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1 Scope1

This ECMA Standard defines the Common Language Infrastructure (CLI) in which applications written in2
multiple high level languages may be executed in different system environments without the need to rewrite the3
application to take into consideration the unique characteristics of those environments. This ECMA Standard4
consists of several sections in order to facilitate understanding various components by describing those5
components in their separate sections. These sections are:6

Partition I: Architecture7

Partition II: Metadata Definition and Semantics8

Partition III: CIL Instruction Set9

Partition IV: Profiles and Libraries10

Partition V: Annexes11
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2 Conformance1

A system claiming conformance to this ECMA Standard shall implement all the mandatory requirements of2
this standard, and shall specify the profile (see Partition IV) that it implements. The minimal implementation is3
the Kernel Profile (see Partition IV). A conforming implementation may also include additional functionality4
that does not prevent running code written to rely solely on the profile as specified in this standard. For5
example, it may provide additional classes, new methods on existing classes, or a new interface on a6
standardized class, but it shall not add methods or properties to interfaces specified in this standard.7

A compiler that generates Common Intermediate Language (CIL, see Partition III) and claims conformance to8
this ECMA Standard shall produce output files in the format specified in this standard and the CIL it generates9
shall be valid CIL as specified in this standard. Such a compiler may also claim that it generates verifiable10
code, in which case the CIL it generates shall be verifiable as specified in this standard.11
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4 Glossary1

For the purpose of this ECMA Standard, the following definitions apply. They are collected here for ease of2
reference, but the definition is presented in context elsewhere in the specification, as noted. Definitions3
enclosed in square brackets [ ] were not extracted from the body of the standard.4

The remainder of this section and its subsections contain only informative text 5

Term Description Pt Ch Section

Abstract Only an abstract object type is allowed to define method
contracts for which the type or the VES does not also
provide the implementation. Such method contracts are
called abstract methods

I 7.9.6.2 Concreteness

Accessibility
of members

A type scopes all of its members, and it also specifies
the accessibility rules for its members. Except where
noted, accessibility is decided based only on the
statically visible type of the member being referenced
and the type and assembly that is making the reference.
The CTS supports seven different rules for accessibility:
Compiler-Controlled; Private; Family; Assembly;
Family-and-Assembly; Family-or-Assembly; Public.

I 7.5.3.2 Accessibility of
Members

Aggregate
data

Data items that have sub-components (arrays, structures,
or object instances) but are passed by copying the value.
The sub-components can include references to managed
memory. Aggregate data is represented using a value
type…

I 11.1.6 Aggregate Data

Application
domain

A mechanism … to isolate applications running in the
same operating system process from one another.

I 11.5 Proxies and
Remoting

Array
elements

The representation of a value (except for those of built-
in types) can be subdivided into sub-values. These sub-
values are either named, in which case they are called
fields, or they are accessed by an indexing expression, in
which case they are called array elements.

I 7.4.1 Fields, Array
Elements, and
Values

Argument [Value of an operand to a method call]

Array types Types that describe values composed of array elements
are array types.

I 7.4.1 Fields, Array
Elements, and
Values

Assembly An assembly is a configured set of loadable code
modules and other resources that together implement a
unit of functionality.

I 7.5.2 Assemblies and
Scoping

Assembly
scope

Type names are scoped by the assembly that contains
the implementation of the type….. The type name is said
to be in the assembly scope of the assembly that
implements the type.

I 7.5.2 Assemblies and
Scoping

Assignment
compatibilit
y

Assignment compatibility of a value (described by a
type signature) to a location (described by a location
signature) is defined as follows: One of the types
supported by the exact type of the value is the same as
the type in the location signature.

I 7.7 Assignment
Compatibility

Attributes Attributes of types and their members attach descriptive
information to their definition.

II 5.9 Attributes and
Metadata
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information to their definition. Metadata

Base Class
Library

This Library is part of the Kernel Profile. It is a simple
runtime library for a modern programming language.

IV 5.1 Runtime
Infrastructure
Library

Binary
operators

Binary operators take two arguments, perform some
operation and return a value. They are represented as
static methods on the class that defines the type of one of
their two operands or the return type.

I 9.3.2 Binary
Operators

Boolean
Data Type

A CLI Boolean type occupies one byte in memory. A bit
pattern of all zeroes denotes a value of false. A bit
pattern with any bit set (analogous to a non-zero integer)
denotes a value of true.

III 1.1.2 Boolean Data
Type

Box The box instruction is a widening (always typesafe)
operation that converts a value type instance to
System.Object by making a copy of the instance and
embedding it in a newly allocated object.

I 11.1.6.2.5 Boxing and
Unboxing

Boxed type For every Value Type, the CTS defines a corresponding
Reference Type called the boxed type.

I 7.2.4 Boxing and
Unboxing of
Values

Boxed value The representation of a value of a boxed type (a boxed
value) is a location where a value of the Value Type
may be stored.

I 7.2.4 Boxing and
Unboxing of
Values

Built-in
types

..Data types [that] are an integral part of the CTS and are
supported directly by the Virtual Execution System
(VES).

I 7.2.2 Built-In Types

By-ref
parameters

The address of the data is passed from the caller to the
callee, and the type of the parameter is therefore a
managed or unmanaged pointer.

I 11.4.1.5 Parameter
Passing

By-value
parameters

The value of an object is passed from the caller to the
callee

I 11.4.1.5 Parameter
Passing

Calling
Convention

A calling convention specifies how a method expects its
arguments to be passed from the caller to the called
method.

II 14.3 Calling
Convention

Casting Since a value can be of more than one type, a use of the
value needs to clearly identify which of its types is being
used. Since values are read from locations that are
typed, the type of the value which is used is the type of
the location from which the value was read. If a
different type is to be used, the value is cast to one of its
other types. .

I 7.3.3 Casting

CIL [Common Intermediate Language]

Class
contract

A class contract specifies the representation of the
values of the class type. Additionally, a class contract
specifies the other contracts that the class type supports,
e.g., which interfaces, methods, properties and events
shall be implemented.

I 7.6 Contracts

Class type A complete specification of the representation of the
values of the class type and all of the contracts (class,
interface, method, property, and event) that are

I 7.9.5 Class Type
Definition
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interface, method, property, and event) that are
supported by the class type.

CLI At the center of the Common Language Infrastructure
(CLI) is a single type system, the Common Type System
(CTS), that is shared by compilers, tools, and the CLI
itself. It is the model that defines the rules the CLI
follows when declaring, using, and managing types.

I 5 Overview of the
Common
Language
Infrastructure

CLS The Common Language Specification (CLS) is a set of
conventions intended to promote language
interoperability.

I 6 Common
Language
Specification
(CLS)

CLS
(consumer)

A CLS consumer is a language or tool that is designed to
allow access to all of the features supplied by CLS-
compliant frameworks (libraries), but not necessarily be
able to produce them.

I 6 Common
Language
Specification
(CLS)

CLS
(extender)

A CLS extender is a language or tool that is designed to
allow programmers to both use and extend CLS-
compliant frameworks.

I 6 Common
Language
Specification
(CLS)

CLS
(framework)

A library consisting of CLS-compliant code is herein
referred to as a “framework”.

I 6 Common
Language
Specification
(CLS)

Code labels Code labels are followed by a colon (“:”) and represent
the address of an instruction to be executed

II 5.4 Labels and Lists
of Labels

Coercion Coercion takes a value of a particular type and a desired
type and attempts to create a value of the desired type
that has equivalent meaning to the original value.

I 7.3.2 Coercion

Common
Language
Specification
(CLS)

The Common Language Specification (CLS) is a set of
conventions intended to promote language
interoperability.

I 6 Common
Language
Specification
(CLS)

Common
Type System
(CTS)

[I] The Common Type System (CTS) provides a rich
type system that supports the types and operations found
in many programming languages.

I 5 Overview of the
Common
Language
Infrastructure

Compiler-
controlled
accessibility

Accessible only through use of a definition, not a
reference, hence only accessible from within a single
compilation unit and under the control of the compiler.

I 7.5.3.2 Accessibility of
Members

Compound
types

. Types that describe values composed of fields are
compound types.

I 7.4.1 Fields, Array
Elements, and
Values

Computed
destinations

The destination of a method call may be either encoded
directly in the CIL instruction stream (the call and jmp
instructions) or computed (the callvirt, and calli
instructions).

I 11.4.1.3 Computed
Destinations

Concrete An object type that is not marked abstract is by
definition concrete.

I 7.9.6.2 Concreteness

Conformanc
e

A system claiming conformance to this ECMA Standard
shall implement all the mandatory requirements of this

I 2 Conformance
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e shall implement all the mandatory requirements of this
standard, and shall specify the profile that it implements.

Contracts Contracts are named. They are the shared assumptions
on a set of signatures … between all implementers and
all users of the contract.

I 7.6 Contracts

Conversion
operators

Conversion operators are unary operations that allow
conversion from one type to another. The operator
method shall be defined as a static method on either the
operand or return type.

I 9.3.3 Conversion
Operators

Custom
Attributes

Custom attributes add user-defined annotations to the
metadata. Custom attributes allow an instance of a type
to be stored with any element of the metadata.

II 20 Custom
Attributes

Custom
modifiers

Custom modifiers, defined using modreq (“required
modifier”) and modopt (“optional modifier”), are similar
to custom attributes …except that modifiers are part of a
signature rather than attached to a declaration. Each
modifer associates a type reference with an item in the
signature.

II 7.1.1 modreq and
modopt

Data labels Data labels specify the location of a piece of data II 5.4 Labels and Lists
of Labels

Delegates Delegates are the object-oriented equivalent of function
pointers. . Delegates are created by defining a class that
derives from the base type System.Delegate

I 7.9.3 Delegates

Derived
Type

A derived type guarantees support for all of the type
contracts of its base type. A type derives directly from
its specified base type(s), and indirectly from their base
type(s).

I 7.9.8 Type
Inheritance

Enums An enum, short for enumeration, defines a set of
symbols that all have the same type.

II 13.3 Enums

Equality For value types, the equality operator is part of the
definition of the exact type. Definitions of equality
should obey the following rules:

• Equality should be an equivalence
operator, as defined above.

• Identity should imply equality, as stated
earlier.

• If either (or both) operand is a boxed
value, equality should be computed by

• first unboxing any boxed operand(s), and
then

• applying the usual rules for equality on
the resulting values.

I 7.2.5.2 Equality

Equality of
values

The values stored in the variables are equal if the
sequences of characters are the same.

I 7.2.5 Identity and
Equality of
Values

Evaluation
stack

Associated with each method state is an evaluation
stack… The evaluation stack is made up of slots that can
hold any data type, including an unboxed instance of a

I 11.3.2.1 The Evaluation
Stack
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value type.

Event
contract

An event contract is specified with an event definition.
There is an extensible set of operations for managing a
named event, which includes three standard methods
(register interest in an event, revoke interest in an event,
fire the event). An event contract specifies method
contracts for all of the operations that shall be
implemented by any type that supports the event
contract.

I 7.6 Contracts

Event
definitions

The CTS supports events in precisely the same way that
it supports properties… The conventional methods,
however, are different and include means for subscribing
and unsubscribing to events as well as for firing the
event.

I 7.11.4 Event
Definitions

Exception
handling

Exception handling is supported in the CLI through
exception objects and protected blocks of code

I 11.4.2 Exception
Handling

Extended
Array
Library

This Library is not part of any Profile, but can be
supplied as part of any CLI implementation. It provides
support for non-vector arrays.

IV 5.7 Extended Array
Library

Extended
Numerics
Library

The Extended Numerics Library is not part of any
Profile, but can be supplied as part of any CLI
implementation. It provides the support for floating-
point (System.Float, System.Double) and extended-
precision (System.Decimal) data types.

IV 5.6 Extended
Numerics
Library

Family
accessibility

accessible to referents that support the same type, i.e. an
exact type and all of the types that inherit from it

I 7.5.3.2 Accessibility of
Members

Family-and-
assembly
accessibilty

Accessible only to referents that qualify for both Family
and Assembly access.

I 7.5.3.2 Accessibility of
Members

Family-or-
assembly
accessibility

accessible only to referents that qualify for either Family
or Assembly access.

I 7.5.3.2 Accessibility of
Members

Field
definitions

Field definitions name and a location signature. I 7.11.2 Field
Definitions

Field
inheritance

A derived object type inherits all of the non-static fields
of its base object type.

I 7.10.1 Field
Inheritance

Fields Fields are typed memory locations that store the data of
a program.

II 15 Defining and
Referencing
Fields

File Names A file name is like any other name where “.” is
considered a normal constituent character. The specific
syntax for file names follows the specifications of the
underlying operating system

II 5.8 File Names

Finalizers A class definition that creates an object type may supply
an instance method to be called when an instance of the
class is no longer accessible.

I 7.9.6.7 Finalizers

Getter
method

By convention, properties define a getter method (for
accessing the current value of the property)…

I 7.11.3 Property
Definitions
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Global
Fields

In addition to types with static members, many
languages have the notion of data and methods that are
not part of a type at all. These are referred to as global
fields and methods.

II 9.8 Global Fields
and Methods

Global
Methods

In addition to types with static members, many
languages have the notion of data and methods that are
not part of a type at all. These are referred to as global
fields and methods.

II 9.8 Global Fields
and Methods

Global state The CLI manages multiple concurrent threads of control
… multiple managed heaps, and a shared memory
address space.

I 11.3.1 The Global
State

GUID [A unique identification string used with remote
procedure calls.]

hide-by-
name

The introduction of a name in a given type hides all
inherited members of the same kind (method or field)
with the same name.

II 8.3 Hiding

hide-by-
name-and-
sig

The introduction of a name in a given type hides any
inherited member of the same kind but with precisely the
same type (for fields) or signature (for methods,
properties, and events).

II 8.3 Hiding

Hiding Hiding controls which method names inherited from a
base type are available for compile-time name binding.

II 8 Visibility,
Accessibility
and Hiding

Homes The home of a data value is where it is stored for
possible reuse

I 11.1.6.1 Homes for
Values

Identifiers Identifiers are used to name entities II 5.3 Identifiers

Identity The identity operator is defined by the CTS as follows.

• If the values have different exact types,
then they are not identical.

• Otherwise, if their exact type is a Value
Type, then they are identical if and only
if the bit sequences of the values are the
same, bit by bit.

Otherwise, if their exact type is a Reference Type, then
they are identical if and only if the locations of the
values are the same.

I 7.2.5.1 Identity

Identity of
values

The values of the variables are identical if the locations
of the sequences of characters are the same, i.e., there is
in fact only one string in memory.

I 7.2.5 Identity and
Equality of
Values

Ilasm An assembler language for CIL II 2 Overview

Inheritance
demand

When attached to a type ..[an inheritance demand]
requires that any type that wishes to inherit from this
type shall have the specified security permission. When
attached to a non-final virtual method it requires that any
type that wishes to override this method shall have the
specified permission.

I 7.5.3.3 Security
Permissions

Instance
Methods

Instance methods are associated with an instance of a
type: within the body of an instance method it is possible

II 14.2 Static, Instance,
and Virtual
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Methods to reference the particular instance on which the method
is operating (via the this pointer).

Methods

Instruction
pointer (IP)

An instruction pointer (IP) points to the next CIL
instruction to be executed by the CLI in the present
method.

I 11.3.2 Method State

Interface
contract

Interface contracts specify which other contracts the
interface supports, e.g. which interfaces, methods,
properties and events shall be implemented.

I 7.6 Contracts

Interface
type
definition

An interface definition defines an interface type. An
interface type is a named group of methods, locations
and other contracts that shall be implemented by any
object type that supports the interface contract of the
same name.

I 7.9.4 Interface Type
Definition

Interface
type
inheritance

Interface types may inherit from multiple interface
types, i.e. an interface contract may list other interface
contracts that shall also be supported.

I 7.9.11 Interface Type
Inheritance

Interface
types

Interface types describe a subset of the operations and
none of the representation, and hence, cannot be an exact
type of any value.

I 7.2.3 Classes,
Interfaces and
Objects

Interfaces Interfaces…define a contract that other types may
implement.

II 11 Semantics of
Interfaces

Kernel
Profile

This profile is the minimal possible conforming
implementation of the CLI.

IV 3.1 The Kernel
Profile

Labels Provided as a programming convenience; they represent
a number that is encoded in the metadata. The value
represented by a label is typically an offset in bytes from
the beginning of the current method, although the
precise encoding differs depending on where in the
logical metadata structure or CIL stream the label
occurs.

II 5.4 Labels and Lists
of Labels

Libraries To a programmer a Library is a self-consistent set of
types (classes, interfaces, and value types) that provide a
useful set of functionality.

IV 2.1 Libraries

Local
memory
pool

The local memory pool is used to allocate objects whose
type or size is not known at compile time and which the
programmer does not wish to allocate in the managed
heap.

I 11.3.2.4 Local Memory
Pool

Local
signatures

. A local signature specifies the contract on a local
variable allocated during the running of a method.

I 7.6.1.3 Local
Signatures

Location
signatures

All locations are typed. This means that all locations
have a location signature, which defines constraints on
the location, its usage, and on the usage of the values
stored in the location.

I 7.6.1.2 Location
Signatures

Locations Values are stored in locations. A location can hold a
single value at a time. All locations are typed. The type
of the location embodies the requirements that shall be
met by values that are stored in the location.

I 7.3 Locations

Machine
state

One of the design goals of the CLI is to hide the details
of a method call frame from the CIL code generator.
The machine state definitions … reflect these design

I 11.3 Machine State
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The machine state definitions … reflect these design
choices, where machine state consists primarily of
global state and method state.

Managed
code

Managed code is simply code that provides enough
information to allow the CLI to provide a set of core
services, including

• Given an address inside the code for a
method, locate the metadata describing
the method

• Walk the stack

• Handle exceptions

• Store and retrieve security information

I 5.2.1 Managed Code

Managed
data

Managed data is data that is allocated and released
automatically by the CLI, through a process called
garbage collection. Only managed code can access
managed data, but programs that are written in managed
code can access both managed and unmanaged data.

I 5.2.2 Managed Data

Managed
pointer
types

[ The O and &] datatype represents an object reference
that is managed by the CLI

I 11.1.1.2 Managed
Pointer Types:
O and &

Managed
Pointers

Managed pointers (&) may point to a field of an object,
a field of a value type, an element of an array, or the
address where an element just past the end of an array
would be stored (for pointer indexes into managed
arrays).

II 13.4.2 Managed
Pointers

Manifest An assembly is a set of one or more files deployed as a
unit.

II 6 Assemblies,
Manifests and
Modules

Marshalling
Descriptors

A Marshalling Descriptor is like a signature – it’s a blob
of binary data. It describes how a field or parameter
(which, as usual, covers the method return, as parameter
number 0) should be marshalled when calling to or from
unmanaged coded via PInvoke dispatch or IJW (“It Just
Works”) thunking.

II 22.4 Marshaling
Descriptors

Member Fields, array elements, and methods are called members
of the type. Properties and events are also members of
the type.

I 7.4 Type Members

Member
inheritance

Only object types may inherit implementations, hence
only object types may inherit members

I 7.10 Member
Inheritance

Memory
store

By “memory store” we mean the regular process
memory that the CLI operates within. Conceptually, this
store is simply an array of bytes.

I 11.6.1 The Memory
Store

Metadata The CLI uses metadata to describe and reference the
types defined by the Common Type System. Metadata is
stored (“persisted”) in a way that is independent of any
particular programming language. Thus, metadata
provides a common interchange mechanism for use

I 5 Overview of the
Common
Language
Infrastructure
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between tools that manipulate programs (compilers,
debuggers, etc.) as well as between these tools and the
Virtual Execution System

Metadata
Token

This is a 4-byte value, that specifies a row in a metadata
table, or a starting byte offset in the User String heap

III 1.9 Metadata
Tokens

Method A named method describes an operation that may be
performed on values of an exact type.

I 7.2.3 Classes,
Interfaces and
Objects

Method
contract

A method contract is specified with a method definition.
A method contract is a named operation that specifies
the contract between the implementation(s) of the
method and the callers of the method.

I 7.6 Contracts

Method
definitions

Method definitions are composed of a name, a method
signature, and optionally an implementation of the
method.

I 7.11.1 Method
Definitions

Method
inheritance

A derived object type inherits all of the instance and
virtual methods of its base object type. It does not inherit
constructors or static methods.

I 7.10.2 Method
Inheritance

Method
Pointers

Variables of type method pointer shall store the address
of the entry point to a method with compatible signature.

II 13.5 Method
Pointers

Method
signatures

Method signatures are composed of

• a calling convention,

• a list of zero or more parameter
signatures, one for each parameter of the
method,

• and a type signature for the result value
if one is produced.

I 7.6.1.5 Method
Signatures

Method
state

Method state describes the environment within which a
method executes. (In conventional compiler
terminology, it corresponds to a superset of the
information captured in the “invocation stack frame”).

I 11.3.2 Method State

methodInfo
handle

This .. holds the signature of the method, the types of its
local variables, and data about its exception handlers.

I 11.3.2 Method State

Module A single file containing executable content II 6 Assemblies,
Manifests and
Modules

Name
Mangling

… the platform may use name-mangling rules that force
the name as it appears to a managed program to differ
from the name as seen in the native implementation (this
is common, for example, when the native code is
generated by a C++ compiler).

II 14.5.2 Platform Invoke

Native Data
Types

Some implementations of the CLI will be hosted on top
of existing operating systems or runtime platforms that
specify data types required to perform certain functions.
The metadata allows interaction with these native data
types by specifying how the built-in and user-defined
types of the CLI are to be marshalled to and from native

II 7.4 Native Data
Types
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data types.

Native size
types

The native-size, or generic, types (I, U, O, and &) are a
mechanism in the CLI for deferring the choice of a
value’s size.

I 11.1.1 Native Size:
native int,
native unsigned
int, O and &

Nested type
definitions

A nested type definition is identical to a top-level type
definition, with one exception: a top-level type has a
visibility attribute, while the visibility of a nested type is
the same as the visibility of the enclosing type.

I 7.11.5 Nested Type
Definitions

Nested types A type (called a nested type) can be a member of an
enclosing type.

I 7.5.3.4 Nested Types

Network
Library

This Library is part of the Compact Profile. It provides
simple networking services including direct access to
network ports as well as HTTP support.

IV 5.3 Network
Library

OOP [Object Oriented Programming]

Object type The object type describes the physical structure of the
instance and the operations that are allowed on it.

I 7.9.6 Object Type
Definitions

Object type
inheritance

With the sole exception of System.Object, which does
not inherit from any other object type, all object types
shall either explicitly or implicitly declare support for
(inherit from) exactly one other object type.

I 7.9.9 Object Type
Inheritance

Objects Each object is self-typing, that is, its type is explicitly
stored in its representation. It has an identity that
distinguishes it from all other objects, and it has slots
that store other entities (which may be either objects or
values). While the contents of its slots may be changed,
the identity of an object never changes.

I 7 Common Type
System

Opaque
classes

Some languages provide multi-byte data structures
whose contents are manipulated directly by address
arithmetic and indirection operations. To support this
feature, the CLI allows value types to be created with a
specified size but no information about their data
members.

I 11.1.6.3 Opaque Classes

Overloading Within a single scope, a given name may refer to any
number of methods provided they differ in any of the
following: Number of parameters [and] Type of each
argument

I 9.2 Overloading

Overriding ..Overriding deals with object layout and is applicable
only to instance fields and virtual methods. The CTS
provides two forms of member overriding, new slot and
expect existing slot.

I 7.10.4 Hiding,
Overriding, and
Layout

Parameter [Name used within the body of a method to refer to the
corresponding argument of the method]

Parameter
passing

The CLI supports three kinds of parameter passing, all
indicated in metadata as part of the signature of the
method. Each parameter to a method has its own
passing convention (e.g., the first parameter may be
passed by-value while all others are passed by-ref).

I 11.4.1.5 Parameter
Passing
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Parameter
Signatures

Parameter signatures define constraints on how an
individual value is passed as part of a method
invocation.

I 7.6.1.4 Parameter
Signatures

Pinned While a method with a pinned local variable is executing
the VES shall not relocate the object to which the local
refers.

II 7.1.2 Pinned

PInvoke Methods defined in native code may be invoked using
the platform invoke (also know as PInvoke or p/invoke)
functionality of the CLI.

II 14.5.2 Platform Invoke

Pointer type A pointer type is a compile time description of a value
whose representation is a machine address of a location.

I 7.2.1 Value Types
and Reference
Types

Pointers Pointers may contain the address of a field (of an object
or value type) or an element of an array.

II 13.4 Pointer Types

Private
accessibility

Accessible only to referents in the implementation of the
exact type that defines the member.

I 7.5.3.2 Accessibility of
Members

Profiles A Profile is simply a set of Libraries, grouped together
to form a consistent whole that provides a fixed level of
functionality.

IV 2.2 Profiles

Properties . Propert[ies] define named groups of accessor method
definitions that implement the named event or property
behavior.

I 7.11 Member
Definitions

Property
contract

A property contract is specified with a property
definition. There is an extensible set of operations for
handling a named value, which includes a standard pair
for reading the value and changing the value. A
property contract specifies method contracts for the
subset of these operations that shall be implemented by
any type that supports the property contract.

I 7.6 Contracts

Property
definitions

A property definition defines a named value and the
methods that access the value. A property definition
defines the accessing contracts on that value.

I 7.11.3 Property
Definitions

Public
accessibility

Accessible to all referents I 7.5.3.2 Accessibility of
Members

Qualified
name

…Consider a compound type Point that has a field
named x. The name “field x” by itself does not uniquely
identify the named field, but the qualified name “field x
in type Point” does.

I 7.5.2 Assemblies and
Scoping

Rank The rank of an array is the number of dimensions. II 13.2 Arrays

Reference
demand

Any attempt to resolve a reference to the marked item
shall have specified security permission.

I 7.5.3.3 Security
Permissions

Reference
types

Reference Types describe values that are represented as
the location of a sequence of bits. There are three kinds
of Reference Types:

I 7.2.1 Value Types
and Reference
Types

Reflection
Library

This Library is part of the Compact Profile. It provides
the ability to examine the structure of types, create
instances of types, and invoke methods on types, all

IV 5.4 Reflection
Library
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based on a description of the type.

Remoting
boundary

A remoting boundary exists if it is not possible to share
the identity of an object directly across the boundary.
For example, if two objects exist on physically separate
machines that do not share a common address space,
then a remoting boundary will exist between them.

I 11.5 Proxies and
Remoting

Return state
handle

This handle is used to restore the method state on return
from the current method.

I 11.3.2 Method State

Runtime
Infrastructu
re Library

This Library is part of the Kernel Profile. It provides the
services needed by a compiler to target the CLI and the
facilities needed to dynamically load types from a
stream in the file format.

IV 5.1 Runtime
Infrastructure
Library

Scopes Names are collected into groupings called scopes. I 7.5.2 Assemblies and
Scoping

Sealed Specifies that a type shall not have subclasses II 9.1.4 Inheritance
Attributes

Sealed type An object type declares it shall not be used as a base
type (be inherited from) by declaring that it is a sealed
type.

I 7.9.9 Object Type
Inheritance

Security
descriptor

This descriptor is not directly accessible to managed
code but is used by the CLI security system to record
security overrides (assert, permit-only, and deny).

I 11.3.2 Method State

Security
permissions

Access to members is also controlled by security
demands that may be attached to an assembly, type,
method, property, or event.

I 7.5.3.3 Security
Permissions

Serializable
fields

A field that is marked serializable is to be serialized as
part of the persistent state of a value of the type.

I 7.11.2 Field
Definitions

Setter
method

By convention, properties define …optionally a setter
method (for modifying the current value of the
property).

I 7.11.3 Property
Definitions

Signatures Signatures are the part of a contract that can be checked
and automatically enforced. Signatures are formed by
adding constraints to types and other signatures.

I 7.6.1 Signatures

Simple
labels

A simple label is a special name that represents an
address

II 5.4 Labels and Lists
of Labels

Special
members

There are three special members, all methods, that can
be defined as part of a type: instance constructors,
instance finalizers, and type initializers.

II 9.5 Special
Members

Special
Types

Special Types are those that are referenced from CIL,
but for which no definition is supplied: the VES supplies
the definitions automatically based on information
available from the reference.

II 13 Semantics of
Special TYpes

Standard
Profiles

There are two Standard Profiles. The smallest
conforming implementation of the CLI is the Kernel
Profile, while the Compact Profile contains additional
features useful for applications targeting a more
resource-rich set of devices.

IV 3 The Standard
Profiles
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Static fields Types may declare locations that are associated with the
type rather than any particular value of the type. Such
locations are static fields of the type.

I 7.4.3 Static Fields
and Static
Methods

Static
methods

…Types may also declare methods that are associated
with the type rather than with values of the type. Such
methods are static methods of the type.

I 7.4.3 Static Fields
and Static
Methods

Super Calls In some cases, it may be desirable to re-use code defined
in the base type. E.g., an overriding virtual method may
want to call its previous version. This kind of re-use is
called a super call, since the overridden method of the
base type is called.

This When they are invoked, instance and virtual methods are
passed the value on which this invocation is to operate
(known as this or a this pointer).

I 7.4.2 Methods

Thunk A (typically) small piece of code used to provide a
transition between two pieces of code where special
handling is required

Try block In the CLI, a method may define a range of CIL
instructions that are said to be protected. This is called
the try block.

II 18 Exception
Handling

Type
definers

Type definers construct a new type from existing types. I 7.9 Type Definers

Type
definition

The type definition:

• Defines a name for the type being
defined, i.e. the type name, and specifies
a scope in which that name will be found

• Defines a member scope in which the
names of the different kinds of members
(fields, methods, events, and properties)
are bound. The tuple of (member name,
member kind, and member signature) is
unique within a member scope of a type.

• Implicitly assigns the type to the
assembly scope of the assembly that
contains the type definition.

I 7.5.2 Assemblies and
Scoping

Type
inheritance

Inheritance of types is another way of saying that the
derived type guarantees support for all of the type
contracts of the base type. In addition, the derived type
usually provides additional functionality or specialized
behavior.

I 7.9.8 Type
Inheritance

Type
members

Object type definitions include member definitions for
all of the members of the type. Briefly, members of a
type include fields into which values are stored, methods
that may be invoked, properties that are available, and
events that may be raised.

I 7.4 Type Members

Type safety An implementation that lives up to the enforceable part
of the contract (the named signatures) is said to be
typesafe.

I 7.8 Type Safety and
Verification
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Type
signatures

Type signatures define the constraints on a value and its
usage.

I 7.6.1.1 Type Signatures

Typed
reference
parameters

A runtime representation of the data type is passed
along with the address of the data, and the type of the
parameter is therefore one specially supplied for this
purpose.

I 11.4.1.5 Parameter
Passing

Types Types describe values. All places where values are
stored, passed, or operated upon have a type, e.g. all
variables, parameters, evaluation stack locations, and
method results. The type defines the allowable values
and the allowable operations supported by the values of
the type. All operators and functions have expected
types for each of the values accessed or used.

I 7.2 Values and
Types

Unary
operators

Unary operators take one argument, perform some
operation on it, and return the result. They are
represented as static methods on the class that defines
the type of their one operand or their return type.

I 9.3.1 Unary
Operators

Unbox Unbox is a narrowing (runtime exception may be
generated) operation that converts a System.Object
(whose runtime type is a value type) to a value type
instance.

I 11.1.6.2.5 Boxing and
Unboxing

Unmanaged
Code

[Code that does not require the runtime for execution.
This code may not use the common type system or other
features of the runtime. Traditional native code (before
the CLI) is considered unmanaged]

Unmanaged
pointer
types

An unmanaged pointer type (also known simply as a
“pointer type”) is defined by specifying a location
signature for the location the pointer references. Any
signature of a pointer type includes this location
signature.

I 7.9.2 Unmanaged
Pointer Types

Validation Validation refers to a set of tests that can be performed
on any file to check that the file format, metadata, and
CIL are self-consistent.

II 3 Validation and
Verification

Value type
inheritance

Value Types, in their unboxed form, do not inherit from
any type.

I 7.9.10 Value Type
inheritance

Value types In contrast to classes, value types (see Partition I) are not
accessed by using a reference but are stored directly in
the location of that type.

II 12 Semantics of
Value Types

Values The representation of a value (except for those of built-
in types) can be subdivided into sub-values. These sub-
values are either named, in which case they are called
fields, or they are accessed by an indexing expression, in
which case they are called array elements.

I 7.4.1 Fields, Array
Elements, and
Values

Vararg
Methods

vararg methods accept a variable number of arguments. II 14.4.5 Vararg methods

Variable
argument
lists

The CLI works in conjunction with the class library to
implement methods that accept argument lists of
unknown length and type (“varargs methods”).

I 11.3.2.3 Variable
Argument Lists
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Vectors Vectors are single-dimension arrays with a zero lower
bound.

II 13.1 Vectors

Verifiability Memory safety is a property that ensures programs
running in the same address space are correctly isolated
from one another …Thus, it is desirable to test whether
programs are memory safe prior to running them.
Unfortunately, it is provably impossible to do this with
100% accuracy. Instead, the CLI can test a stronger
restriction, called verifiability.

III 1.8 Verifiability

Verification Verification refers to a check of both CIL and its related
metadata to ensure that the CIL code sequences do not
permit any access to memory outside the program’s
logical address space.

II 3 Validation and
Verification

Version
Number

The version number of the assembly, specified as four
32-bit integers

II 6.2.1.4 Version
Numbers

Virtual call ..A virtual method may be invoked by a special
mechanism (a virtual call) that chooses the
implementation based on the dynamically detected type
of the instance used to make the virtual call rather than
the type statically known at compile time.

I 7.4.4 Virtual
Methods

Virtual
calling
convention

The CIL provides a “virtual calling convention” that is
converted by an interpreter or JIT compiler into a native
calling convention.

I 11.4.1.4 Virtual Calling
Convention

Virtual
execution
system

The Virtual Execution System (VES) provides an
environment for executing managed code. It provides
direct support for a set of built-in data types, defines a
hypothetical machine with an associated machine model
and state, a set of control flow constructs, and an
exception handling model.

I 5 Overview of the
Common
Language
Infrastructure

Virtual
methods

Virtual methods are associated with an instance of a type
in much the same way as for instance methods.
However, unlike instance methods, it is possible to call a
virtual method in such a way that the implementation of
the method shall be chosen at runtime by the VES
depends upon the type of object used for the this pointer.

II 14.2 Static, Instance,
and Virtual
Methods

Visibility Attached only to top-level types, and there are only two
possibilities: visible to types within the same assembly,
or visible to types regardless of assembly.

II 8.1 Visibility of
Top-Level
Types and
Accessibility of
Nested Types

Widen If a type overrides an inherited method, it may widen,
but it shall not narrow, the accessibility of that method.

II 9.3.3 Accessibility
and Overriding

XML
Library

This Library is part of the Compact Profile. It provides
a simple “pull-style” parser for XML. It is designed for
resource-constrained devices, yet provides a simple user
model.

IV 5.5 XML Library

11



- 19 -

5 Overview of the Common Language Infrastructure1

The Common Language Infrastructure (CLI) provides a specification for executable code and the execution2
environment (the Virtual Execution System, or VES) in which it runs. Executable code is presented to the VES3
as modules. A module is a single file containing executable content in the format specified in Partition II.4

The remainder of this section and its subsections contain only informative text 5

At the center of the Common Language Infrastructure (CLI) is a single type system, the Common Type System6
(CTS), that is shared by compilers, tools, and the CLI itself. It is the model that defines the rules the CLI7
follows when declaring, using, and managing types. The CTS establishes a framework that enables cross-8
language integration, type safety, and high performance code execution. This section describes the architecture9
of CLI by describing the CTS.10

The following four areas are covered in this section:11

• The Common Type System. See Chapter 7. The Common Type System (CTS) provides a rich12
type system that supports the types and operations found in many programming languages. The13
Common Type System is intended to support the complete implementation of a wide range of14
programming languages.15

• Metadata. See Chapter 8. The CLI uses metadata to describe and reference the types defined by16
the Common Type System. Metadata is stored (“persisted”) in a way that is independent of any17
particular programming language. Thus, metadata provides a common interchange mechanism for18
use between tools that manipulate programs (compilers, debuggers, etc.) as well as between these19
tools and the Virtual Execution System.20

• The Common Language Specification. See Chapter 9. The Common Language Specification is21
an agreement between language designers and framework (class library) designers. It specifies a22
subset of the CTS Type System and a set of usage conventions. Languages provide their users the23
greatest ability to access frameworks by implementing at least those parts of the CTS that are part24
of the CLS. Similarly, frameworks will be most widely used if their publicly exposed aspects25
(classes, interfaces, methods, fields, etc.) use only types that are part of the CLS and adhere to the26
CLS conventions.27

• The Virtual Execution System. See Chapter 11. The Virtual Execution System (VES)28
implements and enforces the CTS model. The VES is responsible for loading and running29
programs written for the CLI. It provides the services needed to execute managed code and data,30
using the metadata to connect separately generated modules together at runtime (late binding).31

Together, these aspects of the CLI form a unifying framework for designing, developing, deploying, and32
executing distributed components and applications. The appropriate subset of the Common Type System is33
available from each programming language that targets the CLI. Language-based tools communicate with each34
other and with the Virtual Execution System using metadata to define and reference the types used to construct35
the application. The Virtual Execution System uses the metadata to create instances of the types as needed and36
to provide data type information to other parts of the infrastructure (such as remoting services, assembly37
downloading, security, etc.).38

5.1 Relationship to Type Safety39

Type safety is usually discussed in terms of what it does, e.g. guaranteeing encapsulation between different40
objects, or in terms of what it prevents, e.g. memory corruption by writing where one shouldn’t. However, from41
the point of view of the Common Type System, type safety guarantees that:42

• References are what they say they are - Every reference is typed and the object or value43
referenced also has a type, and they are assignment compatible (see Section 7.7).44

• Identities are who they say they are - There is no way to corrupt or spoof an object, and by45
implication a user or security domain. The access to an object is through accessible functions and46
fields. An object may still be designed in such a way that security is compromised. However, a47
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local analysis of the class, its methods, and the things it uses, as opposed to a global analysis of1
all uses of a class, is sufficient to assess the vulnerabilities.2

• Only appropriate operations can be invoked – The reference type defines the accessible3
functions and fields. This includes limiting visibility based on where the reference is, e.g.4
protected fields only visible in subclasses.5

The Common Type System promotes type safety e.g. everything is typed. Type safety can be optionally6
enforced. The hard problem is determining if an implementation conforms to a typesafe declaration. Since the7
declarations are carried along as metadata with the compiled form of the program, a compiler from the8
Common Intermediate Language (CIL) to native code (see Section 7.8) can type-check the implementations.9

5.2 Relationship to Managed Metadata-driven Execution10

Metadata describes code by describing the types that the code defines and the types that it references externally.11
The compiler produces the metadata when the code is produced. Enough information is stored in the metadata12
to:13

• Manage code execution – not just load and execute, but also memory management and execution14
state inspection.15

• Administer the code – Installation, resolution, and other services16

• Reference types in the code – Importing into other languages and tools as well as scripting and17
automation support.18

The Common Type System assumes that the execution environment is metadata-driven. Using metadata allows19
the CLI to support:20

• Multiple execution models - The metadata also allows the execution environment to deal with a21
mixture of interpreted, JITted, native and legacy code and still present uniform services to tools22
like debuggers or profilers, consistent exception handling and unwinding, reliable code access23
security, and efficient memory management.24

• Auto support for services - Since the metadata is available at execution time, the execution25
environment and the base libraries can automatically supply support for reflection, automation,26
serialization, remote objects, and inter-operability with existing unmanaged native code with little27
or no effort on the part of the programmer.28

• Better optimization – Using metadata references instead of physical offsets, layouts, and sizes29
allows the CLI to optimize the physical layouts of members and dispatch tables. In addition, this30
allows the generated code to be optimized to match the particular CPU or environment.31

• Reduced binding brittleness – Using metadata references reduces version-to-version brittleness32
by replacing compile-time object layout with load-time layout and binding by name.33

• Flexible deployment resolution - Since we can have metadata for both the reference and the34
definition of a type, more robust and flexible deployment and resolution mechanisms are possible.35
Resolution means that by looking in the appropriate set of places it is possible to find the36
implementation that best satisfies these requirements for use in this context. There are five37
elements of information in the foregoing: two items are made available via metadata38
(requirements and context); the others come from application packaging and deployment (where39
to look, how to find an implementation, and how to decide the best match).40

5.2 .1 Managed Code41

Managed code is simply code that provides enough information to allow the CLI to provide a set of core42
services, including43

• Given an address inside the code for a method, locate the metadata describing the method44

• Walk the stack45

• Handle exceptions46
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• Store and retrieve security information1

This standard specifies a particular instruction set, the Common Intermediate Language (CIL, see Partition III),2
and a file format (see Partition II) for storing and transmitting managed code.3

5.2 .2 Managed Data4

Managed data is data that is allocated and released automatically by the CLI, through a process called5
garbage collection.6

5.2 .3 Summary7

The Common Type System is about integration between languages: using another language’s objects as if they8
were one’s own.9

The objective of the CLI is to make it easier to write components and applications from any language. It does10
this by defining a standard set of types, making all components fully self-describing, and providing a high11
performance common execution environment. This ensures that all CLI compliant system services and12
components will be accessible to all CLI aware languages and tools. In addition, this simplifies deployment of13
components and applications that use them, all in a way that allows compilers and other tools to leverage the14
high performance execution environment. The Common Type System covers, at a high level, the concepts and15
interactions that make all of this possible.16

The discussion is broken down into four areas:17

• Type System – What types are and how to define them.18
• Metadata – How types are described and how those descriptions are stored.19
• Common Language Specification – Restrictions required for language interoperability.20
• Virtual Execution System – How code is executed and types are instantiated, interact, and die.21

End informative text 22
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6 Common Language Specification (CLS)1

6.1 Introduction2

The Common Language Specification (CLS) is a set of rules intended to promote language interoperability.3
These rules shall be followed in order to conform to the CLS. They are described in greater detail in4
subsequent chapters and are summarized in Chapter 10. CLS conformance is a characteristic of types that are5
generated for execution on a CLI implementation. Such types must conform to the CLI specification, in6
addition to the CLS rules. These additional rules apply only to types that are visible in assemblies other than7
those in which they are defined, and to the members (fields, methods, properties, events, and nested types) that8
are accessible outside the assembly (i.e. those that have an accessibility of public, family, or family-or-9
assembly).10

Note: A library consisting of CLS-compliant code is herein referred to as a “framework”. Compilers that11
generate code for the CLI may be designed to make use of such libraries, but not to be able to produce or12
extend such library code. These compilers are referred to as “consumers”. Compilers that are designed to both13
produce and extend frameworks are referred to as “extenders”. In the description of each CLS rule, additional14
informative text is provided to assist the reader in understanding the rule’s implication for each of these15
situations.16

6.2 Views of CLS Compliance17

This section and its subsections contain only informative text 18

The CLS is a set of rules that apply to generated assemblies. Because the CLS is designed to support19
interoperability for libraries and the high-level programming languages used to write them, it is often useful to20
think of the CLS rules from the perspective of the high-level source code and tools, such as compilers, that are21
used in the process of generating assemblies. For this reason, informative notes are added to the description of22
CLS rules to assist the reader in understanding the rule’s implications for several different classes of tools and23
users. The different viewpoints used in the description are called framework, consumer, and extender and are24
described here.25

6.2 .1 CLS Framework26

A library consisting of CLS-compliant code is herein referred to as a “framework”. Frameworks (libraries) are27
designed for use by a wide range of programming languages and tools, including both CLS consumer and28
extender languages. By adhering to the rules of the CLS, authors of libraries ensure that the libraries will be29
usable by a larger class of tools than if they chose not to adhere to the CLS rules. The following are some30
additional guidelines that CLS-compliant frameworks should follow:31

• Avoid the use of names commonly used as keywords in programming languages32

• Should not expect users of the framework to be able to author nested types33

• Should assume that implementations of methods of the same name and signature on different34
interfaces are independent.35

• Should not rely on initialization of value types to be performed automatically based on specified36
initializer values.37

6.2 .2 CLS Consumer38

A CLS consumer is a language or tool that is designed to allow access to all of the features supplied by CLS-39
compliant frameworks (libraries), but not necessarily be able to produce them. The following is a partial list of40
things CLS consumer tools are expected to be able to do:41

• Support calling any CLS-compliant method or delegate42

• Have a mechanism for calling methods that have names that are keywords in the language43
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• Support calling distinct methods supported by a type that have the same name and signature, but1
implement different interfaces2

• Create an instance of any CLS-compliant type3

• Read and modify any CLS-compliant field4

• Access nested types5

• Access any CLS-compliant property. This does not require any special support other than the6
ability to call the getter and setter methods of the property.7

• Access any CLS-compliant event. This does not require any special support other than the ability8
to call methods defined for the event.9

The following is a list of things CLS consumer tools need not support:10

• Creation of new types or interfaces11

• Initialization metadata (see Partition II) on fields and parameters other than static literal fields.12
Note that consumers may choose to use initialization metadata, but may also safely ignore such13
metadata on anything other than static literal fields.14

6.2 .3 CLS Extender15

A CLS extender is a language or tool that is designed to allow programmers to both use and extend CLS-16
compliant frameworks. CLS extenders support a superset of the behavior supported by a CLS consumer, i.e.,17
everything that applies to a CLS consumer also applies to CLS extenders. In addition to the requirements of a18
consumer, extenders are expected to be able to:19

• Define new CLS-compliant types that extend any (non-sealed) CLS-compliant base class20

• Have some mechanism for defining types with names that are keywords in the language21

• Provide independent implementations for all methods of all interfaces supported by a type. That22
is, it is not sufficient for an extender to require a single code body to implement all interface23
methods of the same name and signature.24

• Implement any CLS-compliant interface25

• Place any CLS-compliant custom attribute on all appropriate elements of metadata26

Extenders need not support the following:27

• Definition of new CLS-compliant interfaces28

• Definition of nested types29

The common language specification is designed to be large enough that it is properly expressive and small30
enough that all languages can reasonably accommodate it.31

End informative text 32

6.3 CLS Compliance33

As these rules are introduced in detail, they are described in a common format. For an example, see the first34
rule below. The first paragraph specifies the rule itself. This is then followed by an informative description of35
the implications of the rule from the three different viewpoints as described above.36

The CLS defines language interoperability rules, which apply only to “externally visible” items. The CLS unit37
of that language interoperability is the assembly– that is, within a single assembly there are no restrictions as to38
the programming techniques that are used. Thus, the CLS rules apply only to items that are visible (see39
clause 7.5.3) outside of their defining assembly and have public, family, or family-or-assembly accessibility40
(see clause 7.5.3.2).41
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CLS Rule 1: CLS rules apply only to those parts of a type that are accessible or visible outside of the defining1
assembly.2

Note:3

CLS (consumer): no impact.4

CLS (extender): when checking CLS compliance at compile time, be sure to apply the rules only to5
information that will be exposed outside the assembly.6

CLS (framework): CLS rules do not apply to internal implementation within an assembly. A type is CLS-7
compliant if all its publicly accessible parts (those classes, interfaces, methods, fields, properties, and events8
that are available to code executing in another assembly) either9
• have signatures composed only of CLS-compliant types, or10
• are specifically marked as not CLS-compliant11

Any construct that would make it impossible to rapidly verify code is excluded from the CLS. This allows all12
CLS-compliant languages to produce verifiable code if they so choose.13

6.3 .1 Marking Items as CLS-Compliant14

The CLS specifies how to mark externally visible parts of an assembly to indicate whether or not they comply15
with the CLS requirements. This is done using the custom attribute mechanism (see Section 8.7 and16
Partition II). The class System.CLSCompliantAttribute (see Partition IV) indicates which types and type17
members are CLS-compliant. It also can be attached to an assembly, to specify the default value for all top-18
level types it contains.19

The constructor for System.CLSCompliantAttribute takes a Boolean argument indicating whether the item20
with which it is associated is or is not CLS-compliant. This allows any item (assembly, type, or type member)21
to be explicitly marked as CLS-compliant or not.22

The rules for determining CLS compliance are:23

• When an assembly does not carry an explicit System.CLSCompliantAttribute, it shall be24
assumed to carry System.CLSCompliantAttribute(false).25

• By default, a type inherits the CLS-compliance attribute of its enclosing type (for nested types) or26
acquires the value attached to its assembly (for top-level types). It may be marked as either CLS-27
compliant or not CLS-Compliant by attaching the System.CLSCompliantAttribute attribute.28

• By default, other members (methods, fields, properties and events) inherit the CLS-compliance of29
their type. They may be marked as not CLS-compliant by attaching the attribute30
System.CLSCompliantAttribute(false).31

CLS Rule 2: Members of non-CLS compliant types shall not be marked CLS-compliant.32

Note:33

CLS (consumer): May ignore any member that is not CLS-compliant using the above rules.34

CLS (extender): Should encourage correct labeling of newly authored assemblies, classes, interfaces, and35
methods. Compile-time enforcement of the CLS rules is strongly encouraged.36

CLS (framework): Shall correctly label all publicly exposed members as to their CLS compliance. The rules37
specified here may be used to minimize the number of markers required (for example, label the entire assembly38
if all types and members are compliant or if there are only a few exceptions that need to be marked).39
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7 Common Type System1

Types describe values and specify a contract (see Section 7.6) that all values of that type shall support. Because2
the CTS supports Object-Oriented Programming (OOP) as well as functional and procedural programming3
languages, it deals with two kinds of entities: Objects and Values. Values are simple bit patterns for things like4
integers and floats; each value has a type that describes both the storage that it occupies and the meanings of5
the bits in its representation, and also the operations that may be performed on that representation. Values are6
intended for representing the corresponding simple types in programming languages like C, and also for7
representing non-objects in languages like C++ and Java™.8

Objects have rather more to them than do values. Each object is self-typing, that is, its type is explicitly stored9
in its representation. It has an identity that distinguishes it from all other objects, and it has slots that store other10
entities (which may be either objects or values). While the contents of its slots may be changed, the identity of11
an object never changes.12

There are several kinds of Objects and Values, as shown in the following diagram.13

14
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Figure 1: Type System1

Integer Types

Floating Point Types

Typed References

Built-in Value Types
(special encoding in signature)

Enums

User Defined

Value Types

Delegates

Boxed Enums

Boxed Value Types

Name Equivalent

Arrays

Structural Equivalent

Self-Describing Interface

Function

Managed
(might be in heap)

Unmanaged

Pointer

String

Object

Built-In Reference Types

Reference Types
(identity within app. domain)

Type

2
 3

4



- 27 -

7.1 Relationship to Object-Oriented Programming1

This section contains only informative text 2

The term type is often used in the world of value-oriented programming to mean data representation. In the3
object-oriented world it usually refers to behavior rather than to representation. In the CTS, type is used to4
mean both of these things: two entities have the same type if and only if they have both compatible5
representations and behaviors. Thus, in the CTS, if one type is derived from a base type, then instances of the6
derived type may be substituted for instances of the base type because both the representation and the behavior7
are compatible.8

In the CTS, unlike some OOP languages, two objects that have fundamentally different representations have9
different types. Some OOP languages use a different notion of type. They consider two objects to have the10
same type if they respond in the same way to the same set of messages. This notion is captured in the CTS by11
saying that the objects implement the same interface.12

Similarly, some OOP languages (e.g. SmallTalk) consider message passing to be the fundamental model of13
computation. In the CTS, this corresponds to calling virtual methods (see clause 7.4.4), where the signature of14
the virtual method serves the role of the message.15

The CTS itself does not directly capture the notion of “typeless programming.” That is, there is no way to call16
a non-static method without knowing the type of the object. Nevertheless, typeless programming can be17
implemented based on the facilities provided by the reflection package (see Partition IV) if it is implemented.18

End informative text 19

7.2 Values and Types20

Types describe values. All places where values are stored, passed, or operated upon have a type, e.g. all21
variables, parameters, evaluation stack locations, and method results. The type defines the allowable values and22
the allowable operations supported by the values of the type. All operators and functions have expected types23
for each of the values accessed or used.24

A value can be of more than one type. A value that supports many interfaces is an example of a value that is of25
more than one type, as is a value that inherits from another.26

7.2.1 Value Types and Reference Types27

There are two kinds of types: Value Types and Reference Types.28

• Value Types - Value Types describe values that are represented as sequences of bits.29

• Reference Types – Reference Types describe values that are represented as the location of a30
sequence of bits. There are four kinds of Reference Types:31

o An object type is a reference type of a self-describing value (see clause 7.2.3). Some32
object types (e.g. abstract classes) are only a partial description of a value.33

o An interface type is always a partial description of a value, potentially supported by many34
object types.35

o A pointer type is a compile time description of a value whose representation is a machine36
address of a location.37

o Built-in types38

7.2 .2 Built- in Types39

The following data types are an integral part of the CTS and are supported directly by the Virtual Execution40
System (VES). They have special encoding in the persisted metadata:41

42



- 28 -

Table 1: Special Encoding1

Name in CIL assembler
(see Partition II)

CLS Type? Name in class library
(see Partition IV)

Description

bool Yes System.Boolean True/false value

char Yes System.Char Unicode 16-bit char.

object Yes System.Object Object or boxed value type

string Yes System.String Unicode string

float32 Yes System.Single IEC 60559:1989 32-bit float

float64 Yes System.Double IEC 60559:1989 64-bit float

int8 No System.SByte Signed 8-bit integer

int16 Yes System.Int16 Signed 16-bit integer

int32 Yes System.Int32 Signed 32-bit integer

int64 Yes System.Int64 Signed 64-bit integer

native int Yes System.IntPtr Signed integer, native size

native unsigned int No System.UIntPtr Unsigned integer, native size

typedref No System.TypedReference Pointer plus runtime type

unsigned int8 Yes System.Byte Unsigned 8-bit integer

unsigned int16 No System.UInt16 Unsigned 16-bit integer

unsigned int32 No System.UInt32 Unsigned 32-bit integer

unsigned int64 No System.UInt64 Unsigned 64-bit integer
2

7.2.3 Classes , Interfaces and Objects3

Every value has an exact type that fully describes the value. A type fully describes a value if it completely4
defines the value’s representation and the operations defined on the value.5

For a Value Type, defining the representation entails describing the sequence of bits that make up the value’s6
representation. For a Reference Type, defining the representation entails describing the location and the7
sequence of bits that make up the value’s representation.8

A method describes an operation that may be performed on values of an exact type. Defining the set of9
operations allowed on values of an exact type entails specifying named methods for each operation.10

Some types are only a partial description, e.g. interface types. Interface types describe a subset of the11
operations and none of the representation, and hence, cannot be an exact type of any value. Hence, while a12
value has only one exact type, it may also be a value of many other types as well. Furthermore, since the exact13
type fully describes the value, it also fully specifies all of the other types that a value of the exact type can have.14

While it is true that every value has an exact type, it is not always possible to determine the exact type by15
inspecting the representation of the value. In particular, it is never possible to determine the exact type of a16
value of a Value Type. Consider two of the built-in Value Types, 32-bit signed and unsigned integers. While17
each type is a full specification of their respective values, i.e. an exact type, there is no way to derive that exact18
type from a value’s particular 32-bit sequence.19

For some values, called objects, it is always possible to determine the exact type from the value. Exact types of20
objects are also called object types. Objects are values of Reference Types, but not all Reference Types21
describe objects. Consider a value that is a pointer to a 32-bit integer, a kind of Reference Type. There is no22
way to discover the type of the value by examining the pointer bits, hence it is not an object. Now consider the23
built-in CTS Reference Type System.String (see Partition IV). The exact type of a value of this type is always24
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determinable by examining the value, hence values of type System.String are objects and System.String is an1
object type.2

7.2 .4 Boxing and Unboxing of Values3

For every Value Type, the CTS defines a corresponding Reference Type called the boxed type. The reverse is4
not true: Reference Types do not in general have a corresponding Value Type. The representation of a value of5
a boxed type (a boxed value) is a location where a value of the Value Type may be stored. A boxed type is an6
object type and a boxed value is an object.7

All Value Types have an operation called box. Boxing a value of any Value Type produces its boxed value, i.e.8
a value of the corresponding boxed type containing a bit copy of the original value. All boxed types have an9
operation called unbox. Unboxing results in a managed pointer to the bit representation of the value.10

Notice that interfaces and inheritance are defined only on Reference types. Thus, while a Value Type definition11
(see clause 7.9.7) can specify both interfaces that shall be implemented by the Value Type and the class12
(System.ValueType or System.Enum) from which it inherits, these apply only to boxed values.13

CLS Rule 3: The CLS does not include boxed value types.14

Note:15

In lieu of boxed types, use System.Object, System.ValueType or System.Enum, as appropriate. (See16
Partition IV)17

CLS (consumer): need not import boxed value types.18

CLS (extender): need not provide syntax for defining or using boxed value types.19

CLS (framework): shall not use boxed value types in their publicly exposed aspects.20

7.2 .5 Identity and Equality of Values21

There are two binary operators defined on all pairs of values, identity and equality, that return a Boolean22
result. Both of these operators are mathematical equivalence operators, i.e. they are:23

• Reflexive - a op a is true.24

• Symmetric - a op b is true if and only if b op a is true.25

• Transitive - if a op b is true and b op c is true, then a op c is true26

In addition, identity always implies equality, but not the reverse, i.e., the equality operator need not be the same27
as the identity operator as long as two identical values are also equal values.28

To understand the difference between these operations, consider three variables whose type is System.String,29
where the arrow is intended to mean “is a reference to”:30

31

The values of the variables are identical if the locations of the sequences of characters are the same, i.e., there32
is in fact only one string in memory. The values stored in the variables are equal if the sequences of characters33
are the same. Thus, the values of variables A and B are identical, the values of variables A and C as well as B34
and C are not identical, and the values of all three of A, B, and C are equal.35
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7.2 .5.1 Identity1

The identity operator is defined by the CTS as follows.2

• If the values have different exact types, then they are not identical.3

• Otherwise, if their exact type is a Value Type, then they are identical if and only if the bit4
sequences of the values are the same, bit by bit.5

• Otherwise, if their exact type is a Reference Type, then they are identical if and only if the6
locations of the values are the same.7

Identity is implemented on System.Object via the ReferenceEquals method.8

7.2 .5.2 Equality9

For value types, the equality operator is part of the definition of the exact type. Definitions of equality should10
obey the following rules:11

• Equality should be an equivalence operator, as defined above.12

• Identity should imply equality, as stated earlier.13

• If either (or both) operand is a boxed value, equality should be computed by14

o first unboxing any boxed operand(s), and then15

o applying the usual rules for equality on the resulting values.16

Equality is implemented on System.Object via the Equals method.17

Note: Although two floating point NaNs are defined by IEC 60559:1989 to always compare as unequal, the18
contract for System.Object.Equals, requires that overrides must satisfy the requirements for an equivalence19
operator. Therefore, System.Double.Equals and System.Single.Equals return True when comparing two20
NaNs, while the equality operator returns False in that case, as required by the standard.21

7.3 Locations22

Values are stored in locations. A location can hold a single value at a time. All locations are typed. The type of23
the location embodies the requirements that shall be met by values that are stored in the location. Examples of24
locations are local variables and parameters.25

More importantly, the type of the location specifies the restrictions on usage of any value that is loaded from26
the location. For example, a location can hold values of potentially many exact types as long as all of the values27
are assignment compatible with the type of the location (see below). All values loaded from a location are28
treated as if they are of the type of the location. Only operations valid for the type of the location may be29
invoked even if the exact type of the value stored in the location is capable of additional operations.30

7.3 .1 Assignment Compatible Locat ions31

A value may be stored in a location only if one of the types of the value is assignment compatible with the32
type of the location. A type is always assignment compatible with itself. Assignment compatibility can often be33
determined at compile time, in which case there is no need for testing at run time. Assignment compatibility is34
described in detail in Section 7.7.35

7.3.2 Coercion36

Sometimes it is desirable to take a value of a type that is not assignment compatible with a location and convert37
the value to a type that is assignment compatible. This is accomplished through coercion of the value. Coercion38
takes a value of a particular type and a desired type and attempts to create a value of the desired type that has39
equivalent meaning to the original value. Coercion can result in representation changes as well as type changes,40
hence coercion does not necessarily preserve the identity of two objects.41

There are two kinds of coercion: widening, which never loses information, and narrowing, in which42
information may be lost. An example of a widening coercion would be coercing a value that is a 32-bit signed43
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integer to a value that is a 64-bit signed integer. An example of a narrowing coercion is the reverse: coercing a1
64-bit signed integer to a 32-bit signed integer. Programming languages often implement widening coercions as2
implicit conversions, whereas narrowing coercions usually require an explicit conversion.3

Some widening coercion is built directly into the VES operations on the built-in types (see Section 11.1). All4
other coercion shall be explicitly requested. For the built-in types, the CTS provides operations to perform5
widening coercions with no runtime checks and narrowing coercions with runtime checks.6

7.3 .3 Cast ing7

Since a value can be of more than one type, a use of the value needs to clearly identify which of its types is8
being used. Since values are read from locations that are typed, the type of the value which is used is the type9
of the location from which the value was read. If a different type is to be used, the value is cast to one of its10
other types. Casting is usually a compile time operation, but if the compiler cannot statically know that the11
value is of the target type, a runtime cast check is done. Unlike coercion, a cast never changes the actual type of12
an object nor does it change the representation. Casting preserves the identity of objects.13

For example, a runtime check may be needed when casting a value read from a location that is typed as holding14
values of a particular interface. Since an interface is an incomplete description of the value, casting that value15
to be of a different interface type will usually result in a runtime cast check.16

7.4 Type Members17

As stated above, the type defines the allowable values and the allowable operations supported by the values of18
the type. If the allowable values of the type have a substructure, that substructure is described via fields or array19
elements of the type. If there are operations that are part of the type, those operations are described via methods20
on the type. Fields, array elements, and methods are called members of the type. Properties and events are also21
members of the type.22

7.4 .1 Fields, Array Elements , and Values23

The representation of a value (except for those of built-in types) can be subdivided into sub-values. These sub-24
values are either named, in which case they are called fields, or they are accessed by an indexing expression, in25
which case they are called array elements. Types that describe values composed of array elements are array26
types. Types that describe values composed of fields are compound types. A value cannot contain both fields27
and array elements, although a field of a compound type may be an array type and an array element may be a28
compound type.29

Array elements and fields are typed, and these types never change. All of the array elements shall have the30
same type. Each field of a compound type may have a different type.31

7.4 .2 Methods32

A type may associate operations with the type or with each instance of the type. Such operations are called33
methods. A method is named, and has a signature (see clause 7.6.1) that specifies the allowable types for all of34
its arguments and for its return value, if any.35

A method that is associated only with the type itself (as opposed to a particular instance of the type) is called a36
static method (see clause 7.4.3).37

A method that is associated with an instance of the type is either an instance method or a virtual method (see38
clause 7.4.4). When they are invoked, instance and virtual methods are passed the instance on which this39
invocation is to operate (known as this or a this pointer).40

The fundamental difference between an instance method and a virtual method is in how the implementation is41
located. An instance method is invoked by specifying a class and the instance method within that class. The42
object passed as this may be null (a special value indicating that no instance is being specified) or an instance43
of any type that inherits (see clause 7.9.8) from the class that defines the method. A virtual method may also be44
called in this manner. This occurs, for example, when an implementation of a virtual method wishes to call the45
implementation supplied by its parent class. The CTS allows this to be null inside the body of a virtual method.46
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Rationale: Allowing a virtual method to be called with a non-virtual call eliminates the need for a “call super”1
instruction and allows version changes between virtual and non-virtual methods. It requires CIL generators to2
insert explicit tests for a null pointer if they don’t want the null this pointer to propagate to called methods.3

A virtual or instance method may also be called by a different mechanism, a virtual call. Any type that inherits4
from a type that defines a virtual method may provide its own implementation of that method (this is known as5
overriding, see clause 7.10.4). It is the exact type of the object (determined at runtime) that is used to decide6
which of the implementations to invoke7

7.4 .3 Stat ic Fields and Stat ic Methods8

Types may declare locations that are associated with the type rather than any particular value of the type. Such9
locations are static fields of the type. As such, static fields declare a location that is shared by all values of the10
type. Just like non-static (instance) fields, a static field is typed and that type never changes. Static fields are11
always restricted to a single application domain basis (see Section 11.5), but they may also be allocated on a12
per-thread basis.13

Similarly, types may also declare methods that are associated with the type rather than with values of the type.14
Such methods are static methods of the type. Since an invocation of a static method does not have an15
associated value on which the static method operates, there is no this pointer available within a static method.16

7.4 .4 Virtual Methods17

An object type may declare any of its methods as virtual. Unlike other methods, each exact type that18
implements the type may provide its own implementation of a virtual method. A virtual method may be19
invoked through the ordinary method call mechanism that uses the static type, method name, and types of20
parameters to choose an implementation, in which case the this pointer may be null. In addition, however, a21
virtual method may be invoked by a special mechanism (a virtual call) that chooses the implementation based22
on the dynamically detected type of the instance used to make the virtual call rather than the type statically23
known at compile time. Virtual methods may be marked final (see clause 7.10.2).24

7.5 Naming25

Names are given to entities of the type system so that they can be referred to by other parts of the type system26
or by the implementations of the types. Types, fields, methods, properties and events have names. With respect27
to the type system values, locals, and parameters do not have names. An entity of the type system is given a28
single name, e.g. there is only one name for a type.29

7.5 .1 Valid Names30

All comparisons are done on a byte-by-byte (i.e. case sensitive, locale-independent, also known as code-point31
comparison) basis. Where names are used to access built-in VES-supplied functionality (for example, the class32
initialization method) there is always an accompanying indication on the definition so as not to build in any set33
of reserved names.34

CLS Rule 4: Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 (ISBN 0-35
201-61633-5) governing the set of characters permitted to start and be included in identifiers, available on-line36
at http://www.unicode.org/unicode/reports/tr15/tr15-18.html. Identifiers shall be in the canonical format37
defined by Unicode Normalization Form C. For CLS purposes, two identifiers are the same if their lowercase38
mappings (as specified by the Unicode locale-insensitive, 1-1 lowercase mappings) are the same. That is, for39
two identifiers to be considered different under the CLS they shall differ in more than simply their case.40
However, in order to override an inherited definition the CLI requires the precise encoding of the original41
declaration be used. 42

Note:43

CLS (consumer): need not consume types that violate CLS rule 4, but shall have a mechanism to allow access44
to named items that use one of its own keywords as the name.45

CLS (extender): need not create types that violate CLS rule 4. Shall provide a mechanism for defining new46
names that obey these rules but are the same as a keyword in the language.47
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CLS (framework): shall not export types that violate CLS rule 4. Should avoid the use of names that are1
commonly used as keywords in programming languages (see Partition V Annex D)2

7.5.2 Assemblies and Scoping3

Generally, names are not unique. Names are collected into groupings called scopes. Within a scope, a name4
may refer to multiple entities as long as they are of different kinds (methods, fields, nested types, properties,5
and events) or have different signatures.6

CLS Rule 5: All names introduced in a CLS-compliant scope shall be distinct independent of kind, except7
where the names are identical and resolved via overloading. That is, while the CTS allows a single type to use8
the same name for a method and a field, the CLS does not.9

CLS Rule 6: Fields and nested types shall be distinct by identifier comparison alone, even though the CTS10
allows distinct signatures to be distinguished. Methods, properties, and events that have the same name (by11
identifier comparison) shall differ by more than just the return type, except as specified in CLS Rule 39.12

Note:13

CLS (consumer): need not consume types that violate these rules after ignoring any members that are marked14
as not CLS-compliant.15

CLS (extender): need not provide syntax for defining types that violate these rules.16

CLS (framework): shall not mark types as CLS-compliant if they violate these rules unless they mark17
sufficient offending items within the type as not CLS-compliant so that the remaining members do not conflict18
with one another.19

A named entity has its name in exactly one scope. Hence, to identify a named entity, both a scope and a name20
need to be supplied. The scope is said to qualify the name. Types provide a scope for the names in the type;21
hence types qualify the names in the type. For example, consider a compound type Point that has a field22
named x. The name “field x” by itself does not uniquely identify the named field, but the qualified name23
“field x in type Point” does.24

Since types are named, the names of types are also grouped into scopes. To fully identify a type, the type name25
shall be qualified by the scope that includes the type name. Type names are scoped by the assembly that26
contains the implementation of the type. An assembly is a configured set of loadable code modules and other27
resources that together implement a unit of functionality. The type name is said to be in the assembly scope of28
the assembly that implements the type. Assemblies themselves have names that form the basis of the29
CTS naming hierarchy.30

The type definition:31

• Defines a name for the type being defined, i.e. the type name, and specifies a scope in which that32
name will be found33

• Defines a member scope in which the names of the different kinds of members (fields, methods,34
events, and properties) are bound. The tuple of (member name, member kind, and member35
signature) is unique within a member scope of a type.36

• Implicitly assigns the type to the assembly scope of the assembly that contains the type definition.37

The CTS supports an enum (also known as an enumeration type), an alternate name for an existing type. For38
purposes of matching signatures an enum shall not be the same as the underlying type. Instances of an enum,39
however, shall be assignment compatible with the underlying type and vice versa. That is: no cast (see40
clause 7.3.3) or coercion (see clause 7.3.2) is required to convert from the enum to the underlying type, nor are41
they required from the underlying type to the enum. An enum is considerably more restricted than a true type:42

• It shall have exactly one instance field, and the type of that field defines the underlying type of43
the enumeration.44

• It shall not have any methods of its own.45

• It shall derive from System.Enum (see Partition IV).46
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• It shall not implement any interfaces of its own.1

• It shall not have any properties or events of its own.2

• It shall not have any static fields unless they are literal (see clause 7.6.1).3

The underlying type shall be a built-in integer type. Enums shall derive from System.Enum, hence they are4
value types. Like all value types, they shall be sealed (see clause 7.9.9).5

CLS Rule 7: The underlying type of an enum shall be a built-in CLS integer type.6

CLS Rule 8: There are two distinct kinds of enums, indicated by the presence or absence of the7
System.FlagsAttribute (see Partition IV) custom attribute. One represents named integer values, the other8
named bit flags that can be combined to generate an unnamed value. The value of an enum is not limited to the9
specified values.10

CLS Rule 9: Literal static fields (see clause 7.6.1) of an enum shall have the type of the enum itself.11

Note:12

CLS (consumer): Shall accept definition of enums that follow these rules, but need not distinguish flags from13
named values.14

CLS (extender): Same as consumer. Extender languages are encouraged to allow the authoring of enums, but15
need not do so.16

CLS (framework): shall not expose enums that violate these rules, and shall not assume that enums have only17
the specified values (even for enums that are named values).18

7.5 .3 Visibi l ity , Accessibi l ity , and Security19

To refer to a named entity in a scope, both the scope and the name in the scope shall be visible (see20
clause 7.5.3.1). Visibility is determined by the relationship between the entity that contains the reference (the21
referent) and the entity that contains the name being referenced. Consider the following pseudo-code:22

class A23
{ int32 IntInsideA;24
}25
class B inherits from A26
{ method X(int32, int32) returning Boolean27

{ IntInsideA := 15;28
}29

}30

If we consider the reference to the field IntInsideA in class A:31

• We call class B the referent because it has a method that refers to that field,32

• We call IntInsideA in class A the referenced entity.33

There are two fundamental questions that need to be answered in order to decide whether the referent is34
allowed to access the referenced entity. The first is whether the name of the referenced entity is visible to the35
referent. If it is visible, then there is a separate question of whether the referent is accessible (see36
clause 7.5.3.2).37

Access to a member of a type is permitted only if all three of the following conditions are met:38

1. The type is visible.39

2. The member is accessible.40

3. All relevant security demands (see clause 7.5.3.3) have been granted.41

7.5 .3.1 Visibi l ity of Types42

Only type names, not member names, have controlled visibility. Type names fall into one of the following three43
categories44
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• Exported from the assembly in which they are defined. While a type may be marked to allow it1
to be exported from the assembly, it is the configuration of the assembly that decides whether the2
type name is made available.3

• Not exported outside the assembly in which they are defined.4

• Nested within another type. In this case, the type itself has the visibility of the type inside of5
which it is nested (its enclosing type). See clause 7.5.3.4.6

7.5 .3.2 Accessibi l ity of Members7

A type scopes all of its members, and it also specifies the accessibility rules for its members. Except where8
noted, accessibility is decided based only on the statically visible type of the member being referenced and the9
type and assembly that is making the reference. The CTS supports seven different rules for accessibility:10

• Compiler-Controlled – accessible only through use of a definition, not a reference, hence only11
accessible from within a single compilation unit and under the control of the compiler.12

• Private – accessible only to referents in the implementation of the exact type that defines the13
member.14

• Family – accessible to referents that support the same type, i.e. an exact type and all of the types15
that inherit from it. For verifiable code (see Section 7.8), there is an additional requirement that16
may require a runtime check: the reference shall be made through an item whose exact type17
supports the exact type of the referent. That is, the item whose member is being accessed shall18
inherit from the type performing the access.19

• Assembly – accessible only to referents in the same assembly that contains the implementation of20
the type.21

• Family-and-Assembly – accessible only to referents that qualify for both Family and Assembly22
access.23

• Family-or-Assembly – accessible only to referents that qualify for either Family or Assembly24
access.25

• Public – accessible to all referents.26

In general, a member of a type can have any one of these accessibility rules assigned to it. There are two27
exceptions, however:28

1. Members defined by an interface shall be public.29

2. When a type defines a virtual method that overrides an inherited definition, the accessibility shall30
either be identical in the two definitions or the overriding definition shall permit more access than31
the original definition. For example, it is possible to override an assembly virtual method with a32
new implementation that is public virtual, but not with one that is family virtual. In the case of33
overriding a definition derived from another assembly, it is not considered restricting access if the34
base definition has Family-or-Assembly access and the override has only family access.35

Rationale: Languages including C++ allow this “widening” of access. Restricting access would provide an36
incorrect illusion of security since simply casting an object to the base class (which occurs implicitly on37
method call) would allow the method to be called despite the restricted accessibility. To prevent overriding a38
virtual method use final (see clause 7.10.2) rather than relying on limited accessibility.39

40
CLS Rule 10: Accessibility shall not be changed when overriding inherited methods, except when overriding a41
method inherited from a different assembly with accessibility Family-or-Assembly. In this case the override42
shall have accessibility family.43

Note:44

CLS (consumer): need not accept types that widen access to inherited virtual methods.45

CLS (extender): need not provide syntax to widen access to inherited virtual methods.46
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CLS (frameworks): shall not rely on the ability to widen access to a virtual method, either in the exposed1
portion of the framework or by users of the framework.2

7.5 .3.3 Security Permissions3

Access to members is also controlled by security demands that may be attached to an assembly, type, method,4
property, or event. Security demands are not part of a type contract (see Section 7.6), and hence are not5
inherited. There are two kinds of demands:6

• An inheritance demand. When attached to a type it requires that any type that wishes to inherit7
from this type shall have the specified security permission. When attached to a non-final virtual8
method it requires that any type that wishes to override this method shall have the specified9
permission. It shall not be attached to any other member.10

• A reference demand. Any attempt to resolve a reference to the marked item shall have specified11
security permission.12

Only one demand of each kind may be attached to any item. Attaching a security demand to an assembly13
implies that it is attached to all types in the assembly unless another demand of the same kind is attached to the14
type. Similarly, a demand attached to a type implies the same demand for all members of the type unless15
another demand of the same kind is attached to the member. For additional information, see Declarative16
Security in Partition II, and the classes in the System.Security namespace in Partition IV.17

7.5 .3.4 Nested Types18

A type (called a nested type) can be a member of an enclosing type. A nested type has the same visibility as the19
enclosing type and has an accessibility as would any other member of the enclosing type. This accessibility20
determines which other types may make references to the nested type. That is, for a class to define a field or21
array element of a nested type, have a method that takes a nested type as a parameter or returns one as value,22
etc., the nested type shall be both visible and accessible to the referencing type. A nested type is part of the23
enclosing type so its methods have access to all members of its enclosing type, as well as family access to24
members of the type from which it inherits (see clause 7.9.8). The names of nested types are scoped by their25
enclosing type, not their assembly (only top-level types are scoped by their assembly). There is no requirement26
that the names of nested types be unique within an assembly.27

7.6 Contracts28

Contracts are named. They are the shared assumptions on a set of signatures (see clause 7.6.1) between all29
implementers and all users of the contract. The signatures are the part of the contract that can be checked and30
enforced.31

Contracts are not types; rather they specify requirements on the implementation of types. Types state which32
contracts they abide by, i.e. which contracts all implementations of the type shall support. An implementation33
of a type can be verified to check that the enforceable parts of a contract, the named signatures, have been34
implemented. The kinds of contracts are:35

• Class contract – A class contract is specified with a class definition. Hence, a class definition36
defines both the class contract and the class type. The name of the class contract and the name of37
the class type are the same. A class contract specifies the representation of the values of the class38
type. Additionally, a class contract specifies the other contracts that the class type supports, e.g.,39
which interfaces, methods, properties and events shall be implemented. A class contract, and40
hence the class type, can be supported by other class types as well. A class type that supports the41
class contract of another class type is said to inherit from that class type.42

• Interface contract – An interface contract is specified with an interface definition. Hence, an43
interface definition defines both the interface contract and the interface type. The name of the44
interface contract and the name of the interface type are the same. Many types can support an45
interface contract. Like a class contract, interface contracts specify which other contracts the46
interface supports, e.g. which interfaces, methods, properties and events shall be implemented.47
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Note: An interface type can never fully describe the representation of a value. Therefore an interface1
type can never support a class contract, and hence can never be a class type or an exact type.2

• Method contract – A method contract is specified with a method definition. A method contract3
is a named operation that specifies the contract between the implementation(s) of the method and4
the callers of the method. A method contract is always part of a type contract (class, value type,5
or interface), and describes how a particular named operation is implemented. The method6
contract specifies the contracts that each parameter to the method shall support and the contracts7
that the return value shall support, if there is a return value.8

• Property contract – A property contract is specified with a property definition. There is an9
extensible set of operations for handling a named value, which includes a standard pair for10
reading the value and changing the value. A property contract specifies method contracts for the11
subset of these operations that shall be implemented by any type that supports the property12
contract. A type can support many property contracts, but any given property contract can be13
supported by exactly one type. Hence, property definitions are a part of the type definition of the14
type that supports the property.15

• Event contract – An event contract is specified with an event definition. There is an extensible16
set of operations for managing a named event, which includes three standard methods (register17
interest in an event, revoke interest in an event, fire the event). An event contract specifies18
method contracts for all of the operations that shall be implemented by any type that supports the19
event contract. A type can support many event contracts, but any given event contract can be20
supported by exactly one type. Hence, event definitions are a part of the type definition of the21
type that supports the event.22

7.6 .1 Signatures23

Signatures are the part of a contract that can be checked and automatically enforced. Signatures are formed by24
adding constraints to types and other signatures. A constraint is a limitation on the use of or allowed operations25
on a value or location. Example constraints would be whether a location may be overwritten with a different26
value or whether a value may ever be changed.27

All locations have signatures, as do all values. Assignment compatibility requires that the signature of the28
value, including constraints, is compatible with the signature of the location, including constraints. There are29
four fundamental kinds of signatures: type signatures, location signatures, parameter signatures, and method30
signatures.31

CLS Rule 11: All types appearing in a signature shall be CLS-compliant.32

CLS Rule 12: The visibility and accessibility of types and members shall be such that types in the signature of33
any member shall be visible and accessible whenever the member itself is visible and accessible. For example,34
a public method that is visible outside its assembly shall not have an argument whose type is visible only35
within the assembly.36

Note:37

CLS (consumer): need not accept types whose members violate these rules.38

CLS (extender): need not provide syntax to violate these rules.39

CLS (framework): shall not violate this rule in its exposed types and their members.40

The following sections describe the various kinds of signatures. These descriptions are cumulative: the simplest41
signature is a type signature; a location signature is a type signature plus (optionally) some additional attributes;42
and so forth.43

7.6 .1.1 Type Signatures44

Type signatures define the constraints on a value and its usage. A type, by itself, is a valid type signature. The45
type signature of a value cannot be determined by examining the value or even by knowing the class type of the46
value. The type signature of a value is derived from the location signature (see below) of the location from47
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which the value is loaded. Normally the type signature of a value is the type in the location signature from1
which the value is loaded.2

Rationale: The distinction between a Type Signature and a Location Signature (below) is not currently useful.3
It is made because certain constraints, such as “constant,” are constraints on values not locations. Future4
versions of this standard, or non-standard extensions, may introduce type constraints, thus making the5
distinction meaningful.6

7.6 .1.2 Locat ion Signatures7

All locations are typed. This means that all locations have a location signature, which defines constraints on8
the location, its usage, and on the usage of the values stored in the location. Any valid type signature is a valid9
location signature. Hence, a location signature contains a type and may additionally contain the constant10
constraint. The location signature may also contain location constraints that give further restrictions on the11
uses of the location. The location constraints are:12

• The init-only constraint promises (hence, requires) that once the location has been initialized, its13
contents never change. Namely, the contents are initialized before any access, and after14
initialization, no value may be stored in the location. The contents are always identical to the15
initialized value (see clause 7.2.3). This constraint, while logically applicable to any location,16
shall only be placed on fields (static or instance) of compound types.17

• The literal constraint promises that the value of the location is actually a fixed value of a built-in18
type. The value is specified as part of the constraint. Compilers are required to replace all19
references to the location with its value, and the VES therefore need not allocate space for the20
location. This constraint, while logically applicable to any location, shall only be placed on static21
fields of compound types. Fields that are so marked are not permitted to be referenced from CIL22
(they shall be in-lined to their constant value at compile time), but are available using Reflection23
and tools that directly deal with the metadata.24

CLS Rule 13: The value of a literal static is specified through the use of field initialization metadata (see25
Partition II). A CLS compliant literal must have a value specified in field initialization metadata that is of26
exactly the same type as the literal (or of the underlying type, if that literal is an enum).27

Note:28

CLS (consumer): must be able to read field initialization metadata for static literal fields and inline the value29
specified when referenced. Consumers may assume that the type of the field initialization metadata is exactly30
the same as the type of the literal field, i.e., a consumer tool need not implement conversions of the values.31

CLS (extender): must avoid producing field initialization metadata for static literal fields in which the type of32
the field initialization metadata does not exactly match the type of the field.33

CLS (framework): should avoid the use of syntax specifying a value of a literal that requires conversion of the34
value. Note that compilers may do the conversion themselves before persisting the field initialization metadata35
resulting in a CLS compliant framework, but frameworks are encouraged not to rely on such implicit36
conversions.37

38
Note: It might seem reasonable to provide a volatile constraint on a location that would require that the value39
stored in the location not be cached between accesses. Instead, CIL includes a volatile. prefix to certain40
instructions to specify that the value neither be cached nor computed using an existing cache. Such a constraint41
may be encoded using a custom attribute (see Section 8.7), although this standard does not specify such an42
attribute.43

7.6 .1.3 Local Signatures44

A local signature specifies the contract on a local variable allocated during the running of a method. A local45
signature contains a full location signature, plus it may specify one additional constraint:46

The byref constraint states that the content of the corresponding location is a managed pointer. A managed47
pointer may point to a local variable, parameter, field of a compound type, or element of an array. However,48
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when a call crosses a remoting boundary (see Section 11.5) a conforming implementation may use a copy-1
in/copy-out mechanism instead of a managed pointer. Thus programs shall not rely on the aliasing behavior of2
true pointers.3

In addition, there is one special local signature. The typed reference local variable signature states that the4
local will contain both a managed pointer to a location and a runtime representation of the type that may be5
stored at that location. A typed reference signature is similar to a byref constraint, but while the byref specifies6
the type as part of the byref constraint (and hence as part of the type description), a typed reference provides the7
type information dynamically. A typed reference is a full signature in itself and can not be combined with other8
constraints. In particular, it is not possible to specify a byref whose type is typed reference.9

The typed reference signature is actually represented as a built-in value type, like the integer and floating point10
types. In the Base Class Library (see Partition IV) the type is known as System.TypedReference and in the11
assembly language used in Partition II it is designated by the keyword typedref. This type shall only be used12
for parameters and local variables. It shall not be boxed, nor shall it be used as the type of a field, element of an13
array, return value, etc.14

CLS Rule 14: Typed references are not CLS-compliant.15

Note:16

CLS (consumer): there is no need to accept this type.17

CLS (extender): there is no need to provide syntax to define this type or to extend interfaces or classes that use18
this type.19

CLS (framework): this type shall not appear in exposed members.20

7.6 .1.4 Parameter Signatures21

Parameter signatures define constraints on how an individual value is passed as part of a method invocation.22
Parameter signatures are declared by method definitions. Any valid local signature is a valid parameter23
signature.24

7.6 .1.5 Method Signatures25

Method signatures are composed of26

• a calling convention,27

• a list of zero or more parameter signatures, one for each parameter of the method,28

• and a type signature for the result value if one is produced.29

Method signatures are declared by method definitions. Only one constraint can be added to a method signature30
in addition to those of parameter signatures:31

• The varargs constraint may be included to indicate that all arguments past this point are optional.32
When it appears, the calling convention shall be one that supports variable argument lists.33

Method signatures are used in two different ways. They are used as part of a method definition and as a34
description of a calling site when calling through a function pointer. In this latter case, the method signature35
indicates36

• the calling convention (which may include platform-specific calling conventions)37

• the type of all the argument values that are being passed,38

• if needed, a varargs marker indicating where the fixed parameter list ends and the variable39
parameter list begins40

When used as part of a method definition, the varargs constraint is represented by the choice of calling41
convention.42

CLS Rule 15: The varargs constraint is not part of the CLS, and the only calling convention supported by the43
CLS is the standard managed calling convention.44
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Note:1

CLS (consumer): there is no need to accept methods with variable argument lists or unmanaged calling2
convention.3

CLS (extender): there is no need to provide syntax to declare varargs methods or unmanaged calling4
conventions.5

CLS (framework): neither varargs methods nor methods with unmanaged calling conventions may be exposed6
externally.7

7.7 Assignment Compatibility8

The constraints in the type signature and the location signature affect assignment compatibility of a value to a9
location. Assignment compatibility of a value (described by a type signature) to a location (described by a10
location signature) is defined as follows:11

One of the types supported by the exact type of the value is the same as the type in the location signature.12

This allows, for example, an instance of a class that inherits from a base class (hence supports the base class’s13
type contract) to be stored into a location whose type is that of the base class.14

7.8 Type Safety and Verification15

Since types specify contracts, it is important to know whether a given implementation lives up to these16
contracts. An implementation that lives up to the enforceable part of the contract (the named signatures) is said17
to be typesafe. An important part of the contract deals with restrictions on the visibility and accessibility of18
named items as well as the mapping of names to implementations and locations in memory.19

Typesafe implementations only store values described by a type signature in a location that is assignment20
compatible with the location signature of the location (see clause 7.6.1). Typesafe implementations never apply21
an operation to a value that is not defined by the exact type of the value. Typesafe implementations only access22
locations that are both visible and accessible to them. In a typesafe implementation, the exact type of a value23
cannot change.24

Verification is a mechanical process of examining an implementation and asserting that it is typesafe.25
Verification is said to succeed if the process proves that an implementation is typesafe. Verification is said to26
fail if that process does not prove the type safety of an implementation. Verification is necessarily conservative:27
it may report failure for a typesafe implementation, but it never reports success for an implementation that is28
not typesafe. For example, most verification processes report implementations that do pointer-based arithmetic29
as failing verification, even if the implementation is in fact typesafe.30

There are many different processes that can be the basis of verification. The simplest possible process simply31
says that all implementations are not typesafe. While correct and efficient this is clearly not particularly useful.32
By spending more resources (time and space) a process can correctly identify more typesafe implementations.33
It has been proven, however, that no mechanical process can in finite time and with no errors correctly identify34
all implementations as either typesafe or not typesafe. The choice of a particular verification process is thus a35
matter of engineering, based on the resources available to make the decision and the importance of detecting36
the typesafety of different programming constructs.37

7.9 Type Definers38

Type definers construct a new type from existing types. Implicit types (e.g., built-in types, arrays, and pointers39
including function pointers) are defined when they are used. The mention of an implicit type in a signature is in40
and of itself a complete definition of the type. Implicit types allow the VES to manufacture instances with a41
standard set of members, interfaces, etc. Implicit types need not have user-supplied names.42

All other types shall be explicitly defined using an explicit type definition. The explicit type definers are:43

• interface definitions – used to define interface types44

• class definitions – used to define:45

o object types46
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o value types and their associated boxed types1

Note: While class definitions always define class types, not all class types require a class definition. Array2
types and pointer types, which are implicitly defined, are also class types. See clause 7.2.3.3

Similarly, not all types defined by a class definition are object types. Array types, explicitly defined object4
types, and boxed types are object types. Pointer types, function pointer types, and value types are not object5
types. See clause 7.2.3.6

7.9 .1 Array Types7

An array type shall be defined by specifying the element type of the array, the rank (number of dimensions)8
of the array, and the upper and lower bounds of each dimension of the array. Hence, no separate definition of9
the array type is needed. The bounds (as well as indices into the array) shall be signed integers. While the10
actual bounds for each dimension are known at runtime, the signature may specify the information that is11
known at compile time: no bounds, a lower bound, or both an upper and lower bound.12

Array elements shall be laid out within the array object in row-major order, i.e. the elements associated with the13
rightmost array dimension shall be laid out contiguously from lowest to highest index. The actual storage14
allocated for each array element may include platform-specific padding.15

Values of an array type are objects; hence an array type is a kind of object type (see clause 7.2.3). Array objects16
are defined by the CTS to be a repetition of locations where values of the array element type are stored. The17
number of repeated values is determined by the rank and bounds of the array.18

Only type signatures, not location signatures, are allowed as array element types.19

Exact array types are created automatically by the VES when they are required. Hence, the operations on an20
array type are defined by the CTS. These generally are: allocating the array based on size and lower bound21
information, indexing the array to read and write a value, computing the address of an element of the array (a22
managed pointer), and querying for the rank, bounds, and the total number of values stored in the array.23

CLS Rule 16: Arrays shall have elements with a CLS-compliant type and all dimensions of the array shall24
have lower bounds of zero. Only the fact that an item is an array and the element type of the array shall be25
required to distinguish between overloads. When overloading is based on two or more array types the element26
types shall be named types.27

Note: so-called “jagged arrays” are CLS-compliant, but when overloading multiple array types they are one-28
dimensional, zero-based arrays of type System.Array.29

CLS (consumer): there is no need to support arrays of non-CLS types, even when dealing with instances of30
System.Array. Overload resolution need not be aware of the full complexity of array types. Programmers31
should have access to the Get, Set, and Address methods on instances of System.Array if there is no language32
syntax for the full range of array types.33

CLS (extender): there is no need to provide syntax to define non-CLS types of arrays or to extend interfaces or34
classes that use non-CLS array types. Shall provide access to the type System.Array, but may assume that all35
instances will have a CLS-compliant type. While the full array signature must be used to override an inherited36
method that has an array parameter, the full complexity of array types need not be made visible to37
programmers. Programmers should have access to the Get, Set, and Address methods on instances of38
System.Array if there is no language syntax for the full range of array types.39

