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ECMA SUBSET OF ALGOL 60 - 1963

ALGOL 60

The language is defined by the "Revised Report on the Algorithmic Language
ALGOL 60" as approved by the Council of IFIP.

THE PRESENT STATE OF ALGOL IMPLEMENTATION.

A brief survey has been made by TC 2. This shows that implementation

has been undertaken by 12 of the 18 member companies. In all cases

there are- restrictions on ALGOL 60, but of varying degrees of severity.
Reasons for particular restrictions in particular cases include need to

keep compiler small, or object programmes fast, inability of certain com=
piler structures to cope with features like recursion, and the opinion of im—
plementors that certain things are unnecessary or undesirable. Several res-=
trictions are common to many implementations, own variables being a no-

table example.

The Report does not define the precision to which, for example, real numbers
are to be held or computed ; it regards control over precision as part of the
algorithm itself. However, such control is only possible within the limits
imposed by the implementation. Different computers work with different

number lengths - 32, 36, 40, 48 bits.

THE IDEA OF AN ECMA SUBSET.

It seems clear that it is thoroughly impracticable to impose a standard to be
observed exactly. The only solution which is at all satisfactory is to regard
a standard as defining a "minimum requirement" of compilers, or conversely

as defining a proper "subset" of ALGOL 60 within which programmers who

write programmes for general use should confine themselves. Any implemen=

tor is free to allow for as much of the language as he can, and programmers
may exploit as much of the power of the language as they like provided they

do so with their own compiler in mind and without the intention of using their
algorithms on other machines.

The proposed ECMA subset is a proper subset of ALGOL 60. It is confidently
expected that the subset of ALGOL 60 to be defined by IFIP WG 2.1 will in turn’
be a proper subset of the ECMA subset. The ECMA Subset is described in the
attached table in three ways. First, as concessions to the compiler designers;
second, as warnings to programmers; and third as definitions in terms of the
ALGOL 60 report. Obviously, not all examples in the Revised ALGOL report will
be accepted by the ECMA Subset and not all references in the Index or elsewhere
will be relevant.

All the work that has been done in TC 5 so far has been concerned with ALGOL
- 60 itself. The Report makes no mention of input and output except indirectly
when it discusses standard functions and code procedures; consequently, each
implementation has to make its own provision for reading and printing.



The problem of possible ECMA standard conventions for input and output
and other useful procedures of general interest is currently under
discussion by ECMA TC 5.

The problem of the different arithmetic systems and precisions of working

has been discussed briefly in TC 5. No two implementations will give identical
results; and where values assumed by variables are near the limits implicit

in one or the other, the results may. be significantly different. However, there
is a considerable class of problems where the values of quantities are known
from practical experience to lie well within the limits of nearly every im-
plementation. It is this class for which ECMA Subset could be a useful aid.
More refined problems could only be dealt with by different compilers if the
programmers were aware of the characteristics of both numerical systems.
Rather than propose an ECMA standard precision for number representation,
which would be extremely cumbersome to put into practice, this should be

left to suit the particular machine,

There is some information for each implementation in addition to the res—
trictions enumerated in this report which in practice any ALGOL programmer

needs to know. It is felt not practical to list precise requirements, but infor-
mation on the following points should accompany each implementation of the

ECMA Subset:

i) restrictions due to the size of the machine e.g. total number of basic
symbols in programs, in identifiers, size of arrays —

ii) restrictions for the benefit of the compiler e.g. maximum number
of formal parameters, switch elements, depth of lexicographical
block structure, maximum dimensions of arrays, depth of indexing,
maximum number of symbols in identifiers; also several implementations
require declarations and specifications to be given in particular
order; for example, simple variables, then arrays, then procedures,
with real integer Boolean in that order. It is as well, therefore
to write them in this order. Where another implementation demands
a different order, this can be realized by a simple clerical process —

iii) restrictions for the benefit of hardware representation, e.g. existing
letters, hardware representation of basic symbols —

iv) additional information for the programmer, e.g. precision of real
arithmetic, range of numbers, standard functions and procedures —

The ALGOL Report leaves undefined and even defines to be undefined the mea-
ning of certain syntactically possible constructions. We have carefully avoided
attaching any meaning to such constructions in order to make sure that the

ECMA Subset is a proper Subset., The user is warned in general to avoid

such constructions.

Fraser G. Duncan

Chairman of TC S



ECMA

ALGOL REPORT

This document consists of two parts. The first of these contains
an account of the raison d'€tre and intention of the ECMA subset of
ALGOL 60 followed by a table setting out the restrictions of the subset
in three forms, two being informal remarks to compiler designers and
programmers respectively, and the third being the amendments necessary
to the Revised ALGOL 60 Report to define the subset. The second part
of the document is the text of the Revised ALGOL 60 Report with these
ECMA amendments included in rectangular "boxes" next to the corre-
sponding passages of the official text. )

The above-mentioned documents are compiled by the following members
of the Technical Committee 5 (TCS) of ECMA:

J. Berghuis, R.L. Cook, |. Dahlstrand, F.G. Duncan,
PeM. Hunt, P. Lucasy U. Picciafuoco, F. Salle,
As van Vijngaarden, H. Zemanek,

in cooperation with the Technical Committee 2 (TC2) which is occupied
with general programming languages and techniques.
Valuable contributions were also made by:

GoMe Palermo and A. VWilhelmy,
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SUMMARY

The report gives a complete defining description of the inter-
national algorithmic language ALGOL 60. This is a language suitable
for expressing a large class of numerical processes in a form suffi-
ciently concise for direct automatic translation into the language
of programmed automatic computers.

The introduction contains an account of the preparatory work
leading up to the final conference, where the language was defined.

In addition the notions reference language, publication language,
and hardware representations are explained.

In the first chapter a survey of the basic constituents and
features of the language is given, and the formal notation, by which
the syntactic structure is defined, is explained.

The second chapter lists all the basic symbols, and the syntactic
units known as identifiers, numbers, and strings are defined. Further,
some important notions such as quantity and value are defined.

The third chapter explains the rules for forming expressions,
and the meaning of these expressions. Three different types of expressions
exist: arithmetic, Boolean (logical), and designational.

The fourth chapter describes the operational units of the language,
known as statements. The basic statements are: assignment statements
(evaluation of a formula), go to statements (explicit break of the
sequence of execution of statements), dummy statements, and procedure
statements (call for execution of a closed process, defined by a
procedure declaration). The formation of more complex structures,
having statement character, is explained. These include: conditional
statements, for statements, compound statements, and blocks.

In the fifth chapter the units known as declarations, serving
for defanlng permanent properties of the units enterlng into a process
described in the language, are defined.

The report ends with two detailed examples of the use of the
language, and an alphabetic index of definitions.
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INTRODUCTION 1

INTRODUCTION

Background

After the publication®' of a preliminary report on the algorithmic
language ALGOL, as prepared at a conference in ZUrich in 1958, much
interest in the ALGOL language developed.

As a result of an informal meeting held at Mainz in November 1958,
about forty [nterested persons from several European countries held an
ALGOL implementation conference in Copenhagen in February 1959.

A "hardware group" was formed for working cooperatively right down to

the level of the paper-tape code. This conference also led to the publi-
cation by Regnecentralen, Copenhagen, of an ALGOL Bulletin, edited by
Peter Naur, which served as a forum for further discussion. During the
June 1959 ICIP Conference in Paris several meetings, both formal and
informal ones, were held. These meetings revealed some misunderstandings
as to the intent of the group which was primarily responsible for the
formulation of the language, but at the same time made in clear that there
exists a wide appreciation of the effort involved. As a result of the
discussions it was decided to hold an international meeting in January
1960 for improving the ALGOL language and preparing a final report. At

a European ALGOL Conference in Paris in November 1959, which was attended
by about fifty people, seven European representatives were selected to
attend the January 1960 Conference, and they represented the following
organizations: Association Frangaise de Calcul, British Computer Society,
Gesellschaft flr Angewandte Mathematik und Mechanik, and Nederlands
Rekenmachine Genootschap. The seven representatives held a final
preparatory meeting at Mainz in December 1959.

Meanwhile, in the United States, anyone who wished to suggest
changes or corrections to ALGOL was requested to send his comments to
the ACM Communications where they were published. These comments then

* Preliminary report - International Algebraic Language, Comm.Assoc.
Comp.Mach., Vol.1, No.12 (1958), p. 8.

' Report on the Algorithmic Language ALGOL by the ACM Committee on
Programming Languages and the GAMM Committee on Programming, edited by
A. J. Perlis and K. Samelson, Numerische Mathematik Bd. 1,S. 41 = 60
(1959).
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became the basis of consideration for changes in the ALGOL language.
Both the SHARE and USE organizations established ALGOL working groups,
and both organizations were represented on the ACM Committee on Pro-
gramming Languages. The ACM Committee met in Washington in November
1959 and considered all comments on ALGOL that had been sent to the
ACM Communications. Also, seven representatives were selected to attend
the January 1960 international conference. These seven representatives
held a final preparatory meeting in Boston in December 1959.

January 1960 Conference

The thirteen representatives*, from Denmark, England, France,
Germany, Holland, Switzerland, and the United States, conferred in
Paris from 1Meto 16 January 1960.

Prior to this meeting a completely new draft report was worked
out from the preliminary report and the recommendations of the prepar—
atory meetings by Peter Naur, and the conference adopted this new
form as the basis for its report. The Conference then proceeded to
work for agreement on each item of the report. The present report re-
presents the union of the Committee's concepts and the intersection of
its agreements.

April 1962 Conference (Edited by M. Woodger)

A meeting of some of the authors of ALGOL 60 was held on 2-3 April
1962, in Rome, ltaly, through the facilities and courtesy of the Inter-
national Computation Centre. The following were present:

Authors Advisers . , Observer
F. L. Bauer M. Paul W. L. van der Poel
J. Green R. Franciotti (Chairman,
C. Katz P. Z. Ingerman IFIP TC 2.1
R. Kogon Working Group
(representing ALGOL)
J. W. Backus)
P. Naur
K. Samelson G. SeegmUller
J. H. Wegstein R. E. Utman
A. van Wijngaarden
M. Woodger P. Landin

The purpose of the meeting was to correct known errors in, attempt to
eliminate apparent ambiguities in, and otherwise clarify the ALGOL 60
Report. Extensions to the language were not considered at the meeting.
Various proposals for correction and clarification, that were submitted

* William Turanski of the American group was killed by an automobile
just prior to the January 1960 Conference.
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by interested parties in response to the Questionaire in ALGOL Bulletin
No.14, were used as a guide.

