBUTES | WRITE_CONTENTS |
WRITE_IMPLICIT | WRITE_LINKS

Discretionary_access_mode_value = GRANTED | UNDEFINED | DENIED | PARTIALLY_DENIED
Discretionary_access_modes = set of Discretionary_access_mode

Access_rights = map Discretionary_access_mode to Discretionary_access_mode_value

Acl = map Group_identifier to Access_rights

Atomic_discretionary_access_mode_value = GRANTED | UNDEFINED | DENIED

Atomic_access_rights = map Discretionary_access_mode to
Atomic_discretionary_access_mode_value

sds discretionary_security:
import object type system-object, system-process;

extend object type object with
attribute
atomic_acl: (protected) non_duplicated string ;
composite_acl: (protected) non_duplicated string ;
end object;

extend object type process with
attribute
default_atomic_acl: (protected) string ;
default_object_owner: (protected) natural ;
end process;

end discretionary_security;

Each object has two associa@ttess control listgor ACLY: anatomic ACLand acomposite
ACL. They are represented by two string attributes, "atomic_acl® and "composite_ac
respectively. Thecopeof an ACL is the set of atomic objects to which it governs access: the
scope of the atomic ACL of an object is the atomic object associated with the object; the sct
of the composite ACL is the atoms of the object.

Each ACL is a set of ACL entries. Each ACL entry gives the discretionary access mode va
of each discretionary access mode for one security group.

In an atomic ACL, the possible discretionary mode values are GRANTED, DENIED, an
UNDEFINED. In an composite ACL they are GRANTED, DENIED, UNDEFINED, and
PARTIALLY_DENIED.

(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

- 230 -

Access right evaluation for a grougpdefined by the function

EVALUATE_GROUP (
g : Security_group_designator;
o : Object_designator;
s : Object_scope;
m : Discretionary_access_mode

)

v : Discretionary_access_mode_value

wherev is the discretionary access mode valuenoh the ACL entry forg in the atomic ACL

(if sis ATOMIC) or the composite ACL (i§ is COMPOSITE) foro. The groupg is said to
have the discretionary access madatomicallygranted denied or undefinedo the objecbo, if
sis ATOMIC andv is GRANTED, DENIED, or UNDEFINED respectively; and compositely
granted denied undefined or partially deniedif s is COMPOSITE ands is GRANTED,
DENIED, UNDEFINED, or PARTIALLY_DENIED respectively.v is called theatomic or
compositem valuefor g to o. If vis GRANTED,q is said to have thatomic or compositem
discretionary access righo o.

For every objecb there is at least one security grayifor which EVALUATE_GROUP ¢, o,
ATOMIC, CONTROL_DISCRETIONARY) = GRANTED and at least once security grgup
for which EVALUATE_GROUP(', o, ATOMIC, CONTROL_MANDATORY) = GRANTED.

For every objecto there is at least one security group which has the atomic
CONTROL_DISCRETIONARY right too, and at least once security group which has the
atomic CONTROL_MANDATORY right ta.

The following constraints apply to the composite ACL for an olgextd the atomic ACLs aj
and its components, for any security graupnd for any discretionary access mad@xcept
OWNER and CONTROL_DISCRETIONARY:

EVALUATE_GROUP @, o, COMPOSITE, m) = GRANTED if and only if
EVALUATE_GROUP @, o, ATOMIC, m) = GRANTED and EVALUATE_GROUP(¢, c,
ATOMIC, m) = GRANTED for every componeutof o.

EVALUATE_GROUP @, o, COMPOSITEmM) = DENIED if and only if EVALUATE_GROUP
(g, 0, ATOMIC, m) = DENIED and EVALUATE_GROUP(, ¢, ATOMIC, m) = DENIED for
every component of o.

EVALUATE_GROUP @, o, COMPOSITE, m) = PARTIALLY_DENIED if an only if
EVALUATE_GROUP @, o, ATOMIC, m) = DENIED or EVALUATE_GROUP ¢, c,
ATOMIC, m) = DENIED for some component of o, and EVALUATE_GROUP (¢, o,
ATOMIC, m) # DENIED or EVALUATE_GROUP ¢, c, ATOMIC, m) # DENIED for some
component of o.

EVALUATE_GROUP @, o, COMPOSITEmM) = UNDEFINED in all other cases.

The following constraints apply to the composite ACL of an olpentd the atomic ACLs ab
and its components, for any security graqupnd for the discretionary access modes OWNER
and CONTROL_DISCRETIONARY.

- If EVALUATE_GROUP @ o, COMPOSITE, OWNER) = GRANTED then
EVALUATE_GROUP @, c, COMPOSITE, OWNER) = GRANTED for every component
of o, EVALUATE_GROUP ¢, o, ATOMIC, CONTROL_DISCRETIONARY) =
GRANTED, and EVALUATE_GROUP(, c, ATOMIC, CONTROL_DISCRETIONARY)
= GRANTED for every componeutof o.

(26)

@7

(28)

(29)

(30)

@D

(32

-231 -

- If EVALUATE_GROUP (@, o, COMPOSITE, OWNER) = DENIED then
EVALUATE_GROUP @, c, COMPOSITE, OWNER) = DENIED for every componerdf
0o, EVALUATE_GROUP ¢, o, ATOMIC, CONTROL_DISCRETIONARY) = DENIED
and EVALUATE_GROUP ¢, ¢, ATOMIC, CONTROL_DISCRETIONARY) = DENIED
for every componernt of o.

Access right evaluation for a procdsglefined by the function

EVALUATE_PROCESS (
p : Process_designator;
o : Object designator;
s : Object_scope;
m : Discretionary_access_mode

a :Boolean

The returned valuea is defined from the ACLs ofo in the following way:
EVALUATE_PROCESSH{, o, s, m) =true if and only if there is at least one effective graup
of p for which EVALUATE_GROUP ¢, o, s, m) = GRANTED, and for every other effective
groupg' of p EVALUATE_GROUP ', 0, s, m) = GRANTED or EVALUATE_GROUP{, o,

s, m) = UNDEFINED. Ifa =true, p is said to have thatomicor compositem discretionary
access righto o, according asis ATOMIC or COMPOSITE respectively.

The default atomic ACL and default object owner are used to determine the atomic ACLs a
composite ACLs of objects created by the process (see 19.1.4).

NOTES

1 A composite ACL is computable from the atomic ACLs of the object and its components, except for tl
discretionary access mode OWNER.

2 The implementation-defined mapping of access control lists to the string attribute values may economize
space by omitting discretionary access modes with value UNDEFINED, and omitting ACL entries with all value
UNDEFINED.

3 If OWNER is set to UNDEFINED for an objeziand a groum, the OWNER values fay to the components of
0, andthe CONTROL_DISCRETIONARY values fgrto o and its components, are unchanged.

19.1.3 Discretionary access modes

@

@

®
@

®)

The following list describes the meanings of the discretionary access modes, generally in te
of the classes of operations for which theyrageded atomicallpr compositelyon an objeco,

i.e. for which a necessary precondition is that the calling process has the atomic or compo
access rightm, respectively, too. The exact definitions are given by the occurrences of
DISCRETIONARY_ACCESS_IS_NOT_GRANTED in the operation descriptions; see 19.2.

- APPEND_CONTENTS. Needed atomically to append to the contents of an object or to se
a message to a message queue.

- APPEND_IMPLICIT. Needed atomically to create new implicit links of an object.

- APPEND_LINKS. Needed atomically to create new links, other than implicit links, from ar
object. (This right is not sufficient to write the non-key attributes of such a link.)

- CONTROL_DISCRETIONARY. Needed atomically on an object to change its atomic ACL
(except CONTROL_MANDATORY). CONTROL_DISCRETIONARY occurs only in
atomic ACLs.

(6)

™

®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

(18)

(19)

-232 -

CONTROL_MANDATORY. Needed atomically on an object to change its
"confidentiality label" and ‘"integrity label" attributes and to change the
CONTROL_MANDATORY rights of other groups on that object.

CONTROL_OBJECT. Needed atomically on an object to convert it to a descendant type, to
move it to another volume, to create or delete "predecessor” and "successor” links to and
from the object, and to convert a normal object to a master object or vice versa,. Needed on
a message queue to change the number of storage units allowed by the message queue.

DELETE. Needed compositely on an object to delete the object (i.e. to delete the last
composition or existence link to the object). DELETE has no effect in an atomic ACL.

EXECUTE. Needed atomically on a static context to execute the associated program.
EXECUTE has no effect on objects of other types.

EXPLOIT_CONSUMER_IDENTITY. Needed atomically on a consumer group to use it as
a consumer identity. EXPLOIT_CONSUMER_IDENTITY has no effect on objects of other

types.

EXPLOIT_DEVICE. Needed atomically on a device supporting volume to mount a volume
on the device or to unmount a volume from the device. EXPLOIT_DEVICE has no effect
on objects of other types.

EXPLOIT_SCHEMA. Needed atomically on an SDS, a type in SDS, or a type to use itin a
working schema or to consult the typing information contained in it. EXPLOIT_SCHEMA
has no effect on objects of other types.

NAVIGATE. Needed atomically on an object to use a link reference of a link of the object
in a pathname (see 23.1.2.2); needed atomically on a foreign system to access a file on that
foreign system.

OWNER. OWNER occurs only in composite ACLs. It is needed to modify the composite
ACL of an object, except for implicit modification by modification of the atomic ACL of the
object or of a component of the object. This modification right includes the OWNER right
for any security group on that object, except that CONTROL_DISCRETIONARY rights
may apply (see below) if there is no owner of the object. Unlike other discretionary access
modes in composite ACLs, modification of OWNER values is not automatic and must be
done explicitly using OBJECT_SET_ACL_ENTRY.

An object must always have an atomic ACL such that it is possible that a process could exist
with a set of effective groups such that the process has the CONTROL_DISCRETIONARY
discretionary access right to that object and that another or the same process could exist with
a set of effective groups such that the process has the CONTROL_MANDATORY
discretionary access right to that object.

An ownerof an object is a security group Wi@WNER right to the object. There may be
more than one owner of an object.

For changing OWNER discretionary access values the following rules hold:

An owner may modify the OWNER discretionary access value to an object for itself, and
for another security group except when the other group is also an owner of the object.

An owner of an object may modify the OWNER discretionary access value for any group
to any component of the object.

(20)

()

(22)

(23)

(24)

(29)

(26)

@7

(28)

(29)

(30)

@D

(32)

(33)

-233 -

The OWNER discretionary access value for a group to an object may not be modified
that object is a component of an object to which that group has OWNER granted
denied.

If no owner for an object exists, then the OWNER discretionary access value may
modified if OWNER is granted for a growpall components of the object (excluding the
object, if it is a component of itself) and CONTROL_DISCRETIONARY is granted for
the group to the object and to all its components.

The constraints defined in 19.1.2 must be maintained.

OWNER when used in connection with discretionary security does not have a meaning
the accounting sense.

- READ_ATTRIBUTES. Needed atomically to read the attribute values of an object and 1
evaluate a link of an object if the evaluation uses the preferred link type and preferred li
key of the object (see 23.1.2.5) For some predefined attributes, e.g. "atomic_acl", t
READ_ATTRIBUTES right is not needed, if the attribute is retrieved by an operatior
especially defined to retrieve that attribute.

The READ_ATTRIBUTES right is not needed to read the attribute values of the links of a
object.

- READ_CONTENTS. Needed atomically to read the contents of an object, to save
message queue or a process address space, to save a message queue, or to peek a me:
a message queue.

- READ_LINKS. Needed atomically to read the attributes of the links of an object, or to sce
sets of links of an object.

- STABILIZE. Needed to change the stability of an object, i.e. to create or delete a stabilizil
link to it or a compositely stabilizing link to it or to an object of which it is a component.

- WRITE_ATTRIBUTES. Needed atomically to change the attribute values of an object.
does not control changing the attribute values of the links of an object, nor the time attribu
of an object.

- WRITE_CONTENTS. Needed atomically to write to or update the contents of an object or
process address space, to set or remove a breakpoint in a process, to restore a message
or to receive or delete a message from a message queue. An object's contents may n
deleted although it may be emptied.

- WRITE_IMPLICIT. Needed atomically to delete implicit links of an object. For this
category of link, there are no attributes to change.

- WRITE_LINKS. Needed atomically to delete links, other than implicit links, of an object
and to change values of link attributes.

Where EXPLOIT_SCHEMA, EXPLOIT_DEVICE, EXPLOIT_CONSUMER _IDENTITY,
CONTROL_OBJECT, CONTROL_DISCRETIONARY, CONTROL _MANDATORY or
OWNER discretionary access rights to an object are required of the calling process by
operation which changes the links or attributes of that object, discretionary access rights wh
would be appropriate for such changes (e.g. APPEND_LINKS, WRITE_ATTRIBUTES) are nc
also required to that object.

-234 -

NOTES

(34) 1 OWNER consistency rules demand that an owner may not modify the OWNER discretionary access right to an
object for another security group not only when the other security group is an owner of the object, but also when
the other security group is the owner of an object of which the object is a component.

(35) 2 The rules for conferring the OWNER discretionary access right on an object for which no owner exists also
cover the case where no owner exists for an object of which the object is a component, since if such an owner
existed, an owner would exist for the object under consideration.

(36) 3 The OWNER right on an object for a security group can never be PARTIALLY_DENIED. This is achieved by
ensuring that when a composition link is created (e.g. by OBJECT_CREATE, SDS_CREATE_OBJECT_TYPE, or
LINK_RESTORE) any OWNER rights of the newly enclosing object are propagated to the new component, and
that when the OWNER right is set on an object (by OBJECT_SET_ACL_ENTRY) the new value is consistent with
rights on enclosing objects.