CLS (framework): non-CLS array types shall not appear in exposed members. Where possible, use only one-40
dimensional, zero-based arrays (vectors) of simple named types, since these are supported in the widest range41
of programming languages. Overloading on array types should be avoided, and when used shall obey the42
restrictions.43

Array types form a hierarchy, with all array types inheriting from the type System.Array. This is an abstract44
class (see clause 7.9.6.2) that represents all arrays regardless of the type of their elements, their rank, or their45
upper and lower bounds. The VES creates one array type for each distinguishable array type. In general, array46
types are only distinguished by the type of their elements and their rank. The VES, however, treats single47
dimensional, zero-based arrays (also known as vectors) specially. Vectors are also distinguished by the type of48
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their elements, but a vector is distinct from a single-dimensional array of the same element type that has a non-1
zero lower bound.. Zero-dimensional arrays are not supported.2

Consider the following examples, using the syntax of CIL as described in Partition II:3

4
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Table 2: Array Examples1

Static specification of type Actual type constructed Allowed in CLS?

int32[] vector of int32 Yes

int32[0..5] vector of int32 Yes

int32[1..5] array, rank 1, of int32 No

int32[,] array, rank 2, of int32 Yes

int32[0..3, 0..5] array, rank 2, of int32 Yes

int32[0.., 0..] array, rank 2, of int32 Yes

int32[1.., 0..] array, rank 2, of int32 No
2

7.9 .2 Unmanaged Pointer Types3

An unmanaged pointer type (also known simply as a “pointer type”) is defined by specifying a location4
signature for the location the pointer references. Any signature of a pointer type includes this location5
signature. Hence, no separate definition of the pointer type is needed.6

While pointer types are Reference Types, values of a pointer type are not objects (see clause 7.2.3), and hence7
it is not possible, given a value of a pointer type, to determine its exact type. The CTS provides two typesafe8
operations on pointer types: one to load the value from the location referenced by the pointer and the other to9
store an assignment compatible value into that location. The CTS also provides three operations on pointer10
types (byte-based address arithmetic): adding and subtracting integers from pointers, and subtracting one11
pointer from another. The results of the first two operations are pointers to the same type signature as the12
original pointer. See Partition III for details.13

CLS Rule 17: Unmanaged pointer types are not CLS-compliant.14

Note:15

CLS (consumer): there is no need to support unmanaged pointer types.16

CLS (extender): there is no need to provide syntax to define or access unmanaged pointer types.17

CLS (framework): unmanaged pointer types shall not be externally exposed.18

7.9 .3 Delegates19

Delegates are the object-oriented equivalent of function pointers. Unlike function pointers, delegates are20
object-oriented, type-safe, and secure. Delegates are created by defining a class that derives from the base type21
System.Delegate (see Partition IV). Each delegate type shall provide a method named Invoke with appropriate22
parameters, and each instance of a delegate forwards calls to its Invoke method to a compatible static or23
instance method on a particular object. The object and method to which it delegates are chosen when the24
delegate instance is created.25

In addition to an instance constructor and an Invoke method, delegates may optionally have two additional26
methods: BeginInvoke and EndInvoke. These are used for asynchronous calls.27

While, for the most part, delegates appear to be simply another kind of user defined class, they are tightly28
controlled. The implementations of the methods are provided by the VES, not user code. The only additional29
members that may be defined on delegate types are static or instance methods.30

7.9 .4 Interface Type Definit ion31

An interface definition defines an interface type. An interface type is a named group of methods, locations and32
other contracts that shall be implemented by any object type that supports the interface contract of the same33
name. An interface definition is always an incomplete description of a value, and as such can never define a34
class type or an exact type, nor can it be an object type.35
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Zero or more object types can support an interface type, and only object types can support an interface type. An1
interface type may require that objects that support it shall also support other (specified) interface types. An2
object type that supports the named interface contract shall provide a complete implementation of the methods,3
locations, and other contracts specified (but not implemented by) the interface type. Hence, a value of an object4
type is also a value of all of the interface types the object type supports. Support for an interface contract is5
declared, never inferred, i.e. the existence of implementations of the methods, locations, and other contracts6
required by the interface type does not imply support of the interface contract.7

CLS Rule 18: CLS-compliant interfaces shall not require the definition of non-CLS compliant methods in8
order to implement them.9

Note:10

CLS (consumer): there is no need to deal with such interfaces.11

CLS (extender): need not provide a mechanism for defining such interfaces..12

CLS (framework): shall not expose any non-CLS compliant methods on interfaces it defines for external use.13

Interfaces types are necessarily incomplete since they say nothing about the representation of the values of the14
interface type. For this reason, an interface type definition shall not provide field definitions for values of the15
interface type (i.e. instance fields), although it may declare static fields (see clause 7.4.3).16

Similarly, an interface type definition shall not provide implementations for any methods on the values of its17
type. However, an interface type definition may and usually does define method contracts (method name and18
method signature) that shall be implemented by supporting types. An interface type definition may define and19
implement static methods (see clause 7.4.3) since static methods are associated with the interface type itself20
rather than with any value of the type.21

Interfaces may have static or virtual methods, but shall not have instance methods.22

CLS Rule 19: CLS-compliant interfaces shall not define static methods, nor shall they define fields.23

Note:24

CLS-compliant interfaces may define properties, events, and virtual methods.25

CLS (consumer): need not accept interfaces that violate these rules.26

CLS (extender): need not provide syntax to author interfaces that violate these rules.27

CLS (framework): shall not externally expose interfaces that violate these rules. Where static methods,28
instance methods, or fields are required a separate class may be defined that provides them.29

Interface types may also define event and property contracts that shall be implemented by object types that30
support the interface. Since event and property contracts reduce to sets of method contracts (Section 7.6), the31
above rules for method definitions apply. For more information, see clause 7.11.4 and clause 7.11.3.32

Interface type definitions may specify other interface contracts that implementations of the interface type are33
required to support. See clause 7.9.11 for specifics.34

An interface type is given a visibility attribute, as described in clause 7.5.3, that controls from where the35
interface type may be referenced. An interface type definition is separate from any object type definition that36
supports the interface type. Hence, it is possible, and often desirable, to have a different visibility for the37
interface type and the implementing object type. However, since accessibility attributes are relative to the38
implementing type rather than the interface itself, all members of an interface shall have public accessibility,39
and no security permissions may be attached to members or to the interface itself.40

7.9 .5 Class Type Definit ion41

All types other than interfaces, and those types for which a definition is automatically supplied by the CTS, are42
defined by class definitions. A class type is a complete specification of the representation of the values of the43
class type and all of the contracts (class, interface, method, property, and event) that are supported by the class44
type. Hence, a class type is an exact type. A class definition, unless it specifies that the class is an abstract45
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object type, not only defines the class type: it also provides implementations for all of the contracts supported1
by the class type.2

A class definition, and hence the implementation of the class type, always resides in some assembly. An3
assembly is a configured set of loadable code modules and other resources that together implement a unit of4
functionality.5

Note: While class definitions always define class types, not all class types require a class definition. Array6
types and pointer types, which are implicitly defined, are also class types. See clause 7.2.3.7

An explicit class definition is used to define:8

• An object type (see clause 7.2.3).9

• A value type and its associated boxed type (see clause 7.2.4).10

An explicit class definition:11

• Names the class type.12

• Implicitly assigns the class type name to a scope, i.e. the assembly that contains the class13
definition, (see clause 7.5.2).14

• Defines the class contract of the same name (see Section 7.6).15

• Defines the representations and valid operations of all values of the class type using member16
definitions for the fields, methods, properties, and events (see Section 7.11).17

• Defines the static members of the class type (see Section 7.11).18

• Specifies any other interface and class contracts also supported by the class type.19

• Supplies implementations for member and interface contracts supported by the class type.20

• Explicitly declares a visibility for the type, either public or assembly (see clause 7.5.3).21

• May optionally specify a method to be called to initialize the type.22

The semantics of when, and what triggers execution of such type initialization methods, is as follows:23

1. A type may have a type-initializer method, or not.24

2. A type may be specified as having a relaxed semantic for its type-initializer method (for25
convenience below, we call this relaxed semantic BeforeFieldInit)26

3. If marked BeforeFieldInit then the type’s initializer method is executed at, or sometime before,27
first access to any static field defined for that type28

4. If not marked BeforeFieldInit then that type’s initializer method is executed at (i.e., is triggered29
by):30

o first access to any static or instance field of that type, or31

o first invocation of any static, instance or virtual method of that type32

5. Execution of any type's initializer method will not trigger automatic execution of any initializer33
methods defined by its base type, nor of any interfaces that the type implements34

Note: BeforeFieldInit behavior is intended for initialization code with no interesting side-effects, where exact35
timing does not matter. Also, under BeforeFieldInit semantics, type initializers are allowed to be executed at36
or before first access to any static field of that Type -- at the discretion of the CLI37

If a language wishes to provide more rigid behavior -- e.g. type initialization automatically triggers execution38
of parents initializers, in a top-to-bottom order, then it can do so by either:39

• defining hidden static fields and code in each class constructor that touches the hidden static field40
of its parent and/or interfaces it implements, or41
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• by making explicit calls to System.Runtime.CompilerServices.Runtime-1
Helpers.RunClassConstructor (see Partition IV).2

7.9 .6 Object Type Definit ions3

All objects are instances of an object type. The object type of an object is set when the object is created and it4
is immutable. The object type describes the physical structure of the instance and the operations that are5
allowed on it. All instances of the same object type have the same structure and the same allowable operations.6
Object types are explicitly declared by a class type definition, with the exception of Array types, which are7
intrinsically provided by the VES.8

7.9 .6.1 Scope and Visibi l ity9

Since object type definitions are class type definitions, object type definitions implicitly specify the scope of10
the name of object type to be the assembly that contains the object type definition, see clause 7.5.2. Similarly,11
object type definitions shall also explicitly state the visibility attribute of the object type (either public or12
assembly); see clause 7.5.3.13

7.9 .6.2 Concreteness14

An object type may be marked as abstract by the object type definition. An object type that is not marked15
abstract is by definition concrete. Only object types may be declared as abstract. Only an abstract object type16
is allowed to define method contracts for which the type or the VES does not also provide the implementation.17
Such method contracts are called abstract methods (see Section 7.11). All methods on an abstract class need not18
be abstract.19

It is an error to attempt to create an instance of an abstract object type, whether or not the type has abstract20
methods. An object type that derives from an abstract object type may be concrete if it provides21
implementations for any abstract methods in the base object type and is not itself marked as abstract. Instances22
may be made of such a concrete derived class. Locations may have an abstract type, and instances of a concrete23
type that derives from the abstract type may be stored in them.24

7.9 .6.3 Type Members25

Object type definitions include member definitions for all of the members of the type. Briefly, members of a26
type include fields into which values are stored, methods that may be invoked, properties that are available, and27
events that may be raised. Each member of a type may have attributes as described in Section 7.4.28

• Fields of an object type specify the representation of values of the object type by specifying the29
component pieces from which it is composed (see clause 7.4.1). Static fields specify fields30
associated with the object type itself (see clause 7.4.3). The fields of an object type are named31
and they are typed via location signatures. The names of the members of the type are scoped to32
the type (see clause 7.5.2). Fields are declared using a field definition ( see clause 7.11.2).33

• Methods of an object type specify operations on values of the type (see clause 7.4.2). Static34
methods specify operations on the type itself (see clause 7.4.3). Methods are named and they35
have a method signature. The names of methods are scoped to the type (see clause 7.5.2).36
Methods are declared using a method definition (see clause 7.11.1).37

• Properties of an object type specify named values that are accessible via methods that read and38
write the value. The name of the property is the grouping of the methods; the methods themselves39
are also named and typed via method signatures. The names of properties are scoped to the type40
(see clause 7.5.2). Properties are declared using a property definition (see clause 7.11.3).41

• Events of an object type specify named state transitions in which subscribers may42
register/unregister interest via accessor methods. When the state changes, the subscribers are43
notified of the state transition. The name of the event is the grouping of the accessor methods;44
the methods themselves are also named and typed via method signatures. The names of events45
are scoped to the type (see clause 7.5.2). Events are declared using an event definition (see46
clause 7.11.4).47
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7.9 .6.4 Support ing Interface Contracts1

Object type definitions may declare that they support zero or more interface contracts. Declaring support for an2
interface contract places a requirement on the implementation of the object type to fully implement that3
interface contract. Implementing an interface contract always reduces to implementing the required set of4
methods, i.e. the methods required by the interface type.5

The different types that the object type implements, i.e. the object type and any implemented interface types,6
are each a separate logical grouping of named members. If a class Foo implements an interface IFoo and IFoo7
declares a member method int a() and the class also declares a member method int a(), there are two8
members, one in the IFoo interface type and one in the Foo class type. An implementation of Foo will provide9
an implementation for both, potentially shared.10

Similarly, if a class implements two interfaces IFoo and IBar each of which defines a method int a() the11
class will supply two method implementations, one for each interface, although they may share the actual code12
of the implementation.13

CLS Rule 20: CLS-compliant classes, value types, and interfaces shall not require the implementation of non-14
CLS-compliant interfaces.15

Note:16

CLS (consumer): need not accept classes, value types or interfaces that violate this rule.17

CLS (extender): need not provide syntax to author classes, value types, or interfaces that violate this rule.18

CLS (framework): shall not externally expose classes, value types, or interfaces that violate this rule.19

7.9 .6.5 Support ing Class Contracts20

Object type definitions may declare support for one other class contract. Declaring support for another class21
contract is synonymous with object type inheritance (see clause 7.9.9).22

7.9 .6.6 Constructors23

New values of an object type are created via constructors. Constructors shall be instance methods, defined via24
a special form of method contract, which defines the method contract as a constructor for a particular object25
type. The constructors for an object type are part of the object type definition. While the CTS and VES ensure26
that only a properly defined constructor is used to make new values of an object type, the ultimate correctness27
of a newly constructed object is dependent on the implementation of the constructor itself.28

Object types shall define at least one constructor method, but that method need not be public. Creating a new29
value of an object type by invoking a constructor involves the following steps in order:30

1. Space for the new value is allocated in managed memory.31

2. VES data structures of the new value are initialized and user-visible memory is zeroed.32

3. The specified constructor for the object type is invoked.33

Inside the constructor, the object type may do any initialization it chooses (possibly none).34

CLS Rule 21: An object constructor shall call some class constructor of its base class before any access occurs35
to inherited instance data. This does not apply to value types, which need not have constructors.36

CLS Rule 22: An object constructor shall not be called except as part of the creation of an object, and an object37
shall not be initialized twice.38

Note:39

CLS (consumer): Shall provide syntax for choosing the constructor to be called when an object is created.40

CLS (extender): Shall provide syntax for defining constructor methods with different signatures. May issue a41
compiler error if the constructor does not obey these rules.42
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CLS (framework): May assume that object creation includes a call to one of the constructors, and that no1
object is initialized twice. System.MemberwiseClone (see Partition IV) and deserialization (including object2
remoting) may not run constructors.3

7.9 .6.7 Finalizers4

A class definition that creates an object type may supply an instance method to be called when an instance of5
the class is no longer accessible. The class System.GC (see Partition IV) provides limited control over the6
behavior of finalizers through the methods SuppressFinalize and ReRegisterForFinalize. Conforming7
implementations of the CLI may specify and provide additional mechanisms that affect the behavior of8
finalizers.9

A conforming implementation of the CLI shall not automatically call a finalizer twice for the same object10
unless11

• there has been an intervening call to ReRegisterForFinalize (not followed by a call to12
SuppressFinalize), or13

• the program has invoked an implementation-specific mechanism that is clearly specified to14
produce an alteration to this behavior15

Rationale: Programmers expect that finalizers are run precisely once on any given object unless they take an16
explicit action to cause the finalizer to be run multiple times.17

It is legal to define a finalizer for a Value Type. That finalizer however will only be run for boxed instances of18
that Value Type.19

Note: Since programmers may depend on finalizers to be called, the CLI should make every effort to ensure20
that finalizers are called, before it shuts down, for all objects that have not been exempted from finalization by21
a call to SuppressFinalize. The implementation should specify any conditions under which this behavior22
cannot be guaranteed.23

24
Note: Since resources may become exhausted if finalizers are not called expeditiously, the CLI should ensure25
that finalizers are called soon after the instance becomes inaccessible. While relying on memory pressure to26
trigger finalization is acceptable, implementers should consider the use of additional metrics.27

7.9.7 Value Type Definit ion28

Not all types defined by a class definition are object types (see clause 7.2.3); in particular, value types are not29
object types but they are defined using a class definition. A class definition for a value type defines both the30
(unboxed) value type and the associated boxed type (see clause 7.2.4). The members of the class definition31
define the representation of both:32

1. When a non-static method (i.e. an instance or virtual method) is called on the value type its this33
pointer is a managed reference to the instance, whereas when the method is called on the34
associated boxed type the this pointer is an object reference.35

Instance methods on value types receive a this pointer that is a managed pointer to the unboxed type whereas36
virtual methods (including those on interfaces implemented by the value type) receive an instance of the boxed37
type.38

1. Value types do not support interface contracts, but their associated boxed types do.39

2. A value type does not inherit; rather the base type specified in the class definition defines the40
base type of the boxed type.41

3. The base type of a boxed type shall not have any fields.42

4. Unlike object types, instances of value types do not require a constructor to be called when an43
instance is created. Instead, the verification rules require that verifiable code initialize instances44
to zero (null for object fields).45
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7.9 .8 Type Inheritance1

Inheritance of types is another way of saying that the derived type guarantees support for all of the type2
contracts of the base type. In addition, the derived type usually provides additional functionality or specialized3
behavior. A type inherits from a base type by implementing the type contract of the base type. An interface type4
inherits from zero or more other interfaces. Value types do not inherit, although the associated boxed type is an5
object type and hence inherits from other types6

The derived class type shall support all of the supported interfaces contracts, class contracts, event contracts,7
method contracts, and property contracts of its base type. In addition, all of the locations defined by the base8
type are also defined in the derived type. The inheritance rules guarantee that code that was compiled to work9
with a value of a base type will still work when passed a value of the derived type. Because of this, a derived10
type also inherits the implementations of the base type. The derived type may extend, override, and/or hide11
these implementations.12

7.9.9 Object Type Inheritance13

With the sole exception of System.Object, which does not inherit from any other object type, all object types14
shall either explicitly or implicitly declare support for (inherit from) exactly one other object type. The graph of15
the inherits-relation shall form a singly rooted tree with System.Object at the base, i.e. all object types16
eventually inherit from the type System.Object.17

An object type declares it shall not be used as a base type (be inherited from) by declaring that it is a sealed18
type.19

CLS Rule 23:. System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-20
compliant class.21

Arrays are object types and as such inherit from other object types. Since arrays object types are manufactured22
by the VES, the inheritance of arrays is fixed. See clause 7.9.1.23

7.9 .10 Value Type Inheritance24

Value Types, in their unboxed form, do not inherit from any type. Boxed value types shall inherit directly from25
System.ValueType unless they are enumerations, in which case they shall inherit from System.Enum. Boxed26
value types shall be sealed.27

Logically, the boxed type corresponding to a value type28

• Is an object type.29

• Will specify which object type is its base type, i.e. the object type from which it inherits.30

• Will have a base type that has no fields defined.31

• Will be sealed to avoid dealing with the complications of value slicing32

The more restrictive rules specified here allow for more efficient implementation without severely33
compromising functionality.34

7.9 .11 Interface Type Inheritance35

Interface types may inherit from multiple interface types, i.e. an interface contract may list other interface36
contracts that shall also be supported. Any type that implements support for an interface type shall also37
implement support for all of the inherited interface types. This is different from object type inheritance in two38
ways.39

• Object types form a single inheritance tree; interface types do not.40

• Object type inheritance specifies how implementations are inherited; interface type inheritance41
does not, since interfaces do not define implementation. Interface type inheritance specifies42
additional contracts that an implementing object type shall support.43
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To highlight the last difference, consider an interface, IFoo, that has a single method. An interface, IBar, which1
inherits from it is requiring that any object type that supports IBar also support IFoo. It does not say anything2
about which methods IBar itself will have.3

7.10 Member Inheritance4

Only object types may inherit implementations, hence only object types may inherit members (see5
clause 7.9.8). Interface types, while they do inherit from other interface types, only inherit the requirement to6
implement method contracts, never fields or method implementations.7

7.10.1 Field Inheritance8

A derived object type inherits all of the non-static fields of its base object type. This allows instances of the9
derived type to be used wherever instances of the base type are expected (the shapes, or layouts, of the10
instances will be the same). Static fields are not inherited. Just because a field exists does not mean that it may11
be read or written. The type visibility, field accessibility, and security attributes of the field definition (see12
clause 7.5.3) determine if a field is accessible to the derived object type.13

7.10.2 Method Inheritance14

A derived object type inherits all of the instance and virtual methods of its base object type. It does not inherit15
constructors or static methods. Just because a method exists does not mean that it may be invoked. It shall be16
accessible via the typed reference that is being used by the referencing code. The type visibility, method17
accessibility, and security attributes of the method definition (see clause 7.5.3) determine if a method is18
accessible to the derived object type.19

A derived object type may hide a non-virtual (i.e. static or instance) method of its base type by providing a new20
method definition with the same name or same name and signature. Either method may still be invoked, subject21
to method accessibility rules, since the type that contains the method always qualifies a method reference.22

Virtual methods may be marked as final, in which case they shall not be overridden in a derived object type.23
This ensures that the implementation of the method is available, by a virtual call, on any object that supports24
the contract of the base class that supplied the final implementation. If a virtual method is not final it is possible25
to demand a security permission in order to override the virtual method, so that the ability to provide an26
implementation can be limited to classes that have particular permissions. When a derived type overrides a27
virtual method, it may specify a new accessibility for the virtual method, but the accessibility in the derived28
class shall permit at least as much access as the access granted to the method it is overriding. See clause 7.5.3.29

7.10.3 Property and Event Inheritance30

Properties and events are fundamentally constructs of the metadata intended for use by tools that target the CLI31
and are not directly supported by the VES itself. It is, therefore, the job of the source language compiler and the32
Reflection library [see Partition IV] to determine rules for name hiding, inheritance, and so forth. The source33
compiler shall generate CIL that directly accesses the methods named by the events and properties, not the34
events or properties themselves.35

7.10.4 Hiding, Overriding, and Layout36

There are two separate issues involved in inheritance. The first is which contracts a type shall implement and37
hence which member names and signatures it shall provide. The second is the layout of the instance so that an38
instance of a derived type can be substituted for an instance of any of its base types. Only the non-static fields39
and the virtual methods that are part of the derived type affect the layout of an object.40

The CTS provides independent control over both the names that are visible from a base type (hiding) and the41
sharing of layout slots in the derived class (overriding). Hiding is controlled by marking a member in the42
derived class as either hide by name or hide by name-and-signature. Hiding is always performed based on43
the kind of member, that is, derived field names may hide base field names, but not method names, property44
names, or event names. If a derived member is marked hide by name, then members of the same kind in the45
base class with the same name are not visible in the derived class; if the member is marked hide by name-and-46
signature then only a member of the same kind with exactly the same name and type (for fields) or method47
signature (for methods) is hidden in the derived class. Implementation of the distinction between these two48
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forms of hiding is provided entirely by source language compilers and the Reflection library; it has no direct1
impact on the VES itself.2

For example:3

class Base4
{ field int32 A;5

field System.String A;6
method int32 A();7
method int32 A(int32);8

}9
class Derived inherits from Base10
{ field int32 A;11

hidebysig method int32 A();12
}13

The member names available in type Derived are:14

Table 3: Member names15

Kind of member Type / Signature of member Name of member

Field int32 A

Method () -> int32 A

Method (int32) -> int32 A

16
While hiding applies to all members of a type, overriding deals with object layout and is applicable only to17
instance fields and virtual methods. The CTS provides two forms of member overriding, new slot and expect18
existing slot. A member of a derived type that is marked as a new slot will always get a new slot in the object’s19
layout, guaranteeing that the base field or method is available in the object by using a qualified reference that20
combines the name of the base type with the name of the member and its type or signature. A member of a21
derived type that is marked as expect existing slot will re-use (i.e. share or override) a slot that corresponds to a22
member of the same kind (field or method), name, and type if one already exists from the base type; if no such23
slot exists, a new slot is allocated and used.24

The general algorithm that is used for determining the names in a type and the layout of objects of the type is25
roughly as follows:26

• Flatten the inherited names (using the hide by name or hide by name-and-signature rule)27
ignoring accessibility rules.28

• For each new member that is marked “expect existing slot”, look to see if an exact match on kind29
(i.e. field or method), name, and signature exists and use that slot if it is found, otherwise allocate30
a new slot.31

• After doing this for all new members, add these new member-kind/name/signatures to the list of32
members of this type33

• Finally, remove any inherited names that match the new members based on the hide by name or34
hide by name-and-signature rules.35

7.11 Member Definitions36

Object type definitions, interface type definitions, and value type definitions may include member definitions.37
Field definitions define the representation of values of the type by specifying the substructure of the value.38
Method definitions define operations on values of the type and operations on the type itself (static methods).39
Property and event definitions may only be defined on object types. Property and events define named groups40
of accessor method definitions that implement the named event or property behavior. Nested type declarations41
define types whose names are scoped by the enclosing type and whose instances have full access to all42
members of the enclosing class.43

Depending on the kind of type definition, there are restrictions on the member definitions allowed.44
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7.11.1 Method Definit ions1

Method definitions are composed of a name, a method signature, and optionally an implementation of the2
method. The method signature defines the calling convention, type of the parameters to the method, and the3
return type of the method (see clause 7.6.1). The implementation is the code to execute when the method is4
invoked. A value type or object type may define only one method of a given name and signature. However, a5
derived object type may have methods that are of the same name and signature as its base object type. See6
clause 7.10.2 and clause 7.10.4.7

The name of the method is scoped to the type (see clause 7.5.2). Methods may be given accessibility attributes8
(see clause 7.5.3). Methods may only be invoked with arguments that are assignment compatible with the9
parameters types of the method signature. The return value of the method shall also be assignment compatible10
with the location in which it is stored.11

Methods may be marked as static, indicating that the method is not an operation on values of the type but12
rather an operation associated with the type as a whole. Methods not marked as static define the valid13
operations on a value of a type. When a non-static method is invoked, a particular value of the type, referred to14
as this or the this pointer, is passed as an implicit parameter.15

A method definition that does not include a method implementation shall be marked as abstract. All non-static16
methods of an interface definition are abstract. Abstract method definitions are only allowed in object types that17
are marked as abstract.18

A non-static method definition in an object type may be marked as virtual, indicating that an alternate19
implementation may be provided in derived types. All non-static method definitions in interface definitions20
shall be virtual methods. Virtual method may be marked as final, indicating that derived object types are not21
allowed to override the method implementation.22

7.11.2 Field Definit ions23

Field definitions are composed of a name and a location signature. The location signature defines the type of24
the field and the accessing constraints, see clause 7.6.1. A value type or object type may define only one field25
of a given name and type. However, a derived object type may have fields that are of the same name and type26
as its base object type. See clause 7.10.1 and clause 7.10.4.27

The name of the field is scoped to the type (see clause 7.5.2). Fields may be given accessibility attributes, see28
clause 7.5.3. Fields may only store values that are assignment compatible with the type of the field (see29
clause 7.3.1).30

Fields may be marked as static, indicating that the field is not part of values of the type but rather a location31
associated with the type as a whole. Locations for the static fields are created when the type is loaded and32
initialized when the type is initialized.33

Fields not marked as static define the representation of a value of a type by defining the substructure of the34
value (see clause 7.4.1). Locations for such fields are created within every value of the type whenever a new35
value is constructed. They are initialized during construction of the new value. A non-static field of a given36
name is always located at the same place within every value of the type.37

A field that is marked serializable is to be serialized as part of the persistent state of a value of the type. This38
standard does not specify the mechanism by which this is accomplished.39

7.11.3 Property Definit ions40

A property definition defines a named value and the methods that access the value. A property definition41
defines the accessing contracts on that value. Hence, the property definition specifies which accessing methods42
exist and their respective method contracts. An implementation of a type that declares support for a property43
contract shall implement the accessing methods required by the property contract. The implementation of the44
accessing methods defines how the value is retrieved and stored.45

A property definition is always part of either an interface definition or a class definition. The name and value of46
a property definition is scoped to the object type or the interface type that includes the property definition.47
While all of the attributes of a member may be applied to a property (accessibility, static, etc.) these are not48
enforced by the CTS. Instead, the CTS requires that the method contracts that comprise the property shall49
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match the method implementations, as with any other method contract. There are no CIL instructions1
associated with properties, just metadata.2

By convention, properties define a getter method (for accessing the current value of the property) and3
optionally a setter method (for modifying the current value of the property). The CTS places no restrictions on4
the set of methods associated with a property, their names, or their usage.5

CLS Rule 24: The methods that implement the getter and setter methods of a property shall be marked6
SpecialName in the metadata.7

CLS Rule 25: The accessibility of a property and of its accessors shall be identical.8

CLS Rule 26: A property and its accessors shall all be static, all be virtual, or all be instance.9

CLS Rule 27: The type of a property shall be the return type of the getter and the type of the last argument of10
the setter. The types of the parameters of the property shall be the types of the parameters to the getter and11
the types of all but the final parameter of the setter. All of these types shall be CLS-compliant, and shall not12
be managed pointers (i.e. shall not be passed by reference).13

CLS Rule 28: Properties shall adhere to a specific naming pattern. See Section 9.4. The SpecialName14
attribute referred to in CLS rule 26 shall be ignored in appropriate name comparisons and shall adhere to15
identifier rules.16

Note:17

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to18
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the19
property.20

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to21
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the22
property. In particular, an extender need not be able to define properties.23

CLS (framework): Shall design understanding that not all CLS languages will access the property using24
special syntax.25

7.11.4 Event Definit ions26

The CTS supports events in precisely the same way that it supports properties (see clause 7.11.3). The27
conventional methods, however, are different and include means for subscribing and unsubscribing to events as28
well as for firing the event.29

CLS Rule 29: The methods that implement an event shall be marked SpecialName in the metadata.30

CLS Rule 30: The accessibility of an event and of its accessors shall be identical.31

CLS Rule 31: The add and remove methods for an event shall both either be present or absent.32

CLS Rule 32: The add and remove methods for an event shall each take one parameter whose type defines the33
type of the event and that shall be derived from System.Delegate.34

CLS Rule 33: Events shall adhere to a specific naming pattern. See Section 9.4. The SpecialName attribute35
referred to in CLS rule 31 shall be ignored in appropriate name comparisons and shall adhere to identifier rules.36

Note:37

CLS (consumer): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to38
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.39

CLS (extender): Shall ignore the SpecialName bit in appropriate name comparisons and shall adhere to40
identifier rules. Otherwise, no direct support other than the usual access to the methods that define the event.41
In particular, an extender need not be able to define events.42

CLS (framework): Shall design based on the understanding that not all CLS languages will access the event43
using special syntax.44
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7.11.5 Nested Type Definit ions1

A nested type definition is identical to a top-level type definition, with one exception: a top-level type has a2
visibility attribute, while the visibility of a nested type is the same as the visibility of the enclosing type. See3
clause 7.5.3.4
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8 CLI Metadata1

This section and its subsections contain only informative text, with the 2

exception of the CLS rules introduced here and repeated in Chapter 10.  The 3

metadata format is specified in Partition II 4

New types – value types and reference types – are introduced into the CTS via type declarations expressed in5
metadata. In addition, metadata is a structured way to represent all information that the CLI uses to locate and6
load classes, lay out instances in memory, resolve method invocations, translate CIL to native code, enforce7
security, and set up runtime context boundaries. Every CLI PE/COFF module (see Partition II) carries a8
compact metadata binary that is emitted into the module by the CLI-enabled development tool or compiler.9

Each CLI-enabled language will expose a language-appropriate syntax for declaring types and members and for10
annotating them with attributes that express which services they require of the infrastructure. Type imports are11
also handled in a language-appropriate way, and it is the development tool or compiler that consumes the12
metadata to expose the types that the developer sees.13

Note that the typical component or application developer will not need to be aware of the rules for emitting and14
consuming CLI metadata. While it may help a developer to understand the structure of metadata, the rules15
outlined in this section are primarily of interest to tool builders and compiler writers.16

8.1 Components and Assemblies17

Each CLI component carries the metadata for declarations, implementations, and references specific to that18
component. Therefore, the component-specific metadata is referred to as component metadata, and the19
resulting component is said to be self-describing. In object models such as COM or CORBA, this information20
is represented by a combination of typelibs, IDL files, DLLRegisterServer, and a myriad of custom files in21
disparate formats and separate from the actual executable file. In contrast, the metadata is a fundamental part of22
a CLI component.23

Collections of CLI components and other files are packaged together for deployment into assemblies,24
discussed in more detail in a later section. An assembly is a logical unit of functionality that serves as the25
primary unit of reuse in the CLI. Assemblies establish a name scope for types.26

Types declared and implemented in individual components are exported for use by other implementations via27
the assembly in which the component participates. All references to a type are scoped by the identity of the28
assembly in whose context the type is being used. The CLI provides services to locate a referenced assembly29
and request resolution of the type reference. It is this mechanism that provides an isolation scope for30
applications: the assembly alone controls its composition.31

8.2 Accessing Metadata32

Metadata is emitted into and read from a CLI module using either direct access to the file format as described33
in Partition II or through the Reflection library. It is possible to create a tool that verifies a CLI module,34
including the metadata, during development, based on the specifications supplied in Partition III and35
Partition II.36

When a class is loaded at runtime, the CLI loader imports the metadata into its own in-memory data structures,37
which can be browsed via the CLI Reflection services. The Reflection services should be considered as similar38
to a compiler; they automatically walk the inheritance hierarchy to obtain information about inherited methods39
and fields, they have rules about hiding by name or name-and-signature, rules about inheritance of methods and40
properties, and so forth.41

8.2 .1 Metadata Tokens42

A metadata token is an implementation dependent encoding mechanism. Partition II describes the manner in43
which metadata tokens are embedded in various sections of a CLI PE/COFF module. Metadata tokens are44
embedded in CIL and native code to encode method invocations and field accesses at call sites; the token is45
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used by various infrastructure services to retrieve information from metadata about the reference and the type1
on which it was scoped in order to resolve the reference.2

A metadata token is a typed identifier of a metadata object (type declaration, member declaration, etc.). Given a3
token, its type can be determined and it is possible to retrieve the specific metadata attributes for that metadata4
object. However, a metadata token is not a persistent identifier. Rather it is scoped to a specific metadata5
binary. A metadata token is represented as an index into a metadata data structure, so access is fast and direct.6

8.2 .2 Member Signatures in Metadata7

Every location — including fields, parameters, method return values, and properties — has a type, and a8
specification for its type is carried in metadata.9

A value type describes values that are represented as a sequence of bits. A reference type describes values that10
are represented as the location of a sequence of bits. The CLI provides an explicit set of built-in types, each of11
which has a default runtime form as either a value type or a reference type. The metadata APIs may be used to12
declare additional types, and part of the type specification of a variable encodes the identity of the type as well13
as which form (value or reference) the type is to take at runtime.14

Metadata tokens representing encoded types are passed to CIL instructions that accept a type (newobj,15
newarray, ldtoken). See the CIL instruction set specification in Partition III.16

These encoded type metadata tokens are also embedded in member signatures. To optimize runtime binding of17
field accesses and method invocations, the type and location signatures associated with fields and methods are18
encoded into member signatures in metadata. A member signature embodies all of the contract information that19
is used to decide whether a reference to a member succeeds or fails.20

8.3 Unmanaged Code21

It is possible to pass data from CLI managed code to unmanaged code. This always involves a transition from22
managed to unmanaged code, which has some runtime cost, but data can often be transferred without copying.23
When data must be reformatted the VES provides a reasonable specification of default behavior, but it is24
possible to use metadata to explicitly require other forms of marshalling (i.e. reformatted copying). The25
metadata also allows access to unmanaged methods through implementation-specific pre-existing mechanisms.26

8.4 Method Implementation Metadata27

For each method for which an implementation is supplied in the current CLI module, the tool or compiler will28
emit information used by the CIL-to-native code compilers, the CLI loader, and other infrastructure services.29
This information includes:30

• Whether the code is managed or unmanaged.31

• Whether the implementation is in native code or CIL (note that all CIL code is managed).32

• The location of the method body in the current module, as an address relative to the start of the33
module file in which it is located (a Relative Virtual Address, or RVA). Or, alternatively, the34
RVA is encoded as 0 and other metadata is used to tell the infrastructure where the method35
implementation will be found, including:36

o An implementation to be located via the CLI Interoperability Services. See related37
specifications for details.38

o Forwarding calls through an imported global static method.39

8.5 Class Layout40

In the general case, the CLI loader is free to lay out the instances of a class in any way it chooses, consistent41
with the rules of the CTS. However, there are times when a tool or compiler needs more control over the42
layout. In the metadata, a class is marked with an attribute indicating whether its layout rule is:43
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• autolayout: A class marked “autolayout” indicates that the loader is free to lay out the class in1
any way it sees fit; any layout information that may have been specified is ignored. This is the2
default.3

• layoutsequential: A class marked “layoutsequential” guides the loader to preserve field order as4
emitted, but otherwise the specific offsets are calculated based on the CLI type of the field; these5
may be shifted by explicit offset, padding, and/or alignment information.6

• explicitlayout: A class marked “explicitlayout” causes the loader to ignore field sequence and to7
use the explicit layout rules provided, in the form of field offsets and/or overall class size or8
alignment. There are restrictions on legal layouts, specified in Partition II.9

It is also possible to specify an overall size for a class. This enables a tool or compiler to emit a value type10
specification where only the size of the type is supplied. This is useful in declaring CLI built-in types (such as11
32 bit integer). It is also useful in situations where the data type of a member of a structured value type does not12
have a representation in CLI metadata (e.g., C++ bit fields). In the latter case, as long as the tool or compiler13
controls the layout, and CLI doesn’t need to know the details or play a role in the layout, this is sufficient. Note14
that this means that the VES can move bits around but can’t marshal across machines – the emitting tool or15
compiler will need to handle the marshaling.16

Optionally, a developer may specify a packing size for a class. This is layout information that is not often used17
but it allows a developer to control the alignment of the fields. It is not an alignment specification, per se, but18
rather serves as a modifier that places a ceiling on all alignments. Typical values are 1, 2, 4, 8, or 16.19

For the full specification of class layout attributes, see the classes in System.Runtime.InteropServices in20
Partition IV.21

8.6 Assemblies: Name Scopes for Types22

An assembly is a collection of resources that are built to work together to deliver a cohesive set of23
functionality. An assembly carries all of the rules necessary to ensure that cohesion. It is the unit of access to24
resources in the CLI.25

Externally, an assembly is a collection of exported resources, including types. Resources are exported by name.26
Internally, an assembly is a collection of public (exported) and private (internal to the assembly) resources. It is27
the assembly that determines which resources are to be exposed outside of the assembly and which resources28
are accessible only within the current assembly scope. It is the assembly that controls how a reference to a29
resource, public or private, is mapped onto the bits that implement the resource. For types in particular, the30
assembly may also supply runtime configuration information. A CLI module can be thought of as a packaging31
of type declarations and implementations, where the packaging decisions may change under the covers without32
affecting clients of the assembly.33

The identity of a type is its assembly scope and its declared name. A type defined identically in two different34
assemblies is considered two different types.35

Assembly Dependencies: An assembly may depend on other assemblies. This happens when implementations36
in the scope of one assembly reference resources that are scoped in or owned by another assembly.37

• All references to other assemblies are resolved under the control of the current assembly scope.38
This gives an assembly an opportunity to control how a reference to another assembly is mapped39
onto a particular version (or other characteristic) of that referenced assembly (although that target40
assembly has sole control over how the referenced resource is resolved to an implementation).41

• It is always possible to determine which assembly scope a particular implementation is running42
in. All requests originating from that assembly scope are resolved relative to that scope.43

From a deployment perspective, an assembly may be deployed by itself, with the assumption that any other44
referenced assemblies will be available in the deployed environment. Or, it may be deployed with its dependent45
assemblies.46

Manifests: Every assembly has a manifest that declares what files make up the assembly, what types are47
exported, and what other assemblies are required to resolve type references within the assembly. Just as CLI48
components are self-describing via metadata in the CLI component, so are assemblies self-describing via their49
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manifests. When a single file makes up an assembly it contains both the metadata describing the types defined1
in the assembly and the metadata describing the assembly itself. When an assembly contains more than one file2
with metadata, each of the files describes the types defined in the file, if any, and one of these files also3
contains the metadata describing the assembly (including the names of the other files, their cryptographic4
hashes, and the types they export outside of the assembly). 5

Applications: Assemblies introduce isolation semantics for applications. An application is simply an assembly6
that has an external entry point that triggers (or causes a hosting environment such as a browser to trigger) the7
creation of a new Application Domain. This entry point is effectively the root of a tree of request invocations8
and resolutions. Some applications are a single, self-contained assembly. Others require the availability of other9
assemblies to provide needed resources. In either case, when a request is resolved to a module to load, the10
module is loaded into the same Application Domain from which the request originated. It is possible to monitor11
or stop an application via the Application Domain.12

References: A reference to a type always qualifies a type name with the assembly scope within which the13
reference is to be resolved – that is, an assembly establishes the name scope of available resources. However,14
rather than establishing relationships between individual modules and referenced assemblies, every reference is15
resolved through the current assembly. This allows each assembly to have absolute control over how references16
are resolved. See Partition II.17

8.7 Metadata Extensibil ity18

CLI metadata is extensible. There are three reasons this is important:19

• The Common Language Specification (CLS) is a specification for conventions that languages and20
tools agree to support in a uniform way for better language integration. The CLS constrains parts21
of the CTS model, and the CLS introduces higher-level abstractions that are layered over the22
CTS. It is important that the metadata be able to capture these sorts of development-time23
abstractions that are used by tools even though they are not recognized or supported explicitly by24
the CLI.25

• It should be possible to represent language-specific abstractions in metadata that are neither CLI26
nor CLS language abstractions. For example, it should be possible, over time, to enable languages27
like C++ to not require separate header files or IDL files in order to use types, methods, and data28
members exported by compiled modules.29

• It should be possible, in member signatures, to encode types and type modifiers that are used in30
language-specific overloading. For example, to allow C++ to distinguish int from long even on31
32-bit machines where both map to the underlying type int32.32

This extensibility comes in the following forms:33

• Every metadata object can carry custom attributes, and the metadata APIs provide a way to34
declare, enumerate, and retrieve custom attributes. Custom attributes may be identified by a35
simple name, where the value encoding is opaque and known only to the specific tool, language,36
or service that defined it. Or, custom attributes may be identified by a type reference, where the37
structure of the attribute is self-describing (via data members declared on the type) and any tool38
including the CLI Reflection services may browse the value encoding.39

CLS Rule 34: The CLS only allows a subset of the encodings of custom attributes. The only types that40
shall appear in these encodings are (see Partition IV): System.Type, System.String, System.Char,41
System.Boolean, System.Byte, System.Int16, System.Int32, System.Int64, System.Single,42
System.Double, and any enumeration type based on a CLS-compliant base integer type.43

Note:44

CLS (consumer): Shall be able to read attributes encoded using the restricted scheme.45

CLS (extender): Must meet all requirements for CLS consumer and be able to author new classes and46
new attributes. Shall be able to attach attributes based on existing attribute classes to any metadata that47
is emitted. Shall implement the rules for the System.AttributeUsageAttribute (see Partition IV).48
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CLS (framework): Shall externally expose only attributes that are encoded within the CLS rules and1
following the conventions specified for System.AttributeUsageAttribute2

• In addition to CTS type extensibility, it is possible to emit custom modifiers into member3
signatures (see Types in Partition II). The CLI will honor these modifiers for purposes of method4
overloading and hiding, as well as for binding, but will not enforce any of the language-specific5
semantics. These modifiers can reference the return type or any parameter of a method, or the6
type of a field. They come in two kinds: required modifiers that anyone using the member must7
understand in order to correctly use it, and optional modifiers that may be ignored if the modifier8
is not understood.9

CLS Rule 35: The CLS does not allow publicly visible required modifiers (modreq, see Partition II), but10
does allow optional modifiers (modopt, see Partition II) they do not understand.11

Note:12

CLS (consumer): Shall be able to read metadata containing optional modifiers and correctly copy13
signatures that include them. May ignore these modifiers in type matching and overload resolution. May14
ignore types that become ambiguous when the optional modifiers are ignored, or that use required15
modifiers.16

CLS (extender): Shall be able to author overrides for inherited methods with signatures that include17
optional modifiers. Consequently, an extender must be able to copy such modifiers from metadata that it18
imports. There is no requirement to support required modifiers, nor to author new methods that have any19
kind of modifier in their signature.20

CLS (framework): Shall not use required modifiers in externally visible signatures unless they are21
marked as not CLS-compliant. Shall not expose two members on a class that differ only by the use of22
optional modifiers in their signature unless only one is marked CLS-compliant.23

8.8 Globals, Imports, and Exports24

The CTS does not have the notion of global statics: all statics are associated with a particular class.25
Nonetheless, the metadata is designed to support languages that rely on static data that is stored directly in a26
PE/COFF file and accessed by its relative virtual address. In addition, while access to managed data and27
managed functions is mediated entirely through the metadata itself, the metadata provides a mechanism for28
accessing unmanaged data and unmanaged code.29

CLS Rule 36: Global static fields and methods are not CLS-compliant.30

Note:31

CLS (consumer): Need not support global static fields or methods.32

CLS (extender): Need not author global static fields or methods.33

CLS (framework): Shall not define global static fields or methods.34

8.9 Scoped Statics35

The CTS does not include a model for file- or function-scoped static functions or data members. However,36
there are times when a compiler needs a metadata token to emit into CIL for a scoped function or data member.37
The metadata allows members to be marked so that they are never visible/accessible outside of the PE/COFF38
file in which they are declared and for which the compiler guarantees to enforce all access rules.39

End informative text 40
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9 Name and Type Rules for the Common Language Specification1

9.1 Identif iers2

Languages that are either case-sensitive or case-insensitive can support the CLS. Since its rules apply only to3
items exposed to other languages, private members or types that aren’t exported from an assembly may use4
any names they choose. For interoperation, however, there are some restrictions.5

In order to make tools work well with a case-sensitive language it is important that the exact case of identifiers6
be maintained. At the same time, when dealing with non-English languages encoded in Unicode, there may be7
more than one way to represent precisely the same identifier that includes combining characters. The CLS8
requires that identifiers obey the restrictions of the appropriate Unicode standard and persist them in Canonical9
form C, which preserves case but forces combining characters into a standard representation. See CLS Rule 4,10
in Section 7.5.1.11

At the same time, it is important that externally visible names not conflict with one another when used from a12
case-insensitive programming language. As a result, all identifier comparisons shall be done internally to CLS-13
compliant tools using the Canonical form KC, which first transforms characters to their case-canonical14
representation. See CLS Rule 4, in Section 7.5.1.15

When a compiler for a CLS-compliant language supports interoperability with a non-CLS-compliant language16
it must be aware that the CTS and VES perform all comparisons using code-point (i.e. byte-by-byte)17
comparison. Thus, even though the CLS requires that persisted identifiers be in Canonical form C, references to18
non-CLS identifiers will have to be persisted using whatever encoding the non-CLS language chose to use. It is19
a language design issue, not covered by the CTS or the CLS, precisely how this should be handled.20

9.2 Overloading21

Note: The CTS, while it describes inheritance, object layout, name hiding, and overriding of virtual methods,22
does not discuss overloading at all. While this is surprising, it arises from the fact that overloading is entirely23
handled by compilers that target the CTS and not the type system itself. In the metadata, all references to types24
and type members are fully resolved and include the precise signature that is intended. This choice was made25
since every programming language has its own set of rules for coercing types and the VES does not provide a26
means for expressing those rules.27

Following the rules of the CTS, it is possible for duplicate names to be defined in the same scope as long as28
they differ in either kind (field, method, etc.) or signature. The CLS imposes a stronger restriction for29
overloading methods. Within a single scope, a given name may refer to any number of methods provided they30
differ in any of the following:31

• Number of parameters32

• Type of each argument33

Notice that the signature includes more information but CLS-compliant languages need not produce or34
consume classes that differ only by that additional information (see Partition II for the complete list of35
information carried in a signature):36

• Calling convention37

• Custom modifiers38

• Return type39

• Whether a parameter is passed by value or by reference (i.e. as a managed pointer or by-ref)40

There is one exception to this rule. For the special names op_Implicit and op_Explicit described in41
clause 9.3.3 methods may be provided that differ only by their return type. These are marked specially and may42
be ignored by compilers that don’t support operator overloading.43
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Properties shall not be overloaded by type (that is, by the return type of their getter method), but they may be1
overloaded with different number or types of indices (that is, by the number and types of the parameters of its2
getter method). The overloading rules for properties are identical to the method overloading rules.3

CLS Rule 37: Only properties and methods may be overloaded.4

CLS Rule 38: Properties, instance methods, and virtual methods may be overloaded based only on the number5
and types of their parameters, except the conversion operators named op_Implicit and op_Explicit which may6
also be overloaded based on their return type.7

Note:8

CLS (consumer): May assume that only properties and methods are overloaded, and need not support9
overloading based on return type unless providing special syntax for operator overloading. If return type10
overloading isn’t supported, then the op_Implicit and op_Explicit may be ignored since the functionality shall11
be provided in some other way by a CLS-compliant framework.12

CLS (extender): Should not permit the authoring of overloads other than those specified here. It is not13
necessary to support operator overloading at all, hence it is possible to entirely avoid support for overloading14
on return type.15

CLS (framework): Shall not publicly expose overloading except as specified here. Frameworks authors16
should bear in mind that many programming languages, including Object-Oriented languages, do not support17
overloading and will expose overloaded methods or properties through mangled names. Most languages18
support neither operator overloading nor overloading based on return type, so op_Implicit and op_Explicit19
shall always be augmented with some alternative way to gain the same functionality.20

9.3 Operator Overloading21

CLS-compliant consumer and extender tools are under no obligation to allow defining of operator overloading.22
CLS-compliant consumer and extender tools do not have to provide a special mechanism to call these methods.23

Note: This topic is addressed by the CLS so that24

• languages that do provide operator overloading can describe their rules in a way that other25
languages can understand, and26

• languages that do not provide operator overloading can still access the underlying functionality27
without the addition of special syntax.28

Operator overloading is described by using the names specified below, and by setting a special bit in the29
metadata (SpecialName) so that they do not collide with the user’s name space. A CLS-compliant producer30
tool shall provide some means for setting this bit. If these names are used, they shall have precisely the31
semantics described here.32

9.3 .1 Unary Operators33

Unary operators take one argument, perform some operation on it, and return the result. They are represented as34
static methods on the class that defines the type of their one operand or their return type. Table 4: Unary35
Operator Names shows the names that are defined.36

Table 4: Unary Operator Names37

Name ISO C++ Operator Symbol

op_Decrement Similar to --

op_Increment Similar to ++

op_UnaryNegation - (unary)

op_UnaryPlus + (unary)

op_LogicalNot !

op_True1 Not defined
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op_False1 Not defined

op_AddressOf & (unary)

op_OnesComplement ~

op_PointerDereference * (unary)

1 The op_True and op_False operators do not exist in C++. They are provided to support tri-state boolean1
types, such as those used in database languages.2

9.3.2 Binary Operators3

Binary operators take two arguments, perform some operation and return a value. They are represented as static4
methods on the class that defines the type of one of their two operands or the return type. Table 5: Binary5
Operator Names shows the names that are defined.6

Table 5: Binary Operator Names7

Name C++ Operator Symbol

op_Addition + (binary)

op_Subtraction - (binary)

op_Multiply * (binary)

op_Division /

op_Modulus %

op_ExclusiveOr ^

op_BitwiseAnd & (binary)

op_BitwiseOr |

op_LogicalAnd &&

op_LogicalOr ||

op_Assign =

op_LeftShift <<

op_RightShift >>

op_SignedRightShift Not defined

op_UnsignedRightShift Not defined

op_Equality ==

op_GreaterThan >

op_LessThan <

op_Inequality !=

op_GreaterThanOrEqual >=

op_LessThanOrEqual <=

op_UnsignedRightShiftAssignment Not defined

op_MemberSelection ->

op_RightShiftAssignment >>=

op_MultiplicationAssignment *=

op_PointerToMemberSelection ->*

op_SubtractionAssignment -=

op_ExclusiveOrAssignment ^=

op_LeftShiftAssignment <<=
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op_ModulusAssignment %=

op_AdditionAssignment +=

op_BitwiseAndAssignment &=

op_BitwiseOrAssignment |=

op_Comma ,

op_DivisionAssignment /=

1

9.3 .3 Conversion Operators2

Conversion operators are unary operations that allow conversion from one type to another. The operator3
method shall be defined as a static method on either the operand or return type. There are two types of4
conversions:5

• An implicit (widening) coercion shall not lose any magnitude or precision. These should be6
provided using a method named op_Implicit7

• An explicit (narrowing) coercion may lose magnitude or precision. These should be provided8
using a method named op_Explicit9

Note: Conversions provide functionality that can’t be generated in other ways, and many languages will not10
support the use of the conversion operators through special syntax. Therefore, CLS rules require that the same11
functionality be made available through an alternate mechanism. Using the more common ToXxx (where Xxx12
is the target type) and FromYyy (where Yyy is the name of the source type) naming pattern is recommended.13

Because these operations may exist on the class of their operand type (so-called “from” conversions) and would14
therefore differ on their return type only, the CLS specifically allows that these two operators be overloaded15
based on their return type. The CLS, however, also requires that if this form of overloading is used then the16
language shall provide an alternate means for providing the same functionality since not all CLS languages will17
implement operators with special syntax.18

CLS Rule 39: If either op_Implicit or op_Explicit is provided, an alternate means of providing the coercion19
shall be provided.20

Note:21

CLS (consumer): Where appropriate to the language design, use the existence of op_Implicit and/or22
op_Explicit in choosing method overloads and generating automatic coercions.23

CLS (extender): Where appropriate to the language design, implement user-defined implicit or explicit24
coercion operators using the corresponding op_Implicit, op_Explicit, ToXxx, and/or FromXxx methods.25

CLS (framework): If coercion operations are supported, they shall be provided as FromXxx and ToXxx, and26
optionally op_Implicit and op_Explicit as well. CLS frameworks are encouraged to provide such coercion27
operations.28

9.4 Naming Patterns29

See also Partition V.30

While the CTS does not dictate the naming of properties or events, the CLS does specify a pattern to be31
observed.32

For Events:33

An individual event is created by choosing or defining a delegate type that is used to signal the event. Then,34
three methods are created with names based on the name of the event and with a fixed signature. For the35
examples below we define an event named Click that uses a delegate type named EventHandler.36

EventAdd, used to add a handler for an event37

Pattern: void add_<EventName> (<DelegateType> handler)38

Example: void add_Click (EventHandler handler);39
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EventRemove, used to remove a handler for an event1

Pattern: void remove_<EventName> (<DelegateType> handler)2

Example: void remove_Click (EventHandler handler);3

EventRaise, used to signal that an event has occurred4

Pattern: void family raise_<EventName> (Event e)5

For Properties:6

An individual property is created by deciding on the type returned by its getter method and the types of the7
getter’s parameters (if any). Then, two methods are created with names based on the name of the property and8
these types. For the examples below we define two properties: Name takes no parameters and returns a9
System.String, while Item takes a System.Object parameter and returns a System.Object. Item is referred10
to as an indexed property, meaning that it takes parameters and thus may appear to the user as through it were11
an array with indices12

PropertyGet, used to read the value of the property13

Pattern: <PropType> get_<PropName> (<Indices>)14

Example: System.String get_Name ();15

Example: System.Object get_Item (System.Object key);16

PropertySet, used to modify the value of the property17

Pattern: void set_<PropName> (<Indices>, <PropType>)18

Example: void set_Name (System.String name);19

Example: void set_Item (System.Object key, System.Object value);20

9.5 Exceptions21

The CLI supports an exception handling model, which is introduced in clause 11.4.2. CLS compliant22
frameworks may define and throw externally visible exceptions, but there are restrictions on the type of objects23
thrown:24

CLS Rule 40: Objects that are thrown shall be of type System.Exception or inherit from it. Nonetheless, CLS25
compliant methods are not required to block the propagation of other types of exceptions.26

Note:27

CLS (consumer): Need not support throwing or catching of objects that are not of the specified type.28

CLS (extender): Must support throwing of objects of type System.Exception or a type inheriting from it.29
Need not support throwing of objects of other types.30

CLS (framework): Shall not publicly expose thrown objects that are not of type System.Exception or a type31
inheriting from it.32

9.6 Custom Attributes33

In order to allow languages to provide a consistent view of custom attributes across language boundaries, the34
Base Class Library provides support for the following rules defined by the CLS:35

CLS Rule 41: Attributes shall be of type System.Attribute, or inherit from it.36

Note:37

CLS (consumer): Need not support attributes that are not of the specified type.38

CLS (extender): Must support the authoring of custom attributes.39

CLS (framework): Shall not publicly expose attributes that are not of type System.Attribute or a type40
inheriting from it.41
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The use of a particular attribute class may be restricted in various ways by placing an attribute on the attribute1
class. The System.AttributeUsageAttribute is used to specify these restrictions. The restrictions supported2
by the System.AttributeUsageAttribute are:3

• What kinds of constructs (types, methods, assemblies, etc.) may have the attribute applied to4
them. By default, instances of an attribute class can be applied to any construct. This is specified5
by setting the value of the ValidOn property of System.AttributeUsageAttribute. Several6
constructs may be combined.7

• Multiple instances of the attribute class may be applied to a given piece of metadata. By default,8
only one instance of any given attribute class can be applied to a single metadata item. The9
AllowMultiple property of the attribute is used to specify the desired value.10

• Do not inherit the attribute when applied to a type. By default, any attribute attached to a type11
should be inherited to types that derive from it. If multiple instances of the attribute class are12
allowed, the inheritance performs a union of the attributes inherited from the parent and those13
explicitly applied to the child type. If multiple instance are not allowed, then an attribute of that14
type applied directly to the child overrides the attribute supplied by the parent. This is specified15
by setting the Inherited property of System.AttributeUsageAttribute to the desired value.16

Note: Since these are CLS rules and not part of the CTS itself, tools are required to specify explicitly the17
custom attributes they intend to apply to any given metadata item. That is, compilers or other tools that18
generate metadata must implement the AllowMultiple and Inherit rules. The CLI does not supply attributes19
automatically.The usage of attributes in the CLI is further described in Partition II.20
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10 Collected CLS Rules1

The complete set of CLS rules are collected here for reference. Recall that these rules apply only to “externally2
visible” items – types that are visible outside of their own assembly and members of those types that have3
public, family, or family-or-assembly accessibility. Furthermore, items may be explicitly marked as CLS-4
compliant or not using the System.CLSCompliantAttribute. The CLS rules apply only to items that are5
marked as CLS-compliant.6

1. CLS rules apply only to those parts of a type that are accessible or visible outside of the defining7
assembly (see Section 6.3).8

2. Members of non-CLS compliant types shall not be marked CLS-compliant. (see clause 6.3.1).9

3. The CLS does not include boxed value types (see clause 7.2.4).10

4. Assemblies shall follow Annex 7 of Technical Report 15 of the Unicode Standard 3.0 (ISBN 0-201-11
61633-5) governing the set of characters permitted to start and be included in identifiers, available12
on-line at http://www.unicode.org/unicode/reports/tr15/tr15-18.html. For CLS purposes, two13
identifiers are the same if their lowercase mappings (as specified by the Unicode locale-insensitive,14
1-1 lowercase mappings) are the same. That is, for two identifiers to be considered different under15
the CLS they shall differ in more than simply their case. However, in order to override an inherited16
definition the CLI requires the precise encoding of the original declaration be used (see17
clause 7.5.1).18

5. All names introduced in a CLS-compliant scope shall be distinct independent of kind, except where19
the names are identical and resolved via overloading. That is, while the CTS allows a single type20
to use the same name for a method and a field, the CLS does not (see clause 7.5.2).21

6. Fields and nested types shall be distinct by identifier comparison alone, even though the CTS22
allows distinct signatures to be distinguished. Methods, properties, and events that have the same23
name (by identifier comparison) shall differ by more than just the return type, except as specified in24
CLS Rule 39 (see clause 7.5.2).25

7. The underlying type of an enum shall be a built-in CLS integer type (see clause 7.5.2).26

8. There are two distinct kinds of enums, indicated by the presence or absence of the27
System.FlagsAttribute custom attribute. One represents named integer values, the other named28
bit flags that can be combined to generate an unnamed value. The value of an enum is not limited29
to the specified values (see clause 7.5.2).30

9. Literal static fields of an enum shall have the type of the enum itself (see clause 7.5.2).31

10. Accessibility shall not be changed when overriding inherited methods, except when overriding a32
method inherited from a different assembly with accessibility Family-or-Assembly. In this case the33
override shall have accessibility family (see clause 7.5.3.2).34

11. All types appearing in a signature shall be CLS-compliant (see clause 7.6.1).35

12. The visibility and accessibility of types and members shall be such that types in the signature of36
any member shall be visible and accessible whenever the member itself is visible and accessible.37
For example, a public method that is visible outside its assembly shall not have an argument whose38
type is visible only within the assembly (see clause 7.6.1).39

13. The value of a literal static is specified through the use of field initialization metadata (see40
Partition II). A CLS compliant literal must have a value specified in field initialization metadata41
that is of exactly the same type as the literal (or of the underlying type, if that literal is an enum).42
(see clause 7.6.1.2).43

14. Typed references are not CLS-compliant (see clause 7.6.1.3).44

15. The varargs constraint is not part of the CLS, and the only calling convention supported by the CLS45
is the standard managed calling convention (see clause 7.6.1.5).46
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16. Arrays shall have elements with a CLS-compliant type and all dimensions of the array shall have1
lower bounds of zero. Only the fact that an item is an array and the element type of the array shall2
be required to distinguish between overloads. When overloading is based on two or more array3
types the element types shall be named types. (see clause 7.9.1).4

17. Unmanaged pointer types are not CLS-compliant (see clause 7.9.2).5

18. CLS-compliant interfaces shall not require the definition of non-CLS compliant methods in order to6
implement them (see clause 7.9.4).7

19. CLS-compliant interfaces shall not define static methods, nor shall they define fields (see8
clause 7.9.4).9

20. CLS-compliant classes, value types, and interfaces shall not require the implementation of non-10
CLS-compliant interfaces (see clause 7.9.6.4).11

21. An object constructor shall call some class constructor of its base class before any access occurs to12
inherited instance data. This does not apply to value types, which need not have constructors (see13
clause 7.9.6.6).14

22. An object constructor shall not be called except as part of the creation of an object, and an object15
shall not be initialized twice (see clause 7.9.6.6).16

23. System.Object is CLS-compliant. Any other CLS-compliant class shall inherit from a CLS-17
compliant class (see clause 7.9.9).18

24. The methods that implement the getter and setter methods of a property shall be marked19
SpecialName in the metadata (see Partition II) (see clause 7.11.3).20

25. The accessibility of a property and of its accessors shall be identical (see clause 7.11.3).21

26. A property and its accessors shall all be static, all be virtual, or all be instance (see clause 7.11.3).22

27. The type of a property shall be the return type of the getter and the type of the last argument of23
the setter. The types of the parameters of the property shall be the types of the parameters to the24
getter and the types of all but the final parameter of the setter. All of these types shall be CLS-25
compliant, and shall not be managed pointers (i.e. shall not be passed by reference) (see26
clause 7.11.3).27

28. Properties shall adhere to a specific naming pattern. See Section 9.4. The SpecialName attribute28
referred to in CLS rule 26 shall be ignored in appropriate name comparisons and shall adhere to29
identifier rules (see clause 7.11.3).30

29. The methods that implement an event shall be marked SpecialName in the metadata (see31
Partition II) (see clause 7.11.4).32

30. The accessibility of an event and of its accessors shall be identical (see clause 7.11.4).33

31. The add and remove methods for an event shall both either be present or absent (see clause 7.11.4).34

32. The add and remove methods for an event shall each take one parameter whose type defines the35
type of the event and that shall be derived from System.Delegate (see clause 7.11.4).36

33. Events shall adhere to a specific naming pattern. See Section 9.4. The SpecialName attribute37
referred to in CLS rule 31 shall be ignored in appropriate name comparisons and shall adhere to38
identifier rules (see clause 7.11.4).39

34. The CLS only allows a subset of the encodings of custom attributes. The only types that shall40
appear in these encodings are: System.Type, System.String, System.Char, System.Boolean,41
System.Byte, System.Int16, System.Int32, System.Int64, System.Single, System.Double,42
and any enumeration type based on a CLS-compliant base integer type (see Section 8.7).43

35. The CLS does not allow publicly visible required modifiers (modreq, see Partition II), but does44
allow optional modifiers (modopt, see Partition II) they do not understand(see Section 8.7).45

36. Global static fields and methods are not CLS-compliant (see Section 8.8).46
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37. Only properties and methods may be overloaded (see Section 9.2).1

38. Properties, instance methods, and virtual methods may be overloaded based only on the number and2
types of their parameters, except the conversion operators named op_Implicit and op_Explicit3
which may also be overloaded based on their return type (see Section 9.2).4

39. If either op_Implicit or op_Explicit is overloaded on its return type, an alternate means of5
providing the coercion shall be provided (see clause 9.3.3).6

40. Objects that are thrown shall be of type System.Exception or inherit from it (see Section 9.5).7
Nonetheless, CLS compliant methods are not required to block the propagation of other types of8
exceptions.9

41. Attributes shall be of type System.Attribute, or inherit from it (see Section 9.6).10
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11 Virtual Execution System1

The Virtual Execution System (VES) provides an environment for executing managed code. It provides direct2
support for a set of built-in data types, defines a hypothetical machine with an associated machine model and3
state, a set of control flow constructs, and an exception handling model.To a large extent, the purpose of the4
VES is to provide the support required to execute the Common Intermediate Language instruction set (see5
Partition III).6

11.1 Supported Data Types7

The CLI directly supports the data types shown in Table 6: Data Types Directly Supported by the CLI. That is,8
these data types can be manipulated using the CIL instruction set (see Partition III).9

Table 6: Data Types Directly Supported by the CLI10

Data Type Description

int8 8-bit 2’s complement signed value

unsigned int8 8-bit unsigned binary value

int16 16-bit 2’s complement signed value

unsigned int16 16-bit unsigned binary value

int32 32-bit 2’s complement signed value

unsigned int32 32-bit unsigned binary value

int64 64-bit 2’s complement signed value

unsigned int64 64-bit unsigned binary value

float32 32-bit IEC 60559:1989 floating point value

float64 64-bit IEC 60559:1989 floating point value

native int native size 2’s complement signed value

native
unsigned int

native size unsigned binary value, also unmanaged pointer

F native size floating point number (internal to VES, not user visible)

O native size object reference to managed memory

& native size managed pointer (may point into managed memory)
11

The CLI model uses an evaluation stack. Instructions that copy values from memory to the evaluation stack are12
“loads”; instructions that copy values from the stack back to memory are “stores”. The full set of data types in13
Table 6: Data Types Directly Supported by the CLI can be represented in memory. However, the CLI supports14
only a subset of these types in its operations upon values stored on its evaluation stack – int32, int64, native int.15
In addition the CLI supports an internal data type to represent floating point values on the internal evaluation16
stack. The size of the internal data type is implementation-dependent. For further information on the treatment17
of floating-point values on the evaluation stack, see clause 11.1.3 and Partition III. Short numeric values (int8,18
int16, unsigned int8, unsigned int16) are widened when loaded (memory-to-stack) and narrowed when stored19
(stack-to-memory). This reflects a computer model that assumes, for numeric and object references, memory20
cells are 1, 2, 4, or 8 bytes wide but stack locations are either 4 or 8 bytes wide. User-defined value types may21
appear in memory locations or on the stack and have no size limitation; the only built-in operations on them are22
those that compute their address and copy them between the stack and memory.23

The only CIL instructions with special support for short numeric values (rather than support for simply the 4 or24
8 byte integral values) are:25

• Load and store instructions to/from memory: ldelem, ldind, stind, stelem26
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• Data conversion: conv, conv.ovf1

• Array creation: newarr2

The signed integer (int8, int16, int32, int64, and native int) and the respective unsigned integer (unsigned int8,3
unsigned int16, unsigned int32, unsigned int64, and native unsigned int) types differ only in how the bits of the4
integer are interpreted. For those operations where an unsigned integer is treated differently from a signed5
integer (e.g. comparisons or arithmetic with overflow) there are separate instructions for treating an integer as6
unsigned (e.g. cgt.un and add.ovf.u).7

This instruction set design simplifies CIL-to-native code (eg. JIT) compilers and interpreters of CIL by8
allowing them to internally track a smaller number of data types. See clause 11.3.2.1.9

As described below, CIL instructions do not specify their operand types. Instead, the CLI keeps track of10
operand types based on data flow and aided by a stack consistency requirement described below. For example,11
the single add instruction will add two integers or two floats from the stack.12

11.1 .1 Native Size: nat ive int , nat ive unsigned int , O and &13

The native-size, or generic, types (native int, native unsigned int, O, and &) are a mechanism in the CLI for14
deferring the choice of a value’s size. These data types exist as CIL types. But the CLI maps each to the native15
size for a specific processor. (For example, data type I would map to int32 on a Pentium processor, but to int6416
on an IA64 processor). So, the choice of size is deferred until JIT compilation or runtime, when the CLI has17
been initialized and the architecture is known. This implies that field and stack frame offsets are also not known18
at compile time. For languages like Visual Basic, where field offsets are not computed early anyway, this is not19
a hardship. In languages like C or C++, where sizes must be known when source code is compiled, a20
conservative assumption that they occupy 8 bytes is sometimes acceptable (for example, when laying out21
compile-time storage).22

11.1 .1.1 Unmanaged Pointers as Type Native Unsigned Int23

Rationale: For languages like C, when compiling all the way to native code, where the size of a pointer is24
known at compile time and there are no managed objects, the fixed-size unsigned integer types (unsigned int3225
or unsigned int64) may serve as pointers. However choosing pointer size at compile time has its26
disadvantages. If pointers were chosen to be 32 bit quantities at compile time, the code would be restricted to27
4 gigabytes of address space, even if it were run on a 64 bit machine. Moreover, a 64 bit CLI would need to28
take special care so those pointers passed back to 32-bit code would always fit in 32 bits. If pointers were29
chosen at compile time to be 64 bits, the code would run on a 32 bit machine, but pointers in every data30
structure would be twice as large as necessary on that CLI.31

For other languages, where the size of a data type need not be known at compile time, it is desirable to defer32
the choice of pointer size from compile time to CLI initialization time. In that way, the same CIL code can33
handle large address spaces for those applications that need them, while also being able to reap the size34
benefit of 32 bit pointers for those applications that do not need a large address space.35

The native unsigned int type is used to represent unmanaged pointers with the VES. The metadata allows36
unmanaged pointers to be represented in a strongly typed manner, but these types are translated into type native37
unsigned int for use by the VES.38

11.1 .1.2 Managed Pointer Types: O and &39

The O datatype represents an object reference that is managed by the CLI. As such, the number of specified40
operations is severely limited. In particular, references shall only be used on operations that indicate that they41
operate on reference types (e.g. ceq and ldind.ref), or on operations whose metadata indicates that references42
are allowed (e.g. call, ldsfld, and stfld).43

The & datatype (managed pointer) is similar to the O type, but points to the interior of an object. That is, a44
managed pointer is allowed to point to a field within an object or an element within an array, rather than to45
point to the ‘start’ of object or array.46

Object references (O) and managed pointers (&) may be changed during garbage collection, since the data to47
which they refer may be moved.48
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Note: In summary, object references, or O types, refer to the ‘outside’ of an object, or to an object as-a-whole.1
But managed pointers, or & types, refer to the interior of an object. The & types are sometimes called “by-ref2
types” in source languages, since passing a field of an object by reference is represented in the VES by using an3
& type to represent the type of the parameter.4

In order to allow managed pointers to be used more flexibly, they are also permitted to point to areas that aren’t5
under the control of the CLI garbage collector, such as the evaluation stack, static variables, and unmanaged6
memory. This allows them to be used in many of the same ways that unmanaged pointers (U) are used.7
Verification restrictions guarantee that, if all code is verifiable, a managed pointer to a value on the evaluation8
stack doesn’t outlast the life of the location to which it points.9

11.1 .1.3 Portabil i ty: Storing Pointers in Memory10

Several instructions, including calli, cpblk, initblk, ldind.*, and stind.*, expect an address on the top of the11
stack. If this address is derived from a pointer stored in memory, there is an important portability consideration.12

1. Code that stores pointers in a native sized integer or pointer location (types native int, O, native13
unsigned int, or &) is always fully portable.14

2. Code that stores pointers in an 8 byte integer (type int64 or unsigned int64) can be portable. But15
this requires that a conv.ovf.u instruction be used to convert the pointer from its memory format16
before its use as a pointer. This may cause a runtime exception if run on a 32-bit machine.17

3. Code that uses any smaller integer type to store a pointer in memory (int8, unsigned int8, int16,18
unsigned int16, int32, unsigned int32) is never portable, even though the use of a unsigned int3219
or int32 will work correctly on a 32-bit machine.20

11.1 .2 Handling of Short Integer Data Types21

The CLI defines an evaluation stack that contains either 4-byte or 8-byte integers, but a memory model that22
encompasses in addition 1-byte and 2-byte integers. To be more precise, the following rules are part of the CLI23
model:24

• Loading from 1-byte or 2-byte locations (arguments, locals, fields, statics, pointers) expands to 4-25
byte values. For locations with a known type (e.g. local variables) the type being accessed26
determines whether the load sign-extends (signed locations) or zero-extends (unsigned locations).27
For pointer dereference (ldind.*), the instruction itself identifies the type of the location (e.g.28
ldind.u1 indicates an unsigned location, while ldind.i1 indicates a signed location).29

• Storing into a 1-byte or 2-byte location truncates to fit and will not generate an overflow error.30
Specific instructions (conv.ovf.*) can be used to test for overflow before storing.31

• Calling a method assigns values from the evaluation stack to the arguments for the method, hence32
it truncates just as any other store would when the actual argument is larger than the formal33
argument.34

• Returning from a method assigns a value to an invisible return variable, so it also truncates as a35
store would when the type of the value returned is larger than the return type of the method.36
Since the value of this return variable is then placed on the evaluation stack, it is then sign-37
extended or zero-extended as would any other load. Note that this truncation followed by38
extending is not identical to simply leaving the computed value unchanged.39

It is the responsibility of any translator from CIL to native machine instructions to make sure that these rules40
are faithfully modeled through the native conventions of the target machine. The CLI does not specify, for41
example, whether truncation of short integer arguments occurs at the call site or in the target method.42

11.1 .3 Handling of Float ing Point Datatypes43

Floating-point calculations shall be handled as described in IEC 60559:1989. This standard describes encoding44
of floating point numbers, definitions of the basic operations and conversion, rounding control, and exception45
handling.46
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The standard defines special values, NaN, (not a number), +infinity, and –infinity. These values are returned1
on overflow conditions. A general principle is that operations that have a value in the limit return an2
appropriate infinity while those that have no limiting value return NaN, but see the standard for details.3

Note: The following examples show the most commonly encountered cases.4

X rem 0 = NaN5
0 * +infinity = 0 * -infinity = NaN6
(X / 0) = +infinity, if X>07

NaN, if X=08
-infinity, if X < 09

NaN op X = X op NaN = NaN for all operations10
(+infinity) + (+infinity) = (+infinity)11
X / (+infinity) = 012
X mod (-infinity) = -X13
(+infinity) - (+infinity) = NaN14

Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point15
numbers, nor does it specify when or whether such representations should be created. This is in keeping with16
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that17
are created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this18
behavior is deliberately left implementation-specific.19

For purposes of comparison, infinite values act like a number of the correct sign but with a very large20
magnitude when compared with finite values. NaN is ‘unordered’ for comparisons (see clt, clt.un).21

While the IEC 60559:1989 standard also allows for exceptions to be thrown under unusual conditions (such as22
overflow and invalid operand), the CLI does not generate these exceptions. Instead, the CLI uses the NaN,23
+infinity, and –infinity return values and provides the instruction ckfinite to allow users to generate an24
exception if a result is NaN, +infinity, or –infinity.25

The rounding mode defined in IEC 60559:1989 shall be set by the CLI to “round to the nearest number,” and26
neither the CIL nor the class library provide a mechanism for modifying this setting. Conforming27
implementations of the CLI need not be resilient to external interference with this setting. That is, they need not28
restore the mode prior to performing floating-point operations, but rather may rely on it having been set as part29
of their initialization.30

For conversion to integers, the default operation supplied by the CIL is “truncate towards zero”. There are class31
libraries supplied to allow floating-point numbers to be converted to integers using any of the other three32
traditional operations (round to nearest integer, floor (truncate towards –infinity), ceiling (truncate towards33
+infinity)).34

Storage locations for floating point numbers (statics, array elements, and fields of classes) are of fixed size. The35
supported storage sizes are float32 and float64. Everywhere else (on the evaluation stack, as arguments, as36
return types, and as local variables) floating point numbers are represented using an internal floating-point type.37
In each such instance, the nominal type of the variable or expression is either R4 or R8, but its value may be38
represented internally with additional range and/or precision. The size of the internal floating-point39
representation is implementation-dependent, may vary, and shall have precision at least as great as that of the40
variable or expression being represented. An implicit widening conversion to the internal representation from41
float32 or float64 is performed when those types are loaded from storage. The internal representation is42
typically the native size for the hardware, or as required for efficient implementation of an operation. The43
internal representation shall have the following characteristics:44

• The internal representation shall have precision and range greater than or equal to the nominal45
type.46

• Conversions to and from the internal representation shall preserve value.47

Note: This implies that an implicit widening conversion from float32 (or float64) to the internal representation,48
followed by an explicit conversion from the internal representation to float32 (or float64), will result in a value49
that is identical to the original float32 (or float64) value.50

51
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Rationale: This design allows the CLI to choose a platform-specific high-performance representation for1
floating point numbers until they are placed in storage locations. For example, it may be able to leave floating2
point variables in hardware registers that provide more precision than a user has requested. At the same time,3
CIL generators can force operations to respect language-specific rules for representations through the use of4
conversion instructions.5

When a floating-point value whose internal representation has greater range and/or precision than its nominal6
type is put in a storage location it is automatically coerced to the type of the storage location. This may involve7
a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value8
may be retained in the internal representation for future use, if it is reloaded from the storage location without9
having been modified. It is the responsibility of the compiler to ensure that the retained value is still valid at10
the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see11
memory model section). This freedom to carry extra precision is not permitted, however, following the12
execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be13
exactly representable in the associated type.14

Note: To detect values that cannot be converted to a particular storage type, a conversion instruction (conv.r4,15
or conv.r8) may be used, followed by a check for a non-finite value using ckfinite. To detect underflow when16
converting to a particular storage type, a comparison to zero is required before and after the conversion.17

18
Note: The use of an internal representation that is wider than float32 or float64 may cause differences in19
computational results when a developer makes seemingly unrelated modifications to their code, the result of20
which may be that a value is spilled from the internal representation (e.g. in a register) to a location on the21
stack.22
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11.1.4 CIL Instructions and Numeric Types1

This clause contains only informative text  2

Most CIL instructions that deal with numbers take their operands from the evaluation stack (see3
clause 11.3.2.1), and these inputs have an associated type that is known to the VES. As a result, a single4
operation like add can have inputs of any numeric data type, although not all instructions can deal with all5
combinations of operand types. Binary operations other than addition and subtraction require that both6
operands be of the same type. Addition and subtraction allow an integer to be added to or subtracted from a7
managed pointer (types & and O). Details are specified in Partition II.8

Instructions fall into the following categories:9

Numeric: These instructions deal with both integers and floating point numbers, and consider integers to be10
signed. Simple arithmetic, conditional branch, and comparison instructions fit in this category.11

Integer: These instructions deal only with integers. Bit operations and unsigned integer division/remainder fit12
in this category.13

Floating point: These instructions deal only with floating point numbers.14

Specific: These instructions deal with integer and/or floating point numbers, but have variants that deal15
specially with different sizes and unsigned integers. Integer operations with overflow detection, data conversion16
instructions, and operations that transfer data between the evaluation stack and other parts of memory (see17
clause 11.3.2) fit into this category.18

Unsigned/unordered: There are special comparison and branch instructions that treat integers as unsigned and19
consider unordered floating point numbers specially (as in “branch if greater than or unordered”):20

Load constant: The load constant (ldc.*) instructions are used to load constants of type int32, int64, float32 or21
float64. Native size constants (type native int) shall be created by conversion from int32 (conversion from int6422
would not be portable) using conv.i or conv.u.23

Table 7: CIL Instructions by Numeric Category shows the CIL instructions that deal with numeric values,24
along with the category to which they belong. Instructions that end in “.*” indicate all variants of the25
instruction (based on size of data and whether the data is treated as signed or unsigned).26

Table 7: CIL Instructions by Numeric Category27

add Numeric div Numeric

add.ovf.* Specific div.un Integer

and Integer ldc.* Load constant

beq[.s] Numeric ldelem.* Specific

bge[.s] Numeric ldind.* Specific

bge.un[.s] Unsigned/unordered mul Numeric

bgt[.s] Numeric mul.ovf.* Specific

bgt.un[.s] Unsigned/unordered neg Integer

ble[.s] Numeric newarr.* Specific

ble.un[.s] Unsigned/unordered not Integer

blt[.s] Numeric or Integer

blt.un[.s] Unsigned/unordered rem Numeric

bne.un[.s] Unsigned/unordered rem.un Integer

ceq Numeric shl Integer
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cgt Numeric shr Integer

cgt.un Unsigned/unordered shr.un Specific

ckfinite Floating point stelem.* Specific

clt Numeric stind.* Specific

clt.un Unsigned/unordered sub Numeric

conv.* Specific sub.ovf.* Specific

conv.ovf.* Specific xor Integer
1

End informative text  2

11.1 .5 CIL Instruct ions and Pointer Types3

This clause contains only informative text 4

Rationale: Some implementations of the CLI will require the ability to track pointers to objects and to collect5
objects that are no longer reachable (thus providing memory management by “garbage collection”). This6
process moves objects in order to reduce the working set and thus will modify all pointers to those objects as7
they move. For this to work correctly, pointers to objects may only be used in certain ways. The O (object8
reference) and & (managed pointer) datatypes are the formalization of these restrictions.9

The use of object references is tightly restricted in the CIL. They are used almost exclusively with the “virtual10
object system” instructions, which are specifically designed to deal with objects. In addition, a few of the base11
instructions of the CIL handle object references. In particular, object references can be:12

1. Loaded onto the evaluation stack to be passed as arguments to methods (ldloc, ldarg), and stored13
from the stack to their home locations (stloc, starg)14

2. Duplicated or popped off the evaluation stack (dup, pop)15

3. Tested for equality with one another, but not other data types (beq, beq.s, bne, bne.s, ceq)16

4. Loaded-from / stored-into unmanaged memory, in type unmanaged code only (ldind.ref,17
stind.ref)18

5. Created as a null reference (ldnull)19

6. Returned as a value (ret)20

Managed pointers have several additional base operations.21

1. Addition and subtraction of integers, in units of bytes, returning a managed pointer (add,22
add.ovf.u, sub, sub.ovf.u)23

2. Subtraction of two managed pointers to elements of the same array, returning the number of bytes24
between them (sub, sub.ovf.u)25

3. Unsigned comparison and conditional branches based on two managed pointers (bge.un,26
bge.un.s, bgt.un, bgt.un.s, ble.un, ble.un.s, blt.un, blt.un.s, cgt.un, clt.un)27

Arithmetic operations upon managed pointers are intended only for use on pointers to elements of the same28
array. Other uses of arithmetic on managed pointers is unspecified.29

Rationale: Since the memory manager runs asynchronously with respect to programs and updates managed30
pointers, both the distance between distinct objects and their relative position can change.31

End informative text 32
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11.1 .6 Aggregate Data1

This clause contains only informative text 2

The CLI supports aggregate data, that is, data items that have sub-components (arrays, structures, or object3
instances) but are passed by copying the value. The sub-components can include references to managed4
memory. Aggregate data is represented using a value type, which can be instantiated in two different ways:5

• Boxed: as an Object, carrying full type information at runtime, and typically allocated on the heap6
by the CLI memory manager.7

• Unboxed: as a “value type instance” that does not carry type information at runtime and that is8
never allocated directly on the heap. It can be part of a larger structure on the heap – a field of a9
class, a field of a boxed value type, or an element of an array. Or it can be in the local variables10
or incoming arguments array (see clause 11.3.2). Or it can be allocated as a static variable or11
static member of a class or a static member of another value type.12

Because value type instances, specified as method arguments, are copied on method call, they do not have13
“identity” in the sense that Objects (boxed instances of classes) have.14

11.1 .6.1 Homes for Values15

The home of a data value is where it is stored for possible reuse. The CLI directly supports the following home16
locations:17

• An incoming argument18

• A local variable of a method19

• An instance field of an object or value type20

• A static field of a class, interface, or module21

• An array element22

For each home location, there is a means to compute (at runtime) the address of the home location and a means23
to determine (at JIT compile time) the type of a home location. These are summarized in Table 8: Address and24
Type of Home Locations.25

Table 8: Address and Type of Home Locations26

Type of Home Runtime Address Computation JITtime Type Determination

Argument ldarga for by-value arguments or ldarg for
by-reference arguments

Method signature

Local Variable ldloca for by-value locals or ldloc for by-
reference locals

Locals signature in method
header

Field ldflda Type of field in the class,
interface, or module

Static ldsflda Type of field in the class,
interface, or module

Array Element ldelema for single-dimensional zero-based
arrays or call the instance method Address

Element type of array

27
In addition to homes, built-in values can exist in two additional ways (i.e. without homes):28

1. as constant values (typically embedded in the CIL instruction stream using ldc.* instructions)29

2. as an intermediate value on the evaluation stack, when returned by a method or CIL instruction.30
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11.1 .6.2 Operat ions on Value Type Instances1

Value type instances can be created, passed as arguments, returned as values, and stored into and extracted2
from locals, fields, and elements of arrays (i.e., copied). Like classes, value types may have both static and non-3
static members (methods and fields). But, because they carry no type information at runtime, value type4
instances are not substitutable for items of type Object; in this respect, they act like the built-in types int, long,5
and so forth. There are two operations, box and unbox, that convert between value type instances and Objects.6

11.1 .6.2.1 Init ia l iz ing Instances of Value Types7

There are three options for initializing the home of a value type instance. You can zero it by loading the address8
of the home (see Table 8: Address and Type of Home Locations) and using the initobj instruction (for local9
variables this is also accomplished by setting the zero initialize bit in the method’s header). You can call a10
user-defined constructor by loading the address of the home (see Table 8: Address and Type of Home11
Locations) and then calling the constructor directly. Or you can copy an existing instance into the home, as12
described in clause 11.1.6.2.13

11.1 .6.2.2 Loading and Storing Instances of Value Types14

There are two ways to load a value type onto the evaluation stack:15

• Directly load the value from a home that has the appropriate type, using an ldarg, ldloc, ldfld, or16
ldsfld instruction17

• Compute the address of the value type, then use an ldobj instruction18

Similarly, there are two ways to store a value type from the evaluation stack:19

• Directly store the value into a home of the appropriate type, using a starg, stloc, stfld, or stsfld20
instruction21

• Compute the address of the value type, then use a stobj instruction22

11.1 .6.2.3 Passing and Returning Value Types23

Value types are treated just as any other value would be treated:24

• To pass a value type by value, simply load it onto the stack as you would any other argument:25
use ldloc, ldarg, etc., or call a method that returns a value type. To access a value type parameter26
that has been passed by value use the ldarga instruction to compute its address or the ldarg27
instruction to load the value onto the evaluation stack.28

• To pass a value type by reference, load the address of the value type as you normally would (see29
Table 8: Address and Type of Home Locations). To access a value type parameter that has been30
passed by reference use the ldarg instruction to load the address of the value type and then the31
ldobj instruction to load the value type onto the evaluation stack.32

• To return a value type, just load the value onto an otherwise empty evaluation stack and then33
issue a ret instruction.34

11.1 .6.2.4 Call ing Methods35

Static methods on value types are handled no differently from static methods on an ordinary class: use a call36
instruction with a metadata token specifying the value type as the class of the method. Non-static methods (i.e.37
instance and virtual methods) are supported on value types, but they are given special treatment. A non-static38
method on a class (rather than a value type) expects a this pointer that is an instance of that class. This makes39
sense for classes, since they have identity and the this pointer represents that identity. Value types, however,40
have identity only when boxed. To address this issue, the this pointer on a non-static method of a value type is41
a by-ref parameter of the value type rather than an ordinary by-value parameter.42

A non-static method on a value type may be called in the following ways:43

• Given an unboxed instance of a value type, the compiler will know the exact type of the object44
statically. The call instruction can be used to invoke the function, passing as the first parameter45
(the this pointer) the address of the instance. The metadata token used with the call instruction46
shall specify the value type itself as the class of the method.47
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• Given a boxed instance of a value type, there are three cases to consider:1

o Instance or virtual methods introduced on the value type itself: unbox the instance and call2
the method directly using the value type as the class of the method.3

o Virtual methods inherited from a parent class: use the callvirt instruction and specify the4
method on the System.Object, System.ValueType or System.Enum class as appropriate.5

o Virtual methods on interfaces implemented by the value type: use the callvirt instruction6
and specify the method on the interface type.7

11.1 .6.2.5 Boxing and Unboxing8

Box and unbox are conceptually equivalent to (and may be seen in higher-level languages as) casting between9
a value type instance and System.Object. Because they change data representations, however, boxing and10
unboxing are like the widening and narrowing of various sizes of integers (the conv and conv.ovf instructions)11
rather than the casting of reference types (the isinst and castclass instructions). The box instruction is a12
widening (always typesafe) operation that converts a value type instance to System.Object by making a copy13
of the instance and embedding it in a newly allocated object. Unbox is a narrowing (runtime exception may be14
generated) operation that converts a System.Object (whose runtime type is a value type) to a value type15
instance. This is done by computing the address of the embedded value type instance without making a copy of16
the instance.17

11.1 .6.2.6 Castclass and IsInst on Value Types18

Casting to and from value type instances isn’t permitted (the equivalent operations are box and unbox). When19
boxed, however, it is possible to use the isinst instruction to see whether a value of type System.Object is the20
boxed representation of a particular class.21

11.1 .6.3 Opaque Classes22

Some languages provide multi-byte data structures whose contents are manipulated directly by address23
arithmetic and indirection operations. To support this feature, the CLI allows value types to be created with a24
specified size but no information about their data members. Instances of these “opaque classes” are handled in25
precisely the same way as instances of any other class, but the ldfld, stfld, ldflda, ldsfld, and stsfld instructions26
shall not be used to access their contents.27