This report constitutes a supplement to the ALGOL 60 Report (In-
corporated with it to form the present revision =Ed.) which should re-
solve a number of difficulties therein. Not all of the questions raised
concerning the original report could be resolved. Rather than risk
hastily drawn conclusions on a number of subtle points, which might
create new ambiguities, the committee decided to report only those
points which they unanimously felt could be stated in clear and unam—
biguous fashion.

Questions concerned with the following areas are left for further
consideration by Working Group 2.1 of IFIP, in the expectation that
current work on advanced programming languages will lead to better
resolution: .

1. Side effects of functions.

2. The call by name concept.

3. own: static or dynamic.

4, For statement: static or dynamic.

S. Conflict between specification and declaration.

The authors of the ALGOL 60 Report present at the Rome Conference,
being aware of the formation of a Working Group on ALGOL by IFIP, ac—
cepted that any collective responsibility which they might have with
respect to the development, specification and refinement of the ALGOL
language will from now on be transferred to that body.

This report has been reviewed by IFIP TC 2 on Programming
Languages in August 1962, and has been approved by the Council of the
International Federation for Information Processing.

As with the preliminary ALGOL report,three different levels of
language are recognized, namely a Reference Language, a Pub!ication
Language and several Hardware Representations.

Reference Language

1. It is working language of the committee.

2. It is the defining language.

3. The characters are determined by ease of mutual understanding and
not by any computer limitations, coder's notatlon, or pure
mathematical notation.

4, It is the basic reference and guide for compiler builders.

5. It is the guide for all hardware representations.

6. It is the guide for transliterating from publication language to
any locally appropriate hardware representations.

7. The main ‘publications of the ALGOL language itself will use the
refererc¢e representation.
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Publication Language

1. The publicatiop language admits variations of the reference language
according to usage of printing and handwriting (e.g. subscripts,
spaces, exponents, Greek letters).

2. It is used for stating and communicating processes.

3. The characters to be used may be different in different countries,
but univocal correspondence with reference representation must be
secured.

Hardware Representations

1. Each one of these is a condensation of the reference language en-
forced by the limited number of characters on standard input
equipmente.

2. Each one of these uses the character set of a particular computer,
and is the language accepted by a translator for that computer.

3, Each one of these must be accompanied by a special set of rules
for transliterating from Publication or Reference language.

For transliteration between the reference language and a
language suitable for publications, among others, the following rules
are recommended.

Reference language ~ Publication lanquage

Subscript brackets [ ] Lowering of the line between the
brackets and removal of the
brackets.

Exponentiation T Raising of the exponent.

Parentheses ( ) - Any form of parentheses, brackets,
braces.

Raising of the ten and of the fol-
lowing integral number, inserting of
the intended multiplication sign.

Basis of ten 0
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DESCRIPTION OF THE REFERENCE LANGUAGE

Was sich Uberhaupt sagen 1dsst, l8sst

sich klar sagen; und wovon man nicht

reden kann, darllber muss man schweigen.
Ludwig Wittgenstein.

1. STRUCTURE OF THE LANGUAGE

As stated in the Introduction, the algorithmic language has three
different kinds of representations — reference, hardware, and publication
- and the development described in the sequel is in terms of the reference
representation. This means that all objects defined within the language
are represented by a given set of symbols — and it is only in the choice of
symbols that the other two representations may dnffer. Structure and content
must be the same for all representations.

The purpose of the algorithmic language is to describe computational
processes. The basic concept used for the description of calculating rules
is the well-known arithmetic expression containing as constituents numbers,
variables, and functions. From such expressions are compounded, by applying
rules of arithmetic composition, self-contained units of the language -
explicit formulae - called assignment statements.

To show the flow.of computational processes, certain non-arithmetic
statements and statement clauses are added which may describe, e.g. alter-
natives, or iterative repetitions of computing statements. Since it is
necessary for the function of these statements that one statement refers
to another, statements may be provided with labels. A sequence of state-
ments may be enclosed between the statement brackets begin and end to form
a compound statement.

Statements are supported by declarations which are not themselves
computing instructions, but inform the translator of the existence and
certain properties of objects appearing in statements, such as the class
of numbers taken on as values by a variable, the dimension of an array of
numbers, or even the set of rules defining a function. A sequence of declar-
ations followed by a sequence of statements and enclosed between begin and
end constitutes a block. Every declaration appears in a block in this way and
s valid only for that block.

A program is a block or compound statement which is not contained within
another statement and which makes no use of other statements not contained
within it.

In the sequel the syntax and semantics of the language will be given.®

. ¥ Whenever the precision of arithmetic is stated as being in general not
specified, or the outcome of a certain process is left undefined or said to

be undefined, this is to be interpreted in the sense that a progam only fully
defines a computational process if the accompanying information specifies the
precision assumed, the kind of arithmetic assumed, and the course of action to
be taken in all such cases as may occur during the execution of the computation.
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1.1. FORMALISM FOR SYNTACTIC DESCRIPTION
The syntax will be described with the aid of metalungunstlc for-
mulae.® Their interpretation is best explained by an example :

<ab>::=(l[|<ab>(|<ab><d>

Sequences of characters enclosed in the brackets <> represent metalin-
guistic variables whose values are sequences of symbols. The ‘marks
::= and [ (the latter with the meaning of QI) are metalinguistic con-
nectives. Any mark in a formula, which is not a variable or a connec—
tive, denotes itself (or the class of marks which are similar to it).
Juxtaposition of marks and/or variables in a formula signifies juxta-
posntaon of the sequences denoted. Thus the formula above gives a re-
cursive rule for the formation of values of the variable <ab>. It in-
dicates that <ab> may have the value ( or [ or that given some legiti-
mate value of <ab>, another may be formed by following it with the char-
acter ( or by following it with some value of the variable <d>. If’
the values of <d> are the decimal digits, some values of <hH> are :

COCC37¢(

(12345(

(((

(86
In order to facilitate the study, the symbols used for dlstanUIshlng
the metalinguistic-variables (i.e. the sequences of characters appear-—
ing within the brackets <> as ab in the above example) have been
chosen to be words describing approximately the nature of the corre-
sponding variable. Where words which have appeared in this manner are
used elsewhere in the text they will refer to the correSpondlng syn—
tactic definition. In addltlon some formulae have been given in more
than one place.

Definition :
<empty> ::=
(i.e. the null string of symbols).

* Cf. J.W. Backus, "The syntax and semantics of the proposed in-
ternational algebraic language of the ZlUrich ACM- GAMM conference,"
ICIP, Paris, June 1959,



2. BASIC SYMBOLS, etc. 13

2. BASIC SYMBOLS, IDENTIFIERS, NUMBERS, AND STRINGS.
BASIC CONCEPTS.

The reference language is built up from the following basic

symbols :

<basic symbol> ::= <letter>|<digit>|<logical value>|<delimiter>

2.1 LETTERS
<letter> ::= a|b|c|d|e| f|g[h|

ikl 1mlnlo[plql
rlsltlulvwlx[y|z]

AlBlclolE[Fla[H[1]

~ylkILIMIN]o] PlalR]
s|tlulviw| x| Y|z

This alphabet may arbitrarily
be restricted, or extended
with any other distinctive
character (i.e. character

not coinciding with any
digit, logical value or de-
limiter).

<letter> ::= a|b|c|d|e|f|g[h]

131kl 1 m{nfol plal

rlsltlulviwx|y|z

This alphabet may arbitrarily

be extended with any other dis-
tinctive character (i.e. charac-
ter not coinciding with any digit,
logical value or delimiter).

Letters do not have individual meaning. They are used for forming
identifiers and strings* (cf. sections 2.4. IDENTIFIERS, 2.6. STRINGS).

2.2.7. DIGITS
<digit> ::= 0|1]2|3[4]s[6[7]8]9

Digits are used for forming numbers, identifiers, and strings.

2.2.2. LOGICAL VALUES
<logical value> ::= true | false

The logical values have a fixed obvious meaning.

2.3, DELIMITERS

<delimiter> ::= <operator>|<separator>|<bracket>|<declarator>|

<specificator>

<operator> ::= <arithmetic operator>|<relational operator>|
<logical operator>|<sequential operator>
<arithmetic operator> ::=+ | = [ X | /| =+ |

<relational operator> ::=

<logical operator> ==|o]v

<l<l=121>1%

—

= It should be particularly noted that throughout the reference
language underlining is used for defining independent basic symbols
(see sections 2.2.2 and 2.3). These are understood to have no rela-
tion to the individual letters of which they are composed. Within

the present report underlining will be used for no other purpose.
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<sequential operatoﬁ> $¢= go tollflthenlelselforldo
<separator> : i [ steﬁ_r until | while | comment
<bracket> = [ [ I ] [~ l ‘ l be in end
<Heclaratoﬁ>::"own | Boolean | integer real 1——-rray | switch | procedure
<specificator> := string | label | value
Delimiters have a fixed meaning which for the most part is
obvious, or else will be given at the appropriate place in the sequel.
Typographical features such as blank space or change to a new
line have no significance in the reference language. They may, how-
ever, be used freely for facilitating reading.
For the purpose of including text among the symbols of a pro—
gram the following "comment" conventions hold :

The sequence of basic symbols : is equivalent to
; comment <any sequence not containingy>; :
begin comment <any sequence not containing;>; begin

end <any sequence not containing end or ; or else> end

By equivalence is here meant that any of the three structures shown
in the left—hand column may, in any occurrence outside of strings,

be replaced by the symbol shown on the same line in the right—hand
column without any effect on the action of the progam. It is further
understood that the comment structure encountered first in the text
when reading from left to right has precedence in being replaced over
later structures contained in the sequence.

2.4. IDENTIFIERS
2.4.1. Syntax
<identifier> ::=<letter>|<identifier> <letter>|<identifier> <digit>
2.4,2., Examples
q
Soup
V17a
a34kTMNs
MARILYN
2.4.3., Semantics
Identifiers have no inherent meaning, but serve for the iden—
tification of simple variables, arrays, labels, switches, and proce-
dures.,

* do is used in for statements. It has no relation whatsoever to the
do of the prelimjnary report, which is not included in ALGOL 60.
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They may be chosen freely Identifiers may be chosen freely;
but the effects due to the occur-
rence of two different identifiers
the first six basic symbols of which
are common are undefined

(cf., however, section 3.2.4. STANDARD FUNCTIONS).