19.1.4 Access control lists on object creation

@) When an object is created, its atomic ACL is determined from the default atomic ACL of the
creating process as follows. For each ACL entry in the default atomic ACL, with access rights
M, an ACL entry in the atomic ACL is created for the same group with access rights M', where
the mapping M' is determined for each discretionary access maog the corresponding
discretionary mode values of M and the access mask A:

) - M'(m) = GRANTED if M(m) = GRANTED or Afm) = GRANTED, and neither M) =
DENIED nor A(m) = DENIED.
@® - M'(m) = DENIED if M(m) = DENIED or Afn) = DENIED.
@ - M'(m) = UNDEFINED if M(m) = UNDEFINED and Ain) = UNDEFINED.
®) The access mask A is a parameter to the operation used to create the object (e.qg.
OBJECT_CREATE).
®) The default object owner of the creating process defines the group identifier of a security group.

The composite ACL of the created object is derived from the atomic ACLs of the object subject
to the constraints given in 19.1.2 for all discretionary access modes except OWNER and
CONTROL_DISCRETIONARY. An entry in the composite ACL relates to the default object
owner of the creating process, if one exists, and has the OWNER discretionary access mode
granted. It is an error if the ACL entry in the created atomic ACL for the default object owner
group does not have CONTROL_DISCRETIONARY granted.

@ When an operation creates an object, any further accesses to that object during that same
operation call are not subject to discretionary or mandatory access checks.

19.2 Operations for discretionary access control operation

19.2.1 GROUP_GET_IDENTIFIER

@ GROUP_GET_IDENTIFIER (
group : Security_group_designator
)

identifier : Group_identifier

@ GROUP_GET_IDENTIFIER returns iidentifier the key of the "known_security_group" link
from the security group directory to the security grgupup.

-235-

Errors
@®) ACCESS ERRORS (security group determinedjipup, ATOMIC, READ, READ_LINKS)
@ GROUP_IDENTIFIER_IS_INVALID @roup

19.2.2 OBJECT_CHECK_PERMISSION

@ OBJECT_CHECK_PERMISSION (
object : Object_designator,
modes : Discretionary_access_modes,
scope : Object_scope

)

accessible : Boolean

@ OBJECT_CHECK_PERMISSION tests if the calling process has the discretionary ar
mandatory permission to access the obpdpect according to the set of access modes given in
modesand the scopescope For the discretionary permissions, the operation evaluate:
EVALUATE_PROCESS (calling processpbject scope modg (see 19.1.2) for each
discretionary access modedein modes For the mandatory permissions read and write access
is interpreted according to the discretionary access modes:

@) - Read access is tested imodes contains NAVIGATE, READ_ATTRIBUTES,
READ_LINKS, READ_CONTENTS, EXECUTE, EXPLOIT_DEVICE,
EXPLOIT_SCHEMA or EXPLOIT_CONSUMER_IDENTITY.

@) - Write access is tested imodes contains APPEND_CONTENTS, APPEND_LINKS,

APPEND_IMPLICIT, WRITE_ATTRIBUTES, WRITE_CONTENTS, WRITE_LINKS,
WRITE_IMPLICIT, DELETE, CONTROL_DISCRETIONARY, CONTROL_
MANDATORY, CONTROL_OBJECT or OWNER.

®) Testing for mandatory read access permission means checking for confidentiality violation &
integrity confinement violation (see 20.1). Testing for mandatory write access permissit
means checking for confidentiality confinement violation and integrity violation. These check
are defined in terms of label domination between the mandatory labelbjeaft and the
mandatory context of the process.

®) A read lock of the default mode is obtainedotect

@ The return valuaccessibles:

®) - false if for at least one of the discretionary access modes givenmoudes
EVALUATE_PROCESS (calling processhject scope modeg = false

©) - false if read access is implied by modes and either LABEL_DOMINATES
(confidentiality_context (proces$, confidentiality label (objec)) = false or
LABEL_DOMINATES (integrity_label (objec), integrity _context(proces$ = false (see
20.1.3).

(10) - false if write access is implied bymodes and either LABEL_DOMINATES
(confidentiality label (objec), confidentiality _contexprocesy = false or

LABEL_ DOMINATES (integrity_contexjprocess)integrity label(objec)) = false

- 236 -

(1) - true otherwise. In this case, for all of the discretionary access modes giveodes
EVALUATE_PROCESS (calling processhject scope modg = true; and:

(12) . if read access is implied mgodes then LABEL_DOMINATES ¢onfidentiality _context
(proces3, confidentiality label (objec)) = true and LABEL_DOMINATES
(integrity_label(objec), integrity _contex{proces$) = true;

(13) . if write access is implied bsnodes then LABEL_DOMINATES ¢onfidentiality label
(objec), confidentiality _contexprocesy) = true and LABEL_DOMINATES
(integrity_contex{proces$, integrity label(objec)) =true.

(14) For the maps confidentiality label, confidentiality context, integrity label, and

integrity_context see 20.1.4.
Errors

(15) ACCESS_MODE_IS_INCOMPATIBLEScopg mode$

(16) CONFIDENTIALITY_WOULD_BE_VIOLATED (granule scopé

a7 INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED @ranule scopé

(18) OBJECT_IS_ARCHIVED granule

(19) OBJECT_IS_INACCESSIBLEgranule scopg

(20) NOTE - READ_ATTRIBUTES access right is not necessary to perform this operation. If it were, the operation

would lose much of its usefulness, since access checks do not require any access permissions to read mandatory
labels or ACLs.

19.2.3 OBJECT _GET_ACL

@ OBJECT_GET_ACL (
object : Object_designator,
scope : Object_scope
)
acl Acl
@ OBJECT_GET_ACL returns the atomic or composite ACL of the olgbmct according as
scopeis ATOMIC or COMPOSITE.
@®) A read lock of the default mode is obtainedotect
Errors
) ACCESS ERRORSyfanule scope READ, READ_ATTRIBUTES)
(5) NOTE - It is expected that implementations calculate the composite ACL of an object (except for the OWNER

modes) from the atomic ACLs of the object and its components.

19.2.4 OBJECT_SET_ACL_ENTRY

@ OBJECT_SET_ACL_ENTRY (
object : Object_designator,
group : Group_identifier,
modes : Atomic_access_rights,
scope : Object_scope
)
@ OBJECT_SET_ACL_ENTRY sets an ACL entry in the atomic or composite ACL of the object

objectfor the security grougroup. If the settings of the ACL entry are already as required,

®

@

®)

(6)

0]

®

©

(10)

(11

(12

(13)

(14

- 237 -

except for setting a composite ACL entry to UNDEFINED, then this operation has no effect.
the case where facope= COMPOSITE, and some modg mode¢m) is UNDEFINED and
EVALUATE_GROUP @roup, object COMPOSITEMm) is previously UNDEFINED, then there
is an effect if for one or more componemsof object EVALUATE_GROUP §roup c,
ATOMIC, m) is not already set UNDEFINED. EVALUATE_GROUgr¢up c, ATOMIC, m)

of such components is changed to UNDEFINED.

If scopeis ATOMIC, then OBJECT_SET_ACL_ENTRY sets the ACL entry gooup in the
atomic ACL of object to modes for all discretionary access modes specifiedmades
OWNER must not appear modes

If scopeis COMPOSITE, then foobjectand all its components, OBJECT_SET_ACL_ENTRY
sets the ACL entries fagroup in the composite ACLs and also in the atomic ACLs for all
discretionary access modes specifiedmndes except CONTROL_DISCRETIONARY and
OWNER, tomodes CONTROL_DISCRETIONARY must not appear inodes OWNER is
treated as follows:

- the OWNER discretionary access mode valuggfoupin the composite ACL obbjectand
the CONTROL_DISCRETIONARY discretionary access mode valuegfoup in the
atomic ACL ofobjectare set tanodes(OWNER) provided that any outer object alfject
has OWNER undefined fgroup.

If modes(OWNER) = UNDEFINED, then in the components aifject the discretionary
access mode values for OWNER in the composite ACL and the discretionary access m
values for CONTROL_DISCRETIONARY in the atomic ACL grfoup are not changed.

- If modes(OWNER) = GRANTED or DENIED, then in the componentsobjectgroup is
set to have OWNER granted or denied respectively in the composite ACL, ar
CONTROL_DISCRETIONARY granted or denied respectively in the atomic ACL;
provided that any outer object alhjecthas OWNER undefined fgroup.

- If no owner forobjectexists, then the operation can modify OWNER, and OWNER only, if
CONTROL_DISCRETIONARY is granted faggroup in the atomic ACL ofobject and for
all components obbject OWNER is granted fagroupin the composite ACL.

Whetherscopeis ATOMIC or COMPOSITE, the composite ACLs of all outer objectslgpéct

and of object itself if scopeis ATOMIC, are updated, so that all constraints defined for
composite ACLs, and the atomic and composite ACLs of their components (see 19.1.2)
maintained. OWNER modes of outer objectsobiject are not updated; if this would be
necessary to maintain the constraints then an error is raised.

If scopeis COMPOSITE, then write locks of the default mode are obtainedbj@ctand on all
its components.

Errors

If scopeis ATOMIC:
ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_DISCRETIONARY)

If scopeis COMPOSITE:

If there is no owner fasbject and only OWNER is to be modified:
ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_DISCRETIONARY)
ACCESS_ERRORS (componentaifject COMPOSITE, CHANGE, OWNER)

If there is an owner faobject or there is no owner fabjectand modes other than
OWNER are required to be modified:
ACCESS_ERRORSpject COMPOSITE, CHANGE, OWNER)

(15)

(16)

(1)
(18)
(19)

(20)

()

(22)

(23)

(24)

(25)

-238 -

If the CONTROL_MANDATORY access right is changed:
ACCESS_ERRORSopject scope CHANGE, CONTROL_MANDATORY)

If scopeis COMPOSITE anthodeCONTROL_MANDATORY) = UNDEFINED but no
change to the composite ACL is required, then for each atonoBjettwhere
CONTROL_MANDATORY is to be changed from GRANTED:

ACCESS_ERRORS (A, ATOMIC, CHANGE, CONTROL_MANDATORY)

ACCESS_MODE_IS NOT_ALLOWEDnodes, scope
CONTROL_WOULD_NOT_BE_GRANTEDdbjec)
GROUP_IDENTIFIER_IS_INVALID group)

If scopeis COMPOSITE:
OBJECT_HAS_GROUP_WHICH_IS_ALREADY_OWNERIgject group)

OBJECT_OWNER_CONSTRAINT_WOULD_BE_VIOLATEDbbjec)

The following implementation-dependent error may be raised:
OBJECT_IS_INACCESSIBLE (outer object albject ATOMIC)

NOTES

1 If an implementation calculates the composite ACL when retrieving it, it may be so designed that it requires the
outer objects to be accessible.

2 CONTROL_DISCRETIONARY rather than READ_ATTRIBUTES or WRITE_ATTRIBUTES discretionary
access right is required to perform this operation. It would be superfluous to require both.

3 If objectis an SDS which may be in use in a working schema, then any change to its composite ACL only has
effect when the SDS is next included in a working schema by PROCESS_SET_WORKING_SCHEMA,
PROCESS_CREATE_AND_START, or PROCESS_START.

19.3 Discretionary security administration operations

19.3.1 GROUP_INITIALIZE

@

@

®

@
(®)
(6)

™

®

GROUP_INITIALIZE (
group : User_designator | User_group_designator | Program_group_designator

identifier : Group_identifier

GROUP_INITIALIZE adds the security grougroup to the security group directory. A
"known_security_group” link is created from the master of the security group directory to
group. The key of this link is set to a system-generated unique value, which is guaranteed never
to be re-used as a security group key and is returnie@ratsier.

Write locks of the default mode are obtained on the created links.

Errors

ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSg(oup, ATOMIC, CHANGE, APPEND_IMPLICIT)
SECURITY_GROUP_IS_KNOWNgroup)

NOTES

1 The group identifier, which is the same as the key to the "known_security _group" link to the object, may be
determined using the GROUP_GET _IDENTIFIER operation.

2 This operation does not change any copies of the security group directory.

-239 -

19.3.2 GROUP_REMOVE

) GROUP_REMOVE (
group : User_designator | User_group_designator | Program_group_designator

@ GROUP_REMOVE removes the security grogmup from the set of known groups. The
"known_security_group” link from the security group directory is deleted. |If there are n
remaining existence or composition linksgimup, thengroup is also deleted. In this case, the
"object_on_volume" link tgroupis deleted.

@®) The master of the security group directory is always updated by this operation.
@ Write locks of the default mode are obtained on the deleted links and object.
Errors

®) ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, WRITE_LINKS)

®) ACCESS_ERRORSfoup ATOMIC, MODIFY, WRITE_IMPLICIT)

@ If the conditions hold for deletion of the "security _group” obgroup
ACCESS_ERRORSfoup, COMPOSITE, MODIFY, DELETE)

®) GROUP_IDENTIFIER_IS_INVALID @roup

©) OBJECT_HAS LINKS PREVENTING_DELETIONgfoup)

(10) OBJECT_IS IN_USE_FOR_DELETHoup

(11) PRIVILEGE_IS NOT_GRANTED (PCTE_SECURITY)

(12) SECURITY_GROUP_IS IN_USE(oup

(13) SECURITY_GROUP_IS PREDEFINE@oup

(14) SECURITY_GROUP_IS REQUIRED_BY_OTHER_GROURSfdup

(15) NOTE - This operation does not change any copies of the security group directory.

19.3.3 GROUP_RESTORE

) GROUP_RESTORE (
group : User_designator | User_group_designator | Program_group_designator
identifier : Group_identifier

)

@ GROUP_RESTORE adds the security gragnoup to the security group directory. A
"known_security_group” link is created from the master of the security group directory t
group. The group identifierdentifier is used as the key for this link. This identifier must be a
used group identifier, originally generated when initializing a security group which has sinc
been deleted.