End informative text 28
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11.2 Module Information1

Partition II provides details of the CLI PE file format. The CLI relies on the following information about each2
method defined in a PE file:3

• The instructions composing the method body, including all exception handlers.4

• The signature of the method, which specifies the return type and the number, order, parameter5
passing convention, and built-in data type of each of the arguments. It also specifies the native6
calling convention (this does not affect the CIL virtual calling convention, just the native code).7

• The exception handling array. This array holds information delineating the ranges over which8
exceptions are filtered and caught. See Partition II and clause 11.4.2.9

• The size of evaluation stack that the method will require.10

• The size of the locals array that the method will require.11

• A “zero init flag” that indicates whether the local variables and memory pool should be initialized12
by the CLI (see also localloc).13

• Type of each local variable in the form of a signature of the local variable array (called the14
“locals signature”).15

In addition, the file format is capable of indicating the degree of portability of the file. There are two kinds of16
restrictions that may be described:17

• Restriction to a specific (32-bit or 64-bit) native size for integers.18

• Restriction to a specific “endian-ness” (i.e. whether bytes are stored left-to-right or right-to-left19
within a machine word).20

By stating which restrictions are placed on executing the code, the CLI class loader can prevent non-portable21
code from running on an architecture that it cannot support.22

11.3 Machine State23

One of the design goals of the CLI is to hide the details of a method call frame from the CIL code generator.24
This allows the CLI (and not the CIL code generator) to choose the most efficient calling convention and stack25
layout. To achieve this abstraction, the call frame is integrated into the CLI. The machine state definitions26
below reflect these design choices, where machine state consists primarily of global state and method state.27

11.3 .1 The Global State28

The CLI manages multiple concurrent threads of control (not necessarily the same as the threads provided by a29
host operating system), multiple managed heaps, and a shared memory address space.30

Note: A thread of control can be thought of, somewhat simplistically, as a singly linked list of method states,31
where a new state is created and linked back to the current state by a method call instruction – the traditional32
model of a stack-based calling sequence. Notice that this model of the thread of control doesn’t correctly33
explain the operation of tail., jmp, or throw instructions.34

Figure 2: Machine State Model illustrates the machine state model, which includes threads of control, method35
states, and multiple heaps in a shared address space. Method state, shown separately in Figure 3: Method State,36
is an abstraction of the stack frame. Arguments and local variables are part of the method state, but they can37
contain Object References that refer to data stored in any of the managed heaps. In general, arguments and38
local variables are only visible to the executing thread, while instance and static fields and array elements may39
be visible to multiple threads, and modification of such values is considered a side-effect.40
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 1

Figure 2: Machine State Model2

3

Figure 3: Method State4

11.3 .2 Method State5

Method state describes the environment within which a method executes. (In conventional compiler6
terminology, it corresponds to a superset of the information captured in the “invocation stack frame”). The CLI7
method state consists of the following items:8

• An instruction pointer (IP). This points to the next CIL instruction to be executed by the CLI in9
the present method.10
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• An evaluation stack. The stack is empty upon method entry. Its contents are entirely local to the1
method and are preserved across call instructions (that’s to say, if this method calls another, once2
that other method returns, our evaluation stack contents are “still there”). The evaluation stack is3
not addressable. At all times it is possible to deduce which one of a reduced set of types is stored4
in any stack location at a specific point in the CIL instruction stream (see clause 11.3.2.1).5

• A local variable array (starting at index 0). Values of local variables are preserved across calls6
(in the same sense as for the evaluation stack). A local variable may hold any data type.7
However, a particular slot shall be used in a type consistent way (where the type system is the one8
described in clause 11.3.2.1). Local variables are initialized to 0 before entry if the initialize flag9
for the method is set (see Section 11.2). The address of an individual local variable may be taken10
using the ldloca instruction.11

• An argument array. The values of the current method’s incoming arguments (starting at index 0).12
These can be read and written by logical index. The address of an argument can be taken using13
the ldarga instruction. The address of an argument is also implicitly taken by the arglist14
instruction for use in conjunction with typesafe iteration through variable-length argument lists.15

• A methodInfo handle. This contains read-only information about the method. In particular it16
holds the signature of the method, the types of its local variables, and data about its exception17
handlers.18

• A local memory pool. The CLI includes instructions for dynamic allocation of objects from the19
local memory pool (localloc). Memory allocated in the local memory pool is addressable. The20
memory allocated in the local memory pool is reclaimed upon method context termination.21

• A return state handle. This handle is used to restore the method state on return from the current22
method. Typically, this would be the state of the method’s caller. This corresponds to what in23
conventional compiler terminology would be the dynamic link.24

• A security descriptor. This descriptor is not directly accessible to managed code but is used by25
the CLI security system to record security overrides (assert, permit-only, and deny).26

The four areas of the method state – incoming arguments array, local variables array, local memory pool and27
evaluation stack – are specified as if logically distinct areas. A conforming implementation of the CLI may map28
these areas into one contiguous array of memory, held as a conventional stack frame on the underlying target29
architecture, or use any other equivalent representation technique.30

11.3 .2.1 The Evaluat ion Stack31

Associated with each method state is an evaluation stack. Most CLI instructions retrieve their arguments from32
the evaluation stack and place their return values on the stack. Arguments to other methods and their return33
values are also placed on the evaluation stack. When a procedure call is made the arguments to the called34
methods become the incoming arguments array (see clause 11.3.2.2) to the method. This may require a memory35
copy, or simply a sharing of these two areas by the two methods.36

The evaluation stack is made up of slots that can hold any data type, including an unboxed instance of a value37
type. The type state of the stack (the stack depth and types of each element on the stack) at any given point in a38
program shall be identical for all possible control flow paths. For example, a program that loops an unknown39
number of times and pushes a new element on the stack at each iteration would be prohibited.40

While the CLI, in general, supports the full set of types described in Section 11.1, the CLI treats the evaluation41
stack in a special way. While some JIT compilers may track the types on the stack in more detail, the CLI only42
requires that values be one of:43

• int64, an 8-byte signed integer44

• int32, a 4-byte signed integer45

• native int, a signed integer of either 4 or 8 bytes, whichever is more convenient for the target46
architecture47
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• F, a floating point value (float32, float64, or other representation supported by the underlying1
hardware)2

• &, a managed pointer3

• O, an object reference4

• *, a “transient pointer,” which may be used only within the body of a single method, that points to5
a value known to be in unmanaged memory (see the CIL Instruction Set specification for more6
details. * types are generated internally within the CLI; they are not created by the user).7

• A user-defined value type8

The other types are synthesized through a combination of techniques:9

• Shorter integer types in other memory locations are zero-extended or sign-extended when loaded10
onto the evaluation stack; these values are truncated when stored back to their home location.11

• Special instructions perform numeric conversions, with or without overflow detection, between12
different sizes and between signed and unsigned integers.13

• Special instructions treat an integer on the stack as though it were unsigned.14

• Instructions that create pointers which are guaranteed not to point into the memory manager’s15
heaps (e.g. ldloca, ldarga, and ldsflda) produce transient pointers (type *) that may be used16
wherever a managed pointer (type &) or unmanaged pointer (type native unsigned int) is17
expected.18

• When a method is called, an unmanaged pointer (type native unsigned int or *) is permitted to19
match a parameter that requires a managed pointer (type &). The reverse, however, is not20
permitted since it would allow a managed pointer to be “lost” by the memory manager.21

• A managed pointer (type &) may be explicitly converted to an unmanaged pointer (type native22
unsigned int), although this is not verifiable and may produce a runtime exception.23

11.3 .2.2 Local Variables and Arguments24

Part of each method state is an array that holds local variables and an array that holds arguments. Like the25
evaluation stack, each element of these arrays can hold any single data type or an instance of a value type. Both26
arrays start at 0 (that is, the first argument or local variable is numbered 0). The address of a local variable can27
be computed using the ldloca instruction, and the address of an argument using the ldarga instruction.28

Associated with each method is metadata that specifies:29

• whether the local variables and memory pool memory will be initialized when the method is30
entered31

• the type of each argument and the length of the argument array (but see below for variable32
argument lists)33

• the type of each local variable and the length of the local variable array.34

The CLI inserts padding as appropriate for the target architecture. That is, on some 64-bit architectures all local35
variables may be 64-bit aligned, while on others they may be 8-, 16-, or 32-bit aligned. The CIL generator shall36
make no assumptions about the offsets of local variables within the array. In fact, the CLI is free to reorder the37
elements in the local variable array, and different JITters may choose to order them in different ways.38

11.3 .2.3 Variable Argument Lists39

The CLI works in conjunction with the class library to implement methods that accept argument lists of40
unknown length and type (“varargs methods”). Access to these arguments is through a typesafe iterator in the41
Class Library, called System.ArgIterator (see Partition IV).42

The CIL includes one instruction provided specifically to support the argument iterator, arglist. This43
instruction may be used only within a method that is declared to take a variable number of arguments. It returns44
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a value that is needed by the constructor for a System.ArgIterator object. Basically, the value created by1
arglist provides access both to the address of the argument list that was passed to the method and a runtime2
data structure that specifies the number and type of the arguments that were provided. This is sufficient for the3
class library to implement the user visible iteration mechanism.4

From the CLI point of view, varargs methods have an array of arguments like other methods. But only the5
initial portion of the array has a fixed set of types and only these may be accessed directly using the ldarg,6
starg, and ldarga instructions. The argument iterator allows access to both this initial segment and the7
remaining entries in the array.8

11.3 .2.4 Local Memory Pool9

Part of each method state is a local memory pool. Memory can be explicitly allocated from the local memory10
pool using the localloc instruction. All memory in the local memory pool is reclaimed on method exit, and that11
is the only way local memory pool memory is reclaimed (there is no instruction provided to free local memory12
that was allocated during this method invocation). The local memory pool is used to allocate objects whose13
type or size is not known at compile time and which the programmer does not wish to allocate in the managed14
heap.15

Because the local memory pool cannot be shrunk during the lifetime of the method, a language implementation16
cannot use the local memory pool for general-purpose memory allocation.17

11.4 Control Flow18

The CIL instruction set provides a rich set of instructions to alter the normal flow of control from one CIL19
instruction to the next.20

• Conditional and Unconditional Branch instructions for use within a method, provided the21
transfer doesn’t cross a protected region boundary (see clause 11.4.2).22

• Method call instructions to compute new arguments, transfer them and control to a known or23
computed destination method (see clause 11.4.1).24

• Tail call prefix to indicate that a method should relinquish its stack frame before executing a25
method call (see clause 11.4.1).26

• Return from a method, returning a value if necessary.27

• Method jump instructions to transfer the current method’s arguments to a known or computed28
destination method (see clause 11.4.1).29

• Exception-related instructions (see clause 11.4.2). These include instructions to initiate an30
exception, transfer control out of a protected region, and end a filter, catch clause, or finally31
clause.32

While the CLI supports control transfers within a method, there are several restrictions that shall be observed:33

1. Control transfer is never permitted to enter a catch handler or finally clause (see clause 11.4.2)34
except through the exception handling mechanism.35

2. Control transfer out of a protected region (see clause 11.4.2) is only permitted through an36
exception instruction (leave, end.filter, end.catch, or end.finally).37

3. The evaluation stack shall be empty after the return value is popped by a ret instruction.38

4. Each slot on the stack shall have the same data type at any given point within the method body,39
regardless of the control flow that allows execution to arrive there.40

5. In order for the JIT compilers to efficiently track the data types stored on the stack, the stack shall41
normally be empty at the instruction following an unconditional control transfer instruction (br,42
br.s, ret, jmp, throw, end.filter, end.catch, or end.finally). The stack may be non-empty at43
such an instruction only if at some earlier location within the method there has been a forward44
branch to that instruction.45
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6. Control is not permitted to simply “fall through” the end of a method. All paths shall terminate1
with one of these instructions: ret, throw, jmp, or (tail. followed by call, calli, or callvirt).2

11.4 .1 Method Calls3

Instructions emitted by the CIL code generator contain sufficient information for different implementations of4
the CLI to use different native calling convention. All method calls initialize the method state areas (see5
clause 11.3.2) as follows:6

1. The incoming arguments array is set by the caller to the desired values.7

2. The local variables array always has null for Object types and for fields within value types that8
hold objects. In addition, if the “zero init flag” is set in the method header, then the local9
variables array is initialized to 0 for all integer types and 0.0 for all floating point types. Value10
Types are not initialized by the CLI, but verified code will supply a call to an initializer as part of11
the method’s entry point code.12

3. The evaluation stack is empty.13

11.4 .1.1 Call Site Descriptors14

Call sites specify additional information that enables an interpreter or JIT compiler to synthesize any native15
calling convention. All CIL calling instructions (call, calli, and callvirt) include a description of the call site.16
This description can take one of two forms. The simpler form, used with the calli instruction, is a “call site17
description” (represented as a metadata token for a stand-alone call signature) that provides:18

• The number of arguments being passed.19

• The data type of each argument.20

• The order in which they have been placed on the call stack.21

• The native calling convention to be used22

The more complicated form, used for the call and callvirt instructions, is a “method reference” (a metadata23
methodref token) that augments the call site description with an identifier for the target of the call instruction.24

11.4 .1.2 Call ing Instruct ions25

The CIL has three call instructions that are used to transfer new argument values to a destination method.26
Under normal circumstances, the called method will terminate and return control to the calling method.27

• call is designed to be used when the destination address is fixed at the time the CIL is linked. In28
this case, a method reference is placed directly in the instruction. This is comparable to a direct29
call to a static function in C. It may be used to call static or instance methods or the (statically30
known) superclass method within an instance method body.31

• calli is designed for use when the destination address is calculated at run time. A method pointer32
is passed on the stack and the instruction contains only the call site description.33

• callvirt, part of the CIL common type system instruction set, uses the class of an object (known34
only at runtime) to determine the method to be called. The instruction includes a method35
reference, but the particular method isn’t computed until the call actually occurs. This allows an36
instance of a subclass to be supplied and the method appropriate for that subclass to be invoked.37
The callvirt instruction is used both for instance methods and methods on interfaces. For further38
details, see the Common Type System specification and the CIL Instruction Set specification.39

In addition, each of these instructions may be immediately preceded by a tail. instruction prefix. This40
specifies that the calling method terminates with this method call (and returns whatever value is returned by the41
called method). The tail. prefix instructs the JIT compiler to discard the caller’s method state prior to making42
the call (if the call is from untrusted code to trusted code the frame cannot be fully discarded for security43
reasons). When the called method executes a ret instruction, control returns not to the calling method but rather44
to wherever that method would itself have returned (typically, return to caller’s caller). Notice that the tail.45
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instruction shortens the lifetime of the caller’s frame so it is unsafe to pass managed pointers (type &) as1
arguments.2

Finally, there are two instructions that indicate an optimization of the tail. case:3

• jmp is followed by a methodref or methoddef token and indicates that the current method’s state4
should be discarded, its arguments should be transferred intact to the destination method, and5
control should be transferred to the destination. The signature of the calling method shall exactly6
match the signature of the destination method.7

11.4 .1.3 Computed Dest inat ions8

The destination of a method call may be either encoded directly in the CIL instruction stream (the call and jmp9
instructions) or computed (the callvirt, and calli instructions). The destination address for a callvirt instruction10
is automatically computed by the CLI based on the method token and the value of the first argument (the this11
pointer). The method token shall refer to a virtual method on a class that is a direct ancestor of the class of the12
first argument. The CLI computes the correct destination by locating the nearest ancestor of the first13
argument’s class that supplies an implementation of the desired method.14

Note: The implementation can be assumed to be more efficient than the linear search implied here).15

For the calli instruction the CIL code is responsible for computing a destination address and pushing it on the16
stack. This is typically done through the use of a ldftn or ldvirtfn instruction at some earlier time. The ldftn17
instruction includes a metadata token in the CIL stream that specifies a method, and the instruction pushes the18
address of that method. The ldvirtfn instruction takes a metadata token for a virtual method in the CIL stream19
and an object on the stack. It performs the same computation described above for the callvirt instruction but20
pushes the resulting destination on the stack rather than calling the method.21

The calli instruction includes a call site description that includes information about the native calling22
convention that should be used to invoke the method. Correct CIL code shall specify a calling convention23
specified in the calli instruction that matches the calling convention for the method that is being called.24

11.4 .1.4 Virtual Call ing Convention25

The CIL provides a “virtual calling convention” that is converted by the JIT into a native calling convention.26
The JIT determines the optimal native calling convention for the target architecture. This allows the native27
calling convention to differ from machine to machine, including details of register usage, local variable homes,28
copying conventions for large call-by-value objects (as well as deciding, based on the target machine, what is29
considered “large”). This also allows the JIT to reorder the values placed on the CIL virtual stack to match the30
location and order of arguments passed in the native calling convention.31

The CLI uses a single uniform calling convention for all method calls. It is the responsibility of the JITters to32
convert this into the appropriate native calling convention. The contents of the stack at the time of a call33
instruction (call, calli, or callvirt any of which may be preceded by tail.) are as follows:34

1. If the method being called is an instance method (class or interface) or a virtual method, the this35
pointer is the first object on the stack at the time of the call instruction. For methods on Objects36
(including boxed value types), the this pointer is of type O (object reference). For methods on37
value types, the this pointer is provided as a by-ref parameter; that is, the value is a pointer38
(managed, &, or unmanaged, * or native int) to the instance.39

2. The remaining arguments appear on the stack in left-to-right order (that is, the lexically leftmost40
argument is the lowest on the stack, immediately following the this pointer, if any).41
clause 11.4.1.5 describes how each of the three parameter passing conventions (by-value, by-42
reference, and typed reference) should be implemented.43

11.4 .1.5 Parameter Passing44

The CLI supports three kinds of parameter passing, all indicated in metadata as part of the signature of the45
method. Each parameter to a method has its own passing convention (e.g., the first parameter may be passed46
by-value while all others are passed by-ref). Parameters shall be passed in one of the following ways (see47
detailed descriptions below):48
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• By-value parameters, where the value of an object is passed from the caller to the callee.1

• By-ref parameters, where the address of the data is passed from the caller to the callee, and the2
type of the parameter is therefore a managed or unmanaged pointer.3

• Typed reference parameters, where a runtime representation of the data type is passed along with4
the address of the data, and the type of the parameter is therefore one specially supplied for this5
purpose.6

It is the responsibility of the CIL generator to follow these conventions. Verification checks that the types of7
parameters match the types of values passed, but is otherwise unaware of the details of the calling convention.8

11.4 .1.5.1 By-Value Parameters9

For built-in types (integers, floats, etc.) the caller copies the value onto the stack before the call. For objects the10
object reference (type O) is pushed on the stack. For managed pointers (type &) or unmanaged pointers (type11
native unsigned int), the address is passed from the caller to the callee. For value types, see the protocol in12
clause 11.1.6.2.13

11.4 .1.5.2 By-Ref Parameters14

By-Ref Parameters are the equivalent of C++ reference parameters or PASCAL var parameters: instead of15
passing as an argument the value of a variable, field, or array element, its address is passed instead; and any16
assignment to the corresponding parameter actually modifies the corresponding caller’s variable, field, or array17
element. Much of this work is done by the higher-level language, which hides from the user the need to18
compute addresses to pass a value and the use of indirection to reference or update values.19

Passing a value by reference requires that the value have a home (see clause 11.1.6.1) and it is the address of20
this home that is passed. Constants, and intermediate values on the evaluation stack, cannot be passed as by-ref21
parameters because they have no home.22

The CLI provides instructions to support by-ref parameters:23

• calculate addresses of home locations (see Table 8: Address and Type of Home Locations)24

• load and store built-in data types through these address pointers (ldind.*, stind.*, ldfld, etc.)25

• copy value types (ldobj and cpobj).26

Some addresses (e.g., local variables and arguments) have lifetimes tied to that method invocation. These shall27
not be referenced outside their lifetimes, and so they should not be stored in locations that last beyond their28
lifetime. The CIL does not (and cannot) enforce this restriction, so the CIL generator shall enforce this29
restriction or the resulting CIL will not work correctly. For code to be verifiable (see Section 7.8) by-ref30
parameters may only be passed to other methods or referenced via the appropriate stind or ldind instructions.31

11.4 .1.5.3 Typed Reference Parameters32

By-ref parameters and value types are sufficient to support statically typed languages (C++, Pascal, etc.). They33
also support dynamically typed languages that pay a performance penalty to box value types before passing34
them to polymorphic methods (Lisp, Scheme, SmallTalk, etc.). Unfortunately, they are not sufficient to support35
languages like Visual Basic that require by-reference passing of unboxed data to methods that are not statically36
restricted as to the type of data they accept. These languages require a way of passing both the address of the37
home of the data and the static type of the home. This is exactly the information that would be provided if the38
data were boxed, but without the heap allocation required of a box operation.39

Typed reference parameters address this requirement. A typed reference parameter is very similar to a standard40
by-ref parameter but the static data type is passed as well as the address of the data. Like by-ref parameters, the41
argument corresponding to a typed reference parameter will have a home.42

Note: If it were not for the fact that verification and the memory manager need to be aware of the data type and43
the corresponding address, a by-ref parameter could be implemented as a standard value type with two fields:44
the address of the data and the type of the data.45

Like a regular by-ref parameter, a typed reference parameter can refer to a home that is on the stack, and that46
home will have a lifetime limited by the call stack. Thus, the CIL generator shall apply appropriate checks on47
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the lifetime of by-ref parameters; and verification imposes the same restrictions on the use of typed reference1
parameters as it does on by-ref parameters (see clause 11.4.1.5.2).2

A typed reference is passed by either creating a new typed reference (using the mkrefany instruction) or by3
copying an existing typed reference. Given a typed reference argument, the address to which it refers can be4
extracted using the refanyval instruction; the type to which it refers can be extracted using the refanytype5
instruction.6

11.4 .1.5.4 Parameter Interact ions7

A given parameter may be passed using any one of the parameter passing conventions: by-value, by-ref, or8
typed reference. No combination of these is allowed for a single parameter, although a method may have9
different parameters with different calling mechanisms.10

A parameter that has been passed in as typed reference shall not be passed on as by-ref or by-value without a11
runtime type check and (in the case of by-value) a copy.12

A by-ref parameter may be passed on as a typed reference by attaching the static type.13

Table 9: Parameter Passing Conventions illustrates the parameter passing convention used for each data type.14

Table 9: Parameter Passing Conventions15

Type of data Pass By How data is sent

Value Copied to called method, type statically known at both sides

Reference Address sent to called method, type statically known at both sides

Built-in value type
(int, float, etc.)

Typed
reference

Address sent along with type information to called method

Value Called method receives a copy; type statically known at both sides

Reference Address sent to called method, type statically known at both sides

User-defined value
type

Typed
reference

Address sent along with type information to called method

Value Reference to data sent to called method, type statically known and class
available from reference

Reference Address of reference sent to called method, type statically known and
class available from reference

Object

Typed
reference

Address of reference sent to called method along with static type
information, class (i.e. dynamic type) available from reference

16

11.4 .2 Exception Handling17

Exception handling is supported in the CLI through exception objects and protected blocks of code. When an18
exception occurs, an object is created to represent the exception. All exceptions objects are instances of some19
class (i.e. they can be boxed value types, but not pointers, unboxed value types, etc.). Users may create their20
own exception classes, typically by subclassing System.Exception (see Partition IV).21

There are four kinds of handlers for protected blocks. A single protected block shall have exactly one handler22
associated with it:23

• A finally handler that shall be executed whenever the block exits, regardless of whether that24
occurs by normal control flow or by an unhandled exception.25

• A fault handler that shall be executed if an exception occurs, but not on completion of normal26
control flow.27

• A type-filtered handler that handles any exception of a specified class or any of its sub-classes.28
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• A user-filtered handler that runs a user-specified set of CIL instructions to determine whether1
the exception should be ignored (i.e. execution should resume), handled by the associated handler,2
or passed on to the next protected block.3

Protected regions, the type of the associated handler, and the location of the associated handler and (if needed)4
user-supplied filter code are described through an Exception Handler Table associated with each method. The5
exact format of the Exception Handler Table is specified in detail in Partition II. Details of the exception6
handling mechanism are also specified in Partition II.7

11.4 .2.1 Exceptions Thrown by the CLI8

CLI instructions can throw the following exceptions as part of executing individual instructions. The9
documentation for each instruction lists all the exceptions the instruction can throw (except for the general10
purpose ExecutionEngineException described below that may be generated by all instructions).11

Base Instructions (see Partition III)12

• ArithmeticException13

• DivideByZeroException14

• ExecutionEngineException15

• InvalidAddressException16

• OverflowException17

• SecurityException18

• StackOverflowException19

Object Model Instructions (see Partition III)20

• TypeLoadException21

• IndexOutOfRangeException22

• InvalidAddressException23

• InvalidCastException24

• MissingFieldException25

• MissingMethodException26

• NullReferenceException27

• OutOfMemoryException28

• SecurityException29

• StackOverflowException30

The ExecutionEngineException is special. It can be thrown by any instruction and indicates an unexpected31
inconsistency in the CLI. Running exclusively verified code can never cause this exception to be thrown by a32
conforming implementation of the CLI. However, unverified code (even though that code is conforming CIL)33
can cause this exception to be thrown if it corrupts memory. Any attempt to execute non-conforming CIL or34
non-conforming file formats can cause completely unspecified behavior: a conforming implementation of the35
CLI need not make any provision for these cases.36

There are no exceptions for things like ‘MetaDataTokenNotFound.’ CIL verification (see Partition V) will37
detect this inconsistency before the instruction is executed, leading to a verification violation. If the CIL is not38
verified this type of inconsistency shall raise the generic ExecutionEngineException.39

Exceptions can also be thrown by the CLI, as well as by user code, using the throw instruction. The handing of40
an exception is identical, regardless of the source.41
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11.4 .2.2 Subclassing Of Exceptions1

Certain types of exceptions thrown by the CLI may be subclassed to provide more information to the user. The2
specification of CIL instructions in Partition III describes what types of exceptions should be thrown by the3
runtime environment when an abnormal situation occurs. Each of these descriptions allows a conforming4
implementation to throw an object of the type described or an object of a subclass of that type.5

Note: For instance, the specification of the ckfinite instruction requires that an exception of type6
ArithmeticException or a subclass of ArithmeticException be thrown by the CLI. A conforming7
implementation may simply throw an exception of type ArithmeticException, but it may also choose to8
provide more information to the programmer by throwing an exception of type NotFiniteNumberException9
with the offending number.10

11.4 .2.3 Resolut ion Exceptions11

CIL allows types to reference, among other things, interfaces, classes, methods, and fields. Resolution errors12
occur when references are not found or are mismatched. Resolution exceptions can be generated by references13
from CIL instructions, references to base classes, to implemented interfaces, and by references from signatures14
of fields, methods and other class members.15

To allow scalability with respect to optimization, detection of resolution exceptions is given latitude such that it16
may occur as early as install time and as late as execution time.17

The latest opportunity to check for resolution exceptions from all references except CIL instructions is as part18
of initialization of the type that is doing the referencing (see Partition II). If such a resolution exception is19
detected the static initializer for that type, if present, shall not be executed.20

The latest opportunity to check for resolution exceptions in CIL instructions is as part of the first execution of21
the associated CIL instruction. When an implementation chooses to perform resolution exception checking in22
CIL instructions as late as possible, these exceptions, if they occur, shall be thrown prior to any other non-23
resolution exception that the VES may throw for that CIL instruction. Once a CIL instruction has passed the24
point of throwing resolution errors (it has completed without exception, or has completed by throwing a non-25
resolution exception), subsequent executions of that instruction shall no longer throw resolution exceptions.26

If an implementation chooses to detect some resolution errors, from any references, earlier than the latest27
opportunity for that kind of reference, it is not required to detect all resolution exceptions early.28

An implementation that detects resolution errors early is allowed to prevent a class from being installed, loaded29
or initialized as a result of resolution exceptions detected in the class itself or in the transitive closure of types30
from following references of any kind.31

For example, each of the following represents a permitted scenario. An installation program can throw32
resolution exceptions (thus failing the installation) as a result of checking CIL instructions for resolution errors33
in the set of items being installed. An implementation is allowed to fail to load a class as a result of checking34
CIL instructions in a referenced class for resolution errors. An implementation is permitted to load and35
initialize a class that has resolution errors in its CIL instructions.36

The following exceptions are among those considered resolution exceptions:37

• BadImageFormatException38
• EntryPointNotFoundException39
• MissingFieldException40
• MissingMemberException41
• MissingMethodException42
• NotSupportedException43
• TypeLoadException44
• TypeUnloadedException45

For example, when a referenced class cannot be found, a TypeLoadException is thrown. When a referenced46
method (whose class is found) cannot be found, a MissingMethodException is thrown. If a matching method47
being used consistently is accessible, but violates declared security policy, a SecurityException is thrown.48
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11.4 .2.4 Timing of Exceptions1

Certain types of exceptions thrown by CIL instructions may be detected before the instruction is executed. In2
these cases, the specific time of the throw is not precisely defined, but the exception should be thrown no later3
than the instruction is executed. That relaxation of the timing of exceptions is provided so that an4
implementation may choose to detect and throw an exception before any code is run, e.g., at the time of CIL to5
native code conversion.6

There is a distinction between the time of detecting the error condition and throwing the associated exception.7
An error condition may be detected early (e.g., at JIT time), but the condition may be signaled later (e.g. at the8
execution time of the offending instruction) by throwing an exception.9

The following exceptions are among those that may be thrown early by the runtime:10

• MissingFieldException,11
• MissingMethodException,12
• SecurityException,13
• TypeLoadException14

11.4 .2.5 Overview of Exception Handling15

See the Exception Handling specification in Partition II for details.16

Each method in an executable has associated with it a (possibly empty) array of exception handling17
information. Each entry in the array describes a protected block, its filter, and its handler (which may be a18
catch handler, a filter handler, a finally handler, or a fault handler). When an exception occurs, the CLI19
searches the array for the first protected block that20

• Protects a region including the current instruction pointer and21

• Is a catch handler block and22

• Whose filter wishes to handle the exception23

If a match is not found in the current method, the calling method is searched, and so on. If no match is found24
the CLI will dump a stack trace and abort the program.25

Note: A debugger can intervene and treat this situation like a breakpoint, before performing any stack26
unwinding, so that the stack is still available for inspection through the debugger.27

If a match is found, the CLI walks the stack back to the point just located, but this time calling the finally and28
fault handlers. It then starts the corresponding exception handler. Stack frames are discarded either as this29
second walk occurs or after the handler completes, depending on information in the exception handler array30
entry associated with the handling block.31

Some things to notice are:32

• The ordering of the exception clauses in the Exception Handler Table is important. If handlers33
are nested, the most deeply nested try blocks shall come before the try blocks that enclose them.34

• Exception handlers may access the local variables and the local memory pool of the routine that35
catches the exception, but any intermediate results on the evaluation stack at the time the36
exception was thrown are lost.37

• An exception object describing the exception is automatically created by the CLI and pushed onto38
the evaluation stack as the first item upon entry of a filter or catch clause.39

• Execution cannot be resumed at the location of the exception, except with a user-filtered40
handler.41

11.4 .2.6 CIL Support for Exceptions42

The CIL has special instructions to:43

• Throw and rethrow a user-defined exception.44
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• Leave a protected block and execute the appropriate finally clauses within a method, without1
throwing an exception. This is also used to exit a catch clause. Notice that leaving a protected2
block does not cause the fault clauses to be called.3

• End a user-supplied filter clause (endfilter) and return a value indicating whether to handle the4
exception.5

• End a finally clause (endfinally) and continue unwinding the stack.6

11.4 .2.7 Lexical Nest ing of Protected Blocks7

A protected region (also called a “try block”) is described by two addresses: the trystart is the address of the8
first instruction to be protected and tryend is the address immediately following the last instruction to be9
protected. A handler region is described by two addresses: the handlerstart is the address of the first10
instruction of the handler and the handlerend is the address immediately following the last instruction of the11
handler.12

There are three kinds of handlers: catch, finally, and fault. A single exception entry consists of13

• Optional: a type token (the type of exception to be handled) or filterstart (the address of the first14
instruction of the user-supplied filter code)15

• Required: protected region16

• Required: handler region.17

Every method has associated with it a set of exception entries, called the exception set.18

If an exception entry contains a filterstart, then filterstart < handlerstart. The filter region starts at the19
instruction specified by filterstart and contains all instructions up to (but not including) that specified by20
handlerstart. If there is no filterstart then the filter region is empty (hence does not overlap with any region).21

No two regions (protected region, handler region, filter region) of a single exception entry may overlap with22
one another.23

For every pair of exception entries in an exception set, one of the following must be true:24

• They nest: all three regions of one entry must be within a single region of the other entry.25

• They are disjoint: all six regions of the two entries are pairwise disjoint (no addresses overlap)26

• They mutually protect: the protected regions are the same and the other regions are pairwise27
disjoint.28

The encoding of an exception entry in the file format (see Partition II) guarantees that only a catch handler (not29
a fault handler or finally handler) can have a filter region.30

11.4 .2.8 Control Flow Restrict ions on Protected Blocks31

The following restrictions govern control flow into, out of, and between try blocks and their associated32
handlers.33

1. CIL code shall not enter a filter, catch, fault or finally block except through the CLI exception34
handling mechanism.35

2. There are only two ways to enter a try block from outside its lexical body:36

Branching to or falling into the try block’s first instruction. The branch may be made using a37
conditional branch, an unconditional branch, or a leave instruction.38

Using a leave instruction from that try’s catch block. In this case, correct CIL code may39
branch to any instruction within the try block, not just its first instruction, so long as that40
branch target is not protected by yet another try, nested withing the first41

3. Upon entry to a try block the evaluation stack shall be empty.42

4. The only ways CIL code may leave a try, filter, catch, finally or fault block are as follows:43
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a. throw from any of them.1

leave from the body of a try or catch (in this case the destination of the leave shall have an2
empty evaluation stack and the leave instruction has the side-effect of emptying the3
evaluation stack).4

endfilter may appear only as the lexically last instruction of a filter block, and it shall always be5
present (even if it is immediately preceded by a throw or other unconditional control flow).6
If reached, the evaluation stack shall contain an int32 when the endfilter is executed, and7
the value is used to determine how exception handling should proceed.8

endfinally from anywhere within a finally or fault, with the side-effect of emptying the9
evaluation stack.10

rethrow from within a catch block, with the side-effect of emptying the evaluation stack.11

5. When the try block is exited with a leave instruction, the evaluation stack shall be empty.12

6. When a catch or filter clause is exited with a leave instruction, the evaluation stack shall be13
empty. This involves popping, from the evaluation stack, the exception object that was14
automatically pushed onto the stack.15

7. CIL code shall not exit any try, filter, catch finally or fault block using a ret instruction.16

8. The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault17

11.5 Proxies and Remoting18

A remoting boundary exists if it is not possible to share the identity of an object directly across the boundary.19
For example, if two objects exist on physically separate machines that do not share a common address space,20
then a remoting boundary will exist between them. There are other administrative mechanisms for creating21
remoting boundaries.22

The VES provides a mechanism, called the application domain, to isolate applications running in the same23
operating system process from one another. Types loaded into one application domain are distinct from the24
same type loaded into another application domain, and instances of objects shall not be directly shared from25
one application domain to another. Hence, the application domain itself forms a remoting boundary.26

The VES implements remoting boundaries based on the concept of a proxy. A proxy is an object that exists on27
one side of the boundary and represents an object on the other side. The proxy forwards references to instance28
fields and methods to the actual object for interpretation. Proxies do not forward references to static fields or29
calls to static methods.30

The implementation of proxies is provided automatically for instances of types that derive from31
System.MarshalByRefObject (see Partition IV).32

11.6 Memory Model and Optimizations33

11.6 .1 The Memory Store34

By “memory store” we mean the regular process memory that the CLI operates within. Conceptually, this store35
is simply an array of bytes. The index into this array is the address of a data object. The CLI accesses data36
objects in the memory store via the ldind.* and stind.* instructions.37

11.6 .2 Alignment38

Built-in datatypes shall be properly aligned, which is defined as follows:39

• 1-byte, 2-byte, and 4-byte data is properly aligned when it is stored at a 1-byte, 2-byte, or 4-byte40
boundary, respectively.41

• 8-byte data is properly aligned when it is stored on the same boundary required by the underlying42
hardware for atomic access to a native int.43
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Thus, int16 and unsigned int16 start on even address; int32, unsigned int32, and float32 start on an address1
divisible by 4; and int64, unsigned int64, and float64 start on an address divisible by 4 or 8, depending upon2
the target architecture. The native size types (native int, native unsigned int, and &) are always naturally3
aligned (4 bytes or 8 bytes, depending on architecture). When generated externally, these should also be aligned4
to their natural size, although portable code may use 8 byte alignment to guarantee architecture independence.5
It is strongly recommended that float64 be aligned on an 8-byte boundary, even when the size of native int is6
32 bits.7

There is a special prefix instruction, unaligned., that may immediately precede a ldind, stind, initblk, or cpblk8
instruction. This prefix indicates that the data may have arbitrary alignment; the JIT is required to generate9
code that correctly performs the effect of the instructions regardless of the actual alignment. Otherwise, if the10
data is not properly aligned and no unligned. prefix has been specified, executing the instruction may generate11
unaligned memory faults or incorrect data.12

11.6 .3 Byte Ordering13

For datatypes larger than 1 byte, the byte ordering is dependent on the target CPU. Code that depends on byte14
ordering may not run on all platforms. The PE file format (see Section 11.2) allows the file to be marked to15
indicate that it depends on a particular type ordering.16

11.6 .4 Optimizat ion17

Conforming implementations of the CLI are free to execute programs using any technology that guarantees,18
within a single thread of execution, that side-effects and exceptions generated by a thread are visible in the19
order specified by the CIL. For this purpose volatile operations (including volatile reads) constitute side-20
effects. Volatile operations are specified in clause 11.6.7. There are no ordering guarantees relative to21
exceptions injected into a thread by another thread (such exceptions are sometimes called “asynchronous22
exceptions,” e.g., System.Threading.ThreadAbortException).23

Rationale: An optimizing compiler is free to reorder side-effects and synchronous exceptions to the extent that24
this reordering does not change any observable program behavior.25

26
Note: An implementation of the CLI is permitted to use an optimizing compiler, for example, to convert CIL to27
native machine code provided the compiler maintains (within each single thread of execution) the same order28
of side-effects and synchronous exceptions.29

This is a stronger condition than ISO C++ (which permits reordering between a pair of sequence points) or ISO30
Scheme (which permits reordering of arguments to functions).31

11.6 .5 Locks and Threads32

The logical abstraction of a thread of control is captured by an instance of the System.Threading.Thread33
object in the class library. Classes beginning with the string “System.Threading” (see Partition IV) provide34
much of the user visible support for this abstraction.35

To create consistency across threads of execution, the CLI provides the following mechanisms:36

1. Synchronized methods. A lock that is visible across threads controls entry to the body of a37
synchronized method. For instance and virtual methods the lock is associated with the this pointer.38
For static methods the lock is associated with the type to which the method belongs. The lock is39
taken by the logical thread (see System.Threading.-Thread in Partition IV) and may be entered40
any number of times by the same thread; entry by other threads is prohibited while the first thread41
is still holding the lock. The CLI shall release the lock when control exits (by any means) the42
method invocation that first acquired the lock.43

2. Explicit locks and monitors. These are provided in the class library, see44
System.Threading.Monitor. Many of the methods in the System.Threading.Monitor class45
accept an Object as argument, allowing direct access to the same lock that is used by synchronized46
methods. While the CLI is responsible for ensuring correct protocol when this lock is only used by47
synchronized methods, the user must accept this responsibility when using explicit monitors on48
these same objects.49
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3. Volatile reads and writes. The CIL includes a prefix, volatile., that specifies that the1
subsequent operation is to be performed with the cross-thread visibility constraints described in2
clause 11.6.7. In addition, the class library provides methods to perform explicit volatile reads3
(name) and writes (name), as well as a barrier synchronization (name)4

4. Built-in atomic reads and writes. All reads and writes of certain properly aligned data types are5
guaranteed to occur atomically. See clause 11.6.6.6

5. Explicit atomic operations. The class library provides a variety of atomic operations in the7
System.Threading.Interlocked class.8

Acquiring a lock (System.Threading.Monitor.Enter or entering a synchronized method) shall implicitly9
perform a volatile read operation, and releasing a lock (System.Threading.Monitor.Exit or leaving a10
synchronized method) shall implicitly perform a volatile write operation. See clause 11.6.7.11

11.6.6 Atomic Reads and Writes12

A conforming CLI shall guarantee that read and write access to properly aligned memory locations no larger13
than the native word size (the size of type native int) is atomic (see clause 11.6.2). Atomic writes shall alter no14
bits other than those written. Unless explicit layout control (see Partition II (Controlling Instance Layout)) is15
used to alter the default behavior, data elements no larger than the natural word size (the size of a native int)16
shall be properly aligned. Object references shall be treated as though they are stored in the native word size.17

Note: There is no guarantee about atomic update (read-modify-write) of memory, except for methods provided18
for that purpose as part of the class library (see Partition IV). An atomic write of a “small data item” (an item19
no larger than the native word size) is required to do an atomic read/write/modify on hardware that does not20
support direct writes to small data items.21

22
Note: There is no guaranteed atomic access to 8-byte data when the size of a native int is 32 bits even though23
some implementations may perform atomic operations when the data is aligned on an 8-byte boundary.24

11.6 .7 Volat i le Reads and Writes25

The volatile. prefix on certain instructions shall guarantee cross-thread memory ordering rules. They do not26
provide atomicity, other than that guaranteed by the specification of clause 11.6.6.27

A volatile read has “acquire semantics” meaning that the read is guaranteed to occur prior to any references to28
memory that occur after the read instruction in the CIL instruction sequence. A volatile write has “release29
semantics” meaning that the write is guaranteed to happen after any memory references prior to the write30
instruction in the CIL instruction sequence.31

A conforming implementation of the CLI shall guarantee this semantics of volatile operations. This ensures32
that all threads will observe volatile writes performed by any other thread in the order they were performed. But33
a conforming implementation is not required to provide a single total ordering of volatile writes as seen from34
all threads of execution.35

An optimizing compiler that converts CIL to native code shall not remove any volatile operation, nor may it36
coalesce multiple volatile operations into a single operation.37

Rationale: One traditional use of volatile operations is to model hardware registers that are visible through38
direct memory access. In these cases, removing or coalescing the operations may change the behavior of the39
program.40

41
Note: An optimizing compiler from CIL to native code is permitted to reorder code, provided that it guarantees42
both the single-thread semantics described in Section 11.6 and the cross-thread semantics of volatile operations.43

11.6.8 Other Memory Model Issues44

All memory allocated for static variables (other than those assigned RVAs within a PE file, see Partition II) and45
objects shall be zeroed before they are made visible to any user code.46
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A conforming implementation of the CLI shall ensure that, even in a multi-threaded environment and without1
proper user synchronization, objects are allocated in a manner that prevents unauthorized memory access and2
prevents illegal operations from occurring. In particular, on multiprocessor memory systems where explicit3
synchronization is required to ensure that all relevant data structures are visible (for example, vtable pointers)4
the EE shall be responsible for either enforcing this synchronization automatically or for converting errors due5
to lack of synchronization into non-fatal, non-corrupting, user-visible exceptions.6

It is explicitly not a requirement that a conforming implementation of the CLI guarantee that all state updates7
performed within a constructor be uniformly visible before the constructor completes. CIL generators may8
ensure this requirement themselves by inserting appropriate calls to the memory barrier or volatile write9
instructions.10

11.7 Atomicity of Memory Accesses11

The CLI makes several assumptions about atomicity of memory references, and these translate directly into12
rules required of either programmers or translators from high-level languages into CIL.13

• Read and write access to word-length memory locations (types native int and native unsigned14
int) that are properly aligned is atomic. Correct translation from CIL to native code requires15
generation of native code sequences that supply this atomicity guarantee. There is no guarantee16
about atomic update (read-modify-write) of memory, except for methods provided for that17
purpose as part of the class library (see Partition IV).18

• Read and write access to 4-byte data (int32 and unsigned int32) that is aligned on a 4-byte19
boundary is atomic, even on a 64-bit machine. Again, there is no guarantee about atomic read-20
modify-write.21

• One- and Two-byte data that does not cross a word boundary will be read atomically, but writing22
may write the entire word back to memory.23

• No other memory references are performed atomically.24

When the CLI controls the layout of managed data, it pads the data so that if an object starts at a word boundary25
all of the fields that require 4 or fewer bytes will be aligned so that reads will be atomic. The managed heap26
always aligns data that it allocates to maintain this rule, so heap references (type O) to data that does not have27
explicit layout will occur atomically where possible. Similarly, static variables of managed classes are allocated28
so that they, too, are aligned when possible. The CLI aligns stack frames to word boundaries, but need not29
attempt to align to an 8-byte boundary on 32-bit machines even if the frame contains 8-byte values.30

31
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1 Scope1

Partition I of the Common Language Infrastructure (CLI) describes the overall architecture of the CLI, and2
provides the normative description of the Common Type System (CTS), the Virtual Execution System (VES),3
and the Common Language Specification (CLS). It also provides a non-normative description of the metadata4
and a comprehensive set of abbreviations, acronyms (Partition I) and definitions, included by reference5
(Partition I) from all other Partitions.6

Partition II (this specification) provides the normative description of the metadata: its physical layout (as a file7
format), its logical contents (as a set of tables and their relationships), and its semantics (as seen from a8
hypothetical assembler, ilasm).9
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2 Overview1

This document focuses on the structure and semantics of metadata. The semantics of metadata, which dictate2
much of the operation of the VES, are described using the syntax of ilasm, an assembler language for CIL. The3
ilasm syntax itself is considered a normative part of this ECMA standard. This constitutes Chapters 5 through4
0. A complete syntax for ilasm is included in Partition V. The structure (both logical and physical) is covered5
in Chapters 21 through 24.6

Rationale: An assembly language is really just syntax for specifying the metadata in a file and the CIL7
instructions in that file. Specifying ilasm provides a means of interchanging programs written directly for the8
CLI without the use of a higher-level language and also provides a convenient way to express examples.9

The semantics of the metadata also can be described independently of the actual format in which the metadata10
is stored. This point is important because the storage format as specified Chapters 21 through 24 is11
engineered to be efficient for both storage space and access time but this comes at the cost of the simplicity12
desirable for describing its semantics.13
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3 Validation and Verification1

Validation refers to a set of tests that can be performed on any file to check that the file format, metadata, and2
CIL are self-consistent. These tests are intended to ensure that the file conforms to the mandatory requirements3
of this specification. The behavior of conforming implementations of the CLI when presented with non-4
conforming files is unspecified.5

Verification refers to a check of both CIL and its related metadata to ensure that the CIL code sequences do not6
permit any access to memory outside the program’s logical address space. In conjunction with the validation7
tests, verification ensures that the program cannot access memory or other resources to which it is not granted8
access.9

Partition III specifies the rules for both valid and verifiable use of CIL instructions. Partition III also provides10
an informative description of rules for validating the internal consistency of metadata (the rules follow, albeit11
indirectly, from the specification in this Partition) as well as containing a normative description of the12
verification algorithm. A mathematical proof of soundness of the underlying type system is possible, and13
provides the basis for the verification requirements. Aside from these rules this standard does not specify:14

• at what time (if ever) such an algorithm should be performed15

• what a conforming implementation should do in case of failure of verification.16

The following graph makes this relationship clearer (see next paragraph for a description):17

18

Figure 1: Relationship between valid and verifiable CIL19

In the above figure, the outer circle contains all code permitted by the ilasm syntax. The next circle represents20
all code that is valid CIL. The dotted inner circle represents all type safe code. Finally, the black innermost21
circle contains all code that is verifiable. (The difference between typesafe code and verifiable code is one of22
provability: code which passes the VES verification algorithm is, by-definition, verifiable; but that simple23
algorithm rejects certain code, even though a deeper analysis would reveal it as genuinely typesafe). Note that24
even if a program follows the syntax described in Partition V, the code may still not be valid, because valid25
code shall adhere to restrictions presented in this document and in Partition III.26

Verification is a very stringent test. There are many programs that will pass validation but will fail verification.27
The VES cannot guarantee that these programs do not access memory or resources to which they are not28
granted access. Nonetheless, they may have been correctly constructed so that they do not access these29
resources. It is thus a matter of trust, rather than mathematical proof, whether it is safe to run these programs. A30
conforming implementation of the CLI may allow unverifiable code (valid code that does not pass verification)31
to be executed, although this may be subject to administrative trust controls that are not part of this standard. A32
conforming implementation of the CLI shall allow the execution of verifiable code, although this may be33
subject to additional implementation-specified trust controls.34
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4 Introductory Examples1

This section and its subsections contain only informative text. 2

Before diving into the details, it is useful to see an introductory sample program to get a feeling for the ilasm3
assembly language. The next section shows the famous Hello World program, this time in the ilasm assembly4
language.5

4.1 Hello World Example6

This section gives a simple example to illustrate the general feel of ilasm. Below is code that prints the well7
known “Hello world!” salutation. The salutation is written by calling WriteLine, a static method found in the8
class System.Console that is part of the assembly mscorlib (see Partition IV).9

Example (informative):10

.assembly extern mscorlib {}11

.assembly hello {}12

.method static public void main() cil managed13

{ .entrypoint14

.maxstack 115

ldstr "Hello world!"16

call void [mscorlib]System.Console::WriteLine(class System.String)17

ret18

}19

The .assembly extern declaration references an external assembly, mscorlib, which defines System.Console.20
The .assembly declaration in the second line declares the name of the assembly for this program. (Assemblies21
are the deployment unit for executable content for the CLI.) The .method declaration defines the global22
method main. The body of the method is enclosed in braces. The first line in the body indicates that this23
method is the entry point for the assembly (.entrypoint), and the second line in the body specifies that it24
requires at most one stack slot (.maxstack).25

The method contains only three instructions. The ldstr instruction pushes the string constant "Hello world!"26
onto the stack and the call instruction invokes System.Console::WriteLine, passing the string as its only27
argument (note that string literals in CIL are instances of the standard class System.String). As shown, call28
instructions shall include the full signature of the called method. Finally, the last instruction returns (ret) from29
main.30

4.2 Examples31

This document contains integrated examples for most features of the CLI metadata. Many sections conclude32
with an example showing a typical use of the feature. All these examples are written using the ilasm assembly33
language. In addition, Partition V contains a longer example of a program written in the ilasm assembly34
language. All examples are, of course, informative only.35

End informative text 36
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5 General Syntax1

This section describes aspects of the ilasm syntax that are common to many parts of the grammar. The term2
“ASCII” refers to the American Standard Code for Information Interchange, a standard seven-bit code that was3
proposed by ANSI in 1963, and finalized in 1968. The ASCII repertoire of Unicode is the set of 128 Unicode4
characters from U+0000 to U+007F.5

5.1 General Syntax Notation6

This document uses a modified form of the BNF syntax notation. The following is a brief summary of this7
notation.8

Bold items are terminals. Items placed in angle brackets (e.g. <int64>) are names of syntax classes and shall be9
replaced by actual instances of the class. Items placed in square brackets (e.g. [<float>]) are optional, and any10
item followed by * can appear zero or more times. The character “|” means that the items on either side of it are11
acceptable. The options are sorted in alphabetical order (to be more specific: in ASCII order, ignoring “<” for12
syntax classes, and case-insensitive). If a rule starts with an optional term, the optional term is not considered13
for sorting purposes.14

ilasm is a case-sensitive language. All terminals shall be used with the same case as specified in this reference.15

Example (informative):16

A grammar such as17

<top> ::= <int32> | float <float> |18

floats [<float> [, <float>]*] | else <QSTRING>19

would consider the following all to be legal:20

1221

float 322

float –4.3e723

floats24

floats 2.425

floats 2.4, 3.726

else "Something \t weird"27

but all of the following to be illegal:28

else 329

3, 430

float 4.3, 2.431

float else32

stuff33

5.2 Terminals34

The basic syntax classes used in the grammar are used to describe syntactic constraints on the input intended to35
convey logical restrictions on the information encoded in the metadata.36
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The syntactic constraints described in this clause are informative only.  1

The semantic constraints (e.g. “shall be represented in 32 bits”) are 2

normative. 3

<int32> is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in4
32 bits.5

<int64> is either a decimal number or “0x” followed by a hexadecimal number, and shall be represented in6
64 bits.7

<hexbyte> is a 2-digit hexadecimal number that fits into one byte.8

<realnumber> is any syntactic representation for a floating point number that is distinct from that for all other9
terminal nodes. In this document, a period (.) is used to separate the integer and fractional parts, and “e” or “E”10
separates the mantissa from the exponent. Either (but not both) may be omitted.11

Note: A complete assembler may also provide syntax for infinities and NaNs.12

<QSTRING> is a string surrounded by double quote (″) marks. Within the quoted string the character “\” can13
be used as an escape character, with “\t” for a tab character, “\n” for a new line character, or followed by three14
octal digits in order to insert an arbitrary byte into the string. The “+” operator can be used to concatenate string15
literals. This way, a long string can be broken across multiple lines by using “+” and a new string on each line.16
An alternative is using “\” as the last character in a line, in which case the line break is not entered into the17
generated string. Any white characters (space, line feed, carriage return, and tab) between the “\” and the first18
character on the next line are ignored. See also examples below.19

Note: A complete assembler will need to deal with the full set of issues required to support Unicode encodings,20
see Partition I (especially CLS Rule 4).21

<SQSTRING> is similar to <QSTRING> with the difference that it is surround by single quote (′) marks22
instead of double quote marks.23

<ID> is a contiguous string of characters which starts with either an alphabetic character or one of “_”, “$”,24
“@” or “?” and is followed by any number of alphanumeric characters or any of “_”, “$”, “@”, or “?”. An25
<ID> is used in only two ways:26

• As a label of a CIL instruction27

• As an <id> which can either be an <ID> or an <SQSTRING>, so that special characters can be28
included.29

Example (informative):30

The following examples shows breaking of strings:31

ldstr "Hello " + "World " +32

"from CIL!"33

and34

ldstr "Hello World\35

\040from CIL!"36

become both "Hello World from CIL!".37
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5.3 Identif iers1

Identifiers are used to name entities. Simple identifiers are just equivalent to an <ID>. However, the ilasm2
syntax allows the use of any identifier that can be formed using the Unicode character set (see Partition I). To3
achieve this an identifier is placed within single quotation marks. This is summarized in the following4
grammar.5

<id> ::=

<ID>

| <SQSTRING>

6
Keywords may only be used as identifiers if they appear in single quotes (see Partition V for a list of all7
keywords).8

Several <id>’s may be combined to form a larger <id>. The <id>’s are separated by a dot (.). An <id> formed9
in this way is called a <dottedname>.10

<dottedname> ::= <id> [. <id>]*

11
Rationale: <dottedname> is provided for convenience, since “.” can be included in an <id> using the12
<SQSTRING> syntax. <dottedname> is used in the grammar where “.” is considered a common character13
(e.g. fully qualified type names)14

Examples (informative):15

The following shows some simple identifiers:16

A17

Test18

$Test19

@Foo?20

?_X_21

The following shows identifiers in single quotes:22

′Weird Identifier′23

′Odd\102Char′24

′Embedded\nReturn′25

The following shows dotted names:26

System.Console27

A.B.C28

′My Project′.′My Component′.′My Name′29

5.4 Labels and Lists of Labels30

Labels are provided as a programming convenience; they represent a number that is encoded in the metadata.31
The value represented by a label is typically an offset in bytes from the beginning of the current method,32
although the precise encoding differs depending on where in the logical metadata structure or CIL stream the33
label occurs. For details of how labels are encoded in the metadata, see Chapters 21 through 24; for their34
encoding in CIL instructions see Partition III.35

A simple label is a special name that represents an address. Syntactically, a label is equivalent to an <id>. Thus,36
labels may be also single quoted and may contain Unicode characters.37

A list of labels is comma separated, and can be any combination of these simple labels.38
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<labeloroffset> ::= <id>

<labels> ::= <labeloroffset> [, <labeloroffset>]*

1
Rationale: In a real assembler the syntax for <labeloroffset> might allow the direct specification of a number2
rather than requiring symbolic labels.3

ilasm distinguishes between two kinds of labels: code labels and data labels. Code labels are followed by a4
colon (“:”) and represent the address of an instruction to be executed. Code labels appear before an instruction5
and they represent the address of the instruction that immediately follows the label. A particular code label6
name may not be declared more than once in a method.7

In contrast to code labels, data labels specify the location of a piece of data and do not include the colon8
character. The data label may not be used as a code label, and a code label may not be used as a data label. A9
particular code label name may not be declared more than once in a module.10

<codeLabel> ::= <id> :

<dataLabel> ::= <id>

11
Example (informative):12

The following defines a code label, ldstr_label, that represents the13
address of the ldstr instruction:14

ldstr_label: ldstr "A label"15

5.5 Lists of Hex Bytes16

A list of bytes consists simply of one or more hex bytes. Hex bytes are pairs of characters 0 – 9, a – f, and A –17
F.18

<bytes> ::= <hexbyte> [<hexbyte>*]

19

5.6 Floating point numbers20

There are two different ways to specify a floating-point number:21

9. Use the dot (“.”) for the decimal point and “e” or “E” in front of the exponent. Both the decimal22
point and the exponent are optional.23

10. Indicate that the floating-point value is derived from an integer using the keyword float32 or24
float64 and indicating the integer in parentheses.25

<float64> ::=

float32 ( <int32> )

| float64 ( <int64> )

| <realnumber>

26
Example (informative):27

5.528

1.1e1029

float64(128) // note: this converts the integer 128 to its fp value30

5.7 Source Line Information31

The metadata does not encode information about the lexical scope of variables or the mapping from source line32
numbers to CIL instructions. Nonetheless, it is useful to specify an assembler syntax for providing this33
information for use in creating alternate encodings of the information.34
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.line takes a line number, and optional column number (preceded by a colon) and single quoted string that1
specifies the name of the file the line number is referring to2

<externSourceDecl> ::= .line <int32> [ : <int32> ] [<SQSTRING>]

3

5.8 File Names4

Some grammar elements require that a file name be supplied. A file name is like any other name where “.” is5
considered a normal constituent character. The specific syntax for file names follows the specifications of the6
underlying operating system.7

<filename> ::= Section

<dottedname> 5.3
8

5.9 Attributes and Metadata9

Attributes of types and their members attach descriptive information to their definition. The most common10
attributes are predefined and have a specific encoding in the metadata associated with them (see Chapter 22).11
In addition, the metadata provides a way of attaching user-defined attributes to metadata, using several different12
encodings.13

From a syntactic point of view, there are several ways for specifying attributes in ilasm:14

• Using special syntax built into ilasm. For example the keyword private in a <classAttr>15
specifies that the visibility attribute on a type should be set to allow access only within the16
defining assembly.17

• Using a general-purpose syntax in ilasm. The non-terminal <customDecl> describes this18
grammar (see Chapter 0). For some attributes, called pseudo-custom attributes, this grammar19
actually results in setting special encodings within the metadata (see clause 20.2.1).20

• Some attributes are required to be set based on the settings of other attributes or information21
within the metadata and are not visible from the syntax of ilasm at all. These attributes, called22
hidden attributes23

• Security attributes are treated specially. There is special syntax in ilasm that allows the XML24
representing security attributes to be described directly (see Chapter 19). While all other25
attributes defined either in the standard library or by user-provided extension are encoded in the26
metadata using one common mechanism described in Section 21.10, security attributes27
(distinguished by the fact that they inherit, directly or indirectly from28
System.Security.Permissions.SecurityAttribute, see Partition IV) shall be encoded29
as described in Section 21.11.30

5.10 i lasm Source Files31

An input to ilasm is a sequence of declarations, defined as follows:32

<ILFile> ::= Reference

<decl>* 5.10
33

The complete grammar for a top level declaration is shown below. The following sections will concentrate on34
the various parts of this grammar.35

<decl> ::= Reference

.assembly <dottedname> { <asmDecl>* } 6.1

| .assembly extern <dottedname> { <asmRefDecl>* } 6.3

| .class <classHead> { <classMember>* } 9
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| .class extern <exportAttr> <dottedname> { <externClassDecl>* } 6.7

| .corflags <int32> 6.1

| .custom <customDecl> 0

| .data <datadecl> 15.3.1

| .field <fieldDecl> 0

| .file [nometadata] <filename> [.hash = ( <bytes> )]
[.entrypoint ]

6.2.3

| .mresource [public | private] <dottedname>
[( <QSTRING> )] { <manResDecl>* }

6.2.2

| .method <methodHead> { <methodBodyItem>* } 14

| .module [<filename>] 6.4

| .module extern <filename> 6.5

| .subsystem <int32> 6.2

| .vtfixup <vtfixupDecl> 14.5.1

| <externSourceDecl> 5.7

| <securityDecl> 18
1
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6 Assemblies, Manifests and Modules1

Assemblies and modules are grouping constructs, each playing a different role in the CLI.2

An assembly is a set of one or more files deployed as a unit. An assembly always contains a manifest that3
specifies (see Section 6.1):4

• Version, name, culture, and security requirements for the assembly.5

• Which other files, if any, belong to the assembly along with a cryptographic hash of each file.6
The manifest itself resides in the metadata part of a file and that file is always part of the7
assembly.8

• Which of the types defined in other files of the assembly are to be exported from the assembly.9
Types defined in the same file as the manifest are exported based on attributes of the type itself.10

• Optionally, a digital signature for the manifest itself and the public key used to compute it.11

A module is a single file containing executable content in the format specified here. If the module contains a12
manifest then it also specifies the modules (including itself) that constitute the assembly. An assembly shall13
contain only one manifest amongst all its constituent files. For an assembly to be executed (rather than14
dynamically loaded) the manifest shall reside in the module that contains the entry point.15

While some programming languages introduce the concept of a namespace, there is no support in the CLI for16
this concept. Type names are always specified by their full name relative to the assembly in which they are17
defined.18

6.1 Overview of Modules, Assemblies, and Files19

This section contains informative text only. 20

The following picture should clarify the various forms of references:21

22

Figure 2: References23

Eight files are shown in the picture. The name of each file is shown below the file. Files that declare a module24
have an additional border around them and have names beginning with M. The other two files have a name25
beginning with F. These files may be resource files, like bitmaps, or other files that do not contain CIL code.26

Files M1 and M4 declare an assembly in addition to the module declaration, namely assemblies A and B,27
respectively. The assembly declaration in M1 and M4 references other modules, shown with straight lines.28
Assembly A references M2 and M3. Assembly B references M3 and M5. Thus, both assemblies reference M3.29

Usually, a module belongs only to one assembly, but it is possible to share it across assemblies. When30
Assembly A is loaded at runtime, an instance of M3 will be loaded for it. When Assembly B is loaded into the31
same application domain, possibly simultaneously with Assembly A, M3 will be shared for both assemblies.32
Both assemblies also reference F2, for which similar rules apply.33
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The module M2 references F1, shown by dotted lines. As a consequence F1 will be loaded as part of Assembly1
A, when A is executed. Thus, the file reference shall also appear with the assembly declaration. Similarly, M52
references another module, M6, which becomes part of B when B is executed. It follows, that assembly B shall3
also have a module reference to M6.4

End informative text 5

6.2 Defining an Assembly6

An assembly is specified as a module that contains a manifest in the metadata; see Section 21.2. The7
information for the manifest is created from the following portions of the grammar:8

<decl> ::= Section

.assembly <dottedname> { <asmDecl>* } 6.2

| .assembly extern <dottedname> { <asmRefDecl>* } 6.3

| .corflags <int32> 6.2

| .file [nometadata] <filename> .hash = ( <bytes> )
[.entrypoint ]

6.2.3

| .module extern <filename> 6.5

| .mresource [public | private] <dottedname>

[( <QSTRING> )] { <manResDecl>* }

6.2.2

| .subsystem <int32> 6.2

| …

9
The .assembly directive declares the manifest and specifies to which assembly the current module belongs. A10
module shall contain at most one .assembly directive. The <dottedname> specifies the name of the11
assembly.12

Note: Since some platforms treat names in a case insensitive manner, two assemblies that have names that13
differ only in case should not be declared.14

The .corflags directive sets a field in the CLI header of the output PE file (see clause 24.3.3.1). A conforming15
implementation of the CLI shall expect it to be 1. For backwards compatibility, the three least significant bits16
are reserved. Future versions of this standard may provide definitions for values between 8 and 65,535.17
Experimental and non-standard uses should thus use values greater than 65,535.18

The .subsystem directive is used only when the assembly is directly executed (as opposed to used as a library19
for another program). It specifies the kind of application environment required for the program, by storing the20
specified value in the PE file header (see clause 24.2.2). While a full 32 bit integer may be supplied, a21
conforming implementation of the CLI need only respect two possible values:22

If the value is 2, the program should be run using whatever conventions are appropriate for an application that23
has a graphical user interface.24

If the value is 3, the program should be run using whatever conventions are appropriate for an application that25
has a direct console attached.26

27
Example (informative):28

.assembly CountDown29

{ .hash algorithm 3277230

.ver 1:0:0:031

}32
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.file Counter.dll .hash = (BA D9 7D 77 31 1C 85 4C 26 9C 49 E7 02 BE E71
52 3A CB 17 AF)2

6.2 .1 Information about the Assembly (<asmDecl>)3

The following grammar shows the information that can be specified about an assembly.4

<asmDecl> ::= Description Section

.custom <customDecl> Custom attributes 0

.hash algorithm <int32> Hash algorithm used in the .file directive 6.2.1.1

| .culture <QSTRING> Culture for which this assembly is built 6.2.1.2

| .publickey = ( <bytes> ) The originator's public key. 6.2.1.3

| .ver <int32> : <int32> : <int32> :
<int32>

Major version, minor version, revision, and
build

6.2.1.4

| <securityDecl> Permissions needed, desired, or prohibited 19
5

6.2 .1.1 Hash Algorithm6

<asmDecl> ::= .hash algorithm <int32> | …

7
When an assembly consists of more than one file (see clause 6.2.3), the manifest for the assembly specifies8
both the name of the file and the cryptographic hash of the contents of the file. The algorithm used to compute9
the hash can be specified, and shall be the same for all files included in the assembly. All values are reserved10
for future use, and conforming implementations of the CLI shall use the SHA1(see Partition I) hash function11
and shall specify this algorithm by using a value of 32772 (0x8004).12

Rationale: SHA1 was chosen as the best widely available technology at the time of standardization (see13
Partition I). A single algorithm is chosen since all conforming implementations of the CLI would be required14
to implement all algorithms to ensure portability of executable images.15

6.2 .1.2 Culture16

<asmDecl> ::= .culture <QSTRING> | …

17
When present, this indicates that the assembly has been customized for a specific culture. The strings that shall18
be used here are those specified in Partition IV as acceptable with the class19
System.Globalization.CultureInfo. When used for comparison between an assembly reference and an20
assembly definition these strings shall be compared in a case insensitive manner.21

Note: The culture names follow the IETF RFC1766 names. The format is “<language>-<country/region>”,22
where <language> is a lowercase two-letter code in ISO 639-1. <country/region> is an uppercase two-letter23
code in ISO 316624

6.2 .1.3 Originator’s Public Key25

<asmDecl> ::= .publickey = ( <bytes> ) | …

26
The CLI metadata allows the producer of an assembly to compute a cryptographic hash of the assembly (using27
the SHA1 hash function) and then encrypt it using the RSA algorithm (see Partition I) and a public/private key28
pair of the producer’s choosing. The results of this (an “SHA1/RSA digital signature”) can then be stored in29
the metadata along with the public part of the key pair required by the RSA algorithm. The .publickey30
directive is used to specify the public key that was used to compute the signature. To calculate the hash, the31
signature is zeroed, the hash calculated, then the result stored into the signature.32

A reference to an assembly (see Section 6.3) captures some of this information at compile time. At runtime,33
the information contained in the assembly reference can be combined with the information from the manifest of34
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the assembly located at runtime to ensure that the same private key was used to create both the assembly seen1
when the reference was created (compile time) and when it is resolved (runtime).2

6.2 .1.4 Version Numbers3

<asmDecl> ::= .ver <int32> : <int32> : <int32> : <int32> | …

4
The version number of the assembly, specified as four 32-bit integers. This version number shall be captured at5
compile time and used as part of all references to the assembly within the compiled module. This standard6
places no other requirement on the use of the version numbers.7

Note: A conforming implementation may ignore version numbers entirely, or it may require that they match8
precisely when binding a reference, or any other behavior deemed appropriate. By convention:9

the first of these is considered the major version number and assemblies with the same name but different10
major versions are not interchangeable. This would be appropriate, for example, for a major rewrite of a11
product where backwards compatibility cannot be assumed.12

the second of these is considered the minor version number and assemblies with the same name and major13
version but different minor versions indicate significant enhancements but with intention to be backward14
compatible. This would be appropriate, for example, on a “point release” of a product or a fully backward15
compatible new version of a product.16

the third of these is considered the revision number and assemblies with the same name, major and minor17
version number but different revisions are intended to be fully interchangeable. This would be appropriate, for18
example, to fix a security hole in a previously released assembly.19

the fourth of these is considered the build number and assemblies that differ only by build number are intended20
to represent a recompilation from the same source. This would be appropriate, for example,because of21
processor, platform, or compiler changes.22

6.2.2 Manifest Resources23

A manifest resource is simply a named item of data associated with an assembly. A manifest resource is24
introduced using the .mresource directive, which adds the manifest resource to the assembly manifest begun25
by a preceding .assembly declaration.26

<decl> ::= Section

.mresource [public | private] <dottedname>

{ <manResDecl>* }

| … 5.10
27

If the manifest resource is declared public it is exported from the assembly. If it is declared private it is not28
exported and hence only available from within the assembly. The <dottedname> is the name of the resource,29
and the optional quoted string is a description of the resource.30

<manResDecl> ::= Description Section

.assembly extern <dottedname> Manifest resource is in external
assembly with name <dottedname>.

6.3

| .custom <customDecl> Custom attribute. 0

| .file <dottedname> at <int32> Manifest resource is in file
<dottedname> at byte offset <int32>.

31
For a resource stored in a file that is not a module (for example, an attached text file), the file shall be declared32
in the manifest using a separate (top-level) .file declaration (see clause 6.2.3) and the byte offset shall be zero33
Similarly, a resource that is defined in another assembly is referenced using .assembly extern which requires34
that the assembly has been defined in a separate (top-level) .assembly extern directive (see Section 6.3).35
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6.2 .3 Files in the Assembly1

Assemblies may be associated with other files, e.g. documentation and other files that are used during2
execution. The declaration .file is used to add a reference to such a file to the manifest of the assembly: (See3
Section 21.19)4

<decl> ::= Section

.file [nometadata] <filename> .hash = ( <bytes> ) [.entrypoint]

| … 5.10
5

The attribute nometadata is specified if the file is not a module according to this specification. Files that are6
marked as nometadata may have any format; they are considered pure data files.7

The <bytes> after the .hash specify a hash value computed for the file. The VES shall recompute this hash8
value prior to accessing this file and shall generate an exception if it does not match. The algorithm used to9
calculate this hash value is specified with .hash algorithm (see clause 6.2.1.1).10

If specified, the .entrypoint directive indicates that the entrypoint of a multi-module assembly is contained in11
this file.12

6.3 Referencing Assemblies13

<asmRefDecl> ::= .assembly extern <dottedname> [ as <dottedname> ]
{ <asmRefDecl>* }

14
An assembly mediates all accesses from the files that it contains to other assemblies. This is done through the15
metadata by requiring that the manifest for the executing assembly contain a declaration for any assembly16
referenced by the executing code. The syntax .assembly extern as a top-level declaration is used for this17
purpose. The optional as clause provides an alias which allows ilasm to address external assemblies that have18
the same name, but differing in version, culture, etc.19

The dotted name used in .assembly extern shall exactly match the name of the assembly as declared with20
.assembly directive in a case sensitive manner. (So, even though an assembly might be stored within a file,21
within a filesystem that is case-blind, the names stored internally within metadata are case-sensitive, and shall22
match exactly.)23

<asmRefDecl> ::= Description Section

.hash = ( <bytes> ) Hash of referenced assembly 6.2.3

| .custom <customDecl> Custom attributes 0

| .culture <QSTRING> Culture of the referenced assembly 6.2.1.2

| .publickeytoken = ( <bytes> ) The low 8 bytes of the SHA1 hash of the
originator's public key.

6.3

| .publickey = ( <bytes> ) The originator’s full public key 6.2.1.3

| .ver <int32> : <int32> : <int32> :
<int32>

Major version, minor version, revision, and
build

6.2.1.4

24
These declarations are the same as those for .assembly declarations (clause 6.2.1), except for the addition of25
.publickeytoken. This declaration is used to store the low 8 bytes of the SHA1 hash of the originator’s public26
key in the assembly reference, rather than the full public key.27

An assembly reference can store either a full public key or an 8 byte “publickeytoken.” Either can be used to28
validate that the same private key used to sign the assembly at compile time signed the assembly used at29
runtime. Neither is required to be present, and while both can be stored this is not useful.30

A conforming implementation of the CLI need not perform this validation, but it is permitted to do so, and it31
may refuse to load an assembly for which the validation fails. A conforming implementation of the CLI may32
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also refuse to permit access to an assembly unless the assembly reference contains either the public key or the1
public key token. A conforming implementation of the CLI shall make the same access decision independent2
of whether a public key or a token is used.3

Rationale: The full public key is cryptographically safer, but requires more storage space in the assembly4
reference.5

Example (informative):6

.assembly extern MyComponents7

{ .publickey = (BB AA BB EE 11 22 33 00)8

.hash = (2A 71 E9 47 F5 15 E6 07 35 E4 CB E3 B4 A1 D3 7F 7F A0 9C 24)9

.ver 2:10:2002:010

}11

6.4 Declaring Modules12

All CIL files are modules and are referenced by a logical name carried in the metadata rather than their file13
name. See Section 21.16.14

<decl> ::= Section

| .module <filename>

| … 5.10
15

Example (informative):16

.module CountDown.exe17

6.5 Referencing Modules18

When an item is in the current assembly but part of a different module than the one containing the manifest, the19
defining module shall be declared in the manifest of the assembly using the .module extern directive. The20
name used in the .module extern directive of the referencing assembly shall exactly match the name used in21
the .module directive (see Section 6.4) of the defining module. See Section 21.28.22

<decl> ::= Section

| .module extern <filename>

| … 5.10
23

Example (informative):24

.module extern Counter.dll25

6.6 Declarations inside a Module or Assembly26

Declarations inside a module or assembly are specified by the following grammar. More information on each27
option can be found in the corresponding section.28

<decl> ::= Section

| .class <classHead> { <classMember>* } 9

| .custom <customDecl> 0

| .data <datadecl> 15.3.1

| .field <fieldDecl> 0
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| .method <methodHead> { <methodBodyItem>* } 14

| <externSourceDecl> 5.7

| <securityDecl> 18

| …

1

6.7 Exported Type Definitions2

The manifest module, of which there can only be one per assembly, includes the .assembly statement. To3
export a type defined in any other module of an assembly requires an entry in the assembly’s manifest. The4
following grammar is used to construct such an entry in the manifest:5

<decl> ::= Section

.class extern <exportAttr> <dottedname> { <externClassDecl>* }

6
<externClassDecl> ::= Section

.file <dottedname>

| .class extern <dottedname>

| .custom <customDecl>
0

7
The <exportAttr> value shall be either public or nested public and shall match the visibility of the type.8

For example, suppose an assembly consists of two modules A.EXE and B.DLL. A.EXE contains the manifest.9
A public class “Foo” is defined in B.DLL. In order to export it – that is, to make it visible by, and usable from,10
other assemblies –a .class extern statement shall be included in A.EXE.11

Conversely, a public class “Bar” defined in A.EXE does not need any .class extern statement.12

Rationale: Tools should be able to retrieve a single module, the manifest module, to determine the complete set13
types defined by the assembly. Therefore, information from other modules within the assembly is replicated in14
the manifest module. By convention, the manifest module is also known as the assembly.15
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7 Types and Signatures1

The metadata provides mechanisms to both define types and reference types. Chapter 9 describes the metadata2
associated with a type definition, regardless of whether the type is an interface, class or a value type.3

The mechanism used to reference types is divided into two parts. The first is the creation of a logical4
description of user-defined types that are referenced but (typically) not defined in the current module. These5
are stored in a logical table in the metadata (see Section 21.35).6

The second is a signature that encodes one or more type references, along with a variety of modifiers. The7
grammar non-terminal <type> describes an individual entry in a signature. The encoding of a signature is8
specified in Section 22.1.159

7.1 Types10

The following grammar completely specifies all built-in types including pointer types of the CLI system. It also11
shows the syntax for user defined types that can be defined in the CLI system:12

<type> ::= Description Section

bool Boolean 7.2

| boxed <typeReference> Boxed user-defined value type

| char 16-bit Unicode code point 7.2

| class <typeReference> User defined reference type. 7.3

| float32 32-bit floating point number 7.2

| float64 64-bit floating point number 7.2

| int8 Signed 8-bit integer 7.2

| int16 Signed 16-bit integer 7.2

| int32 Signed 32-bit integer 7.2

| int64 Signed 64-bit integer 7.2

| method <callConv> <type> *

( <parameters> )

Method pointer 0

| native int Signed integer whose size varies
depending on platform (32- or 64-bit)

7.2

| native unsigned int Unsigned integer whose size varies
depending on platform (32- or 64-bit)

7.2

| object See System.Object in Partition IV

| string See System.String in Partition IV

| <type> & Managed pointer to <type>. <type>
shall not be a managed pointer type or
typedref

13.4

| <type> * Unmanaged pointer to <type> 13.4

| <type> [ [<bound> [,<bound>]*] ] Array of <type> with optional rank
(number of dimensions) and bounds.

13.1and 13.2

| <type> modopt ( <typeReference> ) Custom modifier that may be ignored
by the caller.

0
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| <type> modreq ( <typeReference> ) Custom modifier that the caller shall
understand.

0

| <type> pinned For local variables only. The garbage
collector shall not move the referenced
value.

7.1.2

| typedref Typed reference, created by mkrefany
and used by refanytype or refanyval.

7.2

| valuetype <typeReference> User defined value type (unboxed) 0

| unsigned int8 Unsigned 8-bit integers 7.2

| unsigned int16 Unsigned 16-bit integers 7.2

| unsigned int32 Unsigned 32-bit integers 7.2

| unsigned int64 Unsigned 64-bit integers 7.2

| void No type. Only allowed as a return
type or as part of void *

7.2

1
In several situations the grammar permits the use of a slightly simpler mechanism for specifying types, by just2
allowing type names (e.g. “System.GC”) to be used instead of the full algebra (e.g. “class System.GC”). These3
are called type specifications:4

<typeSpec> ::= Section

[ [.module] <dottedname> ] 7.3

| <typeReference> 7.2

| <type> 7.1
5

7.1 .1 modreq and modopt6

Custom modifiers, defined using modreq (“required modifier”) and modopt (“optional modifier”), are similar to7
custom attributes (see Chapter 0) except that modifiers are part of a signature rather than attached to a8
declaration. Each modifer associates a type reference with an item in the signature.9

The CLI itself shall treat required and optional modifiers in the same manner. Two signatures that differ only10
by the addition of a custom modifier (required or optional) shall not be considered to match. Custom modifiers11
have no other effect on the operation of the VES.12

Rationale: The distinction between required and optional modifiers is important to tools other than the CLI13
that deal with the metadata, typically compilers and program analysers. A required modifier indicates that14
there is a special semantics to the modified item that should not be ignored, while an optional modifier can15
simply be ignored.16

For example, the concept of const in the C programming language can be modelled with an optional modifier17
since the caller of a method that has a constant parameter need not treat it in any special way. On the other18
hand, a parameter that shall be copy constructed in C++ shall be marked with a required custom attribute19
since it is the caller who makes the copy.20

7.1 .2 pinned21

The signature encoding for pinned shall appear only in signatures that describe local variables (see22
clause 14.4.1.3). While a method with a pinned local variable is executing the VES shall not relocate the object23
to which the local refers. That is, if the implementation of the CLI uses a garbage collector that moves objects,24
the collector shall not move objects that are referenced by an active pinned local variable.25
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Rationale: If unmanaged pointers are used to dereference managed objects, these objects shall be pinned.1
This happens, for example, when a managed object is passed to a method designed to operate with unmanaged2
data.3

7.2 Built- in Types4

The CLI built-in types have corresponding value types defined in the Base Class Library. They shall be5
referenced in signatures only using their special encodings (i.e. not using the general purpose valuetype6
<typeReference> syntax). Partition I specifies the built-in types.7

7.3 References to User-defined Types (<typeReference>)8

User-defined types are referenced either using their full name and a resolution scope or (if one is available in9
the same module) a type definition (see Chapter 9).10

A <typeReference> is used to capture the full name and resolution scope.11

<typeReference> ::=

[<resolutionScope>] <dottedname> [/ <dottedname>]*

12
<resolutionScope> ::=

[ .module <filename> ]

| [ <assemblyRefName> ]

13
<assemblyRefName> ::= Section

<dottedname> 5.1
14

The following resolution scopes are specified for un-nested types:15

• Current module (and, hence, assembly). This is the most common case and is the default if no16
resolution scope is specified. The type shall be resolved to a definition only if the definition17
occurs in the same module as the reference.18

Note: A type reference that refers to a type in the same module and assembly is better represented using19
a type definition. Where this is not possible (for example, when referencing a nested type that has20
compilercontrolled accessibility) or convenient (for example, in some one-pass compilers) a type21
reference is equivalent and may be used.22

• Different module, current assembly. The resolution scope shall be a module reference23
syntactically reprented using the notation [.module <filename>]. The type shall be resolved24
to a definition only if the referenced module (see Section 6.4) and type (see Section 6.7) have25
been declared by the current assembly and hence have entries in the assembly’s manifest. Note26
that in this case the manifest is not physically stored with the referencing module.27

• Different assembly. The resolution scope shall be an assembly reference syntactically28
represented using the notation [<assemblyRefName>]. The referenced assembly shall be29
declared in the manifest for the current assembly (see Section 6.3), the type shall be declared in30
the referenced assembly’s manifest, and the type shall be marked as exported from that assembly31
(see section 6.7 and clause 9.1.1).32

• For nested types, the resolution scope is always the enclosing type. (See Section 9.6). This is33
indicated syntactically by using a slash (“/”) to separate the enclosing type name from the nested34
type’s name35

Example (informative):36

The proper way to refer to a type defined in the base class library.37
The name of the type is System.Console and it is found in the assembly38
named mscorlib.39
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.assembly extern mscorlib { }1

.class [mscorlib]System.Console2

3

A reference to the type named C.D in the module named x in the current4
assembly.5

.module extern x6

.class [.module x]C.D7

8

A reference to the type named C nested inside of the type named Foo.Bar9
in another assembly, named MyAssembly.10

.assembly extern MyAssembly { }11

.class [MyAssembly]Foo.Bar/C12

7.4 Native Data Types13

Some implementations of the CLI will be hosted on top of existing operating systems or runtime platforms that14
specify data types required to perform certain functions. The metadata allows interaction with these native data15
types by specifying how the built-in and user-defined types of the CLI are to be marshalled to and from native16
data types. This marshalling information can be specified (using the keyword marshal) for17

• the return type of a method, indicating that a native data type is actually returned and shall be18
marshalled back into the specified CLI data type19

• a parameter to a method, indicating that the CLI data type provided by the caller shall be20
marshalled into the specified native data type (if the parameter is passed by reference the updated21
value shall be marshalled back from the native data type into the CLI data type when the call is22
completed)23

• a field of a user-defined type, indicating that any attempt to pass the object in which it occurs to24
platform methods shall make a copy of the object, replacing the field by the specified native data25
type (if the object is passed by reference then the updated value shall be marshalled back when26
the call is completed)27

The following table lists all native types supported by the CLI and provides a description for each of them. A28
more complete description can be found in Partition IV in the definition of the enum29
System.Runtime.Interopservices.UnmanagedType, which provides the actual values used to encode the30
types. All encoding values from 0 through 63 are reserved for backward compatibility with existing31
implementations of the CLI. Values 64 through 127 are reserved for future use in this and related Standards.32

<nativeType> ::= Description Name in
class library

[ ] Native array. Type and size are determined at
runtime from the actual marshaled array.

LPArray

| bool Boolean. 4-byte integer value where a non-zero
value represents TRUE and 0 represents FALSE.

Bool

| float32 32-bit floating point number. FLOAT32

| float64 64-bit floating point number. FLOAT64

| [unsigned] int Signed or unsigned integer, sized to hold a pointer
on the platform

SysUInt or SysInt

| [unsigned] int8 Signed or unsigned 8-bit integer unsigned int8 or int8
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| [unsigned] int16 Signed or unsigned 16-bit integer unsigned int16 or int16

| [unsigned] int32 Signed or unsigned 32-bit integer unsigned int32 or int32

| [unsigned] int64 Signed or unsigned 64-bit integer unsigned int64 or int64

| lpstr A pointer to a null terminated array of ANSI
characters. Code page is implementation specific.

LPStr

| lptstr A pointer to a null terminated array of platform
characters (ANSI or Unicode). Code page and
character encoding are implementation specific.

LPTStr

| lpvoid An untyped pointer, platform specifies size. LPVoid

| lpwstr A pointer to a null terminated array of Unicode
characters. Character encoding is implementation
specific.

LPWStr

| method A function pointer. FunctionPtr

| <nativeType> [ ] Array of <nativeType>. The length is determined
at runtime by the size of the actual marshaled
array.

LPArray

| <nativeType> [ <int32> ] Array of <nativeType> of length <int32>. LPArray

| <nativeType>
[ + <int32> ]

Array of <nativeType> with runtime supplied
element size. The int32 specifies a parameter to
the current method (counting from parameter
number 0) that, at runtime, will contain the size of
an element of the array in bytes. Can only be
applied to methods, not fields.