The same identifier cannot be used to denote two different
quantities except when these quantities have disjoint scopes as defined
by the declarations of the program (cf. section 2.7. QUANTITIES,

KINDS AND SCOPES, and section 5. DECLARATIONS).,

2.5. NUMBERS

2.5.7. Syntax
<unsigned integer> ::= <digit>|<unsigned integer> <digit>
<integer> ::= <unsigned integeﬁ>|+ <unsigned integeﬁ>?— <unsigned integer>
<decimal fraction> ::= ,<unsigned integer>
<exponent part> ::= ﬁ<integeﬁ>
<decimal number> ::=<unsigned integen>|<ﬂecimal fractiod>|

<unsigned integer> <decimal fraction>
<unsigned number> ::= <decimal numbeﬁ>|<éxponent part>|

<decimal number> <exponent part>

<number> ::= <unsigned number>|+ <unsigned number>|~ <unsigned number>

2.5.2. Examples

0 ~200.084 ~.083,-02
117 +07.43,8 RN
.5384 9.34,:+10 S

+0.7300 2,4 o

2.5.%. Semantics
Decimal numbers have their conventional nieaning. The exponent

part is a scale factor expressed as an integral power of 10,

2.5.4. Types.
Integers are of tvpe integer. All other numbers are of type

real (cf. section 5.1, TYPE DECLARATIONS).
2.6, STRINGS

2.6.1. Syntax .
<proper string> ::= <any sequence of basic symbols not containing” or® >1
<empty>
<open string> ::= <proper string>|'<bpen string>‘|
<open string> <open string>
<string> $:= ﬁ<open string>‘

2.6.2, Examples o
’ ,Sk,,-,[[[7\:/: Tt -
%,.This is s a o ‘string™
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2.6.3. Semantics
In order to enable the language to handle arbitrary sequences
of basic symbols the string quotes “and™ are introduced. The symbol
v denotes a space. It has no significance outside strings.
Strings are used as actual parameters of procedures (cf. sections
3.2. FUNCTION DESIGNATORS and 4.7. PROCEDURE STATEMENTS).

2.7. QUANTITIES, KINDS AND SCOPES

The following kinds of quantities are distinguished ¢ simple
variables, arrays, labels, switches, and procedures.

The scope of a quantity is the set of statements and expres—
sions in which the declaration of the identifier associated with that
quantity is valid. For labels see section 4.1.3,

2.8. VALUES AND TYPES

A value is an ordered set of numbers (special case ¢ a single
number), an ordered set of logical values (special case: a single
logical value), or a label.

Certain of the syntactic units are said to possess values. These
values will in general change during the execution of the program.
The values of expressions and their constituents are defined in sec—
tion 3. The value of an array identjfier is the ordered set of values
of the corresponding array of subscripted variables (cf. section 3.1.4. 1)

The various types (integer, real, Boolean) basically denote
properties of values. The types associated with syntactic units refer
to the values of these units.
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3. EXPRESSIONS

In the language the primary constituents of the programs des-—
cribing algorithmic processes are arithmetic, Boolean, and designa-
tional, expressions. Constituents of these expressions, except for
certain delimiters, are logical values, numbers, variables, function
designators, and elementary arithmetic, relational, logical, and
sequential, operators. Since the syntactic definition of both var-
iables and function designators contains expressions, the definition
of expressions, and their constituents, is necessarily recursive.

<expression> ::= <arithmetic expression>|<Boolean expression>|
<designational expression>

3.1. VARIABLES
3.1.1. Syntax
<variable identifier> ::=<identifier>
<simple variable> ::=<variahle identifier>
<subscript =xpression> ::= <arithmetic expression>
<subscript list> ::=<subscript expressiorn>|

<subscript list>, <subscript expression>

<array identifier> ::=<identifier>
<subscripted variabie> ::=<array identifier> [<subscript list>]
<variable> :'= <simple variable>|<subscripted variable>

3.7 ?. Examples epsilon
detA
al7
Qf7, 2]
X[SEn(nx pi/Z), Q[3’ n, 4]]

Tol1:%. Semantics :

A variabie is a designation given to a single value. This value
may be used in expressions for forming other values and may be
changed at will by means of assignment statements (section 4.2).

The type of the value of a particular variable is defined in the
declaration for the variable itself (cf. section 5.1. TYPE DECLARA-
TIONS) or for the corresponding array identifier (cf. section 5.2.
ARRAY DECLARATIONS).

3.1.4. Subscripts

3.1.4.1. Subscripted variables designate values which are components

of multidimensional arrays (cf. section 5.2. ARRAY DECLARATIONS).

Each arithmetic expression of the subscript list occupies one

subscript position of the subscripted variable, and is called a
subscript. The complete list of subscripts is enclosed in the subscript
brackets []. The array component referred to by a subscripted

variable is specified by the actual numerical value of its subscripts
(cf. section 3.3. ARITHMETIC EXPRESSIONS).
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3.1.4.2. Each subscript position acts like a variable of type
integer and the evaluation of the subscript Is understood to be
equivalent to an assignment to this fictitious variable (cf. sec-
tion 4.2.4). The value of the subscripted variable is defined only
if the value of the subscript expression'is within the subscript
bounds of the array (cf. section 5.2. ARRAY DECLARATIONS).

3.2, FUNCTION DESIGNATORS
3.2.1, Syntax _
<procedure identifier> ::=<jdentifier>
<actual parameter> ::==<3tring>[<bxpresslon>|<brray identifier>|
<switch identifier>|<procedure identifier>
<letter string> ::=<letter>(<letter string> <letter>
<parameter delimiter> ::= , |) <letter string> :(
<actual parameter list> ::=<actual parameter>|<actual parameter list>
<parameter delimiter> <actual parameter>
<actual parameter part> ::= <empty>|( <actual parameter list> )
<function designator> ::= <procedure identifier> <actual parameter part>

3.2.2, Examples

sin(a = b)
J(v + s, n)
R

S(s = 5)Temperature:(T)Pressure: (P)
Compile(” :=") Stack: (Q)

3.2.3. Semantics

Function designators define single numerical or logical values,
which result through the appiication of ‘given sets of rules
defined by a procedure declaration (cf. section 5.4. PROCEDURE DE-
CLARATIONS) to fixed sets of actual parameters. The rules governing
specification of actual parameters are given in section 4.7. PROCE-
DURE STATEMENTS. Not every procedure declaration defines the value
of a function designator.

3.2.4., Standard functions

Certain identifiers should be.reserved for the standard func-—
tions of ‘analysis, which will be expressed as procedures. It is
recommended that this reserved list should contain :

abs(E) for the modulus (absolute value) of the value

. of the expression E
sign(E) for the sign of the value of E(+1 for E > 0,

O for E=0, =1 for E<SO0) -

sqrt(E) for the square root of the value of E
sin(E) for the sine of the value of E
cos(E) for the cosine of the value of E
arctan (E) for the principal value of the arctangent of the

- value of E
In(E) : for the natural logarithm of the value of E E

)e

exp(E) for the exponential function of the value of E (e
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These functions are all understood to operate indifferently on argu-
ments both of type real and integer. They will all yield values of
type real, except for sign(E) which will have values of type integer,
In a particular representation these functions may be available
without explicit declarations (cf. section 5. DECLARATIONS).

3.2+5s Transfer functions

It is understood that transfer functions between any pair of
quantities and expressions may be defined. Among the standard func-
tions it is recommended that there be one, namely

entier(E) ,

which "transfers" an expression of real type to one of integer type,
and assigns to it the value which is the largest integer not greater
than the value of E.

3.3 ARITHMETIC EXPRESSIONS
3s%.1. Syntax
<adding operator> ::= +|-
<multiplying operator> ::=X|/[=+
<primary> ::= <unsigned number>|<variable>|<function designator>|
(Karithmetic expression>)
<factor> ::= <primary>|<factor> 1 <primary>
<term> ::= <factor>|<term> <multiplying operator> <factor>
<simple arithmetic expression> ::==<ierm>F<édding operator> <tern>|
<simple arithmetic expression>
<adding operator> <term>
<if clause> ::= if <Boolean expression> then
<arithmetic expression> ::= <simple arithmetic expression>|
<if clause> <simple arithmetic expression>
else <arithmetic expression>

3.3.2. Examples
Primaries :

7.394,-8

sum

wli+2,8]

cosly + z¥3)

(a=3/y +vu?l 8)

Factors :
omega
sum T cos(y + z3X 3)
7.394, - 8 Twli+2,81T (a=3/+vuTl8)

Terms :

; T

omega Y sum | cos(y + z X 3)/7.394, — 8
Twli +2,8]T (a =34+ vt 8)

Simble arithmetic expression :
U = Yu + omega % sum T cos(y + z X 3)/’7.394m -8
T wli +2,8] T (a - 3/y + vu T 8)
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Arithmetic expressions :
w¥ u-Q(S+cCu) T2
if q> 0 then S+ 3% Q/A else 2 S + 33 q
if a< o0 then U+ V else if ay¢ b > 17 then UN else if kfy
then V/U else 0
a ¥ sin (omega t)
0.57,12 X a[N X (N - 1)/2, 0]
(A3 arctan(y) +2) T (7 + Q)
if q then n - 1 else n
if a< 0 then A/B else if b =0 then B/A else z

3.3.3. Semantics

An arithmetic expression is a rule for computing a numerical
value. In case of simple arithmetic expressions this value is obtained
by executing the indicated arithmetic operations on the actual
numerical values of the primaries of the expression, as explained
in detail in section 3.3.4 below. The actual numerical value of a
primary is obvious in the case of numbers. For variables it is the
current value (assigned last in the dynamic sense), and for function
designators it is the value arising from the computing rules defi-—
ning the procedure (cf. section 5.4.4. Values of function designators)
when applied to the current values of the procedure parameters given
in the expression. Finally, for arithmetic expressions enclosed in
parentheses the value must through a recursive analysis be expressed
in terms of the values of primaries of the other three kinds.