@®) Write locks of the default mode are obtained on the created links.
Errors
@ ACCESS_ERRORS (the security group directory, ATOMIC, MODIFY, APPEND_LINKS)
®) ACCESS _ERRORSyfoup ATOMIC, CHANGE, APPEND_IMPLICIT)
®) GROUP_IDENTIFIER_IS_IN_USEdentifien
@ GROUP_IDENTIFIER_IS_INVALID {dentifier)

®) PRIVILEGE_IS _NOT_GRANTED (PCTE_SECURITY)

- 240 -

© SECURITY_GROUP_IS_KNOWNgroup)

(10) NOTE - This operation does not change any copies of the security group directory.

19.3.4 PROGRAM_GROUP_ADD_MEMBER

@ PROGRAM_GROUP_ADD_MEMBER (
group : Program_group_designator,
program : Static_context_designator

)

@ PROGRAM_GROUP_ADD_MEMBER adds the progrgmogram to the program group
group. A "program_member_of" link is created froptogram to group, together with a
"has_programs" reverse link. The keys of the created links are implementation-dependent.

@) Write locks of the default mode are obtained on the created links.
Errors
) ACCESS ERRORSfoup ATOMIC,APPEND_LINKS)
®) ACCESS_ERRORSfogram ATOMIC, MODIFY, APPEND_IMPLICIT)
©) SECURITY_GROUP_IS_UNKNOWNgroup
@) STATIC_CONTEXT_IS_ALREADY_MEMBER grogram group)
®) NOTE - Processes which are current executiongrofram do not receivegroup as an addition to their set of

effective security groups.

19.3.5 PROGRAM_GROUP_ADD_SUBGROUP

[} PROGRAM_GROUP_ADD_SUBGROUP (
group : Program_group_designator,
subgroup : Program_group_designator

)

@ PROGRAM_GROUP_ADD_SUBGROUP adds the program grsuipgroupto the program
groupgroup. A "program_subgroup_of" link is created franbgroupto group, together with a
"has_program_subgroups"” reverse link. The keys of the created links are implementation-
dependent (see 23.1.2.5).

@®) Write locks of the default mode are obtained on the created links.
Errors
@ ACCESS_ERRORSyfoup, ATOMIC, MODIFY, APPEND_LINKS)
®) ACCESS _ERRORSs(ibgroup ATOMIC, MODIFY, APPEND_LINKS)
®) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
@ SECURITY_GROUP_ALREADY_HAS THIS SUBGROUBUbgroupgroup)
® SECURITY_GROUP_IS IN_USEs(bgroup
© SECURITY_GROUP_IS UNKNOWNgroup)
(10) SECURITY_GROUP_IS_UNKNOWNSsubgroup

v SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPHsbgroupgroup)

- 241 -

19.3.6 PROGRAM_GROUP_REMOVE_MEMBER

) PROGRAM_GROUP_REMOVE_MEMBER (
group : Program_group_designator,
program : Static_context_designator

@ PROGRAM_GROUP_REMOVE_MEMBER removes the static confaxdgram from the
groupgroup. The "program_member_of" link froprogramto group and its "has_programs"
reverse link are deleted.

@®) Write locks of the default mode are obtained on the deleted links.
Errors

@ ACCESS_ERRORSgfoup, ATOMIC, MODIFY, WRITE_LINKS)

®) ACCESS ERRORSfogram ATOMIC, MODIFY, WRITE_IMPLICIT)

® SECURITY_GROUP_IS_UNKNOWNgroup

@ STATIC_CONTEXT_IS_IN_USEgrogram

®) STATIC_CONTEXT_IS_NOT_MEMBERgrogram group)

19.3.7 PROGRAM_GROUP_REMOVE_SUBGROUP

@ PROGRAM_GROUP_REMOVE_SUBGROUP (
group : Program_group_designator,
subgroup : Program_group_designator

)

@ PROGRAM_GROUP_REMOVE_SUBGROUP removes the program gsabgroupfrom the
program groupgroup. The "program_subgroup_of" link frorsubgroupto group and its
"has_program_subgroups" reverse link are deleted.

@ Write locks of the default mode are obtained on the deleted links.
Errors

@ ACCESS ERRORSfoup ATOMIC, MODIFY, WRITE_LINKS)

®) ACCESS ERRORSs(ibgroup ATOMIC, MODIFY, WRITE_LINKS)

®) PROGRAM_GROUP_IS _NOT_EMPTYs(@bgroup

@ SECURITY_GROUP_IS_IN_USEsgbgroup

®) SECURITY_GROUP_IS NOT_A_ SUBGROUBuUbgroupgroup)

©) SECURITY_GROUP_IS _UNKNOWNgroup)

(10) SECURITY_GROUP_IS _UNKNOWNSsubgroup

19.3.8 USER_GROUP_ADD_MEMBER

) USER_GROUP_ADD_MEMBER (
group : User_group_designator,
user : User_designator

)

@ USER_GROUP_ADD MEMBER adds the userser to the user groupgroup A
"user_member_of" link fromiserto groupand a "has_users" reverse link are created. The key:s
of the created links are implementation-dependent.

- 242 -

@®) Write locks of the default mode are obtained on the created links.
Errors
) ACCESS_ERRORSfoup, ATOMIC, MODIFY, APPEND_LINKS)
®) ACCESS ERRORSuger, ATOMIC, MODIFY, APPEND_LINKS)
®) SECURITY_GROUP_IS _UNKNOWNgroup)
@) SECURITY_GROUP_IS _UNKNOWNuUsel)
®) USER_GROUP_LACKS_ALL USERS_AS_SUPERGROLUjro(p
©) USER IS _ALREADY_MEMBER (ser, group)
(10) NOTE - This operation does not caggeupto become an adoptable group of a process running on behakmof

19.3.9 USER_GROUP_ADD_SUBGROUP

@) USER_GROUP_ADD_SUBGROUP (
group : User_group_designator,
subgroup : User_group_designator

)

@ USER_GROUP_ADD_SUBGROUP adds the user grawpgroupto the user grougroup. A
"user_subgroup_of" link fronrsubgroupto group and a "has_user_subgroups” reverse link are
created. The keys of the created links are implementation-dependent.

@®) Write locks of the default mode are obtained on the created links.
Errors
@ ACCESS_ERRORSyfoup, ATOMIC, MODIFY, APPEND_LINKS)
®) ACCESS _ERRORSs(ibgroup ATOMIC, MODIFY, APPEND_LINKS)
®) MASTER_IS_INACCESSIBLE (some object of the graph of security groups, ATOMIC)
@ SECURITY_GROUP_ALREADY_HAS THIS SUBGROUBUYbgroupgroup)
® SECURITY_GROUP_IS IN_USEs(bgroup
© SECURITY_GROUP_IS UNKNOWNdgroup)
(10) SECURITY_GROUP_IS_UNKNOWNSsubgroup
(11) SECURITY_GROUP_WOULD_BE_IN_INVALID_GRAPHsubgroup group

19.3.10 USER_GROUP_REMOVE_MEMBER

) USER_GROUP_REMOVE_MEMBER (
group : User_group_designator,
user : User_designator

)

@ USER_GROUP_REMOVE_MEMBER removes the useer from the groupgroup. The
"user_member_of" link fromserto groupand its "has_users" reverse link are deleted.

@®) Write locks of the default mode are obtained on the deleted links.
Errors

@ ACCESS_ERRORSgfoup, ATOMIC, MODIFY, WRITE_LINKS)

®) ACCESS ERRORSuger, ATOMIC, MODIFY, WRITE_LINKS)

© SECURITY_GROUP_IS_UNKNOWNgroup)

- 243 -

@) SECURITY_GROUP_IS _UNKNOWNuse

®) USER_GROUP_IS_IN_USHiger, group)

©) USER_IS NOT_MEMBERUser, group)

(10) NOTE - The "adoptable_user_group" link from a process executed on beligkrad group is not deleted (see

PROCESS_ADOPT_USER_GROUP).

19.3.11 USER_GROUP_REMOVE_SUBGROUP

@) USER_GROUP_REMOVE_SUBGROUP (
group : User_group_designator,
subgroup : User_group_designator

)

@ USER_GROUP_REMOVE_SUBGROUP removes the user gsulmroup from the user
group group. The "user_subgroup_of" link fromsubgroup to group and its
"has_user_subgroups" reverse link are deleted.

@) subgroupmust not be the effective group for a running process.
@ Write locks of the default mode are obtained on the deleted links.
Errors
©) ACCESS_ERRORSy(oup, ATOMIC, MODIFY, WRITE_LINKS)
®) ACCESS _ERRORSs(ibgroup ATOMIC, MODIFY, WRITE_LINKS)
@ SECURITY_GROUP_IS IN_USEs(bgroup
® SECURITY_GROUP_IS NOT_A_ SUBGROUBuUbgroupgroup)
© SECURITY_GROUP_IS_UNKNOWNgroup
(10) SECURITY_GROUP_IS _UNKNOWNSsubgroup
1) USER_GROUP_WOULD NOT_HAVE_ALL_USERS_AS_SUPERGROW®&bgroup

20 Mandatory security
20.1 Mandatory security concepts

20.1.1 Mandatory classes

() sds mandatory_security:
@ import object type system-object, system-volume, system-device, system-common_root;
®3) import attribute type system-name, system-number;
@) import object type discretionary_security-security_group, discretionary_security-user;
(5) import attribute type discretionary_security-group_identifier;
(6) extend object type security_group with
link

may_downgrade: (navigate) reference link (name) to confidentiality_class reverse
downgradable_by;
may_upgrade: (navigate) reference link (hame) to integrity_class reverse
upgradable_by;
end security_group;

- 244 -

@ extend object type user with
link
cleared_for: (navigate) reference link (name) to mandatory_class reverse
having_clearance;
end user;

®) mandatory_directory: child type of object with
link
known_mandatory_class: (navigate) existence link (name) to mandatory_class;
mandatory_classes_of: implicit link to common_root reverse mandatory_classes;
end mandatory_directory;

©) mandatory_class: child type of object with
link
having_clearance: (navigate) reference link (group_identifier) to user reverse
cleared_for;
end mandatory_class;
(10) confidentiality_class: child type of mandatory_class with
link

dominates_in_confidentiality: (navigate) reference link to confidentiality_class reverse
confidentiality _dominator;
confidentiality_dominator: (navigate) reference link to confidentiality_class reverse
dominates_in_confidentiality;
downgradable_by: (navigate) reference link (group_identifier) to security_group
reverse may_downgrade;
end confidentiality class;

(11) integrity_class: child type of mandatory_class with
link
dominates_in_integrity: (navigate) reference link to integrity_class reverse
integrity_dominator;
integrity_dominator: (navigate) reference link to integrity_class reverse
dominates_in_integrity;
upgradable_by: (navigate) reference link (group_identifier) to security_group reverse
may_upgrade;
end integrity class;

(12) extend object type object with
attribute
confidentiality label: (read) string ;
integrity_label: (read) string ;
end object;

(13) extend object type common_root with
link
mandatory_classes: (navigate) existence link to mandatory_directory reverse
mandatory_classes_of;
end common_root;

(14) end mandatory_security;

(15) The "mandatory_class" object type represents the mandatory classes defined for the PCTE
installation. The name of a class, theass namge is the key attribute of the
"known_mandatory_class" link from the mandatory directory to the mandatory class object.
The destinations of the "having_clearance" links represent users whiatleared to this
mandatory class. The concept of user clearance is elaborated in 20.1.4.

(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

- 245 -

The "confidentiality _class" object type represents the subset of mandatory classes which
confidentiality classes:

- the destination of the "dominates_in_confidentiality" link represents the confidentiality clas
which this confidentiality class dominates;

- the destination of the "confidentiality_dominator” link represents the confidentiality clas
which dominates this confidentiality class;

- the destinations of the "downgradable_by" links represent the security groups which hg
authority to downgrade from that confidentiality class (see 20.1.4).

The "integrity_class" object type represents the subset of mandatory classes which are integ
classes:

- the destination of the "dominates_in_integrity" link represents the integrity class which th
integrity class dominates;

- the destination of the "integrity_dominator” link represents the integrity class whicl
dominates this integrity class;

- the destinations of the "upgradable by" links represent the security groups which ha
authority to upgrade from that integrity class.

The mandatory directory is an administrative object (see 9.1.2).

20.1.2 The mandatory class structure

@
@
®

@

®)

(6)

U]

Confidentiality_tower = seql of Confidentiality_class_designator
Integrity _tower = seql of Integrity_class_designator

Each mandatory class participates in exactly one of the confidentiality towers and integr
towers which define the dominance relationships between these classes. No class may af
more than once in a tower.

The "dominates_in_confidentiality" and "confidentiality _dominator” links of a mandatory clas:
represent the sequence of confidentiality classes in a confidentiality tower. The destination
"dominates_in_confidentiality" link is the member of the sequence which immediately preced
the origin of the link. The destination of "confidentiality_dominator”" is the member of the
sequence which is the immediate successor of the origin of the link.

The "dominates_in_integrity" and "integrity_dominator" links represent the sequence
integrity classes in an integrity tower. The destination of a "dominates_in_integrity" link is th
member of the sequence which immediately precedes the origin of the link. The destination
"integrity_dominator" is the member of the sequence which is the immediate successor of
origin of the link.

The predicates CLASS_DOMINATES and CLASS_STRICTLY_DOMINATES are defined in
terms of the relative positions of the mandatory classes within a confidentiality tower or «
integrity tower. A clasdeft_classdominatesa classright_classif CLASS_DOMINATES
(left_class right_clasg = true. A classleft_classstrictly dominatesa classright_class if
CLASS_STRICTLY_DOMINATES left_classright_clasg =true.