LPArray

| <nativeType>
[ <int32> + <int32> ]

Array of <nativeType> with runtime supplied
element size. The first int32 specifies the number
of elements in the array. The second int32
specifies which parameter to the current method
(counting from parameter number 1) will specify
the additional number of elements in the array.
Can only be applied to methods, not fields

LPArray

1
Example (informative):2

.method int32 M1( int32 marshal(int32), bool[] marshal(bool[5]) )3

4

Method M1 takes two arguments: an int32, and an array of 5 bools5

6

++++++++++7

8

.method int32 M2( int32 marshal(int32), bool[] marshal(bool[+1]) )9

10

Method M2 takes two arguments: an int32, and an array of bools: the11
number of elements in that array is given by the value of the first12
parameter13

14

++++++++++15
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1

.method int32 M3( int32 marshal(int32), bool[] marshal(bool[7+1]) )2

3

Method M3 takes two arguments: an int32, and an array of bools: the4
number of elements in that array is given as 7 plus the value of the5
first parameter6

7
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8 Visibility, Accessibility and Hiding1

Partition I specifies visibility and accessibility. In addition to these attributes, the metadata stores information2
about method name hiding. Hiding controls which method names inherited from a base type are available for3
compile-time name binding.4

8.1 Visibil ity of Top-Level Types and Accessibil ity of Nested Types5

Visibility is attached only to top-level types, and there are only two possibilities: visible to types within the6
same assembly, or visible to types regardless of assembly. For nested types (i.e. types that are members of7
another type) the nested type has an accessibility that further refines the set of methods that can reference the8
type. A nested type may have any of the 7 accessibility modes (see Partition I), but has no direct visibility9
attribute of its own, using the visibility of its enclosing type instead.10

Because the visibility of a top-level type controls the visibility of the names of all of its members, a nested type11
cannot be more visible than the type in which it is nested. That is, if the enclosing type is visible only within an12
assembly then a nested type with public accessibility is still only available within the assembly. By contrast, a13
nested type that has assembly accessibility is restricted to use within the assembly even if the enclosing type is14
visible outside the assembly.15

To make the encoding of all types consistent and compact, the visibility of a top-level type and the accessibility16
of a nested type are encoded using the same mechanism in the logical model of clause 22.1.14.17

8.2 Accessibil ity18

Accessibility is encoded directly in the metadata. See, for example, clause 21.24.19

8.3 Hiding20

Hiding is a compile-time concept that applies to individual methods of a type. The CTS specifies two21
mechanisms for hiding, specified by a single bit:22

• hide-by-name, meaning that the introduction of a name in a given type hides all inherited23
members of the same kind (method or field) with the same name.24

• hide-by-name-and-sig, meaning that the introduction of a name in a given type hides any inherited25
member of the same kind but with precisely the same type (for fields) or signature (for methods,26
properties, and events).27

There is no runtime support for hiding. A conforming implementation of the CLI treats all references as though28
the names were marked hide-by-name-and-sig. Compilers that desire the effect of hide-by-name can do so by29
marking method definitions with the newslot attribute (see clause 14.4.2.3) and correctly chosing the type30
used to resolve a method reference (see clause 14.1.3).31
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9 Defining Types1

Types (i.e., classes, value types, and interfaces) may be defined at the top-level of a module:2

<decl> ::= Section

.class <classHead> { <classMember>* } 9

| …

3
The logical metadata table created by this declaration is specified in Section 21.34.4

Rationale: For historical reasons, many of the syntactic classes used for defining types incorrectly use “class”5
instead of “type” in their name. All classes are types, but “types” is a broader term encompassing value types,6
and interfaces.7

9.1 Type Header (<classHead>)8

A type header consists of9

• any number of type attributes10

• a name (an <id>)11

• a base type (or parent type), which defaults to [mscorlib]System.Object12

• an optional list of interfaces whose contract this type and all its descendent types shall satisfy13

<classHead> ::=

<classAttr>* <id> [extends <typeReference>] [implements <typeReference> [,
<typeReference>]*]

14
The extends keyword defines the base type of a type. A type shall extend from exactly one other type. If no15
type is specified, ilasm will add an extend clause to make the type inherit from System.Object.16

The implements keyword defines the interfaces of a type. By listing an interface here, a type declares that all17
of its concrete implementations will support the contract of that interface, including providing implementations18
of any virtual methods the interface declares. See also Chapter 10 and Chapter 11.19

Example (informative):20

.class private auto autochar CounterTextBox21

extends [System.Windows.Forms]System.Windows.Forms.TextBox22

implements [.module Counter]CountDisplay23

{ // body of the class24

}25

This code declares the class CounterTextBox, which extends the class26
System.Windows.Forms.TextBox in the assembly System.Windows.Forms and implements27
the interface CountDisplay in the module Counter of the current assembly.28
The attributes private, auto and autochar are described in the following29
sections.30

A type can have any number of custom attributes attached. Custom attributes are attached as described in31
Chapter 0. The other (predefined) attributes of a type may be grouped into attributes that specify visibility, type32
layout information, type semantics information, inheritance rules, interoperation information, and information33
on special handling. The following subsections provide additional information on each group of predefined34
attributes.35

<classAttr> ::= Description Section
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abstract Type is abstract. 9.1.4

| ansi Marshal strings to platform as ANSI. 9.1.5

| auto Auto layout of type. 9.1.2

| autochar Marshal strings to platform based on platform. 9.1.5

| beforefieldinit Calling static methods does not initialize type. 9.1.6

| explicit Layout of fields is provided explicitly. 9.1.2

| interface Interface declaration. 9.1.3

| nested assembly Assembly accessibility for nested type. 9.1.1

| nested famandassem Family and Assembly accessibility for nested type. 9.1.1

| nested family Family accessibility for nested type. 9.1.1

| nested famorassem Family or Assembly accessibility for nested type. 9.1.1

| nested private Private accessibility for nested type. 9.1.1

| nested public Public accessibility for nested type. 9.1.1

| private Private visibility of top-level type. 9.1.1

| public Public visibility of top-level type. 9.1.1

| rtspecialname Special treatment by runtime. 9.1.6

| sealed The type cannot be subclassed. 9.1.4

| sequential The type is laid out sequentially. 9.1.2

| serializable Type may be serialized. 9.1.6

| specialname Special treatment by tools. 9.1.6

| unicode Marshal strings to platform as Unicode. 9.1.5
1

9.1 .1 Visibi l ity and Accessibi l i ty Attributes2

<classAttr> ::= …

| nested assembly

| nested famandassem

| nested family

| nested famorassem

| nested private

| nested public

| private

| public

3
See Partition I. A type that is not nested inside another shall have exactly one visibility (private or public) and4
shall not have an accessiblity. Nested types shall have no visibility, but instead shall have exactly one of the5
accessibility attributes (nested assembly, nested famandassem, nested family, nested famorassem, nested6
private, or nested public). The default visibility for top-level types is private. The default accessibility for7
nested types is nested private.8
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9.1 .2 Type Layout Attributes1

<classAttr> ::= …

| auto

| explicit

| sequential

2
The type layout specifies how the fields of an instance of a type are arranged. A given type shall have only one3
layout attribute specified. By convention, ilasm supplies auto if no layout attribute is specified.4

auto: the layout shall be done by the CLI, with no user-supplied constraints5

explicit: the layout of the fields is explicitly provided (see Section 9.7).6

sequential: the CLI shall lay out the fields in sequential order, based on the order of the fields in the logical7
metadata table (see Section 21.15).8

Rationale: The default auto layout should provide the best layout for the platform on which the code is9
executing. sequential layout is intended to instruct the CLI to match layout rules commonly followed by10
languages like C and C++ on an individual platform, where this is possible while still guaranteeing verifiable11
layout. explicit layout allows the CIL generator to specify the precise layout semantics.12

9.1 .3 Type Semantics Attributes13

<classAttr> ::= …

| interface

14
The type semantic attributes specify whether an interface, class, or value type shall be defined. The interface15
attribute specifies an interface. If this attribute is not present and the definition extends (directly or indirectly)16
System.ValueType a value type shall be defined (see Chapter 0). Otherwise, a class shall be defined (see17
Chapter 10).18

Note that the runtime size of a value type shall not exceed 1 MByte (0x100000 bytes)19

9.1 .4 Inheritance Attributes20

<classAttr> ::= …

| abstract

| sealed

21
Attributes that specify special semantics are abstract and sealed. These attributes may be used together.22

abstract specifies that this type shall not be instantiated. If a type contains abstract methods, the type shall be23
declared as an abstract type.24

sealed specifies that a type shall not have subclasses. All value types shall be sealed.25

Rationale: Virtual methods of sealed types are effectively instance methods, since they cannot be overridden.26
Framework authors should use sealed classes sparingly since they do not provide a convenient building block27
for user extensibility. Sealed classes may be necessary when the implementation of a set of virtual methods for28
a single class (typically inherited from different interfaces) becomes interdependent or depends critically on29
implementation details not visible to potential subclasses.30

A type that is both abstract and sealed should have only static members, and serves as what some languages31
call a namespace.32

9.1 .5 Interoperation Attributes33

<classAttr> ::= …

| ansi
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| autochar

| unicode

1
These attributes are for interoperation with unmanaged code. They specify the default behavior to be used2
when calling a method (static, instance, or virtual) on the class that has an argument or return type of3
System.String and does not itself specify marshalling behavior. Only one value shall be specified for any4
type, and the default value is ansi.5

ansi specifies that marshalling shall be to and from ANSI strings6

unicode specifies that marshalling shall be to and from Unicode strings7

autochar specifies either ANSI or Unicode behavior, depending on the platform on which the CLI is running.8

9.1.6 Special Handling Attributes9

<classAttr> ::= …

| beforefieldinit

| serializable

| specialname

| rtspecialname

10
These attributes may be combined in any way.11

beforefieldinit instructs the CLI that it need not initialize the type before a static method is called. See12
clause 9.5.3.13

specialname indicates that the name of this item may have special significance to tools other than the CLI.14
See, for example, Partition I .15

rtspecialname indicates that the name of this item has special significance to the CLI. There are no currently16
defined special type names; this is for future use. Any item marked rtspecialname shall also be marked17
specialname18

Rationale: If an item is treated specially by the CLI, then tools should also be made aware of that. The19
converse is not true.20

9.2 Body of a Type Definition21

A type may contain any number of further declarations. The directives .event, .field, .method, and .property22
are used to declare members of a type. The directive .class inside a type declaration is used to create a nested23
type, which is discussed in further detail in Section 9.6.24

<classMember> ::= Description Section

.class <classHead> { <classMember>* } Defines a nested type. 9.6

| .custom <customDecl> Custom attribute. 0

| .data <datadecl> Defines static data
associated with the type.

15.3

| .event <eventHead> { <eventMember>* } Declares an event. 17

| .field <fieldDecl> Declares a field belonging
to the type.

0

| .method <methodHead> { <methodBodyItem>* } Declares a method of the
type.

14

| .override <typeSpec> :: <methodName> with
<callConv> <type> <typeSpec> :: <methodName> (
<parameters> )

Specifies that the first
method is overridden by

9.3.2
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<parameters> ) the definition of the
second method.

| .pack <int32> Used for explicit layout of
fields.

9.7

| .property <propHead> { <propMember>* } Declares a property of the
type.

16

| .size <int32> Used for explicit layout of
fields.

9.7

| <externSourceDecl> .line 5.7

| <securityDecl> .permission or
.capability

19

1

9.3 Introducing and Overriding Virtual Methods2

A virtual method of a base type is overridden by providing a direct implementation of the method (using a3
method definition, see Section 14.4) and not specifying it to be newslot (see clause 14.4.2.3). An existing4
method body may also be used to implement a given virtual declaration using the .override directive (see5
clause 9.3.2).6

9.3 .1 Introducing a Virtual Method7

A virtual method is introduced in the inheritance hierarchy by defining a virtual method (see Section 14.4). The8
versioning semantics differ depending on whether or not the definition is marked as newslot (see9
clause 14.4.2.3):10

If the definition is marked newslot then the definition always creates a new virtual method, even if a base class11
provides a matching virtual method. Any reference to the virtual method created before the new virtual12
function was defined will continue to refer to the original definition.13

If the definition is not marked newslot then it creates a new virtual method only if there is no virtual method of14
the same name and signature inherited from a base class. If the inheritance hierarchy changes so that the15
definition matches an inherited virtual function the definition will be treated as a new implementation of the16
inherited function.17

9.3 .2 The .override Direct ive18

The .override directive specifies that a virtual method should be implemented (overridden), in this type, by a19
virtual method with a different name but with the same signature. It can be used to provide an implementation20
for a virtual method inherited from a base class or a virtual method specified in an interface implemented by21
this type. The .override directive specifies a Method Implementation (MethodImpl) in the metadata (see22
clause 14.1.4).23

<classMember> ::= Section

.override <typeSpec> :: <methodName> with <callConv> <type> <typeSpec> ::
<methodName> ( <parameters> )

| … 9.2
24

The first <typeSpec> :: <methodName> pair specifies the virtual method that is being overridden. It25
shall reference either an inherited virtual method or a virtual method on an interface that the current type26
implements. The remaining information specifies the virtual method that provides the implementation.27

While the syntax specified here and the actual metadata format (see Section 21.25 )allows any virtual method28
to be used to provide an implementation, a conforming program shall provide a virtual method actually29
implemented directly on the type containing the .override directive.30
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Rationale: The metadata is designed to be more expressive than can be expected of all implementations of the1
VES.2

Example (informative):3

The following example shows a typical use of the .override directive. A4
method implementation is provided for a method declared in an interface5
(see Chapter 11).6

.class interface I7

{ .method public virtual abstract void m() cil managed {}8

}9

.class C implements I10

{ .method virtual public void m2()11

{ // body of m212

}13

.override I::m with instance void C::m2()14

}15

The .override directive specifies that the C::m2 body shall provide the16
implementation of be used to implement I::m on objects of class C.17

9.3 .3 Accessibi l i ty and Overriding18

If a type overrides an inherited method, it may widen, but it shall not narrow, the accessibility of that method.19
As a principle, if a client of a type is allowed to access a method of that type, then it should also be able to20
access that method (identified by name and signature) in any derived type. Table 7.1 specifies narrow and21
widen in this context – a “Yes” denotes that the subclass can apply that accessibility, a “No” denotes it is22
illegal.23

Table 7.1: Legal Widening of Access to a Virtual Method24

Subclass Base type Accessibility

private family assembly famandassem famorassem public

private Yes No No No No No

family Yes Yes No No If not in same
assembly

No

assembly Yes No Same
assembly

No No No

famandassem Yes No No Same assembly No No

famorassem Yes Yes Same
assembly

Yes Same assembly No

public Yes Yes Yes Yes Yes Yes
25

Note: A method may be overridden even if it may not be accessed by the subclass.26

If a method has assembly accessibility, then it shall have public accessibility if it is being overridden by a27
method in a different assembly. A similar rule applies to famandassem, where also famorassem is allowed28
outside the assembly. In both cases assembly or famandassem, respectively, may be used inside the same29
assembly.30
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A special rule applies to famorassem, as shown in the table. This is the only case where the accessibility is1
apparently narrowed by the subclass. A famorassem method may be overridden with family accessibility by a2
type in another assembly.3

Rationale: Because there is no way to specify “family or specific other assembly” it is not possible to specify4
that the accessibility should be unchanged. To avoid narrowing access, it would be necessary to specify an5
accessibility of public, which would force widening of access even when it is not desired. As a compromise,6
the minor narrowing of “family” alone is permitted.7

9.4 Method Implementation Requirements8

A type (concrete or abstract) may provide9

• implementations for instance, static, and virtual methods that it introduces10

• implementations for methods declared in interfaces that it has specified it will implement, or that11
its base type has specified it will implement12

• alternative implementations for virtual methods inherited from its parent13

• implementations for virtual methods inherited from an abstract base type that did not provide an14
implementation15

A concrete (i.e. non-abstract) type shall provide either directly or by inheritance an implementation for16

• all methods declared by the type itself17

• all virtual methods of interfaces implemented by the type18

• all virtual methods that the type inherits from its base type19

9.5 Special Members20

There are three special members, all methods, that can be defined as part of a type: instance constructors,21
instance finalizers, and type initializers.22

9.5 .1 Instance constructors23

Instance constructors initialize an instance of a type. An instance constructor is called when an instance of a24
type is created by the newobj instruction (see Partition III). Instance constructors shall be instance (not static or25
virtual) methods, they shall be named .ctor and marked both rtspecialname and specialname (see26
clause 14.4.2.6). Instance constructors may take parameters, but shall not return a value. Instance constructors27
may be overloaded (i.e. a type may have several instance constructors). Each instance constructor shall have a28
unique signature. Unlike other methods, instance constructors may write into fields of the type that are marked29
with the initonly attribute (see clause 15.1.2).30
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Example (informative):1

The following shows the definition of an instance constructor that does2
not take any parameters:3

.class X {4

.method public rtspecialname specialname instance void .ctor() cil5
managed6

{ .maxstack 17

// call super constructor8

ldarg.0 // load this pointer9

call instance void [mscorlib]System.Object::.ctor()10

// do other initialization work11

ret12

}13

}14

9.5.2 Instance Finalizer15

The behavior of finalizers is specified in Partition I. The finalize method for a particular type is specified by16
overriding the virtual method Finalize in System.Object.17

9.5 .3 Type Init ial izer18

Types may contain special methods called type initializers to initialize the type itself.19

All types (classes, interfaces, and value types) may have a type initializer. This method shall be static, take no20
parameters, return no value, be marked with rtspecialname and specialname (see clause 14.4.2.6), and be21
named .cctor.22

Like instance initializers, type initializers may write into static fields of their type that are marked with the23
initonly attribute (see clause 15.1.2).24

Note: Type initializers are often simple methods that initialize the type’s static fields from stored constants or25
via simple computations. There are, however, no limitations on what code is permitted in a type initializer.26

9.5 .3.1 Type Init ial izat ion Guarantees27

The CLI shall provide the following guarantees regarding type initialization (but see also clause 9.5.3.2 and28
clause 9.5.3.3):29

11. When type initializers are executed is specified in Partition I30

12. A type initializer shall run exactly once for any given type, unless explicitly called by user code31

13. No method other than those called directly or indirectly from the type initializer will be able to32
access members of a type before its initializer completes execution.33

9.5 .3.2 Relaxed Guarantees34

A type can be marked with the attribute beforefieldinit (see clause 9.1.6) to indicate that all the guarantees35
specified in clause 9.5.3.1 are not required. In particular, the final requirement of guarantee 1 need not be36
provided: the type initializer need not run before a static method is called or referenced.37

Rationale: When code can be executed in multiple application domains it becomes particularly expensive to38
ensure this final guarantee. At the same time, examination of large bodies of managed code have shown that39
this final guarantee is rarely required, since type initializers are almost always simple methods for initializing40
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static fields. Leaving it up to the CIL generator (and hence, possibly, to the programmer) to decide whether1
this guarantee is required therefore provides efficiency when it is desired at the cost of consistency guarantees.2

9.5 .3.3 Races and Deadlocks3

In addition to the type initialization guarantees specified in clause 9.5.3.1 the CLI shall ensure two further4
guarantees for code that is called from a type initializer:5

14. Static variables of a type are in a known state prior to any access whatsoever.6

15. Type initialization alone shall not create a deadlock unless some code called from a type7
initializer (directly or indirectly) explicitly invokes blocking operations.8

Rationale:9

Consider the following two class definitions:10

.class public A extends [mscorlib]System.Object11

{ .field static public class A a12

.field static public class B b13

14

.method public static rtspecialname specialname void .cctor ()15

{ ldnull // b=null16

stsfld class B A::b17

ldsfld class A B::a // a=B.a18

stsfld class A A::a19

ret20

}21

}22

23

.class public B extends [mscorlib]System.Object24

{ .field static public class A a25

.field static public class B b26

27

.method public static rtspecialname specialname void .cctor ()28

{ ldnull // a=null29

stsfld class A B::a30

ldsfld class B A::b // b=A.b31

stfld class B B::b32

ret33

}34

}35

After loading these two classes, an attempt to reference any of the static fields causes a problem, since the type36
initializer for each of A and B requires that the type initializer of the other be invoked first. Requiring that no37
access to a type be permitted until its initializer has completed would create a deadlock situation. Instead, the38
CLI provides a weaker guarantee: the initializer will have started to run, but it need not have completed. But39
this alone would allow the full uninitialized state of a type to be visible, which would make it difficult to40
guarantee repeatable results.41
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There are similar, but more complex, problems when type initialization takes place in a multi-threaded system.1
In these cases, for example, two separate threads might start attempting to access static variables of separate2
types (A and B) and then each would have to wait for the other to complete initialization.3

A rough outline of the algorithm is as follows:4

1. At class load time (hence prior to initialization time) store zero or null into all static fields of the type.5

2. If the type is initialized you are done.6

2.1. If the type is not yet initialized, try to take an initialization lock.7

2.2. If successful, record this thread as responsible for initializing the type and proceed to step 2.3.8

2.2.1. If not, see whether this thread or any thread waiting for this thread to complete already holds the lock.9

2.2.2. If so, return since blocking would create a deadlock. This thread will now see an incompletely initialized10
state for the type, but no deadlock will arise.11

2.2.3 If not, block until the type is initialized then return.12

2.3 Initialize the parent type and then all interfaces implemented by this type.13

2.4 Execute the type initialization code for this type.14

2.5 Mark the type as initialized, release the initialization lock, awaken any threads waiting for this type to be15
initialized, and return.16

9.6 Nested Types17

Nested types are specified in Partition I. Interfaces may be nested inside of classes and value types, but classes18
and value types shall not be nested inside of interfaces. For information about the logical tables associated with19
nested types, see Section 21.29.20

Note: A nested type is not associated with an instance of its enclosing type. The nested type has its own base21
type and may be instantiated independent of the enclosing type. This means that the instance members of the22
enclosing type are not accessible using the this pointer of the nested type.23

A nested type may access any members of its enclosing type, including private members, as long as the24
member is static or the nested type has a reference to an instance of the enclosing type. Thus, by using nested25
types a type may give access to its private members to another type.26

On the other side, the enclosing type may not access any private or family members of the nested type. Only27
members with assembly, famorassem, or public accessibility can be accessed by the enclosing type.28

Example (informative):29

The following example shows a class declared inside another class. Both30
classes declare a field. The nested class may access both fields, while31
the enclosing class does not have access to the field b.32

.class private auto autochar CounterTextBox33

extends [System.Windows.Forms]System.Windows.Forms.TextBox34

implements [.module Counter]IcountDisplay35

{ .field static private int32 a36

/* Nested class. Declares the NegativeNumberException */37

.class nested assembly NonPositiveNumberException extends38
[mscorlib]System.Exception39

{ .field static private int32 b40

// body of nested class41

} // end of nested class NegativeNumberException42
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}1

9.7 Controll ing Instance Layout2

The CLI supports both sequential and explicit layout control, see clause 9.1.2. For explicit layout it is also3
necessary to specify the precise layout of an instance, see also Section 21.18 and Section 21.16.4

<fieldDecl> ::=

[[ <int32> ]] <fieldAttr>* <type> <id>

5
The optional int32 specified in brackets at the beginning of the declaration specifies the byte offset from the6
beginning of the instance of the type. This form of explicit layout control shall not be used with global fields7
specified using the at notation (see clause 15.3.2).8

Offset values shall be 0 or greater; they cannot be negative. It is possible to overlap fields in this way, even9
though it is not recommended. The field may be accessed using pointer arithmetic and ldind to load the field10
indirectly or stind to store the field indirectly (see Partition III). See Section 21.18 and Section 21.16 for11
encoding of this information. For explicit layout, every field shall be assigned an offset.12

The .pack directive specifies that fields should be placed within the runtime object at addresses which are a13
multiple of the specified number, or at natural alignment for that field type, whichever is smaller. e.g., .pack 214
would allow 32-bit-wide fields to be started on even addresses – whereas without any .pack directive, they15
would be naturally aligned – that is to say, placed on addresses that are a multiple of 4. The integer following16
.pack shall be one of 0, 1, 2, 4, 8, 16, 32, 64 or 128. (A value of zero indicates that the pack size used should17
match the default for the current platform). The .pack directive shall not be supplied for any type with explicit18
layout control.19

The directive .size specifies that a memory block of the specified amount of bytes shall be allocated for an20
instance of the type. e.g., .size 32 would create a block of 32 bytes for the instance. The value specified shall21
be greater than or equal to the calculated size of the class, based upon its field sizes and any .pack directive.22
Note that if this directive applies to a value type, then the size shall be less than 1 MByte.23

Note: Metadata that controls instance layout is not a “hint,” it is an integral part of the VES that shall be24
supported by all conforming implementations of the CLI.25

Example (informative):26

The following class uses sequential layout of its fields:27

.class sequential public SequentialClass28

{ .field public int32 a // store at offset 0 bytes29

.field public int32 b // store at offset 4 bytes30

}31

The following class uses explicit layout of its fields:32

.class explicit public ExplicitClass33

{ .field [0] public int32 a // store at offset 0 bytes34

.field [6] public int32 b // store at offset 6 bytes35

}36

The following value type uses .pack to pack its fields together:37

.class value sealed public MyClass extends [mscorlib]System.ValueType38

{ .pack 239

.field public int8 a // store at offset 0 bytes40

.field public int32 b // store at offset 2 bytes (not 4)41



- 36 -

}1

The following class specifies a contiguous block of 16 bytes:2

.class public BlobClass3

{ .size 164

}5

9.8 Global Fields and Methods6

In addition to types with static members, many languages have the notion of data and methods that are not part7
of a type at all. These are referred to as global fields and methods.8

It is simplest to understand global fields and methods in the CLI by imagining that they are simply members of9
an invisible abstract public class. In fact, the CLI defines such a special class, named ′<Module>′, that does10
not have a base type and does not implement any interfaces. The only noticeable difference is in how11
definitions of this special class are treated when multiple modules are combined together, as is done by a class12
loader. This process is known as metadata merging.13

For an ordinary type, if the metadata merges two definitions of the same type, it simply discards one definition14
on the assumption they are equivalent and that any anomaly will be discovered when the type is used. For the15
special class that holds global members, however, members are unioned across all modules at merge time. If16
the same name appears to be defined for cross-module use in multiple modules then there is an error. In detail:17

• If no member of the same kind (field or method), name, and signature exists, then add this18
member to the output class.19

• If there are duplicates and no more than one has an accessibility other than compilercontrolled,20
then add them all in the output class.21

• If there are duplicates and two or more have an accessibility other than compilercontrolled an22
error has occurred.23
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10 Semantics of Classes1

Classes, as specified in Partition I, define types in an inheritance hierarchy. A class (except for the built-in2
class System.Object) shall declare exactly one parent class. A class shall declare zero or more interfaces3
that it implements (see Chapter 11). A concrete class may be instantiated to create an object, but an abstract4
class (see clause 9.1.4) shall not be instantiated. A class may define fields (static or instance), methods (static,5
instance, or virtual), events, properties, and nested types (classes, value types, or interfaces).6

Instances of a class (objects) are created only by explicitly using the newobj instruction (see Partition III).7
When a variable or field that has a class as its type is created (for example, by calling a method that has a local8
variable of a class type) the value shall initially be null, a special value that is assignment compatible with all9
class types even though it is not an instance of any particular class.10
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11 Semantics of Interfaces1

Interfaces, as specified in Partition I, define a contract that other types may implement. Interfaces may have2
static fields and methods, but they shall not have instance fields or methods. Interfaces may define virtual3
methods, but only if they are abstract (see Partition I and clause 14.4.2.4).4

Rationale: Interfaces cannot define instance fields for the same reason that the CLI does not support multiple5
inheritance of base types: in the presence of dynamic loading of data types there is no known implementation6
technique that is both efficient when used and has no cost when not used. By contrast, providing static fields7
and methods need not affect the layout of instances and therefore does not raise these issues.8

Interfaces may be nested inside any type (interface, class, or value type). Classes and value types shall not be9
nested inside of interfaces.10

11.1 Implementing Interfaces11

Classes and value types shall implement zero or more interfaces. Implementing an interface implies that all12
concrete instances of the class or value type shall provide an implementation for each abstract virtual method13
declared in the interface. In order to implement an interface, a class or value type shall either explicitly declare14
that it does so (using the implements attribute in its type definition, see Section 9.1) or shall be derived from a15
base class that implements the interface.16

Note: An abstract class (since it cannot be instantiated) need not provide implementations of the virtual17
methods of interfaces it implements, but any concrete class derived from it shall provide the implementation.18

Merely providing implementations for all of the abstract methods of an interface is not sufficient to have a19
type implement that interface. Conceptually, this represents that fact that an interface represents a contract that20
may have more requirements than are captured in the set of abstract methods. From an implementation point21
of view, this allows the layout of types to be constrained only by those interfaces that are explicitly declared.22

Interfaces shall declare that they require the implementation of zero or more other interfaces. If one interface,23
A, declares that it requires the implementation of another interface, B, then A implicitly declares that it requires24
the implementation of all interfaces required by B. If a class or value type declares that it implements A, then25
all concrete instances shall provide implementations of the virtual methods declared in A and all of the26
interfaces A requires.27

Example (informative):28

The following class implements the interface IStartStopEventSource defined29
in the module Counter.30

.class private auto autochar StartStopButton31
extends [System.Windows.Forms]System.Windows.Forms.Button32
implements [.module Counter]IstartStopEventSource33

{ // body of class34
}35

11.2 Implementing Virtual Methods on Interfaces36

Classes that implement an interface (see Section 11.1) are required to provide implementations for the abstract37
virtual methods defined by the interface. There are three mechanisms for providing this implementation:38

• directly specifying an implementation, using the same name and signature as appears in the39
interface40

• inheritance of an existing implementation from the base type41

• use of an explicit MethodImpl (see clause 14.1.4).42

The Virtual Execution System shall determine the appropriate implementation of a virtual method to be used43
for an interface abstract method using the following algorithm.44
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• If the parent class implements the interface, start with the same virtual methods that it provides,1
otherwise create an interface that has empty slots for all virtual functions.2

• If this class explicitly specifies that it implements the interface3

o if the class defines any public virtual newslot functions whose name and signature match a4
virtual method on the interface, then use these new virtual methods to implement the5
corresponding interface method.6

• If there are any virtual methods in the interface that still have empty slots, see if there are any7
public virtual methods available on this class (directly or inherited) and use these to implement8
the corresponding methods on the interface.9

• Apply all MethodImpls that are specified for this class, thereby placing explicitly specified10
virtual methods into the interface in preference to those inherited or chosen by name matching.11

• If the current class is not abstract and there are any interface methods that still have empty slots,12
then the program is not valid.13

Rationale: Interfaces can be thought of as specifying, primarily, a set of virtual methods that shall be14
implemented by any class that implements the interface. The class specifies a mapping from its own virtual15
methods to those of the interface. Thus it is virtual methods, not specific implementations of those methods,16
that are associated with interfaces. Overriding a virtual method on a class with a specific implementation will17
thus affect not only the virtual method named in the class but also any interface virtual methods to which that18
same virtual method has been mapped.19
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12 Semantics of Value Types1

In contrast to classes, value types (see Partition I) are not accessed by using a reference but are stored directly2
in the location of that type.3

Rationale: Value types are used to describe the type of small data items. They can be compared to struct (as4
opposed to pointers to struct) types in C++. Compared to reference types, value types are accessed faster since5
there is no additional indirection involved. As elements of arrays they do not require allocating memory for the6
pointers as well as for the data itself. Typical value types are complex numbers, geometric points, or dates.7

Like other types, value types may have fields (static or instance), methods (static, instance, or virtual),8
properties, events, and nested types. A value type may be converted into a corresponding reference type (its9
boxed form, a class automatically created for this purpose by the VES when a value type is defined) by a10
process called boxing. A boxed value type may be converted back into its value type representation, the11
unboxed form, by a process called unboxing. Value types shall be sealed, and they shall have a base type of12
either System.ValueType or System.Enum (see Partition IV). Value types shall implement zero or more13
interfaces, but this has meaning only in their boxed form (see Section 12.3).14

Unboxed value types are not considered subtypes of another type and it is not valid to use the isinst instruction15
(see Partition III) on unboxed value types. The isinst instruction may be used for boxed value types. Unboxed16
value types shall not be assigned the value null and they shall not be compared to null.17

Value types support layout control in the same way as reference types do (see Section 9.7). This is especially18
important when values are imported from native code.19

12.1 Referencing Value Types20

The unboxed form of a value type shall be referred to by using the valuetype keyword followed by a type21
reference. The boxed form of a value type shall be referred to by using the boxed keyword followed by a type22
reference.23

<valueTypeReference> ::=

boxed <typeReference> |

valuetype <typeReference>

24

12.2 Initializing Value Types25

Like classes, value types may have both instance constructors (see clause 9.5.1) and type initializers (see26
clause 9.5.3). Unlike classes that are automatically initialized to null, however, the following rules constitute27
the only guarantee about the initilisation of (unboxed) value types:28

• Static variables shall be initialized to zero when a type is loaded (see clause 9.5.3.3), hence statics29
whose type is a value type are zero-initialized when the type is loaded.30

• Local variables shall be initialized to zero if the appropriate bit in the method header (see31
clause 24.4.4) is set.32

• Arrays shall be zero initialized.33

• Instances of classes (i.e. objects) shall be zero initialized prior to calling their instance34
constructor.35

Rationale: Guaranteeing automatic initialization of unboxed value types is both difficult and expensive,36
especially on platforms that support thread-local storage and allow threads to be created outside of the CLI37
and then passed to the CLI for management.38

39
Note: Boxed value types are classes and follow the rules for classes.40

The instruction initobj (see Partition III) performs zero-initialization under program control. If a value type has41
a constructor, an instance of its unboxed type can be created as is done with classes. The newobj instruction42
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(see Partition III) is used along with the initializer and its parameters to allocate and initialize the instance. The1
instance of the value type will be allocated on the stack. The Base Class Library provides the method2
System.Array.Initialize (see Partition IV) to zero all instances in an array of unboxed value types.3

Example (informative):4

The following code declares and initializes three value type variables.5
The first variable is zero-initialized, the second is initialized by6
calling an instance constructor, and the third by creating the object7
on the stack and storing it into the local.8

.assembly Test { }9

.assembly extern System.Drawing {10

.ver 1:0:3102:011

.publickeytoken = (b03f5f7f11d50a3a)12

}13

.method public static void Start()14

{ .maxstack 315

.entrypoint16

.locals init (valuetype [System.Drawing]System.Drawing.Size Zero,17

valuetype [System.Drawing]System.Drawing.Size Init,18

valuetype [System.Drawing]System.Drawing.Size Store)19

20

// Zero initialize the local named Zero21

ldloca Zero // load address of local variable22

initobj valuetype [System.Drawing]System.Drawing.Size23

24

// Call the initializer on the local named Init25

ldloca Init // load address of local variable26

ldc.i4 425 // load argument 1 (width)27

ldc.i4 300 // load argument 2 (height)28

call instance void [System.Drawing]System.Drawing.Size::.ctor(int32,29
int32)30

31

// Create a new instance on the stack and store into Store. Note32
that33

// stobj is used here – but one could equally well use stloc, stfld,34
etc.35

ldloca Store36

ldc.i4 425 // load argument 1 (width)37

ldc.i4 300 // load argument 2 (height)38

newobj instance void39
[System.Drawing]System.Drawing.Size::.ctor(int32, int32)40

stobj valuetype [System.Drawing]System.Drawing.Size41
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ret1

}2

12.3 Methods of Value Types3

Value types may have static, instance and virtual methods. static methods of value types are defined and called4
the same way as static methods of class types. As with classes, both instance and virtual methods of a boxed or5
unboxed value type may be called using the call instruction. The callvirt instruction shall not be used with6
unboxed value types, but it may be used on boxed value types.7

Instance and virtual methods of classes shall be coded to expect a reference to an instance of the class as the8
this pointer. By contrast, instance and virtual methods of value types shall be coded to expect a managed9
pointer (see Partition I) to an unboxed instance of the value type. The CLI shall convert a boxed value type10
into a managed pointer to the unboxed value type when a boxed value type is passed as the this pointer to a11
virtual method whose implementation is provided by the unboxed value type.12

Note: This operation is the same as unboxing the instance, since the unbox instruction (see Partition III) is13
defined to return a managed pointer to the value type that shares memory with the original boxed instance.14

The following diagrams may help understand the relationship between the boxed and unboxed representations15
of a value type.16

17

18

19
20

Rationale: An important use of instance methods on value types is to change internal state of the instance.21
This cannot be done if an instance of the unboxed value type is used for the this pointer, since it would be22
operating on a copy of the value, not the original value: unboxed value types are copied when they are passed23
as arguments.24

Virtual methods are used to allow multiple types to share implementation code, and this requires that all25
classes that implement the virtual method share a common representation defined by the class that first26
introduces the method. Since value types can (and in the Base Class Library do) implement interfaces and27
virtual methods defined on System.Object, it is important that the virtual method be callable using a boxed28
value type so it can be manipulated as would any other type that implements the interface. This leads to the29
requirement that the EE automatically unbox value types on virtual calls.30
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Table 1: Type of this given CIL instruction and declaring type of instance method.1

Value Type (Boxed or Unboxed) Interface Class Type

call managed pointer to value type illegal object reference

callvirt managed pointer to value type object reference object reference
2

Example (informative):3

The following converts an integer of the value type int32 into a4
string. Recall that int32 corresponds to the unboxed value type5
System.Int32 defined in the Base Class Library. Suppose the integer is6
declared as:7

.locals init (int32 x)8

Then the call is made as shown below:9

ldloca x // load managed pointer to local variable10

call instance string11
valuetype [mscorlib]System.Convert::ToString()12

However, if System.Object (a class) is used as the type reference rather13
than System.Int32 (a value type), the value of x shall be boxed before the14
call is made and the code becomes:15

ldloc x16

box valuetype [mscorlib]System.Int3217

callvirt instance string [mscorlib]System.Object::ToString()18
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13 Semantics of Special Types1

Special Types are those that are referenced from CIL, but for which no definition is supplied: the VES supplies2
the definitions automatically based on information available from the reference.3

13.1 Vectors4

<type> ::= …

| <type> [ ]

5
Vectors are single-dimension arrays with a zero lower bound. They have direct support in CIL instructions6
(newarr, ldelem, stelem, and ldelema, see Partition III). The CIL Framework also provides methods that deal7
with multidimensional arrays, or single-dimension arrays with a non-zero lower bound (see Section 13.2). Two8
vectors are the same type if their element types are the same, regardless of their actual upper bounds.9

Vectors have a fixed size and element type, determined when they are created. All CIL instructions shall10
respect these values. That is, they shall reliably detect attempts to index beyond the end of the vector, attempts11
to store the incorrect type of data into an element of a vector, and attempts to take addresses of elements of a12
vector with an incorrect data type. See Partition III.13

Example (informative):14

Declaring a vector of Strings:15

.field string[] errorStrings16

Declaring a vector of function pointers:17

.field method instance void*(int32) [] myVec18

Create a vector of 4 strings, and store it into the field errorStrings.19
The four strings lie at errorStrings[0] through errorStrings[3]:20

ldc.i4.421

newarr string22

stfld string[] CountDownForm::errorStrings23

Store the string "First" into errorStrings[0]:24

ldfld string[] CountDownForm::errorStrings25

ldc.i4.026

ldstr "First"27

stelem28

Vectors are subtypes of System.Array, an abstract class pre-defined by the CLI. It provides several methods29
that can be applied to all vectors. See Partition IV.30

13.2 Arrays31

While vectors (see Section 13.1) have direct support through CIL instructions, all other arrays are supported by32
the VES by creating subtypes of the abstract class System.Arrray (see Partition IV)33

<type> ::= …

| <type> [ [<bound> [,<bound>]*] ]

34
The rank of an array is the number of dimensions. The CLI does not support arrays with rank 0. The type of35
an array (other than a vector) shall be determined by the type of its elements and the number of dimensions.36

<bound> ::= Description
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... lower and upper bounds unspecified. In the case of
multi-dimensional arrays, the ellipsis may be omitted

| <int32> zero lower bound, <int32> upper bound

| <int32> ... lower bound only specified

| <int32> ... <int32> both bounds specified
1

The fundamental operations provided by the CIL instruction set for vectors are provided by methods on the2
class created by the VES.3

The VES shall provide two constructors for arrays. One takes a sequence of numbers giving the number of4
elements in each dimension (a lower bound of zero is assumed). The second takes twice as many arguments: a5
sequence of lower bounds, one for each dimension; followed by a sequence of lengths, one for each dimension6
(where length is the number of elements required).7

In addition to array constructors, the VES shall provide the instance methods Get, Set, and Address to access8
specific elements and compute their addresses. These methods take a number for each dimension, to specify the9
target element. In addition, Set takes an additional final argument specifying the value to store into the target10
element.11

Example (informative):12

Creates an array, MyArray, of strings with two dimensions, with indexes13
5..10 and 3..7. Stores the string "One" into MyArray[5, 3], retrieves14
it and prints it out. Then computes the address of MyArray[5, 4],15
stores "Test" into it, retrieves it, and prints it out.16

.assembly Test { }17

.assembly extern mscorlib { }18

19

.method public static void Start()20

{ .maxstack 521

.entrypoint22

.locals (class [mscorlib]System.String[,] myArray)23

24

ldc.i4.5 // load lower bound for dim 125

ldc.i4.6 // load (upper bound - lower bound + 1) for dim 126

ldc.i4.3 // load lower bound for dim 227

ldc.i4.5 // load (upper bound - lower bound + 1) for dim 228

newobj instance void string[,]::.ctor(int32,29

int32, int32, int32)30

stloc myArray31

32

ldloc myArray33

ldc.i4.534

ldc.i4.335

ldstr "One"36

call instance void string[,]::Set(int32, int32, string)37



- 46 -

1

ldloc myArray2

ldc.i4.53

ldc.i4.34

call instance string string[,]::Get(int32, int32)5

call void [mscorlib]System.Console::WriteLine(string)6

7

ldloc myArray8

ldc.i4.59

ldc.i4.410

call instance string & string[,]::Address(int32, int32)11

ldstr "Test"12

stind.ref13

14

ldloc myArray15

ldc.i4.516

ldc.i4.417

call instance string string[,]::Get(int32, int32)18

call void [mscorlib]System.Console::WriteLine(string)19

20

ret21

}22

23

The following text is informative 24

Whilst the elements of multi-dimensional arrays can be thought of as laid out in contiguous memory, arrays of25
arrays are different – each dimension (except the last) holds an array reference. The following picture26
illustrates the difference:27

28

On the left is a [6, 10] rectangular array. On the right is not one, but a total of five arrays. The vertical array is29
an array of arrays, and references the four horizontal arrays. Note how the first and second elements of the30
vertical array both reference the same horizontal array.31

Note that all dimensions of a multi-dimensional array shall be of the same size. But in an array of arrays, it is32
possible to reference arrays of different sizes. For example, the figure on the right shows the vertical array33
referencing arrays of lengths 8, 8, 3, null, 6 and 1.34
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There is no special support for these so-called jagged arrays in either the CIL instruction set or the VES. They1
are simply vectors whose elements are themselves either the base elements or (recursively) jagged arrays.2

End of informative text 3

13.3 Enums4

An enum, short for enumeration, defines a set of symbols that all have the same type. A type shall be an enum5
if and only if it has an immediate base type of System.Enum. Since System.Enum itself has an immediate base6
type of System.ValueType (see Partition IV), enums are value types (see Chapter 0). The symbols of an enum7
are represented by an underlying type: one of { bool, char, int8, unsigned int8, int16, unsigned int16,8
int32, unsigned int32, int64, unsigned int64, float32, float64, native int, unsigned native int }9

Note: The CLI does not provide a guarantee that values of the enum type are integers corresponding to one of10
the symbols (unlike Pascal). In fact, the CLS (see Partition I, CLS) defines a convention for using enums to11
represent bit flags which can be combined to form integral value that are not named by the enum type itself.12

Enums obey additional restrictions beyond those on other value types. Enums shall contain only fields as13
members (they shall not even define type initializers or instance constructors); they shall not implement any14
interfaces; they shall have auto field layout (see clause 9.1.2); they shall have exactly one instance field and it15
shall be of the underlying type of the enum; all other fields shall be static and literal (see Section 15.1); and16
they shall not be initialized with the initobj instruction.17

Rationale: These restrictions allow a very efficient implementation of enums.18

The single, required, instance field stores the value of an instance of the enum. The static literal fields of an19
enum declare the mapping of the symbols of the enum to the underlying values. All of these fields shall have20
the type of the enum and shall have field init metadata that assigns them a value (see Section 15.2).21

For binding purposes (e.g. for locating a method definition from the method reference used to call it) enums22
shall be distinct from their underlying type. For all other purposes, including verification and execution of23
code, an unboxed enum freely interconverts with its underlying type. Enums can be boxed (see Chapter 0) to a24
corresponding boxed instance type, but this type is not the same as the boxed type of the underlying type, so25
boxing does not lose the original type of the enum.26

Example (informative):27

Declare an enum type, then create a local variable of that type. Store28
a constant of the underlying type into the enum (showing automatic29
coercsion from the underlying type to the enum type). Load the enum30
back and print it as the underlying type (showing automatic coersion31
back). Finally, load the address of the enum and extract the contents32
of the instance field and print that out as well.33

.assembly Test { }34

.assembly extern mscorlib { }35

36

.class sealed public ErrorCodes extends [mscorlib]System.Enum37

{ .field public unsigned int8 MyValue38

.field public static literal valuetype ErrorCodes no_error = int8(0)39

.field public static literal valuetype ErrorCodes format_error =40

int8(1)41

.field public static literal valuetype ErrorCodes overflow_error =42

int8(2)43

.field public static literal valuetype ErrorCodes nonpositive_error =44
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int8(3)1

}2

3

.method public static void Start()4

{ .maxstack 55

.entrypoint6

.locals init (valuetype ErrorCodes errorCode)7

8

ldc.i4.1 // load 1 (= format_error)9

stloc errorCode // store in local, note conversion to enum10

ldloc errorCode11

call void [mscorlib]System.Console::WriteLine(int32)12

ldloca errorCode // address of enum13

ldfld unsigned int8 valuetype ErrorCodes::MyValue14

call void [mscorlib]System.Console::WriteLine(int32)15

ret16

}17

13.4 Pointer Types18

<type> ::= … Section

| <type> & 13.4.2

| <type> * 13.4.1
19

A pointer type shall be defined by specifying a signature that includes the type for the location it points at. A20
pointer may be managed (reported to the CLI garbage collector, denoted by &, see clause 13.4.2) or21
unmanaged (not reported, denoted by *, see clause 13.4.1)22

Pointers may contain the address of a field (of an object or value type) or an element of an array. Pointers23
differ from object references in that they do not point to an entire type instance, but rather to the interior of an24
instance. The CLI provides two type-safe operations on pointer:25

• loading the value from the location referenced by the pointer26

• storing an assignment-compatible value into the location referenced by the pointer27

For pointers into the same array or object (see Partition I) the following arithmetic operations are supported:28

• Adding an integer value to a pointer, where that value is interpreted as a number of bytes, results29
in a pointer of the same kind30

• Subtracting an integer value (number of bytes) from a pointer results in a pointer of the same31
kind. Note that subtracting a pointer from an integer value is not permitted.32

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer value33
that specifies the number of bytes between the addresses they reference.34
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The following is informative text 1

Pointers are compatible with unsigned int32 on 32-bit architectures, and with unsigned int64 on 64-bit2
architectures. They are best considered as unsigned int, whose size varies depending upon the runtime machine3
architecture.4

The CIL instruction set (see Partition III) contains instructions to compute addresses of fields, local variables,5
arguments, and elements of vectors:6

Instruction Description

ldarga Load address of argument

ldelema Load address of vector element

ldflda Load address of field

ldloca Load address of local variable

ldsflda Load address of static field
7

Once a pointer is loaded onto the stack, the ldind class of instructions may be used to load the data item to8
which it points. Similarly, the stind class of instructions can be used to store data into the location.9

Note that the CLI will throw an InvalidOperationException for an ldflda instruction if the address is not10
within the current application domain. This situation arises typically only from the use of objects with a base11
type of System.MarshalByRefObject (see Partition IV).12

13.4 .1 Unmanaged Pointers13

Unmanaged pointers (*) are the traditional pointers used in languages like C and C++. There are no restrictions14
on their use, although for the most part they result in code that cannot be verified. While it is perfectly legal to15
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how16
they are treated by the VES), it is often better to mark them as unmanaged pointers to a specific type of data.17
This is done by using * in a signature for a return value, local variable or an argument or by using a pointer18
type for a field or array element.19

• Unmanaged pointers are not reported to the garbage collector and can be used in any way that an20
integer can be used.21

• Verifiable code cannot dereference unmanaged pointers.22

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This23
is safe only if one of the following is true:24

The unmanaged pointer refers to memory that is not in memory used by the CLI for storing25
instances of objects (“garbage collected memory” or “managed memory”).26

The unmanaged pointer contains the address of a field within an object.27

The unmanaged pointer contains the address of an element within an array.28

The unmanaged pointer contains the address where the element following the last element in an29
array would be located30

13.4 .2 Managed Pointers31

Managed pointers (&) may point to an instance of a value type, a field of an object, a field of a value type, an32
element of an array, or the address where an element just past the end of an array would be stored (for pointer33
indexes into managed arrays). Managed pointers cannot be null, and they shall be reported to the garbage34
collector even if they do not point to managed memory.35

Managed pointers are specified by using & in a signature for a return value, local variable or an argument or by36
using a by-ref type for a field or array element.37
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• Managed pointers can be passed as arguments, stored in local variables, and returned as values.1

• If a parameter is passed by reference, the corresponding argument is a managed pointer.2

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value3
types.4

• Managed pointers are not interchangeable with object references.5

• A managed pointer cannot point to another managed pointer, but it can point to an object6
reference or a value type.7

• A managed pointer can point to a local variable, or a method argument8

• Managed pointers that do not point to managed memory can be converted (using conv.u or9
conv.ovf.u) into unmanaged pointers, but this is not verifiable.10

Unverified code that erroneously converts a managed pointer into an unmanaged pointer can11
seriously compromise the integrity of the CLI. See Partition III (Managed Pointers) for12
more details.13

End informative text 14
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13.5 Method Pointers1

<type> ::= …

| method <callConv> <type> * ( <parameters> )

2
Variables of type method pointer shall store the address of the entry point to a method with compatible3
signature. A pointer to a static or instance method is obtained with the ldftn instruction, while a pointer to a4
virtual method is obtained with the ldvirtftn instruction. A method may be called by using a method pointer5
with the calli instruction. See Partition III for the specification of these instructions.6

Note: Like other pointers, method pointers are compatible with unsigned int64 on 64-bit architectures with7
unsigned int32 and on 32-bit architectures. The preferred usage, however, is unsigned native int, which works8
on both 32- and 64-bit architectures.9

Example (informative):10

Call a method using a pointer. The method MakeDecision::Decide returns11
a method pointer to either AddOne or Negate, alternating on each call.12
The main program call MakeDecision::Decide three times and after each13
call uses a CALLI instruction to call the method specified. The output14
printed is "-1 2 –1" indicating successful alternating calls.15

.assembly Test { }16

.assembly extern mscorlib { }17

18

.method public static int32 AddOne(int32 Input)19

{ .maxstack 520

ldarg Input21

ldc.i4.122

add23

ret24

}25

26

.method public static int32 Negate(int32 Input)27

{ .maxstack 528

ldarg Input29

neg30

ret31

}32

33

.class value sealed public MakeDecision extends34

[mscorlib]System.ValueType35

{ .field static bool Oscillate36

.method public static method int32 *(int32) Decide()37

{ ldsfld bool valuetype MakeDecision::Oscillate38

dup39
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not1

stsfld bool valuetype MakeDecision::Oscillate2

brfalse NegateIt3

ldftn int32 AddOne(int32)4

ret5

NegateIt:6

ldftn int32 Negate(int32)7

ret8

}9

}10

11

.method public static void Start()12

{ .maxstack 213

.entrypoint14

15

ldc.i4.116

call method int32 *(int32) valuetype MakeDecision::Decide()17

calli int32(int32)18

call void [mscorlib]System.Console::WriteLine(int32)19

20

ldc.i4.121

call method int32 *(int32) valuetype MakeDecision::Decide()22

calli int32(int32)23

call void [mscorlib]System.Console::WriteLine(int32)24

25

ldc.i4.126

call method int32 *(int32) valuetype MakeDecision::Decide()27

calli int32(int32)28

call void [mscorlib]System.Console::WriteLine(int32)29

30

ret31

}32

13.6 Delegates33

Delegates (see Partition I) are the object-oriented equivalent of function pointers. Unlike function pointers,34
delegates are object-oriented, type-safe, and secure. Delegates are reference types, and are declared in the form35
of Classes. Delegates shall have an immediate base type of System.MulticastDelegate, which in turns36
has an immediate base type of System.Delegate (see Partition IV).37

Delegates shall be declared sealed, and the only members a Delegate shall have are either two or four methods38
as specified here. These methods shall be declared runtime and managed (see clause 14.4.3). They shall not39
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have a body, since it shall be automatically created by the VES. Other methods available on delegates are1
inherited from the classes System.Delegate and System.MulticastDelegate in the Base Class Library (see2
Partition IV).3

Rationale: A better design would be to simply have delegate classes derive directly from4
System.Delegate. Unfortunately, backward compatibility with an existing CLI does not permit this5
design.6

The instance constructor (named .ctor and marked specialname and rtspecialname, see clause 9.5.1) shall7
take exactly two parameters. The first parameter shall be of type System.Object and the second parameter8
shall be of type System.IntPtr. When actually called (via a newobj instruction, see Partition III), the first9
argument shall be an instance of the class (or one of its subclasses) that defines the target method and the10
second argument shall be a method pointer to the method to be called.11

The Invoke method shall be virtual and have the same signature (return type, parameter types, calling12
convention, and modifiers, see Section 7.1) as the target method. When actually called the arguments passed13
shall match the types specified in this signature.14

The BeginInvoke method (see clause 13.6.2.1), if present, shall be virtual have a signature related to, but not15
the same as, that of the Invoke method. There are two differences in the signature. First, the return type shall16
be System.IAsyncResult (see Partition IV). Second, there shall be two additional parameters that follow those17
of Invoke: the first of type System.AsyncCallback and the second of type System.Object.18

The EndInvoke method (see clause 13.6.2) shall be virtual have the same return type as the Invoke method. It19
shall take as parameters exactly those parameters of Invoke that are managed pointers, in the same order they20
occur in the signature for Invoke. In addition, there shall be an additional parameter of type21
System.IAsyncResult.22

Example (informative):23

The following example declares a Delegate used to call functions that24
take a single integer and return void. It provides all four methods so25
it can be called either synchronously or asynchronously. Because there26
are no parameters that are passed by reference (i.e. as managed27
pointers) there are no additional arguments to EndInvoke.28

.assembly Test { }29

.assembly extern mscorlib { }30

31

.class private sealed StartStopEventHandler32

extends [mscorlib]System.MulticastDelegate33

{ .method public specialname rtspecialname instance34

void .ctor(object Instance, native int Method)35

runtime managed {}36

.method public virtual void Invoke(int32 action) runtime managed {}37

.method public virtual38

class [mscorlib]System.IAsyncResult39

BeginInvoke(int32 action,40

class [mscorlib]System.AsyncCallback callback,41

object Instance) runtime managed {}42

.method public virtual43

void EndInvoke(class [mscorlib]System.IAsyncResult result)44
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runtime managed {}1

}2

As with any class, an instance is created using the newobj instruction in conjunction with the instance3
constructor. The first argument to the constructor shall be the object on which the method is to be called, or it4
shall be null if the method is a static method. The second argument shall be a method pointer to a method on5
the corresponding class and with a signature that matches that of the delegate class being instantiated.6

13.6 .1 Synchronous Calls to Delegates7

The synchronous mode of calling delegates corresponds to regular method calls and is performed by calling the8
virtual method named Invoke on the delegate. The delegate itself is the first argument to this call (it serves as9
the this pointer), followed by the other arguments as specified in the signature. When this call is made, the10
caller shall block until the called method returns. The called method shall be executed on the same thread as the11
caller.12

Example (informative):13

Continuing the previous example, define a class Test that declares a14
method, onStartStop, appropriate for use as the target for the15
delegate.16

17

.class public Test18

{ .field public int32 MyData19

.method public void onStartStop(int32 action)20

{ ret // put your code here21

}22

.method public specialname rtspecialname23
instance void .ctor(int32 Data)24

{ ret // call parent constructor, store state, etc.25

}26

}27

28

Then define a main program. This one constructs an instance of Test and29
then a delegate that targets the onStartStop method of that instance.30
Finally, call the delegate.31

32

.method public static void Start()33

{ .maxstack 334

.entrypoint35

.locals (class StartStopEventHandler DelegateOne,36

class Test InstanceOne)37

// Create instance of Test class38

ldc.i4.139

newobj instance void Test::.ctor(int32)40

stloc InstanceOne41

// Create delegate to onStartStop method of that class42
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ldloc InstanceOne1

ldftn instance void Test::onStartStop(int32)2

newobj void StartStopEventHandler::.ctor(object, native int)3

stloc DelegateOne4

// Invoke the delegate, passing 100 as an argument5

ldloc DelegateOne6

ldc.i4 1007

callvirt instance void StartStopEventHandler::Invoke(int32)8

ret9

}10

// Note that the example above creates a delegate to a non-virtual11

// function. If onStartStop had instead been a virtual function, use12

// the following code sequence instead :13

14

ldloc InstanceOne15

dup16

ldvirtftn instance void Test::onStartStop(int32)17

newobj void StartStopEventHandler::.ctor(object, native int)18

stloc DelegateOne19

// Invoke the delegate, passing 100 as an argument20

ldloc DelegateOne21

Note: The code sequence above shall use dup –not ldloc InstanceOne twice. The dup code sequence is easily22
recognized as typesafe, whereas alternatives would require more complex analysis. Verifiability of code is23
discussed in Partition III24

13.6 .2 Asynchronous Calls to Delegates25

In the asynchronous mode, the call is dispatched, and the caller shall continue execution without waiting for the26
method to return. The called method shall be executed on a separate thread.27

To call delegates asynchronously, the BeginInvoke and EndInvoke methods are used.28

Note: if the caller thread terminates before the callee completes, the callee thread is unaffected. The callee29
thread continues execution and terminates silently30

Note: the callee may throw exceptions. Any unhandled exception propagates to the caller via the EndInvoke31
method.32

13.6 .2.1 The BeginInvoke Method33

An asynchronous call to a delegate shall begin by making a virtual call to the BeginInvoke method.34
BeginInvoke is similar to the Invoke method (see clause 13.6.1), but has three differences:35

• It has a two additional parameters, appended to the list, of type System.AsyncCallback, and36
System.Object37

• The return type of the method is System.IAsyncResult38

Although the BeginInvoke method therefore includes parameters that represent return values, these values are39
not updated by this method. The results instead are obtained from the EndInvoke method (see below).40
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Unlike a synchronous call, an asynchronous call shall provide a way for the caller to determine when the call1
has been completed. The CLI provides two such mechanisms. The first is through the result returned from the2
call. This object, an instance of the interface System.IAsyncResult, can be used to wait for the result to be3
computed, it can be queried for the current status of the method call, and it contains the System.Object4
value that was passed to the call to BeginInvoke. See Partition IV.5

The second mechanism is through the System.AsyncCallback delegate passed to BeginInvoke. The VES6
shall call this delegate when the value is computed or an exception has been raised indicating that the result will7
not be available. The value passed to this callback is the same value passed to the call to BeginInvoke. A8
value of null may be passed for System.AsyncCallback to indicate that the VES need not provide the9
callback.10

Rationale: This model supports both a polling approach (by checking the status of the returned11
System.IAsyncResult) and an event-driven approach (by supplying a System.AsyncCallback) to12
asynchronous calls.13

A synchronous call returns information both through its return value and through output parameters. Output14
parameters are represented in the CLI as parameters with managed pointer type. Both the returned value and15
the values of the output parameters are not available until the VES signals that the asynchronous call has16
completed successfully. They are retrieved by calling the EndInvoke method on the delegate that began the17
asynchronous call.18

13.6 .2.2 The EndInvoke Method19

The EndInvoke method can be called at any time after BeginInvoke. It shall suspend the thread that calls it20
until the asynchronous call completes. If the call completes successfully, EndInvoke will return the value that21
would have been returned had the call been made synchronously, and its managed pointer arguments will point22
to values that would have been returned to the out parameters of the synchronous call.23

EndInvoke requires as parameters the value returned by the originating call to BeginInvoke (so that different24
calls to the same delegate can be distinguished, since they may execute concurrently) as well as any managed25
pointers that were passed as arguments (so their return values can be provided).26
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14 Defining, Referencing, and Calling Methods1

Methods may be defined at the global level (outside of any type):2

<decl> ::= …

| .method <methodHead> { <methodBodyItem>* }

3
as well as inside a type:4

<classMember> ::= …

| .method <methodHead> { <methodBodyItem>* }

5

14.1 Method Descriptors6

There are four constructs in ilasm connected with methods. These correspond with different metadata7
constructs, as described in Chapter 21.8

14.1 .1 Method Declarat ions9

A MethodDecl, or method declaration, supplies the method name and signature (parameter and return types),10
but not its body. That is, a method declaration provides a <methodHead> but no <methodBodyItem>s. These11
are used at callsites to specify the call target (call or callvirt instructions, see Partition III) or to declare an12
abstract method. A MethodDecl has no direct logical couterpart in the metadata; it can be either a Method or a13
MethodRef.14

14.1 .2 Method Definit ions15

A Method, or method definition, supplies the method name, attributes, signature and body. That is, a method16
definition provides a <methodHead> as well as one or more <methodBodyItem>s. The body includes the17
method's CIL instructions, exception handlers, local variable information, and additional runtime or custom18
metadata about the method. See Chapter 178.19

14.1.3 Method References20

A MethodRef, or method reference, is a reference to a method. It is used when a method is called whose21
definition lies in another module or assembly. A MethodRef shall be resolved by the VES into a Method before22
the method is called at runtime. If a matching Method cannot be found, the VES shall throw a23
System.MissingMethodException. See Chapter 21.23.24

14.1 .4 Method Implementat ions25

A MethodImpl, or method implementation, supplies the executable body for an existing virtual method. It26
associates a Method (representing the body) with a MethodDecl or Method (representing the virtual method). A27
MethodImpl is used to provide an implementation for an inherited virtual method or a virtual method from an28
interface when the default mechanism (matching by name and signature) would not provide the correct result.29
See Section 21.25.30

14.2 Static, Instance, and Virtual Methods31

Static methods are methods that are associated with a type, not with its instances.32

Instance methods are associated with an instance of a type: within the body of an instance method it is possible33
to reference the particular instance on which the method is operating (via the this pointer). It follows that34
instance methods may only be defined in classes or value types, but not in interfaces or outside of a type35
(globally). However, notice36

16. instance methods on classes (including boxed value types), have a this pointer that is by default37
an object reference to the class on which the method is defined38
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17. instance methods on (unboxed) value types, have a this pointer that is by default a managed1
pointer to an instance of the type on which the method is defined2

18. there is a special encoding (denoted by the syntactic item explicit in the calling convention, see3
Section 14.3) to specify the type of the this pointer, overriding the default values specified here4

19. the this pointer may be null5

Virtual methods are associated with an instance of a type in much the same way as for instance methods.6
However, unlike instance methods, it is possible to call a virtual method in such a way that the implementation7
of the method shall be chosen at runtime by the VES depends upon the type of object used for the this pointer.8
The particular Method that implements a virtual method is determined dynamically at runtime (a virtual call)9
when invoked via the callvirt instruction; whilst the binding is decided at compile time when invoked via the10
call instruction (see Partition III).11

With virtual calls (only) the notion of inheritance becomes important. A subclass may override a virtual12
method inherited from its base classes, providing a new implementation of the method. The method attribute13
newslot specifies that the CLI shall not override the virtual method definition of the base type, but shall treat14
the new definition as an independent virtual method definition.15

Abstract virtual methods (which shall only be defined in abstract classes or interfaces) shall be called only with16
a callvirt instruction. Similarly, the address of an abstract virtual method shall be computed with the ldvirtftn17
instruction, and the ldftn instruction shall not be used.18

Rationale: With a concrete virtual method there is always an implementation available from the class that19
contains the definition, thus there is no need at runtime to have an instance of a class available. Abstract20
virtual methods, however, receive their implementation only from a subtype or a class that implements the21
appropriate interface, hence an instance of a class that actually implements the method is required.22

14.3 Calling Convention23

<callConv> ::= [instance [explicit]] [<callKind>]

24
A calling convention specifies how a method expects its arguments to be passed from the caller to the called25
method. It consists of two parts; the first deals with the existence and type of the this pointer, while the second26
relates to the mechanism for transporting the arguments.27

If the attribute instance is present it indicates that a this pointer shall be passed to the method. It shall be used28
for both instance and virtual methods.29

Normally, a parameter list (which always follows the calling convention) does not provide information about30
the type of the this pointer, since this can be deduced from other information. When the combination instance31
explicit is specified, however, the first type in the subsequent parameter list specifies the type of the this pointer32
and subsequent entries specify the types of the parameters themselves.33

<callKind> ::=

default

| unmanaged cdecl

| unmanaged fastcall

| unmanaged stdcall

| unmanaged thiscall

| vararg

34
Managed code shall have only the default or vararg calling kind. default shall be used in all cases except35
when a method accepts an arbitrary number of arguments, in which case vararg shall be used.36

When dealing with methods implemented outside the CLI it is important to be able to specify the calling37
convention required. For this reason there are 16 possible encodings of the calling kind. Two are used for the38
managed calling kinds. Four are reserved with defined meaning across many platforms:39
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• unmanaged cdecl is the calling convention used by standard C1

• unmanaged stdcall specifies a standard C++ call2

• unmanaged fastcall is a special optimized C++ calling convention3

• unmanaged thiscall is a C++ call that passes a this pointer to the method4

Four more are reserved for existing calling conventions, but their use is not portable. Four more are reserved5
for future standardization, and two are available for non-standard experimental use.6

(By "portable" is meant a feature that is available on all conforming implementations of the CLI)7

14.4 Defining Methods8

<methodHead> ::=

<methAttr>* [<callConv>] [<paramAttr>*] <type>

[marshal ( [<nativeType>] )]

<methodName> ( <parameters> ) <implAttr>*

9
The method head (see also Chapter 178) consists of10

• the calling convention (<callConv>, see Section 14.3)11

• any number of predefined method attributes (<paramAttr>, see clause 14.4.2)12

• a return type with optional attributes13

• optional marshalling information (see Section 7.4)14

• a method name15

• a signature16

• and any number of implementation attributes (<implAttr>, see clause 14.4.3)17

Methods that do not have a return value shall use void as the return type.18

<methodName> ::=

.cctor

| .ctor

| <dottedname>

19
Method names are either simple names or the special names used for instance constructors and type initializers.20

<parameters> ::= [<param> [, <param>]*]

<param> ::=

...

| [<paramAttr>*] <type> [marshal ( [<nativeType>] )] [<id>]

21
The <id>, if present, is the name of the parameter. A parameter may be referenced either by using its name or22
the zero-based index of the parameter. In CIL instructions it is always encoded using the zero-based index (the23
name is for ease of use in ilasm).24

Note that, in contrast to calling a vararg method, the definition of a vararg method does not include any25
ellipsis (“…”)26

<paramAttr> ::=

[in]

| [opt]
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| [out]

1
The parameter attributes shall be attached to the parameters (see Section 21.30) and hence are not part of a2
method signature.3

Note: Unlike parameter attributes, custom modifiers (modopt and modreq) are part of the signature. Thus,4
modifiers form part of the method’s contract while parameter attributes are not.5

in and out shall only be attached to parameters of pointer (managed or unmanaged) type. They specify6
whether the parameter is intended to supply input to the method, return a value from the method, or both. If7
neither is specified in is assumed. The CLI itself does not enforce the semantics of these bits, although they8
may be used to optimize performance, especially in scenarios where the call site and the method are in different9
application domains, processes, or computers.10

opt specifies that this parameter is intended to be optional from an end-user point of view. The value to be11
supplied is stored using the .param syntax (see clause 14.4.1.4).12

14.4 .1 Method Body13

The method body shall contain the instructions of a program. However, it may also contain labels, additional14
syntactic forms and many directives that provide additional information to ilasm and are helpful in the15
compilation of methods of some languages.16

<methodBodyItem> ::= Description Section

.custom <customDecl> Definition of custom attributes. 0

| .data <datadecl> Emits data to the data section 15.3

| .emitbyte <unsigned int8> Emits a byte to the code section of the
method.

14.4.1.1

| .entrypoint Specifies that this method is the entry
point to the application (only one such
method is allowed).

14.4.1.2

| .locals [init]

( <localsSignature> )

Defines a set of local variables for this
method.

14.4.1.3

| .maxstack <int32> int32 specifies the maximum number of
elements on the evaluation stack during
the execution of the method

14.4.1

| .override
<typeSpec>::<methodName>

Use current method as the
implementation for the method specified.

9.3.2

| .param [ <int32> ]

[= <fieldInit>]

Store a constant <fieldInit> value for
parameter <int32>

14.4.1.4

| <externSourceDecl> .line or #line 5.7

| <instr> An instruction Partition V

| <id> : A label 0

| <securityDecl> .permission or .permissionset 19

| <sehBlock> An exception block 0
17

14.4 .1.1 .emitbyte18

<methodBodyItem> ::= …

| .emitbyte <unsigned int8>

19
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Emits an unsigned 8 bit value directly into the CIL stream of the method. The value is emitted at the position1
where the directive appears.2

Note: the .emitbyte directive is used for generating tests. It is not required in generating regular programs3

14.4 .1.2 .entrypoint4

<methodBodyItem> ::= …

| .entrypoint

5
The .entrypoint directive marks the current method, which shall be static, as the entry point to an application.6
The VES shall call this method to start the application. An executable shall have exactly one entry point7
method. This entry point method may be a global method or may appear inside a type. (The effect of the8
directive is to place the metadata token for this method into the CLI header of the PE file)9

The entry point method shall either accept no arguments or a vector of strings. If it accepts a vector of strings,10
the strings shall represent the arguments to the executable, with index 0 containing the first argument. The11
mechanism for specifying these arguments is platform-specific and is not specified here.12

The return type of the entry point method shall be void, int32, or unsigned int32. If an int32 or unsigned int3213
is returned, the executable may return an exit code to the host environment. A value of 0 shall indicate that the14
application terminated ordinarily.15

The accessibility of the entry point method shall not prevent its use in starting execution. Once started the VES16
shall treat the entry point as it would any other method.17

Example (informative):18

The following example prints the first argument and return successfully19
to the operating system:20

.method public static int32 MyEntry(string[] s) CIL managed21

{ .entrypoint22

.maxstack 223

ldarg.0 // load and print the first argument24

ldc.i4.025

ldelem.ref26

call void [mscorlib]System.Console::WriteLine(string)27

ldc.i4.0 // return success28

ret29

}30

14.4 .1.3 . locals31

The .locals statement declares local variables (see Partition I) for the current method.32

<methodBodyItem> ::= …

| .locals [init] ( <localsSignature> )

<localsSignature> ::= <local> [, <local>]*

<local> ::= <type> [<id>]

33
The <id>, if present, is the name of the local.34

If init is specified, the variables are initialized to their default values according to their type. Reference types35
are initialized to null and value types are zeroed out.36



- 62 -

Note: Verifiable methods shall include the init keyword. See Partition III.1

14.4 .1.4 .param2

<methodBodyItem> ::= …

| .param [ <int32> ] [= <fieldInit>]

3
Stores in the metadata a constant value associated with method parameter number <int32>, see Section 21.9.4
While the CLI requires that a value be supplied for the parameter, some tools may use the presence of this5
attribute to indicate that the tool rather than the user is intended to supply the value of the parameter. Unlike6
CIL instructions, .param uses index 0 to specify the return value of the method, index 1 is the first parameter7
of the method, and so forth.8

Note: The CLI attaches no semantic whatsoever to these values – it is entirely up to compilers to implement9
any semantic they wish (eg so-called default argument values)10

14.4.2 Predefined Attributes on Methods11

<methAttr> ::= Description Section

abstract The method is abstract (shall also be virtual). 14.4.2.4

| assembly Assembly accessibility 14.4.2.1

| compilercontrolled Compiler-controlled accessibility. 14.4.2.1

| famandassem Family and Assembly accessibility 14.4.2.1

| family Family accessibility 14.4.2.1

| famorassem Family or Assembly accessibility 14.4.2.1

| final This virtual method cannot be overridden by
subclasses.

14.4.2.2

| hidebysig Hide by signature. Ignored by the runtime. 14.4.2.2

| newslot Specifies that this method shall get a new slot
in the virtual method table.

14.4.2.3

| pinvokeimpl (
<QSTRING> [as <QSTRING>]
<pinvAttr>* )

Method is actually implemented in native
code on the underlying platform

14.4.2.5

| private Private accessibility 14.4.2.1

| public Public accessibility. 14.4.2.1

| rtspecialname The method name needs to be treated in a
special way by the runtime.

14.4.2.6

| specialname The method name needs to be treated in a
special way by some tool.

14.4.2.6

| static Method is static. 14.4.2.2

| virtual Method is virtual. 14.4.2.2
12

The following combinations of predefined attributes are illegal:13

• static combined with any of final, virtual, or newslot14

• abstract combined with any of final or pinvokeimpl15

• compilercontrolled combined with any of virtual, final, specialname or rtspecialname16
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14.4 .2.1 Accessibi l ity Information1

<methAttr> ::= …

| assembly

| compilercontrolled

| famandassem

| family

| famorassem

| private

| public

2
Only one of these attributes shall be applied to a given method. See Partition I.3

14.4 .2.2 Method Contract Attributes4

<methAttr> ::= …

| final

| hidebysig

| static

| virtual

5
These attributes may be combined, except a method shall not be both static and virtual; only virtual methods6
may be final; and abstract methods shall not be final.7

final methods shall not be overridden by subclasses of this type.8

hidebysig is supplied for the use of tools and is ignored by the VES. It specifies that the declared method hides9
all methods of the parent types that have a matching method signature; when omitted the method should hide10
all methods of the same name, regardless of the signature.11

Rationale: Some languages use a hide-by-name semantics (C++) while others use a hide-by-name-and-12
signature semantics (C#, Java™)13

Static and virtual are described in Section 0.14

14.4 .2.3 Overriding Behavior15

<methAttr> ::= …

| newslot

16
newslot shall only be used with virtual methods. See Section 9.3.17

14.4 .2.4 Method Attributes18

<methAttr> ::= …

| abstract

19
abstract shall only be used with virtual methods that are not final. It specifies that an implementation of the20
method is not provided but shall be provided by a subclass. Abstract methods shall only appear in abstract21
types (see clause 9.1.4).22

14.4 .2.5 Interoperation Attributes23

<methAttr> ::= …

| pinvokeimpl ( <QSTRING> [as <QSTRING>] <pinvAttr>* )

24
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See clause 0and Section 21.20.1

14.4 .2.6 Special Handling Attributes2

<methAttr> ::= …

| rtspecialname

| specialname

3
The attribute rtspecialname specifies that the method name shall be treated in a special way by the runtime.4
Examples of special names are .ctor (object constructor) and .cctor (type initializer).5

specialname indicates that the name of this method has special meaning to some tools.6

14.4 .3 Implementat ion Attributes of Methods7

<implAttr> ::= Description Section

cil The method contains standard CIL code. 14.4.3.1

| forwardref The body of this method is not specified
with this declaration.

14.4.3.3

| internalcall Denotes the method body is provided by
the CLI itself

14.4.3.3

| managed The method is a managed method. 14.4.3.2

| native The method contains native code. 14.4.3.1

| noinlining The runtime shall not expand the method
inline.

14.4.3.3

| runtime The body of the method is not defined but
produced by the runtime.

14.4.3.1

| synchronized The method shall be executed in a single
threaded fashion.

14.4.3.3

| unmanaged Specifies that the method is unmanaged. 14.4.3.2
8

14.4 .3.1 Code Implementat ion Attributes9

<implAttr> ::= …

| cil

| native

| runtime

10
These attributes are exclusive, they specify the type of code the method contains.11

cil specifies that the method body consists of cil code. Unless the method is declared abstract, the body of the12
method shall be provided if cil is used.13

native specifies that a method was implemented using native code, tied to a specific processor for which it was14
generated. native methods shall not have a body but instead refer to a native method that declares the body.15
Typically, the PInvoke functionality (see clause 0) of the CLI is used to refer to a native method.16

runtime specifies that the implementation of the method is automatically provided by the runtime and is17
primarily used for the method of delegates (see Section 13.6).18

14.4 .3.2 Managed or Unmanaged19

<implAttr> ::= …
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| managed

| unmanaged

1
These shall not be combined. Methods implemented using CIL are managed. Unmanaged is used primarily2
with PInvoke (see clause 0).3

14.4 .3.3 Implementat ion Information4

<implAttr> ::= …

| forwardref

| internalcall

| noinlining

| synchronized

5
These attributes may be combined.6

forwardref specifies that the body of the method is provided elsewhere. This attribute shall not be present7
when an assembly is loaded by the VES. It is used for tools (like a static linker) that will combine separately8
compiled modules and resolve the forward reference.9

internalcall specifies that the method body is provided by this CLI (and is typically used by low-level methods10
in a system library). It shall not be applied to methods that are intended for use across implementations of the11
CLI.12

noinlining specifies that the body of this method should not be included into the code of any caller methods, by13
a CIL-to-native-code compiler; it shall be kept as a separate routine.14

Rationale: specifying that a method not be inlined ensures that it remains 'visible' for debugging (eg displaying15
stack traces) and profiling. It also provides a mechanism for the programmer to override the default heuristics16
a CIL-to-native-code compiler uses for inlining.17

synchronized specifies that the whole body of the method shall be single threaded. If this method is an18
instance or virtual method a lock on the object shall be obtained before the method is entered. If this method is19
a static method a lock on the type shall be obtained before the method is entered. If a lock cannot be obtained20
the requesting thread shall not proceed until it is granted the lock. This may cause deadlocks. The lock is21
released when the method exits, either through a normal return or an exception. Exiting a synchronized method22
using a tail. call shall be implemented as though the tail. had not been specified. noinlining specifies that the23
runtime shall not inline this method. Inlining refers to the process of replacing the call instruction with the body24
of the called method. This may be done by the runtime for optimization purposes.25

14.4 .4 Scope Blocks26

<scopeBlock> ::= { <methodBodyItem>* }

A scopeBlock is used to group elements of a method body together. For example, it is used to designate the27
code sequence that constitutes the body of an exception handler.28

14.4 .5 vararg Methods29

vararg methods accept a variable number of arguments. They shall use the vararg calling convention (see30
Section 14.3).31

At each call site, a method reference shall be used to describe the types of the actual arguments that are passed.32
The fixed part of the argument list shall be separated from the additional arguments with an ellipsis (see33
Partition I).34

The vararg arguments shall be accessed by obtaining a handle to the argument list using the CIL instruction35
arglist (see Partition III). The handle may be used to create an instance of the value type System.ArgIterator36
which provides a typesafe mechanism for accessing the arguments (see Partition IV).37

Example (informative):38



- 66 -

The following example shows how a vararg method is declared and how the1
first vararg argument is accessed, assuming that at least one2
additional argument was passed to the method:3

.method public static vararg void MyMethod(int32 required) {4

.maxstack 35

.locals init (valuetype System.ArgIterator it, int32 x)6

ldloca it // initialize the iterator7

initobj valuetype System.ArgIterator8

ldloca it9

arglist // obtain the argument handle10

call instance void System.ArgIterator::.ctor(valuetype11
System.RuntimeArgumentHandle) // call constructor of iterator12

/* argument value will be stored in x when retrieved, so load13

address of x */14

ldloca x15

ldloca it16

// retrieve the argument, the argument for required does not matter17

call instance typedref System.ArgIterator::GetNextArg()18

call object System.TypedReference::ToObject(typedref) // retrieve19
the object20

castclass System.Int32 // cast and unbox21

unbox int3222

cpobj int32 // copy the value into x23

// first vararg argument is stored in x24

ret25

}26

14.5 Unmanaged Methods27

In addition to supporting managed code and managed data, the CLI provides facilities for accessing pre-28
existing native code from the underlying platform, known as unmanaged code. These facilities are, by29
necessity, platform dependent and hence are only partially specified here.30

This standard specifies:31

• A mechanism in the file format for providing function pointers to managed code that can be called32
from unmanaged code (see clause 14.5.1).33

• A mechanism for marking certain method definitions as being implemented in unmanaged code34
(called platform invoke, see clause 0).35

• A mechanism for marking call sites used with method pointers to indicate that the call is to an36
unmanaged method (see clause 14.5.3).37

• A small set of pre-defined data types that can be passed (marshaled) using these mechanisms on38
all implementations of the CLI (see clause 14.5.4). The set of types is extensible through the use39
of custom attributes and modifiers, but these extensions are platform-specific.40
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14.5 .1 Method Transit ion Thunks1

Note: This mechanism is not part of the Kernel Profile, so it may not be present in all conforming2
implementations of the CLI. See Partition IV.3

In order to call from unmanaged code into managed code some platforms require a specific transition sequence4
to be performed. In addition, some platforms require that the representation of data types be converted (data5
marshalling). Both of these problems are solved by the .vtfixup directive. This directive may appear several6
times only at the top level of a CIL assembly file, as shown by the following grammar:7

<decl> ::= Section

.vtfixup <vtfixupDecl>

| … 5.10
8

The .vtfixup directive declares that at a certain memory location there is a table that contains metadata tokens9
referring to methods that shall be converted into method pointers. The CLI will do this conversion10
automatically when the file is loaded into memory for execution. The declaration specifies the number of11
entries in the table, what kind of method pointer is required, the width of an entry in the table, and the location12
of the table:13

<vtfixupDecl> ::=

[ <int32> ] <vtfixupAttr>* at <dataLabel>

14
<vtfixupAttr> ::=

fromunmanaged

| int32

| int64

15
The attributes int32 and int64 are mutually exclusive and int32 is the default. These attributes specify the16
width of each slot in the table. Each slot contains a 32-bit metadata token (zero-padded if the table has 64 bit17
slots), and the CLI converts it into a method pointer of the same width as the slot.18

If fromunmanaged is specified, the CLI will generate a thunk that will convert the unmanaged method call to19
a managed call, call the method, and return the result to the unmanaged environment. The thunk will also20
perform data marshalling in the platform-specific manner described for platform invoke.21

The ilasm syntax does not specify a mechanism for creating the table of tokens, but a compiler may simply22
emit the tokens as byte literals into a block specified using the .data directive.23

14.5 .2 Platform Invoke24

Methods defined in native code may be invoked using the platform invoke (also know as PInvoke or p/invoke)25
functionality of the CLI. Platform invoke will switch from managed to unmanaged state and back and also26
handle necessary data marshalling. Methods that need to be called using PInvoke are marked as pinvokeimpl.27
In addition, the methods shall have the implementation attributes native and unmanaged (see clause 14.4.2.4).28

<methAttr> ::= Description Section

pinvokeimpl ( <QSTRING> [as <QSTRING>]
<pinvAttr>* )

Implemented in native code

| … 14.4.2
29

The first quoted string is a platform-specific description indicating where the implementation of the method is30
located (for example, on Microsoft Windows™ this would be the name of the DLL that implements the31
method). The second (optional) string is the name of the method as it exists on that platform, since the32
platform may use name-mangling rules that force the name as it appears to a managed program to differ from33
the name as seen in the native implementation (this is common, for example, when the native code is generated34
by a C++ compiler).35
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Only static methods, defined at global scope (ie, outside of any type), may be marked pinvokeimpl. A method1
declared with pinvokeimpl shall not have a body specified as part of the definition.2

<pinvAttr> ::= Description (platform specific, suggestion only)

ansi ANSI character set.

| autochar Determine character set automatically.

| cdecl Standard C style call

| fastcall C style fastcall.

| stdcall Standard C++ style call.

| thiscall The method accepts an implicit this pointer.

| unicode Unicode character set.

| platformapi Use call convention appropriate to target platform.
3

The attributes ansi, autochar, and unicode are mutually exclusive. They govern how strings will be marshaled4
for calls to this method: ansi indicates that the native code will receive (and possibly return) a platform-specific5
representation that corresponds to a string encoded in the ANSI character set (typically this would match the6
representation of a C or C++ string constant); autochar indicates a platform-specific representation that is7
“natural” for the underlying platform; and unicode indicates a platform-specific representation that corresponds8
to a string encoded for use with Unicode methods on that platform.9

The attributes cdecl, fastcall, stdcall, thiscall, and platformapi are mutually exclusive. They are platform-10
specific and specificy the calling conventions for native code.11

12
Example (informative):13

The following shows the declaration of the method MessageBeep located in14
the Microsoft Windows™ DLL user32.dll:15

.method public static pinvokeimpl("user32.dll" stdcall) int816
MessageBeep(unsigned int32) native unmanaged {}17

14.5 .3 Via Funct ion Pointers18

Unmanaged functions can also be called via function pointers. There is no difference between calling managed19
or unmanaged functions with pointers. However, the unmanaged function needs to be declared with20
pinvokeimpl as described in clause 0. Calling managed methods with function pointers is described in21
Section 022

14.5 .4 Data Type Marshaling23

While data type marshaling is necessarily platform-dependent, this standard specifies a minimum set of data24
types that shall be supported by all conforming implementations of the CLI. Additional data types may be25
supported in an implementation-dependent manner, using custom attributes and/or custom modifiers to specify26
any special handling required on the particular implementation.27

The following data types shall be marshaled by all conforming implementations of the CLI; the native data type28
to which they conform is implementation specific:29

• All integer data types (int8, int16, unsigned int8, bool, char etc.) including the native integer30
types.31

• Enumerations, as their underlying data type.32

• All floating point data types (float32 and float64), if they are supported by the CLI33
implementation for managed code.34

• The type string.35
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• Unmanaged pointers to any of the above types.1

In addition, the following types shall be supported for marshaling from managed code to unmanaged code, but2
need not be supported in the reverse direction (i.e. as return types when calling unmanaged methods or as3
parameters when calling from unmanaged methods into managed methods)4

• One-dimensional zero-based arrays of any of the above5

• Delegates (the mechanism for calling from unmanaged code into a delegate is platform-specific; it6
should not be assumed that marshaling a delegate will produce a function pointer that can be used7
directly from unmanaged code)8

Finally, the type GCHandle can be used to marshal an object to unmanaged code. The unmanaged code9
receives a platform-specific data type that can be used as an “opaque handle” to a specific object. See10
Partition IV.11
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15 Defining and Referencing Fields1

Fields are typed memory locations that store the data of a program. The CLI allows the declaration of both2
instance and static fields. While static fields are associated with a type and shared across all instances of that3
type, instance fields are associated with a particular instance of that type. When instantiated, the instance has4
its own copy of that field.5

The CLI also supports global fields, which are fields declared outside of any type definition. Global fields shall6
be static.7

A field is defined by the .field directive: (see Section 21.15)8

<field> ::= .field <fieldDecl>

9
<fieldDecl> ::=

[[ <int32> ]] <fieldAttr>* <type> <id> [= <fieldInit> | at <dataLabel>]

10
The <fieldDecl> has the following parts:11

• an optional integer specifying the byte offset of the field within an instance (see Section 9.7). If12
present, the type containing this field shall have the explicit layout attribute. An offset shall not13
be supplied for global or static fields.14

• any number of field attributes (see Section 15.2)15

• type16

• name17

• optionally either a <fieldInit> form or a data label18

Global fields shall have a data label associated with them. This specifies where, in the PE file, the data for that19
field is located. Static fields of a type may, but do not need to, be assigned a data label.20

Example (informative):21

.field private class [.module Counter.dll]Counter counter22

15.1 Attributes of Fields23

Attributes of a field specify information about accessibility, contract information, interoperation attributes, as24
well as information on special handling.25

The following subsections contain additional information on each group of predefined attributes of a field.26

<fieldAttr> ::= Description Section

assembly Assembly accessibility. 15.1.1

| famandassem Family and Assembly accessibility. 15.1.1

| family Family accessibility. 15.1.1

| famorassem Family or Assembly accessibility. 15.1.1

| initonly Marks a constant field. 15.1.2

| literal Specifies metadata field. No memory is allocated
at runtime for this field.