In the more general arithmetic expressions, which include if
clauses, one out of several simple arithmetic expressions is selected
on the basis of the actual values of the Boolean expressions (cf.
section 3.4. BOOLEAN EXPRESSIONS). This selection is made as follows:
The Boolean expressions of the if clauses are evaluated one by one
in sequence from left to right until one having the value true is
found. The value of the arithmetic expression is then the value of
the first arithmetic expression following this Boolean (the largest
arithmetic expression found in this position is understood). The
construction:

else <simple arithmetic expression>
is equivalent to the construction:

else if true then <simple arithmetic expression>

J.3.4. Operators and types

Apart from the Boolean expressions of if clauses, the consti-
tuents of simple arithmetic expressions must be of types real or
integer (cf. section 5.1. TYPE DECLARATIONS).

The meaning of the basic The meaning of the basic operators
operators and the types of and the types of the expressions to
the expressions to which which they lead are given by a set
they lead are given by the of rules. However if the type of
following rules: an arithmetic expression according

to the rules cannot be determined
without evaluating an expression
or ascertaining the type or value
of an actual parameter, it is real.

These rules are:
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3.3.4.1. The operators + , — , and ¥ have the conventional meaning
(addition, subtraction, and multiplication). The type of the expres-
sion will be integer if both of the operands are of integer type,
otherwise real.

3.3.4.2. The operations <term> / <factor> and <term> + <factor> both
denote division, to be understood as a multiplication of the term
by the reciprocal of the factor with due regard to the rules of pre-
cedence (cf. section 3.3.5). Thus, for example

a/b X 1/(p - q) Xv/s

(((la (b)) X1 X ((p - )X v) K (s)
The operator / is defined for all four combinations of types real
and integer and will yield results of real type in any case. The
operator % is defined only for two operands both of type .integer
and will yield a result of type integer, mathematically defined as
follows :

a +b=sign (a/b) X entier (abs(a/b))
(cf. sections 3.2.4 and 3.2.5).

means

3,3%.4.3. The operation-<factor> T <primary> denotes exponentiation,
where the factor is the base and the primary is the exponent. Thus, -
for example K
2T nTk means (2")
while (n™
2T tn Tm) means 2
Writing i for a number of linteger type, r for a number of real type,
and a for a number of either integer or real type, the result is
given by the following rules :
afTi If i >0, aa.oo){ a (i times), of the same
type as a.
If i=0, if a¥ 0, 1, of the same type as a,
if a=0, undefined.
Ifi<0, ifafo,1/(aaX... ¥a)
(the denominator has -i factors),
of type real,
if a =0, undefined.
alr If a> 0, exp(r > In(a)), of type real.
Ifa=0, if r >0, 0.0, of type real,
if r <0, undefined.
If a <0, always undefined.

3.%3.5. Precedence of operators

The scquence of operations within one expression is generally
from left to right, with the following additional rules :
3.3.5.1. According to the syntax given in section 3.3.1 the following
rules of precedence hold :

firsts

second: W+

third: + -
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3.3.,5.2. The expression between a left parenthesis and the matching
right parenthesis is evaluated by itself and this value is used in
subsequent calculations. Consequently the desired order of execution
of operations within an expression can always be arranged by appro-
priate positioning of parentheses.

3.3.6. Arithmetic of real quantities

Numbers and variables of type real must be interpreted in the
sense of numerical analysis, i.e. as entities defined inherently
with only a finite accuracy. Similarly, the possibility of the oc-
currence of a finite deviation from the mathematically defined re-
sult in any arithmetic expression is explicitly understood. No exact
arithmetic will be specified, however, and it is indeed understood
that different hardware representations may evaluate arithmetic ex—
pressions differently. The control of the possible consequences of
such differences must be carried out by the methods.of numerical
analysis. This control must be considered a part of the process to
be described, and will therefore be expressed in terms of the
language itself.

3.4, BOOLEAN EXPRESSIONS
3.4.1. Syntax
<relational operator> ::=< | 5 | = | > [ > |
<relation> ::=<simple arithmetic expression> <relational operator>
<simple arithmetic expression>
<Boolean primary> ::= <logical value>|<variable>|<function designator>|
) <relation>| (KBoolean expression>)
<Boolean secondary> ::= <Boolean primary>|—<Boolean primary>
<Boolean factor> ::= <Boolean secondary>|
<Boolean factor>A<Boolean secondary>
<Boolean term> ::= <Boolean factor>|<Boolean term>\/<Boolean factor>
<implication> ::= <Boolean tern>|<implication> o> <Boolean term>
<simple Boolean> ::= <implication>|<simple Boolean> = <implication>
<Boolean expression> ::= <simple Boolearn>|<if clause>
<simple Boolean> else <Boolean expression>

3.4.2. Example

vy
/\ﬁc\/d\/e =T

b
then s > w else h< c
if if if a then b else ¢ then d else f then g else h <k

-+
~
AN
-

3.4.,3. Semantics

' A Boolean expression is a rule for computing a logical value.
The principles of evaluation are entirely analogous to those given
for arithmetic expressions in section 3:3.3.
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3.4.40 Types

Variables and function designators entered as Boolean primaries
must be declared Boolean (cf. section 5.1. TYPE DECLARATIONS and sec-
tion S.4.4. Values of function designators).

3.4.5, The operators
Relations take on the value true whenever the corresponding
relation is satisfied for the expressions involved, otherwise false.
The meaning of the logical operators —(not), A (and), v (orj,
o(implies), and = (equivalent), is given by the following function
table.

b1 false “false true true
b2 false true false true
b1 true true false false
b1 A b2 false false false true
b1V b2 false true true true
b1 > b2 true true . false true
b1 = b2 true false false true

3.4.6. Precedence of operators
The sequence of operations within one expression is generally
from left to right, with the following additional rules:

3e4e6s1. According to the syntax given in section 3.4.1 the following
rules of precedence hold :
first : arithmetic expressions according to section 3.3.5s
second : < < 2 >
third
fourth
fifth
sixth
seventh:

il

mu<> |4

3.4.6.2. The use of parentheses will be interpreted in the sense given
in section 3.305.26

3.5. DESIGNATIONAL EXPRESSIONS
"~ 3.5¢1. Syntax

<labe> ::= <identifier>| <label> ::= <identifier>
<unsigned integer>

<switch identifier> ::=<identifier>
<switch designator> ::= <switch identifier>[<subscript expression>]
<simple designational expression> ::= <label>|<switch designator>|
(Kdesignational expression>)
<designational expression> ::=<simple designational expression>|
: <if clause> <simple designational expression>
else <designational expression>
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3.5.2. Examples
17
P9
Choose [n = 1]
Town [if y < O then N else N + 1]

if Ab < c then 17 else q Lif w< O then 2 else n]

3.5.3. Semantics

A designational expression is a rule for obtaining a label of
a statement (cf. section 4. STATEMENTS). Again, the principle of the
evaluation is entirely analogous to that of arithmetic expressions
(section 3.3.3) In the general case the Boolean expressions of the
if clauses will select a simple designational expression. |f this is
a label the desired result is already found. A switch designator re-—
fers to the corresponding switch declaration (cf. section 5.3. SWITCH
DECLARATIONS) and by the actual numerical value of its subscript ex—
pression selects one of the designational expressions listed in the
switch declaration bv counting these from left to right. Since the
designational expression thus selected may again be a switch designator
this evaluation is obviously a recursive process.

3.5.4. The subscript expression

The evaluation of the subscript expression is analogous to that
of subscripted variables (cf. section 3.1.4.2). The value of a switch
designator is defined only if the subscript expression assumes one
of the positive values 1, 2, 3,...5, n, where n is the number of en-
tries in the switch list.

3.5.5. Unsigned integers as labels

Unsigned integers used as
labels have the property that lea—
ding zeroes do not affect their
meaning, e.g. 00217 denotes the
same label as 217.
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4, STATEMENTS

The units of operation within the language are called statements.
They will normally be executed consecutively as written. However, this
sequence of operations may be broken by go to statements, which define
their successor explicitly, and shortened by conditional statements,
which may cause certain statements to be skipped.

In order to make it possible to define a specific dynamic succes—
sion, statements may be provided with labels.

Since sequences of statements may be grouped together into
compound statements and blocks, the definition of statement must
necessarily be recursive. Also since declarations, described in section
5y enter fundamentally into the syntactic structure, the syntactic
definition of statements must suppose declarations to be already
defined.

4,1, COMPOUND STATEMENTS AND BLOCKS
4,7.1. Syntax
<unlabelled basic statement> ::= <assignment statement>|<go to statement>|
<dummy statement>|<procedure statement>

<basic statement> ::= <unlabelled basic statement>

<label>: <basic statement>
<unconditional statement> ::= <basic statement>|<compound statement>|

<block>
<statement> ::= <unconditional statement>|<conditional statement>|
<for statement> ,
<compound tail> ::= <statement> end |<statement>; <compound tail>
<block head> ::= begin <declaration>|<block head>; <declaration>
<unlabelled compound> ::= beqin <compound tail>
<unlabelled block> ::= <block head>; <compound tail>
<compound statement> ::= <unlabelled compound>|
<label>: <compound statement>
<block> ::=<unlabelled block>|<label>: <block>
<program> ::= <block>|<compound statement>
This syntax may be illustrated as follows: Denoting arbitrary

statements, declarations, and labels, by letters S, D, and L,
respectively, the basic syntactic units take the forms:

Compound statement?
L: L: «oo begin S ; S5 ceeS 3 S end

Block:
L:L:...beginD;D;...D;S;S;...S;S_(_a__

nd
It should be kept in mind that each of the statements S may again be
a complete compound statement or block.

4,1.2, Examples
Basic statements:
a &=p+gq
go_to Naples
START : CONTINUE : W = 7,993
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Compound statement:
begin x:= 0 ; for y:= 1 step 1 until n do x:= x + Aly] ;
if x>q then go to STOP else if x>w—2 then go to S;
Aw: St: W:= x + bob end

Block:
Q : begin integer i,k ; real w ;
for 1 =1 step 1 until m do
for k == i + 1 step 1 until m do
beqin w := A[i,k] ; AlT,k] =A[k,i] 5 Alk,i] = w
end for i and k
end block Q

4,1.3. Semantics

Every block automatically introduces a new level of nomenclature.
This is realized as follows: Any identifier occurrirg within the block
may through a suitable declaration (cf. section 5. DECLARATIONS) be
specified to be local to the block in question. This means (a) that
the entity represented by this identifier inside the block has no
existence outside it, and (b) that any entity represented by this
identifier outside the block is completely inaccessible inside the
block.