CLASS_DOMINATES (
left_class : Mandatory class_designator,
right_class : Mandatory_class_designator

)

result : Boolean

®

©

(10)

(11

(12)

- 246 -

The result idalseif left_classandright_classdo not occur in the same confidentiality tower or
integrity tower.

If left_classand right_class occur in a confidentiality tower or an integrity tower T, and
left_class = T(I) andright_class= T(J), then the result tsue if | > J, otherwisdalse
CLASS_STRICTLY_DOMINATES (

left_class : Mandatory class_designator,
right_class : Mandatory_class_designator

)

result : Boolean

The result idalseif left_classandright_classdo not occur in the same confidentiality tower or
integrity tower.

If left_classand right_classoccur in a confidentiality tower or an integrity tower T, and
left_class = T(I) andright_class= T(J), then the result tsue if | > J, otherwisdalse

20.1.3 Labels and the concept of dominance

@
@
(©)
@

®)

(6)

0]

®)

©
(10)

(11

(12)

Security_label = [Mandatory_class_designator] | Conjunction | Disjunction
Conjunction :: UNITS: set of Security_label
Disjunction :: UNITS: set of Security label

A security label is either a confidentiality label or an integrity label; the structure is the same in
either case.

A class name is a confidentiality or integrity class name. Confidentiality class names may occur
only in confidentiality labels. Integrity class names may occur only in integrity labels.
Conjunctions and disjunctions must contain at least 2 units. A security label of the first kind in
which the optional unit is not supplied is calledudl label

The concept of mandatory security permissions depends on the concept of a label dominating
another.

The predicates LABEL_DOMINATES and LABEL_STRICTLY_DOMINATES are defined in
terms of the possible forms of the labels and the domination relationships between the
mandatory classes. A lablelft labeldominatesa labelright_label if LABEL_DOMINATES
(left_label right_label) = true. A label left_label strictly dominatesa labelright_label if
LABEL_STRICTLY_DOMINATES (eft_label right_labe) =true.

LABEL_DOMINATES (
left_label : Security_label,
right_label : Security_label

)

dominates : Boolean
If right_labelis null thendominates= true.
If left_labelis null andright_labelis not null therdominates= false

If left label and right_label are both mandatory class designators tlteminates =
CLASS_DOMINATES (eft_label right_label).

If left_labelis a mandatory class designator aigtht labelis a disjunction of mandatory class
designatorsy, r», ... thendominates= true if CLASS_DOMINATES (eft_label rj) is true for
somerj, andfalse otherwise.

(13)

(14)

(15)

(16)

(1)

(18)

(19)

(20)

()

(22)
(23)
(24)

(25)

(26)

@7

- 247 -

If left_label is a conjunction of mandatory class designaterd,, ... andright_label is a
mandatory class designator thdominates= true if CLASS_DOMINATES (;j, right_label) is
true for somd;, andfalse otherwise.

If left_label is a conjunction of mandatory class designaterd,, ... andright_label is a
disjunction of mandatory class designatorg, rp, ... then dominates = true if
CLASS_DOMINATES(j, rj) istrue for somel; andrj, andfalse otherwise.

If right_labelis a disjunction of security labels, ro, ... and some is a disjunction of security
labels ry', ry', ... thendominates= LABEL_DOMINATES (left_label r') wherer' is the
disjunction of all the;' and all the; exceptry.

If left_labelis a conjunction of security labdlg |5, ... and somé is a conjunction of security
labels I{', 15, ... thendominates= LABEL_DOMINATES (', right_labe) wherel" is the
conjunction of all thej' and all thd; except.

If right_label is a conjunction of security labels, rp, ... then dominates= true if
LABEL_DOMINATES (left_label r;) istrue for allrj, andfalse otherwise.

If left label is a disjunction of security labels, 1|5, ... then dominates = true if
LABEL_DOMINATES (l;, right_labe)) istrue for all l;, andfalse otherwise.

If right_labelis a disjunction of security labels, r,, ... and some is a conjunction of security
labelsrq', ry, ... thendominates= true if LABEL_DOMINATES (left_label r') is true for all
ri', wherer' isright_labelwith r replaced by;', andfalse otherwise.

If left_labelis a conjunction of security labdlg I», ... and somé is a disjunction of security
labelsly', I, ... thendominates= true if LABEL_DOMINATES (I', right_labe) is true for all
li* wherel' is left_labelwith |k replaced by;', andfalse otherwise.

LABEL_STRICTLY_DOMINATES (
left_label : Security_label,
right_label : Security_label

)

dominates : Boolean
The definition of this predicate is the same as for LABEL_DOMINATES except that:

- If left_labelandright_labelare both null, thedominategs false
- CLASS_DOMINATES is replaced by CLASS_STRICTLY_DOMINATES.
- LABEL_DOMINATES is replaced by LABEL_STRICTLY_DOMINATES.

NOTES

1 Itis possible for label A to dominate label B and B to dominate A, and for label C not to dominate label D wh
D does not dominate C.

2 For the mapping of security labels to language bindings see 23.1.3.1.

20.1.4 Mandatory rules for information flow

@

A user's confidentiality clearands a security label derived from the confidentiality classes to
which that user is cleared by forming a conjunction of the confidentiality class names.

@

®

@

®)

(6)

0]

®

©

(10)

(11

(12)

(13)

(14)

(15)

- 248 -

A user's integrity clearances a security label derived from the integrity classes to which that
user is cleared by forming a conjunction of the integrity class names.

A process has aandatory contexassociated with it which is used to control the flow of
information to and from the process. This mandatory context consists of a confidentiality
component called @onfidentiality contextand an integrity component called awtegrity
context.

The confidentiality context and integrity context are represented by the "confidentiality label"
and "integrity_label" attributes respectively of the process as inherited from the parent type
"object” (see 20.1.1).

A process may change its confidentiality context during execution so that the new
confidentiality context dominates the previous value.

A process may change its integrity context during execution so that the new integrity context is
dominated by the previous value.

A process may only change its confidentiality context so that the result is dominated by the
user's confidentiality clearance.

When a confidentiality context is changed, it must remain within the confidentiality label range
of the workstation on which the process is executing. When an integrity context is changed, it
must remain within the integrity label range of the workstation on which the process is
executing (see 20.1.5).

An object has a confidentiality label and an integrity label which control the flow of information
into and out of its associated atomic object. The following rules apply to a process' mandatory
context or an object's mandatory labels after any change due to the floating of labels (see
20.1.6).

For the purposes of these rukesd andwrite are defined as follows in terms of information
flow. If information flows from an object to a process, the process reads from the object. If
information flows from a process to an object, even if it is only erasure, the process writes to the
object. Reading and writing refer to any property of an object (attributes, links, link attributes,
contents) which can contain (or embody) information. Deletion of an object is therefore
considered writing to the object, although deletion of an object is only achieved by deleting a
link.

- The simple confidentiality rule: A process P may only read from the atomic object
associated with an object A if LABEL_DOMINATES (confidentiality context of P,
confidentiality label of A).

- The confidentiality confinement rule: A process P may only write to the atomic object
associated with an object A if LABEL_DOMINATES (confidentiality label of A,
confidentiality context of P).

- The simple integrity rule: A process P may only write to the atomic object associated with
an object A if LABEL_DOMINATES (integrity context of P, integrity label of A).

- The integrity confinement rule: A process P may only read from the atomic object
associated with an object A if LABEL_DOMINATES (integrity label of A, integrity context
of P).

- The communication rule: A process P may transmit information to another process Q (by
PROCESS_PEEK or PROCESS_POKE) if LABEL_DOMINATES (confidentiality context

(16)

(1)

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

- 249 -

of Q, confidentiality context of P) and LABEL_DOMINATES (integrity context of P,
integrity context of Q).

A process may change the confidentiality and integrity labels of an object if and only if it he
the atomic CONTROL_MANDATORY right to that object. Under this condition, a
confidentiality label may be changed to a value which dominates the previous value and
integrity label may be changed to a value which is dominated by the previous value.

When a confidentiality label of an object is changed, it must remain within the confidentialit
label range of the volume on which the object is residing. When an integrity label of an object
changed, it must remain within the integrity label range of the volume on which the object
residing (see 20.1.5). This is true even with the downgrade or upgrade privileges, descril
below, effective.

If an effective security group of the calling process has additional downgrade or upgra
privileges, these object mandatory labels may be changed so that the new value of
confidentiality label does not dominate the previous value and the new value of the integr
label is not dominated by the previous value, according to the rules defined below:

A process is defined to lzting with downgrade authority from a confidentiality cl&s# the
process has an effective security group which has downgrade authority from C, i.e. there |
"downgradable_by" link from C to the security group. This is represented by the predice
DOWNGRADE_AUTHORITY:

DOWNGRADE_AUTHORITY (
process : Process_designator,
class : Confidentiality _class_designator

)

authority : Boolean

A process is defined to kacting with upgrade authority to an integrity claSsif the process
has an effective group which has upgrade authority to C, i.e. there is an "upgradable_by" |
from C to the security group. This is represented by the predicate UPGRADE_AUTHORITY:

UPGRADE_AUTHORITY (
process : Process_designator,
class . Integrity_class_designator

)

authority : Boolean

A process is permitted to change a confidentiality label frigiit_label to left_label providing
that right_label is dominated in confidentiality by left_labetlative to the process.This
concept is defined by the following predicates for classes and labels:

RELATIVE_CLASS DOMINATES IN_CONFIDENTIALITY (
process : Process_designator,
left_class : Mandatory class_designator,
right_class : Mandatory_class_designator

)

dominates : Boolean

This is the same as CLASS _DOMINATES except that if DOWNGRADE_AUTHORITY
(processright_clasg is true, dominatess alwaysrue.

(26)

@7

(28)

(29)

(30)

@D

(32

(33)

(34)

(39)

(36)

@7
(38)

(39)

(40)

- 250 -

RELATIVE_LABEL_DOMINATES IN_CONFIDENTIALITY (
process : Process_designator,
left_label : Security_label,
right_label : Security_label

)

dominates : Boolean
This is the same as LABEL_DOMINATES except that:

- The rule beginning 'lleft_label is null' (i.e. the second rule) is replaced by the rule: If
left_label is null and right label is a class name C, therdominates =
DOWNGRADE_AUTHORITY frocessC).

- RELATIVE_CLASS_DOMINATES_IN_CONFIDENTIALITY replaces CLASS_
DOMINATES.

- RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY replaces LABEL_
DOMINATES.

A process is permitted to change an integrity label fieftnlabelto right_label providing that
left_labeldominates right_labeh integrity relative to the processlhis concept is defined by
the following predicates for classes and labels:

RELATIVE_CLASS_DOMINATES_IN_INTEGRITY (
process : Process_designator,
left_class : Mandatory class_designator,
right_class : Mandatory_class_designator

)

dominates : Boolean

This is the same as CLASS_DOMINATES except that if UPGRADE_AUTHORAMgdess
right_clasg is true, dominateds alwaystrue.

RELATIVE_LABEL_DOMINATES_IN_INTEGRITY (
process : Process_designator,
left_label : Security_label,
right_label : Security_label

)

dominates : Boolean
This is the same as LABEL_DOMINATES except that:

- The rule beginning 'lleft_label is null' (i.e. the second rule) is replaced by the rule: If
left_label is null and right label is a class name C, therdominates =
UPGRADE_AUTHORITY processC).

- RELATIVE_CLASS_DOMINATES_IN_INTEGRITY replaces CLASS_DOMINATES.
- RELATIVE_LABEL_DOMINATES_IN_INTEGRITY replaces LABEL_DOMINATES.

The confidentiality context of a process is always dominated by the user's confidentiality
clearance, and the integrity clearance of a process is always dominated by the user's integrity
clearance.

NOTES

1 Read and write for mandatory access control are defined in the operations in terms of information flow. If
information flows from an object to the process (i.e. access errors may occur with permission READ), it is a read.
If information flows from the process to an object (i.e. access errors may occur with permission CHANGE or

MODIFY), even if it is only erasure, it is a write. Reading and writing refer to any property of an object (attributes,

links, link attributes, contents) which can contain (or embody) information. Deletion of an object is therefore

considered a write, although for PCTE, deletion of an object is only achieved by deleting a link.

(41)

(42)

(43)

(44)

(45)

(46)

(47)

(48)

(49)
(50)

(61)

-251 -

2 A restriction on a process's integrity context with reference to the user's integrity clearance is unneces:
because a change is always a downgrade.

3 The restrictions to changes to a process's confidentiality context or integrity context above apply to f
operations PROCESS_SET_CONFIDENTIALITY_LABEL and PROCESS SET_INTEGRITY_LABEL, and to
the floating security labels facility (see 20.1.6) when objects, whose labels would normally prevent access, are |
by the process.

4 The restrictions to changes to an object's confidentiality or integrity labels above apply to the operatic
OBJECT_SET_CONFIDENTIALITY_LABEL and OBJECT_SET INTEGRITY_LABEL, and to the floating
security labels facility when objects, whose labels would normally prevent access, are written to by a process.

5 The predicates RELATIVE _LABEL DOMINATES IN_CONFIDENTIALITY and RELATIVE_LABEL
DOMINATES_IN_INTEGRITY are used in operations OBJECT_SET_CONFIDENTIALITY_LABEL and
OBJECT_SET_INTEGRITY_LABEL to define some of these checks.

6 In specifying which accesses are read and which write for mandatory access control, the intention is that
rules should be as follows.

- Each object, its attributes, its contents, its outgoing links (except system-managed designation Ilir
representing the use of the object by a process and those representing locks) and their attributes, an
preferred link type and key may be treated as a separate security object.