15.1.2

| marshal(<nativeType>) Marshaling information. 15.1.3

| notserialized Field is not serialized with other fields of the type. 15.1.2

| private Private accessibility. 15.1.1
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| compilercontrolled Compiler controlled accessibility. 15.1.1

| public Public accessibility. 15.1.1

| rtspecialname Special treatment by runtime. 15.1.4

| specialname Special name for other tools. 15.1.4

| static Static field. 15.1.2
1

15.1 .1 Accessibi l i ty Information2

The accessibility attributes are assembly, famandassem, family, famorassem, private, compilercontrolled3
and public. These attributes are mutually exclusive.4

Accessibility attributes are described in Section 8.2.5

15.1 .2 Field Contract Attributes6

Field contract attributes are initonly, literal, static and notserialized. These attributes may be combined.7
Only static fields may be literal. The default is an instance field that may be serialized.8

static specifies that the field is associated with the type itself rather than with an instance of the type. Static9
fields can be accessed without having an instance of a type, e.g. by static methods. As a consequence, a static10
field is shared, within an application domain, between all instances of a type, and any modification of this field11
will affect all instances. If static is not specified, an instance field is created.12

initonly marks fields which are constant after they are initialized. These fields may only be mutated inside a13
constructor. If the field is a static field, then it may be mutated only inside the type initializer of the type in14
which it was declared. If it is an instance field, then it may be mutated only in one of the instance constructors15
of the type in which it was defined. It may not be mutated in any other method or in any other constructor,16
including constructors of subclasses.17

Note: The VES need not check whether initonly fields are mutated outside the constructors. The VES need not18
report any errors if a method changes the value of a constant. However, such code is not valid and is not19
verifiable.20

literal specifies that this field represents a constant value; they shall be assigned a value. In contrast to initonly21
fields, literal fields do not exist at runtime. There is no memory allocated for them. literal fields become part22
of the metadata but cannot be accessed by the code. literal fields are assigned a value by using the <fieldInit>23
syntax (see Section 15.2).24

Note: It is the responsibility of tools generating CIL to replace source code references to the literal with its25
actual value. Hence changing the value of a literal requires recompilation of any code that references the26
literal. Literal values are, thus, not version-resilient.27

15.1 .3 Interoperation Attributes28

There is one attribute for interoperation with pre-existing native applications; it is platform-specific and shall29
not be used in code intended to run on multiple implementations of the CLI. The attribute is marshal and30
specifies that the field’s contents should be converted to and from a specified native data type when passed to31
unmanaged code. Every conforming implementation of the CLI will have default marshaling rules as well as32
restrictions on what automatic conversions can be specified using the marshal attribute. See also clause 14.5.433

Note: Marshaling of user-defined types is not required of all implementations of the CLI. It is specified in this34
standard so that implementations which choose to provide it will allow control over its behavior in a consistent35
manner. While this is not sufficient to guarantee portability of code that uses this feature, it does increase the36
likelihood that such code will be portable.37

15.1 .4 Other Attributes38

The attribute rtspecialname indicates that the field name shall be treated in a special way by the runtime.39
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Rationale: There are currently no field names that are required to be marked with rtspecialname. It is1
provided for extensions, future standardization, and to increase consistency between the declaration of fields2
and methods (instance and type initializer methods shall be marked with this attribute).3

The attribute specialname indicates that the field name has special meaning to tools other than the runtime,4
typically because it marks a name that has meaning for the Common Language Specification (CLS, see5
Partition I).6

15.2 Field Init Metadata7

The <fieldInit> metadata can be optionally added to a field declaration. The use of this feature may not be8
combined with a data label.9

The <fieldInit> information is stored in metadata and this information can be queried from metadata. But the10
CLI does not use this information to automatically initialize the corresponding fields. The field initializer is11
typically used with literal fields (see clause 15.1.2) or parameters with default values. See Section 21.912

The following table lists the options for a field initializer. Note that while both the type and the field initializer13
are stored in metadata there is no requirement that they match. (Any importing compiler is responsible for14
coercing the stored value to the target field type). The description column in the table below provides15
additional information.16

<fieldInit> ::= Description

bool ( true | false ) Boolean value, encoded as true or false

| bytearray ( <bytes> ) String of bytes, stored without conversion. May be be padded
with one zero byte to make the total byte-count an even number

| char ( <int32> ) 16 bit unsigned integer (Unicode character)

| float32 ( <float64> ) 32 bit floating point number, with the floating point number
specified in parentheses.

| float32 ( <int32> ) <int32> is binary representation of float

| float64 ( <float64> ) 64 bit floating point number, with the floating point number
specified in parentheses.

| float64 ( <int64> ) <int64> is binary representation of double

| [ unsigned ] int8 ( <int8> ) 8 bit integer with the integer specified in parentheses.

| [ unsigned ] int16 ( <int16> ) 16 bit integer with the integer specified in parentheses.

| [ unsigned ] int32 ( <int32> ) 32 bit integer with the integer specified in parentheses.

| [ unsigned ] int64 ( <int64> ) 64 bit integer with the integer specified in parentheses.

| <QSTRING> String. <QSTRING> is stored as Unicode

| nullref Null object reference
17
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Example (informative):1

The following example shows a typical use of this:2

.field public static literal valuetype ErrorCodes no_error = int8(0)3

The field named no_error is a literal of type ErrorCodes (a value type)4
for which no memory is allocated. Tools and compilers can look up the5
value and detect that it is intended to be an 8 bit signed integer6
whose value is 0.7

15.3 Embedding Data in a PE File8

There are several ways to declare a data field that is stored in a PE file. In all cases, the .data directive is used.9

Data can be embedded in a PE file by using the .data directive at the top-level.10

<decl> ::= Section

.data <datadecl>

| … 6.6
11

Data may also be declared as part of a type:12

<classMember> ::= Section

.data <datadecl>

| … 9.2
13

Yet another alternative is to declare data inside a method:14

<methodBodyItem> ::= Section

.data <datadecl>

| … 14.4.1
15

15.3 .1 Data Declarat ion16

A .data directive contains an optional data label and the body which defines the actual data. A data label shall17
be used if the data is to be accessed by the code.18

<dataDecl> ::= [<dataLabel> =] <ddBody>

The body consists either of one data item or a list of data items in braces. A list of data items is similar to an19
array.20

<ddBody> ::=

<ddItem>

| { <ddItemList> }

21
A list of items consists of any number of items:22

<ddItemList> ::= <ddItem> [, <ddItemList>]

23
The list may be used to declare multiple data items associated with one label. The items will be laid out in the24
order declared. The first data item is accessible directly through the label. To access the other items, pointer25
arithmetic is used, adding the size of each data item to get to the next one in the list. The use of pointer26
arithmetic will make the application not verifiable. (Each data item shall have a <dataLabel> if it is to be27
referenced afterwards; missing a <dataLabel> is useful in order to insert alignment padding between data28
items)29
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A data item declares the type of the data and provides the data in parentheses. If a list of data items contains1
items of the same type and initial value, the grammar below can be used as a short cut for some of the types:2
the number of times the item shall be replicated is put in brackets after the declaration.3

<ddItem> ::= Description

& ( <id> ) Address of label

| bytearray ( <bytes> ) Array of bytes

| char * ( <QSTRING> ) Array of (Unicode) characters

| float32 [( <float64> )] [[ <int32> ]] 32-bit floating point number, may be
replicated

| float64 [( <float64> )] [[ <int32> ]] 64-bit floating point number, may be
replicated

| int8 [( <int8> )] [[ <int32> ]] 8-bit integer, may be replicated

| int16 [( <int16> )] [[ <int32> ]] 16-bit integer, may be replicated

| int32 [( <int32> )] [[ <int32> ]] 32-bit integer, may be replicated

| int64 [( <int64> )] [[ <int32> ]] 64-bit integer, may be replicated

4
Example (informative):5

The following declares a 32 bit signed integer with value 123:6

.data theInt = int32(123)7

The following declares 10 replications of an 8 bit unsigned integer8
with value 3:9

.data theBytes = int8 (3) [10]10

15.3 .2 Accessing Data from the PE File11

The data stored in a PE File using the .data directive can be accessed through a static variable, either global or12
a member of a type, declared at a particular position of the data:13

<fieldDecl> ::= <fieldAttr>* <type> <id> at <dataLabel>

14
The data is then accessed by a program as it would access any other static variable, using instructions such as15
ldsfld, ldsflda, and so on (see Partition III).16

The ability to access data from within the PE File may be subject to platform-specific rules, typically related to17
section access permissions within the PE File format itself.18

Example (informative):19

The following accesses the data declared in the example of20
clause 15.3.1. First a static variable needs to be declared for the21
data, e.g. a global static variable:22

.field public static int32 myInt at theInt23

Then the static variable can be used to load the data:24

ldsfld int32 myInt25

// data on stack26

15.4 Initial ization of Non-Literal Static Data27

This section and its subsections contain only informative text. 28
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Many languages that support static data (i.e. variables that have a lifetime that is the entire program) provide1
for a means to initialize that data before the program begins running. There are three common mechanisms for2
doing this, and each is supported in the CLI.3

15.4 .1 Data Known at Link Time4

When the correct value to be stored into the static data is known at the time the program is linked (or compiled5
for those languages with no linker step), the actual value can be stored directly into the PE file, typically into6
the data area (see Section 15.3). References to the variable are made directly to the location where this data has7
been placed in memory, using the OS supplied fix-up mechanism to adjust any references to this area if the file8
loads at an address other than the one assumed by the linker.9

In the CLI, this technique can be used directly if the static variable has one of the primitive numeric types or is10
a value type with explicit type layout and no embedded references to managed objects. In this case the data is11
laid out in the data area as usual and the static variable is assigned a particular RVA (i.e. offset from the start of12
the PE file) by using a data label with the field declaration (using the at syntax).13

This mechanism, however, does not interact well with the CLI notion of an application domain (see Partition I).14
An application domain is intended to isolate two applications running in the same OS process from one another15
by guaranteeing that they have no shared data. Since the PE file is shared across the entire process, any data16
accessed via this mechanism is visible to all application domains in the process, thus violating the application17
domain isolation boundary.18

15.5 Data Known at Load Time19

When the correct value is not known until the PE file is loaded (for example, if it contains values computed20
based on the load addresses of several PE files) it may be possible to supply arbitrary code to run as the PE file21
is loaded, but this mechanism is platform-specific and may not be available in all conforming implementations22
of the CLI.23

15.5 .1 Data Known at Run Time24

When the correct value cannot be determined until type layout is computed, the user shall supply code as part25
of a type initializer to initialize the static data. The guarantees about type initialization are covered in26
clause 9.5.3.1. As will be explained below, global statics are modeled in the CLI as though they belonged to a27
type, so the same guarantees apply to both global and type statics.28

Because the layout of managed types need not occur until a type is first referenced, it is not possible to29
statically initialize managed types by simply laying the data out in the PE file. Instead, there is a type30
initialization process that proceeds in the following steps:31

20. All static variables are zeroed.32

21. The user-supplied type initialization procedure, if any, is invoked as described in clause 9.5.3.33

Within a type initialization procedure there are several techniques:34

• Generate explicit code that stores constants into the appropriate fields of the static variables. For35
small data structures this can be efficient, but it requires that the initializer be converted to native36
code, which may prove to be both a code space and an execution time problem.37

• Box value types. When the static variable is simply a boxed version of a primitive numeric type or38
a value type with explicit layout, introduce an additional static variable with known RVA that39
holds the unboxed instance and then simply use the box instruction to create the boxed copy.40

• Create a managed array from a static native array of data. This can be done by marshaling the41
native array to a managed array. The specific marshaler to be used depends on the native array.42
E.g., it may be a safearray.43

• Default initialize a managed array of a value type. The Base Class Library provides a method that44
zeroes the storage for every element of an array of unboxed value types45
(System.Runtime.CompilerServices.InitializeArray)46
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End informative text 1
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16 Defining Properties1

A Property is declared by the using the .property directive. Properties may only be declared inside of types (ie2
global Properties are not supported)3

<classMember> ::=

.property <propHead> { <propMember>* }

4
See Section 21.31 and Section 21.32 for how Property information is stored in metadata.5

<propHead> ::=

[specialname][rtspecialname] <callConv> <type> <id> ( <parameters> )

6
The property directive specifies a calling convention (see Section 14.3), type, name, and parameter in7
parentheses. specialname marks the Property as special to other tools, while rtspecialname marks Property as8
special to the CLI. The signature for the property (i.e., the <propHead> production) shall match the signature9
of the property's .get method (see below)10

Rationale: There are currently no property names that are required to be marked with rtspecialname. It is11
provided for extensions, future standardization, and to increase consistency between the declaration of12
properties and methods (instance and type initializer methods shall be marked with this attribute).13

While the CLI places no constraints on the methods that make up a property, the CLS (see Partition I) specifies14
a set of consistency constraints..15

A property may contain any number of methods in its body. The following table shows these and provides16
short descriptions of each item:17

<propMember> ::= Description Section

| .custom <customDecl> Custom attribute. 0

| .get <callConv> <type> [<typeSpec> ::]
<methodName> ( <parameters> )

Specifies the getter for the
property.

| .other <callConv> <type> [<typeSpec> ::]
<methodName> ( <parameters> )

Specifies a method for the
property other than the getter or
setter.

| .set <callConv> <type> [<typeSpec> ::]
<methodName> ( <parameters> )

Specifies the setter for the
property.

| <externSourceDecl> .line or #line 5.7
18

.get specifies the getter for this property. The <typeSpec> defaults to the current type. Only one getter may be19
specified for a property. To be CLS compliant, the definition of getter shall be marked specialname.20

.set specifies the setter for this property. The <typeSpec> defaults to the current type. Only one setter may be21
specified for a property. To be CLS compliant, the definition of setter shall be marked specialname.22

.other is used to specify any other methods that this property comprises.23

In addition, custom attributes (see Chapter 0) or source line declarations may be specified.24

Example (informative):25

This example shows the declaration of the property used in the example26
in Part 5.27

.class public auto autochar MyCount extends [mscorlib]System.Object {28

.method virtual hidebysig public specialname instance int3229
get_Count() {30
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// body of getter1

}2

.method virtual hidebysig public specialname instance void3
set_Count(int32 newCount) {4

// body of setter5

}6

.method virtual hidebysig public instance void reset_Count() {7

// body of refresh method8

}9

// the declaration of the property10

.property int32 Count() {11

.get instance int32 get_Count()12

.set instance void set_Count(int32)13

.other instance void reset_Count()14

}15

}16
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17 Defining Events1

Events are declared inside types with the .event directive; there are no global events.2

<classMember> ::= Section

.event <eventHead> { <eventMember>* }

| … 9
3

See Section 21.13 and Section 21.114

<eventHead> ::=

[specialname] [rtspecialname] [<typeSpec>] <id>

5
In typical usage, the <typeSpec> (if present) identifies a delegate whose signature matches the arguments6
passed to the event’s fire method.7

The event head may contain the keywords specialname or rtspecialname. specialname marks the name of the8
property for other tools, while rtspecialname marks the name of the event as special for the runtime.9

Rationale: There are currently no event names that are required to be marked with rtspecialname. It is10
provided for extensions, future standardization, and to increase consistency between the declaration of events11
and methods (instance and type initializer methods shall be marked with this attribute).12

<eventMember> ::= Description Section

.addon <callConv> <type> [<typeSpec> ::] <methodName> (
<parameters> )

Add method for event.

| .custom <customDecl> Custom attribute. 0

| .fire <callConv> <type> [<typeSpec> ::] <methodName> (
<parameters> )

Fire method for event.

| .other <callConv> <type> [<typeSpec> ::] <methodName> (
<parameters> )

Other method.

| .removeon <callConv> <type> [<typeSpec> ::]
<methodName> ( <parameters> )

Remove method for event.

| <externSourceDecl> .line or #line 5.7
13

The .addon directive specifies the add method , and the <typeSpec> defaults to the same type as the event.14
The CLS specifies naming conventions and consistency constraints for events, and requires that the definition15
of the add method be marked with specialname.16

The .removeon directive specifies the remove method , and the <typeSpec> defaults to the same type as the17
event. The CLS specifies naming conventions and consistency constraints for events, and requires that the18
definition of the remove method be marked with specialname.19

The .fire directive specifies the fire method , and the <typeSpec> defaults to the same type as the event. The20
CLS specifies naming conventions and consistency constraints for events, and requires that the definition of the21
fire method be marked with specialname.22

An event may contain any number of other methods specified with the .other directive. From the point of view23
of the CLI, these methods are only associated with each other through the event. If they have special semantics,24
this needs to be documented by the implementer.25

Events may also have custom attributes (Chapter 0) associated with them and they may declare source line26
information.27

Example (informative):28

This shows the declaration of an event, its corresponding delegate, and29
typical implementations of the add, remove, and fire method of the30
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event. The event and the methods are declared in a class called1
Counter.2

// the delegate3

.class private sealed auto autochar TimeUpEventHandler extends4
[mscorlib]System.MulticastDelegate {5

.method public hidebysig specialname rtspecialname instance void6
.ctor(object 'object', native int 'method') runtime managed {}7

.method public hidebysig virtual instance void Invoke() runtime8
managed {}9

.method public hidebysig newslot virtual instance class10
[mscorlib]System.IAsyncResult BeginInvoke(class11
[mscorlib]System.AsyncCallback callback, object 'object') runtime12
managed {}13

.method public hidebysig newslot virtual instance void14
EndInvoke(class [mscorlib]System.IAsyncResult result) runtime managed15
{}16

}17

18

// the class that declares the event19

.class public auto autochar Counter extends [mscorlib]System.Object {20

21

// field to store the handlers, initialized to null22

.field private class TimeUpEventHandler timeUpEventHandler23

24

// the event declaration25

.event TimeUpEventHandler startStopEvent {26

.addon instance void add_TimeUp(class TimeUpEventHandler 'handler')27

.removeon instance void remove_TimeUp(class TimeUpEventHandler28
'handler')29

.fire instance void fire_TimeUpEvent()30

}31

32

// the add method, combines the handler with existing delegates33

.method public hidebysig virtual specialname instance void34
add_TimeUp(class TimeUpEventHandler 'handler') {35

.maxstack 436

ldarg.037

dup38

ldfld class TimeUpEventHandler Counter::TimeUpEventHandler39

ldarg 'handler'40

call class[mscorlib]System.Delegate41
[mscorlib]System.Delegate::Combine(class [mscorlib]System.Delegate,42
class [mscorlib]System.Delegate)43
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castclass TimeUpEventHandler1

stfld class TimeUpEventHandler Counter::timeUpEventHandler2

ret3

}4

5

// the remove method, removes the handler from the multicast delegate6

.method virtual public specialname void remove_TimeUp(class7
TimeUpEventHandler 'handler') {8

.maxstack 49

ldarg.010

dup11

ldfld class TimeUpEventHandler Counter::timeUpEventHandler12

ldarg 'handler'13

call class[mscorlib]System.Delegate14
[mscorlib]System.Delegate::Remove(class [mscorlib]System.Delegate,15
class [mscorlib]System.Delegate)16

castclass TimeUpEventHandler17

stfld class TimeUpEventHandler Counter::timeUpEventHandler18

ret19

}20

21

// the fire method22

.method virtual family specialname void fire_TimeUpEvent() {23

.maxstack 324

ldarg.025

ldfld class TimeUpEventHandler Counter::timeUpEventHandler26

callvirt instance void TimeUpEventHandler::Invoke()27

ret28

}29

} // end of class Counter30
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18 Exception Handling1

In the CLI, a method may define a range of CIL instructions that are said to be protected. This is called the try2
block. It can then associate one or more handlers with that try block. If an exception occurs during execution3
anywhere within the try block, an exception object is created that describes the problem. The CIL then takes4
over, transferring control from the point at which the exception was thrown, to the block of code that is willing5
to handle that exception. See Partition I.6

<sehBlock> ::=

<tryBlock> <sehClause> [<sehClause>*]

7
The next few sections expand upon this simple description, by describing the five kinds of code block that take8
part in exception processing: try, catch, filter, finally, and fault. (note that there are restrictions upon how9
many, and what kinds of <sehClause> a given <tryBlock> may have; see Partition I. for details.10

The remaining syntax items are described in detail below; they are collected here for reference.11

<tryBlock> ::= Description

.try <label> to <label> Protect region from first label to prior to second

| .try <scopeBlock> <scopeBlock> is protected
12

<sehClause> ::= Description

catch <typeReference> <handlerBlock> Catch all objects of the specified type

| fault <handlerBlock> Handle all exceptions but not normal exit

| filter <label> <handlerBlock> Enter handler only if filter succeeds

| finally <handlerBlock> Handle all exceptions and normal exit
13

<handlerBlock> ::= Description

handler <label> to <label> Handler range is from first label to prior to second

| <scopeBlock> <scopeBlock> is the handler block
14

18.1 Protected Blocks15

A try, or protected, or guarded, block is declared with the .try directive.16

<tryBlock> ::= Descriptions

.try <label> to <label> Protect region from first label to prior to second.

| .try <scopeBlock> <scopeBlock> is protected
17

In the first, the protected block is delimited by two labels. The first label is the first instruction to be protected,18
while the second label is the instruction just beyond the last one to be protected. Both labels shall be defined19
prior to this point.20

The second uses a scope block (see clause 14.4.4) after the .try directive – the instructions within that scope are21
the ones to be protected.22

18.2 Handler Blocks23

<handlerBlock> ::= Description

| handler <label> to <label> Handler range is from first label to prior to second



- 83 -

| <scopeBlock> <scopeBlock> is the handler block
1

In the first syntax, the labels enclose the instructions of the handler block, the first label being the first2
instruction of the handler while the second is the instruction immediately after the handler. Alternatively, the3
handler block is just a scope block.4

18.3 Catch5

A catch block is declared using the catch keyword. This specifies the type of exception object the clause is6
designed to handle, and the handler code itself.7

<sehClause> ::=

catch <typeReference> <handlerBlock>

8
Example (informative):9

.try {10

... // protected instructions11

leave exitSEH // normal exit12

} catch [mscorlib]System.FormatException {13

... // handle the exception14

pop // pop the exception object15

leave exitSEH // leave catch handler16

}17

exitSEH: // continue here18

18.4 Filter19

A filter block is declared using the filter keyword.20

<sehClause> ::= …

| filter <label> <handlerBlock>

| filter <scope> <handlerBlock>

21
The filter code begins at the specified label and ends at the first instruction of the handler block. (Note that the22
CLI demands that the filter block shall immediately precede, within the CIL stream, its corresponding handler23
block)24

Example (informative):25

.method public static void m () {26

.try {27

... // protected instructions28

leave exitSEH // normal exit29

}30

filter {31

... // decide whether to handle32

pop // pop exception object33

ldc.i4.1 // EXCEPTION_EXECUTE_HANDLER34

endfilter // return answer to CLI35
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}1

{2

... // handle the exception3

pop // pop the exception object4

leave exitSEH // leave filter handler5

}6

exitSEH:7

...8

}9

18.5 Finally10

A finally block is declared using the finally keyword. This specifies the handler code, with this grammar:11

<sehClause> ::= …

| finally <handlerBlock>

12
The last possible CIL instruction that can be executed in a finally handler shall be endfinally.13

Example (informative):14

.try {15

... // protected instructions16

leave exitTry // shall use leave17

} finally {18

... // finally handler19

endfinally20

}21

exitTry: // back to normal22

18.6 Fault Handler23

A fault block is declared using the fault keyword. This specifies the handler code, with this grammar:24

<sehClause> ::= …

| fault <handlerBlock>

25
The last possible CIL instruction that can be executed in a fault handler shall be endfault.26

Example (informative):27

.method public static void m() {28

startTry:29

... // protected instructions30

leave exitSEH // shall use leave31

endTry:32

33

startFault:34
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... // fault handler instructions1

endfault2

endFault:3

4

.try startTry to endTry fault handler startFault to endFault5

6

exitSEH: // back to normal7

}8
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19 Declarative Security1

Many languages that target the CLI use attribute syntax to attach declarative security attributes to items in the2
metadata. This information is actually converted by the compiler into an XML-based representation that is3
stored in the metadata, see Section 21.11. By contrast, ilasm requires the conversion information to be4
represented in its input.5

<securityDecl> ::=

.permissionset <secAction> = ( <bytes> )

| .permission <secAction> <typeReference> ( <nameValPairs> )

6
In .permission, <typeReference> specifies the permission class and <nameValPairs> specifies the settings.7
See Section 21.118

In .permissionset the bytes specify the serialized version of the security settings:9

<secAction> ::= Description

assert Assert permission so that callers do not need it.

| demand Demand permission of all callers.

| deny Deny permission so checks will fail.

| inheritcheck Demand permission of a subclass.

| linkcheck Demand permission of caller.

| permitonly Reduce permissions so check will fail.

| reqopt Request optional additional permissions.

| reqrefuse Refuse to be granted these permissions.

| request Hint that permission may be required.
10

<nameValPairs> ::= <nameValPair> [, <nameValPair>]*

11
<nameValPair> ::= <SQSTRING> = <SQSTRING>
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20 Custom Attributes1

Custom attributes add user-defined annotations to the metadata. Custom attributes allow an instance of a type2
to be stored with any element of the metadata. This mechanism can be used to store application specific3
information at compile time and access it either at runtime or when another tool reads the metadata. While any4
user-defined type can be used as an attribute, CLS compliance requires that attributes will be instances of types5
whose parent is System.Attribute. The CLI predefines some attribute types and uses them to control runtime6
behavior. Some languages predefine attribute types to represent language features not directly represented in7
the CTS. Users or other tools are welcome to define and use additional attribute types.8

Custom attributes are declared using the directive .custom. Followed by this directive is the method declaration9
for a type constructor, optionally followed by a <bytes> in parentheses:10

<customDecl> ::=

<ctor> [ = ( <bytes> ) ]

11
The <ctor> item represents a method declaration (see Section 14.4), specific for the case where the method's12
name is .ctor.13

For example:14

.custom instance void myAttribute::.ctor(bool, bool) = ( 01 00 00 01 00 00 )15

Custom attributes can be attached to any item in metadata, except a custom attribute itself. Commonly, custom16
attributes are attached to assemblies, modules, classes, interfaces, value types, methods, fields, properties and17
events (the custom attribute is attached to the immediately preceding declaration)18

The <bytes> item is not required if the constructor takes no arguments. In these cases, all that matters is the19
presence of the custom attribute.20

If the constructor takes parameters, their values shall be specified in the <bytes> item. The format for this21
‘blob’ is defined in Section 22.3.22

Example (informative):23

The following example shows a class that is marked with the24
System.SerializableAttribute and a method that is marked with the25
System.Runtime.Remoting.OneWayAttribute. The keyword serializable corresponds26
to the System.SerializableAttribute.27

.class public MyClass {28

.custom void [mscorlib]System.SerializableAttribute::.ctor ()29

.method public static void main() {30

.custom void31
[mscorlib]System.Runtime.Remoting.OneWayAttribute::.ctor ()32

ret33

}34

}35

20.1 CLS Conventions: Custom Attribute Usage36

CLS imposes certain conventions upon the use of Custom Attributes in order to improve cross-language37
operation. See Partition I for details.38
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20.2 Attributes Used by the CLI1

There are two kinds of Custom Attributes, called (genuine) Custom Attributes, and Pseudo Custom Attributes.2
Custom Attributes and Pseudo Custom Attributes are treated differently, at the time they are defined, as3
follows:4

• A Custom Attribute is stored directly into the metadata; the‘blob’ which holds its defining data is5
stored as-is. That ‘blob’ can be retrieved later.6

• A Pseudo Custom Attribute is recognized because its name is one of a short list. Rather than7
store its ‘blob’ directly in metadata, that ‘blob’ is parsed, and the information it contains is used8
to set bits and/or fields within metadata tables. The ‘blob’ is then discarded; it cannot be9
retrieved later.10

Pseudo Custom Attributes therefore serve to capture user directives, using the same familiar syntax the11
compiler provides for regular Custom Attributes, but these user directives are then stored into the more space-12
efficient form of metadata tables. Tables are also faster to check at runtime than (genuine) Custom Attributes.13

Many Custom Attributes are invented by higher layers of software. They are stored and returned by the CLI,14
without its knowing or caring what they ‘mean’. But all Pseudo Custom Attributes, plus a collection of regular15
Custom Attributes, are of special interest to compilers and to the CLI. An example of such Custom Attributes16
is System.Reflection.DefaultMemberAttribute. This is stored in metadata as a regular Custom Attribute17
‘blob’, but reflection uses this Custom Attribute when called to invoke the default member (property) for a18
type.19

The following subsections list all of the Pseudo Custom Attributes and distinguished Custom Attributes, where20
distinguished means that the CLI and/or compilers pay direct attention to them, and their behavior is affected in21
some way.22

In order to prevent name collisions into the future, all custom attributes in the System namespace are reserved23
for standardization.24

20.2.1 Pseudo Custom Attributes25

The following table lists the CLI Pseudo Custom Attributes. They are defined in either the System or the26
System.Reflection namespaces.27

Attribute Description

AssemblyAlgorithmIDAttribute Records the ID of the hash algorithm used (reserved only)

AssemblyFlagsAttribute Records the flags for this assembly (reserved only)

DllImportAttribute Provides information about code implemented within an unmanaged
library

FieldOffsetAttribute Specifies the byte offset of fields within their enclosing class or value type

InAttribute Indicates that a method parameter is an [in] argument

MarshalAsAttribute Specifies how a data item should be marshalled between managed and
unmanaged code -- see Section 0.

MethodImplAttribute Specifies details of how a method is implemented

OutAttribute Indicates that a method parameter is an [out] argument

StructLayoutAttribute Allows the caller to control how the fields of a class or value type are laid
out in managed memory

28
Not all of these Pseudo Custom Attributes are specified in this standard, but all of them are reserved and shall29
not be used for other purposes. For details on these attributes, see the documentation for the corresponding30
class in Partition IV.31

The Pseudo Custom Attributes above affect bits and fields in metadata, as follows:32
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AssemblyAlgorithmIDAttribute : sets the Assembly.HashAlgId field1

AssemblyFlagsAttribute : sets the Assembly.Flags field2

DllImportAttribute : sets the Method.Flags.PinvokeImpl bit for the attributed method; also, adds a new row3
into the ImplMap table (setting MappingFlags, MemberForwarded, ImportName and ImportScope columns)4

FieldOffsetAttribute : sets the FieldLayout.OffSet value for the attributed field5

InAttribute : sets the Param.Flags.In bit for the attributed parameter6

MarshalAsAttribute : sets the Field.Flags.HasFieldMarshal bit for the attributed field (or the7
Param.Flags.HasFieldMarshal bit for the attributed parameter); also enters a new row into the FieldMarshal8
table for both Parent and NativeType columns.9

MethodImplAttribute : sets the Method.ImplFlags field of the attributed method10

OutAttribute : sets the Param.Flags.Out bit for the attributed parameter11

StructLayoutAttribute : sets the TypeDef.Flags.LayoutMask sub-field for the attributed type. And,12
optionally, the TypeDef.Flags.StringFormatMask sub-field, the ClassLayout.PackingSiz ,and13
ClassLayout.ClassSize fields for that type.14

20.2 .2 Custom Attributes Defined by the CLS15

The CLS specifies certain Custom Attributes and requires that conformant languages support them. These16
attributes are located under System.17

Attribute Description

AttributeUsageAttribute Used to specify how an attribute is intended to be used.

ObsoleteAttribute Indicates that an element is not to be used.

CLSCompliantAttribute Indicates whether or not an element is declared to be CLS compliant
through an instance field on the attribute object.

18

20.2 .3 Custom Attributes for Security19

The following Custom Attributes affect the security checks performed upon method invocations at runtime.20
They are defined in the System.Security namespace.21

Attribute Description

DynamicSecurityMethodAttribute Indicates to the CLI that the method requires space to be
allocated for a security object

SuppressUnmanagedCodeSecurityAttribute Indicates the target method, implemented as unmanaged
code, should skip per-call checks

22
The following Custom Attributes are defined in the System.Security.Permissions. namespace. Note that23
these are all base classes; the actual instances of security attributes found in assemblies will be sub-classes of24
these.25

Attribute Description

CodeAccessSecurityAttribute This is the base attribute class for declarative security using
custom attributes.

DnsPermissionAttribute Custom attribute class for declarative security with
DnsPermission

EnvironmentPermissionAttribute Custom attribute class for declarative security with
EnvironmentPermission.



- 90 -

FileIOPermissionAttribute Custom attribute class for declarative security with
FileIOPermission.

ReflectionPermissionAttribute Custom attribute class for declarative security with
ReflectionPermission.

SecurityAttribute This is the base attribute class for declarative security from
which CodeAccessSecurityAttribute is derived.

SecurityPermissionAttribute Indicates whether the attributed method can affect security
settings

SiteIdentityPermissionAttribute Custom attribute class for declarative security with
SiteIdentityPermission.

SocketPermissionAttribute Custom attribute class for declarative security with
SocketPermission.

StrongNameIdentityPermissionAttribute Custom attribute class for declarative security with
StrongNameIdentityPermission.

WebPermissionAttribute Custom attribute class for declarative security with
WebPermission.

1
Note that any other security-related Custom Attributes (ie, any Custom Attributes that derive from2
System.Security.Permissions.SecurityAttribute) included into an assembly, may cause a conforming3
implementaion of the CLI to reject such an assembly when it is loaded, or throw an exception at runtime if any4
attempt is made to access those security-related Custom Attributes. (This statement in fact holds true for any5
Custom Attributes that cannot be resolved; security-related Custom Attributes are just one particular case)6

20.2 .4 Custom Attributes for TLS7

A Custom Attribute that denotes a TLS (thread-local storage) field is defined in the System. namespace8

Attribute Description

ThreadStaticAttribute Provides for type member fields that are relative for the thread.
9

20.2 .5 Custom Attributes, Various10

The following Custom Attributes control various aspects of the CLI:11

Attribute Description

ConditionalAttribute Used to mark methods as callable, based on some compile-time
condition. If the condition is false, the method will not be called

DecimalConstantAttribute Stores the value of a decimal constant in metadata

DefaultMemberAttribute Defines the member of a type that is the default member used by
reflection’s InvokeMember.

FlagsAttribute Custom attribute indicating an enumeration should be treated as a
bitfield; that is, a set of flags

IndexerNameAttribute Indicates the name by which an indexer will be known in
programming languages that do not support indexers directly

ParamArrayAttribute Indicates that the method will allow a variable number of
arguments in its invocation

12
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21 Metadata Logical Format: Tables1

This section defines the structures that describe metadata, and how they are cross-indexed. This corresponds to2
how metadata is laid out, after being read into memory from a PE file. (For a description of metadata layout3
inside the PE file itself, see Chapter 23)4

Metadata is stored in two kinds of structure – tables (arrays of records), and heaps. There are four heaps in any5
module: String, Blob, Userstring and Guid. The first three are byte arrays (so valid indexes into these heaps6
might be 0, 23, 25, 39, etc). The Guid heap is an array of GUIDs, each 16 bytes wide. Its first element is7
numbered 1, its second 2, and so on.8

Each entry in each column of each table is either a constant or an index.9

Constants are either literal values (eg ALG_SID_SHA1 = 4, stored in the HashAlgId column of the Assembly10
table), or, more commonly, bitmasks. Most bitmasks (they are almost all called “Flags”) are 2 bytes wide (eg11
the Flags column in the Field table), but there are a few that are 4 bytes (eg the Flags column in the TypeDef12
table)13

Each index is either 2 bytes wide, or 4 bytes wide. The index points into another (or the same) table, or into14
one of the four heaps. The size of each index column in a table is only made 4 bytes if it needs to be, for that15
particular module. So, if a particular column indexes a table, or tables, whose highest row number fits in a 2-16
byte value, the indexer column need only be 2 bytes wide. Conversely, for huge tables, containing 64K rows or17
more, an indexer of that table will be 4 bytes wide.18

Note that indexes begin at 1, meaning the first row in any given metadata table. An index value of zero denotes19
that it does not index a row at all (it behaves like a null reference)20

The columns that index a metadata table are of two sorts:21

• Simple – that column indexes one, and only one, table. e.g., the FieldList column in the TypeDef22
table always indexes the Field table. So all values in that column are simple integers, giving the23
row number in the target table24

• Coded – that column indexes any of several tables. e.g., the Extends column in the TypeDef table25
can index into the TypeDef table, or into the TypeRef table. A few bits of that index value are26
reserved to define which table it targets. For the most part, this specification talks of index values27
after being decoded into row numbers within the target table. However, the specification includes28
a description of these coded indexes in the section that describes the physical layout of Metadata29
(Chapter 23).30

Metadata preserves name strings, as created by a compiler or code generator, unchanged. Essentially it treats31
each string as an opaque 'blob'. In particular, it preserves case. The CLI imposes no limit on the size of names32
stored in metadata and subsequently processed by the CLI33

Matching AssemblyRefs and ModuleRefs to their corresponding Assembly and Module shall be performed34
case-blind (see Partition I). However, all other name matches (type, field, method, property, event) is exact –35
so that this level of resolution is the same across all platforms, whether their OS is case-sensitive or not.36

Tables are given both a name (eg "Assembly") and numbered (eg 0x20). The number for each table is listed37
immediately with its title in the following sections.38

A few of the tables represent extensions to regular CLI files. Specifically, ENCLog and ENCMap, which39
occur in temporary images, generated during "Edit and Continue" or "incremental compilation" scenarios,40
whilst debugging. Both table types are reserved for future use.41

References to the methods or fields of a Type are stored together in a metadata table called the MemberRef42
table. However, sometimes, for clearer explanation, this specification distinguishes between these two kinds43
of reference, calling them “MethodRef” and “FieldRef”.44

This contains informative text only 45
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21.1 Metadata Validation Rules1

The sections that follow describe the schema for each kind of metadata table, and explain the detailed rules that2
guarantee metadata emitted into any PE file is valid. Checking that metadata is valid ensures that later3
processing - checking the CIL instruction stream for type safety, building method tables, CIL-to-native-code4
compilation, data marshalling, etc will not cause the CLI to crash or behave in an insecure fashion.5

In addition, some of the rules are used to check compliance with the CLS requirements (see Partition I) even6
though these are not related to valid Metadata. These are marked with a trailing [CLS] tag.7

The rules for valid metadata refer to an individual module. A module is any collection of metadata that could8
typically be saved to a disk file. This includes the output of compilers and linkers, or the output of script9
compilers (where often the metadata is held only in memory, but never actually saved to a file on disk).10

The rules address intra-module validation only. So, validator software, for example, that checks conformance11
with this spec, need not resolve references or walk type hierarchies defined in other modules. However, it12
should be clear that even if two modules, A and B, analyzed separately, contain only valid metadata, they may13
still be in error when viewed together (e.g., a call from Module A, to a method defined in module B, might14
specify a callsite signature that does not match the signatures defined for that method in B)15

All checks are categorized as ERROR, WARNING or CLS.16

• An ERROR reports something that might cause a CLI to crash or hang, it might run but produce17
wrong answers; or it might be entirely benign. There may exist conforming implementations of18
the CLI that will not accept metadata that violates an ERROR rule, and therefore such metadata is19
invalid and is not portable.20

• A WARNING reports something, not actually wrong, but possibly a slip on the part of the21
compiler. Normally, it indicates a case where a compiler could have encoded the same22
information in a more compact fashion or where the metadata represents a construct that can have23
no actual use at runtime. All conforming implementations will support metadata that violate only24
WARNING rules; hence such metadata is both valid and portable.25

• A CLS reports lack of compliance with common language specification (see Partition I). Such26
metadata is both valid and portable, but there may exist programming languages that cannot27
process it, even though all conforming implementations of the CLI support the constructs.28

Validation rules fall into a few broad categories, as follows:29

• Number of Rows A few tables are allowed only one row (e.g. Module table). Most have no such30
restriction.31

• Unique Rows No table may contain duplicate rows, where “duplicate” is defined in terms of its32
key column, or combination of columns33

• Valid Indexes Columns which are indexes shall point somewhere sensible, as follows:34

o Every index into the String, Blob or Userstring heaps shall point into that heap, neither35
before its start (offset 0), nor after its end36

o Every index into the Guid heap shall lie between 1 and the maximum element number in37
this module, inclusive38

o Every index (row number) into another metadata table shall lie between 0 and that table’s39
row count + 1 (for some tables, the index may point just past the end of any target table,40
meaning it indexes nothing)41

• Valid Bitmasks Columns which are bitmasks shall only have valid permutations of bits set42

• Valid RVAs There are restrictions upon fields and methods that are assigned RVAs (Relative43
Virtual Addresses; these are byte offsets, expressed from the address at which the corresponding44
PE file is loaded into memory)45
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Note that some of the rules listed below say "nothing" - for example, some rules state that a particular table is1
allowed zero or more rows - so there is no way that the check can fail. This is done simply for completeness, to2
record that such details have indeed been addressed, rather than overlooked.3

End informative text 4

The CLI imposes no limit on the size of names stored in metadata, and subsequently processed by a CLI5
implementation.6

21.2 Assembly : 0x207

The Assembly table has the following columns:8

• HashAlgId (a 4 byte constant of type AssemblyHashAlgorithm, clause 22.1.1)9

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (2 byte constants)10

• Flags (a 4 byte bitmask of type AssemblyFlags, clause 22.1.2)11

• PublicKey (index into Blob heap)12

• Name (index into String heap)13

• Culture (index into String heap)14

The Assembly table is defined using the .assembly directive (see Section 6.2); its columns are obtained from15
the respective .hash algorithm, .ver, .publickey, and .culture (see clause 6.2.1 For an example see16
Section 6.2.17

This contains informative text only 18

22. The Assembly table may contain zero or one row [ERROR]19

23. HashAlgId should be one of the specified values [ERROR]20

24. Flags may have only those values set that are specified [ERROR]21

25. PublicKey may be null or non-null22

26. Name shall index a non-null string in the String heap [ERROR]23

27. The string indexed by Name can be of unlimited length24

28. Culture may be null or non-null25

29. If Culture is non-null, it shall index a single string from the list specified (see clause 22.1.3)26
[ERROR]27

Note: Name is a simple name (e.g., “Foo” - no drive letter, no path, no file extension); on POSIX-compliant28
systems Name contains no colon, no forward-slash, no backslash, no period.29

End informative text 30

21.3 AssemblyOS : 0x2231

The AssemblyOS table has the following columns:32

• OSPlatformID (a 4 byte constant)33

• OSMajorVersion (a 4 byte constant)34

• OSMinorVersion (a 4 byte constant)35

This record should not be emitted into any PE file. If present in a PE file, it should be treated as if all its fields36
were zero. It should be ignored by the CLI.37
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21.4 AssemblyProcessor : 0x211

The AssemblyProcessor table has the following column:2

• Processor (a 4 byte constant)3

This record should not be emitted into any PE file. If present in a PE file, it should be treated as if its field were4
zero. It should be ignored by the CLI.5

21.5 AssemblyRef : 0x236

The AssemblyRef table has the following columns:7

• MajorVersion, MinorVersion, BuildNumber, RevisionNumber (2 byte constants)8

• Flags (a 4 byte bitmask of type AssemblyFlags, clause 22.1.2)9

• PublicKeyOrToken (index into Blob heap – the public key or token that identifies the author of10
this Assembly)11

• Name (index into String heap)12

• Culture (index into String heap)13

• HashValue (index into Blob heap)14

The table is defined by the .assembly extern directive (see Section 6.3). Its columns are filled using directives15
similar to those of the Assembly table except for the PublicKeyOrToken column which is defined using the16
.publickeytoken directive. For an example see Section 6.3.17
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This contains informative text only 1

30. MajorVersion, MinorVersion, BuildNumber, RevisionNumber can each have any value2

31. Flags may have only one possible bit set – the PublicKey bit (see clause 22.1.2). All other bits3
shall be zero. [ERROR]4

32. PublicKeyOrToken my be null, or non-null (note that the Flags.PublicKey bit specifies whether5
the 'blob' is a full public key, or the short hashed token)6

33. If non-null, then PublicKeyOrToken shall index a valid offset in the Blob heap [ERROR]7

34. Name shall index a non-null string, in the String heap (there is no limit to its length). [ERROR]8

35. Culture may be null or non-null. If non-null, it shall index a single string from the list specified9
(see clause 22.1.3) [ERROR]10

36. HashValue may be null or non-null11

37. If non-null, then HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]12

38. The AssemblyRef table shall contain no duplicates, where duplicate rows have the same13
MajorVersion, MinorVersion, BuildNumber, RevisionNumber, PublicKeyOrToken, Name and14
Culture [WARNING]15

Note: Name is a simple name (e.g., “Foo” - no drive letter, no path, no file extension); on POSIX-compliant16
systems Name contains no colon, no forward-slash, no backslash, no period.End informative text17

21.6 AssemblyRefOS : 0x2518

The AssemblyRefOS table has the following columns:19

• OSPlatformId (4 byte constant)20

• OSMajorVersion (4 byte constant)21

• OSMinorVersion (4 byte constant)22

• AssemblyRef (index into the AssemblyRef table)23

These records should not be emitted into any PE file. If present in a PE file, they should be treated as-if their24
fields were zero. They should be ignored by the CLI.25

21.7 AssemblyRefProcessor : 0x2426

The AssemblyRefProcessor table has the following columns:27

• Processor (4 byte constant)28

• AssemblyRef (index into the AssemblyRef table)29

These records should not be emitted into any PE file. If present in a PE file, they should be treated as-if their30
fields were zero. They should be ignored by the CLI.31

21.8 ClassLayout : 0x0F32

The ClassLayout table is used to define how the fields of a class or value type shall be laid out by the CLI33
(normally, the CLI is free to reorder and/or insert gaps between the fields defined for a class or value type).34

Rationale: This feature is used to make a managed value type be laid out in exactly the same way as an35
unmanaged C struct – with this condition true, the managed value type can be handed to unmanaged code,36
which accesses the fields exactly as if that block of memory had been laid out by unmanaged code.37

The information held in the ClassLayout table depends upon the Flags value for {AutoLayout,38
SequentialLayout, ExplicitLayout} in the owner class or value type.39
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A type has layout if it is marked SequentialLayout or ExplicitLayout. If any type within an inheritance chain1
has layout, then so shall all its parents, up to the one that descends immediately from System.Object, or from2
System.ValueType.3

This contains informative text only 4

Layout cannot begin part way down the chain. But it is legal to stop “having layout” at any point down the5
chain.6

For example, in the diagrams below, Class A derives from System.Object; class B derives from A; class C7
derives from B. System.Object has no layout. But A, B and C are all defined with layout, and that is legal.8

9
10

Similarly with Classes E, F and G. G has no layout. This too is legal. The following picture shows two11
illegal setups:12

13
14

On the left, the “chain with layout” does not start at the ‘highest’ class. And on the right, there is a ‘hole’ in the15
“chain with layout”16

Layout information for a class or value type is held in two tables – the ClassLayout and FieldLayout tables, as17
shown in this diagram:18

19
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This example shows how row 3 of the ClassLayout table points to row 2 in the TypeDef table (the definition for1
a Class, called “MyClass”). Rows 4 through 6 of the FieldLayout table point to corresponding rows in the2
Field table. This illustrates how the CLI stores the explicit offsets for the three fields that are defined in3
“MyClass” (there is always one row in the FieldLayout table for each field in the owning class or value type)4
So, the ClassLayout table acts as an extension to those rows of the TypeDef table that have layout info; since5
many classes do not have layout info, this design overall saves space6

End informative text 7

The ClassLayout table has the following columns:8

• PackingSize (a 2 byte constant)9

• ClassSize (a 4 byte constant)10

• Parent (index into TypeDef table)11

The rows of the ClassLayout table are defined by placing .pack and .size directives on the body of a parent12
type declaration (see Section 9.2). For an example see Section 9.7.13

This contains informative text only 14

39. A ClassLayout table may contain zero or more or rows15

40. Parent shall index a valid row in the TypeDef table, corresponding to a Class or ValueType (not16
to an Interface) [ERROR]17

41. The Class or ValueType indexed by Parent shall not be AutoLayout - i.e., it shall be one of18
SequentialLayout or ExplicitLayout. (See clause 22.1.14). Put another way, AutoLayout types19
shall not own any rows in the ClassLayout table. [ERROR]20

42. If Parent indexes a SequentialLayout type, then: [ERROR]21

o PackingSize shall be one of {0, 1, 2, 4, 8, 16, 32, 64, 128} (0 means use the default pack size22
for the platform that the application is running on)23

o if ClassSize is non-zero, then it shall be greater than or equal to the calculated size of the24
class, based upon its field sizes and PackingSize (compilers request padding at the end of a25
class by providing a value for ClassSize that is larger than its calculated size) [ERROR]26

o a ClassSize of zero does not mean the class has zero size. It means, no size was specified at27
definition time. Instead, the actual size is calculated from the field types, taking account of28
packing size (default or specified) and natural alignment on the target, runtime platform29

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)30

43. Note that ExplicitLayout types might result in verifiable types, so long as that layout does not31
create union types.32

44. If Parent indexes an ExplicitLayout type, then [ERROR]33

o if ClassSize is non-zero, then it shall be greater than or equal to the calculated size of the34
class, based upon the rows it owns in the FieldLayout table (compilers create padding at the35
end of a class by providing a value for ClassSize that is larger than its calculated size)36

o a ClassSize of zero does not mean the class has zero size. It means, no size was specified at37
definition time. Instead, the actual size is calculated from the field types, their specified38
offsets, and any beyond-end alignment packing performed by the target platform39

o if Parent indexes a ValueType, then ClassSize shall be less than 1 MByte (0x100000 bytes)40

o PackingSize shall be 0 (because it makes no sense to provide explicit offsets for each field,41
as well as a packing size)42

45. Layout along the length of an inheritance chain shall follow the rules specified above (starts at43
‘highest’ Type, with no ‘holes’, etc) [ERROR]44
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End informative text 1

21.9 Constant : 0x0B2

The Constant table is used to store compile-time, constant values for fields, parameters and properties.3

The Constant table has the following columns:4

• Type (a 1 byte constant, followed by a 1-byte padding zero) : see Clause 22.1.15 . The encoding5
of Type for the nullref value for <fieldInit> in ilasm (see Section 15.2) is ELEMENT_TYPE_CLASS6
with a Value of zero. Unlike uses of ELEMENT_TYPE_CLASS in signatures, this one is not followed7
by a type token.8

• Parent (index into the Param or Field or Property table; more precisely, a HasConst coded index)9

• Value (index into Blob heap)10

Note that Constant information does not directly influence runtime behavior. Compilers inspect this11
information, at compile time, when importing metadata; but the value of the constant itself, if used, becomes12
embedded into the CIL stream the compiler emits. There are no CIL instructions to access the Constant table at13
runtime.14

A row in the Constant table for a parent is created whenever a compile-time value is specified for that parent,15
for an example see Section 15.2.16

This contains informative text only 17

46. Type shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR, ELEMENT_TYPE_I1,18
ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4,19
ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4,20
ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING; or ELEMENT_TYPE_CLASS with a Value of zero (See21
clause 22.1.15) [ERROR]22

47. Type shall not be any of: ELEMENT_TYPE_I1, ELEMENT_TYPE_U2, ELEMENT_TYPE_U4,23
ELEMENT_TYPE_U8 (See clause 22.1.15) [CLS]24

48. Parent shall index a valid row in the Field or Property or Param table [ERROR]25

49. There shall be no duplicate rows, based upon Parent [ERROR]26

50. Constant.Type must match exactly the declared type of the Param, Field or Property identified by27
Parent (in the case where the parent is an enum, it must match exactly the underlying type of that28
enum) [CLS]29

End informative text 30

21.10 CustomAttribute : 0x0C31

The CustomAttribute table has the following columns:32

• Parent (index into any metadata table, except the CustomAttribute table itself; more precisely, a33
HasCustomAttribute coded index)34

• Type (index into the Method or MethodRef table; more precisely, a CustomAttributeType coded35
index)36

• Value (index into Blob heap)37

The CustomAttribute table stores data that can be used to instantiate a Custom Attribute (more precisely, an38
object of the specified Custom Attribute class) at runtime. The column called Type is slightly misleading – it39
actually indexes a constructor method – the owner of that constructor method is the Type of the Custom40
Attribute.41
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A row in the CustomAttribute table for a parent is created by the .custom attribute, which gives the value of1
the Type column and optionally that of the Value column (see Chapter 0)2

This contains informative text only 3

All binary values are stored in little-endian format (except PackedLen items - used only as counts for the4
number of bytes to follow in a UTF8 string)5

51. It is legal for there to be no CustomAttribute present at all - that is, for the CustomAttribute.Value6
field to be null7

52. Parent can be an index into any metadata table, except the CustomAttribute table itself [ERROR]8

53. Type shall index a valid row in the Method or MethodRef table. That row shall be a constructor9
method (for the class of which this information forms an instance) [ERROR]10

54. Value may be null or non-null11

55. If Value is non-null, it shall index a 'blob' in the Blob heap [ERROR]12

56. The following rules apply to the overall structure of the Value 'blob'(see Section 22.3):13

o Prolog shall be 0x0001 [ERROR]14

o There shall be as many occurrences of FixedArg as are declared in the Constructor method15
[ERROR]16

o NumNamed may be zero or more17

o There shall be exactly NumNamed occurrences of NamedArg [ERROR]18

o Each NamedArg shall be accessible by the caller [ERROR]19

o If NumNamed = 0 then there shall be no further items in the CustomAttrib [ERROR]20

57. The following rules apply to the structure of FixedArg (see Section 22.3):21

o If this item is not for a vector (a single-dimension array with lower bound of 0), then there22
shall be exactly one Elem [ERROR]23

o If this item is for a vector, then:24

o NumElem shall be 1 or more [ERROR]25

o This shall be followed by NumElem occurrences of Elem [ERROR]26

58. The following rules apply to the structure of Elem (see Section 22.3):27

o If this is a simple type or an enum (see Section 22.3 for how this is defined), then Elem28
consists simply of its value [ERROR]29

o If this is a string, or a Type, then Elem consists of a SerString – PackedLen count of bytes,30
followed by the UTF8 characters [ERROR]31

o If this is a boxed simple value type (bool, char, float32, float64, int8, int16, int32, int64,32
unsigned int8, unsigned int16, unsigned int32 or unsigned int64), then Elem consists of the33
corresponding type denoter (ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,34
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2,35
ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8,36
ELEMENT_TYPE_R4, ELEMENT_TYPE_R8), followed by its value. [ERROR]37

59. The following rules apply to the structure of NamedArg (see Section 22.3):38

o The single byte FIELD (0x53) or PROPERTY (0x54) [ERROR]39

o The type of the field or property -- one of ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,40
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2,41
ELEMENT_TYPE_I4, ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8,42
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ELEMENT_TYPE_R4, ELEMENT_TYPE_R8, ELEMENT_TYPE_STRING or the constant 0x50 (for an1
argument of type System.Type)2

o The name of the Field or Property, respectively with the previous item, as a SerString –3
PackedLen count of bytes, followed by the UTF8 characters of the name [ERROR]4

o A FixedArg (see above) [ERROR]5

End informative text 6

21.11 DeclSecurity : 0x0E7

Security attributes, which derive from System.Security.Permissions.SecurityAttribute (see Partition IV),8
can be attached to a TypeDef, a Method or to an Assembly. All constructors of this class shall take a9
System.Security.Permissions.SecurityAction value as their first parameter, describing what should be10
done with the permission on the type, method or assembly to which it is attached. Code access security11
attributes, which derive from System.Security.Permissions.CodeAccessSecurityAttribute, may have any12
of the security actions.13

These different security actions are encoded in the DeclSecurity table as a 2-byte enum (see below). All14
security custom attributes for a given security action on a method, type or assembly shall be gathered together15
and one System.Security.PermissionSet instance shall be created, stored in the Blob heap, and referenced16
from the DeclSecurity table.17

Note: The general flow from a compiler’s point of view is as follows. The user specifies a custom attribute18
through some language-specific syntax that encodes a call to the attribute’s constructor. If the attribute’s type is19
derived (directly or indirectly) from System.Security.Permissions.SecurityAttribute then it is a security20
custom attribute and requires special treatment, as follows (other custom attributes are handled by simply21
recording the constructor in the metadata as described in Section 21.10). The attribute object is constructed, and22
provides a method (CreatePermission) to convert it into a security permission object (an object derived from23
System.Security.Permission). All the permission objects attached to a given metadata item with the same24
security action are combined together into a System.Security.PermissionSet. This permission set is25
converted into a form that is ready to be stored in XML using its ToXML method to create a26
System.Security.SecurityElement. Finally, the XML that is required for the metadata is created using the27
ToString method on the security element.28

The DeclSecurity table has the following columns:29

• Action (2 byte value)30

• Parent (index into the TypeDef, Method or Assembly table; more precisely, a HasDeclSecurity31
coded index)32

• PermissionSet (index into Blob heap)33

Action is a 2-byte representation of Security Actions, see System.Security.SecurityAction in Partition IV.34
The values 0 through 0xFF are reserved for future standards use. Values 0x20 through 0x7F and 0x10035
through 0x07FF are for uses where the action may be ignored if it is not understood or supported. Values 0x8036
through 0xFF and 0x0800 through 0xFFFF are for uses where the action shall be implemented for secure37
operation; in implementations where the action is not available no access to the assembly, type, or method shall38
be permitted.39

Security Action Note Explanation of behavior Legal Scope

Assert 1 Without further checks satisfy Demand for
specified permission

Method, Type

Demand 1 Check all callers in the call chain have been
granted specified permission, throw
SecurityException (see Partition IV) on failure

Method, Type

Deny 1 Without further checks refuse Demand for
specified permission

Method, Type
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specified permission

InheritanceDemand 1 Specified permission shall be granted in order to
inherit from class or override virtual method.

Method, Type

LinkDemand 1 Check immediate caller has been granted
specified permission, throw SecurityException

(see Partition IV) on failure

Method, Type

PermitOnly 1 Without further checks refuse Demand for all
permissions other than those specified.

Method, Type

RequestMinimum Specify minimum permissions required to run Assembly

RequestOptional Specify optional permissions to grant Assembly

RequestRefuse Specify permissions not to be granted Assembly

NonCasDemand 2 Check that current assembly has been granted
specified permission, throw SecurityException

(see Partition IV) otherwise

Method, Type

NonCasLinkDemand 2 Check that immediate caller has been granted
specified permission, throw SecurityException

(see Partition IV) otherwise

Method, Type

PrejitGrant Reserved for implementation-specific use Assembly
1

Note 1: Specified attribute shall derive from System.Security.Permissions.CodeAccess-2
SecurityAttribute3

Note 2: Attribute shall derive from System.Security.Permissions.SecurityAttribute, but shall not derive4
from System.Security.Permissions.CodeAccessSecurityAttribute5

Parent is a Meta Data token that identifies the Method, Type or Assembly on which security custom attributes6
serialized in PermissionSet was defined.7

PermissionSet is a 'blob' that contains the XML serialization of a permission set. The permission set contains8
the permissions that were requested with an Action on a specific Method, Type or Assembly (see Parent).9

The rows of the DeclSecurity table are filled by attaching a .permission or .permissionset directive that10
specifies the Action and PermissionSet on a parent assembly (see Section 6.6) or parent type or method (see11
Section 9.2).12

This contains informative text only 13

60. Action may have only those values set that are specified [ERROR]14

61. Parent shall be one of TypeDef, MethodDef, or Assembly. That is, it shall index a valid row in15
the TypeDef table, the MethodDef table, or the Assembly table [ERROR]16

62. If Parent indexes a row in the TypeDef table, that row should not define an Interface. The17
security system ignores any such parent; compilers should not emit such permissions sets18
[WARNING]19

63. If Parent indexes a TypeDef, then its TypeDef.Flags.HasSecurity bit should be set [ERROR]20

64. If Parent indexes a MethodDef, then its MethodDef.Flags.HasSecurity bit should be set21
[ERROR]22

65. PermissionSet should index a 'blob' in the Blob heap [ERROR]23

66. The format of the 'blob' indexed by PermissionSet should represent a valid, serialized CLI object24
graph. The serialized form of all standardized permissions is specified in Partition IV. [ERROR]25

End informative text 26
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21.12 EventMap : 0x121

The EventMap table has the following columns:2

• Parent (index into the TypeDef table)3

• EventList (index into Event table). It marks the first of a contiguous run of Events owned by this4
Type. The run continues to the smaller of:5

o the last row of the Event table6

o the next run of Events, found by inspecting the EventList of the next row in the EventMap7
table8

Note that EventMap info does not directly influence runtime behavior; what counts is the info stored for each9
method that the event comprises.10

This contains informative text only 11

67. EventMap table may contain zero or more rows12

68. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the13
start of its event list) [ERROR]14

69. There shall be no duplicate rows, based upon EventList (different classes cannot share rows in the15
Event table) [ERROR]16

End informative text 17

21.13 Event : 0x1418

Events are treated within metadata much like Properties – a way to associate a collection of methods defined on19
given class. There are two required methods – add_ and remove_, plus optional raise_ and others. All of the20
methods gathered together as an Event shall be defined on the class.21

The association between a row in the TypeDef table and the collection of methods that make up a given Event,22
is held in three separate tables (exactly analogous to that used for Properties) – see the below:23

24

25

Row 3 of the EventMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row 426
of the Event table on the right – the row for an Event called DocChanged. This setup establishes that MyClass27
has an Event called DocChanged. But what methods in the Method table are gathered together as ‘belonging’28
to event DocChanged? That association is contained in the MethodSemantics table – its row 2 indexes event29
DocChanged to the right, and row 2 in the Method table to the left (a method called add_DocChanged). Also,30
row 3 of the MethodSemantics table indexes DocChanged to the right, and row 3 in the Method table to the left31
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(a method called remove_DocChanged). As the shading suggests, MyClass has another event, called1
TimedOut, with two methods, add_TimedOut and remove_TimedOut.2

Event tables do a little more than group together existing rows from other tables. The Event table has columns3
for EventFlags, Name (eg DocChanged and TimedOut in the example here) and EventType. In addition, the4
MethodSemantics table has a column to record whether the method it points at is an add_, a remove_, a raise_,5
or other.6

The Event table has the following columns:7

• EventFlags (a 2 byte bitmask of type EventAttribute, clause 22.1.4)8

• Name (index into String heap)9

• EventType (index into TypeDef, TypeRef or TypeSpec tables; more precisely, a TypeDefOrRef10
coded index) [this corresponds to the Type of the Event; it is not the Type that owns this event]11

Note that Event information does not directly influence runtime behavior; what counts is the information stored12
for each method that the event comprises.13

The EventMap and Event tables result from putting the .event directive on a class (see Chapter 17).14

This contains informative text only 15

70. The Event table may contain zero or more rows16

71. Each row shall have one, and only one, owner row in the EventMap table [ERROR]17

72. EventFlags may have only those values set that are specified (all combinations valid) [ERROR]18

73. Name shall index a non-null string in the String heap [ERROR]19

74. The Name string shall be a valid CLS identifier [CLS]20

75. EventType may be null or non-null21

76. If EventType is non-null, then it shall index a valid row in the TypeDef or TypeRef table22
[ERROR]23

77. If EventType is non-null, then the row in TypeDef , TypeRef, or TypeSpec table that it indexes24
shall be a Class (not an Interface; not a ValueType) [ERROR]25

78. For each row, there shall be one add_ and one remove_ row in the MethodSemantics table26
[ERROR]27

79. For each row, there can be zero or one raise_ row, as well as zero or more other rows in the28
MethodSemantics table [ERROR]29

80. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based30
upon Name [ERROR]31

81. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS32
conflicting-identifier-rules [CLS]33

End informative text 34

21.14 ExportedType : 0x2735

The ExportedType table holds a row for each type, defined within other modules of this Assembly, that is36
exported out of this Assembly. In essence, it stores TypeDef row numbers of all types that are marked public in37
other modules that this Assembly comprises.38

The actual target row in a TypeDef table is given by the combination of TypeDefId (in effect, row number) and39
Implementation (in effect, the module that holds the target TypeDef table). Note that this is the only occurrence40
in metadata of foreign tokens – that is token values that have a meaning in another module. (Regular token41
values are indexes into table in the current module)42
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The full name of the type need not be stored directly. Instead, it may be split into two parts at any included “.”1
(although typically this done at the last “.” in the full name). The part preceding the “.” is stored as the2
TypeNamespace and that following the “.” is stored as the TypeName. If there is no “.” in the full name, then3
the TypeNamespace shall be the index of the empty string.4

The ExportedType table has the following columns:5

• Flags (a 4 byte bitmask of type TypeAttributes, clause 22.1.14)6

• TypeDefId (4 byte index into a TypeDef table of another module in this Assembly). This field is7
used as a hint only. If the entry in the target TypeDef table matches the TypeName and8
TypeNamespace entries in this table, resolution has succeeded. But if there is a mismatch, the9
CLI shall fall back to a search of the target TypeDef table10

• TypeName (index into the String heap)11

• TypeNamespace (index into the String heap)12

• Implementation. This can be an index (more precisely, an Implementation coded index) into one13
of 2 tables, as follows:14

o File table, where that entry says which module in the current assembly holds the TypeDef15

o ExportedType table, where that entry is the enclosing Type of the current nested Type16

The rows in the ExportedType table are the result of the .class extern directive (see Section 6.7).17

This contains informative text only 18

The term “FullName” refers to the string created as follows: if the TypeNamespace is null, then use the19
TypeName, otherwise use the concatenation of Typenamespace, “.”, and TypeName.20

82. The ExportedType table may contain zero or more rows21

83. There shall be no entries in the ExportedType table for Types that are defined in the current22
module - just for Types defined in other modules within the Assembly [ERROR]23

84. Flags may have only those values set that are specified [ERROR]24

85. If Implementation indexes the File table, then Flags.VisibilityMask shall be public (see25
clause 22.1.14) [ERROR]26

86. If Implementation indexes the ExportedType table, then Flags.VisibilityMask shall be27
NestedPublic (see see clause 22.1.14) [ERROR]28

87. If non-null, TypeDefId should index a valid row in a TypeDef table in a module somewhere within29
this Assembly (but not this module), and the row so indexed should have its Flags.Public = 130
(see see clause 22.1.14) [WARNING]31

88. TypeName shall index a non-null string in the String heap [ERROR]32

89. TypeNamespace may be null, or non-null33

90. If TypeNamespace is non-null, then it shall index a non-null string in the String heap [ERROR]34

91. FullName shall be a valid CLS identifier [CLS]35

92. If this is a nested Type, then TypeNamespace should be null, and TypeName should represent the36
unmangled, simple name of the nested Type [ERROR]37

93. Implementation shall be a valid index into either: [ERROR]38

• the File table; that file shall hold a definition of the target Type in its TypeDef table39

• a different row in the current ExportedType table - this identifies the enclosing Type of the40
current, nested Type41
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94. FullName shall match exactly the corresponding FullName for the row in the TypeDef table1
indexed by TypeDefId [ERROR]2

95. Ignoring nested Types, there shall be no duplicate rows, based upon FullName [ERROR]3

96. For nested Types, there shall be no duplicate rows, based upon TypeName and enclosing Type4
[ERROR]5

97. The complete list of Types exported from the current Assembly is given as the catenation of the6
ExportedType table with all public Types in the current TypeDef table, where “public” means a7
Flags.tdVisibilityMask of either Public or NestedPublic. There shall be no duplicate rows, in this8
concatenated table, based upon FullName (add Enclosing Type into the duplicates check if this is9
a nested Type) [ERROR]10

End informative text 11

21.15 Field : 0x0412

The Field table has the following columns:13

• Flags (a 2 byte bitmask of type FieldAttributes, clause 22.1.5)14

• Name (index into String heap)15

• Signature (index into Blob heap)16

Conceptually, each row in the Field table is owned by one, and only one, row in the TypeDef table. However,17
the owner of any row in the Field table is not stored anywhere in the Field table itself. There is merely a18
‘forward-pointer’ from each row in the TypeDef table (the FieldList column), as shown in the following19
illustration.20

21

The TypeDef table has rows 1 through 4. The first row in the TypeDef table corresponds to a pseudo type,22
inserted automatically by the CLI. It is used to denote those rows in the Field table corresponding to global23
variables. The Field table has rows 1 through 6. Type 1 (pseudo type for ‘module’) owns rows 1 and 2 in the24
Field table. Type 2 owns no rows in the Field table, even though its FieldList indexes row 3 in the Field table.25
Type 3 owns rows 3 through 5 in the Field table. Type 4 owns row 6 in the Field table. (The next pointers in26
the diagram show the next free row in each table) So, in the Field table, rows 1 and 2 belong to Type 1 (global27
variables); rows 3 through 5 belong to Type 3; row 6 belongs to Type 4.28

Each row in the Field table results from a toplevel .field directive (see Section 5.10), or a .field directive inside29
a Type (see Section 9.2). For an example see Section 0.30

This contains informative text only 31

98. Field table may contain zero or more rows32

99. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]33

100. The owner row in the TypeDef table shall not be an Interface [CLS]34

101. Flags may have only those set that are specified [ERROR]35

102. The FieldAccessMask subfield of Flags shall contain precisely one of Compilercontrolled,36
Private, FamANDAssem, Assembly, Family, FamORAssem, or Public (see clause 22.1.5) [ERROR]37
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103. Flags may set 0 or 1 of Literal or InitOnly (not both) (see clause 22.1.5) [ERROR]1

104. If Flags.Literal = 1 then Flags.Static shall be 1 too (see clause 22.1.5) [ERROR]2

105. If Flags.RTSpecialName = 1, then Flags.SpecialName shall also be 1 (see clause 22.1.5)3
[ERROR]4

106. If Flags.HasFieldMarshal = 1, then this row shall ‘own’ exactly one row in the FieldMarshal5
table (see clause 22.1.5) [ERROR]6

107. If Flags.HasDefault = 1, then this row shall ‘own’ exactly one row in the Constant table (see7
clause 22.1.5) [ERROR]8

108. If Flags.HasFieldRVA = 1, then this row shall ‘own’ exactly one row in the Field’s RVA table9
(see clause 22.1.5) [ERROR]10

109. Name shall index a non-null string in the String heap [ERROR]11

110. The Name string shall be a valid CLS identifier [CLS]12

111. Signature shall index a valid field signature in the Blob heap [ERROR]13

112. If Flags.Compilercontrolled = 1 (see clause 22.1.5), then this row is ignored completely in14
duplicate checking.15

113. If the owner of this field is the internally-generated type called <Module>, it denotes that this16
field is defined at module scope (commonly called a global variable). In this case:17

o Flags.Static shall be 1 [ERROR]18

o Flags.MemberAccessMask subfield shall be one of Public, Compilercontrolled, or19
Private (see clause 22.1.5) [ERROR]20

o module-scope fields are not allowed [CLS]21

114. There shall be no duplicate rows in the Field table, based upon owner+Name+Signature (where22
owner is the owning row in the TypeDef table, as described above) (Note however that if23
Flags.Compilercontrolled = 1, then this row is completely excluded from duplicate checking)24
[ERROR]25

115. There shall be no duplicate rows in the Field table, based upon owner+Name, where Name fields26
are compared using CLS conflicting-identifier-rules. So, for example,"int i" and "float i"27
would be considered CLS duplicates. (Note however that if Flags.Compilercontrolled = 1, then28
this row is completely excluded from duplicate checking, as noted above) [CLS]29

116. If this is a field of an Enum, and Name string = "value__" then:30

b. RTSpecialName shall be 1 [ERROR]31

owner row in TypeDef table shall derive directly from System.Enum [ERROR]32

the owner row in TypeDef table shall have no other instance fields [CLS]33

its Signature shall be one of (see clause 22.1.15 ): [CLS]34

• ELEMENT_TYPE_U135

• ELEMENT_TYPE_I236

• ELEMENT_TYPE_I437

• ELEMENT_TYPE_I838

117. its Signature shall be an integral type.39

End informative text 40
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21.16 FieldLayout : 0x101

The FieldLayout table has the following columns:2

• Offset (a 4 byte constant)3

• Field (index into the Field table)4

Note that each Field in any Type is defined by its Signature. When a Type instance (ie, an object) is laid out by5
the CLI, each Field is one of three kinds:6

• Scalar – for any member of built-in, such as int32. The size of the field is given by the size of7
that intrinsic, which varies between 1 and 8 bytes8

• ObjectRef – for CLASS, STRING, OBJECT, ARRAY, SZARRAY9

• Pointer – for PTR, FNPTR10

• ValueType – for VALUETYPE. The instance of that ValueType is actually laid out in this object, so11
the size of the field is the size of that ValueType12

(This lists above use an abbreviation – each all-caps name should be prefixed by ELEMENT_TYPE_ so, for13
example, STRING is actually ELEMENT_TYPE_STRING. See clause 22.1.15)14

Note that metadata specifying explicit structure layout may be valid for use on one platform but not another,15
since some of the rules specified here are dependent on platform-specific alignment rules.16

A row in the FieldLayout table is created if the .field directive for the parent field has specified a field offset17
(see Section 9.7).18

This contains informative text only 19

118. A FieldLayout table may contain zero or more or rows20

119. The Type whose Fields are described by each row of the FieldLayout table shall have21
Flags.ExplicitLayout (see clause 22.1.14) set [ERROR]22

120. Offset shall be zero or more (cannot be negative) [ERROR]23

121. Field shall index a valid row in the Field table [ERROR]24

122. The row in the Field table indexed by Field shall be non-static (ie its Flags.Static shall be 0)25
[ERROR]26

123. Among the rows owned by a given Type there shall be no duplicates, based upon Field. That is,27
a given Field of a Type cannot be given two offsets. [ERROR]28

124. Each Field of kind ObjectRef shall be naturally aligned within the Type [ERROR]29

125. No Field of kind ObjectRef may overlap any other Field no matter what its kind, wholly or30
partially [ERROR]31

126. Among the rows owned by a given Type it is perfectly legal for several rows to have the same32
value of Offset, so long as they are not of type ObjectRef (used to define C unions, for example)33
[ERROR]34

127. If ClassSize in the owner ClassLayout row is non-zero, then no Field may extend beyond that35
ClassSize (ie, the Field Offset value plus the Field’s calculated size shall not exceed ClassSize)36
(note that it is legal, and common, for ClassSize to be supplied as larger than the calculated37
object size - the CLI pads the object with trailing bytes up to the ClassSize value) [ERROR]38

128. Every Field of an ExplicitLayout Type shall be given an offset - that is, it shall have a row in the39
FieldLayout table [ERROR]40

End informative text 41
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21.17 FieldMarshal : 0x0D1

The FieldMarshal table has two columns. It ‘links’ an existing row in the Field or Param table, to information2
in the Blob heap that defines how that field or parameter (which, as usual, covers the method return, as3
parameter number 0) should be marshalled when calling to or from unmanaged code via PInvoke dispatch.4

Note that FieldMarshal information is used only by code paths that arbitrate operation with unmanaged code.5
In order to execute such paths, the caller, on most platforms, would be installed with elevated security6
permission. Once it invokes unmanaged code, it lies outside the regime that the CLI can check - it is simply7
trusted not to violate the type system.8

The FieldMarshal table has the following columns:9

• Parent (index into Field or Param table; more precisely, a HasFieldMarshal coded index)10

• NativeType (index into the Blob heap)11

For the detailed format of the 'blob', see Section 012

A row in the FieldMarshal table is created if the .field directive for the parent field has specified a .marshall13
attribute (see Section 15.1).14

This contains informative text only 15

129. A FieldMarshal table may contain zero or more rows16

130. Parent shall index a valid row in the Field or Param table (Parent values are encoded to say17
which of these two tables each refers to) [ERROR]18

131. NativeType shall index a non-null 'blob' in the Blob heap [ERROR]19

132. No two rows can point to the same parent. In other words, after the Parent values have been20
decoded to determine whether they refer to the Field or the Param table, no two rows can point to21
the same row in the Field table or in the Param table [ERROR]22

133. The following checks apply to the MarshalSpec 'blob' (see Section 0):23

c. NativeIntrinsic shall be exactly one of the constant values in its production [ERROR]24

If NativeIntrinsic has the value BYVALSTR, then Parent shall point to a row in the Field table, not25
the Param table [ERROR]26

If FIXEDARRAY, then Parent shall point to a row in the Field table, not the Param table [ERROR]27

If FIXEDARRAY, then NumElem shall be 1 or more [ERROR]28

If FIXEDARRAY, then ArrayElemType shall be exactly one of the constant values in its production29
[ERROR]30

If ARRAY, then ArrayElemType shall be exactly one of the constant values in its production31
[ERROR]32

If ARRAY, then ParamNum may be zero33

If ARRAY, then ParamNum cannot be < 0 [ERROR]34

If ARRAY, and ParamNum > 0, then Parent shall point to a row in the Param table, not in the Field35
table [ERROR]36

If ARRAY, and ParamNum > 0, then ParamNum cannot exceed the number of parameters supplied37
to the MethodDef (or MethodRef if a VARARG call) of which the parent Param is a member38
[ERROR]39

If ARRAY, then ElemMult shall be >= 1 [ERROR]40

If ARRAY and ElemMult <> 1 issue a warning, because it is probably a mistake [WARNING]41

If ARRAY and ParamNum == 0, then NumElem shall be >= 1 [ERROR]42
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If ARRAY and ParamNum != 0 and NumElem != 0 then issue a warning, because it is probably a1
mistake [WARNING]2

End informative text 3

21.18 FieldRVA : 0x1D4

The FieldRVA table has the following columns:5

• RVA (a 4 byte constant)6

• Field (index into Field table)7

Conceptually, each row in the FieldRVA table is an extension to exactly one row in the Field table, and records8
the RVA (Relative Virtual Address) within the image file at which this field’s initial value is stored.9

A row in the FieldRVA table is created for each static parent field that has specified the optional data label (see10
Chapter 0). The RVA column is the relative virtual address of the data in the PE file (see Section 15.3).11

This contains informative text only 12

134. RVA shall be non-zero [ERROR]13

135. RVA shall point into the current module’s data area (not its metadata area) [ERROR]14

136. Field shall index a valid table in the Field table [ERROR]15

137. Any field with an RVA shall be a ValueType (not a Class, and not an Interface). Moreover, it16
shall not have any private fields (and likewise for any of its fields that are themselves17
ValueTypes). (If any of these conditions were breached, code could overlay that global static and18
access its private fields.) Moreover, no fields of that ValueType can be Object References (into19
the GC heap) [ERROR]20

138. So long as two RVA-based fields comply with the previous conditions, the ranges of memory21
spanned by the two ValueTypes may overlap, with no further constraints. This is not actually an22
additional rule; it simply clarifies the position with regard to overlapped RVA-based fields23

End informative text 24

21.19 File : 0x2625

The File table has the following columns:26

• Flags (a 4 byte bitmask of type FileAttributes, clause 22.1.6)27

• Name (index into String heap)28

• HashValue (index into Blob heap)29

The rows of the File table result from .file directives in an Assembly (see clause 6.2.3)30

This contains informative text only 31

139. Flags may have only those values set that are specified (all combinations valid) [ERROR]32

140. Name shall index a non-null string in the String heap. It shall be in the format33
<filename>.<extension> (eg “foo.dll”, but not “c:\utils\foo.dll”) [ERROR]34

141. HashValue shall index a non-empty 'blob' in the Blob heap [ERROR]35

142. There shall be no duplicate rows - rows with the same Name value [ERROR]36

143. If this module contains a row in the Assembly table (that is, if this module “holds the manifest”)37
then there shall not be any row in the File table for this module - i.e., no self-reference [ERROR]38
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144. If the File table is empty, then this, by definition, is a single-file assembly. In this case, the1
ExportedType table should be empty [WARNING]2

End informative text 3

21.20 ImplMap : 0x1C4

The ImplMap table holds information about unmanaged methods that can be reached from managed code,5
using PInvoke dispatch.6

Each row of the ImplMap table associates a row in the Method table (MemberForwarded) with the name of a7
routine (ImportName) in some unmanaged DLL (ImportScope).8

Note: A typical example would be: associate the managed Method stored in row N of the Method table (so9
MemberForwarded would have the value N) with the routine called “GetEnvironmentVariable” (the string10
indexed by ImportName) in the DLL called “kernel32” (the string in the ModuleRef table indexed by11
ImportScope). The CLI intercepts calls to managed Method number N, and instead forwards them as calls to12
the unmanged routine called “GetEnvironmentVariable” in “kernel32.dll” (including marshalling any13
arguments, as required)14

The CLI does not support this mechanism to access fields that are exported from a DLL -- only methods.15

The ImplMap table has the following columns:16

• MappingFlags (a 2 byte bitmask of type PInvokeAttributes, clause 22.1.7)17

• MemberForwarded (index into the Field or Method table; more precisely, a MemberForwarded18
coded index. However, it only ever indexes the Method table, since Field export is not supported.19

• ImportName (index into the String heap)20

• ImportScope (index into the ModuleRef table)21

A row is entered in the ImplMap table for each parent Method (see Section 14.5) that is defined with a22
.pinvokeimpl interoperation attribute specifying the MappingFlags, ImportName and ImportScope. For an23
example see Section 14.5.24

This contains informative text only 25

145. ImplMap may contain zero or more rows26

146. MappingFlags may have only those values set that are specified [ERROR]27

147. MemberForwarded shall index a valid row in the Method table [ERROR]28

148. The MappingFlags.CharSetMask (see clause 22.1.7) in the row of the Method table indexed by29
MemberForwarded shall have at most one of the following bits set: CharSetAnsi,30
CharSetUnicode, or CharSetAuto} (if none set, the default is CharSetNotSpec) [ERROR]31

149. ImportName shall index a non-null string in the String heap [ERROR]32

150. ImportScope shall index a valid row in the ModuleRef table [ERROR]33

151. The row indexed in the Method table by MemberForwarded shall have its Flags.PinvokeImpl = 1,34
and Flags.Static = 1 [ERROR]35

End informative text 36

21.21 InterfaceImpl : 0x0937

The InterfaceImpl table has the following columns:38

• Class (index into the TypeDef table)39
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• Interface (index into the TypeDef, TypeRef or TypeSpec table; more precisely, a TypeDefOrRef1
coded index)2

The InterfaceImpl table records which interfaces a Type implements. Conceptually, each row in the3
InterfaceImpl table says that Class implements Interface.4

This contains informative text only 5

152. The InterfaceImpl table may contain zero or more rows6

153. Class shall be non-null [ERROR]7

154. If Class is non-null, then:8

d. Class shall index a valid row in the TypeDef table [ERROR]9

Interface shall index a valid row in the TypeDef or TypeRef table [ERROR]10

The row in the TypeDef, TypeRef or TypeSpec table indexed by Interface shall be an interface11
(Flags.Interface = 1), not a Class or ValueType [ERROR]12

155. There should be no duplicates in the InterfaceImpl table, based upon non-null- Class and13
Interface values [WARNING]14

156. There can be many rows with the same value for Class (a class can implement many interfaces)15

157. There can be many rows with the same value for Interface (many classes can implement the same16
interface)17

End informative text 18

21.22 ManifestResource : 0x2819

The ManifestResource table has the following columns:20

• Offset (a 4 byte constant)21

• Flags (a 4 byte bitmask of type ManifestResourceAttributes, clause 22.1.8)22

• Name (index into the String heap)23

• Implementation (index into File table, or AssemblyRef table, or null; more precisely, an24
Implementation coded index)25

The Offset specifies the byte offset within the referenced file at which this resource record begins. The26
Implementation specifies which file holds this resource. The rows in the table result from .mresource27
directives on the Assembly (see clause 6.2.2).28

This contains informative text only 29

158. The ManifestResource table may contain zero or more rows30

159. Offset shall be a valid offset into the target file, starting from the Resource entry in the COR31
header [ERROR]32

160. Flags may have only those values set that are specified [ERROR]33

161. The VisibilityMask (see clause 22.1.8) subfield of Flags shall be one of Public or Private34
[ERROR]35

162. Name shall index a non-null string in the String heap [ERROR]36

163. Implementation may be null or non-null (if null, it means the resource is stored in the current file)37

164. If Implementation is null, then Offset shall be a valid offset in the current file, starting from the38
Resource entry in the CLI header [ERROR]39



- 112 -

165. If Implementation is non-null, then it shall index a valid row in the File or AssemblyRef table1
[ERROR]2

166. There shall be no duplicate rows, based upon Name [ERROR]3

167. If the resource is an index into the File table, Offset shall be zero [ERROR]4

End informative text 5

21.23 MemberRef : 0x0A6

The MemberRef table combines two sorts of references – to Fields and to Methods of a class, known as7
‘MethodRef’ and ‘FieldRef’, respectively. The MemberRef table has the following columns:8

• Class (index into the TypeRef, ModuleRef, Method, TypeSpec or TypeDef tables; more precisely, a9
MemberRefParent coded index)10

• Name (index into String heap)11

• Signature (index into Blob heap)12

An entry is made into the MemberRef table whenever a reference is made, in the CIL code, to a method13
or field which is defined in another module or assembly. (Also, an entry is made for a call to a method14
with a VARARG signature, even when it is defined in the same module as the callsite)15

This contains informative text only 16

168. Class shall be one of ... [ERROR]17

e. a TypeRef token, if the class that defines the member is defined in another module. (Note:18
it is unusual, but legal, to use a TypeRef token when the member is defined in this same19
module - its TypeDef token can be used instead)20

a ModuleRef token, if the member is defined, in another module of the same assembly, as a global21
function or variable22

a MethodDef token, when used to supply a call-site signature for a varargs method that is defined23
in this module. The Name shall match the Name in the corresponding MethodDef row. The24
Signature shall match the Signature in the target method definition [ERROR]25

a TypeSpec token, if the member is a member of a constructed type26

169. Class shall not be null (this would indicate an unresolved reference to a global function or27
variable) [ERROR]28

170. Name shall index a non-null string in the String heap [ERROR]29

171. The Name string shall be a valid CLS identifier [CLS]30

172. Signature shall index a valid field or method signature in the Blob heap. In particular, it shall31
embed exactly one of the following ‘calling conventions’: [ERROR]32

f. DEFAULT (0x0)33

VARARG (0x5)34

FIELD (0x6)35

173. The MemberRef table shall contain no duplicates, where duplicate rows have the same Class,36
Name and Signature [WARNING]37

174. Signature shall not have the VARARG (0x5) calling convention [CLS]38

175. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-39
identifier-rules [CLS]40
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176. There shall be no duplicate rows, where Name fields are compared using CLS conflicting-1
identifier-rules. (note, particular, that the return type, and whether parameters are marked2
ELEMENT_TYPE_BYREF (see clause 22.1.15) are ignored in the CLS. For example, int foo() and3
double foo() result in duplicate rows by CLS rules. Similarly, void bar(int i) and void4
bar(int& i) also result in duplicate rows by CLS rules) [CLS]5

177. If Class and Name resolve to a field, then that field shall not have a value of Compilercontrolled6
(see clause 22.1.5) in its Flags.FieldAccessMask subfield [ERROR]7

178. If Class and Name resolve to a method, then that method shall not have a value of he8
Compilercontrolled in its Flags.MemberAccessMask (see clause 22.1.9) subfield [ERROR]9

End informative text 10

21.24 Method : 0x0611

The Method table has the following columns:12

• RVA (a 4 byte constant)13

• ImplFlags (a 2 byte bitmask of type MethodImplAttributes, clause 22.1.9)14

• Flags (a 2 byte bitmask of type MethodAttribute, clause 22.1.9)15

• Name (index into String heap)16

• Signature (index into Blob heap)17

• ParamList (index into Param table). It marks the first of a contiguous run of Parameters owned18
by this method. The run continues to the smaller of:19

o the last row of the Param table20

o the next run of Parameters, found by inspecting the ParamList of the next row in the21
Method table22

Conceptually, every row in the Method table is owned by one, and only one, row in the TypeDef table.23

The rows in the Method table result from .method directives (see Chapter 14). The RVA column is computed24
when the image for the PE file is emitted and points to the COR_ILMETHOD structure for the body of the method25
(see Chapter 24.4)26

This contains informative text only 27

179. The Method table may contain zero or more rows28

180. Each row shall have one, and only one, owner row in the TypeDef table [ERROR]29

181. ImplFlags may have only those values set that are specified [ERROR]30

182. Flags may have only those values set that are specified [ERROR]31

183. The MemberAccessMask (see clause 22.1.9) subfield of Flags shall contain precisely one of32
Compilercontrolled, Private, FamANDAssem, Assem, Family, FamORAssem, or Public [ERROR]33

184. The following combined bit settings in Flags are illegal [ERROR]34

g. Static | Final35

Static | Virtual36

Static | NewSlot37

Final | Abstract38

Abstract | PinvokeImpl39

Compilercontrolled | Virtual40
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Compilercontrolled | Final1

Compilercontrolled | SpecialName2

Compilercontrolled | RTSpecialName3

185. An abstract method shall be virtual. So: if Flags.Abstract = 1 then Flags.Virtual shall also be 14
[ERROR]5

186. If Flags.RTSpecialName = 1 then Flags.SpecialName shall also be 1 [ERROR]6

187. If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]7

o this Method owns at least row in the DeclSecurity table8

o this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute9

188. If this Method owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall be10
1 [ERROR]11

189. If this Method has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then12
Flags.HasSecurity shall be 1 [ERROR]13

190. A Method may have a custom attribute called DynamicSecurityMethodAttribute - but this has no14
effect whatsoever upon the value of its Flags.HasSecurity15

191. Name shall index a non-null string in the String heap [ERROR]16

192. Interfaces cannot have instance constructors. So, if this Method is owned by an Interface, then its17
Name cannot be .ctor [ERROR]18

193. Interfaces can only own virtual methods (not static or instance methods). So, if this Method is19
owned by an Interface, Flags.Static shall be clear [ERROR]20

194. The Name string shall be a valid CLS identifier (unless Flags.RTSpecialName is set - for21
example, .cctor is legal) [CLS]22

195. Signature shall index a valid method signature in the Blob heap [ERROR]23

196. If Flags.Compilercontrolled = 1, then this row is ignored completely in duplicate checking24

197. If the owner of this method is the internally-generated type called <Module>, it denotes that this25
method is defined at module scope. ( In C++, the method is called global and can be referenced26
only within its compiland, from its point of declaration forwards.) In this case:27

h. Flags.Static shall be 1 [ERROR]28

Flags.Abstract shall be 0 [ERROR]29

Flags.Virtual shall be 0 [ERROR]30

Flags.MemberAccessMask subfield shall be one of Compilercontrolled, Public, or Private31
[ERROR]32

module-scope methods are not allowed [CLS]33

198. It makes no sense for ValueTypes, which have no identity, to have synchronized methods (unless34
they are boxed). So, if the owner of this method is a ValueType then the method cannot be35
synchronized. i.e. ImplFlags.Synchronized shall be 0 [ERROR]36

199. There shall be no duplicate rows in the Method table, based upon owner+Name+Signature (where37
owner is the owning row in the TypeDef table). (Note however that if Flags.Compilercontrolled38
= 1, then this row is completely excluded from duplicate checking) [ERROR]39

200. There shall be no duplicate rows in the Method table, based upon owner+Name+Signature, where40
Name fields are compared using CLS conflicting-identifier-rules; also, the Type defined in the41
signatures shall be different. So, for example, "int i" and "float i" would be considered CLS42
duplicates; also, the return type of the method is ignored (Note however that if43
Flags.Compilercontrolled = 1, then this row is completely excluded from duplicate checking as44
explained above) [CLS]45
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201. If any of Final, NewSlot, HideBySig are set in Flags, then Flags.Virtual shall also be set1
[ERROR]2

202. If Flags.PInvokeImpl is set, then Flags.Virtual shall be 0 [ERROR]3

203. If Flags.Abstract != 1 then exactly one of the following shall also be true: [ERROR]4

o RVA != 05

o Flags.PInvokeImpl = 16

o ImplFlags.Runtime = 17

204. If the method is Compilercontrolled, then the RVA shall be non-zero or marked with8
PinvokeImpl = 1 [ERROR]9

205. Signature shall have exactly one of the following managed calling conventions [ERROR]10

i. DEFAULT (0x0)11

VARARG (x5)12

206. Signature shall have the calling conventions DEFAULT (0x0). [CLS]13

207. Signature: If and only if the method is not Static then the calling convention byte in Signature14
has its HASTHIS (0x20) bit set [ERROR]15

208. Signature: If the method is static, then the HASTHIS (0x20) bit in the calling convention byte16
shall be 0 [ERROR]17

209. If EXPLICITTHIS (0x40) in the signature is set, then HASTHIS (0x20) shall also be set (note in18
passing: if EXPLICITTHIS is set, then the code is not verifiable) [ERROR]19

210. The EXPLICITTHIS (0x40) bit can be set only in signatures for function pointers: signatures whose20
MethodDefSig is preceded by FNPTR (0x1B) [ERROR]21

211. If RVA = 0, then either: [ERROR]22

o Flags.Abstract = 1, or23

o ImplFlags.Runtime = 1, or24

o Flags.PinvokeImpl = 1, or25

212. If RVA != 0, then: [ERROR]26

j. Flags.Abstract shall be 0, and27

ImplFlags.CodeTypeMask shall be have exactly one of the following values: Native, CIL, or28
Runtime, and29

RVA shall point into the CIL code stream in this file30

213. If Flags.PinvokeImpl = 1 then [ERROR]31

o RVA = 0 and the method owns a row in the ImplMap table, OR32

214. If Flags.RTSpecialName = 1 then Name shall be one of: [ERROR]33

k. .ctor (object constructor method)34

.cctor (class constructor method)35

215. Conversely, if Name is any of the above special names then Flags.RTSpecialName shall be set36
[ERROR]37

216. If Name = .ctor (object constructor method) then:38

l. return type in Signature shall be ELEMENT_TYPE_VOID (see clause 22.1.15) [ERROR]39

Flags.Static shall be 0 [ERROR]40
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Flags.Abstract shall be 0 [ERROR]1

Flags.Virtual shall be 0 [ERROR]2

‘Owner’ type shall be a valid Class or ValueType (not <Module> and not an Interface) in the3
TypeDef table [ERROR]4

there can be 0 or more .ctors for any given ‘owner’5

217. If Name = .cctor (class constructor method) then:6

m. return type in Signature shall be ELEMENT_TYPE_VOID (see clause 22.1.15) [ERROR]7

Signature shall have DEFAULT (0x0) for its calling convention [ERROR]8

there shall be no parameters supplied in Signature [ERROR]9

Flags.Static shall be set [ERROR]10

Flags.Virtual shall be clear [ERROR]11

Flags.Abstract shall be clear [ERROR]12

218. Among the set of methods owned by any given row in the TypeDef table there can be 0 or 113
methods named .cctor (never 2 or more) [ERROR]14

End informative text 15

21.25 MethodImpl : 0x1916

MethodImpls let a compiler override the default inheritance rules provided by the CLI. Their original use was17
to allow a class “C”, that inherited method “Foo” from interfaces I and J, to provide implementations for both18
methods (rather than have only one slot for “Foo” in its vtable). But MethodImpls can be used for other reasons19
too, limited only by the compiler writer’s ingenuity within the constraints defined in the Validation rules below.20

In the example above, Class specifies “C”, MethodDeclaration specifies I::Foo, MethodBody specifies the21
method which provides the implementation for I::Foo (either a method body within “C”, or a method body22
implemented by a superclass of “C”)23

The MethodImpl table has the following columns:24

• Class (index into TypeDef table)25

• MethodBody (index into Method or MemberRef table; more precisely, a MethodDefOrRef coded26
index)27

• MethodDeclaration (index into Method or MemberRef table; more precisely, a MethodDefOrRef28
coded index)29

ilasm uses the .override directive to specify the rows of the MethodImpl table (see clause 9.3.2).30

This contains informative text only 31

219. The MethodImpl table may contain zero or more rows32

220. Class shall index a valid row in the TypeDef table [ERROR]33

221. MethodBody shall index a valid row in the Method or MethodRef table [ERROR]34

222. The method indexed by MethodDeclaration shall have Flags.Virtual set [ERROR]35

223. The owner Type of the method indexed by MethodDeclaration shall not have Flags.Sealed = 036
[ERROR]37

224. The method indexed by MethodBody shall be a member of Class or some superclass of Class38
(MethodImpls do not allow compilers to ‘hook’ arbitrary method bodies) [ERROR]39

225. The method indexed by MethodBody shall be virtual [ERROR]40
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226. The method indexed by MethodBody shall have its Method.RVA != 0 (cannot be an unmanaged1
method reached via PInvoke, for example) [ERROR]2

227. MethodDeclaration shall index a method in the ancestor chain of Class (reached via its Extends3
chain) or in the interface tree of Class (reached via its InterfaceImpl entries) [ERROR]4

228. The method indexed by MethodDeclaration shall not be final (its Flags.Final shall be 0)5
[ERROR]6

229. The method indexed by MethodDeclaration shall be accessible to Class [ERROR]7

230. The method signature defined by MethodBody shall match those defined by MethodDeclaration8
[ERROR]9

231. There shall be no duplicate rows, based upon Class+MethodDeclaration [ERROR]10

End informative text 11

21.26 MethodSemantics : 0x1812

The MethodSemantics table has the following columns:13

• Semantics (a 2 byte bitmask of type MethodSemanticsAttributes, clause 22.1.10)14

• Method (index into the Method table)15

• Association (index into the Event or Property table; more precisely, a HasSemantics coded index)16

The rows of the MethodSemantics table are filled by .property (see Chapter 16) and .event directives (see17
Chapter 17). See clause 21.13 for more information.18

This contains informative text only 19

232. MethodSemantics table may contain zero or more rows20

233. Semantics may have only those values set that are specified [ERROR]21

234. Method shall index a valid row in the Method table, and that row shall be for a method defined on22
the same class as the Property or Event this row describes [ERROR]23

235. All methods for a given Property or Event shall have the same accessibility (ie the24
MemberAccessMask subfield of their Flags row) and cannot be Compilercontrolled [CLS]25

236. Semantics: constrained as follows:26

o If this row is for a Property, then exactly one of Setter, Getter, or Other shall be set27
[ERROR]28

o If this row is for an Event, then exactly one of AddOn, RemoveOn, Fire, or Other shall be set29
[ERROR]30

237. If this row is for an Event, and its Semantics is Addon or RemoveOn, then the row in the Method31
table indexed by Method shall take a Delegate as a parameter, and return void [ERROR]32

238. If this row is for an Event, and its Semantics is Fire, then the row indexed in the Method table by33
Method may return any type34

239. For each property, there shall be a setter, or a getter, or both [CLS]35

240. Any getter method for a property whose Name is xxx shall be called get_xxx [CLS]36

241. Any setter method for a property whose Name is xxx shall be called set_xxx [CLS]37

242. If a property provides both getter and setter methods, then these methods shall have the same38
value in the Flags.MemberAccessMask subfield [CLS]39
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243. If a property provides both getter and setter methods, then these methods shall have the same1
value for their Method.Flags.Virtual [CLS]2