Identifiers (except those representing labels) occurring within
a block and not being declared to this block will be non-local to it,
i.e. will represent the same entity inside the block and in the level
immediately outside it. A label separated by a colon from a statement,
i.e. labelling that statement, behaves as though declared in the head
of the smallest embracing block, i.e. the smallest block whose brackets
begin and end enclose that statement. In this context a procedure body
must be considered as if it were enclosed by begin and end and treated
as a block.

Since a statement of a block may again itself be a block the
concepts local and non-local to a block must be understood recursively.
Thus an identifier, which is non—local to a block A, may or may not be
non—-local to the block B in which A is one statement.

4,2, ASSIGNMENT STATEMENTS
4,2,17. Syntax
<left part> ::=<variable> = |[<procedure identifier> :=
<left part list> ::=<left part>|<left part list> <left part>
<assignment statement> ::= <left part list> <arithmetic expression>|
<left part list> <Boolean expression>

4,2.2. Examples

=p[0] ==n =n+1+s

=n + 1

=B/C - v - qX

v,k + 2] := 3 - arctan(s ¥ zeta)
=Q>Y AZ

<wnXP>3un
LX}
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4,2.%. Semantics

Assignment statements serve for assigning the value of an
expression to one or several variables or procedure identifiers.
Assignment to a procedure identifier may only occur within the
body of a procedure defining the value of a function designator
(cf. section 5.4.4). The process will in the general case be
understood to take place in three steps as follows:
4.2.3.1. Any subscript expressions occurring in the left part
variables are evaluated in sequence from left to right.
4.2.3.2. The expression of the statement is evaluated.
4.2.3.3. The value of the expression is assigned to all the left
part variables, with any subscript expressions having values as
evaluated in step 4.2.3.1. :

4,2.4. Types

The type associated with all variables and procedure
identifiers of a left part list must be the same. If this type
is Boolean, the expression must likewise be Boolean. If the type
is real or linteger, the expression must be arithmetic. If the
type of the arithmetic expression differs from that associated
with the variables and procedure identifiers, appropriate transfer
functions are understood to be automatically invoked. For transfer
from real to integer type the transfer function is understood to
yield a result equivalent to

entier (E + 0.5)
where E is the value of the expression. The type associated with
a procedure identifier is given by the declarator which appears
as the first symbol of the corresponding procedure declaration
(cfe section 5.4.4),

4.3, GO TO STATEMENTS
4,3.1, Syntax
<go to statement> ::= go to <designational expression>

4.%.2. Examples
go to 8
go_to exit [n + 1]
go to Town [if y < O then N else N + 1]
go to if Ab < c then 17 else q [if w< O then 2 else n]

4.3.3. Semantics

A go to statement interrupts the normal sequence of operations,
defined by the write-up of statements, by defining its successor
explicitly by the value of a designational expression. Thus the next
statement to be executed will be the one having this value as its
label., '

4.%.4. Restriction

Since labels are inherently local, no go to statement can lead
from outside into a block. A go to statement may, however, lead from
outside into a compound statement.,
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43,5, Go to an undefined switch designator

A go to statement is A go to statement is undefined
equivalent to a dummy if the designational expression
statement if the design- is a switch designator whose
ational expression is a value is undefined.

switch designator whose

value is undefined.

4,4, DUMMY STATEMENTS
4.,4,1, Syntax
<dummy statement> : = <empty>

4,4,2. Examples
L
begins.s. j;John: end

4.,4,3. Semantics
A dummy statement executes no operation. It may serve to place

a label.

4,5, CONDITIONAL STATEMENTS
4,5.1. Syntax
<if clause> ::= if <Boolean expression> then
<unconditional statement> ::=<basic statement>|<compound statement>|
<block>
<if statement> ::=<if clause> <unconditional statement>
<conditional statement> ::=<if statement>|
<if statement> else <statement>|
<if clause> <for statement>|
<label> : <conditional statement>

4,5.2. Examples
if x>0 then n :=n + 1
if vu then V : g *=n + m else go to R
if s<0 vV PQ then AA : begin if qv then a := v/s else y = 23{a end
else if v>s then a :=v - q else if v»s — 1 then go to S

4,5.3. Semantics

Conditional statements cause certain statements to be executed
or skipped depending on the running values of specified Boolean
expressionss .
4,5.3.,1, |If statement. The unconditional statement of an if statement
will be executed if the Boolean expression of the if clause is true.
Otherwise it will be skipped and the operation will be continued with
the next statement.
4,5.3.2. Conditional statement. According to the syntax two different
forms of conditional statements are possible. These may be illustrated
as follows:

if B1 then S1 else if B2 then S2 else S3 ; S4

and
if B1 then S1 else if B2 then S2 else if B3 then S3 ; S4
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Here B1 to B3 are Boolean expressions, while S1 to S3 are unconditional
statements. S4 is the statement following the complete conditional
statement.

The execution of a conditional statement may be described as
follows: The Boolean expressions of the if clauses are evaluated one
after the other in sequence from left to right until one yielding
the value true is found. Then the unconditional statement following
this Boolean is executed. Unless this statement defines its successor
explicitly the next statement to be executed will be S4, the statement
following the complete conditional statement. Thus the effect of the
delimiter else may be described by saying that it defines the
successor of the statement it follows to be the statement following
the complete conditional statement.

The construction

else <unconditional statement>
is equnvalent to
else if true then <unconditional statement>

I f none of the Boolean expressions of the if clauses is true,
the effect of the whole conditional statement will be equivalent
to that of a dummy statement.

For further explanation the following picture may be useful:

o T

if B1 then S1 else if B2 then S2 else S3 ; S4

B1 false B2 false

4,5.4, Go to into a conditional statement

The effect of a go to statement leading into a conditional
statement follows directly from the above explanation of the effect
of else. ' '

4,6. FOR STATEMENTS

4,6.1. Syntax

<for list element> ::= <arithmetic expression>|
<arithmetic expression> step <arithmetic expression>
until <arithmetic expression>|
<arithmetic expression> while <Boolean expression>

<for list> ::= <for list element>|<for list>, <for list element>

<for clause> ::= for <variable> :=<for list> do

<for statement> ::= <for clause> <statement>|<label> <for statement>

4,6.2. Examples
for q =1 step s until n do A[q] = B[q]
_fir_‘_k :=1, V1 X 2 while V1 <N do
for j :—I+GL, 1 step 1 until N, C + D do A[k,j] := B[k,j]

4,6.3. Semantics
A for clause causes the statement S which it precedes to be



30 4,6, FOR STATEMENTS

repeatedly executed zero or more times. In addition it performs a
sequence of assignments to its controlled variable. The process may
be visualized by means of the following picture:

Initialize ; test ; statement S ; advance ; successor

In this picture the word initialize means: perform the first
assignment of the for clause. Advance means: perform the next
assignment of the for clause. Test determines if the last
assignment has been done. If so the execution continues with

the successor of the for statement. If not the statement following
the for clause is executed.

4,6.4. The for list elements -

The for list gives a rule for obtaining the values which are
consecutively assigned to the controlled variable. This sequence
of values is obtained from the for list elements by taking these
one by one in the order in which they are written. The sequence of
values generated by each of the three species of for list elements
and the corresponding execution of the statement S are given by
the following rules:
4,6.4.1. Arithmetic expression. This element gives rise to one
value, namely the value of the given arithmetic expression as
calculated immediately before the corresponding execution of the
statement S.
4.6.4.2. Step-until-element. An element of the form A step B until C,
where A, B, and C are arithmetic expressions, gives rise to an
execution which may be described most concisely in terms of
additional ALGOL statements as follows:

V :=A ;

L1 ¢ if (V - C) ¥ sign(B) > O then go to Element exhausted ;

Statement S

V=V+8B;

go to L1 3
where V is the controlled variable of the for clause and Element
exhausted points to the evaluation according to the next element
in the for list, or if the step—until-element is the last of the
list, to the next statement in the program.
4.6.4.3. While-element. The execution governed by a for list
element of the form E while F, where E is an arithmetic and F a
Boolean expression, is most concisely described in terms of
‘additional ALGOL statements as follows:

L3 ¢ V :==E;
if TVF then go to Element exhausted;
Statement S;

go _to L3;
where the notation is the same as in 4.6.4.2 above.
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4,6.5, The value of the controlled variable upon exit

Upon exit out of the statement S (supposed to be compound)
through a go to statement the value of the controlled variable will
be the same as it was immediately preceding the execution of the
go to statement.

If the exit is due to exhaustion of the for list, on the other
hand, the value of the controlled variable is undefined after the

exite.

4,6.6. Go to leading into a for statement
The effect of a go to statement, outside a for statement,
which refers to a label within the for statement, is undefined.

4,7. PROCEDURE STATEMENTS

4,7.1. Syntax
<actual parameter> ::= <string>/<expression>|<array identifier>|
<switch identifier>|<procedure identifier>
<letter string> ::= <letter>|<letter string> <letter>
<parameter delimiter> ::= , | ) <letter string> : (
<actual parameter list> ::= <actual parameter>
<actual parameter list> <parameter delimiter>
<actual parameter>
<actual parameter part> = <empty>| ( <actual parameter list> )
<procedure statement> ::= <procedure identifier> <actual parameter part>

4,7.2. Examples
Spur (A) Order: (7) Result to : (V)
Transpose (W, v + 1) :
Absmax (A, Ny M, Yy, I, K)
Innerproduct (A[t, P, ul, B[P], 10, P, Y)
These examples correspond to examples given in section 5.4.2.

4,7.3. Semantics

A procedure statement serves to invoke (call for) the
execution of a procedure body (cf. section 5.4. PROCEDURE DECLARATIONS) .
Where the procedure body is a statement written in ALGOL the effect of this
execution will be equivalent to the effect of performing the
following operations on the program at the time of execution of the
procedure statement:
4,7.3.1. Value assignment (call by value). All formal parameters
quoted in the value part of the procedure declaration heading are
assigned the values (cf. section 2.8. VALUES AND TYPES) of the
corresponding actual parameters, these assignments being considered
as being performed explicitly before entering the procedure body.
The effect is as though an additional block embracing the procedure
body were created in which these assignments were made to variables
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local to this fictitious block with types as given in the corre—
sponding specifications (cf. section 5.4.5). As a consequence,
variables called by value are to be considered as non—local to the
body of the procedure, but local to the fictitious block (cf.
section 5.4.3).