- Every access to one of those security objects that depends on data from it may be treated as a read, excej
the audit selection criteria are accessible, for the purposes of determining whether the event is audita
without a mandatory read check, and reading security labels for mandatory access checks does not count
read.

- Every access to one of those security objects that writes data to it is treated as a write, with the follow
exceptions:

the last_access_time attribute shall be updatable without mandatory write checks;
records shall be written to the audit file and accounting log without write mandatory checks;

updates arising as a result of process failure or abnormal closedown of a workstation shall be poss
without mandatory checks.

20.1.5 Multi-level security labels

@

@
®
4)

®)

Multi_level_device_designator = Volume_designator | Device_designator |
Execution_site_designator

sdsmandatory_security:
import object type system-volume, system-device, system-execution_site;

extend object type volume with

attribute
confidentiality_high_label: (read) non_duplicated string ;
confidentiality low_label: (read) non_duplicated string ;
integrity _high_label: (read) non_duplicated string ;
integrity low_label: (read) non_duplicated string ;

end volume;

extend object type device with
attribute
confidentiality_high_label;
confidentiality_low_label;
integrity _high_label;
integrity _low_label;
contents_confidentiality _label: (read) non_duplicated string ;
contents_integrity label: (read) non_duplicated string ;
end device;

(6)

U]
®

©)

(10)

(11

(12)

(13)

(14)

(15)

(16)

(1)

-252 -

extend object type execution_site with
attribute
confidentiality_high_label;
confidentiality_low_label;
integrity _high_label;
integrity _low_label;
end execution_site;

end mandatory_security;

Multi-level secure deviceare volumes, devices, and execution sites; they allow data with a
fixed range of mandatory labels for confidentiality and for integrity to be stored on them. The
fixed ranges of labels required for a multi-level secure device are expressed as two labels, a high
label and a low label. In each range the high label must dominate the low label.

A MAXIMUM_LABEL high end of range means that there is no ceiling on the labels of objects
contained within the device.

For it to be permissible for an object A to be stored on a multi-level secure device M,
CONFIDENTIALITY_LABEL_WITHIN_RANGE (A, M) and INTEGRITY_LABEL
WITHIN_RANGE (A, M) must bdrue, where:

CONFIDENTIALITY_LABEL_WITHIN_RANGE (
object : Object_designator,
device : Multi_level_device_designator

)

inside_range : Boolean

inside_rangeis true if the confidentiality low label oflevicedoes not strictly dominate the
confidentiality label of object and the confidentiality high label oflevice either is
MAXIMUM_LABEL or dominates the confidentiality label @bject and is otherwiséalse

INTEGRITY_LABEL_WITHIN_RANGE (
object : Object_designator,
device : Multi_level_device_designator

)

inside_range : Boolean

inside_rangas true if the integrity low label oflevicedoes not strictly dominate the integrity
label of object and the integrity high label oflevice either is MAXIMUM_LABEL or
dominates the integrity label object and is otherwiséalse

Similar checks are made when multi-level secure devices are put on other multi-level secure
devices. For it to be permissible for a multi-level secure device A to reside on another multi-
level secure device B, CONFIDENTIALITY_RANGE_WITHIN_RANGE(A, B) must be true,
where:

CONFIDENTIALITY_RANGE_WITHIN_RANGE (
inner_device : Multi_level device_designator,
outer_device : Multi_level_device_designator

)

inside_range : Boolean
inside_rangss true if the confidentiality low label obuter_devicedoes not strictly dominate
the confidentiality low label ahner_device and the confidentiality high label otiter_device
either is MAXIMUM_LABEL or dominates the confidentiality high labelioher_deviceand
is otherwisdalse

(18)

(19)

(20)

21

(22)

(23)

(24)
(29)
(26)

@7

(28)
(29)
(30)
(31)
(32)
(33)
(34)
(35)

(36)

@7

- 253 -

INTEGRITY_RANGE_WITHIN_RANGE (
inner_device : Multi_level device_designator,
outer_device : Multi_level _device_designator

)

inside_range : Boolean

inside_rangeis true if the integrity low label ofouter_devicedoes not strictly dominate the
integrity low label ofinner_device, and the integrity high label aduter_deviceeither is
MAXIMUM_LABEL or dominates the integrity high label ofner_device and is otherwise
false

The confidentiality or integrity label of an objectliés within the confidentialityr integrity
range of a multi-level secure device B if CONFIDENTIALITY_LABEL_WITHIN_RANGE
(A, B) or INTEGRITY_LABEL_WITHIN_RANGE (A, B) respectively isue.

The confidentiality or integrity range of a multi-level secure devicelie§ within the

confidentiality or integrity range of a multi-level secure device B if CONFIDENTIALITY__
RANGE_WITHIN_RANGE (A, B) or INTEGRITY_RANGE_WITHIN_RANGE (A, B)
respectively igrue.

In addition to its mandatory labels, a device object is associated with two other labels (c
confidentiality label and one integrity label), termabels of contenfsvhich govern access to
its contents through the device contents operations (see clause 12).

The labels of contents are evaluated in accordance with the characteristics of the physical de
each time the contents of the device is accessed. If the device is open for reading or writing,
label associated with the contents of the physical device is implementation-defined. If the la
cannot be identified then the confidentiality label C of the contents is set to the confidentiali
context of the accessing process, and the integrity label | of the contents is set to the intec
context of the accessing process.ddvice_contents defined as a pseudo-object representing
the contents which have the labels of contents, the process is denied access to the contents
of the following ardalse

- CONFIDENTIALITY_LABEL_WITHIN_RANGE (device_contenislevice
- INTEGRITY_LABEL_WITHIN_RANGE (device_contenislevice
- LABEL_DOMINATES (confidentiality context oprocess C)

- LABEL_DOMINATES (I, integrity context oproces$
NOTES
1 Checks are made that the constraints are obeyed on an object stored on a multi-level secure device wheneve
objects have their labels changed;
processes have their mandatory context changed;
objects are put on to multi-level secure devices:
objects are created on a volume;
objects are moved to a volume;
processes are started or called on a workstation;
copying files to foreign system.

2 The checks made that the constraints are obeyed when multi-level secure devices are put on other multi-
secure devices apply in the following situations:

volumes are created on devices;

- 254 -

(38) - volumes are mounted on devices;
(39) - devices are created on workstations;
(40) - security ranges on multi-level devices are changed (see 20.2.9 and 20.2.10).

20.1.6 Floating security levels

@) Floating_level = NO_FLOAT | FLOAT_IN | FLOAT_OUT | FLOAT_IN_OUT
@ sds mandatory_security:
©) import object type system-process;
@ floating_level: NO_FLOAT, FLOAT_IN, FLOAT_OUT, FLOAT_IN_OUT;
(5) extend object type process with
attribute
floating_confidentiality_level: (read) non_duplicated enumeration (floating_level) :=
NO_FLOAT;
floating_integrity_level: (read) non_duplicated enumeration (floating_level) :=
NO_FLOAT;
end process;

(6) end mandatory_security;
@ The floating security levels mechanism enables a process to select either or both of the two

facilities:
®) - The mandatory context of a process may float up (confidentiality) or down (integrity) when

information is read from an object.
©) - The mandatory labels of an object may float up (confidentiality) or down (integrity) when
information is written to its associated atomic object.

(10) This is specified using the "floating_confidentiality level" and "floating_integrity level"

attributes of the executing process, which have four possible values:
(11) - NO_FLOAT: switches off the floating mechanism,;
(12) - FLOAT_IN: enables the process's mandatory context to float;
(13) - FLOAT_OUT: enables the object's mandatory labels to float;
(14) - FLOAT_IN_OUT: enables both to float.
(15) If the floating of the mandatory context of a process P is enabled (FLOAT_IN and

FLOAT _IN_OUT), then when information is read from the atomic object associated with an

object A:
(16) - if LABEL_DOMINATES (confidentiality context of P, confidentiality label of A)false

then the new confidentiality context is given by FLOAT_UPGRADE (confidentiality
context of P, confidentiality label of A);

a7 - if LABEL_DOMINATES (integrity label of A, integrity context of P) false then the new
integrity context is given by FLOAT_DOWNGRADE (integrity context of P, integrity label
of A).

(18)

(19)

(20)

()

(22)

(23)

(24)

(29)

(26)

@7
(28)

(29)

(30)

@D

(32)

(33)

(34)

(35)

- 255 -

If the floating of an object's mandatory labels is enabled (FLOAT_OUT and FLOAT_IN_OUT)
then when the atomic object associated with an object A is written to:

- if LABEL_DOMINATES (confidentiality label of A, confidentiality context of the calling
process) isalsethen the new confidentiality label is given by FLOAT_UPGRADE
(confidentiality label of A, confidentiality context of the calling process);

- if LABEL_DOMINATES (integrity context of the calling processtegrity label of A) is
falsethen the new integrity label is given by FLOAT_DOWNGRADE (integrity label of A,
integrity context of the calling process).

FLOAT _UPGRADE and FLOAT _DOWNGRADE are defined as follows:

FLOAT_UPGRADE (
upgradable_label : Security_label,
higher_label : Security_label

)
upgraded_label : Security_label

upgraded_label is the conjunction of upgradable label and higher_label unless
upgradable_labeis null in which casepgraded_labeis higher_label
FLOAT_DOWNGRADE (

downgradable label : Security label,
lower_label : Security_label

)
downgraded_label : Security_label

downgraded_labek the disjunction oflowngradable labehindlower_labelunlesdower _label
is null in which caselowngraded_labek also null.

The floating of mandatory labels requires the process to have the CONTROL_MANDATOR
right to the object.

The confidentiality context of a procga®cesss subject to the constraints:
- It must be dominated by the user confidentiality clearance.

- It must lie within the confidentiality range of the workstation i.e.
CONFIDENTIALITY_LABEL_WITHIN_RANGE (processstatior) must berue.

The confidentiality label of an object A must lie within the confidentiality range of the volume
V in which it resides, i.e. CONFIDENTIALITY_LABEL_WITHIN_RANGE (A, V) must be
true.

The integrity context must continue to lie within the integrity range of the workstation on whic
the process is running i.e. INTEGRITY_LABEL_WITHIN_RANGHr¢cess statior) must be
true.

The integrity label of an object A must lie within the integrity range of the volume V in which i
resides, i.e. INTEGRITY_LABEL_WITHIN_RANGE (A, V) must lirie.
NOTES

1 If any of the above conditions results in the process's mandatory context or the object's mandatory label
being changed, then reading and writing of the object are forbidden, as defined in 20.1.4.

2 CONTROL_MANDATORY right is required for label changes to be effected either explicitly using
OBJECT_SET_CONFIDENTIALITY_LABEL and OBJECT_SET_INTEGRITY_LABEL or implicitly using
floating security labels.

3 In order to determine whether these constraints have been violated, access must be made to the objects inv
i.e. the user, the station and the volume. These accesses are not also subject to mandatory access control,

(36)

- 256 -

could lead to the further floating of the mandatory context of the current process. These accesses constitute
additional bitwise read accesses which are intrinsic covert channels to PCTE (see 20.1.8.2) and are permitted.

4 An object of type "process” (or a descendant type) cannot have its mandatory labels changed by output floating,
regardless of the process status. An operation which tries to write to such an object and would cause floating fails
with the relevant confinement violation error.

20.1.7 Implementation restrictions

@

@
(©)
4)
(®)

(6)

U]

A trusted implementation of PCTE may have implementation-defined restrictions on various
aspects of the security model. In particular there may be implementation-defined restrictions of
the following kinds:

- restrictions on the number of confidentiality classes (0O or more);

- restrictions on the number of integrity classes (0 or more);

- restrictions on the form of the confidentiality labels, e.g. may not allow a disjunction;
- restrictions on the form of the integrity labels, e.g. may not allow a conjunction;

- restrictions on creation of links between levels (e.g. may not allow any links to cross
differently labelled objects for designated information classes).

In some implementations there may be predefined classes. These predefined classes may be
protected using particular implementation-defined techniques.

20.1.8 Built-in policy aspects

@

@

@

®

@

@
®

Some aspects of the security policy of any PCTE environment are enforced by the PCTE
interfaces. Any attempt to violate the built-in policy aspect raises the error condition
SECURITY_POLICY_WOULD_BE_VIOLATED.

20.1.8.1 Protection of predefined SDSs

The predefined SDSs "system", "discretionary_security", "mandatory_security", "metasds" and
"accounting" have to be protected against any modification.

Thus, for all these SDSs, the atomic and composite ACLs contain an entry corresponding to the
predefined security group ALL_USERS - which is automatically set in the discretionary
context of all processes - with WRITE_ATTRIBUTES, WRITE_LINKS, APPEND_LINKS

and DELETE access DENIED. The other access rights are set to UNDEFINED.

NOTE - Any attempt by clause 10 operations to change a predefined SDS is forbidden.

20.1.8.2 Covert channels

A covert channels a communication channel that allows a process to transfer information in a
manner which violates the system's security policy. The mandatory and discretionary security
conditions defined in previous clauses are enforced throughout PCTE. An appropriate error
condition is raised whenever a given operation would result in a violation of such rules and of
the other aspects of the built-in policy.

Two kinds of access are identified for the purposes of mandatory security:

- data access accesses of this kind are implied when data items are explicitly transferred
between a process and an object.

@

®)
(6)
0]

®
©)

(10)

(11

(12)

(13)

(14)

(15)

(16)
(1)

(18)

(19)

(20)

()
(22)
(23)
(24)

(29)

(26)

- 257 -

- bitwise access accesses of this kind are implied when the status of an object (or of
process) is modified or queried as a side effect of an operation. The term "status" is u:
here as opposed to the data values held in the object and which can be manipulated vie
data accesses defined above.