244. Any getter and setter methods shall have Method.Flags.SpecialName = 1 [CLS]3

245. Any getter method shall have a return type which matches the signature indexed by the4
Property.Type field [CLS]5

246. The last parameter for any setter method shall have a type which matches the signature indexed6
by the Property.Type field [CLS]7

247. Any setter method shall have return type ELEMENT_TYPE_VOID (see clause 22.1.15) in8
Method.Signature [CLS]9

248. If the property is indexed, the indexes for getter and setter shall agree in number and type [CLS]10

249. Any AddOn method for an event whose Name is xxx shall have the signature: void add_xxx11
(<DelegateType> handler) [CLS]12

250. Any RemoveOn method for an event whose Name is xxx shall have the signature: void13
remove_xxx(<DelegateType> handler) [CLS]14

251. Any Fire method for an event whose Name is xxx shall have the signature: void raise_xxx(Event15
e) [CLS]16

End informative text 17

21.27 Module : 0x0018

The Module table has the following columns:19

• Generation (2 byte value, reserved, shall be zero)20

• Name (index into String heap)21

• Mvid (index into Guid heap; simply a Guid used to distinguish between two versions of the same22
module)23

• EncId (index into Guid heap, reserved, shall be zero)24

• EncBaseId (index into Guid heap, reserved, shall be zero)25

The Mvid column shall index a unique GUID in the GUID heap (see Section 23.2.5) that identifies this instance26
of the module. The Mvid may be ignored on read by conforming implementations of the CLI. The Mvid should27
be newly generated for every module, using the algorithm specified in ISO/IEC 11578:1996 (Annex A) or28
another compatible algorithm.29

Note: The term GUID stands for Globally Unique IDentifier, a 16-byte long number typically displayed using30
its hexadecimal encoding. A GUID may be generated by several well-known algorithms including those used31
for UUIDs (Universally Unique IDentifiers) in RPC and CORBA, as well as CLSIDs, GUIDs, and IIDs in32
COM.33

34
Rationale: While the VES itself makes no use of the Mvid, other tools (such as debuggers, which are outside35
the scope of this standard) rely on the fact that the Mvid almost always differs from one module to another.36

The Generation, EncId and EncBaseId columns can be written as zero, and can be ignored by conforming37
implementations of the CLI. The rows in the Module table result from .module directives in the Assembly38
(see Section 6.4).39

This contains informative text only 40

252. The Module table shall contain one and only one row [ERROR]41

253. Name shall index a non-null string. This string should match exactly any corresponding42
ModuleRef.Name string that resolves to this module. [ERROR]43
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254. Mvid shall index a non-null GUID in the Guid heap [ERROR]1

End informative text 2

21.28 ModuleRef : 0x1A3

The ModuleRef table has the following column:4

• Name (index into String heap)5

The rows in the ModuleRef table result from .module extern directives in the Assembly (see Section 6.5).6

This contains informative text only 7

255. Name shall index a non-null string in the String heap. This string shall enable the CLI to locate8
the target module (typically, it might name the file used to hold the module) [ERROR]9

256. There should be no duplicate rows [WARNING]10

257. Name should match an entry in the Name column of the File table. Moreover, that entry shall11
enable the CLI to locate the target module (typically it might name the file used to hold the12
module) [ERROR]13

End informative text 14

21.29 NestedClass : 0x2915

The NestedClass table has the following columns:16

• NestedClass (index into the TypeDef table)17

• EnclosingClass (index into the TypeDef table)18

The NestedClass table records which Type definitions are nested within which other Type definition. In a19
typical high-level language, including ilasm, the nested class is defined as lexically ‘inside’ the text of its20
enclosing Type.21

This contains informative text only 22

The NestedClass table records which Type definitions are nested within which other Type definition. In a23
typical high-level language, the nested class is defined as lexically ‘inside’ the text of its enclosing Type24

258. The NestedClass table may contain zero or more rows25

259. NestedClass shall index a valid row in the TypeDef table [ERROR]26

260. EnclosingClass shall index a valid row in the TypeDef table (note particularly, it is not allowed to27
index the TypeRef table) [ERROR]28

261. There should be no duplicate rows (ie same values for NestedClass and EnclosingClass)29
[WARNING]30

262. A given Type can only be nested by one encloser. So, there cannot be two rows with the same31
value for NestedClass, but different value for EnclosingClass [ERROR]32

263. A given Type can ‘own’ several different nested Types, so it is perfectly legal to have two or33
more rows with the same value for EnclosingClass but different values for NestedClass34

End informative text 35

21.30 Param : 0x0836

The Param table has the following columns:37
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• Flags (a 2 byte bitmask of type ParamAttributes, clause 22.1.12)1

• Sequence (a 2 byte constant)2

• Name (index into String heap)3

Conceptually, every row in the Param table is owned by one, and only one, row in the Method table4

The rows in the Param table result from the parameters in a method declaration (see Section 14.4), or from a5
.param attribute attached to a method (see clause 14.4.1).6

This contains informative text only 7

264. Param table may contain zero or more rows8

265. Each row shall have one, and only one, owner row in the MethodDef table [ERROR]9

266. Flags may have only those values set that are specified (all combinations valid) [ERROR]10

267. Sequence shall have a value >= 0 and <= number of parameters in owner method. A Sequence11
value of 0 refers to the owner method’s return type; its parameters are then numbered from 112
onwards [ERROR]13

268. Successive rows of the Param table that are owned by the same method shall be ordered by14
increasing Sequence value - although gaps in the sequence are allowed [WARNING]15

269. If Flags.HasDefault = 1 then this row shall own exactly one row in the Constant table [ERROR]16

270. If Flags.HasDefault = 0, then there shall be no rows in the Constant table owned by this row17
[ERROR]18

271. parameters cannot be given default values, so Flags.HasDefault shall be 0 [CLS]19

272. if Flags.FieldMarshal = 1 then this row shall own exactly one row in the FieldMarshal table20
[ERROR]21

273. Name may be null or non-null22

274. If Name is non-null, then it shall index a non-null string in the String heap [WARNING]23

End informative text 24

21.31 Property : 0x1725

Properties within metadata are best viewed as a means to gather together collections of methods defined on a26
class, give them a name, and not much else. The methods are typically get_ and set_ methods, already defined27
on the class, and inserted like any other methods into the Method table. The association is held together by28
three separate tables – see the below:29
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1
2

Row 3 of the PropertyMap table indexes row 2 of the TypeDef table on the left (MyClass), whilst indexing row3
4 of the Property table on the right – the row for a property called Foo. This setup establishes that MyClass has4
a property called Foo. But what methods in the Method table are gathered together as ‘belonging’ to property5
Foo? That association is contained in the MethodSemantics table – its row 2 indexes property Foo to the right,6
and row 2 in the Method table to the left (a method called get_Foo). Also, row 3 of the MethodSemantics table7
indexes Foo to the right, and row 3 in the Method table to the left (a method called set_Foo). As the shading8
suggests, MyClass has another property, called Bar, with two methods, get_Bar and set_Bar.9

Property tables do a little more than group together existing rows from other tables. The Property table has10
columns for Flags, Name (eg Foo and Bar in the example here) and Type. In addition, the MethodSemantics11
table has a column to record whether the method it points at is a set_, a get_ or other.12

Note: The CLS (see Partition I) refers to instance, virtual, and static properties. The signature of a property13
(from the Type column) can be used to distinguish a static property, since instance and virtual properties will14
have the “HASTHIS” bit set in the signature (see clause 22.2.1) while a static property will not. The distinction15
between an instance and a virtual property depends on the signature of the getter and setter methods, which the16
CLS requires to be either both virtual or both instance.17

The Property ( 0x17 ) table has the following columns:18

• Flags (a 2 byte bitmask of type PropertyAttributes, clause 22.1.13)19

• Name (index into String heap)20

• Type (index into Blob heap) [the name of this column is misleading. It does not index a TypeDef21
or TypeRef table – instead it indexes the signature in the Blob heap of the Property)22

This contains informative text only 23

275. Property table may contain zero or more rows24

276. Each row shall have one, and only one, owner row in the PropertyMap table (as described above)25
[ERROR]26

277. PropFlags may have only those values set that are specified (all combinations valid) [ERROR]27

278. Name shall index a non-null string in the String heap [ERROR]28

279. The Name string shall be a valid CLS identifier [CLS]29

280. Type shall index a non-null signature in the Blob heap [ERROR]30

281. The signature indexed by Type shall be a valid signature for a property (ie, low nibble of leading31
byte is 0x8). Apart from this leading byte, the signature is the same as the property’s get_ method32
[ERROR]33
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282. Within the rows owned by a given row in the TypeDef table, there shall be no duplicates based1
upon Name+Type [ERROR]2

283. There shall be no duplicate rows based upon Name, where Name fields are compared using CLS3
conflicting-identifier-rules (in particular, properties cannot be overloaded by their Type – a class4
cannot have two properties, "int Foo" and "String Foo", for example) [CLS]5

End informative text 6

21.32 PropertyMap : 0x157

The PropertyMap table has the following columns:8

• Parent (index into the TypeDef table)9

• PropertyList (index into Property table). It marks the first of a contiguous run of Properties10
owned by Parent. The run continues to the smaller of:11

o the last row of the Property table12

o the next run of Properties, found by inspecting the PropertyList of the next row in this13
PropertyMap table14

The PropertyMap and Property tables result from putting the .property directive on a class (see Chapter 16).15

This contains informative text only 16

284. PropertyMap table may contain zero or more rows17

285. There shall be no duplicate rows, based upon Parent (a given class has only one ‘pointer’ to the18
start of its property list) [ERROR]19

286. There shall be no duplicate rows, based upon PropertyList (different classes cannot share rows in20
the Property table) [ERROR]21

End informative text 22

21.33 StandAloneSig : 0x1123

Signatures are stored in the metadata Blob heap. In most cases, they are indexed by a column in some table –24
Field.Signature, Method.Signature, MemberRef.Signature, etc. However, there are two cases that require a25
metadata token for a signature that is not indexed by any metadata table. The StandAloneSig table fulfils this26
need. It has just one column, that points to a Signature in the Blob heap.27

The signature shall describe either:28

• a method – code generators create a row in the StandAloneSig table for each occurrence of a calli29
CIL instruction. That row indexes the call-site signature for the function pointer operand of the30
calli instruction31

• local variables – code generators create one row in the StandAloneSig table for each method, to32
describe all of its local variables. The .locals directive in ilasm generates a row in the33
StandAloneSig table.34

TheStandAloneSig table has the following column:35

• Signature (index into the Blob heap)36

Example (informative):37

// On encountering the calli instruction, ilasm generates a signature38

// in the blob heap (DEFAULT, ParamCount = 1, RetType = int32, Param1 =39
int32),40
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// indexed by the StandAloneSig table:1

2

.assembly Test {}3

4

.method static int32 AddTen(int32)5

{ ldarg.06

ldc.i4 107

add8

ret9

}10

11

.class Test12

{ .method static void main()13

{ .entrypoint14

ldc.i4.115

ldftn int32 AddTen(int32)16

calli int32(int32)17

pop18

ret19

}20

}21

This contains informative text only 22

287. The StandAloneSig table may contain zero or more rows23

288. Signature shall index a valid signature in the Blob heap [ERROR]24

289. The signature 'blob' indexed by Signature shall be a valid METHOD or LOCALS signature [ERROR]25

290. Duplicate rows are allowed26

End informative text 27

21.34 TypeDef : 0x0228

The TypeDef table has the following columns:29

• Flags (a 4 byte bitmask of type TypeAttributes, clause 22.1.14)30

• Name (index into String heap)31

• Namespace (index into String heap)32

• Extends (index into TypeDef, TypeRef or TypeSpec table; more precisely, a TypeDefOrRef coded33
index)34

• FieldList (index into Field table; it marks the first of a continguous run of Fields owned by this35
Type). The run continues to the smaller of:36

o the last row of the Field table37
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o the next run of Fields, found by inspecting the FieldList of the next row in this TypeDef1
table2

• MethodList (index into Method table; it marks the first of a continguous run of Methods owned by3
this Type). The run continues to the smaller of:4

o the last row of the Method table5

o the next run of Methods, found by inspecting the MethodList of the next row in this TypeDef6
table7

Note that any type shall be one, and only one, of8

• Class (Flags.Interface = 0, and derives ultimately from System.Object)9

• Interface (Flags.Interface = 1)10

• Value type, derived ultimately from System.ValueType11

For any given type, there are two separate, and quite distinct ‘inheritance’ chains of pointers to other types (the12
pointers are actually implemented as indexes into metadata tables). The two chains are:13

• Extension chain – defined via the Extends column of the TypeDef table. Typically, a derived14
Class extends a base Class (always one, and only one, base Class)15

• Interface chains – defined via the InterfaceImpl table. Typically, a Class implements zero, one or16
more Interfaces17

These two chains (extension and interface) are always kept separate in metadata. The Extends chain represents18
one-to-one relations – that is, one Class extends (or ‘derives from’) exactly one other Class (called its19
immediate base Class). The Interface chains may represent one-to-many relations – that is, one Class might20
well implement two or more Interfaces.21

Example (informative, written in C#):22

interface IA {void m1(int i); }23

interface IB {void m2(int i, int j); }24

class C : IA, IB {25

int f1, f2;26

public void m1(int i) {f1 = i; }27

public void m2(int i, int j) {f1 = i; f2 = j;}28

}29

// In metadata, Interface IA extends nothing; Interface IB30

// extends nothing; class C extends System.Object and implements31

// Interfaces IA and IB32

An Interface can also ‘inherit’ from one or more other Interfaces – metadata stores those links via the33
InterfaceImpl table (the nomenclature is a little inappropriate here – there is no “implementation” involved –34
perhaps a clearer name might have been Interface table, or InterfaceInherit table)35

Example (informative, written in C#):36

interface IA {void m1(int i); }37

interface IB {void m2(int i, int j); }38

interface IC : IA, IB {void m3(int i, int j, int k);}39

class C : IC {40

int f1, f2, f3;41
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public void m1(int i) {f1 = i; }1

public void m2(int i, int j) {f1 = i; f2 = j; }2

public void m3(int i, int j, int k) {f1 = i; f2 = j; f3 = k;}3

}4

// In metadata, Interface IA extends nothing; Interface IB extends5

// nothing; Interface IC "inherits" Interfaces IA and IB (defined via6

// the InterfaceImpl table); Class C extends System.Object and7

// implements Interface IC (see InterfaceImpl table)8

There are also a few specialized types. One is the user-defined Enum – which shall derive directly from9
System.Enum (via the Extends field)10

Another slightly specialized type is a nested type which is declared in ilasm as lexically nested within an11
enclosing type declaration. Whether a type is nested can be determined by the value of its Flags.Visibility sub-12
field – it shall be one of the set {NestedPublic, NestedPrivate, NestedFamily, NestedAssembly,13
NestedFamANDAssem, NestedFamORAssem}.14

The roots of the inheritance hierarchies look like this:15

16
17

There is one system-defined root – System.Object. All Classes and ValueTypes shall derive, ultimately, from18
System.Object; Classes can derive from other Classes (through a single, non-looping chain) to any depth19
required. This Extends inheritance chain is shown with heavy arrows.20

(See below for details of the System.Delegate Class)21

Interfaces do not inherit from one another, however, they specify zero or more other interfaces which shall be22
implemented. The Interface requirement chain is shown as light, dashed arrows. This includes links between23
Interfaces and Classes/ValueTypes – where the latter are said to implement that interface or interfaces.24

Regular ValueTypes (ie excluding Enums – see later) are defined as deriving directly from System.ValueType.25
Regular ValueTypes cannot be derived to a depth of more than one. (Another way to state this is that user-26
defined ValueTypes shall be sealed.) User-defined Enums shall derive directly from System.Enum. Enums27
cannot be derived to a depth of more than one below System.Enum. (Another way to state this is that user-28
defined Enums shall be sealed.) System.Enum derives directly from System.ValueType.29

The hierarchy below System.Delegate is as follows:30
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1
2

User-defined delegates derive directly from System.MulticastDelegate. Delegates cannot be derived to a3
depth of more than one.4

For the directives to declare types see Chapter 9.5

This contains informative text only 6

291. TypeDef table may contain one or more rows. There is always one row (row zero) that represents7
the pseudo class that acts as parent for functions and variables defined at module scope.8

292. Flags:9

n. Flags may have only those values set that are specified [ERROR]10

can set 0 or 1 of SequentialLayout and ExplicitLayout (if none set, then defaults to11
AutoLayout) [ERROR]12

can set 0 or 1 of UnicodeClass and AutoClass (if none set, then defaults to AnsiClass)13
[ERROR]14

If Flags.HasSecurity = 1, then at least one of the following conditions shall be true: [ERROR]15

• this Type owns at least one row in the DeclSecurity table16

• this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute17

If this Type owns one (or more) rows in the DeclSecurity table then Flags.HasSecurity shall be 118
[ERROR]19

If this Type has a custom attribute called SuppressUnmanagedCodeSecurityAttribute then20
Flags.HasSecurity shall be 1 [ERROR]21

Note that it is legal for an Interface to have HasSecurity set. However, the security system22
ignores any permission requests attached to that Interface23

293. Name shall index a non-null string in the String heap [ERROR]24

294. The Name string shall be a valid CLS identifier [CLS]25

295. Namespace may be null or non-null26

296. If non-null, then Namespace shall index a non-null string in the String heap [ERROR]27

297. If non-null, Namespace’s string shall be a valid CLS Identifier [CLS]28

298. Every Class (with the sole exception of System.Object) shall extend one, and only one, other29
Class - so Extends for a Class shall be non-null [ERROR]30

299. System.Object shall have an Extends value of null [ERROR]31

300. System.ValueType shall have an Extends value of System.Object [ERROR]32

301. With the sole exception of System.Object, for any Class, Extends shall index a valid row in the33
TypeDef or TypeRef table, where valid means 1 <= row <= rowcount. In addition, that row itself34
shall be a Class (not an Interface or ValueType) In addition, that base Class shall not be sealed35
(its Flags.Sealed shall be 0) [ERROR]36
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302. A Class cannot extend itself, or any of its children (ie its derived Classes), since this would1
introduce loops in the hierarchy tree [ERROR]2

303. An Interface never extends another Type - so Extends shall be null (Interfaces do implement other3
Interfaces, but recall that this relationship is captured via the InterfaceImpl table, rather than the4
Extends column) [ERROR]5

304. FieldList can be null or non-null6

305. A Class or Interface may ‘own’ zero or more fields7

306. A ValueType shall have a non-zero size - either by defining at least one field, or by providing a8
non-zero ClassSize [ERROR]9

307. If FieldList is non-null, it shall index a valid row in the Field table, where valid means 1 <= row10
<= rowcount+1 [ERROR]11

308. MethodList can be null or non-null12

309. A Type may ‘own’ zero or more methods13

310. The runtime size of a ValueType shall not exceed 1 MByte (0x100000 bytes) [ERROR]14

311. If MethodList is non-null, it shall index a valid row in the Method table, where valid means 1 <=15
row <= rowcount+1 [ERROR]16

312. A Class which has one or more abstract methods cannot be instantiated, and shall have17
Flags.Abstract = 1. Note that the methods owned by the class include all of those inherited from18
its base class and interfaces it implements, plus those defined via its MethodList. (The CLI shall19
analyze class definitions at runtime; if it finds a class to have one or more abstract methods, but20
has Flags.Abstract = 0, it will throw an exception) [ERROR]21

313. An Interface shall have Flags.Abstract = 1 [ERROR]22

314. It is legal for an abstract Type to have a constructor method (ie, a method named .ctor)23

315. Any non-abstract Type (ie Flags.Abstract = 0) shall provide an implementation (body) for every24
method its contract requires. Its methods may be inherited from its base class, from the interfaces25
it implements, or defined by itself. The implementations may be inherited from its base class, or26
defined by itself [ERROR]27

316. An Interface (Flags.Interface == 1) can own static fields (Field.Static == 1) but cannot own28
instance fields (Field.Static == 0) [ERROR]29

317. An Interface cannot be sealed (if Flags.Interface == 1, then Flags.Sealed shall be 0) [ERROR]30

318. All of the methods owned by an Interface (Flags.Interface == 1) shall be abstract (Flags.Abstract31
== 1) [ERROR]32

319. There shall be no duplicate rows in the TypeDef table, based on Namespace+Name (unless this is33
a nested type - see below) [ERROR]34

320. If this is a nested type, there shall be no duplicate row in the TypeDef table, based upon35
Namespace+Name+OwnerRowInNestedClassTable [ERROR]36

321. There shall be no duplicate rows, where Namespace+Name fields are compared using CLS37
conflicting-identifier-rules (unless this is a nested type - see below) [CLS]38

322. If this is a nested type, there shall be no duplicate rows, based upon39
Namespace+Name+OwnerRowInNestedClassTable and where Namespace+Name fields are40
compared using CLS conflicting-identifier-rules [CLS]41

323. If Extends = System.Enum (ie, type is a user-defined Enum) then:42

o. shall be sealed (Sealed = 1) [ERROR]43

shall not have any methods of its own (MethodList chain shall be zero length) [ERROR]44



- 128 -

shall not implement any interfaces (no entries in InterfaceImpl table for this type) [ERROR]1

shall not have any properties [ERROR]2

shall not have any events [ERROR]3

any static fields shall be literal (have Flags.Literal = 1) [ERROR]4

shall have at least one static, literal field. If more than one, they shall all be of the same type.5
Any such static literal fields shall be of the type of the Enum [CLS]6

shall be at least one instance field, of integral type [ERROR]7

shall be exactly one instance field [CLS]8

the Name string of the instance field shall be "value__"; it shall marked RTSpecialName; its type9
shall be one of (see clause 22.1.15): [CLS]10

• ELEMENT_TYPE_U111

• ELEMENT_TYPE_I212

• ELEMENT_TYPE_I413

• ELEMENT_TYPE_I814

shall be no other members (ie, apart from any static literals, and the one instance field called15
"value__" ) [CLS]16

324. A Nested type (defined above) shall own exactly one row in the NestedClass table - where ‘owns’17
means a row in that NestedClass table whose NestedClass column holds the TypeDef token for18
this type definition [ERROR]19

325. A ValueType shall be sealed [ERROR]20

End informative text 21

21.35 TypeRef : 0x0122

The TypeRef table has the following columns:23

• ResolutionScope (index into Module, ModuleRef, AssemblyRef or TypeRef tables, or null; more24
precisely, a ResolutionScope coded index)25

• Name (index into String heap)26

• Namespace (index into String heap)27

This contains informative text only 28

326. ResolutionScope shall be exactly one of:29

p. null - in this case, there shall be a row in the ExportedType table for this Type - its30
Implementation field shall contain a File token or an AssemblyRef token that says where the31
type is defined [ERROR]32

a TypeRef token, if this is a nested type (which can be determined by, for example, inspecting the33
Flags column in its TypeDef table - the accessibility subfield is one of the tdNestedXXX set)34
[ERROR]35

a ModuleRef token, if the target type is defined in another module within the same Assembly as36
this one [ERROR]37

a Module token, if the target type is defined in the current module - this should not occur in a CLI38
(“compressed metadata”) module [WARNING]39
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an AssemblyRef token, if the target type is defined in a different Assembly from the current1
module [ERROR]2

327. Name shall index a non-null string in the String heap [ERROR]3

328. Namespace may be null, or non-null4

329. If non-null, Namespace shall index a non-null string in the String heap [ERROR]5

330. The Name string shall be a valid CLS identifier [CLS]6

331. There shall be no duplicate rows, where a duplicate has the same ResolutionScope, Name and7
Namespace [ERROR]8

332. There shall be no duplicate rows, where Name and Namespace fields are compared using CLS9
conflicting-identifier-rules [CLS]10

End informative text 11

21.36 TypeSpec : 0x1B12

The TypeSpec table has just one column, which indexes the specification of a Type, stored in the Blob heap.13
This provides a metadata token for that Type (rather than simply an index into the Blob heap) – this is required,14
typically, for array operations – creating, or calling methods on the array class.15

The TypeSpec table has the following column:16

• Signature (index into the Blob heap, where the blob is formatted as specified in clause 22.2.14)17

Note that TypeSpec tokens can be used with any of the CIL instructions that take a TypeDef or TypeRef token –18
specifically:19

castclass, cpobj, initobj, isinst, ldelema, ldobj, mkrefany, newarr, refanyval, sizeof, stobj, box, unbox20

This contains informative text only 21

The TypeSpec table may contain zero or more rows22

Signature shall index a valid Type specification in the Blob heap [ERROR]23

There shall be no duplicate rows, based upon Signature [ERROR]24

End informative text 25
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22 Metadata Logical Format: Other Structures1

22.1 Bitmasks and Flags2

This section explains the various flags and bitmasks used in the various metadata tables.3

22.1 .1 Values for AssemblyHashAlgorithm4

Algorithm Value

None 0x0000

Reserved (MD5) 0x8003

SHA1 0x8004
5

22.1 .2 Values for AssemblyFlags6

Flag Value Description

PublicKey 0x0001 The assembly reference holds the full (unhashed)
public key.

SideBySideCompatible 0x0000 The assembly is side by side compatible

<reserved> 0x0030 Reserved: both bits shall be zero

EnableJITcompileTracking 0x8000 Reserved (a conforming implementation of the CLI
may ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code
compiler should generate CIL-to-native code map)

DisableJITcompileOptimizer 0x4000 Reserved (a conforming implementation of the CLI
may ignore this setting on read; some implementations
might use this bit to indicate that a CIL-to-native-code
compiler should not generate optimized code)

7

22.1 .3 Values for Culture8

ar-SA ar-IQ ar-EG ar-LY

ar-DZ ar-MA ar-TN ar-OM

ar-YE ar-SY ar-JO ar-LB

ar-KW ar-AE ar-BH ar-QA

bg-BG ca-ES zh-TW zh-CN

zh-HK zh-SG zh-MO cs-CZ

da-DK de-DE de-CH de-AT

de-LU de-LI el-GR en-US

en-GB en-AU en-CA en-NZ

en-IE en-ZA en-JM en-CB

en-BZ en-TT en-ZW en-PH

es-ES-Ts es-MX es-ES-Is es-GT

es-CR es-PA es-DO es-VE

es-CO es-PE es-AR es-EC

es-CL es-UY es-PY es-BO
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es-SV es-HN es-NI es-PR

Fi-FI fr-FR fr-BE fr-CA

Fr-CH fr-LU fr-MC he-IL

hu-HU is-IS it-IT it-CH

Ja-JP ko-KR nl-NL nl-BE

nb-NO nn-NO pl-PL pt-BR

pt-PT ro-RO ru-RU hr-HR

Lt-sr-SP Cy-sr-SP sk-SK sq-AL

sv-SE sv-FI th-TH tr-TR

ur-PK id-ID uk-UA be-BY

sl-SI et-EE lv-LV lt-LT

fa-IR vi-VN hy-AM Lt-az-AZ

Cy-az-AZ eu-ES mk-MK af-ZA

ka-GE fo-FO hi-IN ms-MY

ms-BN kk-KZ ky-KZ sw-KE

Lt-uz-UZ Cy-uz-UZ tt-TA pa-IN

gu-IN ta-IN te-IN kn-IN

mr-IN sa-IN mn-MN gl-ES

kok-IN syr-SY div-MV

1
Note on RFC 1766 Locale names: a typical string would be “en-US”. The first part (“en” in the example) uses2
ISO 639 characters (“Latin-alphabet characters in lowercase. No diacritical marks of modified characters are3
used”). The second part (“US” in the example) uses ISO 3166 characters (similar to ISO 639, but uppercase).4
In other words, the familiar ASCII characters – a-z and A-Z respectively. However, whilst RFC 17665
recommends the first part is lowercase, the second part uppercase, it allows mixed case. Therefore, the6
validation rule checks only that Culture is one of the strings in the list above – but the check is totally case-7
blind – where case-blind is the familiar fold on values less than U+00808

22.1 .4 Flags for Events [EventAttributes]9

Flag Value Description

SpecialName 0x0200 Event is special.

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the
event

10

22.1 .5 Flags for Fields [FieldAttributes]11

Flag Value Description

FieldAccessMask 0x0007

Compilercontrolled 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assembly 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly



- 132 -

Public 0x0006 Accessibly by anyone who has visibility to

this scope field contract attributes

Static 0x0010 Defined on type, else per instance

InitOnly 0x0020 Field may only be initialized, not written to after init

Literal 0x0040 Value is compile time constant

NotSerialized 0x0080 Field does not have to be serialized when type is remoted

SpecialName 0x0200 Field is special

Interop Attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke.

Additional flags

RTSpecialName 0x0400 CLI provides 'special' behavior, depending upon the name of the
field

HasFieldMarshal 0x1000 Field has marshalling information

HasDefault 0x8000 Field has default

HasFieldRVA 0x0100 Field has RVA
1

22.1 .6 Flags for Files [Fi leAttributes]2

Flag Value Description

ContainsMetaData 0x0000 This is not a resource file

ContainsNoMetaData 0x0001 This is a resource file or other non-metadata-containing file
3

22.1 .7 Flags for ImplMap [PInvokeAttributes]4

Flag Value Description

NoMangle 0x0001 PInvoke is to use the member name as specified

Character set

CharSetMask 0x0006 This is a resource file or other non-metadata-containing file

CharSetNotSpec 0x0000

CharSetAnsi 0x0002

CharSetUnicode 0x0004

CharSetAuto 0x0006

SupportsLastError 0x0040 Information about target function. Not relevant for fields

Calling convention

CallConvMask 0x0700

CallConvWinapi 0x0100

CallConvCdecl 0x0200

CallConvStdcall 0x0300

CallConvThiscall 0x0400
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CallConvFastcall 0x0500

1

22.1 .8 Flags for ManifestResource [ManifestResourceAttributes]2

Flag Value Description

VisibilityMask 0x0007

Public 0x0001 The Resource is exported from the Assembly

Private 0x0002 The Resource is private to the Assembly
3

22.1 .9 Flags for Methods [MethodAttributes]4
5

Flag Value Description

MemberAccessMask 0x0007

Compilercontrolled 0x0000 Member not referenceable

Private 0x0001 Accessible only by the parent type

FamANDAssem 0x0002 Accessible by sub-types only in this Assembly

Assem 0x0003 Accessibly by anyone in the Assembly

Family 0x0004 Accessible only by type and sub-types

FamORAssem 0x0005 Accessibly by sub-types anywhere, plus anyone in assembly

Public 0x0006 Accessibly by anyone who has visibility to this scope

Static 0x0010 Defined on type, else per instance

Final 0x0020 Method may not be overridden

Virtual 0x0040 Method is virtual

HideBySig 0x0080 Method hides by name+sig, else just by name

VtableLayoutMask 0x0100 Use this mask to retrieve vtable attributes

ReuseSlot 0x0000 Method reuses existing slot in vtable

NewSlot 0x0100 Method always gets a new slot in the vtable

Abstract 0x0400 Method does not provide an implementation

SpecialName 0x0800 Method is special

Interop attributes

PInvokeImpl 0x2000 Implementation is forwarded through PInvoke

UnmanagedExport 0x0008 Reserved: shall be zero for conforming implementations

Additional flags

RTSpecialName 0x1000 CLI provides 'special' behavior, depending upon the name of
the method

HasSecurity 0x4000 Method has security associate with it
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RequireSecObject 0x8000 Method calls another method containing security code.
1

22.1 .10 Flags for Methods [MethodImplAttributes]2

Flag Value Description

CodeTypeMask 0x0003

IL 0x0000 Method impl is CIL

Native 0x0001 Method impl is native

OPTIL 0x0002 Reserved: shall be zero in conforming implementations

Runtime 0x0003 Method impl is provided by the runtime

ManagedMask 0x0004 Flags specifying whether the code is managed or unmanaged.

Unmanaged 0x0004 Method impl is unmanaged, otherwise managed

Managed 0x0000 Method impl is managed

Implementation info and interop

ForwardRef 0x0010 Indicates method is defined; used primarily in merge
scenarios

PreserveSig 0x0080 Reserved: conforming implementations may ignore

InternalCall 0x1000 Reserved: shall be zero in conforming implementations

Synchronized 0x0020 Method is single threaded through the body

NoInlining 0x0008 Method may not be inlined

MaxMethodImplVal 0xffff Range check value
3

22.1 .11 Flags for MethodSemantics [MethodSemanticsAttributes]4

Flag Value Description

Setter 0x0001 Setter for property

Getter 0x0002 Getter for property

Other 0x0004 Other method for property or event

AddOn 0x0008 AddOn method for event

RemoveOn 0x0010 RemoveOn method for event

Fire 0x0020 Fire method for event
5

22.1 .12 Flags for Params [ParamAttributes]6

Flag Value Description

In 0x0001 Param is [In]

Out 0x0002 Param is [out]

Optional 0x0004 Param is optional

HasDefault 0x1000 Param has default value

HasFieldMarshal 0x2000 Param has FieldMarshal
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Unused 0xcfe0 Reserved: shall be zero in a conforming implementation
1

22.1 .13 Flags for Propert ies [PropertyAttributes]2

Flag Value Description

SpecialName 0x0200 Property is special

RTSpecialName 0x0400 Runtime(metadata internal APIs) should check name
encoding

HasDefault 0x1000 Property has default

Unused 0xe9ff Reserved: shall be zero in a conforming implementation
3

22.1 .14 Flags for Types [TypeAttributes]4

Flag Value Description

Visibility attributes

VisibilityMask 0x00000007 Use this mask to retrieve visibility information

NotPublic 0x00000000 Class has no public scope

Public 0x00000001 Class has public scope

NestedPublic 0x00000002 Class is nested with public visibility

NestedPrivate 0x00000003 Class is nested with private visibility

NestedFamily 0x00000004 Class is nested with family visibility

NestedAssembly 0x00000005 Class is nested with assembly visibility

NestedFamANDAssem 0x00000006 Class is nested with family and assembly
visibility

NestedFamORAssem 0x00000007 Class is nested with family or assembly
visibility

Class layout attributes

LayoutMask 0x00000018 Use this mask to retrieve class layout
information

AutoLayout 0x00000000 Class fields are auto-laid out

SequentialLayout 0x00000008 Class fields are laid out sequentially

ExplicitLayout 0x00000010 Layout is supplied explicitly

Class semantics attributes

ClassSemanticsMask 0x00000020 Use this mask to retrive class semantics
information

Class 0x00000000 Type is a class

Interface 0x00000020 Type is an interface

Special semantics in addition to class semantics

Abstract 0x00000080 Class is abstract

Sealed 0x00000100 Class cannot be extended
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SpecialName 0x00000400 Class name is special

Implementation Attributes

Import 0x00001000 Class/Interface is imported

Serializable 0x00002000 Class is serializable

String formatting Attributes

StringFormatMask 0x00030000 Use this mask to retrieve string information for
native interop

AnsiClass 0x00000000 LPSTR is interpreted as ANSI

UnicodeClass 0x00010000 LPSTR is interpreted as Unicode

AutoClass 0x00020000 LPSTR is interpreted automatically

Class Initialization Attributes

BeforeFieldInit 0x00100000 Initialize the class before first static field
access

Additional Flags

RTSpecialName 0x00000800 CLI provides 'special' behavior, depending
upon the name of the Type

HasSecurity 0x00040000 Type has security associate with it
1

22.1 .15 Element Types used in Signatures2

The following table lists the values for ELEMENT_TYPE constants. These are used extensively in metadata3
signature blobs – see Section 22.24

Name Value Remarks

ELEMENT_TYPE_END 0x00 Marks end of a list

ELEMENT_TYPE_VOID 0x01

ELEMENT_TYPE_BOOLEAN 0x02

ELEMENT_TYPE_CHAR 0x03

ELEMENT_TYPE_I1 0x04

ELEMENT_TYPE_U1 0x05

ELEMENT_TYPE_I2 0x06

ELEMENT_TYPE_U2 0x07

ELEMENT_TYPE_I4 0x08

ELEMENT_TYPE_U4 0x09

ELEMENT_TYPE_I8 0x0a

ELEMENT_TYPE_U8 0x0b

ELEMENT_TYPE_R4 0x0c

ELEMENT_TYPE_R8 0x0d

ELEMENT_TYPE_STRING 0x0e

ELEMENT_TYPE_PTR 0x0f Followed by <type> token
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ELEMENT_TYPE_BYREF 0x10 Followed by <type> token

ELEMENT_TYPE_VALUETYPE 0x11 Followed by <type> token

ELEMENT_TYPE_CLASS 0x12 Followed by <type> token

ELEMENT_TYPE_ARRAY 0x14 <type> <rank> <boundsCount>
<bound1> … <loCount> <lo1> …

ELEMENT_TYPE_TYPEDBYREF 0x16

ELEMENT_TYPE_I 0x18 System.IntPtr

ELEMENT_TYPE_U 0x19 System.UIntPtr

ELEMENT_TYPE_FNPTR 0x1b Followed by full method signature

ELEMENT_TYPE_OBJECT 0x1c System.Object

ELEMENT_TYPE_SZARRAY 0x1d Single-dim array with 0 lower
bound

ELEMENT_TYPE_CMOD_REQD 0x1f Required modifier : followed by a
TypeDef or TypeRef token

ELEMENT_TYPE_CMOD_OPT 0x20 Optional modifier : followed by a
TypeDef or TypeRef token

ELEMENT_TYPE_INTERNAL 0x21 Implemented within the CLI

ELEMENT_TYPE_MODIFIER 0x40 Or’d with following element types

ELEMENT_TYPE_SENTINEL 0x41 Sentinel for varargs method
signature

ELEMENT_TYPE_PINNED 0x45 Denotes a local variable that
points at a pinned object

22.2 Blobs and Signatures1

The word signature is conventionally used to describe the type info for a function or method – that is, the type2
of each of its parameters, and the type of its return value. Within metadata, the word signature is also used to3
describe the type info for fields, properties, and local variables. Each Signature is stored as a (counted) byte4
array in the Blob heap. There are five kinds of Signature, as follows:5

• MethodRefSig – differs from a MethodDefSig only for VARARG calls6

• MethodDefSig7

• FieldSig8

• PropertySig9

• LocalVarSig10

• TypeSpec11

The value of the leading byte of a Signature 'blob' indicates what kind of Signature it is. This section defines12
the binary 'blob' format for each kind of Signature. . In the syntax diagrams that accompany many of the13
definitions, shading is used to combine what would otherwise be multiple diagrams into a single diagram; the14
accompanying text describes the use of shading.15

Note that Signatures are compressed before being stored into the Blob heap (described below) by compressing16
the integers embedded in the signature. The maximum encodable integer is 29 bits long, 0x1FFFFFFF. The17
compression algorithm used is as follows (bit 0 is the least significant bit):18
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• If the value lies between 0 (0x00) and 127 (0x7F), inclusive, encode as a one-byte integer (bit #71
is clear, value held in bits #6 through #0)2

• If the value lies between 2^8 (0x80) and 2^14 – 1 (0x3FFF), inclusive, encode as a two-byte3
integer with bit #15 set, bit #14 clear (value held in bits #13 through #0)4

• Otherwise, encode as a 4-byte integer, with bit #31 set, bit #30 set, bit #29 clear (value held in5
bits #28 through #0)6

• A null string should be represented with the reserved single byte 0xFF, and no following data7

Note: The table below shows several examples. The first column gives a value, expressed in familiar (C-like)8
hex notation . The second column shows the corresponding, compressed result, as it would appear in a PE file,9
with successive bytes of the result lying at successively higher byte offsets within the file. (This is the opposite10
order from how regular binary integers are laid out in a PE file)11
Original Value Compressed Representation

0x03 03

0x7F 7F (7 bits set)

0x80 8080

0x2E57 AE57

0x3FFF BFFF

0x4000 C000 4000

0x1FFF FFFF DFFF FFFF

Thus, the most significant bits (the first ones encountered in a PE file) of a “compressed” field, can reveal12
whether it occupies 1, 2, or 4 bytes, as well as its value. For this to work, the “compressed” value, as explained13
above, is stored in big-endian order - with the most significant byte at the smallest offset within the file.14

Signatures make extensive use of constant values called ELEMENT_TYPE_xxx – see Clause 22.1.15. In particular,15
signatures include two modifiers called:16

ELEMENT_TYPE_BYREF – this element is a managed pointer (see Partition I). This modifier can only occur in the17
definition of Param (clause 22.2.10) or RetType (clause 22.2.11). It shall not occur within the definition of a18
Field (clause 22.2.4)19

ELEMENT_TYPE_PTR – this element is an unmanaged pointer (see Partition I). This modifier can occur in the20
definition of Param (clause 22.2.10) or RetType (clause 22.2.11) or Field (clause 22.2.4)21

22.2 .1 MethodDefSig22

A MethodDefSig is indexed by the Method.Signature column. It captures the signature of a method or global23
function. The syntax chart for a MethodDefSig is:24

25
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1
This chart uses the following abbreviations:2

HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see3
Section 14.34

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see5
Section 14.36

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see Section 14.37

VARARG = for 0x5, used to encode the keyword vararg in the calling convention, see8
Section 14.39

The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention – DEFAULT or10
VARARG. These are OR’d together.11

ParamCount is an integer that holds the number of parameters (0 or more). It can be any number between 012
and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata Validation) – before storing into13
the 'blob' (ParamCount counts just the method parameters – it does not include the method’s return type)14

The RetType item describes the type of the method’s return value (see clause 22.2.11)15

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances16
of the Param item (see clause 22.2.10).17

22.2 .2 MethodRefSig18

A MethodRefSig is indexed by the MemberRef.Signature column. This provides the callsite Signature for a19
method. Normally, this callsite Signature shall match exactly the Signature specified in the definition of the20
target method. For example, if a method Foo is defined that takes two uint32s and returns void; then any21
callsite shall index a signature that takes exactly two uint32s and returns void. In this case, the syntax chart for22
a MethodRefSig is identical with that for a MethodDefSig – see clause 22.2.123

The Signature at a callsite differs from that at its definition, only for a method with the VARARG calling24
convention. In this case, the callsite Signature is extended to include info about the extra VARARG arguments25
(for example, corresponding to the “...” in C syntax). The syntax chart for this case is:26

27

This chart uses the following abbreviations:28
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HASTHIS = 0x20, used to encode the keyword instance in the calling convention, see1
Section 14.32

EXPLICITTHIS = 0x40, used to encode the keyword explicit in the calling convention, see3
Section 14.34

DEFAULT = 0x0, used to encode the keyword default in the calling convention, see Section 14.35

VARARG = for 0x5, used to encode the keyword vararg in the calling convention, see6
Section 14.37

SENTINEL = 0x41 (see clause 22.1.15), used to encode “...” in the parameter list, see8
Section 14.39

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention –10
DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR’d together.11

• ParamCount is an integer that holds the number of parameters (0 or more). It can be any number12
between 0 and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata13
Validation) – before storing into the 'blob' (ParamCount counts just the method parameters – it14
does not include the method’s return type)15

• The RetType item describes the type of the method’s return value (see clause 22.2.11)16

• The Param item describes the type of each of the method’s parameters. There shall be17
ParamCount instances of the Param item (see clause 22.2.10).18

The Param item describes the type of each of the method’s parameters. There shall be ParamCount instances19
of the Param item.This starts just like the MethodDefSig for a VARARG method (see clause 22.2.1). But then a20
SENTINEL token is appended, followed by extra Param items to describe the extra VARARG arguments. Note that21
the ParamCount item shall indicate the total number of Param items in the Signature – before and after the22
SENTINEL byte (0x41).23

In the unusual case that a callsite supplies no extra arguments, the signature shall not include a SENTINEL (this24
is the route shown by the lower arrow that bypasses SENTINEL and goes to the end of the MethodRefSig25
definition)26

22.2 .3 StandAloneMethodSig27

A StandAloneMethodSig is indexed by the StandAloneSig.Signature column. It is typically created as28
preparation for executing a calli instruction. It is similar to a MethodRefSig, in that it represents a callsite29
signature, but its calling convention may specify an unmanaged target (the calli instruction invokes either30
managed, or unmanaged code). Its syntax chart is:31
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1

This chart uses the following abbreviations (see Section 14.3):2

HASTHIS for 0x203

EXPLICITTHIS for 0x404

DEFAULT for 0x05

VARARG for 0x56

C for 0x17

STDCALL for 0x28

THISCALL for 0x39

FASTCALL for 0x410

SENTINEL for 0x41 (see clause 22.1.15 and Section 14.3)11

• The first byte of the Signature holds bits for HASTHIS, EXPLICITTHIS and calling convention –12
DEFAULT, VARARG, C, STDCALL, THISCALL, or FASTCALL. These are OR’d together.13

• ParamCount is an integer that holds the number of parameters (0 or more). It can be any number14
between 0 and 0x1FFFFFFF The compiler compresses it too (see Partition II Metadata15
Validation) – before storing into the blob (ParamCount counts just the method parameters – it16
does not include the method’s return type)17

• The RetType item describes the type of the method’s return value (see clause 22.2.11)18

• The Param item describes the type of each of the method’s parameters. There shall be19
ParamCount instances of the Param item (see clause 22.2.10).20

This is the most complex of the various method signatures. Two separate charts have been combined into one21
in this diagram, using shading to distinguish between them. Thus, for the following calling conventions:22
DEFAULT (managed), STDCALL, THISCALL and FASTCALL (unmanaged), the signature ends just before the23
SENTINEL item (these are all non vararg signatures). However, for the managed and unmanaged vararg calling24
conventions:25

VARARG (managed) and C (unmanaged), the signature can include the SENTINEL and final Param items (they are26
not required, however). These options are indicated by the shading of boxes in the syntax chart.27
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22.2 .4 FieldSig1

A FieldSig is indexed by the Field.Signature column, or by the MemberRef.Signature column (in the case2
where it specifies a reference to a field, not a method, of course). The Signature captures the field’s definition.3
The field may be a static or instance field in a class, or it may be a global variable. The syntax chart for a4
FieldSig looks like this:5

6

This chart uses the following abbreviations:7

FIELD for 0x68

CustomMod is defined in clause 22.2.7. Type is defined in clause 22.2.129

22.2 .5 PropertySig10

A PropertySig is indexed by the Property.Type column. It captures the type information for a Property –11
essentially, the signature of its getter method:12

how many parameters are supplied to its getter method13

the base type of the Property – the type returned by its getter method14

type information for each parameter in the getter method – that is, the index parameters15

Note that the signatures of getter and setter are related precisely as follows:16

• The types of a getter’s paramCount parameters are exactly the same as the first paramCount17
parameters of the setter18

• The return type of a getter is exactly the same as the type of the last parameter supplied to the19
setter20

The syntax chart for a PropertySig looks like this:21

22

This chart uses the following abbreviations:23

PROPERTY for 0x824

Type specifies the type returned by the Getter method for this property. Type is defined in clause 22.2.12.25
Param is defined in clause 22.2.10.26

ParamCount is an integer that holds the number of index parameters in the getter methods (0 or more). (See27
clause 22.2.1) (ParamCount counts just the method parameters – it does not include the method’s base type of28
the Property)29

22.2 .6 LocalVarSig30

A LocalVarSig is indexed by the StandAloneSig.Signature column. It captures the type of all the local31
variables in a method. Its syntax chart is:32
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1

This chart uses the following abbreviations:2

LOCAL_SIG for 0x7, used for the .locals directive, see clause 14.4.1.33

BYREF for ELEMENT_TYPE_BYREF (see clause 22.1.15)4

Constraint is defined in clause 22.2.9.5

Type is defined in clause 22.2.126

Count is an unsigned integer that holds the number of local variables. It can be any number between 1 and7
0xFFFE.8

There shall be Count instances of the Type in the LocalVarSig9

22.2 .7 CustomMod10

The CustomMod (custom modifier) item in Signatures has a syntax chart like this:11

12

This chart uses the following abbreviations:13

CMOD_OPT for ELEMENT_TYPE_CMOD_OPT (see clause 22.1.15)14

CMOD_REQD for ELEMENT_TYPE_CMOD_REQD (see clause 22.1.15)15

The CMOD_OPT or CMOD_REQD value is compressed, see Section 22.2.16

The CMOD_OPT or CMOD_REQD is followed by a metadata token that indexes a row in the TypeDef table or the17
TypeRef table. However, these tokens are encoded and compressed – see clause 22.2.8 for details18

If the CustomModifier is tagged CMOD_OPT, then any importing compiler can freely ignore it entirely.19
Conversely, if the CustomModifier is tagged CMOD_REQD, any importing compiler shall ‘understand’ the20
semantic implied by this CustomModifier in order to reference the surrounding Signature.21

22.2 .8 TypeDefOrRefEncoded22

These items are compact ways to store a TypeDef or TypeRef token in a Signature (see clause 22.2.12).23

Consider a regular TypeRef token, such as 0x01000012. The top byte of 0x01 indicates that this is a TypeRef24
token (see Partition V for a list of the supported metadata token types). The lower 3 bytes (0x000012) index25
row number 0x12 in the TypeRef table.26

The encoded version of this TypeRef token is made up as follows:27
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333. encode the table that this token indexes as the least significant 2 bits. The bit values to use are 0,1
1 and 2, specifying the target table is the TypeDef, TypeRef or TypeSpec table, respectively2

334. shift the 3-byte row index (0x000012 in this example) left by 2 bits and OR into the 2-bit3
encoding from step 14

335. compress the resulting value (see Section 22.2). This example yields the following encoded5
value:6

a) encoded = value for TypeRef table = 0x01 (from 1. above)7

b) encoded = ( 0x000012 << 2 ) | 0x018

= 0x48 | 0x019

= 0x4910

c) encoded = Compress (0x49)11

= 0x4912

So, instead of the original, regular TypeRef token value of 0x01000012, requiring 4 bytes of space in the13
Signature 'blob', this TypeRef token is encoded as a single byte.14

22.2 .9 Constraint15

The Constraint item in Signatures currently has only one possible value – ELEMENT_TYPE_PINNED (see16
clause 22.1.15), which specifies that the target type is pinned in the runtime heap, and will not be moved by the17
actions of garbage collection.18

A Constraint can only be applied within a LocalVarSig (not a FieldSig). The Type of the local variable shall19
either be a reference type (in other words, it points to the actual variable – for example, an Object, or a String);20
or it shall include the BYREF item. The reason is that local variables are allocated on the runtime stack – they21
are never allocated from the runtime heap; so unless the local variable points at an object allocated in the GC22
heap, pinning makes no sense.23

22.2 .10 Param24

The Param (parameter) item in Signatures has this syntax chart:25

26

This chart uses the following abbreviations:27

BYREF for 0x10 (See clause 22.1.15)28

TYPEDBYREF for 0x16 (See clause 22.1.15)29

CustomMod is defined in clause 22.2.7. Type is defined in clause 22.2.1230

22.2 .11 RetType31

The RetType (return type) item in Signatures has this syntax chart:32
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1

RetType is identical to Param except for one extra possibility, that it can include the type VOID. This chart2
uses the following abbreviations:3

BYREF for ELEMENT_TYPE_BYREF (see clause 22.1.15)4

TYPEDBYREF for ELEMENT_TYPE_TYPEDBYREF (see clause 22.1.15)5

VOID for ELEMENT_TYPE_VOID (see clause 22.1.15)6

22.2 .12 Type7

Type is encoded in signatures as follows (I1 is an abbreviation for ELEMENT_TYPE_I1, etc., see clause 22.1.15):8

Type ::=9

BOOLEAN | CHAR | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R8 | I | U |10

| VALUETYPE TypeDefOrRefEncoded11

| CLASS TypeDefOrRefEncoded12

| STRING13

| OBJECT14

| PTR CustomMod* VOID15

| PTR CustomMod* Type16

| FNPTR MethodDefSig17

| FNPTR MethodRefSig18

| ARRAY Type ArrayShape (general array, see clause 22.2.13)19

| SZARRAY CustomMod* Type (single dimensional, zero-based array i.e. vector)20

22.2 .13 ArrayShape21

An ArrayShape has the following syntax chart:22

23

Rank is an integer (stored in compressed form, see Section 22.2) that specifies the number of dimensions in the24
array (shall be 1 or more). NumSizes is a compressed integer that says how many dimensions have specified25
sizes (it shall be 0 or more). Size is a compressed integer specifying the size of that dimension – the sequence26
starts at the first dimension, and goes on for a total of NumSizes items. Similarly, NumLoBounds is a27
compressed integer that says how many dimensions have specified lower bounds (it shall be 0 or more). And28
LoBound is a compressed integer specifying the lower bound of that dimension – the sequence starts at the first29
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dimension, and goes on for a total of NumLoBounds items. None of the dimensions in these two sequences1
can be skipped, but the number of specified dimensions can be less than Rank.2

Here are a few examples, all for element type int32:3

Type Rank NumSizes Size NumLoBounds LoBound

[0...2] I4 1 1 3 0

[,,,,,,] I4 7 0 0

[0...3, 0...2,,,,] I4 6 2 4 3 2 0 0

[1...2, 6...8] I4 2 2 2 3 2 1 6

[5, 3...5, , ] I4 4 2 5 3 2 0 3

4
Note: definitions can nest, since the Type may itself be an array5

22.2 .14 TypeSpec6

The signature in the Blob heap indexed by a TypeSpec token has the following format –7

TypeSpecBlob :==8

PTR CustomMod* VOID9

| PTR CustomMod* Type10

| FNPTR MethodDefSig11

| FNPTR MethodRefSig12

| ARRAY Type ArrayShape13

| SZARRAY CustomMod* Type14

For compactness, the ELEMENT_TYPE_ prefixes have been omitted from this list. So, for example, “PTR” is15
shorthand for ELEMENT_TYPE_PTR. (see clause 22.1.15) Note that a TypeSpecBlob does not begin with a16
calling-convention byte, so it differs from the various other signatures that are stored into Metadata.17

22.2 .15 Short Form Signatures18

The general specification for signatures leaves some leeway in how to encode certain items. For example, it19
appears legal to encode a String as either20

long-form: ( ELEMENT_TYPE_CLASS, TypeRef-to-System.String )21

short-form: ELEMENT_TYPE_STRING22

Only the short form is valid. The following table shows which short-forms should be used in place of each23
long-form item. (As usual, for compactness, the ELEMENT_TYPE_ prefix have been omitted here – so VALUETYPE24
is short for ELEMENT_TYPE_VALUETYPE)25

Long Form Short Form

Prefix TypeRef to:

CLASS System.String STRING

CLASS System.Object OBJECT

VALUETYPE System.Void VOID

VALUETYPE System.Boolean BOOLEAN

VALUETYPE System.Char CHAR

VALUETYPE System.Byte U1

VALUETYPE System.Sbyte I1

VALUETYPE System.Int16 I2
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VALUETYPE System.UInt16 U2

VALUETYPE System.Int32 I4

VALUETYPE System.UInt32 U4

VALUETYPE System.Int64 I8

VALUETYPE System.UInt64 U8

VALUETYPE System.IntPtr I

VALUETYPE System.UIntPtr U

VALUETYPE System.TypedReference TYPEDBYREF

1
Note: arrays shall be encoded in signatures using one of ELEMENT_TYPE_ARRAY or ELEMENT_TYPE_SZARRAY.2
There is no long form involving a TypeRef to System.Array3

22.3 Custom Attributes4

A Custom Attribute has the following syntax chart:5

6

All binary values are stored in little-endian format (except PackedLen items – used only as counts for the7
number of bytes to follow in a UTF8 string)8

CustomAttrib starts with a Prolog – an unsigned int16, with value 0x00019

Next comes a description of the fixed arguments for the constructor method. Their number and type is found10
by examining that constructor’s MethodDef; this info is not repeated in the CustomAttrib itself. As the syntax11
chart shows, there can be zero or more FixedArgs. (note that VARARG constructor methods are not allowed in12
the definition of Custom Attributes)13

Next is a description of the optional “named” fields and properties. This starts with NumNamed – an unsigned14
int16 giving the number of “named” properties or fields that follow. Note that NumNamed shall always be15
present. If its value is zero, there are no “named” properties or fields to follow (and of course, in this case, the16
CustomAttrib shall end immediately after NumNamed) In the case where NumNamed is non-zero, it is17
followed by NumNamed repeats of NamedArgs18

19

The format for each FixedArg depends upon whether that argument is single, or an SZARRAY – this is shown in20
the upper and lower paths, respectively, of the syntax chart. So each FixedArg is either a single Elem, or21
NumElem repeats of Elem.22

(SZARRAY is the single byte 0x1d, and denotes a vector – a single-dimension array with a lower bound of zero)23
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NumElem is an unsigned int32 specifying the number of elements in the SZARRAY1

2
3

An Elem takes one of three forms:4

• if the parameter kind is simple (bool, char, float32, float64, int8, int16, int32, int64, unsigned5
int8, unsigned int16, unsigned int32 or unsigned int64) then the 'blob' contains its binary value6
(Val). This pattern is also used if the parameter kind is an enum -- simply store the value of the7
enum's underlying integer type8

• if the parameter kind is string or type, then the blob contains a SerString – a PackedLen count of9
bytes, followed by the UTF8 characters. (a type is stored as a string giving the full name of that10
type)11

• if the parameter kind is a boxed simple value type (bool, char, float32, float64, int8, int16, int32,12
int64, unsigned int8, unsigned int16, unsigned int32 or unsigned int64) then the blob contains the13
value type's FieldOrPropType (see below), followed by its binary value (Val).14

Val is the binary value for a simple type. A bool is a single byte with value 0 (false) or 1 (true); char is a two-15
byte unicode character; and the others have their obvious meaning..16

17
18

A NamedArg is simply a FixedArg (discussed above) preceded by information to identify which field or19
property it represents.20

FIELD is the single byte 0x5321

PROPERTY is the single byte 0x5422

The FieldOrPropType shall be exactly one of: ELEMENT_TYPE_BOOLEAN, ELEMENT_TYPE_CHAR,23
ELEMENT_TYPE_I1, ELEMENT_TYPE_U1, ELEMENT_TYPE_I2, ELEMENT_TYPE_U2, ELEMENT_TYPE_I4,24
ELEMENT_TYPE_U4, ELEMENT_TYPE_I8, ELEMENT_TYPE_U8, ELEMENT_TYPE_R4, ELEMENT_TYPE_R8,25
ELEMENT_TYPE_STRING or the constant 0x50 (for an argument of type Type). (See clause 22.1.15)26

The FieldOrPropName is the name of the field or property, stored as a SerString (defined above).27

The SerString used to encode an argument of type Type includes the full type name, followed optionally by the28
assembly where it is defined, its version, culture and public key token. If the assembly name is omitted, the29
CLI looks first in this assembly, and then the assembly named mscorlib.30
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For example, consider the Type string “Ozzy.OutBack.Kangaroo+Wallaby, MyAssembly” for a class1
“Wallaby” nested within class “Ozzy.OutBack.Kangaroo”, defined in the assembly “MyAssembly”.2

22.4 Marshall ing Descriptors3

A Marshalling Descriptor is like a signature – it’s a 'blob' of binary data. It describes how a field or parameter4
(which, as usual, covers the method return, as parameter number 0) should be marshalled when calling to or5
from unmanaged code via PInvoke dispatch. The ilasm syntax marshal can be used to create a marshalling6
descriptor, as can the pseudo custom attribute MarshalAsAttribute -- see clause 20.2.1)7

Note that a conforming implementation of the CLI need only support marshalling of the types specified earlier8
– see clause 14.5.4.9

Marshalling descriptors make use of constants named NATIVE_TYPE_xxx. Their names and values are listed10
in the following table:11

Name Value

NATIVE_TYPE_BOOLEAN 0x02

NATIVE_TYPE_I1 0x03

NATIVE_TYPE_U1 0x04

NATIVE_TYPE_I2 0x05

NATIVE_TYPE_U2 0x06

NATIVE_TYPE_I4 0x07

NATIVE_TYPE_U4 0x08

NATIVE_TYPE_I8 0x09

NATIVE_TYPE_U8 0x0a

NATIVE_TYPE_R4 0x0b

NATIVE_TYPE_R8 0x0c

NATIVE_TYPE_LPSTR 0x14

NATIVE_TYPE_INT 0x1f

NATIVE_TYPE_UINT 0x20

NATIVE_TYPE_FUNC 0x26

NATIVE_TYPE_ARRAY 0x2a

12
The 'blob' has the following format –13

MarshalSpec ::=14

NativeInstrinsic15

| ARRAY ArrayElemType ParamNum ElemMult NumElem16

NativeInstrinsic ::=17

BOOLEAN | I1 | U1 | I2 | U2 | I4 | U4 | I8 | U8 | R4 | R818

| CURRENCY | BSTR | LPSTR | LPWSTR | LPTSTR19

| INT | UINT | FUNC | LPVOID20

For compactness, the NATIVE_TYPE_ prefixes have been omitted in the above lists. So, for example, “ARRAY” is21
shorthand for NATIVE_TYPE_ARRAY22

NumElem is an integer (compressed as described in Section 22.2) that specifies how many elements are in the23
array24

ArrayElemType :==25

NativeInstrinsic | BOOLEAN | I1 | U1 | I2 | U226
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| I4 | U4 | I8 | U8 | R4 | R8 | LPSTR | INT | UINT | FUNC | LPVOID1

ParamNum is an integer (compressed as described in Section 22.2) specifying the parameter in the method call2
that provides the number of elements in the array – see below3

ElemMult is an integer compressed as described in Section 22.2 (says by what factor to multiply – see below)4

Note:5

For example, in the method declaration:6

Foo (int ar1[], int size1, byte ar2[], int size2)7

The ar1 parameter might own a row in the FieldMarshal table, which indexes a MarshalSpec in the Blob heap8
with the format:9

ARRAY MAX 2 1 010

This says the parameter is marshalled to a NATIVE_TYPE_ARRAY. There is no additional info about the type of11
each element (signified by that NATIVE_TYPE_MAX). The value of ParamNum is 2, which indicates that12
parameter number 2 in the method (the one called “size1”) will specify the number of elements in the actual13
array – let’s suppose its value on a particular call is 42. The value of ElemMult is 1. The value of NumElem is14
0. The calculated total size, in bytes, of the array is given by the formula:15

if ParamNum == 016

SizeInBytes = NumElem * sizeof (elem)17

else18

SizeInBytes = ( @ParamNum * ElemMult + NumElem ) * sizeof (elem)19

endif20

The syntax “@ParamNum” is used here to denote the value passed in for parameter number ParamNum – it21
would be 42 in this example. The size of each element is calculated from the metadata for the ar1 parameter in22
Foo’s signature – an ELEMENT_TYPE_I4 (see clause 22.1.15) of size 4 bytes.23
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23 Metadata Physical Layout1

The physical on-disk representation of metadata is a direct reflection of the logical representation described in2
Chapter 21 and Chapter 22. That is, data is stored in streams representating the meta data tables and heaps. The3
main complication is that, where the logical representation is abstracted from the number of bytes needed for4
indexing into tables and columns, the physical representation has to take care of that explicitly by defining how5
to map logical metadata heaps and tables into their physical representations.6

23.1 Fixed Fields7

Complete CLI components (metadata and CIL instructions) are stored in a subset of the current Portable8
Executable (PE) File Format (see Chapter 24). Because of this heritage, some of the fields in the physical9
representation of metadata have fixed values. When writing these fields they shall be set to the value indicated,10
on reading they may be ignored.11

23.2 File Headers12

23.2 .1 Metadata root13

The root of the physical metadata starts with a magic signature, several bytes of version and other14
miscellaneous information, followed by a count and an array of stream headers, one for each stream that is15
present. The actual encoded tables and heaps are stored in the streams, which immediately follow this array of16
headers.17

Offset Size Field Description

0 4 Signature Magic signature for physical metadata : 0x424A5342.

4 2 MajorVersion Major version, 1 (ignore on read)

6 2 MinorVersion Minor version, 0 (ignore on read)

8 4 Reserved Reserved, always 0 (see Section 23.1).

12 4 Length Length of version string in bytes, say m.

16 m Version UTF8-encoded version string of length m (ignore on read)

16+m Padding to next 4 byte boundary, say x.

x 2 Flags Reserved, always 0 (see Section 23.1).

x+2 2 Streams Number of streams, say n.

x+4 StreamHeaders Array of n StreamHdr structures.
18

23.2 .2 Stream Header19

A stream header gives the names, and the position and length of a particular table or heap. Note that the length20
of a Stream header structure is not fixed, but depends on the length of its name field (a variable length null-21
terminated string).22

Offset Size Field Description

0 4 Offset Memory offset to start of this stream from start of the
metadata root (see clause 23.2.1)

4 4 Size Size of this stream in bytes, shall be a multiple of 4.

8 Name Name of the stream as null terminated variable length array
of ASCII characters, padded with \0 characters

23
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Both logical tables and heaps are stored in streams. There are five possible kinds of streams. A stream header1
with name “#Strings” that points to the physical representation of the string heap where identifier strings are2
stored; a stream header with name “#US” that points to the physical representation of the user string heap; a3
stream header with name “#Blob” that points to the physical representation of the blob heap, a stream header4
with name “#GUID” that points to the physical representation of the GUID heap; and a stream header with5
name “#~” that points to the physical representation of a set of tables. (see Chapter 22)6

Each kind of stream may occur at most once, that is, a meta-data file may not contain two “#US” streams, or7
five “#Blob” streams. Streams need not be there if they are empty.8

The next sections will describe the structure of each kind of stream in more detail.9

23.2 .3 #Strings heap10

The stream of bytes pointed to by a “#Strings” header is the physical representation of the logical string heap.11
The physical heap may contain garbage, that is, it may contain parts that are unreachable from any of the tables,12
but parts that are reachable from a table shall contain a valid null terminated UTF8 string. When the #String13
heap is present, the first entry is always the empty string (ie \0).14

23.2 .4 #US and #Blob heaps15

The stream of bytes pointed to by a “#US” or “#Blob” header are the physical representation of logical16
Userstring and 'blob' heaps respectively. Both these heaps may contain garbage, as long as any part that is17
reachable from any of the tables contains a valid 'blob'. Individual blobs are stored with their length encoded in18
the first few bytes:19

• If the first one byte of the 'blob' is 0bs, then the rest of the 'blob' contains the (bs) bytes of actual20
data.21

• If the first two bytes of the 'blob' are 10bs and x, then the rest of the 'blob' contains the (bs << 8 +22
x) bytes of actual data.23

• If the first four bytes of the 'blob' are 110bs, x, y, and z, then the rest of the 'blob' contains the (bs24
<< 24 + x << 16 + y << 8 + z) bytes of actual data.25

The first entry in both these heap is the empty 'blob' that consists of the single byte 0x00.26

23.2 .5 #GUID heap27

The “#GUID” header points to a sequence of 128-bit GUIDs. There might be unreachable GUIDs stored in the28
stream.29

23.2 .6 #~ stream30

The “#~” streams contain the actual physical representations of the logical metadata tables (see Chapter 21). A31
“#~” stream has the following top-level structure:32

Offset Size Field Description

0 4 Reserved Reserved, always 0 (see Section 23.1).

4 1 MajorVersion Major version of table schemata, always 1 (see Section 23.1).

5 1 MinorVersion Minor version of table schemata, always 0 (see Section 23.1).

6 1 HeapSizes Bit vector for heap sizes.

7 1 Reserved Reserved, always 1 (see Section 23.1).

8 8 Valid Bit vector of present tables, let n be the number of bits that are
1.

16 8 Sorted Bit vector of sorted tables.
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24 4*n Rows Array of n four byte unsigned integers indicating the number
of rows for each present table.

24+4*n Tables The sequence of physical tables.
1

The HeapSizes field is a bitvector that encodes how wide indexes into the various heaps are. If bit 0 is set,2
indexes into the “#String” heap are 4 bytes wide; if bit 1 is set, indexes into the “#GUID” heap are 4 bytes3
wide; bit 2 is not used; if bit 3 is set, indexes into the “#Blob” heap are 4 bytes wide. Conversely, if the4
HeapSize bit for a particular heap is not set, indexes into that heap are 2 bytes wide.5

Bit position Description

0x01 Size of “#String” stream >= 2^16.

0x02 Size of “#GUID” stream >= 2^16

0x04 Size of “#Blob” stream >= 2^16.
6

The Valid field is a 64 bits wide bitvector that has a specific bit set for each table that is stored in the stream;7
the mapping of tables to indexes is given at the start of Chapter 21. For example when the DeclSecurity table is8
present in the logical metadata, bit 0x0e should be set in the Valid vector. It is illegal to include non-existent9
tables in Valid, so all bits above 0x2b shall be zero.10

The Rows array contains the number of rows for each of the tables that are present. When decoding physical11
metadata to logical metadata, the number of 1’s in Valid indicates the number of elements in the Rows array.12

A crucial aspect in the encoding of a logical table is its schema. The schema for each table is given in13
Chapter 21. For example, the table with assigned index 0x02 is a TypeDef table, which, according to its14
specification in Section 21.34, has the following columns: 4 byte-wide flags, index into the String heap, another15
index into String heap, index into TypeDef or TypeRef table, index into Field table, index into Method table.16

The physical representation of a table with schema (C0,…,Cn-1) with n rows consists of the concatenation of the17
physical representation of each of its rows. The physical representation of a row with schema (C0,…,Cn-1) is18
the concatenation of the physical representation of each of its elements. The physical representation of a row19
cell e at a column with type C is defined as follows:20

• If e is a constant, it is stored using the number of bytes as specified for its column type C (i.e. a 221
byte bitmask of type PropertyAttributes)22

• If e is an index into the GUID heap, 'blob', or String heap, it is stored using the number of bytes23
as defined in the HeapSizes field.24

• If e is a simple index into a table with index i, it is stored using 2 bytes if table i has less than25
2^16 rows, otherwise it is stored using 4 bytes.26

• If e is a coded index that points into table ti out of n possible tables t0, …tn-1, then it is stored as e27
<< (log n) | tag{ t0, …tn-1}[ ti] using 2 bytes if the maximum number of rows of tables t0, …tn-1, is28
less than 2^16 – (log n), and using 4 bytes otherwise. The family of finite maps tag{ t0, …tn-1} is29
defined below. Note that decoding a physical row requires the inverse of this mapping. [For30
example, the Parent column of the Constant table indexes a row in the Field, Param or Property31
tables. The actual table is encoded into the low 2 bits of the number, using the values: 0 => Field,32
1 => Param,2 => Property.The remaining bits hold the actual row number being indexed. For33
example, a value of 0x321, indexes row number 0xC8 in the Param table.]34

TypeDefOrRef: 2 bits to encode tag Tag

TypeDef 0

TypeRef 1

TypeSpec 2

35
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HasConstant: 2 bits to encode tag Tag

FieldDef 0

ParamDef 1

Property 2

1
HasCustomattribute: 5 bits to encode tag Tag

MethodDef 0

FieldDef 1

TypeRef 2

TypeDef 3

ParamDef 4

InterfaceImpl 5

MemberRef 6

Module 7

Permission 8

Property 9

Event 10

Signature 11

ModuleRef 12

TypeSpec 13

Assembly 14

AssemblyRef 15

File 16

ExportedType 17

ManifestResource 18

2
HasFieldMarshall: 1 bit to encode tag Tag

FieldDef 0

ParamDef 1

3
HasDeclSecurity: 2 bits to encode tag Tag

TypeDef 0

MethodDef 1

Assembly 2

4
MemberRefParent: 3 bits to encode tag Tag

Not used 0

TypeRef 1

ModuleRef 2

MethodDef 3

TypeSpec 4

5
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HasSemantics: 1 bit to encode tag Tag

Event 0

Property 1

1
MethodDefOrRef: 1 bit to encode tag Tag

MethodDef 0

MemberRef 1

2
MemberForwarded: 1 bit to encode tag Tag

FieldDef 0

MethodDef 1

3
Implementation: 2 bits to encode tag Tag

File 0

AssemblyRef 1

ExportedType

4
CustomAttributeType: 3 bits to encode tag Tag

Not used 0

Not used 1

MethodDef 2

MemberRef 3

Not used 4

5
ResolutionScope: 2 bits to encode tag Tag

Module 0

ModuleRef 1

AssemblyRef 2

TypeRef 3

6
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24 File Format Extensions to PE1

This contains informative text only 2

The file format for CLI components is a strict extension of the current Portable Executable (PE) File Format.3
This extended PE format enables the operating system to recognize runtime images, accommodates code4
emitted as CIL or native code, and accommodates runtime metadata as an integral part of the emitted code.5
There are also specifications for a subset of the full Windows PE/COFF file format, in sufficient detail that a6
tool or compiler can use the specifications to emit valid CLI images.7

The PE format frequently uses the term RVA (Relative Virtual Address). An RVA is the address of an item8
once loaded into memory, with the base address of the image file subtracted from it (i.e. the offset from the9
base address where the file is loaded). The RVA of an item will almost always differ from its position within10
the file on disk. To compute the file position of an item with RVA r, search all the sections in the PE file to find11
the section with RVA s, length l and file position p in which the RVA lies, ie s ≤ r < s+l. The file position of12
the item is then given by p+(r-s).13

End informative text 14

24.1 Structure of the Runtime File Format15

The figure below provides a high-level view of the CLI file format. All runtime images contain the following:16

• PE headers, with specific guidelines on how field values should be set in a runtime file.17

• A CLI header that contains all of the runtime specific data entries. The runtime header is read-18
only and shall be placed in any read-only section.19

• The sections that contain the actual data as described by the headers, including imports/exports,20
data, and code.21

22

The CLI header (see clause 24.3.3) is found using CLI Header directory entry in the PE header . The CLI23
header in turn contains the address and sizes of the runtime data (metadata see Chapter 23 and CIL24
see Chapter 24.4) in the rest of the image. Note that the runtime data can be merged into other areas of the PE25
format with the other data based on the attributes of the sections (such as read only versus execute, etc.).26

24.2 PE Headers27

A PE image starts with an MS-DOS header followed by a PE signature, followed by the PE file header, and28
then the PE optional header followed by PE section headers.29
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24.2 .1 MS-DOS Header1

The PE format starts with an MS-DOS stub of exactly the following 128 bytes to be placed at the front of the2
module. At offset 0x3c in the DOS header is a 4 byte unsigned integer offset lfanew to the PE signature (shall3
be “PE\0\0”), immediately followed by the PE file header.4

0x4d 0x5a 0x90 0x00 0x03 0x00 0x00 0x00

0x04 0x00 0x00 0x00 0xFF 0xFF 0x00 0x00

0xb8 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x40 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 0x00 0x00 0x00 0x00

0x00 0x00 0x00 0x00 lfanew

0x0e 0x1f 0xba 0x0e 0x00 0xb4 0x09 0xcd

0x21 0xb8 0x01 0x4c 0xcd 0x21 0x54 0x68

0x69 0x73 0x20 0x70 0x72 0x6f 0x67 0x72

0x61 0x6d 0x20 0x63 0x61 0x6e 0x6e 0x6f

0x74 0x20 0x62 0x65 0x20 0x72 0x75 0x6e

0x20 0x69 0x6e 0x20 0x44 0x4f 0x53 0x20

0x6d 0x6f 0x64 0x65 0x2e 0x0d 0x0d 0x0a

0x24 0x00 0x00 0x00 0x00 0x00 0x00 0x00

5

24.2 .2 PE File Header6

Immediately after the PE signature is the PE File header consisting of the following:7

Offset Size Field Description

0 2 Machine Always 0x14c (see Section 23.1).

2 2 Number of Sections Number of sections; indicates size of the Section Table,
which immediately follows the headers.

4 4 Time/Date Stamp Time and date the file was created in seconds since
January 1st 1970 00:00:00 or 0.

8 4 Pointer to Symbol Table Always 0 (see Section 23.1).

12 4 Number of Symbols Always 0 (see Section 23.1).

16 2 Optional Header Size Size of the optional header, the format is described below.

18 2 Characteristics Flags indicating attributes of the file, see Characteristics.
8

24.2 .2.1 Characterist ics9

A CIL-only DLL sets flag 0x2000 to 1, while an CIL only .exe has flag 0x2000 set to zero:10

Flag Value Description

IMAGE_FILE_DLL 0x2000 The image file is a dynamic-link library (DLL).
11

Except for the IMAGE_FILE_DLL flag (0x2000), flags 0x0002, 0x0004, 0x008, 0x0100 and 0x0020 shall all be12
set, while all others shall always be zero (see Section 23.1).13
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24.2 .3 PE Optional Header1

Immediately after the PE Header is the PE Optional Header. This header contains the following information:2

Offset Size Header part Description

0 28 Standard fields These define general properties of the PE file, see 24.2.3.1.

28 68 NT-specific fields These include additional fields to support specific features of
Windows, see 24.2.3.2.

96 128 Data directories These fields are address/size pairs for special tables, found in
the image file (for example, Import Table and Export Table).

3

24.2 .3.1 PE Header Standard Fields4

These fields are required for all PE files and contain the following information:5

Offset Size Field Description

0 2 Magic Always 0x10B (see Section 23.1).

2 1 LMajor Always 6 (see Section 23.1).

3 1 LMinor Always 0 (see Section 23.1).

4 4 Code Size Size of the code (text) section, or the sum of all code sections
if there are multiple sections.

8 4 Initialized Data Size Size of the initialized data section, or the sum of all such
sections if there are multiple data sections.

12 4 Uninitialized Data Size Size of the uninitialized data section, or the sum of all such
sections if there are multiple unitinitalized data sections.

16 4 Entry Point RVA RVA of entry point , needs to point to bytes 0xFF 0x25
followed by the RVA+0x4000000 in a section marked
execute/read for EXEs or 0 for DLLs

20 4 Base Of Code RVA of the code section, always 0x00400000 for exes and
0x10000000 for DLL.

24 4 Base Of Data RVA of the data section.
6

This contains informative text only 7

The entry point RVA shall always be either the x86 entry point stub or be 0. On non-CLI aware platforms, this8
stub will call the entry point API of mscoree (_CorExeMain or _CorDllMain). The mscoree entry point will use9
the module handle to load the meta data from the image, and invoke the entry point specified in vthe CLI10
header.11

End informative text 12

24.2 .3.2 PE Header Windows NT-Specif ic Fields13

These fields are Windows NT specific:14

Offset Size Field Description

28 4 Image Base Always 0x400000 (see Section 23.1).

32 4 Section Alignment Always 0x2000 (see Section 23.1).

36 4 File Alignment Either 0x200 or 0x1000.
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40 2 OS Major Always 4 (see Section 23.1).

42 2 OS Minor Always 0 (see Section 23.1).

44 2 User Major Always 0 (see Section 23.1).

46 2 User Minor Always 0 (see Section 23.1).

48 2 SubSys Major Always 4 (see Section 23.1).

50 2 SubSys Minor Always 0 (see Section 23.1).

52 4 Reserved Always 0 (see Section 23.1).

56 4 Image Size Size, in bytes, of image, including all headers and padding;
shall be a multiple of Section Alignment.

60 4 Header Size Combined size of MS-DOS Header, PE Header, PE Optional
Header and padding; shall be a multiple of the file alignment.

64 4 File Checksum Always 0 (see Section 23.1).

68 2 SubSystem Subsystem required to run this image. Shall be either
IMAGE_SUBSYSTEM_WINDOWS_CE_GUI (0x3) or
IMAGE_SUBSYSTEM_WINDOWS_GUI (0x2).

70 2 DLL Flags Always 0 (see Section 23.1).

72 4 Stack Reserve Size Always 0x100000 (1Mb) (see Section 23.1).

76 4 Stack Commit Size Always 0x1000 (4Kb) (see Section 23.1).

80 4 Heap Reserve Size Always 0x100000 (1Mb) (see Section 23.1).

84 4 Heap Commit Size Always 0x1000 (4Kb) (see Section 23.1).

88 4 Loader Flags Always 0 (see Section 23.1)

92 4 Number of Data
Directories

Always 0x10 (see Section 23.1).

1

24.2 .3.3 PE Header Data Directories2

The optional header data directories give the address and size of several tables that appear in the sections of the3
PE file. Each data directory entry contains the RVA and Size of the structure it describes.4

Offset Size Field Description

96 8 Export Table Always 0 (see Section 23.1).

104 8 Import Table RVA of Import Table, (see clause 24.3.1).

112 8 Resource Table Always 0 (see Section 23.1).

120 8 Exception Table Always 0 (see Section 23.1).

128 8 Certificate Table Always 0 (see Section 23.1).

136 8 Base Relocation Table Relocation Table, set to 0 if unused (see
clause 24.3.1).

144 8 Debug Always 0 (see Section 23.1).

152 8 Copyright Always 0 (see Section 23.1).

160 8 Global Ptr Always 0 (see Section 23.1).

168 8 TLS Table Always 0 (see Section 23.1).
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176 8 Load Config Table Always 0 (see Section 23.1).

184 8 Bound Import Always 0 (see Section 23.1).

192 8 IAT RVA of Import Address Table, (see
clause 24.3.1).

200 8 Delay Import Descriptor Always 0 (see Section 23.1).

208 8 CLI Header CLI Header with directories for runtime data,
(see clause 24.3.1).

216 8 Reserved Always 0 (see Section 23.1).
1

The tables pointed to by the directory entries are stored in on of the PE file’s sections; these sections2
themselves are described by section headers.3

24.3 Section Headers4

Immediately following the optional header is the Section Table, which contains a number of section headers.5
This positioning is required because the file header does not contain a direct pointer to the section table; the6
location of the section table is determined by calculating the location of the first byte after the headers.7

Each section header has the following format, for a total of 40 bytes per entry:8

Offset Size Field Description

0 8 Name An 8-byte, null-padded ASCII string. There is no terminating null
if the string is exactly eight characters long.

8 4 VirtualSize Total size of the section when loaded into memory in bytes
rounded to Section Alignment. If this value is greater than Size of
Raw Data, the section is zero-padded.

12 4 VirtualAddress For executable images this is the address of the first byte of the
section, when loaded into memory, relative to the image base.

16 4 SizeOfRawData Size of the initialized data on disk in bytes, shall be a multiple of
FileAlignment from the PE header. If this is less than VirtualSize
the remainder of the section is zero filled. Because this field is
rounded while the VirtualSize field is not it is possible for this to
be greater than VirtualSize as well. When a section contains only
uninitialized data, this field should be 0.

20 4 PointerToRawData RVA to section’s first page within the PE file. This shall be a
multiple of FileAlignment from the optional header. When a
section contains only uninitialized data, this field should be 0.

24 4 PointerToRelocations RVA of Relocation section.

28 4 PointerToLinenumbers Always 0 (see Section 23.1).

32 2 NumberOfRelocations Number of relocations, set to 0 if unused.

34 2 NumberOfLinenumbers Always 0 (see Section 23.1).

36 4 Characteristics Flags describing section’s characteristics, see below.
9

The following table defines the possible characteristics of the section.10

Flag Value Description

IMAGE_SCN_CNT_CODE 0x00000020 Section contains executable code.

IMAGE_SCN_CNT_INITIALIZED_DATA 0x00000040 Section contains initialized data.



- 161 -

IMAGE_SCN_CNT_UNINITIALIZED_DATA 0x00000080 Section contains uninitialized data.

IMAGE_SCN_MEM_EXECUTE 0x20000000 Section can be executed as code.

IMAGE_SCN_MEM_READ 0x40000000 Section can be read.

IMAGE_SCN_MEM_WRITE 0x80000000 Section can be written to.
1

24.3 .1 Import Table and Import Address Table (IAT)2

The Import Table and the Import Address Table (IAT) are used to import the _CorExeMain (for a .exe) or3
_CorDllMain (for a .dll) entries of the runtime engine (mscoree.dll). The Import Table directory entry points to4
a one element zero terminated array of Import Directory entries (in a general PE file there is one entry for each5
imported DLL):6

Offset Size Field Description

0 4 ImportLookupTable RVA of the Import Lookup Table

4 4 DateTimeStamp Always 0 (see Section 23.1).

4 4 ForwarderChain Always 0 (see Section 23.1).

12 4 Name RVA of null terminated ASCII string “mscoree.dll”.

16 4 ImportAddressTable RVA of Import Address Table (this is the same as the
RVA of the IAT descriptor in the optional header).

20 20 End of Import Table. Shall be filled with zeros.
7

The Import Lookup Table and the Import Address Table (IAT) are both one element, zero terminated arrays of8
RVAs into the Hint/Name table. Bit 31 of the RVA shall be set to 0. In a general PE file there is one entry in9
this table for every imported symbol.10

Offset Size Field Description

1 4 Hint/Name Table RVA A 31-bit RVA into the Hint/Name Table. Bit 31
shall be set to 0 indicating import by name.

2 2 End of table, shall be filled with zeros.
11

The IAT should be in an executable and writable section as the loader will replace the pointers into the12
Hint/Name table by the actual entry points of the imported symbols.13

The Name/Hint table contains the name of the dll-entry that is imported.14

Offset Size Field Description

0 2 Hint Shall be 0.

2 variable Name Case sensitive, null-terminated ASCII string containing name to
import. Shall be “_CorExeMain” for a .exe file and
“_CorDllMain” for a .dll file.

15

24.3 .2 Relocat ions16

In a pure CIL image, a single fixup of type IMAGE_REL_BASED_HIGHLOW (0x3) is required for the x8617
startup stub which access the IAT to load the runtime engine on down level loaders. When building a mixed18
CIL/native image or when the image contains embedded RVAs in user data, the relocation section contains19
relocations for these as well.20

The relocation section contains a Fix-Up Table. The fixup table is broken into blocks of fixups. Each block21
represents the fixups for a 4K page and block shall start on a 32-bit boundary. The last fixup block has22
PageRVA field set to 0.23
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Each fixup block starts with the following structure:1

Offset Size Field Description

0 4 PageRVA The RVA of the block in which the fixup needs to be
applied.

4 4 Block Size Total number of bytes in the fixup block, including the
Page RVA and Block Size fields, as well as the
Type/Offset fields that follow.

2
The Block Size field is then followed by (BlockSize –8)/2 Type/Offset. Each entry is a word (2 bytes) and has3
the following structure:4

Offset Size Field Description

0 4 bits Type Stored in high 4 bits of word. Value indicating which
type of fixup is to be applied (described below)

0 12 bits Offset Stored in remaining 12 bits of word. Offset from starting
address specified in the Page RVA field for the block.
This offset specifies where the fixup is to be applied.

5
To apply a fixup, a delta is calculated as the difference between the preferred base address, and the base where6
the image is actually loaded. The fixup applies the delta to the 32-bit field at Offset. If the image is loaded at its7
preferred base, the delta would be zero, and thus the fixups would not have to be applied.8

24.3 .3 CLI Header9

The CLI header contains all of the runtime-specific data entries and other information. The header should be10
placed in a read only, sharable section of the image. This header is defined as follows:11

Offset Size Field Description

0 4 Cb Size of the header in bytes

4 2 MajorRuntimeVersion The minimum version of the runtime required to run
this program, currently 2.

6 2 MinorRuntimeVersion The minor portion of the version, currently 0.

8 8 MetaData RVA of the physical meta data (see Chapter 23).

16 4 Flags Flags describing this runtime image. (see
clause 24.3.3.1).

20 4 EntryPointToken Token for the MethodDef or File of the entry point
for the image

24 8 Resources Location of CLI resources. (See Partition V ).

32 8 StrongNameSignature RVA of the hash data for this PE file used by the
CLI loader for binding and versioning

40 8 CodeManagerTable Always 0 (see Section 23.1).

48 8 VTableFixups RVA of an array of locations in the file that contain
an array of function pointers (e.g., vtable slots), see
below.

56 8 ExportAddressTableJumps Always 0 (see Section 23.1).

64 8 MangedNativeHeader Always 0 (see Section 23.1).
12
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24.3 .3.1 Runtime Flags1

The following flags describe this runtime image and are used by the loader.2

Flag Value Description

COMIMAGE_FLAGS_ILONLY 0x00000001 Always 1 (see Section 23.1).

COMIMAGE_FLAGS_32BITREQUIRED 0x00000002 Image may only be loaded into a 32-bit
process, for instance if there are 32-bit
vtablefixups, or casts from native integers to
int32. CLI implementations that have 64 bit
native integers shall refuse loading binaries
with this flag set.

COMIMAGE_FLAGS_STRONGNAMESIGNED 0x00000008 Image has a strong name signature.

COMIMAGE_FLAGS_TRACKDEBUGDATA 0x00010000 Always 0 (see Section 23.1).
3

24.3 .3.2 Entry Point Meta Data Token4

• The entry point token (see Clause 14.4.1.2) is always a MethodDef token (see Section 21.24) or5
File token (see Section 21.19 ) when the entry point for a multi-module assembly is not in the6
manifest assembly. The signature and implementation flags in metadata for the method indicate7
how the entry is run8

24.3 .3.3 Vtable Fixup9

Certain languages, which choose not to follow the common type system runtime model, may have virtual10
functions which need to be represented in a v-table. These v-tables are laid out by the compiler, not by the11
runtime. Finding the correct v-table slot and calling indirectly through the value held in that slot is also done12
by the compiler. The VtableFixups field in the runtime header contains the location and size of an array of13
Vtable Fixups (see clause 14.5.1). V-tables shall be emitted into a read-write section of the PE file.14

Each entry in this array describes a contiguous array of v-table slots of the specified size. Each slot starts out15
initialized to the metadata token value for the method they need to call. At image load time, the runtime16
Loader will turn each entry into a pointer to machine code for the CPU and can be called directly.17

Offset Size Field Description

0 4 VirtualAddress RVA of Vtable

4 2 Size Number of entries in Vtable

6 2 Type Type of the entries, as defined in table below
18

Constant Value Description

COR_VTABLE_32BIT 0x01 Vtable slots are 32 bits.

COR_VTABLE_64BIT 0x02 Vtable slots are 64 bits.

COR_VTABLE_FROM_UNMANAGED 0x04 Transition from unmanged to manged code.

COR_VTABLE_CALL_MOST_DERIVED 0x10 Call most derived method described by the
token (only valid for virtual methods).

19

24.3 .3.4 Strong Name Signature20

This header entry points to the strong name hash for an image that can be used to deterministically identify a21
module from a referencing point (see Section 6.2.1.3).22
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24.4 Common Intermediate Language Physical Layout1

This section contains the layout of the data structures used to describe a CIL method and its exceptions.2
Method bodies can be stored in any read-only section of a PE file. The MethodDef (see Section 21.24) records3
in metadata carry each method's RVA.4

A method consists of a method header immediately followed by the method body, possible followed by extra5
method data sections (see Section 24.4.5), typically exception handling data. If exception-handling data is6
present, then CorILMethod_MoreSects flag (see clause 24.4.4) shall be specified in the method header and for7
each chained item after that.8

There are two flavors of method headers - tiny (see clause 24.4.2) and fat (see clause 24.4.3). The three least9
significant bits in a method header indicate which type is present (see clause 24.4.1). The tiny header is 1 byte10
long and represents only the method's code size. A method is given a tiny header if it has no local variables,11
maxstack is 8 or less, the method has no exceptions, the method size is less than 64 bytes, and the method has12
no flags above 0x7. Fat headers carry full information - local vars signature token, maxstack, code size, flag.13
Method headers shall be 4-byte aligned.14

24.4 .1 Method Header Type Values15

The three least significant bits of the first byte of the method header indicate what type of header is present.16
These 3 bits will be one and only one of the following:17

Value Value Description

CorILMethod_TinyFormat 0x2 The method header is tiny (see clause 24.4.2) .