4,7.3.2. Name replacement (call by name). Any formal parameter not
quoted in the value list is replaced, throughout the procedure body,

by the corresponding actual parameter, after enclosing this latter

in parentheses wherever syntactically possible. Possible conflicts
between identifiers inserted through this process and other identifiers
already present within the procedure body will be avoided by suitable
systematic changes of the formal or local identifiers involved.

4.7.3.3. Body replacement and execution. Finally the procedure body,
modified as above, is inserted in place of the procedure statement,
and executed. |f the procedure is called from a place outside the
scope of any non—local quantity of the procedure body, the conflicts
between the identifiers inserted through this process of body replace-
ment and the identifiers whose declarations are valid at the place of
the procedure statement or function designator will be avoided through
suitable systematic changes of the latter identifiers.

4,7.4, Actual-formal correspondence

The correspondence between the actual parameters of the procedure
statement and the formal parameters of the procedure heading is
established as follows: The actual parameter list of the procedure
statement must have the same number of entries as the formal parameter
list of the procedure declaration heading. The correspondence is
obtained by taking the entries of these two lists in the same order.

4,7.5. Restrictions

No call of the procedure itself
may occur during the execution of
the statements of the body of any
procedure, and during the evaluation
of those of its actual parameters,
the corresponding formal parameters
of which are called by name, and
during the evaluation of expressions
occurring in declarations inside
the procedure.

For a procedure statement to be defined it is evidently necessary
that the operations on the procedure body defined in sections 4.7.3.1
and 4.7.3.2 lead to a correct ALGOL statement.

This poses the restriction on any procedure statement that the
kind and type of each actual parameter be compatible with the kind and
type of the corresponding formal parameter. Some important particular
cases of this general rule are the following:
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4¢7:5¢1¢ If a string is supplied as an actual parameter in a procedure
statement or function designator, whose defining procedure body is an
ALGOL 60 statement (as opposed to non-ALGOL code, cf. section 4,17.8),
then this string can only be used within the procedure body as an
actual parameter in further procedure calls. Ultimately it can only

be used by a procedure body expressed in non-ALGOL code.

4.7.5.2. A formal parameter which occurs as a left part variable in an
assignment statement within the procedure body and which is not called
by value can only correspond to an actual parameter which is a variable
(special case of expression).

4:7.5.3. A formal parameter which is used within the procedure body

as an array identifier can only correspond to an actual parameter
which is an array identifier of an array of the same dimensions. In
addition, if the formal parameter is called by value, the local array
created during the call will have the same subscript bounds as the
actual array.

4¢Te5+4. A formal parameter which is called by value cannot in general
correspond to a switch identifier or a procedure identifier or a
string, because these latter do not possess values (the exception is
the procedure identifier of a procedure declaration which has an

empty formal parameter part (cf. section 5.4.1) and which defines

the value of a function designator (cf. section 5.4.4). This procedure
identifier is in itself a complete expression).

4¢7¢5+5. Any formal parameter 4:7.5.5. Kind and type of actual

may have restrictions on the parameters must be the same as
type of the corresponding those of the corresponding formal
actual parameter associated parameters, if called by name.

with it (these restrictions
may, or may not, be given
through specifications in the
procedure heading). In the
procedure statement such
restrictions must evidently

be observed.
4,7.6. Deleted,

4,7.7. Parameter delimiters

A1l parameter delimiters are understood to be equivalent. No
correspondence between the parameter delimiters used in a procedure
statement and those used in the procedure heading is expected beyond
their number being the same., Thus the information conveyed by using
the elaborate ones is entirely optional.

4,7.8. Procedure body expressed in code

The restrictions imposed on a procedure statement calling a
procedure having its body expressed in non-ALGOL code evidently can
only be derived from the characteristics of the code used and the
intent of the user, and thus fall outside the scope of the reference
language.
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5. DECLARATIONS

Declarations serve to define certain properties of the quanti-—
ties used in the program, and to associate them with identifiers.

A declaration of an identifier is valid for one block. Outside this
block the particular identifier may be used for other purposes (cf.
section 4.1.3).

Dynamically this implies the following: at the time of an entry
into a block (through the begin, since the labels inside are local
and therefore inaccessible from outside) all identifiers declared
for the block assume the significance implied by the nature of the
declarations given. If these identifiers had already been defined
by other declarations outside they are for the time being given a
new significance. ldentifiers which are not declared for the block,
on the other hand, retain their old meaning.

At the time of an exit from a block (through end, or by a go to
statement) all identifiers which are declared for the block lose their
local significance.

A declaration may be marked
with the additional declarator own.
This has the following effect:
upon a re—entry into the block,
the values of own quantities will
be unchanged from their values at
the last exit, while the values
of declared variables which are
not marked as own are undefined.

Apart from labels and formal parameters of procedure declara—
tions and with the possible exception of those for standard functions
(cf. sections 3.2.4 and 3,2.5) all identifiers of a program must
be declared. No identifier may be declared more than once in any one
block head.

Syntax
<declaration> ::= <type declaration>|<array declaration>|

<switch declaration>|<procedure declaration>

5.1, TYPE DECLARATIONS
5.%.1. Syntax
<type list> ::=<simple variablé>l<5imple variable>, <type list>
<type> ::= reallinteqerlBoolean

<local or own typ ::==<typé>l <local or own type> ::= <type>
own <type> :

<type declaration> ::= <local or own type> <type list>

5.1.2. Examples
integer p, Q5 S
own Boolean Acryl, n
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5.1.3. Semantics

Type declarations serve to declare certain identifiers to re-
present simple variables of a given type. Real declared variables may
only assume positive or negative values including zero. Integer de-
clared variables may only assume positive and negative integral va-
lues, including zero. Boolean declared variables may only assume the
values true and false.

In arithmetic expressions any position which can be occupied
by a real declared variable may be occupied by an integer declared
variable.

For the semantics of own,
see the fourth paragraph of
section 5 above.

5.2. ARRAY DECLARATIONS
5.2.7. Syntax
<lower bound> ::= <arithmetic expression>
<upper bound> ::= <arithmetic expression>
<bound pair> ::= <lower bound> ¢ <upper bound>
<bound pair list> ::= <bound paiﬁ>]<bound pair list>, <bound pair>
<array segment> ::= <array identifier> [<bound pair Iist>]| ’
<array identifier>, <array segment>
<array list> ::= <array segment>|<érray list>, <array segment>
<array declaration> ::= array <array list>] ’
<local or own type> array <array list>

5.2.2. Examples
array a, b, c[7:n, 2:m], s [-2:10]
own integer array A[if ¢ < O then 2 else 1 ¢ 20]

real array ql-7 & =1]

5.2.5%. Semantics

An array declaration declares one or several identifiers to
represent multidimensional arrays of subscripted variables and. gives
the dimensions of the arrays, the bounds of the subscripts and the
types of the variables.’

5.2.3.1. Subscript bounds. The subscript bounds for any array are
given in the first subscript bracket following the identifier of this
array in the form of a bound pair list. Each item of this list gives
the lower and upper hound of a subscript in the form of two arithmetic
expressions separated by the delimiter ¢ . The bound pair list gives
the bounds of all subscripts taken in order from left to right.

5,2.3.2. Dimensions. The dimensions are given as the number of entries
in the bound pair lists.

5,2.3.3. Types. All arrays declared in one declaration are of the same
quoted type. |f no type declarator is given the type real is un-—
derstood.
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5.2.4. Lower upper bound expressions
5,2.4.1. The expressions will be evaluated in the same way as subscript

expressions (cf. section 3.1.4.2).

5,2.4,2, The expressions can only depend on variables and procedures
which are non-local to the block for which the array declaration is
valid. Consequently in the outermost block of a program only array
declarations with constant bounds may be declared.

5.2.4,3, An array is defined only when the values of all upper subscript
bounds are not smaller than those of the corresponding lower bounds.

5.2.4.4, The expressions will be evaluated once at each entrance into
the block.

5.2.5. The identity of subscripted variables

The identity of a subscripted variable is not related to the
subscript bounds given in the array declaration. However, even if an
array is declared own the values of the corresponding subscripted
variables will, at any time, be defined only for those of these var-
iables which have subscripts within the most recently calculated
subscript bounds.

5.3. SWITCH DECLARATIONS

5.3.1, Syntax
<switch list> ::=<designational expression>|
<switch list>, <designational expression>
<switch declaration> ::= switch <switch identifier> := <switch list>

5.3.2. Examples
switch S := S1, S2, Q[m], if v > -5 then S3 else S4
switch Q := pl,w

5.3.3. Semantics

A switch declaration defines the set of values of the corre—
sponding switch designators. These values are given one by one as the
values of the designational expressions entered in the switch list.
With each of these designational expressions there is associated a
positive integer, 1, 2,..., obtained by counting the items in the
list from left to right. The value of the switch designator corre-
sponding to a given value of the subscript expression (cf. section
3.5. DESIGNATIONAL EXPRESSIONS) is the value of the designational
expression in the switch list having this given value as its asso-
ciated integer. ‘
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5.3.4. Evaluation of expressions in the switch list

An expression in the switch list will be evaluated every time
the item of the list in which the expression occurs is referred to,
using the current values of all variables involved.

5.3.5. Influence of scopes

If a switch designator occurs outside the scope of a quantity
entering into a designational expression in the switch list, and an
evaluation of this switch designator selects this designational ex—
pressnon, then the conflicts between the identifiers for the quanti-
ties in this expression and the identifiers whose declarations are
valid at the place of the switch designator will be avoided through
suitable s 'stematic changes of the latter identifiers.