A bitwise read access is:
- an integrity covert channel where the process strictly dominates the object in integrity;

- a confidentiality covert channel where the object strictly dominates the process
confidentiality.

A bitwise write access is:

- a confidentiality covert channel where the process strictly dominates the object
confidentiality;

- an integrity covert channel where the object strictly dominates the process in integrity.

Both kinds of access imply transfer of information between processes and objects (or ot
processes). However, in the built-in policy, control of information flow is dealt with
differently for the two kinds of access:

- all "data accesses" must conform to the mandatory security rules as defined earlier in 1
major clause;

- a certain number of "bitwise accesses" are allowed which would otherwise violate tl
security rules. These are classified as intrinsic covert channels. PCTE implementations
restrict information flow through covert channels. The events leading to intrinsic cove
channels are all those associated with bitwise write accesses.

The following operations imply bitwise read access:

- LOCK_SET_OBJECT, LOCK_UNSET OBJECT, LOCK_SET INTERNAL MODE,
LOCK_RESET_INTERNAL_MODE;

- any access to an object which implies a check on access rights.
The following operations imply bitwise write access:

- LOCK_SET_OBJECT, LOCK_UNSET OBJECT, LOCK_SET INTERNAL MODE,
LOCK_RESET_INTERNAL_MODE;

- ACTIVITY_START, ACTIVITY_ABORT, ACTIVITY_END,;

- MESSAGE_RECEIVE_NO_ WAIT, MESSAGE_RECEIVE_WAIT, MESSAGE
PEEK if the message queue is full;

- LINK_CREATE (creation of an implicit link);

- any write to the audit file;

- any write to the accounting log;

- any implicit creation or deletion of a usage designation link;

- any operation which creates or deletes an object (creation or deletion of
"object_on_volume" link);

- OBJECT_MOVE, on the destinations of external non-designation links of the object (
moved) and each moved component.

- 258 -

20.2 Operations for mandatory security operation

20.2.1 DEVICE_SET_CONFIDENTIALITY_RANGE

@

@

®

@

®)

(6)

0]
®)
©
(10)
(11
(12)
(13)

(14

(15)

DEVICE_SET_CONFIDENTIALITY_RANGE (
device : Device_designator,
high_label : Security_label,
low_label : Security label

)

DEVICE_SET_CONFIDENTIALITY_RANGE sets the confidentiality range high label and
confidentiality range low label afeviceto high_labelandlow_labelrespectively, subject to the
following conditions, wherelevice'is devicewith the confidentiality range so changsthtion

is the workstation controllingdevice simply_enlargedis CONFIDENTIALITY_RANGE _
WITHIN_RANGE (device device), and simply_reduceds CONFIDENTIALITY_RANGE
WITHIN_RANGE (device, device:

- If simply_enlarged or not simply reduced then CONFIDENTIALITY_RANGE_
WITHIN_RANGE (device, statior) must betrue.

- If simply_reducedar notsimply_enlargedand there is a volumelumemounted ordevice
then CONFIDENTIALITY_RANGE_WITHIN_RANGE Yolume device) must berue.

If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.

A write lock of the default mode is obtained @evice

Errors

ACCESS_ERRORSgvice ATOMIC, CHANGE, CONTROL_MANDATORY)
DEVICE_IS_UNKNOWN @evicg

CONFIDENTIALITY_LABEL_IS_INVALID (high_labe)
CONFIDENTIALITY_LABEL_IS_INVALID (low_labe)
LABEL_RANGE_IS_BAD figh_labe] low_labe)

PROCESS _IS_IN_TRANSACTION

RANGE_IS_OUTSIDE_RANGEdbject station

If there is a volum&olumemounted on the device:
RANGE _IS_OUTSIDE_RANGEJolume objec)

NOTE - It is possible that the range is being enlarged and reduced at the same time, e.dighbtheland
low_labelare upgrades, in which case all relevant constraints must be applied.

20.2.2 DEVICE_SET_INTEGRITY_RANGE

@

@

DEVICE_SET_INTEGRITY_RANGE (
device : Device_designator,
high_label : Security label,
low_label : Security label

)

DEVICE_SET_INTEGRITY_RANGE sets the integrity range high label and integrity range
low label of device to high_label and low_label respectively, subject to the following
conditions, wheredevice' is device with the integrity range so changestation is the
workstation controllingdevice simply_enlargeds INTEGRITY_RANGE_WITHIN_RANGE

®

@

®)

(6)

0]
®)
©)
(10)
(11
(12)
(13)

(14

(15)

- 259 -

(device device) and simply_reducedis INTEGRITY_RANGE_WITHIN_RANGE device;

device:

- If simply_enlargedr notsimply_reducedthen INTEGRITY_RANGE_WITHIN_RANGE
(device, statior) must betrue.

- If simply_reducear notsimply_enlargedand there is a volumelumemounted ordevice
then INTEGRITY_RANGE_WITHIN_RANGE\olume device) must berue.

If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.

A write lock of the default mode is obtained @evice

Errors

ACCESS_ERRORSgvice ATOMIC, CHANGE, CONTROL_MANDATORY)
DEVICE_IS_UNKNOWN ¢evicg

INTEGRITY_LABEL_IS_INVALID (high_labe)
INTEGRITY_LABEL_IS_INVALID (low_labe)

LABEL_RANGE_IS_BAD figh_label low_labe)

PROCESS _IS_IN_TRANSACTION

RANGE_IS_OUTSIDE_RANGEdbject station

If there is a volum&olumemounted on the device:
RANGE _IS_OUTSIDE_RANGEJolume objec)

NOTE - It is possible that the range is being enlarged and reduced at the same time, e.duighbtheland
low_labelare upgrades, in which case all relevant constraints must be applied.

20.2.3 EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE

@

@

(©)

4)

(®)

(6)

U]

EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE (
execution_site : Execution_site_designator,
high_label : Security_label,
low_label : Security_label

)

EXECUTION_SITE_SET_CONFIDENTIALITY_RANGE sets the confidentiality range high
label and confidentiality range low label @xecution_siteto high_label and low_label
respectively, subject to the following conditions, whexecution_site’s execution_sitevith the
confidentiality range so changed.

If CONFIDENTIALITY_RANGE_WITHIN_RANGE (execution_site'execution_site or not
CONFIDENTIALITY_RANGE_WITHIN_RANGE @xecution_siteexecution_sit¢’

- for each device D controlled lexecution_site
CONFIDENTIALITY_RANGE_WITHIN_RANGE (D,execution_sitg'is true.

- for each process P executingexecution_site
CONFIDENTIALITY_LABEL_WITHIN_RANGE (P, execution_sitg'is true.

If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.

A write lock of the default mode is establishedestecution_site

- 260 -

Errors
®) ACCESS_ERRORSekecution_siteATOMIC, CHANGE, CONTROL_MANDATORY)
© DEVICE_IS_UNKNOWN (execution_site)
(10) CONFIDENTIALITY_LABEL_IS_INVALID (high_label)
(11) CONFIDENTIALITY_LABEL_IS_INVALID (low_label)
(12) LABEL IS OUTSIDE_RANGE (D, execution_site)
(13) LABEL_IS_OUTSIDE_RANGE (Pexecution_site
(14) LABEL_RANGE_IS_BAD figh_labe] low_labe)
(15) PROCESS IS _IN_TRANSACTION

20.2.4 EXECUTION_SITE_SET_INTEGRITY_RANGE

@ EXECUTION_SITE_SET_INTEGRITY_RANGE (
execution_site : Execution_site_designator,
high_label : Security_label,
low_label : Security_label

)

@ EXECUTION_SITE_SET _INTEGRITY_RANGE sets the integrity range high label and
integrity range low label afxecution_sit¢o high_labelandlow_labelrespectively, subject to
the following conditions, wherexecution_sitds execution_sitevith the integrity range so

changed.
@®) If INTEGRITY_RANGE_WITHIN_RANGE gxecution_site' execution_site or not
INTEGRITY_RANGE_WITHIN_RANGE éxecution_siteexecution_sSité’
@) - for each device D controlled xecution_siteINTEGRITY_RANGE_WITHIN_RANGE
(D, execution_sitg'is true.
®) - for each process P executing execution_siteINTEGRITY_LABEL_WITHIN_RANGE
(P,execution_sitg'istrue.
®) If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.
@ A write lock of the default mode is establishedestecution_site
Errors
®) ACCESS_ERRORSkecution_siteATOMIC, CHANGE, CONTROL_MANDATORY)
©) DEVICE_IS_UNKNOWN gxecution_site
(10) INTEGRITY_LABEL_IS_INVALID (high_labe)
(11) INTEGRITY_LABEL_IS_INVALID (low_labe)
(12) LABEL_IS_OUTSIDE_RANGE (Dgxecution_site
(13) LABEL_IS_OUTSIDE_RANGE (Pexecution_site
(14) LABEL_RANGE_IS_BAD figh_labe| low_labe)

) PROCESS_IS_IN_TRANSACTION

- 261 -

20.2.5 OBJECT_SET_CONFIDENTIALITY_LABEL

@

@
®

@

®)

(6)

0]
®)
©)
(10)
(11

(12

OBJECT_SET_CONFIDENTIALITY_LABEL (
object : Object_designator,
label : Security label

)

OBJECT_SET_CONFIDENTIALITY_LABEL sets the confidentiality labeladfjectto label.
If the previous value of the confidentiality Ilabel obbject is L, then

RELATIVE_LABEL_DOMINATES_IN_CONFIDENTIALITY (calling processabel, L) must
betrue.

CONFIDENTIALITY_LABEL_WITHIN_RANGE (object volumg must remaintrue, where
volumeis the volume on which thebjectresides.

If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.

A write lock of the default mode is obtained on the designatbgstt

Errors

ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_MANDATORY)
CONFIDENTIALITY_CONFINEMENT WOULD_BE_VIOLATED pbject ATOMIC)
CONFIDENTIALITY_LABEL_IS_INVALID (label)

LABEL_IS_OUTSIDE_RANGE ¢bject volumg

OBJECT_IS_A_PROCESSljec)
OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTIONbpjec)

20.2.6 OBJECT_SET_INTEGRITY_LABEL

@

@
®

@

®)

(6)

™
®)
©
(10)

(11

OBJECT_SET_INTEGRITY_LABEL (
object : Object_designator,
label : Security label

)

OBJECT_SET_INTEGRITY_LABEL sets the integrity labeladfjectto label.

If the previous value of the integrity label ofobject is L, then
RELATIVE_LABEL_DOMINATES_IN_INTEGRITY (calling process, L, label) must be true.

INTEGRITY_LABEL_WITHIN_RANGE (object volumg must remairtrue, wherevolumeis
the volume on whiclobjectresides.

If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.

A write lock of the default mode is obtained on the designatbgett

Errors

ACCESS_ERRORSopject ATOMIC, CHANGE, CONTROL_MANDATORY)
INTEGRITY_CONFINEMENT_WOULD_BE_VIOLATED ¢bject ATOMIC)
INTEGRITY_LABEL_IS_INVALID (label)

LABEL_IS_OUTSIDE_RANGE ¢bjectvolumg
OBJECT_IS_A_PROCESSljec)

- 262 -

12) OBJECT_LABEL_CANNOT_BE_CHANGED_IN_TRANSACTIONbpjec)

20.2.7 VOLUME_SET_CONFIDENTIALITY_RANGE

@ VOLUME_SET_CONFIDENTIALITY_RANGE (
volume : Volume_designator,
high_label : Security label,
low_label : Security label

)

@ VOLUME_SET_CONFIDENTIALITY_RANGE sets the confidentiality high label and
confidentiality low label ofvolumeto high_label and low_label respectively subject to the
following conditions, wherevolume'is volume with its confidentiality range so changed,
simply_enlargeds CONFIDENTIALITY_RANGE_WITHIN_RANGE golume volume), and
simply_reduceds CONFIDENTIALITY_RANGE_WITHIN_RANGE yolume; volumg.

@) - If simply_enlargear notsimply_reducedetdevicebe the device on which twelumeis
mounted, then CONFIDENTIALITY_RANGE_WITHIN_RANGE/¢lume; devicg must
betrue.

@) - If simply_reducedr notsimply_enlargegthen for each object G residing on the volume,
CONFIDENTIALITY_LABEL_WITHIN_RANGE (G, volume) must berue.

®) If floating of security labels is switched on for the calling process, the facility is ignored for this

operation.

®) A write lock of the default mode is obtainedaiume

Errors

% ACCESS_ERRORS/plume ATOMIC, CHANGE, CONTROL_MANDATORY)

®) CONFIDENTIALITY_LABEL_IS_INVALID (high_labe)

© CONFIDENTIALITY_LABEL_IS_INVALID (low_labe)

(10) For each object G residing onlume
LABEL _IS_OUTSIDE_RANGE (Ggdevicg

(1) LABEL_RANGE_IS_BAD figh_labe] low_labe)

(12) RANGE_IS_OUTSIDE_RANGEVolume devicg

(13) PROCESS_IS_IN_TRANSACTION

(14) VOLUME_HAS_OBJECT_OUTSIDE_RANGE/flume high_labe] low_labe)

(15) VOLUME_IS_UNKNOWN (volumeg

(16) NOTE - It is possible that the range is being enlarged and reduced at the same time, e.dighbtheland

low_labelare upgrades, in which case both constraints must be applied.