CorILMethod_FatFormat 0x3 The method header is fat (see clause 24.4.3).
18

24.4 .2 Tiny Format19

Tiny headers use a 5 bit length encoding. The following is true for all tiny headers:20

• No local variables are allowed21

• No exceptions22

• No extra data sections23

• The operand stack need be no bigger than 8 entries24

The first encoding has the following format:25

Start Bit Count of Bits Description

0 2 Flags (CorILMethod_TinyFormat shall be set, see clause 24.4.4).

2 6 Size of the method body immediately following this header.
Used only when the size of the method is less than 2^6 bytes.

26

24.4 .3 Fat Format27

The fat format is used whenever the tiny format is not sufficient. This may be true for one or more of the28
following reasons:29

• The method is too large to encode the size30

• There are exceptions31

• There are extra data sections32

• There are local variables33

• The operand stack needs more than 8 entries34

A fat header has the following structure35
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Offset Size Field Description

0 12 (bits) Flags Flags (CorILMethod_Fat shall be set, see
clause 24.4.4)

12 (bits) 4 (bits) Size Size of this header expressed as the count of 4-byte
integers occupied

2 2 MaxStack Maximum number of items on the operand stack

4 4 CodeSize Size in bytes of the actual method body

8 4 LocalVarSigTok Meta Data token for a signature describing the layout
of the local variables for the method. 0 means there
are no local variables present

1

24.4.4 Flags for Method Headers2

The first byte of a method header may also contain the following flags, valid only for the Fat format, that3
indicate how the method is to be executed:4

Flag Value Description

CorILMethod_Fat 0x3 Method header is fat.

CorILMethod_TinyFormat 0x2 Method header is tiny.

CorILMethod_MoreSects 0x8 More sections follow after this header (see
Section 24.4.5).

CorILMethod_InitLocals 0x10 Call default constructor on all local variables.
5

24.4 .5 Method Data Sect ion6

At the next 4-byte boundary following the method body can be extra method data sections. These method data7
sections start with a two byte header (1 byte flags, 1 byte for the length of the actual data) or a four byte header8
(1 byte for flags, and 3 bytes for length of the actual data). The first byte determines the kind of the header, and9
what data is in the actual section:10

Flag Value Description

CorILMethod_Sect_EHTable 0x1 Exception handling data.

CorILMethod_Sect_OptILTable 0x2 Reserved, shall be 0.

CorILMethod_Sect_FatFormat 0x40 Data format is of the fat variety, meaning there is a 3
byte length. If not set, the header is small with a 1
byte length

CorILMethod_Sect_MoreSects 0x80 Another data section occurs after this current section
11

Currently, the method data sections are only used for exception tables (see Chapter 0). The layout of a small12
exception header structure as is a follows:13

Offset Size Field Description

0 1 Kind Flags as described above.

1 1 DataSize Size of the data for the block, including the header, say
n*12+4.

2 2 Reserved Padding, always 0.
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4 n Clauses n small exception clauses (see Section 24.4.6).
1

The layout of a fat exception header structure is as follows:2

Offset Size Field Description

0 1 Kind Which type of exception block is being used
1 3 DataSize Size of the data for the block, including the header, say

n*24+4.

4 n Clauses n fat exception clauses (see Section 24.4.6).
3

24.4 .6 Exception Handling Clauses4

Exception handling clauses also come in small and fat versions.5

The small form of the exception clause should be used whenever the code size for the try block and handler6
code is smaller than or equal to 256 bytes. The format for a small exception clause is as follows:7

Offset Size Field Description

0 2 Flags Flags, see below.
2 2 TryOffset Offset in bytes of try block from start of the header.
4 1 TryLength Length in bytes of the try block
5 2 HandlerOffset Location of the handler for this try block
7 1 HandlerLength Size of the handler code in bytes
8 4 ClassToken Meta data token for a type-based exception handler
8 4 FilterOffset Offset in method body for filter-based exception handler

8
The layout of fat form of exception handling clauses is as follows:9

Offset Size Field Description

0 4 Flags Flags, see below.
4 4 TryOffset Offset in bytes of try block from start of the header.
8 4 TryLength Length in bytes of the try block
12 4 HandlerOffset Location of the handler for this try block
16 4 HandlerLength Size of the handler code in bytes
20 4 ClassToken Meta data token for a type-based exception handler
20 4 FilterOffset Offset in method body for filter-based exception handler

10
The following flag values are used for each exception-handling clause:11

Flag Value Description

COR_ILEXCEPTION_CLAUSE_EXCEPTION 0x0000 A typed exception clause
COR_ILEXCEPTION_CLAUSE_FILTER 0x0001 An exception filter and handler clause
COR_ILEXCEPTION_CLAUSE_FINALLY 0x0002 A finally clause
COR_ILEXCEPTION_CLAUSE_FAULT 0x0004 Fault clause (finally that is called on

exception only)

12

13
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1 Scope1

This specification is a detailed description of the Common Intermediate Language (CIL) instruction set, part of2
the specification of the Common Language Infrastructure. Partition I describes the architecture of the CLI and3
provides an overview of a large number of issues relating to the CIL instruction set. That overview is essential4
to an understanding of the instruction set as described here.5

Each instruction description describes a set of related CLI machine instructions. Each instruction definition6
consists of five parts:7

• A table describing the binary format, assembly language notation and description of each variant8
of the instruction. See the Instruction Variant Table section.9

• A stack transition diagram that describes the state of the evaluation stack before and after the10
instruction is executed. See Section 1.3.11

• An English description of the instruction. See the English Description section.12

• A list of exceptions that might be thrown by the instruction. See Partition I for details. There are13
three exceptions which may be thrown by any instruction and are not listed with the instruction:14

ExecutionEngineException indicates that the internal state of the Execution Engine is corrupted and15
execution cannot continue. [Note: in a system that executes only verifiable code this exception is not thrown.]16

StackOverflowException indicates that the hardware stack size has been exceeded. The precise timing of this17
exception and the conditions under which it occurs are implementation specific. [Note: this exception is18
unrelated to the maximum stack size described in clause 1.7.4. That size relates to the depth of the evaluation19
stack that is part of the method state described in Partition I, while this exception has to do with the20
implementation of that method state on physical hardware.]21

OutOfMemoryException indicates that the available memory space has been exhausted, either because the22
instruction inherently allocates memory (newobj, newarr) or for an implementation-specific reason (for23
example, an implementation based on just-in-time compilation to native code may run out of space to store the24
translated method while executing the first call or callvirt to a given method).25

• A section describing the verifiability conditions associated with the instruction. See Section 1.8.26

In addition, operations that have a numeric operand also specify an operand type table that describes how they27
operate based on the type of the operand. See Section 1.5.28

Note that not all instructions are included in all CLI Profiles. See Partition IV for details.29

1.1 Data Types30

While the Common Type System (CTS) defines a rich type system and the Common Language Specification31
(CLS) specifies a subset that can be used for language interoperability, the CLI itself deals with a much simpler32
set of types. These types include user-defined value types and a subset of the built-in types. The subset is33
collectively known as the “basic CLI types”:34

• A subset of the full numeric types (int32, int64, native int, and F)35

• Object references (O) without distinction between the type of object referenced36

• Pointer types (native unsigned int and &) without distinction as to the type pointed to37

Note that object references and pointer types may be assigned the value null. This is defined throughout the38
CLI to be zero (a bit pattern of all bits zero)39

1.1 .1 Numeric Data Types40

• The CLI only operates on the numeric types int32 (4 byte signed integers), int64 (8 byte signed41
integers), native int (native size integers), and F (native size floating-point numbers). The CIL42
instruction set, however, allows additional data types to be implemented:43
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• Short integers. The evaluation stack only holds 4 or 8 byte integers, but other locations1
(arguments, local variables, statics, array elements, fields) may hold 1 or 2 byte integers. Loading2
from these locations onto the stack either zero-extends (ldind.u*, ldelem.u*, etc.) or sign-3
extends (ldind.i*, ldelem.i*, etc.) to a 4 byte value. Storing to integers (stind.u1, stelem.i2,4
etc.) truncates. Use the conv.ovf.* instructions to detect when this truncation results in a value5
that doesn’t correctly represent the original value.6

Note: Short integers are loaded as 4-byte numbers on all architectures and these 4-byte numbers must always7
be tracked as distinct from 8-byte numbers. This helps portability of code by ensuring that the default8
arithmetic behavior (i.e when no conv or conv.ovf instruction are executed) will have identical results on all9
implementations.10

Convert instructions that yield short integer values actually leave an int32 (32-bit) value on the stack, but it is11
guaranteed that only the low bits have meaning (i.e. the more significant bits are all zero for the unsigned12
conversions or a sign extension for the signed conversions). To correctly simulate the full set of short integer13
operations a conversion to the short form is required before the div, rem, shr, comparison and conditional14
branch instructions.15

In addition to the explicit conversion instructions there are four cases where the CLI handles short integers in a16
special way:17

336. Assignment to a local (stloc) or argument (starg) whose type is declared to be a short integer18
type automatically truncates to the size specified for the local or argument.19

337. Loading from a local (ldloc) or argument (ldarg) whose type is declared to be a short signed20
integer type automatically sign extends.21

338. Calling a procedure with an argument that is a short integer type is equivalent to assignment to22
the argument value, so it truncates.23

339. Returning a value from a method whose return type is a short integer is modeled as storing into a24
short integer within the called procedure (i.e. the CLI automatically truncates) and then loading25
from a short integer within the calling procedure (i.e. the CLI automatically zero- or sign-26
extends).27

In the last two cases it is up to the native calling convention to determine whether values are actually truncated28
or extended, as well as whether this is done in the called procedure or the calling procedure. The CIL29
instruction sequence is unaffected and it is as though the CIL sequence included an appropriate conv30
instruction.31

• 4 byte integers. The shortest value actually stored on the stack is a 4-byte integer. These can be32
converted to 8-byte integers or native-size integers using conv.* instructions. Native-size integers33
can be converted to 4-byte integers, but doing so is not portable across architectures. The conv.i434
and conv.u4 can be used for this conversion if the excess significant bits should be ignored; the35
conv.ovf.i4 and conv.ovf.u4 instructions can be used to detect the loss of information.36
Arithmetic operations allow 4-byte integers to be combined with native size integers, resulting in37
native size integers. 4-byte integers may not be directly combined with 8-byte integers (they must38
be converted to 8-byte integers first).39

• Native size integers. Native size integers can be combined with 4-byte integers using any of the40
normal arithmetic instructions, and the result will be a native-size integer. Native size integers41
must be explicitly converted to 8-byte integers before they can be combined with 8-byte integers.42

• 8 byte integers. Supporting 8 byte integers on 32 bit hardware may be expensive, whereas 32 bit43
arithmetic is available and efficient on current 64 bit hardware. For this reason, numeric44
instructions allow int32 and I data types to be intermixed (yielding the largest type used as input),45
but these types cannot be combined with int64s. Instead, an native int or int32 must be explicitly46
converted to int64 before it can be combined with an int64.47

• Unsigned integers. Special instructions are used to interpret integers on the stack as though they48
were unsigned, rather than tagging the stack locations as being unsigned.49



- 3 -

• Floating-point numbers. See also Partition I, Handling of Floating Point Datatypes. Storage1
locations for floating-point numbers (statics, array elements, and fields of classes) are of fixed2
size. The supported storage sizes are float32 and float64. Everywhere else (on the evaluation3
stack, as arguments, as return types, and as local variables) floating-point numbers are4
represented using an internal floating-point type. In each such instance, the nominal type of the5
variable or expression is either float32 or float64, but its value may be represented internally6
with additional range and/or precision. The size of the internal floating-point representation is7
implementation-dependent, may vary, and shall have precision at least as great as that of the8
variable or expression being represented. An implicit widening conversion to the internal9
representation from float32 or float64 is performed when those types are loaded from storage.10
The internal representation is typically the natural size for the hardware, or as required for11
efficient implementation of an operation. The internal representation shall have the following12
characteristics:13

o The internal representation shall have precision and range greater than or equal to the14
nominal type.15

o Conversions to and from the internal representation shall preserve value. [Note: This16
implies that an implicit widening conversion from float32 (or float64) to the internal17
representation, followed by an explicit conversion from the internal representation to18
float32 (or float64), will result in a value that is identical to the original float32 (or19
float64) value.]20

Note: The above specification allows a compliant implementation to avoid rounding to the precision of the21
target type on intermediate computations, and thus permits the use of wider precision hardware registers, as22
well as the application of optimizing transformations which result in the same or greater precision, such as23
contractions. Where exactly reproducible behavior is required by a language or application, explicit24
conversions may be used.25

When a floating-point value whose internal representation has greater range and/or precision than its nominal26
type is put in a storage location, it is automatically coerced to the type of the storage location. This may involve27
a loss of precision or the creation of an out-of-range value (NaN, +infinity, or -infinity). However, the value28
may be retained in the internal representation for future use, if it is reloaded from the storage location without29
having been modified. It is the responsibility of the compiler to ensure that the memory location is still valid at30
the time of a subsequent load, taking into account the effects of aliasing and other execution threads (see31
memory model section). This freedom to carry extra precision is not permitted, however, following the32
execution of an explicit conversion (conv.r4 or conv.r8), at which time the internal representation must be33
exactly representable in the associated type.34

Note: To detect values that cannot be converted to a particular storage type, use a conversion instruction35
(conv.r4, or conv.r8) and then check for an out-of-range value using ckfinite. To detect underflow when36
converting to a particular storage type, a comparison to zero is required before and after the conversion.37

Note: This standard does not specify the behavior of arithmetic operations on denormalized floating point38
numbers, nor does it specify when or whether such representations should be created. This is in keeping with39
IEC 60559:1989. In addition, this standard does not specify how to access the exact bit pattern of NaNs that are40
created, nor the behavior when converting a NaN between 32-bit and 64-bit representation. All of this behavior41
is deliberately left implementation-specific.42

1.1 .2 Boolean Data Type43

A CLI Boolean type occupies one byte in memory. A bit pattern of all zeroes denotes a value of false. A bit44
pattern with any bit set (analogous to a non-zero integer) denotes a value of true.45

1.1.3 Object References46

Object references (type O) are completely opaque. There are no arithmetic instructions that allow object47
references as operands, and the only comparison operations permitted are equality (and inequality) between two48
object references. There are no conversion operations defined on object references. Object references are49
created by certain CIL object instructions (notably newobj and newarr). Object references can be passed as50
arguments, stored as local variables, returned as values, and stored in arrays and as fields of objects.51
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1.1.4 Runtime Pointer Types1

There are two kinds of pointers: unmanaged pointers and managed pointers. For pointers into the same array or2
object (see Partition I), the following arithmetic operations are defined:3

• Adding an integer to a pointer, where the integer is interpreted as a number of bytes, results in a4
pointer of the same kind.5

• Subtracting an integer (number of bytes) from a pointer results in a pointer of the same kind. Note6
that subtracting a pointer from an integer is not permitted.7

• Two pointers, regardless of kind, can be subtracted from one another, producing an integer that8
specifies the number of bytes between the addresses they reference.9

None of these operations is allowed in verifiable code.10

It is important to understand the impact on the garbage collector of using arithmetic on the different kinds of11
pointers. Since unmanaged pointers must never reference memory that is controlled by the garbage collector,12
performing arithmetic on them can endanger the memory safety of the system (hence it is not verifiable) but13
since they are not reported to the garbage collector there is no impact on its operation.14

Managed pointers, however, are reported to the garbage collector. As part of garbage collection both the15
contents of the location to which they point and the pointer itself can be modified. The garbage collector will16
ignore managed pointers if they point into memory that is not under its control (the evaluation stack, the call17
stack, static memory, or memory under the control of another allocator). If, however, a managed pointer refers18
to memory controlled by the garbage collector it must point to either a field of an object, an element of an19
array, or the address of the element just past the end of an array. If address arithmetic is used to create a20
managed pointer that refers to any other location (an object header or a gap in the allocated memory) the21
garbage collector’s operation is unspecified.22

1.1 .4.1 Unmanaged Pointers23

Unmanaged pointers are the traditional pointers used in languages like C and C++. There are no restrictions on24
their use, although for the most part they result in code that cannot be verified. While it is perfectly legal to25
mark locations that contain unmanaged pointers as though they were unsigned integers (and this is, in fact, how26
they are treated by the CLI), it is often better to mark them as unmanaged pointers to a specific type of data.27
This is done by using ELEMENT_TYPE_PTR in a signature for a return value, local variable or an argument or by28
using a pointer type for a field or array element.29

Unmanaged pointers are not reported to the garbage collector and can be used in any way that an integer can be30
used.31

• Unmanaged pointers should be treated as unsigned (i.e. use conv.ovf.u rather than conv.ovf.i,32
etc.).33

• Verifiable code cannot use unmanaged pointers to reference memory.34

• Unverified code can pass an unmanaged pointer to a method that expects a managed pointer. This35
is safe only if one of the following is true:36

The unmanaged pointer refers to memory that is not in memory managed by the garbage collector37

The unmanaged pointer refers to a field within an object38

The unmanaged pointer refers to an element within an array39

The unmanaged pointer refers to the location where the element following the last element in an40
array would be located41

1.1 .4.2 Managed Pointers (type &)42

Managed pointers (&) may point to a local variable, a method argument, a field of an object, a field of a value43
type, an element of an array, or the address where an element just past the end of an array would be stored (for44
pointer indexes into managed arrays). Managed pointers cannot be null. (They must be reported to the garbage45
collector, even if they do not point to managed memory)46
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Managed pointers are specified by using ELEMENT_TYPE_BYREF in a signature for a return value, local variable1
or an argument or by using a by-ref type for a field or array element.2

• Managed pointers can be passed as arguments and stored in local variables.3

• If you pass a parameter by reference, the corresponding argument is a managed pointer.4

• Managed pointers cannot be stored in static variables, array elements, or fields of objects or value5
types.6

• Managed pointers are not interchangeable with object references.7

• A managed pointer cannot point to another managed pointer, but it can point to an object8
reference or a value type.9

• Managed pointers that do not point to managed memory can be converted (using conv.u or10
conv.ovf.u) into unmanaged pointers, but this is not verifiable.11

• Unverified code that erroneously converts a managed pointer into an unmanaged pointer can12
seriously compromise the integrity of the CLI. This conversion is safe if any of the following is13
known to be true:14

q. the managed pointer does not point into the garbage collector’s memory area15

r. the memory referred to has been pinned for the entire time that the unmanaged pointer is in16
use17

s. a garbage collection cannot occur while the unmanaged pointer is in use18

t. the garbage collector for the given implementation of the CLI is known to not move the19
referenced memory20

1.2 Instruction Variant Table21

In Chapter 3 an Instruction Variant Table is presented for each instruction. It describes each variant of the22
instructions. The “Format” column of the table lists the opcode for the instruction variant, along with any23
arguments that follow the instruction in the instruction stream. For example:24

Format Assembly Format Description

FE 0A <unsigned int16> Ldarga argNum fetch the address of argument argNum.

0F <unsigned int8> Ldarga.s argNum fetch the address of argument argNum, short form
25

The first one or two hex numbers in the “Format” column show how this instruction is encoded (its “opcode”).26
So, the ldarga instruction is encoded as a byte holding FE, followed by another holding 0A. Italicized type27
names represent numbers that should follow in the instruction stream. In this example a 2-byte quantity that is28
to be treated as an unsigned integer directly follows the FE 0A opcode.29

Any of the fixed size built-in types (int8, unsigned int8, int16, unsigned int16, int32, unsigned int32, int64,30
unsigned in64, float32, and float64) can appear in format descriptions. These types define the number of bytes31
for the argument and how it should be interpreted (signed, unsigned or floating-point). In addition, a metadata32
token can appear, indicated as <T>. Tokens are encoded as 4-byte integers. All argument numbers are encoded33
least-significant-byte-at-smallest-address (a pattern commonly termed “little-endian”). Bytes for instruction34
opcodes and arguments are packed as tightly as possible (no alignment padding is done).35

The assembly format column defines an assembly code mnemonic for each instruction variant. For those36
instructions that have instruction stream arguments, this column also assigns names to each of the arguments to37
the instruction. For each instruction argument, there is a name in the assembly format. These names are used38
later in the instruction description.39
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1.2 .1 Opcode Encodings1

CIL opcodes are one or more bytes long; they may be followed by zero or more operand bytes. All opcodes2
whose first byte lies in the ranges 0x00 through 0xEF, or 0xFC through 0xFF are reserved for standardization.3
Opcodes whose first byte lies in the range 0xF0 through 0xFB inclusive, are available for experimental4
purposes. The use of experimental opcodes in any method renders the method invalid and hence unverifiable.5

The currently defined encodings are specified in Table 1: Opcode Encodings.6
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1

Table 10: Opcode Encodings2

0x00 nop

0x01 break

0x02 ldarg.0

0x03 ldarg.1

0x04 ldarg.2

0x05 ldarg.3

0x06 ldloc.0

0x07 ldloc.1

0x08 ldloc.2

0x09 ldloc.3

0x0a stloc.0

0x0b stloc.1

0x0c stloc.2

0x0d stloc.3

0x0e ldarg.s

0x0f ldarga.s

0x10 starg.s

0x11 ldloc.s

0x12 ldloca.s

0x13 stloc.s

0x14 ldnull

0x15 ldc.i4.m1

0x16 ldc.i4.0

0x17 ldc.i4.1

0x18 ldc.i4.2

0x19 ldc.i4.3

0x1a ldc.i4.4

0x1b ldc.i4.5

0x1c ldc.i4.6

0x1d ldc.i4.7

0x1e ldc.i4.8

0x1f ldc.i4.s

0x20 ldc.i4

0x21 ldc.i8

0x22 ldc.r4

0x23 ldc.r8

0x25 dup

0x26 pop

0x27 jmp

0x28 call

0x29 calli

0x2a ret

0x2b br.s

0x2c brfalse.s

0x2d brtrue.s

0x2e beq.s

0x2f bge.s

0x30 bgt.s

0x31 ble.s

0x32 blt.s

0x33 bne.un.s

0x34 bge.un.s

0x35 bgt.un.s

0x36 ble.un.s

0x37 blt.un.s

0x38 br

0x39 brfalse

0x3a brtrue

0x3b beq

0x3c bge

0x3d bgt

0x3e ble

0x3f blt

0x40 bne.un

0x41 bge.un

0x42 bgt.un
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0x43 ble.un

0x44 blt.un

0x45 switch

0x46 ldind.i1

0x47 ldind.u1

0x48 ldind.i2

0x49 ldind.u2

0x4a ldind.i4

0x4b ldind.u4

0x4c ldind.i8

0x4d ldind.i

0x4e ldind.r4

0x4f ldind.r8

0x50 ldind.ref

0x51 stind.ref

0x52 stind.i1

0x53 stind.i2

0x54 stind.i4

0x55 stind.i8

0x56 stind.r4

0x57 stind.r8

0x58 add

0x59 sub

0x5a mul

0x5b div

0x5c div.un

0x5d rem

0x5e rem.un

0x5f and

0x60 or

0x61 xor

0x62 shl

0x63 shr

0x64 shr.un

0x65 neg

0x66 not

0x67 conv.i1

0x68 conv.i2

0x69 conv.i4

0x6a conv.i8

0x6b conv.r4

0x6c conv.r8

0x6d conv.u4

0x6e conv.u8

0x6f callvirt

0x70 cpobj

0x71 ldobj

0x72 ldstr

0x73 newobj

0x74 castclass

0x75 isinst

0x76 conv.r.un

0x79 unbox

0x7a throw

0x7b ldfld

0x7c ldflda

0x7d stfld

0x7e ldsfld

0x7f ldsflda

0x80 stsfld

0x81 stobj

0x82 conv.ovf.i1.un

0x83 conv.ovf.i2.un

0x84 conv.ovf.i4.un

0x85 conv.ovf.i8.un

0x86 conv.ovf.u1.un

0x87 conv.ovf.u2.un

0x88 conv.ovf.u4.un
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0x89 conv.ovf.u8.un

0x8a conv.ovf.i.un

0x8b conv.ovf.u.un

0x8c box

0x8d newarr

0x8e ldlen

0x8f ldelema

0x90 ldelem.i1

0x91 ldelem.u1

0x92 ldelem.i2

0x93 ldelem.u2

0x94 ldelem.i4

0x95 ldelem.u4

0x96 ldelem.i8

0x97 ldelem.i

0x98 ldelem.r4

0x99 ldelem.r8

0x9a ldelem.ref

0x9b stelem.i

0x9c stelem.i1

0x9d stelem.i2

0x9e stelem.i4

0x9f stelem.i8

0xa0 stelem.r4

0xa1 stelem.r8

0xa2 stelem.ref

0xb3 conv.ovf.i1

0xb4 conv.ovf.u1

0xb5 conv.ovf.i2

0xb6 conv.ovf.u2

0xb7 conv.ovf.i4

0xb8 conv.ovf.u4

0xb9 conv.ovf.i8

0xba conv.ovf.u8

0xc2 refanyval

0xc3 ckfinite

0xc6 mkrefany

0xd0 ldtoken

0xd1 conv.u2

0xd2 conv.u1

0xd3 conv.i

0xd4 conv.ovf.i

0xd5 conv.ovf.u

0xd6 add.ovf

0xd7 add.ovf.un

0xd8 mul.ovf

0xd9 mul.ovf.un

0xda sub.ovf

0xdb sub.ovf.un

0xdc endfinally

0xdd leave

0xde leave.s

0xdf stind.i

0xe0 conv.u

0xfe 0x00 arglist

0xfe 0x01 ceq

0xfe 0x02 cgt

0xfe 0x03 cgt.un

0xfe 0x04 clt

0xfe 0x05 clt.un

0xfe 0x06 ldftn

0xfe 0x07 ldvirtftn

0xfe 0x09 ldarg

0xfe 0x0a ldarga

0xfe 0x0b starg

0xfe 0x0c ldloc

0xfe 0x0d ldloca

0xfe 0x0e stloc
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0xfe 0x0f localloc

0xfe 0x11 endfilter

0xfe 0x12 unaligned.

0xfe 0x13 volatile.

0xfe 0x14 tail.

0xfe 0x15 initobj

0xfe 0x17 cpblk

0xfe 0x18 initblk

0xfe 0x1a rethrow

0xfe 0x1c sizeof

0xfe 0x1d refanytype
1
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1.3 Stack Transition Diagram1

The stack transition diagram displays the state of the evaluation stack before and after the instruction is2
executed. Below is a typical stack transition diagram.3

…, value1, value2 ! …, result4

This diagram indicates that the stack must have at least two elements on it, and in the definition the topmost5
value (“top of stack” or “most recently pushed”) will be called value2 and the value underneath (pushed prior6
to value2) will be called value1. (In diagrams like this, the stack grows to the right, along the page). The7
instruction removes these values from the stack and replaces them by another value, called result in the8
description.9

1.4 English Description10

The English description describes any details about the instructions that are not immediately apparent once the11
format and stack transition have been described.12

1.5 Operand Type Table13

Many CIL operations take numeric operands on the stack. These operations fall into several categories,14
depending on how they deal with the types of the operands. The following tables summarize the valid types of15
operand types and the type of the result. Notice that the type referred to here is the type as tracked by the CLI16
rather than the more detailed types used by tools such as CIL verification. The types tracked by the CLI are:17
int32, int64, native int, F, O, and &.18

A op B (used for add, div, mul, rem, and sub). The table below shows the result type, for each possible19
combination of oparand types. Boxes holding simply a result type, apply to all five instructions. Boxes marked20
" indicate an invalid CIL instruction. Shaded boxes indicate a CIL instruction that is not verifiable. Boxes with21
a list of instructions are valid only for those instructions.22

Table 11: Binary Numeric Operations23

B's TypeA's Type

int32 int64 native int F & O

int32 int32 " native int " & (add) "

int64 " int64 " " " "

native int native int " native int " & (add) "

F " " " F " "

& & (add,
sub)

" & (add,
sub)

" native int
(sub)

"

O " " " " " "
24

Used for the neg instruction. Boxes marked " indicate an invalid CIL instruction. All valid uses of this25
instruction are verifiable.26

Table 12: Unary Numeric Operations27

Operand
Type

int32 int64 native int F & O

Result
Type

int32 int64 native int F " "

28
These return a boolean value or branch based on the top two values on the stack. Used for beq, beq.s, bge,29
bge.s, bge.un, bge.un.s, bgt, bgt.s, bgt.un, bgt.un.s, ble, ble.s, ble.un, ble.un.s, blt, blt.s, blt.un,30
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blt.un.s, bne.un, bne.un.s, ceq, cgt, cgt.un, clt, clt.un. Boxes marked # indicate that all instructions are1
valid for that combination of operand types. Boxes marked " indicate invalid CIL sequences. Shaded boxes2
boxes indicate a CIL instruction that is not verifiable. Boxes with a list of instructions are valid only for those3
instructions.4

Table 13: Binary Comparison or Branch Operations5

int32 int64 native int F & O

int32 # " # " " "

int64 " # " " " "

native int # " # " Beq[.s],
bne.un[.s],
ceq

"

F " " " # " "

& " " beq[.s],
bne.un[.s],
ceq

"
#

1 "

O " " " " " beq[.s],
bne.un[.s],
ceq2

6
340. Except for beq, bne.un (or short versions) or ceq these combinations make sense if both operands7

are known to be pointers to elements of the same array. However, there is no security issue for a8
CLI that does not check this constraint9

Note: if the two operands are not pointers into the same array, then the result is simply the distance apart10
in the garbage-collected heap of two unrelated data items. This distance apart will almost certainly11
change at the next garbage collection. Essentially, the result cannot be used to compute anything useful12

341. cgt.un is allowed and verifiable on ObjectRefs (O). This is commonly used when comparing an13
ObjectRef with null (there is no “compare-not-equal” instruction, which would otherwise be a14
more obvious solution)15

These operate only on integer types. Used for and, div.un, not, or, rem.un, xor. The div.un and rem.un16
instructions treat their arguments as unsigned integers and produce the bit pattern corresponding to the17
unsigned result. As described in the CLI Specification, however, the CLI makes no distinction between signed18
and unsigned integers on the stack. The not instruction is unary and returns the same type as the input. The shl19
and shr instructions return the same type as their first operand and their second operand must be of type native20
unsigned int. Boxes marked " indicate invalid CIL sequences. All other boxes denote verifiable combinations21
of operands.22

Table 14: Integer Operations23

int32 int64 native int F & O

int32 int32 " native int " " "

int64 " int64 " " " "

native int native int " native int " " "

F " " " " " "

& " " " " " "

O " " " " " "
24

Below are the legal combinations of operands and result for the shift instructions: shl, shr, shr_un. Boxes25
marked " indicate invalid CIL sequences. All other boxes denote verifiable combinations of operand. If the26
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“Shift-By” operand is larger than the width of the “To-Be-Shifted” operand, then the results are1
implementation-defined. (eg shift an int32 integer left by 37 bits)2

Table 15 : Shift Operations3

Shift-By

int32 int64 native int F & O

int32 int32 " int32 " " "

int64 int64 " int64 " " "

native int native int " native int " " "

F " " " " " "

& " " " " " "

To Be
Shifted

O " " " " " "
4

These operations generate an exception if the result cannot be represented in the target data type. Used for5
add.ovf, add.ovf.un, mul.ovf, mul.ovf.un, sub.ovf, sub.ovf.un The shaded uses are not verifiable, while6
boxes marked " indicate invalid CIL sequences.7

Table 16: Overflow Arithmetic Operations8

int32 int64 native int F & O

int32 int32 " native int " & add.ovf.un "

int64 " int64 " " " "

native int native int " native int " & add.ovf.un "

F " " " " " "

& &
add.ovf.un,
sub.ovf.un

" &
add.ovf.un,
sub.ovf.un

" native int
sub.ovf.un

"

O " " " " " "
9

These operations convert the top item on the evaluation stack from one numeric type to another. The result type10
is guaranteed to be representable as the data type specified as part of the operation (i.e. the conv.u2 instruction11
returns a value that can be stored in a unsigned int16). The stack, however, can only store values that are a12
minimum of 4 bytes wide. Used for the conv.<to type>, conv.ovf.<to type>, and conv.ovf.<to type>.un13
instructions. The shaded uses are not verifiable, while boxes marked " indicate invalid CIL sequences.14

Table 17: Conversion Operations15

Input (from evaluation stack)Convert-To

int32 int64 native int F & O

int8
unsigned int8
int16
unsigned int16

Truncate1 Truncate1 Truncate1 Truncate to
zero2

" "

int32
unsigned int32

Nop Truncate1 Truncate1 Truncate to
zero2

" "

int64 Sign extend Nop Sign extend Truncate to
zero2

Stop GC
tracking

Stop GC
tracking
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unsigned int64 Zero extend Nop Zero extend Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

native int Sign extend Truncate1 Nop Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

native unsigned
int

Zero extend Truncate1 Nop Truncate to
zero2

Stop GC
tracking

Stop GC
tracking

All Float Types To Float To Float To Float Change
precision3

" "

1
342. “Truncate” means that the number is truncated to the desired size; ie, the most significant bytes of2

the input value are simply ignored. If the result is narrower than the minimum stack width of 43
bytes, then this result is zero extended (if the target type is unsigned) or sign-extended (if the4
target type is signed). Thus, converting the value 0x1234 ABCD from the evaluation stack to an5
8-bit datum yields the result 0xCD; if the target type were int8, this is sign-extended to give6
0xFFFF FFCD; if, instead, the target type were unsigned int8, this is zero-extended to give7
0x0000 00CD.8

343. “Trunc to 0” means that the floating-point number will be converted to an integer by truncation9
toward zero. Thus 1.1 is converted to 1 and –1.1 is converted to –1.10

344. Converts from the current precision available on the evaluation stack to the precision specified by11
the instruction. If the stack has more precision than the output size the conversion is performed12
using the IEC 60559:1989 “round to nearest” mode to compute the low order bit of the result.13

345. “Stop GC Tracking” means that, following the conversion, the item’s value will not be reported to14
subsequent garbage-collection operations (and therefore will not be updated by such operations)15

1.6 Implicit Argument Coercion16

While the CLI operates only on 6 types (int32, native int, int64, F, O, and &) the metadata supplies a much17
richer model for parameters of methods. When about to call a method, the CLI performs implicit type18
conversions, detailed in the following table. (Conceptually, it inserts the appropriate conv.* instruction into the19
CIL stream, which may result in an information loss through truncation or rounding) This implicit conversion20
occurs for boxes marked #. Shaded boxes are not verifiable. Boxes marked " indicate invalid CIL sequences.21
(A compiler is of course free to emit explicit conv.* or conv.*.ovf instructions to achieve any desired22
effect)23

Table 18: Signature Matching24

Stack ParameterType In
Signature

int32 native int int64 F & O

int8 # # " " " "

unsigned
int8, bool

# # " " " "

int16 # # " " " "

unsigned
int16, char

# # " " " "

int32 # # " " " "

unsigned
int32

# # " " " "

int64 " " # " " "

unsigned
int64

" " # " " "
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int64

native int # Sign
extend

# " " " "

native
unsigned
int

# Zero
extend

# Zero
extend

" " " "

float32 " " " Note4 " "

float64 " " " Note4 " "

Class " " " " " #

Value Type
(Note2)

Note1 Note1 Note1 Note1 " "

By-Ref
( & )

" # Start GC
tracking

" " # "

Ref Any
(Note3)

" " " " " "

1
346. Passing a built-in type to a parameter that is required to be a value type is not allowed.2

347. The CLI’s stack can contain a value type. These may only be passed if the particular value type3
on the stack exactly matches the class required by the corresponding parameter.4

348. There are special instructions to construct and pass a Ref Any.5

349. The CLI is permitted to pass floating point arguments using its internal F type, see clause 1.1.1.6
CIL generators may, of course, include an explicit conv.r4, conv.r4.ovf, or similar instruction.7

Further notes concerning this table:8

• On a 32-bit machine passing a native int argument to a unsigned int32 parameter involves no9
conversion. On a 64-bit machine it is implicitly converted.10

• “Start GC Tracking” means that, following the implicit conversion, the item’s value will be11
reported to any subsequent garbage-collection operations, and perhaps changed as a result of the12
item pointed-to being relocated in the heap.13

1.7 Restrictions on CIL Code Sequences14

As well as detailed restrictions on CIL code sequences to ensure:15

• Valid CIL16

• Verifiable CIL17

there are a few further restrictions, imposed to make it easier to construct a simple CIL-to-native-code18
compiler. This section specifies the general restrictions that apply in addition to this listed for individual19
instructions.20

1.7 .1 The Instruct ion Stream21

The implementation of a method is provided by a contiguous block of CIL instructions, encoded as specified22
below. The address of the instruction block for a method as well as its length is specified in the file format (see23
Partition II, Common Intermediate Language Physical Layout). The first instruction is at the first byte (lowest24
address) of the instruction block.25

Instructions are variable in size. The size of each instruction can be determined (decoded) from the content of26
the instruction bytes themselves. The size of and ordering of the bytes within an instruction is specified by each27
instruction definition. Instructions follow each other without padding in a stream of bytes that is both alignment28
and byte-order insensitive.29
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Each instruction occupies an exact number of bytes, and until the end of the instruction block, the next1
instruction begins immediately at the next byte. It is invalid for the instruction block (as specified by the2
block’s length) to end without forming a complete last instruction.3

Instruction prefixes extend the length of an instruction without introducing a new instruction; an instruction4
having one or more prefixes introduces only one instruction that begins at the first byte of the first instruction5
prefix.6

Note: Until the end of the instruction block, the instruction following any control transfer instruction is7
decoded as an instruction and thus participates in locating subsequent instructions even if it is not the target of a8
branch. Only instructions may appear in the instruction stream, even if unreachable. There are no address-9
relative data addressing modes and raw data cannot be directly embedded within the instruction stream. Certain10
instructions allow embedding of immediate data as part of the instruction, however that differs from allowing11
raw data embedded directly in the instruction stream. Unreachable code may appear as the result of machine-12
generated code and is allowed, but it must always be in the form of properly formed instruction sequences.13

The instruction stream can be translated and the associated instruction block discarded prior to execution of the14
translation. Thus, even instructions that capture and manipulate code addresses, such as call, ret, etc. can be15
virtualized to operate on translated addresses instead of addresses in the CIL instruction stream.16

1.7.2 Valid Branch Targets17

The set of addresses composed of the first byte of each instruction identified in the instruction stream defines18
the only valid instruction targets. Instruction targets include branch targets as specified in branch instructions,19
targets specified in exception tables such as protected ranges (see Partition I and Partition II), filter, and handler20
targets.21

Branch instructions specify branch targets as either a one-byte or four-byte signed relative offset; the size of the22
offset is differentiated by the opcode of the instruction. The offset is defined as being relative to the byte23
following the branch instruction. [Note: Thus, an offset value of zero targets the immediately following24
instruction.]25

The value of a one-byte offset is computed by interpreting that byte as a signed 8-bit integer. The value of a26
four-byte offset is can be computed by concatenating the bytes into a signed integer in the following manner:27
the byte of lowest address forms the least significant byte, and the byte with highest address forms the most28
significant byte of the integer. [Note: This representation is often called “a signed integer in little-endian byte-29
order”.]30

1.7.3 Exception Ranges31

Exception tables describe ranges of instructions that are protected by catch, fault, or finally handlers (see32
Partition I and Partition II). The starting address of a protected block, filter clause, or handler shall be a valid33
branch target as specified in clause 1.7.2. It is invalid for a protected block, filter clause, or handler to end34
without forming a complete last instruction.35

1.7 .4 Must Provide Maxstack36

Every method specifies a maximum number of items that can be pushed onto the CIL Evaluation. The value is37
stored in the IMAGE_COR_ILMETHOD structure that precedes the CIL body of each method. A method that38
specifies a maximum number of items less than the amount required by a static analysis of the method (using a39
traditional control flow graph without analysis of the data) is invalid (hence also unverifiable) and need not be40
supported by a conforming implementation of the CLI.41

Note: Maxstack is related to analysis of the program, not to the size of the stack at runtime. It does not specify42
the maximum size in bytes of a stack frame, but rather the number of items that must be tracked by an analysis43
tool.44

45
Rationale: By analyzing the CIL stream for any method, it is easy to determine how many items will be pushed46
on the CIL Evaluation stack. However, specifying that maximum number ahead of time helps a CIL-to-native-47
code compiler (especially a simple one that does only a single pass through the CIL stream) in allocating48
internal data structures that model the stack and/or verification algorithm.49
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1.7 .5 Backward Branch Constraints1

It must be possible, with a single forward-pass through the CIL instruction stream for any method, to infer the2
exact state of the evaluation stack at every instruction (where by “state” we mean the number and type of each3
item on the evaluation stack).4

In particular, if that single-pass analysis arrives at an instruction, call it location X, that immediately follows an5
unconditional branch, and where X is not the target of an earlier branch instruction, then the state of the6
evaluation stack at X, clearly, cannot be derived from existing information. In this case, the CLI demands that7
the evaluation stack at X be empty.8

Following on from this rule, it would clearly be invalid CIL if a later branch instruction to X were to have a9
non-empty evaluation stack10

Rationale: This constraint ensures that CIL code can be processed by a simple CIL-to-native-code compiler. It11
ensures that the state of the evaluation stack at the beginning of each CIL can be inferred from a single,12
forward-pass analysis of the instruction stream.13

Note: the stack state at location X in the above can be inferred by various means: from a previous forward14
branch to X; because X marks the start of an exception handler, etc.15

See the following sections for further information:16

• Exceptions: Partition I17

• Verification conditions for branch instructions: Chapter 318

• The tail. prefix: Section 3.1919

1.7 .6 Branch Verif icat ion Constraints20

The target of all branch instruction must be a valid branch target (see clause 1.7.2) within the method holding21
that branch instruction.22

1.8 Verifiabil ity23

Memory safety is a property that ensures programs running in the same address space are correctly isolated24
from one another (see Partition I). Thus, it is desirable to test whether programs are memory safe prior to25
running them. Unfortunately, it is provably impossible to do this with 100% accuracy. Instead, the CLI can test26
a stronger restriction, called verifiability. Every program that is verified is memory safe, but some programs27
that are not verifiable are still memory safe.28

It is perfectly acceptable to generate CIL code that is not verifiable, but which is known to be memory safe by29
the compiler writer. Thus, conforming CIL may not be verifiable, even though the producing compiler may30
know that it is memory safe. Several important uses of CIL instructions are not verifiable, such as the pointer31
arithmetic versions of add that are required for the faithful and efficient compilation of C programs. For non-32
verifiable code, memory safety is the responsibility of the application programmer.33

CIL contains a verifiable subset. The Verifiability description gives details of the conditions under which a use34
of an instruction falls within the verifiable subset of CIL. Verification tracks the types of values in much finer35
detail than is required for the basic functioning of the CLI, because it is checking that a CIL code sequence36
respects not only the basic rules of the CLI with respect to the safety of garbage collection, but also the typing37
rules of the CTS. This helps to guarantee the sound operation of the entire CLI.38

The verifiability section of each operation description specifies requirements both for correct CIL generation39
and for verification. Correct CIL generation always requires guaranteeing that the top items on the stack40
correspond to the types shown in the stack transition diagram. The verifiability section specifies only41
requirements for correct CIL generation that are not captured in that diagram. Verification tests both the42
requirements for correct CIL generation and the specific verification conditions that are described with the43
instruction. The operation of CIL sequences that do not meet the CIL correctness requirements is unspecified.44
The operation of CIL sequences that meet the correctness requirements but are not verifiable may violate type45
safety and hence may violate security or memory access constraints.46
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1.8 .1 Flow Control Restrict ions for Verif iable CIL1

This section specifies a verification algorithm that, combined with information on individual CIL instructions2
(see Chapter 3) and metadata validation (see Partition II), guarantees memory integrity.3

The algorithm specified here creates a minimum level for all compliant implementations of the CLI in the sense4
that any program that is considered verifiable by this algorithm shall be considered verifiable and run correctly5
on all compliant implementations of the CLI.6

The CLI provides a security permission (see Partition IV) that controls whether or not the CLI shall run7
programs that may violate memory safety. Any program that is verifiable according to this specification does8
not violate memory safety, and a conforming implementation of the CLI shall run such programs. The9
implementation may also run other programs provided it is able to show they do not violate memory safety10
(typically because they use a verification algorithm that makes use of specific knowledge about the11
implementation).12

Note: While a compliant implementation is required to accept and run any program this verification algorithm13
states is verifiable, there may be programs that are accepted as verifiable by a given implementation but which14
this verification algorithm will fail to consider verifiable. Such programs will run in the given implementation15
but need not be considered verifiable by other implementations.16

For example, an implementation of the CLI may choose to correctly track full signatures on method pointers17
and permit programs to execute the calli instruction even though this is not permitted by the verification18
algorithm specified here.19

Implementers of the CLI are urged to provide a means for testing whether programs generated on their20
implementation meet this portable verifiability standard. They are also urged to specify where their verification21
algorithms are more permissive than this standard.22

Only valid programs shall be verifiable. For ease of explanation, the verification algorithm described here23
assumes that the program is valid and does not explicitly call for tests of all validity conditions. Validity24
conditions are specified on a per-CIL instruction basis (see Chapter 3), and on the overall file format in25
Partition II.26

1.8 .1.1 Verif icat ion Algorithm27

The verification algorithm shall attempt to associate a valid stack state with every CIL instruction. The stack28
state specifies the number of slots on the CIL stack at that point in the code and for each slot a required type29
that must be present in that slot. The initial stack state is empty (there are no items on the stack).30

Verification assumes that the CLI zeroes all memory other than the evaluation stack before it is made visible to31
programs. A conforming implementation of the CLI shall provide this observable behavior. Furthermore,32
verifiable methods shall have the “zero initialize” bit set, see Partition II (Flags for Method Headers). If this bit33
is not set, then a CLI may throw a Verification exception at any point where a local variable is accessed, and34
where the assembly containing that method has not been granted SecurityPermission.SkipVerification35

Rationale: This requirement strongly enhances program portability, and a well-known technique (definite36
assignment analysis) allows a compiler from CIL to native code to minimize its performance impact. Note that37
a CLI may optionally choose to perform definite-assignment analysis – in such a case, it may confirm that a38
method, even without the “zero initialize” bit set, may in fact be verifiable (and therefore not throw a39
Verification exception)40

41
Note: Definite assignment analysis can be used by the CLI to determine which locations are written before they42
are read. Such locations needn’t be zeroed, since it isn’t possible to observe the contents of the memory as it43
was provided by the EE.44

Performance measurements on C++ implementations (which does not require definite assignment analysis)45
indicate that adding this requirement has almost no impact, even in highly optimized code. Furthermore,46
customers incorrectly attribute bugs to the compiler when this zeroing is not performed, since such code often47
fails when small, unrelated changes are made to the program.48

The verification algorithm shall simulate all possible control flow paths through the code and ensures that a49
legal stack state exists for every reachable CIL instruction. The verification algorithm does not take advantage50
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of any data values during its simulation (e.g. it does not perform constant propagation), but uses only type1
assignments. Details of the type system used for verification and the algorithm used to merge stack states are2
provided in clause 1.8.1.3. The verification algorithm terminates as follows:3

350. Successfully, when all control paths have been simulated.4

351. Unsuccessfully when it is not possible to compute a valid stack state for a particular CIL5
instruction.6

352. Unsuccessfully when additional tests specified in this clause fail.7

There is a control flow path from every instruction to the subsequent instruction, with the exception of the8
unconditional branch instructions, throw, rethrow, and ret. Finally, there is a control flow path from each9
branch instruction (conditional or unconditional) to the branch target (targets, plural, for the switch10
instruction).11

Verification simulates the operation of each CIL instruction to compute the new stack state, and any type12
mismatch between the specified conditions on the stack state (see Chapter 3) and the simulated stack state shall13
cause the verification algorithm to fail. (Note that verification simulates only the effect on the stack state: it14
does not perform the actual computation). The algorithm shall also fail if there is an existing stack state at the15
next instruction address (for conditional branches or instructions within a try block there may be more than one16
such address) that cannot be merged with the stack state just computed. For rules of this merge operation, see17
clause 1.8.1.3.18

1.8 .1.2 Verif icat ion Type System19

The verification algorithm compresses types that are logically equivalent, since they cannot lead to memory20
safety violations. The types used by the verification algorithm are specified in clause 1.8.1.2.1, the type21
compatibility rules are specified in clause 1.8.1.2.2, and the rules for merging stack states are in clause 1.8.1.3.22

1.8 .1.2.1 Verif icat ion Types23

The following table specifies the mapping of types used in the CLI and those used in verification. Notice that24
verification compresses the CLI types to a smaller set that maintains information about the size of those types25
in memory, but then compresses these again to represent the fact that the CLI stack expands 1, 2 and 4 byte26
built-in types into 4-byte types on the stack. Similarly, verification treats floating-point numbers on the stack as27
64-bit quantities regardless of the actual representation.28

Arrays are objects, but with special compatibility rules.29

There is a special encoding for null that represents an object known to be the null value, hence with30
indeterminate actual type.31

In the following table, “CLI Type” is the type as it is described in metadata. The “Verification Type” is a32
corresponding type used for type compatibility rules in verification (see clause 1.8.1.2.2) when considering the33
types of local variables, incoming arguments, and formal parameters on methods being called. The column34
“Verification Type (in stack state)” is used to simulate instructions that load data onto the stack, and shows the35
types that are actually maintained in the stack state information of the verification algorithm. The column36
“Managed Pointer to Type” shows the type tracked for managed pointers.37

CLI Type Verification Type Verification Type
(in stack state)

Managed Pointer to Type

int8, unsigned int8, bool int8 int32 & int8

int16, unsigned int16, char int16 int32 & int16

int32, unsigned int32 int32 int32 & int32

int64, unsigned int64 int64 int64 & int64

native int, native unsigned
int

native int native int & native int

float32 float32 float64 & float32

float64 float64 float64 & float64
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Any value type Same type Same type & Same type

Any object type Same type Same type & Same type

Method pointer Same type Same type Not valid

1
A method can be defined as returning a managed pointer, but calls upon such methods are not verifiable.2

Rationale: some uses of returning a managed pointer are perfectly verifiable (eg, returning a reference to a3
field in an object); but some not (eg, returning a pointer to a local variable of the called method). Tracking this4
in the general case is a burden, and therefore not included in this standard.5

1.8 .1.2.2 Verif icat ion Type Compatibi l ity6

The following rules define type compatibility. We use S and T to denote verification types, and the notation “S7
:= T” to indicate that the verification type T can be used wherever the verification type S can be used, while “S8
!:= T” indicates that T cannot be used where S is expected. These are the verification type compatibility (see9
Partition I) rules. We use T[] to denote an array (of any rank) whose elements are of type T, and T& to denote a10
managed pointer to type T.11

353. [:= is reflexive] For all verification types S, S := S12

354. [:= is transitive] For all verification types S, T, and U if S := T and T := U, then S := U.13

355. S := T if S is the base class of T or an interface implemented by T and T is not a value type.14

356. S := T if S and T are both interfaces and the implementation of T requires the implementation of S15

357. S := null if S is an object type or an interface16

358. S[] := T[] if S := T and the arrays are either both vectors (zero-based, rank one) or neither is a17
vector and both have the same rank.18

359. If S and T are method pointers, then S := T if the signatures (return types, parameter types,19
calling convention, and any custom attributes or custom modifiers) are the same.20

360. Otherwise S !:= T21

1.8 .1.3 Merging Stack States22

As the verification algorithm simulates all control flow paths it shall merge the simulated stack state with any23
existing stack state at the next CIL instruction in the flow. If there is no existing stack state, the simulated stack24
state is stored for future use. Otherwise the merge shall be computed as follows and stored to replace the25
existing stack state for the CIL instruction. If the merge fails, the verification algorithm shall fail.26

The merge shall be computed by comparing the number of slots in each stack state. If they differ, the merge27
shall fail. If they match, then the overall merge shall be computed by merging the states slot-by-slot as follows.28
Let T be the type from the slot on the newly computed state and S be the type from the corresponding slot on29
the previously stored state. The merged type, U, shall be computed as follows (recall that S := T is the30
compatibility function defined in clause 1.8.1.2.2):31

361. if S := T then U=S32

362. Otherwise if T := S then U=T33

363. Otherwise, if S and T are both object types, then let V be the closest common supertype of S and T34
then U=V.35

364. Otherwise, the merge shall fail.36

1.8 .1.4 Class and Object Init ia l izat ion Rules37

The VES ensures that all statics are initially zeroed (i.e. built-in types are 0 or false, object references are null),38
hence the verification algorithm does not test for definite assignment to statics.39

An object constructor shall not return unless a constructor for the base class or a different construct for the40
object’s class has been called on the newly constructed object. The verification algorithm shall treat the this41
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pointer as uninitialized unless the base class constructor has been called. No operations can be performed on an1
uninitialized this except for storing into and loading from the object’s fields.2

Note: If the constructor generates an exception the this pointer in the corresponding catch block is still3
uninitialized.4

1.8 .1.5 Delegate Constructors5

The verification algorithm shall require that one of the following code sequences is used for constructing6
delegates; no other code sequence in verifiable code shall contain a newobj instruction for a delegate type.7
There shall be only one instance constructor method for a Delegate (overloading is not allowed)8

The verification algorithm shall fail if a branch target is within these instruction sequences (other than at the9
start of the sequence).10

Note: See Partition II for the signature of delegates and a validity requirement regarding the signature of the11
method used in the constructor and the signature of Invoke and other methods on the delegate class.12

1.8 .1.5.1 Delegat ing via Virtual Dispatch13

The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence14
begins with an object on the stack.15

dup16

ldvirtftn mthd ; Method shall be on the class of the object,17

; or one of its parent classes, or an interface18

; implemented by the object19

newobj delegateclass::.ctor(object, native int)20

Rationale: The dup is required to ensure that it is precisely the same object stored in the delegate as was used21
to compute the virtual method. If another object of a subtype were used the object and the method wouldn’t22
match and could lead to memory violations.23

1.8 .1.5.2 Delegat ing via Instance Dispatch24

The following CIL instruction sequence shall be used or the verification algorithm shall fail. The sequence25
begins with either null or an object on the stack.26

ldftn mthd ; Method shall either be a static method or27

; a method on the class of the object on the stack or28

; one of the object’s parent classes29

newobj delegateclass::.ctor(object, native int)30

1.9 Metadata Tokens31

Many CIL instructions are followed by a "metadata token". This is a 4-byte value, that specifies a row in a32
metadata table, or a starting byte offset in the User String heap. The most-significant byte of the token specifies33
the table or heap. For example, a value of 0x02 specifies the TypeDef table; a value of 0x70 specifies the User34
String heap. The value corresponds to the number assigned to that metadata table (see Partition II for the full35
list of tables) or to 0x70 for the User String heap. The least-significant 3 bytes specify the target row within that36
metadata table, or starting byte offset within the User String heap. The rows within metadata tables are37
numbered one upwards, whilst offsets in the heap are numbered zero upwards. (So, for example, the metadata38
token with value 0x02000007 specifies row number 7 in the TypeDef table)39

1.10 Exceptions Thrown40

A CIL instruction can throw a range of exceptions. The CLI can also throw the general purpose exception41
called ExecutionEngineException. See Partition I for details.42
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2 Prefixes to Instructions1

These special values are reserved to precede specific instructions. They do not constitute full instructions in2
their own right. It is not valid CIL to branch to the instruction following the prefix, but the prefix itself is a3
valid branch target. It is not valid CIL to have a prefix without immediately following it by one of the4
instructions it is permitted to precede.5

6
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1

2.1 tail . (prefix) – call terminates current method2

Format Assembly Format Description

FE 14 tail. Subsequent call terminates current method
3

Description:4

The tail. instruction must immediately precede a call, calli, or callvirt instruction. It indicates that the5
current method’s stack frame is no longer required and thus can be removed before the call instruction is6
executed. Because the value returned by the call will be the value returned by this method, the call can be7
converted into a cross-method jump.8

The evaluation stack must be empty except for the arguments being transferred by the following call. The9
instruction following the call instruction must be a ret. Thus the only legal code sequence is10

tail. call (or calli or callvirt) somewhere11
ret12

Correct CIL must not branch to the call instruction, but it is permitted to branch to the ret. The only values on13
the stack must be the arguments for the method being called.14

The tail.call (or calli or callvirt) instruction cannot be used to transfer control out of a try, filter, catch,15
or finally block. See Partition I.16

The current frame cannot be discarded when control is transferred from untrusted code to trusted code, since17
this would jeopardize code identity security. Security checks may therefore cause the tail. to be ignored,18
leaving a standard call instruction.19

Similarly, in order to allow the exit of a synchronized region to occur after the call returns, the tail. prefix is20
ignored when used to exit a method that is marked synchronized.21

There may also be implementation-specific restrictions that prevent the tail. prefix from being obeyed in22
certain cases. While an implementation is free to ignore the tail. prefix under these circumstances, they23
should be clearly documented as they can affect the behavior of programs.24

CLI implementations are required to honor tail. call requests where caller and callee methods can be25
statically determined to lie in the same assembly; and where the caller is not in a synchronized region; and26
where caller and callee satisfy all conditions listed in the “Verifiability” rules below. (To “honor” the tail.27
prefix means to remove the caller’s frame, rather than revert to a regular call sequence). Consequently, a CLI28
implementation need not honor tail. calli or tail. callvirt sequences.29

Rationale: tail. calls allow some linear space algorithms to be converted to constant space algorithms and are30
required by some languages. In the presence of ldloca and ldarga instructions it isn’t always possible for a31
compiler from CIL to native code to optimally determine when a tail. can be automatically inserted.32

Exceptions:33

None.34

Verifiability:35

Correct CIL obeys the control transfer constraints listed above. In addition, no managed pointers can be passed36
to the method being called if they point into the stack frame that is about to be removed. The return type of the37
method being called must be compatible with the return type of the current method. Verification requires that38
no managed pointers are passed to the method being called, since it does not track pointers into the current39
frame.40

41
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1

2.2 unaligned. (prefix) – pointer instruction may be unaligned2

Format Assembly Format Description

FE 12 <unsigned
int8>

unaligned. alignment Subsequent pointer instruction may be unaligned

3
Stack Transition:4

..., addr ! ..., addr5

Description:6

Unaligned. specifies that address (an unmanaged pointer (&), or native int) on the stack may not be aligned7
to the natural size of the immediately following ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk8
instruction. That is, for a ldind.i4 instruction the alignment of addr may not be to a 4-byte boundary. For9
initblk and cpblk the default alignment is architecture dependent (4-byte on 32-bit CPUs, 8-byte on 64-bit10
CPUs). Code generators that do not restrict their output to a 32-bit word size (see Partition I and Partition II)11
must use unaligned. if the alignment is not known at compile time to be 8-byte.12

The value of alignment shall be 1, 2, or 4 and means that the generated code should assume that addr is byte,13
double byte, or quad byte aligned, respectively.14

Rationale: While the alignment for a cpblk instruction would logically require two numbers (one for the15
source and one for the destination), there is no noticeable impact on performance if only the lower number is16
specified.17

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a18
ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed19
for the ldsfld and stsfld instructions.20

Note: See Partition I, 12.7 for information about atomicity and data alignment.21

Exceptions:22

None.23

Verifiability:24

An unaligned. prefix shall be immediately followed by one of the instructions listed above.25
26
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1

2.3 volati le. (prefix) - pointer reference is volati le2

Format Assembly Format Description

FE 13 volatile. Subsequent pointer reference is volatile
3

Stack Transition:4

..., addr ! ..., addr5

Description:6

volatile. specifies that addr is a volatile address (i.e. it may be referenced externally to the current thread of7
execution) and the results of reading that location cannot be cached or that multiple stores to that location8
cannot be suppressed. Marking an access as volatile. affects only that single access; other accesses to the9
same location must be marked separately. Access to volatile locations need not be performed atomically. [see10
Partition I]11

The unaligned. and volatile. prefixes may be combined in either order. They must immediately precede a12
ldind, stind, ldfld, stfld, ldobj, stobj, initblk, or cpblk instruction. Only the volatile. prefix is allowed13
for the ldsfld and stsfld instructions.14

Exceptions:15

None.16

Verifiability:17

A volatile. prefix should be immediately followed by one of the instructions listed above.18
19
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3 Base Instructions1

These instructions form a “Turing Complete” set of basic operations. They are independent of the object model2
that may be employed. Operations that are specifically related to the CTS’s object model are contained in the3
Object Model Instructions section.4

5
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1

3.1 add - add numeric values2

Format Assembly Format Description

58 add Add two values, returning a new value
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The add instruction adds value2 to value1 and pushes the result on the stack. Overflow is not detected for7
integral operations (but see add.ovf); floating-point overflow returns +inf or -inf.8

The acceptable operand types and their corresponding result data type is encapsulated in9
Table2: Binary Numeric Operations.10

Exceptions:11

None.12

Verifiability:13

See Table2: Binary Numeric Operations.14
15
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1

3.2 add.ovf.<signed> - add integer values with overflow check2

Format Assembly Format Description

D6 add.ovf Add signed integer values with overflow check.

D7 add.ovf.un Add unsigned integer values with overflow check.
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The add.ovf instruction adds value1 and value2 and pushes the result on the stack. The acceptable operand7
types and their corresponding result data type is encapsulated in Table 7: Overflow Arithmetic Operations.8

Exceptions:9

OverflowException is thrown if the result can not be represented in the result type.10

Verifiability:11

See Table 7: Overflow Arithmetic Operations.12
13
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1

3.3 and - bitwise AND2

Format Instruction Description

5F And Bitwise AND of two integral values, returns an integral value
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The and instruction computes the bitwise AND of the top two values on the stack and pushes the result on the7
stack. The acceptable operand types and their corresponding result data type is encapsulated in8
Table 5: Integer Operations.9

Exceptions:10

None.11

Verifiability:12

See Table 5: Integer Operations.13
14
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1

3.4 arglist - get argument list2

Format Assembly Format Description

FE 00 arglist return argument list handle for the current method
3

Stack Transition:4

… ! …, argListHandle5

Description:6

The arglist instruction returns an opaque handle (an unmanaged pointer, type native int) representing the7
argument list of the current method. This handle is valid only during the lifetime of the current method. The8
handle can, however, be passed to other methods as long as the current method is on the thread of control. The9
arglist instruction may only be executed within a method that takes a variable number of arguments.10

Rationale: This instruction is needed to implement the C ‘va_*’ macros used to implement procedures like11
‘printf’. It is intended for use with the class library implementation of System.ArgIterator.12

Exceptions:13

None.14

Verifiability:15

It is incorrect CIL generation to emit this instruction except in the body of a method whose signature indicates16
it accepts a variable number of arguments. Within such a method its use is verifiable, but verification requires17
that the result is an instance of the System.RuntimeArgumentHandle class.18

19
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1

3.5 beq.<length> – branch on equal2

Format Assembly Format Description

3B <int32> beq target branch to target if equal

2E <int8> beq.s target branch to target if equal, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The beq instruction transfers control to target if value1 is equal to value2. The effect is identical to performing7
a ceq instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for beq, 1 byte8
for beq.s) from the beginning of the instruction following the current instruction.9

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.10

If the target instruction has one or more prefix codes, control can only be transferred to the first of these11
prefixes.12

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this13
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for14
details).15

Exceptions:16

None.17

Verifiability:18

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two19
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.20

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible21
path to the destination instruction. See Section 1.5 for more details.22

23
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1

3.6 bge.<length> – branch on greater than or equal to2

Format Assembly Format Description

3C <int32> bge target branch to target if greater than or equal to

2F <int8> bge.s target branch to target if greater than or equal to, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The bge instruction transfers control to target if value1 is greater than or equal to value2. The effect is identical7
to performing a clt.un instruction followed by a brfalse target. Target is represented as a signed offset (48
bytes for bge, 1 byte for bge.s) from the beginning of the instruction following the current instruction.9

The effect of a “bge target” instruction is identical to:10

• If stack operands are integers, then : clt followed by a brfalse target11

• If stack operands are floating-point, then : clt.un followed by a brfalse target12

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.13

If the target instruction has one or more prefix codes, control can only be transferred to the first of these14
prefixes.15

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this16
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for17
details).18

Exceptions:19

None.20

Verifiability:21

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two22
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.23

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible24
path to the destination instruction. See Section 1.5 for more details.25

26
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1

3.7 bge.un.<length> – branch on greater than or equal to, unsigned or2
unordered3

Format Assembly Format Description

41 <int32> bge.un target branch to target if greater than or equal to (unsigned or unordered)

34 <int8> bge.un.s target branch to target if greater than or equal to (unsigned or unordered),
short form

4
Stack Transition:5

…, value1, value2 ! …6

Description:7

The bge.un instruction transfers control to target if value1 is greater than or equal to value2, when compared8
unsigned (for integer values) or unordered (for float point values). The effect is identical to performing a clt9
instruction followed by a brfalse target. Target is represented as a signed offset (4 bytes for bge.un, 1 byte for10
bge.un.s) from the beginning of the instruction following the current instruction.11

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.12

If the target instruction has one or more prefix codes, control can only be transferred to the first of these13
prefixes.14

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this15
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for16
details).17

Exceptions:18

None.19

Verifiability:20

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two21
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.22

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible23
path to the destination instruction. See Section 1.5 for more details.24

25
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1

3.8 bgt.<length> – branch on greater than2

Format Assembly Format Description

3D <int32> bgt target branch to target if greater than

30 <int8> bgt.s target branch to target if greater than, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The bgt instruction transfers control to target if value1 is greater than value2. The effect is identical to7
performing a cgt instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for8
bgt, 1 byte for bgt.s) from the beginning of the instruction following the current instruction.9

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.10

If the target instruction has one or more prefix codes, control can only be transferred to the first of these11
prefixes.12

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this13
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for14
details).15

Exceptions:16

None.17

Verifiability:18

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two19
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.20

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible21
path to the destination instruction. See Section 1.5 for more details.22

23
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1

3.9 bgt.un.<length> – branch on greater than, unsigned or unordered2

Format Assembly Format Description

42 <int32> bgt.un target branch to target if greater than (unsigned or unordered)

35 <int8> bgt.un.s target branch to target if greater than (unsigned or unordered), short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The bgt.un instruction transfers control to target if value1 is greater than value2, when compared unsigned (for7
integer values) or unordered (for float point values). The effect is identical to performing a cgt.un instruction8
followed by a brtrue target. Target is represented as a signed offset (4 bytes for bgt.un, 1 byte for bgt.un.s)9
from the beginning of the instruction following the current instruction.10

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.11

If the target instruction has one or more prefix codes, control can only be transferred to the first of these12
prefixes.13

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this14
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for15
details).16

Exceptions:17

None.18

Verifiability:19

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two20
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.21

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible22
path to the destination instruction. See Section 1.5 for more details.23

24
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1

3.10 ble.<length> – branch on less than or equal to2

Format Assembly Format Description

3E <int32> ble target branch to target if less than or equal to

31 <int8> ble.s target branch to target if less than or equal to, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The ble instruction transfers control to target if value1 is less than or equal to value2. Target is represented as a7
signed offset (4 bytes for ble, 1 byte for ble.s) from the beginning of the instruction following the current8
instruction.9

The effect of a “ble target” instruction is identical to:10

• If stack operands are integers, then : cgt followed by a brfalse target11

• If stack operands are floating-point, then : cgt.un followed by a brfalse target12

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.13

If the target instruction has one or more prefix codes, control can only be transferred to the first of these14
prefixes.15

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this16
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for17
details).18

Exceptions:19

None.20

Verifiability:21

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two22
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.23

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible24
path to the destination instruction. See Section 1.5 for more details.25

26
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1

3.11 ble.un.<length> – branch on less than or equal to, unsigned or unordered2

Format Assembly Format Description

43 <int32> ble.un target branch to target if less than or equal to (unsigned or unordered)

36 <int8> ble.un.s target branch to target if less than or equal to (unsigned or unordered),
short form

3
Stack Transition:4

…, value1, value2 ! …5

Description:6

The ble.un instruction transfers control to target if value1 is less than or equal to value2, when compared7
unsigned (for integer values) or unordered (for float point values). Target is represented as a signed offset (48
bytes for ble.un, 1 byte for ble.un.s) from the beginning of the instruction following the current instruction.9

The effect of a “ble.un target” instruction is identical to:10

• If stack operands are integers, then : cgt.un followed by a brfalse target11

• If stack operands are floating-point, then : cgt followed by a brfalse target12

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.13

If the target instruction has one or more prefix codes, control can only be transferred to the first of these14
prefixes.15

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this16
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for17
details).18

Exceptions:19

None.20

Verifiability:21

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two22
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.23

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible24
path to the destination instruction. See Section 1.5 for more details.25

26
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1

3.12 blt.<length> – branch on less than2

Format Assembly Format Description

3F <int32> blt target branch to target if less than

32 <int8> blt.s target branch to target if less than, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The blt instruction transfers control to target if value1 is less than value2. The effect is identical to performing7
a clt instruction followed by a brtrue target. Target is represented as a signed offset (4 bytes for blt, 1 byte8
for blt.s) from the beginning of the instruction following the current instruction.9

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.10

If the target instruction has one or more prefix codes, control can only be transferred to the first of these11
prefixes.12

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this13
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for14
details).15

Exceptions:16

None.17

Verifiability:18

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two19
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.20

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible21
path to the destination instruction. See Section 1.5 for more details.22

23
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1

3.13 blt.un.<length> – branch on less than, unsigned or unordered2

Format Assembly Format Description

44 <int32> blt.un target Branch to target if less than (unsigned or unordered)

37 <int8> blt.un.s target Branch to target if less than (unsigned or unordered), short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The blt.un instruction transfers control to target if value1 is less than value2, when compared unsigned (for7
integer values) or unordered (for float point values). The effect is identical to performing a clt.un instruction8
followed by a brtrue target. Target is represented as a signed offset (4 bytes for blt.un, 1 byte for blt.un.s)9
from the beginning of the instruction following the current instruction.10

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.11

If the target instruction has one or more prefix codes, control can only be transferred to the first of these12
prefixes.13

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this14
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for15
details).16

Exceptions:17

None.18

Verifiability:19

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two20
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.21

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible22
path to the destination instruction. See Section 1.5 for more details.23

24
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1

3.14 bne.un<length> – branch on not equal or unordered2

Format Assembly Format Description

40 <int32> bne.un target branch to target if unequal or unordered

33 <int8> bne.un.s target branch to target if unequal or unordered, short form
3

Stack Transition:4

…, value1, value2 ! …5

Description:6

The bne.un instruction transfers control to target if value1 is not equal to value2, when compared unsigned (for7
integer values) or unordered (for float point values). The effect is identical to performing a ceq instruction8
followed by a brfalse target. Target is represented as a signed offset (4 bytes for bne.un, 1 byte for bne.un.s)9
from the beginning of the instruction following the current instruction.10

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.11

If the target instruction has one or more prefix codes, control can only be transferred to the first of these12
prefixes.13

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this14
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for15
details).16

Exceptions:17

None.18

Verifiability:19

Correct CIL must observe all of the control transfer rules specified above and must guarantee that the top two20
items on the stack correspond to the types shown in Table 4: Binary Comparison or Branch Operations.21

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible22
path to the destination instruction. See Section 1.5 for more details.23

24
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1

3.15 br.<length> – unconditional branch2

Format Assembly Format Description

38 <int32> br target branch to target

2B <int8> br.s target branch to target, short form
3

Stack Transition:4

…, ! …5

Description:6

The br instruction unconditionally transfers control to target. Target is represented as a signed offset (4 bytes7
for br, 1 byte for br.s) from the beginning of the instruction following the current instruction.8

If the target instruction has one or more prefix codes, control can only be transferred to the first of these9
prefixes.10

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this11
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for12
details).13

Rationale: While a leave instruction can be used instead of a br instruction when the evaluation stack is14
empty, doing so may increase the resources required to compile from CIL to native code and/or lead to inferior15
native code. Therefore CIL generators should use a br instruction in preference to a leave instruction when16
both are legal.17

Exceptions:18

None.19

Verifiability:20

Correct CIL must observe all of the control transfer rules specified above.21

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible22
path to the destination instruction. See Section 1.5 for more details.23

24
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1

3.16 break – breakpoint instruction2

Format Assembly Format Description

01 break inform a debugger that a breakpoint has been reached.
3

Stack Transition:4

…, ! …5

Description:6

The break instruction is for debugging support. It signals the CLI to inform the debugger that a break point has7
been tripped. It has no other effect on the interpreter state.8

The break instruction has the smallest possible instruction size so that code can be patched with a breakpoint9
with minimal disturbance to the surrounding code.10

The break instruction may trap to a debugger, do nothing, or raise a security exception: the exact behavior is11
implementation-defined12

Exceptions:13

None.14

Verifiability:15

The break instruction is always verifiable.16
17
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1

3.17 brfalse.<length> - branch on false, null , or zero2

Format Assembly Format Description

39 <int32> brfalse target branch to target if value is zero (false)

2C <int8> brfalse.s target branch to target if value is zero (false), short form

39 <int32> brnull target branch to target if value is null (alias for brfalse)

2C <int8> brnull.s target branch to target if value is null (alias for brfalse.s), short form

39 <int32> brzero target branch to target if value is zero (alias for brfalse)

2C <int8> brzero.s target branch to target if value is zero (alias for brfalse.s), short form

3
Stack Transition:4

…, value ! …5

Description:6

The brfalse instruction transfers control to target if value (of type int32, int64, object reference,7
managed pointer, unmanaged pointer or native int) is zero (false). If value is non-zero (true) execution8
continues at the next instruction.9

Target is represented as a signed offset (4 bytes for brfalse, 1 byte for brfalse.s) from the beginning of the10
instruction following the current instruction.11

If the target instruction has one or more prefix codes, control can only be transferred to the first of these12
prefixes.13

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this14
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for15
details).16

Exceptions:17

None.18

Verifiability:19

Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a20
minimum of one item on the stack.21

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible22
path to the destination instruction. See Section 1.5 for more details.23

24
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1

3.18 brtrue.<length> - branch on non-false or non-null2

Format Assembly Format Description

3A <int32> brtrue target branch to target if value is non-zero (true)

2D <int8> brtrue.s target branch to target if value is non-zero (true), short form

3A <int32> brinst target branch to target if value is a non-null object reference (alias for
brtrue)

2D <int8> brinst.s target branch to target if value is a non-null object reference, short form
(alias for brtrue.s)

3
Stack Transition:4

…, value ! …5

Description:6

The brtrue instruction transfers control to target if value (of type native int) is nonzero (true). If value is7
zero (false) execution continues at the next instruction.8

If the value is an object reference (type O) then brinst (an alias for brtrue) transfers control if it represents an9
instance of an object (i.e. isn’t the null object reference, see ldnull).10

Target is represented as a signed offset (4 bytes for brtrue, 1 byte for brtrue.s) from the beginning of the11
instruction following the current instruction.12

If the target instruction has one or more prefix codes, control can only be transferred to the first of these13
prefixes.14

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this15
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for16
details).17

Exceptions:18

None.19

Verifiability:20

Correct CIL must observe all of the control transfer rules specified above and must guarantee there is a21
minimum of one item on the stack.22

In addition, verifiable code requires the type-consistency of the stack, locals and arguments for every possible23
path to the destination instruction. See Section 1.5 for more details.24

25
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1

3.19 call – call a method2

Format Assembly Format Description

28 <T> call method Call method described by method

3
Stack Transition:4

…, arg1, arg2 … argn ! …, retVal (not always returned)5

Description:6

The call instruction calls the method indicated by the descriptor method. Method is a metadata token (either a7
methodref or methoddef (See Partition II) that indicates the method to call and the number, type, and order of8
the arguments that have been placed on the stack to be passed to that method as well as the calling convention9
to be used. See Partition I for a detailed description of the CIL calling sequence. The call instruction may be10
immediately preceded by a tail. prefix to specify that the current method state should be released before11
transferring control (see Section 2.1).12

The metadata token carries sufficient information to determine whether the call is to a static method, an13
instance method, a virtual method, or a global function. In all of these cases the destination address is14
determined entirely from the metadata token (Contrast with the callvirt instruction for calling virtual15
methods, where the destination address also depends upon the runtime type of the instance reference pushed16
before the callvirt; see below).17

If the method does not exist in the class specified by the metadata token, the base classes are searched to find18
the most derived class which defines the method and that method is called.19

Rationale: This implements“call superclass” behavior.20

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed21
on the stack, then the second argument, etc. There are three important special cases:22

365. Calls to an instance (or virtual, see below) method must push that instance reference (the this23
pointer) before any of the user-visible arguments. The signature carried in the metadata does not24
contain an entry in the parameter list for the this pointer but uses a bit (called HASTHIS) to25
indicate whether the method requires passing the this pointer (see Partition II)26

366. It is legal to call a virtual method using call (rather than callvirt); this indicates that the27
method is to be resolved using the class specified by method rather than as specified dynamically28
from the object being invoked. This is used, for example, to compile calls to “methods on super”29
(i.e. the statically known parent class).30

367. Note that a delegate’s Invoke method may be called with either the call or callvirt instruction.31

Exceptions:32

SecurityException may be thrown if system security does not grant the caller access to the called method.33
The security check may occur when the CIL is converted to native code rather than at runtime.34

Verifiability:35

Correct CIL ensures that the stack contains the correct number and type of arguments for the method being36
called.37

For a typical use of the call instruction, verification checks that (a) method refers to a valid methodref or38
methoddef token; (b) the types of the objects on the stack are consistent with the types expected by the method39
call, and (c) the method is accessible from the callsite, and (d) the method is not abstract (ie, it has an40
implementation)41

The call instruction may also be used to call an object’s superclass constructor, or to initialize a value type42
location by calling an appropriate constructor, both of which are treated as special cases by verification. A call43
annotated by tail. is also a special case.44
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If the target method is global (defined outside of any type), then the method must be static.1
2
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1

3.20 call i– indirect method call2

Format Assembly Format Description

29 <T> calli callsitedescr Call method indicated on the stack with arguments described by
callsitedescr.

3
Stack Transition:4

…, arg1, arg2 … argn, ftn ! … retVal (not always returned)5

Description:6

The calli instruction calls ftn (a pointer to a method entry point) with the arguments arg1 … argn. The types of7
these arguments are described by the signature callsitedescr. See Partition I for a description of the CIL8
calling sequence. The calli instruction may be immediately preceded by a tail. prefix to specify that the9
current method state should be released before transferring control. If the call would transfer control to a10
method of higher trust than the origin method the stack frame will not be released; instead, the execution will11
continue silently as if the tail. prefix had not been supplied.12

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of13
the caller]14

The ftn argument is assumed to be a pointer to native code (of the target machine) that can be legitimately15
called with the arguments described by callsitedescr (a metadata token for a stand-alone signature). Such a16
pointer can be created using the ldftn or ldvirtftn instructions, or have been passed in from native code.17

The standalone signature specifies the number and type of parameters being passed, as well as the calling18
convention (See Partition II) The calling convention is not checked dynamically, so code that uses a calli19
instruction will not work correctly if the destination does not actually use the specified calling convention.20

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed21
on the stack, then the second argument, etc. The argument-building code sequence for an instance or virtual22
method must push that instance reference (the this pointer, which must not be null) before any of the user-23
visible arguments.24

Exceptions:25

SecurityException may be thrown if the system security does not grant the caller access to the called method.26
The security check may occur when the CIL is converted to native code rather than at runtime.27

Verifiability:28

Correct CIL requires that the function pointer contains the address of a method whose signature matches that29
specified by callsitedescr and that the arguments correctly correspond to the types of the destination function’s30
parameters.31

Verification checks that ftn is a pointer to a function generated by ldftn or ldvirtfn.32
33
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1

3.21 ceq - compare equal2

Format Assembly Format Description

FE 01 ceq push 1 (of type int32) if value1 equals value2, else 0
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The ceq instruction compares value1 and value2. If value1 is equal to value2, then 1 (of type int32) is pushed7
on the stack. Otherwise 0 (of type int32) is pushed on the stack.8

For floating-point number, ceq will return 0 if the numbers are unordered (either or both are NaN). The infinite9
values are equal to themselves.10

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.11

Exceptions:12

None.13

Verifiability:14

Correct CIL provides two values on the stack whose types match those specified in15
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.16

17
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1

3.22 cgt - compare greater than2

Format Assembly Format Description

FE 02 cgt push 1 (of type int32) if value1 > value2, else 0

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The cgt instruction compares value1 and value2. If value1 is strictly greater than value2, then 1 (of type int32)7
is pushed on the stack. Otherwise 0 (of type int32) is pushed on the stack8

For floating-point numbers, cgt returns 0 if the numbers are unordered (that is, if one or both of the arguments9
are NaN).10

As per IEC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -11
infinity).12

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.13

Exceptions:14

None.15

Verifiability:16

Correct CIL provides two values on the stack whose types match those specified in17
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.18

19
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1

3.23 cgt.un - compare greater than, unsigned or unordered2

Format Assembly Format Description

FE 03 cgt.un push 1 (of type int32) if value1 > value2, unsigned or unordered,
else 0

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The cgt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if7

• for floating-point numbers, either value1 is strictly greater than value2, or value1 is not ordered8
with respect to value29

• for integer values, value1 is strictly greater than value2 when considered as unsigned numbers10

Otherwise 0 (of type int32) is pushed on the stack.11

As per IEC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -12
infinity).13

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.14

Exceptions:15

None.16

Verifiability:17

Correct CIL provides two values on the stack whose types match those specified in18
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.19

20
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1

3.24 ckfinite – check for a finite real number2

Format Assembly Format Description

C3 ckfinite throw ArithmeticException if value is not a finite number
3

Stack Transition:4

…, value ! …, value5

Description:6

The ckfinite instruction throws ArithmeticException if value (a floating-point number) is either a “not a7
number” value (NaN) or +- infinity value. Ckfinite leaves the value on the stack if no exception is thrown.8
Execution is unspecified if value is not a floating-point number.9

Exceptions:10

ArithmeticException is thrown if value is not a ‘normal’ number.11

Verifiability:12

Correct CIL guarantees that value is a floating-point number. There are no additional verification requirements.13
14
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3.25 clt - compare less than2

Format Assembly Format Description

FE 04 clt push 1 (of type int32) if value1 < value2, else 0

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The clt instruction compares value1 and value2. If value1 is strictly less than value2, then 1 (of type int32) is7
pushed on the stack. Otherwise 0 (of type int32) is pushed on the stack8

For floating-point numbers, clt will return 0 if the numbers are unordered (that is one or both of the arguments9
are NaN).10

As per IEC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -11
infinity).12

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.13

Exceptions:14

None.15

Verifiability:16

Correct CIL provides two values on the stack whose types match those specified in17
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.18

19
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3.26 clt .un - compare less than, unsigned or unordered2

Format Assembly Format Description

FE 05 clt.un push 1 (of type int32) if value1 < value2, unsigned or unordered,
else 0

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The clt.un instruction compares value1 and value2. A value of 1 (of type int32) is pushed on the stack if7

• for floating-point numbers, either value1 is strictly less than value2, or value1 is not ordered with8
respect to value29

• for integer values, value1 is strictly less than value2 when considered as unsigned numbers10

Otherwise 0 (of type int32) is pushed on the stack.11

As per IEC 60559:1989 spec, infinite values are ordered with respect to normal numbers (e.g +infinity > 5.0 > -12
infinity).13

The acceptable operand types are encapsulated in Table 4: Binary Comparison or Branch Operations.14

Exceptions:15

None.16

Verifiability:17

Correct CIL provides two values on the stack whose types match those specified in18
Table 4: Binary Comparison or Branch Operations. There are no additional verification requirements.19

20
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3.27 conv.<to type> - data conversion2

Format Assembly Format Description

67 conv.i1 Convert to int8, pushing int32 on stack

68 conv.i2 Convert to int16, pushing int32 on stack

69 conv.i4 Convert to int32, pushing int32 on stack

6A conv.i8 Convert to int64, pushing int64 on stack

6B conv.r4 Convert to float32, pushing F on stack

6C conv.r8 Convert to float64, pushing F on stack

D2 conv.u1 Convert to unsigned int8, pushing int32 on stack

D1 conv.u2 Convert to unsigned int16, pushing int32 on stack

6D conv.u4 Convert to unsigned int32, pushing int32 on stack

6E conv.u8 Convert to unsigned int64, pushing int64 on stack

D3 conv.i Convert to native int, pushing native int on stack

E0 conv.u Convert to native unsigned int, pushing native int on stack

76 conv.r.un Convert unsigned integer to floating-point, pushing F on stack

3
Stack Transition:4

…, value ! …, result5

Description:6

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the7
top of the stack. Note that integer values of less than 4 bytes are extended to int32 (not native int) when they8
are loaded onto the evaluation stack, and floating-point values are converted to the F type.9

Conversion from floating-point numbers to integral values truncates the number toward zero. When converting10
from an float64 to an float32, precision may be lost. If value is too large to fit in an float32, the IEC11
60559:1989 positive infinity (if value is positive) or IEC 60559:1989 negative infinity (if value is negative) is12
returned. If overflow occurs converting one integer type to another the high order bits are silently truncated. If13
the result is smaller than an int32, then the value is sign-extended to fill the slot.14

If overflow occurs converting a floating-point type to an integer the value returned is unspecified. The15
conv.r.un operation takes an integer off the stack, interprets it as unsigned, and replaces it with a floating-16
point number to represent the integer; either a float32, if this is wide enough to represent the integer without17
loss of precision, else a float64.18

No exceptions are ever thrown. See conv.ovf for instructions that will throw an exception when the result type19
can not properly represent the result value.20

The acceptable operand types and their corresponding result data type is encapsulated in21
Table 8: Conversion Operations.22

Exceptions:23

None.24

Verifiability:25

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The26
same table specifies a restricted set of types that are acceptable in verified code.27

28
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3.28 conv.ovf.<to type> - data conversion with overflow detection2

Format Assembly Format Description

B3 conv.ovf.i1 Convert to an int8 (on the stack as int32) and throw an exception
on overflow

B5 conv.ovf.i2 Convert to an int16 (on the stack as int32) and throw an exception
on overflow

B7 conv.ovf.i4 Convert to an int32 (on the stack as int32) and throw an exception
on overflow

B9 conv.ovf.i8 Convert to an int64 (on the stack as int64) and throw an exception
on overflow

B4 conv.ovf.u1 Convert to a unsigned int8 (on the stack as int32) and throw an
exception on overflow

B6 conv.ovf.u2 Convert to a unsigned int16 (on the stack as int32) and throw an
exception on overflow

B8 conv.ovf.u4 Convert to a unsigned int32 (on the stack as int32) and throw an
exception on overflow

BA conv.ovf.u8 Convert to a unsigned int64 (on the stack as int64) and throw an
exception on overflow

D4 conv.ovf.i Convert to an native int (on the stack as native int) and throw
an exception on overflow

D5 conv.ovf.u Convert to a native unsigned int (on the stack as native int)
and throw an exception on overflow

3
Stack Transition:4

…, value ! …, result5

Description:6

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the7
top of the stack. If the value is too large or too small to be represented by the target type, an exception is8
thrown.9

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer10
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack.11

The acceptable operand types and their corresponding result data type is encapsulated in12
Table 8: Conversion Operations.13

Exceptions:14

OverflowException is thrown if the result can not be represented in the result type15

Verifiability:16

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The17
same table specifies a restricted set of types that are acceptable in verified code.18

19
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3.29 conv.ovf.<to type>.un – unsigned data conversion with overflow detection2

Format Assembly Format Description

82 conv.ovf.i1.un Convert unsigned to an int8 (on the stack as int32) and throw an
exception on overflow

83 conv.ovf.i2.un Convert unsigned to an int16 (on the stack as int32) and throw an
exception on overflow

84 conv.ovf.i4.un Convert unsigned to an int32 (on the stack as int32) and throw an
exception on overflow

85 conv.ovf.i8.un Convert unsigned to an int64 (on the stack as int64) and throw an
exception on overflow

86 conv.ovf.u1.un Convert unsigned to an unsigned int8 (on the stack as int32) and
throw an exception on overflow

87 conv.ovf.u2.un Convert unsigned to an unsigned int16 (on the stack as int32) and
throw an exception on overflow

88 conv.ovf.u4.un Convert unsigned to an unsigned int32 (on the stack as int32) and
throw an exception on overflow

89 conv.ovf.u8.un Convert unsigned to an unsigned int64 (on the stack as int64) and
throw an exception on overflow

8A conv.ovf.i.un Convert unsigned to a native int (on the stack as native int) and
throw an exception on overflow

8B conv.ovf.u.un Convert unsigned to a native unsigned int (on the stack as
native int) and throw an exception on overflow

3
Stack Transition:4

…, value ! …, result5

Description:6

Convert the value on top of the stack to the type specified in the opcode, and leave that converted value on the7
top of the stack. If the value cannot be represented, an exception is thrown. The item at the top of the stack is8
treated as an unsigned value.9

Conversions from floating-point numbers to integral values truncate the number toward zero. Note that integer10
values of less than 4 bytes are extended to int32 (not native int) on the evaluation stack.11

The acceptable operand types and their corresponding result data type is encapsulated in12
Table 8: Conversion Operations.13

Exceptions:14

OverflowException is thrown if the result can not be represented in the result type15

Verifiability:16

Correct CIL has at least one value, of a type specified in Table 8: Conversion Operations, on the stack. The17
same table specifies a restricted set of types that are acceptable in verified code.18

19
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3.30 cpblk - copy data from memory to memory2

Format Instruction Description

FE 17 cpblk Copy data from memory to memory
3

Stack Transition:4

…, destaddr, srcaddr, size ! …5

Description:6

The cpblk instruction copies size (of type unsigned int32) bytes from address srcaddr (of type native int, or7
&) to address destaddr (of type native int, or &). The behavior of cpblk is unspecified if the source and8
destination areas overlap.9

cpblk assumes that both destaddr and srcaddr are aligned to the natural size of the machine (but see the10
unaligned. prefix instruction). The cpblk instruction may be immediately preceded by the unaligned. prefix11
instruction to indicate that either the source or the destination is unaligned.12

Rationale: cpblk is intended for copying structures (rather than arbitrary byte-runs). All such structures,13
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the14
compiler that generates cpblk instructions to be aware of whether the code will eventually execute on a 32-bit15
or 64-bit platform.16

The operation of the cpblk instruction may be altered by an immediately preceding volatile. or unaligned.17
prefix instruction.18

Exceptions:19

NullReferenceException may be thrown if an invalid address is detected.20

Verifiability:21

The cpblk instruction is never verifiable. Correct CIL ensures the conditions specified above.22
23
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3.31 div - divide values2

Format Assembly Format Description

5B div Divide two values to return a quotient or floating-point result
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

result = value1 div value2 satisfies the following conditions:7

|result| = |value1| / |value2|, and8

sign(result) = +, if sign(value1) = sign(value2), or9
–, if sign(value1) ~= sign(value2)10

The div instruction computes result and pushes it on the stack.11

Integer division truncates towards zero.12

Floating-point division is per IEC 60559:1989 (IEEE 754). In particular division of a finite number by 013
produces the correctly signed infinite value and14

0 / 0 = NaN15

infinity / infinity = NaN.16

X / infinity = 017

The acceptable operand types and their corresponding result data type is encapsulated in18
Table 2: Binary Numeric Operations.19

Exceptions:20

Integral operations throw ArithmeticException if the result cannot be represented in the result type. This can21
happen if value1 is the maximum negative value, and value2 is -1.22

Integral operations throw DivideByZeroException if value2 is zero.23

Floating-point operations never throw an exception (they produce NaNs or infinities instead, see Partition I).24

Example:25
+14 div +3 is 426

+14 div -3 is -427

-14 div +3 is -428

-14 div -3 is 429

Verifiability:30

See Table 2: Binary Numeric Operations.31
32
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3.32 div.un - divide integer values, unsigned2

Format Assembly Format Description

5C div.un Divide two values, unsigned, returning a quotient
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The div.un instruction computes value1 divided by value2, both taken as unsigned integers, and pushes the7
result on the stack.8

The acceptable operand types and their corresponding result data type are encapsulated in9
Table 5: Integer Operations.10

Exceptions:11

DivideByZeroException is thrown if value2 is zero.12

Example:13
+5 div.un +3 is 114

+5 div.un -3 is 015

-5 div.un +3 is 14316557630 or 0x5555555316

-5 div.un -3 is 017

Verifiability:18

See Table 5: Integer Operations.19
20
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3.33 dup – duplicate the top value of the stack2

Format Assembly Format Description

25 dup duplicate value on the top of the stack
3

Stack Transition:4

…, value ! …, value, value5

Description:6

The dup instruction duplicates the top element of the stack.7

Exceptions:8

None.9

Verifiability:10

No additional requirements.11
12



- 61 -

1

3.34 endfilter – end filter clause of SEH2

Format Assembly Format Description

FE 11 Endfilter End filter clause of SEH exception handling
3

Stack Transition:4

…, value ! …5

Description:6

Return from filter clause of an exception (see the Exception Handling section of Partition I for a discussion7
of exceptions). Value (which must be of type int32 and is one of a specific set of values) is returned from the8
filter clause. It should be one of:9

• exception_continue_search (0) to continue searching for an exception handler10

• exception_execute_handler (1) to start the second phase of exception handling where finally11
blocks are run until the handler associated with this filter clause is located. Then the handler is12
executed.13

Other integer values will produce unspecified results.14

The entry point of a filter, as shown in the method’s exception table, must be the (lexically) first instruction in15
the filter’s code block. The endfilter must be the (lexically) last instruction in the filter’s code block (hence16
there can only be one endfilter for any single filter block). After executing the endfilter instruction, control17
logically flows back to the CLI exception handling mechanism.18

Control cannot be transferred into a filter block except through the exception mechanism. Control cannot be19
transferred out of a filter block except through the use of a throw instruction or executing the final20
endfilter instruction. In particular, it is not legal to execute a ret or leave instruction within a filter block.21
It is not legal to embed a try block within a filter block. If an exception is thrown inside the filter block, it22
is intercepted and a value of exception_continue_search is returned.23

Exceptions:24

None.25

Verifiability:26

Correct CIL guarantees the control transfer restrictions specified above. Also, the stack must contain exactly27
one item (of type int32).28

29
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3.35 endfinally – end the finally or fault clause of an exception block2

Format Assembly Format Description

DC Endfault End fault clause of an exception block

DC Endfinally End finally clause of an exception block
3

Stack Transition:4

… ! …5

Description:6

Return from the finally or fault clause of an exception block; see the Exception Handling section of7
Partition I for details.8

Signals the end of the finally or fault clause so that stack unwinding can continue until the exception handler9
is invoked. The endfinally or endfault instruction transfers control back to the CLI exception mechanism.10
This then searches for the next finally clause in the chain, if the protected block was exited with a leave11
instruction. If the protected block was exited with an exception, the CLI will search for the next finally or12
fault, or enter the exception handler chosen during the first pass of exception handling.13

An endfinally instruction may only appear lexically within a finally block. Unlike the endfilter14
instruction, there is no requirement that the block end with an endfinally instruction, and there can be as many15
endfinally instructions within the block as required. These same restrictions apply to the endfault instruction16
and the fault block, mutatis mutandis.17

Control cannot be transferred into a finally (or fault block) except through the exception mechanism.18
Control cannot be transferred out of a finally (or fault) block except through the use of a throw instruction19
or executing the endfinally (or endfault) instruction. In particular, it is not legal to “fall out” of a finally20
(or fault) block or to execute a ret or leave instruction within a finally (or fault) block.21

Note that the endfault and endfinally instructions are aliases – they correspond to the same opcode.22

Exceptions:23

None.24

Verifiability:25

Correct CIL guarantees the control transfer restrictions specified above. There are no additional verification26
requirements.27

28
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3.36 initblk - initial ize a block of memory to a value2

Format Assembly Format Description

FE 18 initblk Set a block of memory to a given byte
3

Stack Transition:4

…, addr, value, size ! …5

Description:6

The initblk instruction sets size (of type unsigned int32) bytes starting at addr (of type native int, or &) to7
value (of type unsigned int8). initblk assumes that addr is aligned to the natural size of the machine (but see8
the unaligned. prefix instruction).9

Rationale: initblk is intended for initializing structures (rather than arbitrary byte-runs). All such structures,10
allocated by the CLI, are naturally aligned for the current platform. Therefore, there is no need for the11
compiler that generates initblk instructions to be aware of whether the code will eventually execute on a 32-12
bit or 64-bit platform.13

The operation of the initblk instructions may be altered by an immediately preceding volatile. or14
unaligned. prefix instruction.15

Exceptions:16

NullReferenceException may be thrown if an invalid address is detected.17

Verifiability:18

The initblk instruction is never verifiable. Correct CIL code ensures the restrictions specified above.19
20
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3.37 jmp – jump to method2

Format Assembly Format Description

27 <T> jmp method Exit current method and jump to specified method
3

Stack Transition:4

… ! …5

Description:6

Transfer control to the method specified by method, which is a metadata token (either a methodref or7
methoddef (See Partition II). The current arguments are transferred to the destination method.8

The evaluation stack must be empty when this instruction is executed. The calling convention, number and type9
of arguments at the destination address must match that of the current method.10

The jmp instruction cannot be used to transferred control out of a try, filter, catch, fault or finally block; or out11
of a synchronized region. If this is done, results are undefined. See Partition I.12

Exceptions:13

None.14

Verifiability:15

The jmp instruction is never verifiable. Correct CIL code obeys the control flow restrictions specified above.16
17
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3.38 ldarg.<length> - load argument onto the stack2

Format Assembly Format Description

FE 09 <unsigned
int16>

ldarg num Load argument numbered num onto stack.