5.4. PROCEDURE DECLARATIONS
5.4.1. Syntax
<formal parameter ===1<|dent|fieh>
<formal parameter list> ::= <formal parameteﬁ>|
' <formal parameter list> <parameter delimiter>
<formal parameter>
<formal parameter part> ::= <empty>|(<formal parameter 1ist>)
<identifier list> ::==<|dent|f|eﬁ>1<|dent|f|er list> , <identifier>
<value part> ::= value <|dent|f|er llst> |<émpt
<specifier ::—-string |<t pd> array <1ype> arrayTlabelIswntchl
rocedur {<lypd> rocedure
<specnf|cat|on part> @ —-<bmpty>'%spec1f|eﬁ>‘<|dent|f|er list> 3
<specification part> <Specif|eﬁ>'<|dentlfier list>
<procedure heading> ::= <procedure identifier> <formal parameter part> ;
<value part> <specification part>
<procedure body> s 3= <statement>|<code>
<procedure declaration> 3= procedure <procedure heading> <procedure body>|
<tvpe> procedure <procedure heading> <procedure body>

5.4,2. Examples (see aiso the examples at the end of the report)
procedure Spur(a)Order: (n)Result: (s);value n;

array ajinteger n;real s;

begin integer k;

s = 0y
for ki= 1 step 1 until n do s3=s + alk, k]
end

procedure Transpose(a)Orders: (n);value n;
array a;integer n;
begin ‘real w;integer i, k;
for i ¢= 1 step 1 until n do
for k :=1 +[| St§P T until n do
begln w = ali, kl;
ali,k] 2= alk, i]J;
alk,i] :=w

end
end Transpose
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integer procedure Step(u);real u;
Step := if 0<u Au<1 then 1 else O

emmmem—

procedure Absmax(a)size:(n, m)Result: (y)Subscriptss (i, k);

comment The absolute greatest element of the matrix a, of size n by m
is transferred to y, and the subscripts of this element to i
and k; '

array ajinteger n, m, i, k;real v;

begin integer p, q;

y = 0;

for p := 1 step 1 until n do for q := 1 step 1 until m do

if abs(alp, q]) > v then begin y := abs(a[p, qJ);
i *= p3;k := q end end Absmax

procedure Innerproduct (a, b)Order:(k, p)Result :(y);
value k;

integer k, p; real vy, a, b;
begin real s;s = 0;
for p = 1 step 1 until kdos :=s + aXb;

y ¢— s
end Innerproduct

5.4.3. Semantics

A procedure declaration serves to define the procedure associated
with a procedure identifier. The principal constituent of a procedure
declaration is a statement or a piece of code, the procedure body,
which through the use of procedure statements and/or function designa-
tors may be activated from other parts of the block in the head of
which the procedure declaration appears. Associated with the body is
a heading, which specifies certain identifiers occurring within the body
to represent formal parameters. Formal parameters in the procedure body
will, whenever the procedure is activated (cf. section 3,2, FUNCTION
DESIGNATORS and section 4.7. PROCEDURE STATEMENTS) be assigned the
values of or replaced by actual parameters. ldentifiers in the procedure
body which are not formal will be either local or non-local to the
body depending on whether they are declared within the body or not.
Those of them which are non-local to the body may well be local to
the block in the head of which the procedure declaration appears.
The procedure body always acts like a block, whether it has the form
of one or not. Consequently the scope of any label labelling a state-
ment within the body or the body itself can never extend beyond the
procedure body. In addition, if the identifier of a formal parameter
is declared anew within the procedure body (including the case of its
use as a label as in section 4.1.3), it is thereby given a local sig-
nificance and actual parameters which correspond to it are inaccessible
throughout the scope of this inner local quantity.

5.4.4, Values of function designators

For a procedure declaration to define the yalue of a function
designator there must, within the procedure body, occur one or more
explicit assignment statements with the procedure identifier in a left
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part; at least one of these must be executed, and the type associated
with the procedure identifier must be declared through the appearance
of a type declarator as the very first symbol of the procedure declara—
tion. The last value so assigned is used to continue the evaluation

of the expression in which the function designator occurs.

Any occurrence of the
procedure identifier within the
body of the procedure other than
in a left part in an assignment
statement denotes activation of

the procedure.

5.4.5. Specifications

In the heading a specification part, giving information about
the kinds and types of the formal parameters by means of an obvious
notation, may be included. In this part no formal parameter may occur
more than once.

Specifications of formal para— Specifications of all formal
meters called by value (cf. sec— parameters if any must be
tion 4.7.3.1) must be supplied supplied.

and specifications of formal pa-
rameters called by name (cf. sec—
tion 4.7.3.2) may be omitted.

5.4.,6, Code as procedure body

It is understood that the procedure body may be expressed in
non-ALGOL language. Since it is intended that the use of this feature
should be entirely a question of hardware representation, no further
rules concerning this code language can be given within the reference
language.
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Example 1

procedure euler (fct, sum, eps, tim); value eps, tim; integer tim;
real procedure fct; real sum, eps;
comment euler computes the sum of fct(i) for i from zero up to
infinity by means of a suitably refined euler transformation. The
summation is stopped as soon as tim times in succession the absolute
value of the terms of the transformed series are found to be less
than eps. Hence, one should provide a function fct with one integer
argument, an upper bound eps, and an integer tim. The output is the
sum sum. euler is particularly efficient in the case of a slowly
convergent or divergent alternating series;
begin integer i, k, n, t; array m[0 ¢ 15]; real mn, mp, ds;
i 2=n =t = 0; m[0] := fct(0); sum :=m[0] /2;
nextterm: i := i + 1; mn 3= fect(i);

for k ¢= 0 step 1 until n do

begin mp := (mn + m[k])72; m[k] :=mn; mn = mp end means;
if (abs(mn) < abs(m[n])) A (n < 15) then
begin ds :=mn/2; n :=n + 1; m[n] = mn end accept

else ds ¢= mn;

sum $= sum + ds;

if abs(ds) < eps then t :=t + 1 else t = 0;

if t < tim then go to nextterm
end euler

Example 2%

procedure RK(xs ys ny, FKT, eps, eta, xE, yE, fi); value x, y; integer n;
Boolean fi; real x, eps, eta, xE; array y, yE; procedure FKT;
comment ¢ RK integrates the system

Y&:fk(x, Yqs Yo3 ey Yn) (k=1, 25 «c0o n)

of differential equations with the method of Runge-Kutta with automatic
search for appropriate length of integration step. Parameters are: The
initial values x and y[k] for x and the unknown functions y, (x). The

order n of the system. The procedure FKT (x, y, n, z) which represents

* This RK-program contains some new ideas which are related to ideas of
S. Gill, "A process for the step by step integration of differential
equations in an automatic computing machine," Proc. Camb. Phil, Soc.,
Vol. 47 (1951), p. 96, and C. E. Frdberg,"On the solution of ordinary
differential equations with digital computing machines," Fysiograf.
S&11sk. Lund, Fdrhd 20, Nr. 11 (1950), pp. 136-152, It must be clear,
however, that with respect to computing time and round—off errors it may
not be optimal, nor has it actually been tested on a computer.



EXAMPLES OF PROCEDURE DECLARATIONS 41

the system to be integrated, i.e. the set of functions f, . The tolerance
values eps and eta which govern the accuracy of the numerical integration.
The end of the integration interval xE. The output parameter yE which
represents the solution at x = xE. The Boolean variable fi, which must
always be given the value true for an isolated or first entry into RK.

If, however, the functions y must be available at several meshpoints

Xgs Xq1 sees X then the procedure must be called repeatedly

(with x = Xy xE = Xpgq? for k=0, 1, ..., n=1) and then the later calls

may occur with fi= false which saves computing time. The input parameters
of FKT must be x, y, n, the output parameter z represents the set of
derivatives z[k] ==fk(x,y[1], y[2], ..., y[n]) for x and the actual y's.

A procedure comp enters as a non—local identifier ;

begin

array z, yl, y2, y3[1 3 n] ; real x1, x2, x3, H; Boolean out;

integer k, j; own real s, Hs;

procedure RK1ST(x, ys h, xe, ye); real x, h, xe; array v, yes
comment: RK1ST integrates one single RUNGE-KUTTA step with
initial values x, y[k] which yields the output parameters
xe = x + h and ye[k], the latter being the solution at xe.
IMPORTANT: the parameters n, FKT, z enter RK1ST as non-local

entities;

begin [ 1 af :
array w[1 ¢ nl, a[1 ¢ 5]; integer k, j;
ST al2] i= al5] := W75 2137 52 afa] = n;
xe o= X; ' '

for k := 1 step 1 until n do ve[k] := wlk] 2= y[k];
for j := 1 step 1 until 4 do

FKT (xe, wy Ny 2)3
xe = x + aljJ;
:= 1 step 1 until n do

mW[k] = y[k] + alj] ¥ z[k];
kve[k] := ye[k] + alj + 1] % 2[k] /3

-
®]
-
=

o

e

o

en
end j
end RK1ST;
-BEGIN OF PROGRAM:
if fi then begin H := xE = x5 s 3= 0 end else H := Hs;
out 3= false;
AA:  if (x.+ 2.01 WH=xE>0)=(H> 0) then
begin'Hs $= H; out 3= true; H := (xE = x) /2 end if;
RKAST (x5 vs 2 %X Hy, x1, y1)3;
BB RK1ST(x, ys H, x2, y2); RK1ST(x2, y2, H, x3, y3);

for k := 1 ste 1 until n do

ij_comp(y1|k], v3[kJ, eta) > eps then go to CC;
comment: comp(a, b, ¢) is a function designator, the wvalue of
which is the absolute value of the difference of the mantissae
of a and b, after the exponents of these quantities have been
made equal to the largest of the exponents of the originally

given parameters a, b, c;
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x ¢= x3; if out then go to DD;

for k := T step 1 until n do y[k] = y3[k];
if s =5 then begin s := 0; H ¢= 2 X H end if;
s = s + 1; go to AA;

H := 0.5 X H; out := false; x1 := x2;

for k ¢= 1 step 1 until n do y1[k] := y2[k];

1 step 1 until n do yE[k] := y3[k]

=
—h
(o)
4
(ngd
{0
o
@
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ALPHABETIC INDEX OF DEFINITIONS OF CONCEPTS AND SYNTACTIC UNITS.

All references are given through section numbers. The references
are given in three groups:?

def Following the abbreviation "def" reference to the syntactic
definition (if any) is given.

synt Following the abbreviation "synt" references to the occurrences
in metalinguistic formulae are given. References already quoted
in the def—group are not repeated.

text Following the word "text" the references to definitions given
in the text are given.

The basic symbols represented by signs other than underlined
words have been collected at the beginning. The examples have been
ignored in compiling the index.