20.2.8 VOLUME_SET_INTEGRITY_RANGE

@ VOLUME_SET_INTEGRITY_RANGE (
volume : Volume_designator,
high_label : Security label,
low_label : Security label

)

@ VOLUME_SET_INTEGRITY_RANGE sets the integrity range high label and integrity range
low label of volume to high_label and low_label respectively subject to the following
conditions, wherevolume'is volumewith its integrity range so changesimply enlargeds

®

@

®)

(6)

0]
®)
©)

(10)

(11
(12)
(13)
(14)
(15)

(16)

- 263 -

INTEGRITY_RANGE_WITHIN_RANGE ¢olume volume), and simply reduced is
INTEGRITY_RANGE_WITHIN_RANGE yolume, volumg:

- If simply_enlargear notsimply _reducedetdevicebe the device on which twelumeis
mounted, then INTEGRITY_RANGE_WITHIN_RANGEdlume, devicg must berue.

- If simply_reducedr notsimply_enlargegthen for each object G residing on the volume,
INTEGRITY_LABEL_WITHIN_RANGE (G,volume) must berue.

If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.

A write lock of the default mode is obtainedwslume

Errors

ACCESS_ERRORS/plume ATOMIC, CHANGE, CONTROL_MANDATORY)
INTEGRITY_LABEL_IS_INVALID (high_labe)
INTEGRITY_LABEL_IS_INVALID (low_labe)

For each object G residing enlume
LABEL_IS_OUTSIDE_RANGE (Ggdevicg

LABEL_RANGE_IS_BAD figh_labe] low_labe)
RANGE_IS_OUTSIDE_RANGE\Jolume devicg
PROCESS_IS_IN_TRANSACTION
VOLUME_HAS_OBJECT_OUTSIDE_RANGEvflume high_labe| low_labe)
VOLUME_IS_UNKNOWN @olumg

NOTE - It is possible that the range is being enlarged and reduced at the same time, e.duighbtheland
low_labelare upgrades, in which case both constraints must be applied.

20.3 Mandatory security administration operations

20.3.1 CONFIDENTIALITY_CLASS_INITIALIZE

@

@

(©)

4)

(®)

CONFIDENTIALITY_CLASS_INITIALIZE (
object : Confidentiality _class_designator,
class _name : Name,
to_be_dominated : [Confidentiality_class_designator]

)

CONFIDENTIALITY_CLASS_INITIALIZE initializes object as a confidentiality class. A
"known_mandatory_class" link keyed bglass_nameis created from the master of the
mandatory directory to object If to_be dominated is supplied, a
"dominates_in_confidentiality" link is created fromabject to to_be dominated and a
"confidentiality_dominator” link is created frotn_be_dominatetb object

If to_be_dominateds not supplied, the operation creates a new confidentiality tower consistin
of the one confidentiality classhject If to_be_dominateds supplied, the operation adolsject
to the tail (the 'top') of an existing confidentiality tower.

Write locks of the default mode are obtained on the created links.

Errors
ACCESS_ ERRORS (the mandatory directory, ATOMIC, MODIFY, APPEND_LINKS)

(6)
U]

®
©)
(10)
(11
(12)

(13)

- 264 -

ACCESS_ERRORSopject ATOMIC, CHANGE, APPEND_IMPLICIT)

If to_be_dominated supplied:
ACCESS_ERRORSopject ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSd be_dominatedATOMIC, MODIFY, APPEND_LINKS)

MANDATORY_CLASS_IS_ALREADY_DOMINATED to_be dominated
MANDATORY_CLASS_IS_KNOWN¢6bjec)
MANDATORY_CLASS IS _UNKNOWN fo_be_dominated
MANDATORY_CLASS_NAME_IS_IN_USE ¢lass_namge
PROCESS_IS_IN_TRANSACTION

NOTE - This operation does not change any copies of the mandatory directory.

20.3.2 GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE

@

@

(©)

4)
®)
(6)
™
®)

GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE (
group : User_designator | User_group_designator |
Program_group_designator,
confidentiality _class : Confidentiality class_designator

)

GROUP_DISABLE_FOR_CONFIDENTIALITY_DOWNGRADE deletes a "may_downgrade"
link from group to confidentiality class and a "downgradable by" link from
confidentiality classo group.

Write locks of the default mode are obtained on the deleted links.

Errors

ACCESS_ERRORSyfoup, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSfnfidentiality classATOMIC, MODIFY, WRITE_LINKS)
MANDATORY_CLASS_IS_UNKNOWN ¢onfidentiality _clasp
SECURITY_GROUP_IS NOT_ENABLEDgfoup confidentiality clask
SECURITY_GROUP_IS_UNKNOWNgroup)

20.3.3 GROUP_DISABLE_FOR_INTEGRITY_UPGRADE

@

@

®

@
(®)
(6)
U]
®

GROUP_DISABLE_FOR_INTEGRITY_UPGRADE (
group : User_designator | User_group_designator | Program_group_designator,
integrity _class : Confidentiality_class_designator

GROUP_DISABLE_FOR_INTEGRITY_UPGRADE deletes a "may_upgrade" link fgooup
to integrity_classand an "upgradable_by" link fromtegrity classo group.

Write locks of the default mode are obtained on the links so deleted.

Errors

ACCESS_ERRORSgfoup, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSHtegrity_classATOMIC, MODIFY, WRITE_LINKS)
MANDATORY_CLASS IS _UNKNOWN (ntegrity_clas$
SECURITY_GROUP_IS_NOT_ENABLEDg(oup, integrity clas$
SECURITY_GROUP_IS_UNKNOWNgroup)

- 265 -

20.3.4 GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE

@ GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE (
group : User_designator | User_group_designator |
Program_group_designator,
confidentiality _class : Confidentiality_class_designator

)

@ GROUP_ENABLE_FOR_CONFIDENTIALITY_DOWNGRADE creates a "may_downgrade"
link, keyed by the confidentiality class name obnfidentiality class from group to
confidentiality_classand a "downgradable_by" link, keyed by the group identifier, from
confidentiality _classo group.

@®) Write locks of the default mode are obtained on the links so created.
Errors
@ ACCESS_ ERRORSfoup, ATOMIC, MODIFY, APPEND_LINKS)
®) ACCESS ERRORSbnfidentiality classATOMIC, MODIFY, APPEND_LINKS)
®) MANDATORY_CLASS_IS_UNKNOWN ¢onfidentiality clasp
@ SECURITY_GROUP_IS_ALREADY_ENABLEDdroup, confidentiality _clasp
® SECURITY_GROUP_IS_UNKNOWNgroup

20.3.5 GROUP_ENABLE_FOR_INTEGRITY_UPGRADE

@ GROUP_ENABLE_FOR_INTEGRITY_UPGRADE (
group : User_designator | User_group_designator | Program_group_designator,
integrity _class : Confidentiality class_designator

)

@ GROUP_ENABLE_FOR_INTEGRITY_UPGRADE creates a "may_upgrade" link, keyed by
the integrity class name ointegrity_class from group to integrity class and an
"upgradable_by" link, keyed by the group identifier, fromegrity _classo group.

@ Write locks of the default mode are obtained on the links so created.
Errors

@ ACCESS _ERRORSyfoup, ATOMIC, MODIFY, APPEND_LINKS)

®) ACCESS_ERRORStegrity _classATOMIC, MODIFY, APPEND_LINKS)

®) MANDATORY_CLASS IS _UNKNOWN {(ntegrity_clas$

@ SECURITY_GROUP_IS _ALREADY_ENABLEDdroup, integrity _clas$

®) SECURITY_GROUP_IS UNKNOWNgroup)

20.3.6 INTEGRITY_CLASS_INITIALIZE

@ INTEGRITY_CLASS_INITIALIZE (
object . Integrity_class_designator,
class _name : Name,

to_be dominated : [Integrity _class_designator]

)

@ INTEGRITY_CLASS_INITIALIZE initializes object as an integrity class. A
"mandatory_class" link keyed bglass names created from the master of the mandatory
directory toobject If to_be dominateds supplied, a "dominates_in_integrity" link is created

®

@

®)
(6)
™

®)
©)
(10)
(11
(12)

(13)

- 266 -

from object to to_be dominated and a “integrity_dominator" link is created from
to_be_dominatetb object

If to_be_dominated not supplied, the operation creates a new integrity tower consisting of the
one integrity classbject If to_be dominateds supplied, the operation addjectto the tail
(the "top™) of an existing integrity tower.

Write locks of the default mode are obtained on the created links.

Errors

ACCESS_ERRORS (the mandatory directory, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSopject ATOMIC, CHANGE, APPEND_IMPLICIT)

If to_be_dominated supplied:
ACCESS_ERRORSopject ATOMIC, MODIFY, APPEND_LINKS)
ACCESS _ERRORS(q_be dominatedATOMIC, MODIFY, APPEND_LINKS)

MANDATORY_CLASS_IS_ALREADY_DOMINATED ¢o_be_dominated
MANDATORY_CLASS_IS_KNOWNpbjec)
MANDATORY_CLASS_IS_UNKNOWN {o_be_dominated
MANDATORY_CLASS NAME_IS_IN_USE ¢lass_namp

PROCESS _IS_IN_TRANSACTION

NOTE - This operation does not change any copies of the mandatory directory.

20.3.7 USER_EXTEND_CONFIDENTIALITY_CLEARANCE

@

@

®

@
(®)
(6)
U]
®
©)

USER_EXTEND_CONFIDENTIALITY_CLEARANCE (
user : User_designator,
confidentiality _class : Confidentiality_class_designator

)

USER_EXTEND_CONFIDENTIALITY_CLEARANCE creates a "cleared_for" link, keyed by
the name of the confidentiality classnfidentiality classfrom userto confidentiality classand
a "having_clearance" link, keyed by the group identifier, fommfidentiality clas$o user.

Write locks of the default mode are obtained on the links so created.

Errors

ACCESS_ERRORSu6er, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSnfidentiality classATOMIC, MODIFY, APPEND_LINKS)
MANDATORY_CLASS_IS_UNKNOWN ¢onfidentiality clasp
SECURITY_GROUP_IS_UNKNOWNuUse)

USER_IS ALREADY_CLEARED_TO_CLASSuéer, confidentiality clasp
USER_IS_IN_USEUsed

20.3.8 USER_EXTEND_INTEGRITY_CLEARANCE

@

USER_EXTEND_INTEGRITY_CLEARANCE (
user : User_designator,
integrity _class : Integrity_class_designator

)

@

®

@
(®)
(6)
U]
®
©)

- 267 -

USER_EXTEND_INTEGRITY_CLEARANCE creates a "cleared_for" link, keyed by the name
of the integrity clastegrity classfrom userto integrity _classand a "having_clearance” link,
keyed by the group identifier, fromtegrity _clasgo user.

Write locks of the default mode are obtained on the links so created.

Errors

ACCESS_ERRORSu6er, ATOMIC, MODIFY, APPEND_LINKS)
ACCESS_ERRORSHtegrity_classATOMIC, MODIFY, APPEND_LINKS)
MANDATORY_CLASS IS _UNKNOWN (ntegrity_clas$
SECURITY_GROUP_IS_UNKNOWNuUse)

USER_IS ALREADY_CLEARED_TO_CLASSu6er, integrity _clas$
USER_IS_IN_USEUsed

20.3.9 USER_REDUCE_CONFIDENTIALITY_CLEARANCE

@

@

®

@
(®)
(6)
U]
®
©)

(10)

USER_REDUCE_CONFIDENTIALITY_CLEARANCE (
user : User_designator,
confidentiality _class : Confidentiality_class_designator

)

USER_REDUCE_CONFIDENTIALITY_CLEARANCE deletes a "cleared_for" link fraser
to confidentiality clasr to a confidentiality class which dominatefidentiality classand a
"having_clearance" link from that confidentiality classiser.

Write locks of the default mode are obtained on the links so deleted.

Errors

ACCESS_ERRORSuger, ATOMIC, MODIFY, WRITE_LINKS)
ACCESS_ERRORSnfidentiality classATOMIC, MODIFY, WRITE_LINKS)
MANDATORY_CLASS_IS_UNKNOWN ¢onfidentiality clasp
SECURITY_GROUP_IS_UNKNOWNuUse)

USER_IS NOT_CLEARED_TO_CLAS%i$er, confidentiality clasp
USER_IS_IN_USEUsed

NOTE - There is at most one link that satisfies the conditions above for deletion.

20.3.10 USER_REDUCE_INTEGRITY_CLEARANCE

@

@

®

@

USER_REDUCE_INTEGRITY_CLEARANCE (
user : User_designator,
integrity _class : Integrity_class_designator

)

USER_REDUCE_INTEGRITY_CLEARANCE deletes a "cleared_for" link framer to
integrity_classor to an integrity class which dominataegegrity classand a "having_clearance”
link from that integrity class taser.

Write locks of the default mode are obtained on the deleted links.