+, sees! plus
-, seet minus
s see! multiply
/%, seet divide
s see: exponentiation
<5 K5 = 2 > =I=, 'see! <relatlional operator>
=2,V ,A;, seet <logical operator>
59 See: comma
.y see: decimal point
1° see: ten
:, see: colon .
;5 seed semicolon
t=, see! colon equal
L3, see?! space
(), seet parentheses
[], see: subscript bracket
7% see: string quote
<actual parameter>, def 3.2.1,
<actual parameter list>, def 3
<actual parameter part>, def 3
<adding operator>, def 3.3.1
alphabet, text 2.1
arithmetic, text 3.3.6
<arithmetic expression>, def 3.3.71 synt 3, 3elely; 402¢15 40661, 5.2.1
text 30303
<arithmetic operator>; def 2.3 text 3.3.4
array, synt 2.3, 5¢2.1, Se4.1
array, text 3.1.4.1
<array declaration>, def 5.,2.1 synt 5 text 5.2.3
<array identifier>;,; def 3.1.1 synt 3.2.1, 4.7.1, 5.2.1 text 2.8
<array list>, def 5,2.1 "
<array segment>, def 5.2.1

4.7.1
08e 1y 4.T.1
02.1, 4.7n1
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<assignment statement>, def 4.2.7 synt 4.1.1 text 1, 4.2.3
<basic statement>, def 4.1.1 synt 4.5.1
<basic symbol>, def 2
be in, synt 2.3, 4,1.1
<block>, def 4.1.1 synt 4.5.1 text 1, 4.1.3, 5
<block head>, def 4.17.1
Boolean, synt 2.3, 5.1.1 text 5.1.3
<Boolean expression>, def 3.4.71 synt 3, 3.3.1, 4.2.1, 4.,5.1, 4.6.1
text 3.4.3
<Boolean factor>, def 3.4.1
<Boolean primary>, def 3.4.1
<Boolean secondary>, def 3.4.1
<Boolean term>, def 3.4.1
<bound pair>, def 5.2.1
<bound pair list>, def 5.2.1
<bracket>, def 2.3
<code>, synt 5.4.1 text 4.7.8, 5.4.6
CO]Onhg Synt23’321,411,45- 3
colon equal :=, synt 2. 3, 4,2.15 4.6.1,
comma s 5 synt 25 3’ 3.1, 3 . 1, 6.1,
5.4.1
comment, synt 2.3
comment convention,; text 2.3
<compound statement>, def 4.1.71 synt 4.5.7 text 1
<compound tail>, def 4.1.1
<conditional statement>, def 4.5.71 synt 4.1.1 text 4.5.3
<decimal fraction>, def 2.5.71
<decimal number>, def 2.5.71 text 2.5.3
decimal point ., synt 2.3, 2.5.1
<declaration>, def 5 synt 4.1.1 text 1, 5 (complete section)
<declarator>, def 2.3
<delimiter>, def 2.3 synt 2
<designational expression>, def 3.5.71 synt 3, 4.3.1, 5.2.7 text 3.5.3
<digit>, def 2.2.1 synt 2, 2.4.1, 2.5.1
dimension, text 5.2.3.2
divide / # , synt 2.3, 3.3.1 text 3.3.4.2
do, synt 2.3, 4.6.1
<dummy statement>, def 4.4.71 synt 4.1.1 text 4.4.3
else, synt 2.3, 3.3.1, 3.4.1, 3.5.7, 4.5.1, text 4.5.3.2
<empty>, def 1.1 synt 2.6.1, 3.2.1, 4.4,1, 4,7.1, 5.4.,1
end, synt 2. 3y 4,1.1
entier, text 3.2.5
exponentiation T s synt 2.3, 3.3
<exponent part>, def 2.5.1 text 2.
<expression>, def 3 synt 3.2.1, 4
<factor>, def 3.3.1
false; synt 2.2.2
for, synt 2.3, 4. 6.1
<for clause>, def 4.6.1 text 4.6.3
<for list>, def 4.6.1 text 4.6.4
<for list element>, def 4.6.1 text 4.6.4.1, 4,6.4,2, 4.6.,4.,3

4,6.1, 4.7.1, 5.2.1
S 3.
AeTeTy 5eTely 525 5edel;

.1 text 3.3.4.7
50
7.1 text 3 (complete section)
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<formal parameter>, def 5.4.1 text 5.4.3
<formal parameter list>, def 5.4.1
<formal parameter part>, def 5.4.1
<for statement>, def 4.6.1 synt 4.1.1, 4.5.1 text 4.6 (complete section)
<function designator>, def 3.2,1 synt 30301y 3e4e1 text 3.2¢35 S5.4.4
0 to, synt 2.3, 4.3.1
<go to statement>, def 4.3.1 synt 4,1.1 text 4,363
<identifier>, def 2.4.1 synt 3.1e15 3.2¢1y 35071y S504e71 text 2.4.3
<identifier list>, def 5.4.1
if, synt 2.3, 3.3.05 4.5.1
<if clause>, def 3.3.1, 4.5.1 synt 3 4.1, 3.5¢1 text 3.3, 3, 45362
<if statement>, def 4.5.1 text 4.5.3.7,
<implication>, def 3.4.1 .
dinteger, synt 2.3, 5.1.1 text 5. 1.3
<integer>, def 2.5.1 text 2.5.4
label, synt 2.3, S.4.71
<label>, def 305.1 Synt 4.1-1’ 4.5.1, 4_06.1 text 1’ 401.3
<left part>; def 4.2.1
<left part Hst>, def 4.2.1
<letter>, def 2.1 synt 2, 2.4.1y 3.2:1, 4.7.1
<letter string>, def 3.2, 1, 4,7.1
localy, text 4.1.3
<local or own type>, def S.1.1 synt 5.2,1
<logical operator>, def 2.3 synt 3.4.1 text 3.4.5
<logical value>, def 2.2.2 synt 2, 3.4.1
<lower bound>, def 5.2.1 text 5.2.4
non—local, text 4.1.3
minus ) Synt 2.3, 2.5.1’ 3,301 text 30}.4.1
multiply X 9 Synt 2.3’ 3,301 text EFE Y
<multiplying operator>, def 3.3.1
Q’\Umber>, def 2.5.1 text 20503’ 2'504
<open string>, def 2.6.1
<operator>, def 2.3
own, synt 2.3, Se1.1 text 5, 5.2.5
<Zparameter delimiter>, def 3.2.1, 4.7.1 synt S.4.1 text 4.7.17
parentheses ( )y synt 2.3, 302.1y 3e3e1, 3e4ely 3.5.15 4.701, 5e4.1
text 30305.2
plus +, synt 2.3, 2.5.1, 3.3.1 text 3.3.4.1
<primary>, def 3.3.1
procedure, synt 2.3; 5.4.1
<procedure body>, def 5.4.1
<procedure declaration>, def 5.4.1 synt 5 text-5.4.3
<procedure heading>; def 5.4.71 text 5.4.3
<procedure identifier>, def 3.2.1 synt 3.2.1, 4¢2.7, 4.7.7, S5.4.71
text 4070504
<procedure statement>, def 4.7.1 synt 4.1.1 text 4.7.3
<program>, def 4,1.1 text 1
<proper string>, def 2.6.1
quantity, text 2.7
real, synt 2.3, S.1.1 text 5.1.3
<re]ati0n>, def 3.491 text 3.405
<relational operator>, def 2.3, 3.4.1
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scope, text 2.7
semicolon j, synt 2.3, 4.1.1, 5.4.1
<separator>, def 2.3
<sequential operator>, def 2.3
<simple arithmetic expression>, def 3.3.1 synt 3.4.1 text 3.3.3
<simple Boolean>, def 3.4.1
<simple designational expression>, def 3.5.1
<simple variable>, def 3.1.1 synt S5.1.71 text 2.4.3
space 1, synt 2.3 text 2.3, 2.6.3
<specification part>, def 5.4.1 text 5.4.5
<specificator>, def 2.3
<specifier>, def 5.4.1
standard function, text 3.2.4, 3.2.5
<statement>, def 4.1.71, synt 4.5.1, 4.6.1, 5.4.1 text 4 (complete section)
statement bracket, see! begin end
step, synt 2.3, 4.6.1 text 4.6.4.2
string, synt 2.3, 5.4.1
<string>, def 2.6.1 synt 3.2.1, 4.7.1 text 2.6.3
string quotes © “, synt 2.3, 2.6.1 text 2.6.3
subscript, text 3.1.4.1
subscript bound, text 5.2.3.1
subscript brackets [ J, synt 2.3, 3.1.1, 3.5.1, 5.2.1
<subscript expression>, def 3.1.1 synt 3.5.1
<subscript list>, def 3.1.1
<subscripted variable>, def 3.1.71 text 3.1.4.1
successor, text 4
switch, synt 2.3, 5.3.1, 5.4.1
<switch declaration>, def 5.3.71 synt 5 text 5.3.3
<switch designator>, def 3.5.1 text 3.5.3
<switch identifier>, def 3.5.1 synt 3.2.1, 4.7.1, 5.3.1
<switch list>, def 5.3.1
<term>, def 3.3.1
ten 5 synt 2.3, 2.5.1
then, synt 2«3’ 3-3.1, 4.501
transfer function, text 3.2.5
true, synt 2.,2.2
<type>, def 5.71.1 synt 5.4.1 text 2.8
<type declaration>, def 5.1.71 synt 5 text 5.1.3
<type list>, def 5.1.1
<unconditional statement>, def 4.1.1, 4.5.1
<unlabelled basic statement>, def 4.1.1
<unlabelled block>, def 4.1.1
<unlabelled compound>, def 4.1.1
<unsigned integer>, def 2.5.1, 3.5.1
<unsigned number>, def 2.5.1 synt 3.3.1
until, synt 2.3, 4.6.1 text 4.6.4.2
<upper bound>, def 5.2.1 text 5.2.4

value, synt 2.3, 5.4.1
value, text 2.8, 3.3.3
<value part>, def 5.4.1 text 4.7.3.1
<variable>, def 3.1.1 synt 3.3.1, 3.4.1, 4.2.1, 4.6.1 text 3.1.3
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<variable identifier>, def 3.1.1
while , synt 2.3, 4.6.1 text 4.6.4.3

This revised report is reprinted by permission of the International
Federation for Information Processing; who ask us to state that
reproduction of the whole text only is permitted without formality.
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