Errors
ACCESS_ERRORSuger, ATOMIC, MODIFY, WRITE_LINKS)

- 268 -

© ACCESS_ERRORSritegrity_class ATOMIC, MODIFY, WRITE_LINKS)
© MANDATORY_CLASS_IS_UNKNOWN {ntegrity_clas}

(7) SECURITY_GROUP_IS_UNKNOWNuse)

® USER_IS_NOT_CLEARED_TO_CLASSiger, integrity_clas}

© USER_IS_IN_USEyse)

20.4 Mandatory security operations for processes

20.4.1 PROCESS_SET_CONFIDENTIALITY_LABEL

@) PROCESS_SET_CONFIDENTIALITY_LABEL (
process : [Process_designator],
confidentiality _label : Security_label
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_CONFIDENTIALITY_LABEL sets the confidentiality label ppbcessto
confidentiality label.
@ If floating of security labels is switched on for the calling process, the facility is ignored for this
operation.
Errors
®) If processs not the calling process:
ACCESS ERRORfocess ATOMIC, CHANGE, CONTROL_MANDATORY)
®) CONFIDENTIALITY_LABEL_IS_INVALID (confidentiality labé)l
@ If processs the calling process:
LABEL_IS_OUTSIDE_RANGE frocessexecution site gbroces$
®) LABEL_IS_OUTSIDE_RANGE fprocessvolume on whictprocesgesides)
© PROCESS_CONFIDENTIALITY_IS _NOT_DOMINATEDconfidentiality labelproces$
(10) If processs not the calling process:
PROCESS _LACKS_ REQUIRED_STATU®rpcess READY)
(11) PROCESS_IS_UNKNOWNpfoces3
(12) USER_IS_NOT_CLEAREDgrocessconfidentiality labéel

20.4.2 PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL

@) PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL (
process : [Process_designator],
floating_mode : Floating_level
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@) PROCESS_SET_FLOATING_CONFIDENTIALITY_LEVEL sets the floating confidentiality
level of procesdo floating_mode.
Errors
o) If processs not the calling process:

ACCESS_ERROR¢ocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)

- 269 -

®) If processs not the calling process:
PROCESS_LACKS REQUIRED_STATU$rocess READY)
©) PROCESS_IS_UNKNOWNpfoces$

20.4.3 PROCESS_SET_FLOATING_INTEGRITY_LEVEL

@) PROCESS_SET_FLOATING_INTEGRITY_LEVEL (
process : [Process_designator],
floating_mode : Floating_level
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@) PROCESS_SET_FLOATING_INTEGRITY_LEVEL sets the floating integrity levgbrotess
to floating_mode.
Errors
o) If processs not the calling process:
ACCESS_ERRORfocess ATOMIC, MODIFY, WRITE_ATTRIBUTES)
®) If processs not the calling process:
PROCESS _LACKS_ REQUIRED_STATU®rpcess READY)
®) PROCESS_IS_UNKNOWNpfoces3

20.4.4 PROCESS_SET_INTEGRITY_LABEL

@) PROCESS_SET_INTEGRITY_LABEL (
process : [Process_designator],
integrity _label : Security_label
)
@ If no value is supplied fgorocessprocessdesignates the calling process.
@®) PROCESS_SET_INTEGRITY_LABEL sets the integrity labepadcesgo integrity label.
@ If floating of security labels is switched on for the calling process, the facility is ignored for thi
operation.
Errors
®) If processs not the calling process:
ACCESS_ERRORfocess ATOMIC, CHANGE, CONTROL_MANDATORY)
®) PROCESS_INTEGRITY_DOES_NOT_DOMINATH(egrity labe) proces$
™ INTEGRITY_LABEL_IS_INVALID (integrity_labe)
®) If processs the calling process:
LABEL_IS_OUTSIDE_RANGE frocessexecution site gbroces$
©) LABEL_IS_OUTSIDE_RANGE fprocessvolume on whictprocesgesides)
(10) If processs not the calling process:

PROCESS_LACKS_REQUIRED STATU®rpcess READY)
a1 PROCESS_IS_UNKNOWNpfocess

21

-270 -

Auditing

21.1 Auditing concepts

21.1.1 Audit files

@

@

(©)

4)

(®)

(6)

U]

®)

©)

(10)
(11
(12)
(13)
(14)

(15)

Selectable_event_type = WRITE | READ | COPY | ACCESS _CONTENTS | EXPLOIT
| CHANGE_ACCESS CONTROL_LIST | CHANGE_LABEL
| USE_PREDEFINED_GROUP | SET_USER_IDENTITY
| WRITE_CONFIDENTIALITY_VIOLATION | READ_CONFIDENTIALITY_VIOLATION
| WRITE_INTEGRITY_VIOLATION | READ_INTEGRITY_VIOLATION | COVERT_CHANNEL
| INFORMATION

Mandatory_event_type = CHANGE_IDENTIFICATION | SELECT_AUDIT_EVENT
| SECURITY_ADMINISTRATION

Auditing_record = Object_auditing_record
| Exploit_auditing_record
| Information_auditing_record
| Copy_auditing_record
| Security _auditing_record

Basic_auditing_record ::
USER : Group_identifier
TIME : Time
WORKSTATION : Execution_site_identifier
EVENT_TYPE : Selectable_event_type | Mandatory_event_type
RETURN_CODE : Return_code
PROCESS : Exact_identifier

Object_auditing_record :: Basic_auditing_record &&
OBJECT : Exact_identifier

Exploit_auditing_record :: Basic_auditing_record &&
NEW_PROCESS : Exact_identifier
EXPLOITED_OBJECT : Exact_identifier

Information_auditing_record :: Basic_auditing_record &&
INFORMATION : String

Copy_auditing_record :: Basic_auditing_record &&
SOURCE : Exact_identifier
DESTINATION: Exact_identifier

Security_auditing_record :: Basic_auditing_record &&
GROUP : Exact_identifier

Exact_identifier = Text

Audit_file = seq of Auditing_record

Return_code = FAILURE | SUCCESS

sds discretionary_security:

import object type system-object, system-workstation;

audit_file: child type of object with
contents audit_file ;
link
audit_of: reference link (number) to workstation reverse audit;
end audit_file;

(16)

(1)

(18)

(19)

(20)
(21)
(22)
(23)
(24)

(25)

(26)
@7
(28)

(29)

(30)
(1)

(32

(33)
(34)
(35)

(36)

(37
(38)

(39)

-271 -

extend object type workstation with
link

audit: (navigate) existence link to audit_file reverse audit_of;
end workstation;

end discretionary_security;

An audit file is an object which stores data associated with events that occur on one or m
workstations. It may be associated with one or more workstations which share the sa
administration volume. The audit file associated with a workstation is the destination of ¢
"audit" link from the workstation.

The audit file contains auditing records, each of which records information concerning one ev
on the workstation. An auditing record has a general part and a part that depends on the e
type of the event being audited.

The general part, represented by the fields of the basic auditing record, is defined as follows:

USER: the identity of the user invoking the operation giving rise to the event;
TIME: the system time of the event;

WORKSTATION: the workstation on which the event takes place;
EVENT_TYPE: the event type of the event;

RETURN_CODE: FAILURE if the operation giving rise to the event terminates in an error
SUCCESS otherwise;

PROCESS: the process performing the operation giving rise to the event.

Event-type-specific fields are defined as follows:

Events of type SELECT_AUDIT_EVENT are represented by basic auditing records;

For object auditing records, representing events of types WRITE, READ
ACCESS_CONTENTS, CHANGE_ACCESS_CONTROL_LIST, CHANGE_LABEL,
WRITE_CONFIDENTIALITY_VIOLATION, WRITE_INTEGRITY_VIOLATION,
READ_CONFIDENTIALITY_VIOLATION, READ_INTEGRITY_VIOLATION,
SECURITY_ADMINISTRATION, and COVERT_CHANNEL:

OBJECT: the object on which the operation takes place.
For exploit auditing records, representing events of type EXPLOIT:

NEW_PROCESS: the process resulting from the exploitation of the object, e.qg. if tf
operation has started execution of a program,;

EXPLOITED_OBJECT: the object being exploited.
For information auditing records, representing events of type INFORMATION:
INFORMATION: the message associated with the event.

For copy auditing records, representing events of types COPY ani
CHANGE_IDENTIFICATION:

SOURCE: the object being copied from, or the old identification of the object;
DESTINATION: the object being copied to, or the new identification of the object.

For security auditing records, representing events of types USE_PREDEFINED_ GROU
and SET_USER_IDENTITY:

(40)

41)

(42)

(43)

-272 -

GROUP: the group being used, the user identifier being set or the user performing the
audit selection.

If, when writing to the audit file, the write fails because the audit file is unavailable for some
reason, then the operation which caused the auditable event to occur waits until an audit file is
made available, unless the calling process is acting with the predefined group PCTE_AUDIT.
The means by which the audit file unavailability is notified to the operators of the PCTE
installation is implementation-defined.

NOTES

1 The usage mode of the "audit" link type prevents any create or delete accesses. It is the role of an
implementation-dependent bootstrap procedure to ensure that the audit file exists on a workstation when it is
brought up. The audit data must be protected so that access to it is limited to users who are authorized for audit
data.

2 No constraints on the label of the audit file are enforced by the system when the system writes to the audit file
(i.e. it is up to the auditor to define it). When the system writes to the audit file, a bitwise write occurs but even in
the case where this bitwise write results in a covert channel, it is not audited.

21.1.2 Audit selection criteria

@
@
(©)
4)
(®)
(6)
U]
®)
©)
(10)

(11

(12)
(13)
(14)
(15)
(16)

(1)

(18)

(19)

General_criterion = Selectable_event_type * Selected_return_code

User_criterion = Selectable_event_type * Group_identifier

Confidentiality_criterion = Selectable_event_type * Security_label

Integrity _criterion = Selectable_event_type * Security label

Object_criterion = Selectable_event_type * Object_designator

Audit_status = ENABLED | DISABLED

Selection_criterion = General_criterion | Specific_criterion

Specific_criterion = User_criterion | Confidentiality_criterion | Integrity_criterion | Object_criterion
Removed_criterion = Selectable_event_type | Specific_criterion

Selected_return_code = Return_code | ANY_CODE

Criterion_type = GENERAL | USER_DEPENDENT | CONFIDENTIALITY_DEPENDENT |
INTEGRITY_DEPENDENT | OBJECT_DEPENDENT

General_criteria = set of General_criterion
User_criteria = set of User_criterion
Confidentiality_criteria = set of Confidentiality_criterion
Integrity_criteria = set of Integrity_criterion
Object_criteria = set of Object_criterion

Criteria = General_criteria | User_criteria | Confidentiality criteria | Integrity _criteria |
Object_criteria

Event types may beelectedfor auditing on a per workstation basis. When a selected event
occurs, audit data is written to the audit file associated with the workstation where the event
occurred. The event types CHANGE_IDENTIFICATION, SELECT_AUDIT_EVENT and
SECURITY_ADMINISTRATION are always audited, regardless of the current selection
criteria. A list of event types is in annex E.

Selected events are only audited when auditimpabledon the workstation. When auditing is
disabled only the event types that are always audited are audited.

(20)

()

(22)

(23)

(24)

(29)

(26)

-273 -

Events are selected on the basis of their types and either a return code, a user, an object,
label. Each workstation maintains a setatlit selection criteria The set of audit selection
criteria is not persistent across workstation failure.

Criteria of each type select events as follows:

General criterion: all events of the specified type and with the specified return code &
selected for auditing, or if the specified return code is ANY_CODE then all events of thi
type are selected.

User-dependent criterion: all events of the specified type and being performed on behalf
the user identified by the group identifier are selected for auditing.

Confidentiality-dependent criterion: all events of the specified type that are performed ¢
objects of the specified confidentiality label are selected for auditing.

Integrity-dependent criterion: all events of the specified type that are performed on objects
the specified integrity label are selected for auditing.

Object-dependent criterion: all events of the specified type that are performed on t
specified object are selected for auditing.

21.2 Auditing operations

21.2.1 AUDIT_ADD_CRITERION

®

@

(©)

4)

(®)

(6)

U]

®)

AUDIT_ADD_CRITERION (
Station : Workstation_designator,
criterion : Selection_criterion

)

AUDIT_ADD_CRITERION adds the criterionriterion to the audit selection criteria for the
workstationstation Events of the type specified amiterion will then be audited ostation
dependent on the type ofiterion specified:

General criterion: The events are recorded on the basis of the return code of the opera
generating the event. If the event type is already selected with the same return code, ther
operation has no effect.

Confidentiality-dependent criterion: Events performed on objects of the specifie
confidentiality label are audited astation If the event type and confidentiality label are
already selected then the operation has no effect.

Integrity-dependent criterion: Events performed on objects of the specified integrity lab
are be audited ostation |If the event type and integrity label are already selected then th
operation has no effect.

Object-dependent criterion: Events performed on the specified object are auditaticon
The object specified bgriterion must be accessible. If the event type and object are
already selected then the operation has no effect.

User-dependent criterion: Events performed by the specified user are audstaticon If
the event type and user are already selected then the operation has no effect.

Errors

For confidentiality-dependent criterion:

CONFIDENTIALITY_LABEL_IS_INVALID (security label specified bgriterion)

- 274 -

© For object-dependent criterion:
DISCRETIONARY_ACCESS IS _NOT_GRANTED (specified object, ATOMIC)
(10) For user-dependent criterion:

GROUP_IDENTIFIER_IS_INVALID (group identifier ofriterion)
USER_IS_UNKNOWN (user specified layiterion)

(1) For integrity-dependent criterion:
INTEGRITY_LABEL_IS_INVALID (security label specified bgriterion)
(12) OBJECT_IS_INACCESSIBLE station ATOMIC)
13) PRIVILEGE_IS_NOT_GRANTED (PCTE_AUDIT)
(14) WORKSTATION_IS_UNKNOWN étation

21.2.2 AUDIT_FILE_COPY_AND RESET

@ AUDIT_FILE_COPY_AND_RESET (
source : Audit_file_designator,
destination : Audit_file_designator
)
@ AUDIT_FILE_COPY_AND_RESET copies the audit fé®urceinto the audit filedestination
The contents afourceis cleared. No audit records are lost.
@®) This operation may not be invoked from within a transaction.
@) Write locks of the default mode are obtainedsonrce on destination and on the created and
deleted links.
Errors
®) ACCESS ERRORSspurce ATOMIC, MODIFY, (READ_CONTENTS,
WRITE_CONTENTYS))
®) ACCESS ERRORSgestination ATOMIC, MODIFY, WRITE_CONTENTS)
) OBJECT_IS_IN_USE_FOR_MOVHiéstination
®) AUDIT_FILE_IS_NOT_ACTIVE 6ource
©) PRIVILEGE_IS NOT_GRANTED (PCTE_AUDIT)
(10) PROCESS IS IN_TRANSACTION

21.2.3 AUDIT_FILE_READ

) AUDIT_FILE_READ (
audit_file : Audit_file