0E <unsigned
int8>

ldarg.s num Load argument numbered num onto stack, short form.

02 ldarg.0 Load argument 0 onto stack

03 ldarg.1 Load argument 1 onto stack

04 ldarg.2 Load argument 2 onto stack

05 ldarg.3 Load argument 3 onto stack
3

Stack Transition:4

… ! …, value5

Description:6

The ldarg num instruction pushes the num’th incoming argument, where arguments are numbered 0 onwards7
(see Partition I) onto the evaluation stack. The ldarg instruction can be used to load a value type or a built-in8
value onto the stack by copying it from an incoming argument. The type of the value is the same as the type of9
the argument, as specified by the current method’s signature.10

The ldarg.0, ldarg.1, ldarg.2, and ldarg.3 instructions are efficient encodings for loading any of the first 411
arguments. The ldarg.s instruction is an efficient encoding for loading argument numbers 4 through 255.12

For procedures that take a variable-length argument list, the ldarg instructions can be used only for the initial13
fixed arguments, not those in the variable part of the signature. (See the arglist instruction)14

Arguments that hold an integer value smaller than 4 bytes long are expanded to type int32 when they are loaded15
onto the stack. Floating-point values are expanded to their native size (type F).16

Exceptions:17

None.18

Verifiability:19

Correct CIL guarantees that num is a valid argument index. See Section 1.5 for more details on how20
verification determines the type of the value loaded onto the stack.21

22
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3.39 ldarga.<length> - load an argument address2

Format Assembly Format Description

FE 0A <unsigned
int16>

ldarga argNum fetch the address of argument argNum.

0F <unsigned int8> ldarga.s argNum fetch the address of argument argNum, short form
3

Stack Transition:4

…, ! …, address of argument number argNum5

Description:6

The ldarga instruction fetches the address (of type &, i.e. managed pointer) of the argNum’th argument, where7
arguments are numbered 0 onwards. The address will always be aligned to a natural boundary on the target8
machine (cf. cpblk and initblk). The short form (ldarga.s) should be used for argument numbers 0 through 255.9

For procedures that take a variable-length argument list, the ldarga instructions can be used only for the initial10
fixed arguments, not those in the variable part of the signature.11

Rationale: ldarga is used for by-ref parameter passing (see Partition I). In other cases, ldarg and starg12
should be used.13

Exceptions:14

None.15

Verifiability:16

Correct CIL ensures that argNum is a valid argument index. See Section 1.5 for more details on how17
verification determines the type of the value loaded onto the stack.18

19
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3.40 ldc.<type> - load numeric constant2

Format Assembly Format Description

20 <int32> ldc.i4 num Push num of type int32 onto the stack as int32.

21 <int64> ldc.i8 num Push num of type int64 onto the stack as int64.

22 <float32> ldc.r4 num Push num of type float32 onto the stack as F.

23 <float64> ldc.r8 num Push num of type float64 onto the stack as F.

16 ldc.i4.0 Push 0 onto the stack as int32.

17 ldc.i4.1 Push 1 onto the stack as int32.

18 ldc.i4.2 Push 2 onto the stack as int32.

19 ldc.i4.3 Push 3 onto the stack as int32.

1A ldc.i4.4 Push 4 onto the stack as int32.

1B ldc.i4.5 Push 5 onto the stack as int32.

1C ldc.i4.6 Push 6 onto the stack as int32.

1D ldc.i4.7 Push 7 onto the stack as int32.

1E ldc.i4.8 Push 8 onto the stack as int32.

15 ldc.i4.m1 Push -1 onto the stack as int32.

15 ldc.i4.M1 Push -1 of type int32 onto the stack as int32 (alias for
ldc.i4.m1).

1F <int8> ldc.i4.s num Push num onto the stack as int32, short form.
3

Stack Transition:4

… ! …, num5

Description:6

The ldc num instruction pushes number num onto the stack. There are special short encodings for the integers –7
128 through 127 (with especially short encodings for –1 through 8). All short encodings push 4 byte integers on8
the stack. Longer encodings are used for 8 byte integers and 4 and 8 byte floating-point numbers, as well as 4-9
byte values that do not fit in the short forms.10

There are three ways to push an 8 byte integer constant onto the stack11

368. use the ldc.i8 instruction for constants that must be expressed in more than 32 bits12

369. use the ldc.i4 instruction followed by a conv.i8 for constants that require 9 to 32 bits13

370. use a short form instruction followed by a conv.i8 for constants that can be expressed in 8 or14
fewer bits15

There is no way to express a floating-point constant that has a larger range or greater precision than a 64 bit16
IEC 60559:1989 number, since these representations are not portable across architectures.17

Exceptions:18

None.19

Verifiability:20

The ldc instruction is always verifiable.21
22
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3.41 ldftn - load method pointer2

Format Assembly Format Description

FE 06 <T> ldftn method Push a pointer to a method referenced by method on the stack
3

Stack Transition:4

… ! …, ftn5

Description:6

The ldftn instruction pushes an unmanaged pointer (type native int) to the native code implementing the7
method described by method (a metadata token, either a methoddef or methodref; see Partition II) onto the8
stack. The value pushed can be called using the calli instruction if it references a managed method (or a stub9
that transitions from managed to unmanaged code).10

The value returned points to native code using the calling convention specified by method. Thus a method11
pointer can be passed to unmanaged native code (e.g. as a callback routine). Note that the address computed by12
this instruction may be to a thunk produced specially for this purpose (for example, to re-enter the CIL13
interpreter when a native version of the method isn’t available).14

Exceptions:15

None.16

Verifiability:17

Correct CIL requires that method is a valid methoddef or methodref token. Verification tracks the type of the18
value pushed in more detail than the “native int” type, remembering that it is a method pointer. Such a19
method pointer can then be used with calli or to construct a delegate.20

21
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3.42 ldind.<type> - load value indirect onto the stack2

Format Assembly Format Description

46 ldind.i1 Indirect load value of type int8 as int32 on the stack.

48 ldind.i2 Indirect load value of type int16 as int32 on the stack.

4A ldind.i4 Indirect load value of type int32 as int32 on the stack.

4C ldind.i8 Indirect load value of type int64 as int64 on the stack.

47 ldind.u1 Indirect load value of type unsigned int8 as int32 on the
stack.

49 ldind.u2 Indirect load value of type unsigned int16 as int32 on the
stack.

4B ldind.u4 Indirect load value of type unsigned int32 as int32 on the
stack.

4E ldind.r4 Indirect load value of type float32 as F on the stack.

4C ldind.u8 Indirect load value of type unsigned int64 as int64 on the
stack (alias for ldind.i8).

4F ldind.r8 Indirect load value of type float64 as F on the stack.

4D ldind.i Indirect load value of type native int as native int on the
stack

50 ldind.ref Indirect load value of type object ref as O on the stack.

3
Stack Transition:4

…, addr ! …, value5

Description:6

The ldind instruction indirectly loads a value from address addr (an unmanaged pointer, native int, or7
managed pointer, &) onto the stack. The source value is indicated by the instruction suffix. All of the ldind8
instructions are shortcuts for a ldobj instruction that specifies the corresponding built-in value class.9

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded onto10
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.11

Correct CIL ensures that the ldind instructions are used in a manner consistent with the type of the pointer.12

The address specified by addr must be aligned to the natural size of objects on the machine or a13
NullReferenceException may occur (but see the unaligned. prefix instruction). The results of all CIL14
instructions that return addresses (e.g. ldloca and ldarga) are safely aligned. For datatypes larger than 1 byte,15
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all16
platforms.17

The operation of the ldind instructions may be altered by an immediately preceding volatile. or unaligned.18
prefix instruction.19

Rationale: Signed and unsigned forms for the small integer types are needed so that the CLI can know whether20
to sign extend or zero extend. The ldind.u8 and ldind.u4 variants are provided for convenience; ldind.u8 is21
an alias for ldind.i8; ldind.u4 and ldind.i4 have different opcodes, but their effect is identical22

Exceptions:23

NullReferenceException may be thrown if an invalid address is detected.24

Verifiability:25
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Correct CIL only uses an ldind instruction in a manner consistent with the type of the pointer.1
2



- 71 -

1

3.43 ldloc - load local variable onto the stack2

Format Assembly Format Description

FE 0C<unsigned
int16>

ldloc indx Load local variable of index indx onto stack.

11 <unsigned int8> ldloc.s indx Load local variable of index indx onto stack, short form.

06 ldloc.0 Load local variable 0 onto stack.

07 ldloc.1 Load local variable 1 onto stack.

08 ldloc.2 Load local variable 2 onto stack.

09 ldloc.3 Load local variable 3 onto stack.
3

Stack Transition:4

… ! …, value5

Description:6

The ldloc indx instruction pushes the contents of the local variable number indx onto the evaluation stack,7
where local variables are numbered 0 onwards. Local variables are initialized to 0 before entering the method8
only if the initialize flag on the method is true (see Partition I). The ldloc.0, ldloc.1, ldloc.2, and ldloc.39
instructions provide an efficient encoding for accessing the first four local variables. The ldloc.s instruction10
provides an efficient encoding for accessing local variables 4 through 255.11

The type of the value is the same as the type of the local variable, which is specified in the method header. See12
Partition I.13

Local variables that are smaller than 4 bytes long are expanded to type int32 when they are loaded onto the14
stack. Floating-point values are expanded to their native size (type F).15

Exceptions:16

VerificationException is thrown if the the “zero initialize” bit for this method has not been set, and the17
assembly containing this method has not been granted SecurityPermission.SkipVerification (and the CIL does18
not perform automatic definite-assignment analysis)19

Verifiability:20

Correct CIL ensures that indx is a valid local index. See Section 1.5 for more details on how verification21
determines the type of a local variable. For the ldloca indx instruction, indx must lie in the range 0 to 6553422
inclusive (specifically, 65535 is not valid)23

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to24
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had25
been made legal, it would require a wider integer to track the number of locals in such a method.26

Also, for verifiable code, this instruction must guarantee that it is not loading an uninitialized value – whether27
that initialization is done explicitly by having set the “zero initialize” bit for the method, or by previous28
instructions (where the CLI performs definite-assignment analysis)29

30
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1

3.44 ldloca.<length> - load local variable address2

Format Assembly Format Description

FE 0D <unsigned
int16>

ldloca index Load address of local variable with index indx

12 <unsigned int8> ldloca.s index Load address of local variable with index indx, short form

3
Stack Transition:4

… ! …, address5

Description:6

The ldloca instruction pushes the address of the local variable number index onto the stack, where local7
variables are numbered 0 onwards. The value pushed on the stack is already aligned correctly for use with8
instructions like ldind and stind. The result is a managed pointer (type &). The ldloca.s instruction provides9
an efficient encoding for use with the local variables 0 through 255.10

Exceptions:11

VerificationException is thrown if the the “zero initialize” bit for this method has not been set, and the12
assembly containing this method has not been granted SecurityPermission.SkipVerification (and the CIL does13
not perform automatic definite-assignment analysis)14

Verifiability:15

Correct CIL ensures that indx is a valid local index. See Section 1.5 for more details on how verification16
determines the type of a local variable. For the ldloca indx instruction, indx must lie in the range 0 to 6553417
inclusive (specifically, 65535 is not valid)18

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to19
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had20
been made legal, it would require a wider integer to track the number of locals in such a method.21

Also, for verifiable code, this instruction must guarantee that it is not loading an uninitialized value – whether22
that initialization is done explicitly by having set the “zero initialize” bit for the method, or by previous23
instructions (where the CLI performs definite-assignment analysis)24

25
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1

3.45 ldnull – load a null pointer2

Format Assembly Format Description

14 ldnull Push null reference on the stack
3

Stack Transition:4

… ! …, null value5

Description:6

The ldnull pushes a null reference (type O) on the stack. This is used to initialize locations before they become7
live or when they become dead.8

Rationale: It might be thought that ldnull is redundant: why not use ldc.i4.0 or ldc.i8.0 instead? The9
answer is that ldnull provides a size-agnostic null – analogous to a ldc.i instruction, which does not exist.10
However, even if CIL were to include a ldc.i instruction it would still benefit verification algorithms to retain11
the ldnull instruction because it makes type tracking easier.12

Exceptions:13

None.14

Verifiability:15

The ldnull instruction is always verifiable, and produces a value that verification considers compatible with16
any other reference type.17

18
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1

3.46 leave.<length> – exit a protected region of code2

Format Assembly Format Description

DD <int32> leave target Exit a protected region of code.

DE <int8> leave.s target Exit a protected region of code, short form

3
Stack Transition:4

…, !5

Description:6

The leave instruction unconditionally transfers control to target. Target is represented as a signed offset (47
bytes for leave, 1 byte for leave.s) from the beginning of the instruction following the current instruction.8

The leave instruction is similar to the br instruction, but it can be used to exit a try, filter, or catch block9
whereas the ordinary branch instructions can only be used in such a block to transfer control within it. The10
leave instruction empties the evaluation stack and ensures that the appropriate surrounding finally blocks are11
executed.12

It is not legal to use a leave instruction to exit a finally block. To ease code generation for exception handlers13
it is legal from within a catch block to use a leave instruction to transfer control to any instruction within the14
associated try block.15

If an instruction has one or more prefix codes, control can only be transferred to the first of these prefixes.16

Exceptions:17

None.18

Verifiability:19

Correct CIL requires the computed destination lie within the current method. See Section 1.5 for more details.20
21
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3.47 localloc – allocate space in the local dynamic memory pool2

Format Assembly Format Description

FE 0F localloc Allocate space from the local memory pool.
3

Stack Transition:4

…, size ! …, address5

Description:6

The localloc instruction allocates size (type native unsigned int) bytes from the local dynamic memory pool7
and returns the address (a managed pointer, type &) of the first allocated byte. The block of memory returned is8
initialized to 0 only if the initialize flag on the method is true (see Partition I). The area of memory is newly9
allocated. When the current method returns the local memory pool is available for reuse.10

Address is aligned so that any built-in data type can be stored there using the stind instructions and loaded11
using the ldind instructions.12

The localloc instruction cannot occur within an exception block: filter, catch, finally, or fault13

Rationale: Localloc is used to create local aggregates whose size must be computed at runtime. It can be used14
for C’s intrinsic alloca method.15

Exceptions:16

StackOverflowException is thrown if there is insufficient memory to service the request.17

Verifiability:18

Correct CIL requires that the evaluation stack be empty, apart from the size item. This instruction is never19
verifiable.20

21
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1

3.48 mul - multiply values2

Format Assembly Format Description

5A mul Multiply values
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The mul instruction multiplies value1 by value2 and pushes the result on the stack. Integral operations silently7
truncate the upper bits on overflow (see mul.ovf).8

For floating-point types, 0 * infinity = NaN.9

The acceptable operand types and their corresponding result data types are encapsulated in10
Table 2: Binary Numeric Operations.11

Exceptions:12

None.13

Verifiability:14

See Table 2: Binary Numeric Operations.15
16
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1

3.49 mul.ovf.<type> - multiply integer values with overflow check2

Format Assembly Format Description

D8 mul.ovf Multiply signed integer values. Signed result must fit in same size

D9 mul.ovf.un Multiply unsigned integer values. Unsigned result must fit in same
size

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The mul.ovf instruction multiplies integers, value1 and value2, and pushes the result on the stack. An7
exception is thrown if the result will not fit in the result type.8

The acceptable operand types and their corresponding result data types are encapsulated in9
Table 7: Overflow Arithmetic Operations.10

Exceptions:11

OverflowException is thrown if the result can not be represented in the result type.12

Verifiability:13

See Table 8: Conversion Operations.14
15
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3.50 neg - negate2

Format Assembly Format Description

65 neg Negate value
3

Stack Transition:4

…, value ! …, result5

Description:6

The neg instruction negates value and pushes the result on top of the stack. The return type is the same as the7
operand type.8

Negation of integral values is standard twos complement negation. In particular, negating the most negative9
number (which does not have a positive counterpart) yields the most negative number. To detect this overflow10
use the sub.ovf instruction instead (i.e. subtract from 0).11

Negating a floating-point number cannot overflow; negating NaN returns NaN.12

The acceptable operand types and their corresponding result data types are encapsulated in13
Table 3: Unary Numeric Operations.14

Exceptions:15

None.16

Verifiability:17

See Table 3: Unary Numeric Operations.18
19
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3.51 nop – no operation2

Format Assembly Format Description

00 nop Do nothing
3

Stack Transition:4

…, ! …,5

Description:6

The nop operation does nothing. It is intended to fill in space if bytecodes are patched.7

Exceptions:8

None.9

Verifiability:10

The nop instruction is always verifiable.11
12
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3.52 not - bitwise complement2

Format Assembly Format Description

66 not Bitwise complement
3

Stack Transition:4

…, value ! …, result5

Description:6

Compute the bitwise complement of the integer value on top of the stack and leave the result on top of the7
stack. The return type is the same as the operand type.8

The acceptable operand types and their corresponding result data type is encapsulated in9
Table 5: Integer Operations.10

Exceptions:11

None.12

Verifiability:13

See Table 5: Integer Operations.14
15
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3.53 or - bitwise OR2

Format Instruction Description

60 or Bitwise OR of two integer values, returns an integer.
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The or instruction computes the bitwise OR of the top two values on the stack and leaves the result on the7
stack.8

The acceptable operand types and their corresponding result data type is encapsulated in9
Table 5: Integer Operations.10

Exceptions:11

None.12

Verifiability:13

See Table 5: Integer Operations.14
15
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1

3.54 pop – remove the top element of the stack2

Format Assembly Format Description

26 pop pop a value from the stack
3

Stack Transition:4

…, value ! …5

Description:6

The pop instruction removes the top element from the stack.7

Exceptions:8

None.9

Verifiability:10

No additional requirements.11
12
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1

3.55 rem - compute remainder2

Format Assembly Format Description

5D rem Remainder of dividing value1 by value2
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The acceptable operand types and their corresponding result data type is encapsulated in7
Table 2: Binary Numeric Operations.8

For integer operands9

result = value1 rem value2 satisfies the following conditions:10

result = value1 – value2×(value1 div value2), and11

0 ≤ |result| < |value2|, and12

sign(result) = sign(value1),13

where div is the division instruction, which truncates towards zero.14

The rem instruction computes result and pushes it on the stack.15

For floating-point operands16

rem is defined is defined similarly, except that, if value2 is zero or value1 is infinity the result is NaN. If value217
is infinity, the result is value1 (negated for –infinity). This definition is different from the one for floating-18
point remainder in the IEC 60559:1989 Standard. That Standard specifies that value1 div value2 is the nearest19
integer instead of truncating towards zero. System.Math.IEEERemainder (see Partition IV) provides the IEC20
60559:1989 behavior.21

Exceptions:22

Integral operations throw DivideByZeroException if value2 is zero.23

Integral operations may throw ArithmeticException if value1 is the maximum negative value and value2 is -24
1.25

Example:26
+10 rem +6 is 4 (+10 div +6 = 1)27

+10 rem -6 is 4 (+10 div -6 = -1)28

-10 rem +6 is -4 (-10 div +6 = -1)29

-10 rem -6 is -4 (-10 div -6 = 1)30

For the various floating-point values of 10.0 and 6.0, rem gives the same values; System.Math.IEEERemainder,31
however, gives the following values.32

System.Math.IEEERemainder(+10.0,+6.0) is -2 (+10.0 div +6.0 = 1.666…7)33

System.Math.IEEERemainder(+10.0,-6.0) is -2 (+10.0 div -6.0 = -1.666…7)34

System.Math.IEEERemainder(-10.0,+6.0) is 2 (-10.0 div +6.0 = -1.666…7)35

System.Math.IEEERemainder(-10.0,-6.0) is 2 (-10.0 div -6.0 = 1.666…7)36

Verifiability:37

See Table 2: Binary Numeric Operations.38
39
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1

3.56 rem.un - compute integer remainder, unsigned2

Format Assembly Format Description

5E rem.un Remainder of unsigned dividing value1 by value2
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

result = value1 rem.un value2 satisfies the following conditions:7

result = value1 – value2×(value1 div.un value2), and8

0 ≤ result < value2,9

where div.un is the unsigned division instruction.. The rem.un instruction computes result and pushes it on the10
stack. Rem.un treats its arguments as unsigned integers, while rem treats them as signed integers. Rem.un is11
unspecified for floating-point numbers.12

The acceptable operand types and their corresponding result data type are encapsulated in13
Table 5: Integer Operations.14

Exceptions:15

Integral operations throw DivideByZeroException if value2 is zero.16

Example:17
+5 rem.un +3 is 2 (+5 div.un +3 = 1)18

+5 rem.un -3 is 5 (+5 div.un -3 = 0)19

-5 rem.un +3 is 2 ( -5 div.un +3 = 1431655763 or 0x55555553)20

-5 rem.un -3 is -5 or 0xfffffffb ( -5 div.un -3 = 0)21

Verifiability:22

See Table 5: Integer Operations.23
24
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3.57 ret – return from method2

Format Assembly Format Description

2A Ret Return from method, possibly returning a value
3

Stack Transition:4

retVal on callee evaluation stack (not always present) !5

…, retVal on caller evaluation stack (not always present)6

Description:7

Return from the current method. The return type, if any, of the current method determines the type of value to8
be fetched from the top of the stack and copied onto the stack of the method that called the current method. The9
evaluation stack for the current method must be empty except for the value to be returned.10

The ret instruction cannot be used to transfer control out of a try, filter, catch, or finally block. From11
within a try or catch, use the leave instruction with a destination of a ret instruction that is outside all12
enclosing exception blocks. Because the filter and finally blocks are logically part of exception handling,13
not the method in which their code is embedded, correctly generated CIL does not perform a method return14
from within a filter or finally. See Partition I.15

Exceptions:16

None.17

Verifiability:18

Correct CIL obeys the control constraints describe above. Verification requires that the type of retVal is19
compatible with the declared return type of the current method.20

21
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3.58 shl - shift integer left2

Format Assembly Format Description

62 Shl Shift an integer to the left (shifting in zeros)
3

Stack Transition:4

…, value, shiftAmount ! …, result5

Description:6

The shl instruction shifts value (int32, int64 or native int) left by the number of bits specified by shiftAmount.7
shiftAmount is of type int32, int64 or native int. The return value is unspecified if shiftAmount is greater than or8
equal to the size of value. See Table 15 : Shift Operations for details of which operand types are allowed, and9
their corresponding result type.10

Exceptions:11

None.12

Verifiability:13

See Table 5: Integer Operations.14
15
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3.59 shr - shift integer right2

Format Assembly Format Description

63 Shr Shift an integer right, (shift in sign), return an integer
3

Stack Transition:4

…, value, shiftAmount ! …, result5

Description:6

The shr instruction shifts value (int32, int64 or native int) right by the number of bits specified by shiftAmount.7
shiftAmount is of type int32, int64 or native int. The return value is unspecified if shiftAmount is greater than or8
equal to the width of value. shr replicates the high order bit on each shift, preserving the sign of the original9
value in the result. See Table 15 : Shift Operations for details of which operand types are allowed, and their10
corresponding result type.11

Exceptions:12

None.13

Verifiability:14

See Table 5: Integer Operations.15
16
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1

3.60 shr.un - shift integer right, unsigned2

Format Assembly Format Description

64 shr.un Shift an integer right, (shift in zero), return an integer
3

Stack Transition:4

…, value, shiftAmount ! …, result5

Description:6

The shr.un instruction shifts value (int32, int 64 or native int) right by the number of bits specified by7
shiftAmount. shiftAmount is of type int32 or native int. The return value is unspecified if shiftAmount is greater8
than or equal to the width of value. Shr.un inserts a zero bit on each shift. See Table 15 : Shift Operations for9
details of which operand types are allowed, and their corresponding result type.10

Exceptions:11

None.12

Verifiability:13

See Table 5: Integer Operations.14
15
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3.61 starg.<length> - store a value in an argument slot2

Format Assembly Format Description

FE 0B <unsigned
int16>

starg num Store a value to the argument numbered num

10 <unsigned
int8>

starg.s num Store a value to the argument numbered num, short form

3
Stack Transition:4

… value ! …,5

Description:6

The starg num instruction pops a value from the stack and places it in argument slot num (see Partition I). The7
type of the value must match the type of the argument, as specified in the current method’s signature. The8
starg.s instruction provides an efficient encoding for use with the first 256 arguments.9

For procedures that take a variable argument list, the starg instructions can be used only for the initial fixed10
arguments, not those in the variable part of the signature.11

Storing into arguments that hold an integer value smaller than 4 bytes long truncates the value as it moves from12
the stack to the argument. Floating-point values are rounded from their native size (type F) to the size13
associated with the argument.14

Exceptions:15

None.16

Verifiability:17

Correct CIL requires that num is a valid argument slot.18

Verification also checks that the verification type of value matches the type of the argument, as specified in the19
current method’s signature (verification types are less detailed than CLI types).20

21
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3.62 stind.<type> - store value indirect from stack2

Format Assembly Format Description

52 stind.i1 Store value of type int8 into memory at address

53 stind.i2 Store value of type int16 into memory at address

54 stind.i4 Store value of type int32 into memory at address

55 stind.i8 Store value of type int64 into memory at address

56 stind.r4 Store value of type float32 into memory at address

57 stind.r8 Store value of type float64 into memory at address

DF stind.i Store value of type native int into memory at address

51 stind.ref Store value of type object ref (type O) into memory at address

3
Stack Transition:4

…, addr, val ! …5

Description:6

The stind instruction stores a value val at address addr (an unmanaged pointer, type native int, or managed7
pointer, type &). The address specified by addr must be aligned to the natural size of val or a8
NullReferenceException may occur (but see the unaligned. prefix instruction). The results of all CIL9
instructions that return addresses (e.g. ldloca and ldarga) are safely aligned. For datatypes larger than 1 byte,10
the byte ordering is dependent on the target CPU. Code that depends on byte ordering may not run on all11
platforms.12

Type safe operation requires that the stind instruction be used in a manner consistent with the type of the13
pointer.14

The operation of the stind instruction may be altered by an immediately preceding volatile. or unaligned.15
prefix instruction.16

Exceptions:17

NullReferenceException is thrown if addr is not naturally aligned for the argument type implied by the18
instruction suffix19

Verifiability:20

Correct CIL ensures that addr be a pointer whose type is known and is assignment compatible with that of val.21
22
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3.63 stloc - pop value from stack to local variable2

Format Assembly Format Description

FE 0E <unsigned
int16>

stloc indx Pop value from stack into local variable indx.

13 <unsigned
int8>

stloc.s indx Pop value from stack into local variable indx, short form.

0A stloc.0 Pop value from stack into local variable 0.

0B stloc.1 Pop value from stack into local variable 1.

0C stloc.2 Pop value from stack into local variable 2.

0D stloc.3 Pop value from stack into local variable 3.

3
Stack Transition:4

…, value ! …5

Description:6

The stloc indx instruction pops the top value off the evalution stack and moves it into local variable number7
indx (see Partition I), where local variables are numbered 0 onwards. The type of value must match the type of8
the local variable as specified in the current method’s locals signature. The stloc.0, stloc.1, stloc.2, and9
stloc.3 instructions provide an efficient encoding for the first four local variables; the stloc.s instruction10
provides an efficient encoding for local variables 4 through 255.11

Storing into locals that hold an integer value smaller than 4 bytes long truncates the value as it moves from the12
stack to the local variable. Floating-point values are rounded from their native size (type F) to the size13
associated with the argument.14

Exceptions:15

None.16

Verifiability:17

Correct CIL requires that indx is a valid local index. For the stloc indx instruction, indx must lie in the range 018
to 65534 inclusive (specifically, 65535 is not valid)19

Rationale: The reason for excluding 65535 is pragmatic: likely implementations will use a 2-byte integer to20
track both a local’s index, as well as the total number of locals for a given method. If an index of 65535 had21
been made legal, it would require a wider integer to track the number of locals in such a method.22

Verification also checks that the verification type of value matches the type of the local, as specified in the23
current method’s locals signature.24

25



- 92 -

1

3.64 sub - subtract numeric values2

Format Assembly Format Description

59 sub Subtract value2 from value1, returning a new value
3

Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The sub instruction subtracts value2 from value1 and pushes the result on the stack. Overflow is not detected7
for the integral operations (see sub.ovf); for floating-point operands, sub returns +inf on positive overflow, -8
inf on negative overflow, and zero on floating-point underflow.9

The acceptable operand types and their corresponding result data type is encapsulated in Table 11: Binary10
Numeric Operations.11

Exceptions:12

None.13

Verifiability:14

See Table2: Binary Numeric Operations.15
16
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3.65 sub.ovf.<type> - subtract integer values, checking for overflow2

Format Assembly Format Description

DA sub.ovf Subtract native int from an native int. Signed result must fit in same
size

DB sub.ovf.un Subtract native unsigned int from a native unsigned int. Unsigned
result must fit in same size

3
Stack Transition:4

…, value1, value2 ! …, result5

Description:6

The sub.ovf instruction subtracts value2 from value1 and pushes the result on the stack. The type of the values7
and the return type is specified by the instruction. An exception is thrown if the result does not fit in the result8
type.9

The acceptable operand types and their corresponding result data type is encapsulated in10
Table 7: Overflow Arithmetic Operations.11

Exceptions:12

OverflowException is thrown if the result can not be represented in the result type.13

Verifiability:14

See Table 7: Overflow Arithmetic Operations.15
16
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1

3.66 switch – table switch on value2

Format Assembly Format Description

45 <unsigned int32> <int32>… <int32> switch ( t1, t2 … tn ) jump to one of n values
3

Stack Transition:4

…, value ! …,5

Description:6

The switch instruction implements a jump table. The format of the instruction is an unsigned int327
representing the number of targets N, followed by N int32 values specifying jump targets: these targets are8
represented as offsets (positive or negative) from the beginning of the instruction following this switch9
instruction.10

The switch instruction pops value off the stack and compares it, as an unsigned integer, to N. If value is less11
than N, execution is transferred to the value’th target, where targets are numbered from 0 (ie, a value of 0 takes12
the first target, a value of 1 takes the second target, etc). If value is not less than N, execution continues at the13
next instruction (fall through).14

If the target instruction has one or more prefix codes, control can only be transferred to the first of these15
prefixes.16

Control transfers into and out of try, catch, filter, and finally blocks cannot be performed by this17
instruction. (Such transfers are severely restricted and must use the leave instruction instead; see Partition I for18
details).19

Exceptions:20

None.21

Verifiability:22

Correct CIL obeys the control transfer constraints listed above. In addition, verification requires the type-23
consistency of the stack, locals and arguments for every possible way of reaching all destination instructions.24
See Section 1.5 for more details.25

26
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3.67 xor - bitwise XOR2

Format Assembly Format Description

61 xor Bitwise XOR of integer values, returns an integer
3

Stack Transition:4

..., value1, value2 ! ..., result5

Description:6

The xor instruction computes the bitwise XOR of the top two values on the stack and leaves the result on the7
stack.8

The acceptable operand types and their corresponding result data type is encapsulated in Table 14: Integer9
Operations.10

Exceptions:11

None.12

Verifiability:13

See Table 14: Integer Operations.14
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4 Object Model Instructions1

The instructions described in the base instruction set are independent of the object model being executed. Those2
instructions correspond closely to what would be found on a real CPU. The object model instructions are less3
built-in than the base instructions in the sense that they could be built out of the base instructions and calls to4
the underlying operating system.5

Rationale: The object model instructions provide a common, efficient implementation of a set of services used6
by many (but by no means all) higher-level languages. They embed in their operation a set of conventions7
defined by the common type system. This include (among other things):8

Field layout within an object9

Layout for late bound method calls (vtables)10

Memory allocation and reclamation11

Exception handling12

Boxing and unboxing to convert between reference-based Objects and Value Types13

For more details, see Partition I.14

15

4.1 box – convert value type to object reference16

Format Assembly Format Description

8C <T> box valTypeTok Convert valueType to a true object reference
17

Stack Transition:18

…, valueType ! …, obj19

Description:20

A value type has two separate representations (see Partition I) within the CLI:21

• A ‘raw’ form used when a value type is embedded within another object or on the stack.22

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist23
as an independent entity.24

The box instruction converts the ‘raw’ valueType (an unboxed value type) into an instance of type Object (of25
type O). This is accomplished by creating a new object and copying the data from valueType into the newly26
allocated object. ValTypeTok is a metadata token (a typeref or typedef) indicating the type of valueType (See27
Partition II)28

Exceptions:29

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.30

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to31
native code rather than at runtime.32

Verifiability:33

Correct CIL ensures that valueType is of the correct value type, and that valTypeTok is a typeref or typedef34
metadata token for that value type.35

36
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1

4.2 callvirt – call a method associated, at runtime, with an object2

Format Assembly Format Description

6F <T> callvirt method Call a method associated with obj

3
Stack Transition:4

…, obj, arg1, … argN ! …, returnVal (not always returned)5

Description:6

The callvirt instruction calls a late-bound method on an object. That is, the method is chosen based on the7
runtime type of obj rather than the compile-time class visible in the method metadata token. Callvirt can be8
used to call both virtual and instance methods. See Partition I for a detailed description of the CIL calling9
sequence. The callvirt instruction may be immediately preceded by a tail. prefix to specify that the current10
stack frame should be released before transferring control. If the call would transfer control to a method of11
higher trust than the original method the stack frame will not be released.12

[A callee of “higher trust” is defined as one whose permission grant-set is a strict superset of the grant-set of13
the caller]14

method is a metadata token (a methoddef or methodref; see Partition II) that provides the name, class and15
signature of the method to call. In more detail, callvirt can be thought of as follows. Associated with obj is16
the class of which it is an instance. If obj’s class defines a non-static method that matches the indicated method17
name and signature, this method is called. Otherwise all classes in the superclass chain of obj’s class are18
checked in order. It is an error if no method is found.19

Callvirt pops the object and the arguments off the evaluation stack before calling the method. If the method20
has a return value, it is pushed on the stack upon method completion. On the callee side, the obj parameter is21
accessed as argument 0, arg1 as argument 1 etc.22

The arguments are placed on the stack in left-to-right order. That is, the first argument is computed and placed23
on the stack, then the second argument, etc. The this pointer (always required for callvirt) must be pushed24
before any of the user-visible arguments. The signature carried in the metadata does not contain an entry in the25
parameter list for the this pointer, but uses a bit (called HASTHIS) to indiciate whether the method requires26
passing the this pointer (see Partition II)27

Note that a virtual method may also be called using the call instruction.28

Exceptions:29

MissingMethodException is thrown if a non-static method with the indicated name and signature could not be30
found in obj’s class or any of its superclasses. This is typically detected when CIL is converted to native code,31
rather than at runtime.32

NullReferenceException is thrown if obj is null.33

SecurityException is thrown if system security does not grant the caller access to the called method. The34
security check may occur when the CIL is converted to native code rather than at runtime.35

Verifiability:36

Correct CIL ensures that the destination method exists and the values on the stack correspond to the types of37
the parameters of the method being called.38

In its typical use, callvirt is verifiable if (a) the above restrictions are met, (b) the verification type of obj is39
consistent with the method being called, (c) the verification types of the arguments on the stack are consistent40
with the types expected by the method call, and (d) the method is accessible from the callsite. A callvirt41
annotated by tail. has additional considerations – see Section 1.5.42

43
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4.3 castclass – cast an object to a class2

Format Assembly Format Description

74 <T> castclass class Cast obj to class

3
Stack Transition:4

…, obj ! …, obj25

Description:6

The castclass instruction attempts to cast obj (an O) to the class. Class is a metadata token (a typeref or7
typedef), indicating the desired class. If the class of the object on the top of the stack does not implement class8
(if class is an interface), and is not a subclass of class (if class is a regular class), then an9
InvalidCastException is thrown.10

Note that:11

371. Arrays inherit from System.Array12

372. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]13

373. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E114
and E2 share an underlying type15

If obj is null, castclass succeeds and returns null. This behavior differs from isInst.16

Exceptions:17

InvalidCastException is thrown if obj cannot be cast to class.18

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to19
native code rather than at runtime.20

Verifiability:21

Correct CIL ensures that class is a valid TypeRef or TypeDef token, and that obj is always either null or an22
object reference.23

24
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4.4 cpobj - copy a value type2

Format Assembly Format Description

70 <T> Cpobj classTok Copy a value type from srcValObj to destValObj

3
Stack Transition:4

…, destValObj, srcValObj ! …,5

Description:6

The cpobj instruction copies the value type located at the address specified by srcValObj (an unmanaged7
pointer, native int, or a managed pointer, &) to the address specified by destValObj (also a pointer). Behavior8
is unspecified if srcValObj and dstValObj are not pointers to instances of the class represented by classTok (a9
typeref or typedef), or if classTok does not represent a value type.10

Exceptions:11

NullReferenceException may be thrown if an invalid address is detected.12

Verifiability:13

Correct CIL ensures that classTok is a valid TypeRef or TypeDef token for a value type, as well as that14
srcValObj and destValObj are both pointers to locations of that type.15

Verification requires, in addition, that srcValObj and destValObj are both managed pointers (not unmanaged16
pointers).17

18
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4.5 initobj - init ial ize a value type2

Format Assembly Format Description

FE 15 <T> initobj classTok Initialize a value type
3

Stack Transition:4

…,addrOfValObj ! …,5

Description:6

The initobj instruction initializes all the fields of the object represented by the address addrOfValObj (of type7
native int, or &) to null or a 0 of the appropriate built-in type. After this method is called, the instance is8
ready for the constructor method to be called. Behavior is unspecified if either addrOfValObj is not a pointer to9
an instance of the class represented by classTok (a typeref or typedef; see Partition II), or classTok does not10
represent a value type.11

Notice that, unlike newobj, the constructor method is not called by initobj. Initobj is intended for initializing12
value types, while newobj is used to allocate and initialize objects.13

Exceptions:14

None.15

Verifiability:16

Correct CIL ensures that classTok is a valid typeref or typedef token specifying a value type, and that valObj17
is a managed pointer to an instance of that value type.18

19
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4.6 isinst – test if an object is an instance of a class or interface2

Format Assembly Format Description

75 <T> isinst class test if obj is an instance of class, returning NULL or an instance of
that class or interface

3
Stack Transition:4

…, obj ! …, result5

Description:6

The isinst instruction tests whether obj (type O) is an instance of class. Class is a metadata token (a typeref7
or typedef see Partition II) indicating the desired class. If the class of the object on the top of the stack8
implements class (if class is an interface) or is a subclass of class (if class is a regular class), then it is cast to9
the type class and the result is pushed on the stack, exactly as though castclass had been called. Otherwise10
NULL is pushed on the stack. If obj is NULL, isinst returns NULL.11

Note that:12

374. Arrays inherit from System.Array13

375. If Foo can be cast to Bar, then Foo[] can be cast to Bar[]14

376. For the purposes of 2., enums are treated as their undertlying type: thus E1[] can cast to E2[] if E115
and E2 share an underlying type16

Exceptions:17

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to18
native code rather than at runtime.19

Verifiability:20

Correct CIL ensures that class is a valid typeref or typedef token indicating a class, and that obj is always21
either null or an object reference22

23
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4.7 ldelem.<type> – load an element of an array2

Format Assembly Format Description

90 ldelem.i1 Load the element with type int8 at index onto the top of the stack as
an int32

92 ldelem.i2 Load the element with type int16 at index onto the top of the stack
as an int32

94 ldelem.i4 Load the element with type int32 at index onto the top of the stack
as an int32

96 ldelem.i8 Load the element with type int64 at index onto the top of the stack
as an int64

91 ldelem.u1 Load the element with type unsigned int8 at index onto the top of
the stack as an int32

93 ldelem.u2 Load the element with type unsigned int16 at index onto the top of
the stack as an int32

95 ldelem.u4 Load the element with type unsigned int32 at index onto the top of
the stack as an int32

96 ldelem.u8 Load the element with type unsigned int64 at index onto the top of
the stack as an int64 (alias for ldelem.i8)

98 ldelem.r4 Load the element with type float32 at index onto the top of the
stack as an F

99 ldelem.r8 Load the element with type float64 at index onto the top of the
stack as an F

97 ldelem.i Load the element with type native int at index onto the top of the
stack as an native int

9A ldelem.ref Load the element of type object, at index onto the top of the stack as
an O

3
Stack Transition:4

…, array, index ! …, value5

Description:6

The ldelem instruction loads the value of the element with index index (of type int32 or native int) in the7
zero-based one-dimensional array array and places it on the top of the stack. Arrays are objects and hence8
represented by a value of type O. The return value is indicated by the instruction.9

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a10
Get method.11

Note that integer values of less than 4 bytes are extended to int32 (not native int) when they are loaded onto12
the evaluation stack. Floating-point values are converted to F type when loaded onto the evaluation stack.13

Exceptions:14

NullReferenceException is thrown if array is null.15

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.16

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.17
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Verifiability:1

Correct CIL code requires that array is either null or a zero-based, one-dimensional array whose declared2
element type matches exactly the type for this particular instruction suffix (eg ldelem.r4 can only be applied3
to a zero-based, one dimensional array of float32’s)4

5
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4.8 ldelema – load address of an element of an array2

Format Assembly Format Description

8F <T> ldelema class Load the address of element at index onto the top of the stack
3

Stack Transition:4

…, array, index ! …, address5

Description:6

The ldelema instruction loads the address of the element with index index (of type int32 or native int) in the7
zero-based one-dimensional array array (of element type class) and places it on the top of the stack. Arrays are8
objects and hence represented by a value of type O. The return address is a managed pointer (type &).9

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a10
Address method.11

Exceptions:12

NullReferenceException is thrown if array is null.13

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.14

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.15

Verifiability:16

Correct CIL ensures that class is a typeref or typedef token to a class, and that array is indeed always either17
null or a zero-based, one-dimensional array whose declared element type matches class exactly.18

19
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4.9 ldfld – load field of an object2

Format Assembly Format Description

7B <T> ldfld field Push the value of field of object, or value type, obj, onto the stack
3

Stack Transition:4

…, obj ! …, value5

Description:6

The ldfld instruction pushes onto the stack the value of a field of obj. obj must be an object (type O), a7
managed pointer (type &), an unmanaged pointer (type native int), or an instance of a value type. The use of8
an unmanaged pointer is not permitted in verifiable code. field is a metadata token (a fieldref or fielddef9
see Partition II) that must refer to a field member. The return type is that associated with field. ldfld pops the10
object reference off the stack and pushes the value for the field in its place. The field may be either an instance11
field (in which case obj must not be null) or a static field.12

The ldfld instruction may be preceded by either or both of the unaligned. and volatile. prefixes.13

Exceptions:14

NullReferenceException is thrown if obj is null and the field is not static.15

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is16
converted to native code, not at runtime.17

Verifiability:18

Correct CIL ensures that field is a valid token referring to a field, and that obj will always have a type19
compatible with that required for the lookup being performed. For verifiable code, obj may not be an20
unmanaged pointer.21

22
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4.10 ldflda – load field address2

Format Assembly Format Description

7C <T> ldflda field Push the address of field of object obj on the stack
3

Stack Transition:4

…, obj ! …, address5

Description:6

The ldflda instruction pushes the address of a field of obj. obj is either an object, type O, a managed pointer,7
type &, or an unmanaged pointer, type native int. The use of an unmanaged pointer is not allowed in8
verifiable code. The value returned by ldflda is a managed pointer (type &) unless obj is an unmanaged9
pointer, in which case it is an unmanaged pointer (type native int).10

field is a metadata token (a fieldref or fielddef; see Partition II) that must refer to a field member. The field11
may be either an instance field (in which case obj must not be null) or a static field.12

Exceptions:13

InvalidOperationException is thrown if the obj is not within the application domain from which it is being14
accessed. The address of a field that is not inside the accessing application domain cannot be loaded.15

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is16
converted to native code, not at runtime.17

NullReferenceException is thrown if obj is null and the field isn’t static.18

Verifiability:19

Correct CIL ensures that field is a valid fieldref token and that obj will always have a type compatible with20
that required for the lookup being performed.21

Note: Using ldflda to compute the address of a static, init-only field and then using the resulting pointer to22
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot,23
however, compromise memory integrity or type safety so it is not tested by verification.24

25
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4.11 ldlen – load the length of an array2

Format Assembly Format Description

8E ldlen push the length (of type native unsigned int) of array on the stack
3

Stack Transition:4

…, array ! …, length5

Description:6

The ldlen instruction pushes the number of elements of array (a zero-based, one-dimensional array) on the7
stack.8

Arrays are objects and hence represented by a value of type O. The return value is a native unsigned int.9

Exceptions:10

NullReferenceException is thrown if array is null.11

Verifiability:12

Correct CIL ensures that array is indeed always either null or a zero-based, one dimensional array.13
14
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4.12 ldobj - copy value type to the stack2

Format Assembly Format Description

71 <T> ldobj classTok Copy instance of value type classTok to the stack.
3

Stack Transition:4

…, addrOfValObj ! …, valObj5

Description:6

The ldobj instruction copies the value pointed to by addrOfValObj (of type managed pointer, &, or unmanaged7
pointer, native unsigned int) to the top of the stack. The number of bytes copied depends on the size of the8
class represented by classTok. ClassTok is a metadata token (a typeref or typedef; see Partition II)9
representing a value type.10

Rationale: The ldobj instruction is used to pass a value type as a parameter. See Partition I.11

It is unspecified what happens if addrOfValObj is not an instance of the class represented by ClassTok or if12
ClassTok does not represent a value type.13

The operation of the ldobj instruction may be altered by an immediately preceding volatile. or unaligned.14
prefix instruction.15

Exceptions:16

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to17
native code rather than at runtime.18

Verifiability:19

Correct CIL ensures that classTok is a metadata token representing a value type and that addrOfValObj is a20
pointer to a location containing a value of the type specified by classTok. Verifiable code additionally requires21
that addrOfValObj is a managed pointer of a matching type.22

23
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4.13 ldsfld – load static field of a class2

Format Assembly Format Description

7E <T> ldsfld field Push the value of field on the stack
3

Stack Transition:4

…, ! …, value5

Description:6

The ldsfld instruction pushes the value of a static (shared among all instances of a class) field on the stack.7
field is a metadata token (a fieldref or fielddef; see Partition II) referring to a static field member. The8
return type is that associated with field.9

The ldsfld instruction may have a volatile. prefix.10

Exceptions:11

None.12

Verifiability:13

Correct CIL ensures that field is a valid metadata token referring to a static field member.14
15
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4.14 ldsflda – load static field address2

Format Assembly Format Description

7F <T> ldsflda field Push the address of the static field, field, on the stack
3

Stack Transition:4

…, ! …, address5

Description:6

The ldsflda instruction pushes the address (a managed pointer, type &, if field refers to a type whose memory7
is managed; otherwise an unmanaged pointer, type native int) of a static field on the stack. field is a metadata8
token (a fieldref or fielddef; see Partition II) referring to a static field member. (Note that field may be a9
static global with assigned RVA, in which case its memory is unmanaged; where RVA stands for Relative10
Virtual Address, the offset of the field from the base address at which its containing PE file is loaded into11
memory)12

Exceptions:13

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is14
converted to native code, not at runtime.15

Verifiability:16

Correct CIL ensures that field is a valid metadata token referring to a static field member if field refers to a type17
whose memory is managed.18

Note: Using ldsflda to compute the address of a static, init-only field and then using the resulting pointer to19
modify that value outside the body of the class initializer may lead to unpredictable behavior. It cannot,20
however, compromise memory integrity or type safety so it is not tested by verification.21

22
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4.15 ldstr – load a literal string2

Format Assembly Format Description

72 <T> ldstr string push a string object for the literal string

3
Stack Transition:4

…, ! …, string5

Description:6

The ldstr instruction pushes a new string object representing the literal stored in the metadata as string (that7
must be a string literal).8

The ldstr instruction allocates memory and performs any format conversion required to convert from the form9
used in the file to the string format required at runtime. The CLI guarantees that the result of two ldstr10
instructions referring to two metadata tokens that have the same sequence of characters return precisely the11
same string object (a process known as “string interning”).12

Exceptions:13

None.14

Verifiability:15

Correct CIL requires that mdToken is a valid string literal metadata token.16
17
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4.16 ldtoken - load the runtime representation of a metadata token2

Format Assembly Format Description

D0 <T> ldtoken token Convert metadata token to its runtime representation
3

Stack Transition:4

… ! …, RuntimeHandle5

Description:6

The ldtoken instruction pushes a RuntimeHandle for the specified metadata token. The token must be one of:7

A methoddef or methodref : pushes a RuntimeMethodHandle8

A typedef or typeref : pushes a RuntimeTypeHandle9

A fielddef or fieldref : pushes a RuntimeFieldHandle10

The value pushed on the stack can be used in calls to Reflection methods in the system class library11

Exceptions:12

None.13

Verifiability:14

Correct CIL requires that token describes a valid metadata token.15
16
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4.17 ldvirtftn - load a virtual method pointer2

Format Assembly Format Description

FE 07 <T> ldvirtftn mthd Push address of virtual method mthd on the stack
3

Stack Transition:4

… object ! …, ftn5

Description:6

The ldvirtftn instruction pushes an unmanaged pointer (type native int) to the native code implementing7
the virtual method associated with object and described by the method reference mthd (a metadata token, either8
a methoddef or methodref; see Partition II) onto the stack. The value pushed can be called using the calli9
instruction if it references a managed method (or a stub that transitions from managed to unmanaged code).10

The value returned points to native code using the calling convention specified by mthd. Thus a method pointer11
can be passed to unmanaged native code (e.g. as a callback routine) if that routine expects the corresponding12
calling convention. Note that the address computed by this instruction may be to a thunk produced specially for13
this purpose (for example, to re-enter the CLI when a native version of the method isn’t available)14

Exceptions:15

None.16

Verifiability:17

Correct CIL ensures that mthd is a valid methoddef or methodref token. Also that mthd references a non-static18
method that is defined for object. Verification tracks the type of the value pushed in more detail than the19
“native int” type, remembering that it is a method pointer. Such a method pointer can then be used in verified20
code with calli or to construct a delegate.21

22
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4.18 mkrefany – push a typed reference on the stack2

Format Assembly Format Description

C6 <T> mkrefany class push a typed reference to ptr of type class onto the stack
3

Stack Transition:4

…, ptr ! …, typedRef5

Description:6

The mkrefany instruction supports the passing of dynamically typed references. Ptr must be a pointer (type &,7
or native int) that holds the address of a piece of data. Class is the class token (a typeref or typedef; see8
Partition II) describing the type of ptr. Mkrefany pushes a typed reference on the stack, that is an opaque9
descriptor of ptr and class. The only legal operation on a typed reference on the stack is to pass it to a method10
that requires a typed reference as a parameter. The callee can then use the refanytype and refanyval11
instructions to retrieve the type (class) and address (ptr) respectively.12

Exceptions:13

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to14
native code rather than at runtime.15

Verifiability:16

Correct CIL ensures that class is a valid typeref or typedef token describing some type and that ptr is a17
pointer to exactly that type. Verification additionally requires that ptr be a managed pointer. Verification will18
fail if it cannot deduce that ptr is a pointer to an instance of class.19

20
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4.19 newarr – create a zero-based, one-dimensional array2

Format Assembly Format Description

8D <T> newarr etype create a new array with elements of type etype

3
Stack Transition:4

…, numElems ! …, array5

Description:6

The newarr instruction pushes a reference to a new zero-based, one-dimensional array whose elements are of7
type elemtype, a metadata token (a typeref or typedef; see Partition II). numElems (of type native int)8
specifies the number of elements in the array. Valid array indexes are 0 ≤ index < numElems. The elements of9
an array can be any type, including value types.10

Zero-based, one-dimensional arrays of numbers are created using a metadata token referencing the appropriate11
value type (System.Int32, etc.). Elements of the array are initialized to 0 of the appropriate type.12

One-dimensional arrays that aren’t zero-based and multidimensional arrays are created using newobj rather13
than newarr. More commonly, they are created using the methods of System.Array class in the Base14
Framework.15

Exceptions:16

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.17

OverflowException is thrown if numElems is < 018

Verifiability:19

Correct CIL ensures that etype is a valid typeref or typedef token.20
21
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4.20 newobj – create a new object2

Format Assembly Format Description

73 <T> newobj ctor allocate an uninitialized object or value type and call ctor

3
Stack Transition:4

…, arg1, … argN ! …, obj5

Description:6

The newobj instruction creates a new object or a new instance of a value type. Ctor is a metadata token (a7
methodref or methodef that must be marked as a constructor; see Partition II) that indicates the name, class and8
signature of the constructor to call. If a constructor exactly matching the indicated name, class and signature9
cannot be found, MissingMethodException is thrown.10

The newobj instruction allocates a new instance of the class associated with constructor and initializes all the11
fields in the new instance to 0 (of the proper type) or null as appropriate. It then calls the constructor with the12
given arguments along with the newly created instance. After the constructor has been called, the now13
initialized object reference is pushed on the stack.14

From the constructor’s point of view, the uninitialized object is argument 0 and the other arguments passed to15
newobj follow in order.16

All zero-based, one-dimensional arrays are created using newarr, not newobj. On the other hand, all other17
arrays (more than one dimension, or one-dimensional but not zero-based) are created using newobj.18

Value types are not usually created using newobj. They are usually allocated either as arguments or local19
variables, using newarr (for zero-based, one-dimensional arrays), or as fields of objects. Once allocated, they20
are initialized using initobj. However, the newobj instruction can be used to create a new instance of a value21
type on the stack, that can then be passed as an argument, stored in a local, etc.22

Exceptions:23

OutOfMemoryException is thrown if there is insufficient memory to satisfy the request.24

MissingMethodException is thrown if a constructor method with the indicated name, class and signature could25
not be found. This is typically detected when CIL is converted to native code, rather than at runtime.26

Verifiability:27

Correct CIL ensures that constructor is a valid methodref or methoddef token, and that the arguments on the28
stack are compatible with those expected by the constructor. Verification considers a delegate constructor as a29
special case, checking that the method pointer passed in as the second argument, of type native int, does30
indeed refer to a method of the correct type.31

32
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4.21 refanytype – load the type out of a typed reference2

Format Assembly Format Description

FE 1D Refanytype Push the type token stored in a typed reference
3

Stack Transition:4

…, TypedRef ! …, type5

Description:6

Retrieves the type token embedded in TypedRef. See the mkrefany instruction.7

Exceptions:8

None.9

Verifiability:10

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). The11
refanytype instruction is always verifiable.12

13
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4.22 refanyval – load the address out of a typed reference2

Format Assembly Format Description

C2 <T> refanyval type Push the address stored in a typed reference
3

Stack Transition:4

…, TypedRef ! …, address5

Description:6

Retrieves the address (of type &) embedded in TypedRef. The type of reference in TypedRef must match the7
type specified by type (a metadata token, either a typedef or a typeref; see Partition II). See the mkrefany8
instruction.9

Exceptions:10

InvalidCastException is thrown if type is not identical to the type stored in the TypedRef (ie, the class11
supplied to the mkrefany instruction that constructed that TypedRef)12

TypeLoadException is thrown if type cannot be found.13

Verifiability:14

Correct CIL ensures that TypedRef is a valid typed reference (created by a previous call to mkrefany). The15
refanyval instruction is always verifiable.16

17
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4.23 rethrow – rethrow the current exception2

Format Assembly Format Description

FE 1A rethrow Rethrow the current exception
3

Stack Transition:4

…, ! …,5

Description:6

The rethrow instruction is only permitted within the body of a catch handler (see Partition I). It throws the7
same exception that was caught by this handler.8

Exceptions:9

The original exception is thrown.10

Verifiability:11

Correct CIL uses this instruction only within the body of a catch handler (not of any exception handlers12
embedded within that catch handler). If a rethrow occurs elsewhere, then an exception will be thrown, but13
precisely which exception is undefined14

15
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4.24 sizeof – load the size in bytes of a value type2

Format Assembly Format Description

FE 1C <T> sizeof valueType Push the size, in bytes, of a value type as a unsigned int32

3
Stack Transition:4

…, ! …, size (4 bytes, unsigned)5

Description:6

Returns the size, in bytes, of a value type. ValueType must be a metadata token (a typeref or typedef; see7
Partition II) that specifies a value type.8

Rationale: The definition of a value type can change between the time the CIL is generated and the time that it9
is loaded for execution. Thus, the size of the type is not always known when the CIL is generated. The sizeof10
instruction allows CIL code to determine the size at runtime without the need to call into the Framework class11
library. The computation can occur entirely at runtime or at CIL-to-native-code compilation time. sizeof12
returns the total size that would be occupied by each element in an array of this value type – including any13
padding the implementation chooses to add. Specifically, array elements lie sizeof bytes apart14

Exceptions:15

None.16

Verifiability:17

Correct CIL ensures that valueType is a typeref or typedef referring to a value type. It is always verificable.18
19
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1

4.25 stelem.<type> – store an element of an array2

Format Assembly Format Description

9C stelem.i1 Replace array element at index with the int8 value on the stack

9D stelem.i2 Replace array element at index with the int16 value on the stack

9E stelem.i4 Replace array element at index with the int32 value on the stack

9F stelem.i8 Replace array element at index with the int64 value on the stack

A0 stelem.r4 Replace array element at index with the float32 value on the stack

A1 stelem.r8 Replace array element at index with the float64 value on the stack

9B stelem.i Replace array element at index with the i value on the stack

A2 stelem.ref Replace array element at index with the ref value on the stack

3
Stack Transition:4

…, array, index, value ! …,5

Description:6

The stelem instruction replaces the value of the element with zero-based index index (of type int32 or native7
int) in the one-dimensional array array with value. Arrays are objects and hence represented by a value of type8
O.9

Note that stelem.ref implicitly casts value to the element type of array before assigning the value to the array10
element. This cast can fail, even for verified code. Thus the stelem.ref instruction may throw the11
InvalidCastException.12

For one-dimensional arrays that aren’t zero-based and for multidimensional arrays, the array class provides a13
StoreElement method.14

Exceptions:15

NullReferenceException is thrown if array is null.16

IndexOutOfRangeException is thrown if index is negative, or larger than the bound of array.17

ArrayTypeMismatchException is thrown if array doesn’t hold elements of the required type.18

Verifiability:19

Correct CIL requires that array be a zero-based, one-dimensional array whose declared element type matches20
exactly the type for this particular instruction suffix (eg stelem.r4 can only be applied to a zero-based, one21
dimensional array of float32’s); also that index lies within the bounds of array22

23
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1

4.26 stfld – store into a field of an object2

Format Assembly Format Description

7D <T> stfld field Replace the value of field of the object obj with val

3
Stack Transition:4

…, obj, value ! …,5

Description:6

The stfld instruction replaces the value of a field of an obj (an O) or via a pointer (type native int, or &)7
with value. field is a metadata token (a fieldref or fielddef; see Partition II) that refers to a field member8
reference. stfld pops the value and the object reference off the stack and updates the object.9

The stfld instruction may have a prefix of either or both of unaligned. and volatile..10

Exceptions:11

NullReferenceException is thrown if obj is null and the field isn’t static.12

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is13
converted to native code, not at runtime.14

Verifiability:15

Correct CIL ensures that field is a valid token referring to a field, and that obj and value will always have types16
appropriate for the assignment being performed. For verifiable code, obj may not be an unmanaged pointer.17

Note: Using stfld to change the value of a static, init-only field outside the body of the class initializer may18
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not19
tested by verification .20

21
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1

4.27 stobj - store a value type from the stack into memory2

Format Assembly Format Description

81 <T> stobj classTok Store a value of type classTok from the stack into memory
3

Stack Transition:4

…, addr, valObj ! …,5

Description:6

The stobj instruction copies the value type valObj into the address specified by addr (a pointer of type native7
int, or &). The number of bytes copied depends on the size of the class represented by classTok. ClassTok is a8
metadata token (a typeref or typedef; see Partition II) representing a value type.9

It is unspecified what happens if valObj is not an instance of the class represented by ClassTok or if classTok10
does not represent a value type.11

The operation of the stobj instruction may be altered by an immediately preceding volatile. or unaligned.12
prefix instruction.13

Exceptions:14

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to15
native code rather than at runtime.16

Verifiability:17

Correct CIL ensures that classTok is a metadata token representing a value type and that valObj is a pointer to18
a location containing an initialized value of the type specified by classTok. In addition, verifiable code requires19
that valObj be a managed pointer.20

21
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1

4.28 stsfld – store a static field of a class2

Format Assembly Format Description

80 <T> stsfld field Replace the value of field with val

3
Stack Transition:4

…, val ! …,5

Description:6

The stsfld instruction replaces the value of a static field with a value from the stack. field is a metadata token7
(a fieldref or fielddef; see Partition II) that must refer to a static field member. Stsfld pops the value off8
the stack and updates the static field with that value.9

The stsfld instruction may be prefixed by volatile..10

Exceptions:11

MissingFieldException is thrown if field is not found in the metadata. This is typically checked when CIL is12
converted to native code, not at runtime.13

Verifiability:14

Correct CIL ensures that field is a valid token referring to a static field, and that value will always have a type15
appropriate for the assignment being performed.16

Note: Using stsfld to change the value of a static, init-only field outside the body of the class initializer may17
lead to unpredictable behavior. It cannot, however, compromise memory integrity or type safety so it is not18
tested by verification.19

20
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1

4.29 throw – throw an exception2

Format Assembly Format Description

7A throw Throw an exception
3

Stack Transition:4

…, object ! …,5

Description:6

The throw instruction throws the exception object (type O) on the stack. For details of the exception7
mechanism, see Partition I.8

Note: While the CLI permits any object to be thrown, the common language specification (CLS) describes a9
specific exception class that must be used for language interoperability.10

Exceptions:11

NullReferenceException is thrown if obj is null.12

Verifiability:13

Correct CIL ensures that class a valid TypeRef token indicating a class, and that obj is always either null or an14
object reference, i.e. of type O.15

16
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1

4.30 unbox – Convert boxed value type to its raw form2

Format Assembly Format Description

79 <T> unbox valuetype Extract the value type data from obj, its boxed representation
3

Stack Transition:4

…, obj ! …, valueTypePtr5

Description:6

A value type has two separate representations (see Partition I) within the CLI:7

• A ‘raw’ form used when a value type is embedded within another object.8

• A ‘boxed’ form, where the data in the value type is wrapped (boxed) into an object so it can exist9
as an independent entity.10

The unbox instruction converts obj (of type O), the boxed representation of a value type, to valueTypePtr (a11
managed pointer, type &), its unboxed form. Valuetype is a metadata token (a typeref or typedef) indicating12
the type of value type contained within obj. If obj is not a boxed instance of valuetype, or, if obj is a boxed13
enum and valuetype is not its underlying type, then this instruction will throw an InvalidCastException14

Unlike box, which is required to make a copy of a value type for use in the object, unbox is not required to copy15
the value type from the object. Typically it simply computes the address of the value type that is already16
present inside of the boxed object.17

Exceptions:18

InvalidCastException is thrown if obj is not a boxed valuetype (or if obj is a boxed enum and valuetype is not19
its underlying type)20

NullReferenceException is thrown if obj is null.21

TypeLoadException is thrown if class cannot be found. This is typically detected when CIL is converted to22
native code rather than at runtime.23

Verifiability:24

Correct CIL ensures that valueType is a typeref or typedef metadata token for some value type, and that obj is25
always an object reference, i.e. of type O, and represents a boxed instance of a valuetype value type.26

27
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1 Overview1

Note:2

While compiler writers are most concerned with issues of file format, instruction set design, and a common3
type system, application programmers are most interested in the programming library that is available to them4
in the language they are using. The Common Language Infrastructure (CLI) specifies a Common Language5
Specification (CLS, see Partition I) that shall be used to define the externally visible aspects (method6
signatures, etc.) when they are intended to be used from a wide range of programming languages. Since it is the7
goal of the CLI Libraries to be available from as many programming languages as possible, all of its8
functionality is available through CLS-compliant types and type members.9

The CLI Libraries are designed with the following goals in mind:10

• Wide reach across programming languages11

• Consistent design patterns throughout12

• Features on parity with the ISO C library of 199013

• Features for more recent programming paradigms, notably networking, XML, runtime type14
inspection, instance creation, and dynamic method dispatch15

• Factoring into self-consistent libraries with minimal interdependence16

This document provides an overview of the CLI Libraries and a specification of their factoring into Profiles and17
Libraries. A companion document, considered to be part of this Partition but distributed in XML format,18
provides details of each class, value type, and interface in the CLI Libraries. While the normative specification19
of the CLI Libraries is in XML form, it can be processed using an XSL transform to produce easily browsed20
information about the Class Libraries21

Partition V contains an informative annex describing programming conventions used in defining the CLI22
Libraries. These conventions, while not normative, can significantly simplify the use of libraries. Implementers23
are encouraged to follow them when creating additional (non-Standard) Libraries.24
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2 Libraries and Profiles1

Libraries and Profiles, defined below, are constructs created for the purpose of standards2
conformance/compliance. They specify a set of features that shall be present in an implementation of the3
Common Language Infrastructure (CLI) and a set of types that shall be available to programs run by that CLI.4

Note: There need not be any direct support for Libraries and Profiles in the Virtual Execution System (VES).5
They are not represented in the metadata and they have no impact on the structure or performance of an6
implementation of the CLI. Libraries and Profiles may span assemblies (the deployment unit), and the names of7
types in a single Library or Profile are not required to have a common prefix (“namespace”).8

There is, in general, no way to test whether a feature is available at runtime, nor a way to enquire whether a9
particular Profile or Library is available. If present, however, the Reflection Library makes it possible to test at10
runtime for the existence of particular methods and types.11

2.1 Libraries12

A Library specifies three things:13

377. A set of types that shall be available, including their grouping into assemblies.14

378. A set of features of the CLI that shall be available.15

Note: The set of features required for any particular Library is a subset of the complete set of CLI16
features. Each Library described in Chapter 5 has text that defines what CLI features are required17
for implementations that support the Library.18

379. Modifications to types defined in other Libraries. These modifications are typically the addition19
of methods and interfaces to types belonging to the other Library, and additional exceptions that20
may be thrown by methods of the other Library’s types. These modifications shall provide only21
additional functionality or specify behavior where it was previously unspecified; they shall not be22
used to alter previously specified behavior.23

Example (informative): Consider the Extended Numerics Library. Since24
it provides a new base data type, Double, it also specifies that the25
method ToDouble be added to the System.Convert class that is part of the26
Base Class Library. It also defines a new exception,27
System.NotFiniteNumberException, and specifies existing methods in other28
Libraries methods that throw it (as it happens, there are no such29
methods).30

In the XML specification of the Libraries, each type specifies the Library to which it belongs. For those31
members (e.g., Console.WriteLine(float)) that are part of one Library (Extended Numerics) but whose type32
is in another Library (BCL), the XML specifies the Library that defines the method. See Chapter 7.33

2.2 Profiles34

A Profile is simply a set of Libraries, grouped together to form a consistent whole that provides a fixed level of35
functionality. A conforming implementation of the CLI shall specify a Profile it implements, as well as any36
additional Libraries that it provides. The Kernel Profile (see Section 0) shall be included in all conforming37
implementations of the CLI. Thus, all Libraries and CLI features that are part of the Kernel Profile are available38
in all conforming implementations. This minimal feature set is described in Chapter 0.39

Rationale: The rules for combining Libraries together are complex, since each Library may add members to40
types defined in other libraries. By standardizing a small number of Profiles we specify completely the41
interaction of the Libraries that are part of each Profile. A Profile provides a consistent target for vendors of42
devices, compilers, tools, and applications. Each Profile specifies a trade-off of CLI feature and43
implementation complexity against resource constraints. By defining a very small number of Profiles we44
increase the market for each Profile, making each a desirable target for a class of applications across a wide45
range of implementations and tool sets.46
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2.3 Structure of the Standard1

This standard specifies two Standard Profiles (see Chapter 0) and 7 Standard Libraries (see Chapter 5). The2
following diagram shows the relationship between the Libraries and the Profiles:3
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4

The Extended Array Library and the Extended Numerics Library are not part of either Profile, but may be5
combined with either of them. Doing so adds the appropriate methods, exceptions, and interfaces to the types6
specified in the Profile.7
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3 The Standard Profiles1

There are two Standard Profiles. The smallest conforming implementation of the CLI is the Kernel Profile,2
while the Compact Profile contains additional features useful for applications targeting a more resource-rich set3
of devices.4

A conforming implementation of the CLI shall throw an appropriate exception (for example, System.Not-5
ImplementedException, System.MissingMethodException, or System.ExecutionEngineException) when it6
encounters a feature specified in this Standard but not supported by the particular Profile (see Partition III).7

Note: Implementers should consider providing tools that statically detect features they do not support so users8
have an option of checking programs for the presence of such features before running them.9

Note: Vendors of compliant CLI implementations should specify exactly which configurations of Standard10
Libraries and Standard Profiles they support.11

Note: “Features” may be something like the use of a floating point CIL instruction in the implementation of a12
method when the CLI upon which it is running does not support the Extended Numerics Library. Or, the13
“feature” might be a call to a method that this Standard specifies exists only when a particular Library is14
implemented and yet the code making the call is running on an implementation of the CLI that does not support15
that particular library.16

3.1 The Kernel Profi le17

This profile is the minimal possible conforming implementation of the CLI. It contains the types commonly18
found in a modern programming language class library plus the classes needed by compilers targeting the CLI.19

Contents: Base Class Library, Runtime Infrastructure Library20

3.2 The Compact Profi le21

This Profile is designed to allow implementation on devices with only modest amounts of physical memory yet22
provides more functionality than the Kernel Profile alone. It also contains everything required to implement the23
ECMAScript compact profile proposed within Standard ECMA-327.24

Contents: Kernel Profile, XML Library, Networking Library, Reflection Library25
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4 Kernel Profile Feature Requirements1

All conforming implementations of the CLI support at least the Kernel Profile and consequently all CLI2
features required by the Kernel Profile must be implemented by all conforming implementations. This section3
defines that minimal feature set by enumerating the set of features that are not required, i.e., a minimal4
conforming implementation must implement all CLI features except those specified in the remainder of this5
section. The feature requirements of individual Libraries as specified in Chapter 5 are defined by reference to6
restricted items described in this section. For ease of reference, each feature has a name indicated by the name7
of the section heading. Where Libraries do not specify any additional feature requirement, it shall be assumed8
that only the features of the Kernel Profile as described in this Section are required.9

4.1 Features Excluded from Kernel Profile10

The following internal data types and constructs, specified elsewhere in this Standard, are not required of CLI11
implementations that conform only to the Kernel Profile. All other CLI features are required.12

4.1 .1 Float ing Point13

The floating point feature set consists of the user-visible floating-point data types float32 and float64, and14
support for an internal representation of floating-point numbers.15

If omitted: The CIL instructions that deal specifically with these data types throw the16
System.NotImplementedException exception. These instructions are: ckfinite, conv.r.un, conv.r4,17
conv.r8, ldc.r4, ldc.r8, ldelem.r4, ldelem.r8, ldind.r4, ldind.r8, stelem.r4, stelem.r8, stind.r4,18
stind.r8. Any attempt to reference a signature including the floating-point data types shall throw the19
System.NotImplementedException exception. The precise timing of the exception is not specified.20

Note: These restrictions guarantee that the VES will not encounter any floating-point data. Hence the21
implementation of the arithmetic instructions (add, etc.) need not handle those types.22

Part of Library: Extended Numerics (see Section 5.6)23

4.1 .2 Non-vector Arrays24

The non-vector arrays feature set includes the support for arrays with more than one dimension or with lower25
bounds other than zero. This includes support for signatures referencing such arrays, runtime representations of26
such arrays, and marshalling of such arrays to and from native data types.27

If omitted: Any attempt to reference a signature including a non-vector array shall throw the28
System.NotImplementedException exception. The precise timing of the exception is not specified.29

Note: The generic type System.Array is part of the Kernel Profile and is available in all conforming30
implementations of the CLI. An implementation that does not provide the non-vector array feature set can31
correctly assume that all instances of that class are vectors.32

Part of Library: Extended Arrays (see Section 5.7).33

4.1 .3 Reflect ion34

The reflection feature set supports full reflection on data types. All of its functionality is exposed through35
methods in the Reflection Library.36

If omitted: The Kernel profile specifies an opaque type, System.Type, instances of which uniquely represent37
any type in the system and provide access to the name of the type.38

Note: With just the Kernel profile there is no requirement, for example, to determine the members of the type,39
dynamically create instances of the type, or invoke methods of the type given an instance of System.Type. This40
can simplify the implementation of the CLI compared to that required when the Reflection Library is available.41

Part of Library: Reflection (see Section 0).42
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4.1 .4 Applicat ion Domains1

The application domain feature set supports multiple application domains. The Kernel profile requires that a2
single application domain exist.3

If omitted: Methods for creating application domains (part of the Base Class Library, see Section 5.2) throw4
the System.NotImplementedException exception.5

Part of Library: (none)6

4.1 .5 Remoting7

The remoting feature set supports remote method invocation. It is provided primarily through special8
semantics of the class System.MarshalByRefObject as described in Partition I.9

If omitted: The class System.MarshalByRefObject shall be treated as a simple class with no special meaning.10

Part of Library: (none)11

4.1 .6 Varargs12

The varargs feature set supports variable length argument lists and runtime typed pointers.13

If omitted: Any attempt to reference a method with the varargs calling convention or the signature encodings14
associated with varargs methods (see Partition II) shall throw the System.NotImplementedException15
exception. Methods using the CIL instructions arglist, refanytype, mkrefany, and refanyval shall throw the16
System.NotImplementedException exception. The precise timing of the exception is not specified. The type17
System.TypedReference need not be defined.18

Part of Library: (none)19

4.1 .7 Frame Growth20

The frame growth feature set supports dynamically extending a stack frame.21

If omitted: Methods using the CIL localloc instruction shall throw the System.NotImplementedException22
exception. The precise timing of the exception is not specified.23

Part of Library: (none)24

4.1.8 Filtered Exceptions25

The filtered exceptions feature set supports user-supplied filters for exceptions.26

If omitted: Methods using the CIL endfilter instruction or with an exceptionentry that contains a non-null27
filterstart (see Partition I) shall throw the System.NotImplementedException exception. The precise timing28
of the exception is not specified.29

Part of Library: (none)30
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5 The Standard Libraries1

The detailed content of each Library, in terms of the types it provides and the changes it makes to types in other2
Libraries, is provided in XML form. This section provides an informative description of each Library’s purpose3
as well as specifying the features of the CLI required by each Library beyond those required by the Kernel4
Profile.5

5.1 Runtime Infrastructure Library6

The Runtime Infrastructure Library is part of the Kernel Profile. It provides the services needed by a compiler7
to target the CLI and the facilities needed to dynamically load types from a stream in the file format specified8
in Partition II. For example, it provides System.BadImageFormatException, which is thrown when a stream9
that does not have the correct format is loaded.10

Name used in XML: RuntimeInfrastructure TC39/TG11

CLI Feature Requirement: None12

5.2 Base Class Library13

The Base Class Library is part of the Kernel Profile. It is a simple runtime library for a modern programming14
language. It serves as the Standard for the runtime library for the language C# (Standard ECMA-yyy) as well as15
one of the CLI Standard Libraries. It provides types to represent the built-in data types of the CLI, simple file16
access, custom attributes, security attributes, string manipulation, formatting, streams, collections, and so forth.17

Name used in XML: BCL18

CLI Feature Requirement: None19

5.3 Network Library20

The Network Library is part of the Compact Profile. It provides simple networking services including direct21
access to network ports as well as HTTP support.22

Name used in XML: Networking23

CLI Feature Requirement: None24

5.4 Reflection Library25

The Reflection Library is part of the Compact Profile. It provides the ability to examine the structure of types,26
create instances of types, and invoke methods on types, all based on a description of the type.27

Name used in XML: Reflection28

CLI Feature Requirement: Must support Reflection, see Section 0.29

5.5 XML Library30

The XML Library is part of the Compact Profile. It provides a simple “pull-style” parser for XML. It is31
designed for resource-constrained devices, yet provides a simple user model. A conforming implementation of32
the CLI that includes the XML Library shall also implement the Network Library (see Section 5.3).33

Name used in XML: XML34

CLI Feature Requirement: None35

5.6 Extended Numerics Library36

The Extended Numerics Library is not part of any Profile, but can be supplied as part of any CLI37
implementation. It provides the support for floating-point (System.Single, System.Double) and extended-38
precision (System.Decimal) data types. Like the Base Class Library, this Library is directly referenced by the39
C# Standard (ECMA-yyy).40
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Note: Programmers who use this library will benefit if implementations specify which arithmetic operations on1
these data types are implemented primarily through hardware support.2

3
Rationale: The Extended Numerics Library is kept separate because some commonly available processors do4
not provide direct support for the data types. While software emulation can be provided, the performance5
difference is often so large (1,000 fold or more) that it is unreasonable to build software using floating-point6
operations without being aware of whether the underlying implementation is hardware-based.7

CLI Feature Requirement: Floating Point, see clause 0.8

5.7 Extended Array Library9

This Library is not part of any Profile, but can be supplied as part of any CLI implementation. It provides10
support for non-vector arrays. That is, arrays that have more than one dimension, and arrays that have non-zero11
lower bounds.12

CLI Feature Requirement: Non-vector Arrays, see clause 0.13
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6 Implementation-Specific Modifications to the System Libraries1

Implementers are encouraged to extend or modify the types specified in this Standard to provide additional2
functionality. Implementers should notice, however, that type names beginning with “System.” and bearing the3
special Standard Public Key are intended for use by the Standard Libraries: such names not currently in use4
may be defined in a future version of this Standard.5

To allow programs compiled against the Standard Libraries to work when run on implementations that have6
extended or modified the Standard Libraries, such extensions or modifications shall obey the following rules:7

• The contract specified by virtual methods shall be maintained in new classes that override them.8

• New exceptions may be thrown, but where possible these should be subclasses of the exceptions9
already specified as thrown rather than entirely new exception types. Exceptions initiated by10
methods of types defined in the Standard Libraries shall be derived from System.Exception.11

• Interfaces and virtual methods shall not be added to an existing interface. Nor shall they be added12
to an abstract class unless the class provides an implementation.13

Rationale: An interface or virtual method may be added only where it carries an implementation. This14
allows programs written when the interface or method was not present to continue to work.15

• Instance methods shall not be implemented as virtual methods.16

Rationale: Methods specified as instance (non-static, non-virtual) in this standard are not permitted to be17
implemented as virtual methods in order to reduce the likelihood of creating non-portable files by using18
implementation-supplied libraries at compile time. Even though a compiler need not take a dependence on the19
distinction between virtual and instance methods, it is easy for a user to inadvertently override a virtual method20
and thus create non-portable code. The alternative of providing special files corresponding to this Standard for21
use at compile time is prone to user error.22

23
Note: The following common extensions are permitted by these rules.24

• Adding new members to existing types.25

• Concrete (non-abstract) classes may implement interfaces not defined in this standard.26

• Adding fields (values) to enumerations.27

• An implementation may insert a new type into the hierarchy between a type specified in this28
standard and the type specified as its base type. That is, this standard specifies an inheritance29
relation between types but does not specify the immediate base type.30

31
Rationale: An implementation may wish to split functionality across several types in order to provide non-32
standard extension mechanisms, or may wish to provide additional non-standard functionality through the new33
base type. As long as programs do not reference these non-standard types they will remain portable across34
conforming implementations of the CLI.35
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7 Semantics of the XML Specification1

The XML specification conforms to the Document Type Definition (DTD) in Figure 7-1. Only types that are2
included in a specified library are included in the XML.3

There are three types of elements/attributes:4

• Normative: An element or attribute is normative such that the XML specification would be5
incomplete without it.6

• Informative: An element or attribute is informative if it specifies information that helps clarify the7
XML specification, but without it the specification still stands alone.8

• Rendering/Formatting: An element or attribute is for rendering or formatting if it specifies9
information to help an XML rendering tool.10

The text associated with an element or an attribute (e.g. #PCDATA, #CDATA) is, unless explicitly stated11
otherwise, normative or informative depending on the element or attribute with which it is associated, as12
described in the figure.13

[Note: Many of the elements and attributes in the DTD are for rendering purposes.]14

Figure 7-1: XML DTD15

<?xml version="1.0" encoding="UTF-8"?>16

<!ELEMENT AssemblyCulture (#PCDATA)>17

(Normative) Specifies the culture of the assembly that defines the current type. Currently this value is always “none”. It is18
reserved for future use.19

<!ELEMENT AssemblyInfo (AssemblyName, AssemblyPublicKey, AssemblyVersion,20
AssemblyCulture, Attributes)>21

(Normative) Specifies information about the assembly of a given type. These correspond to sections of the metadata of an22
assembly as described in Partition II and include information from the AssemblyName, AssemblyPublicKey, AssemblyVersion,23
AssemblyCulture and Attributes elements.24

<!ELEMENT AssemblyName (#PCDATA)>25

(Normative) Specifies the name of the assembly of which a given type is a member. For example, all of the types in the BCL26
are members of the “mscorlib” assembly.27

<!ELEMENT AssemblyPublicKey (#PCDATA)>28

(Normative) Specifies the public key of the assembly. The public key is represented as a 128-bit value.29

<!ELEMENT AssemblyVersion (#PCDATA)>30

(Normative) Specifies the version of the assembly in the form 1.0.x.y, where x is a build number and y is a revision number.31

<!ELEMENT Attribute (AttributeName, Excluded, ExcludedTypeName?, ExcludedLibraryName?)>32

(Normative) Specifies the text for a custom attribute on a type or a member of a type. This includes the attribute name and33
whether or not the attribute type itself is contained in another library.34

<!ELEMENT AttributeName (#PCDATA)>35

(Normative) Specifies the name of the custom attribute associated with a type or member of a type. Also contains the data36
needed to instantiate the attribute.37

<!ELEMENT Attributes (Attribute*)>38

(Normative) Specifies the list of the attributes on a given type or member of a type.39

<!ELEMENT Base (BaseTypeName?, ExcludedBaseTypeName?, ExcludedLibraryName?)>40

(Normative) Specifies the information related to the base type of the current type. Although the ExcludedBaseTypeName and41
ExcludedLibraryName elements are rarely found within this element, they are required when a type inherits from a type not42
found in the current library.43

<!ELEMENT BaseTypeName (#PCDATA)>44

(Normative) Specifies the fully qualified name of the class from which a type inherits (i.e. the type’s base class).45

<!ELEMENT Docs (summary?, altmember?, altcompliant?, param*, returns?, value?,46
exception*, threadsafe?, remarks?, example?, permission?, platnote*, example?)>47
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(Normative) Specifies the textual documentation of a given type or member of a type.1
<!ELEMENT Excluded (#PCDATA)>2

(Normative) Specifies, by a ‘0’ or ‘1’, whether a given member can be excluded from the current type in the absence of a given3
library. ‘0’ specifies that it cannot be excluded.4

<!ELEMENT ExcludedBaseTypeName (#PCDATA)>5

(Normative) Specifies the fully qualified name of the type that the current type must inherit from if a given library were present6
in an implementation. The library name is specified in the ExcludedLibraryName element. An example is the System.Type7
class that inherits from System.Object, but if the Reflection library is present, it must inherit from8
System.Reflection.MemberInfo.9

<!ELEMENT ExcludedLibrary (#PCDATA)>10

(Normative) Specifies the library that must be present in order for a given member of a type to be required to be implemented.11
For example, System.Console.WriteLine(double) need only be implemented if the ExtendedNumerics library is available.12

<!ELEMENT ExcludedLibraryName (#PCDATA)>13

(Normative) This element appears only in the description of custom attributes. It specifies the name of the library that defines14
the described attribute. For example, the member that is invoked when no member name is specified for15
System.Text.StringBuilder (in C#, this is the indexer) is called “chars”. The attribute needed for this is16
System.Reflection.DefaultMemberAttribute. This is found in the RuntimeInfrastructure library. This element is used with the17
ExcludedTypeName element.18

<!ELEMENT ExcludedTypeName (#PCDATA)>19

(Normative) Specifies the fully qualified name of the attribute that is needed for a member to succesfully specify the given20
attribute. This element is related to the ExcludedLibraryName element and is used for attributes.21

<!ELEMENT Interface (InterfaceName, Excluded)>22

(Normative) Specifies information about an interface that a type implements. This element contains sub-elements specifying the23
interface name and whether another library is needed for the interface to be required in the current library.24

<!ELEMENT InterfaceName (#PCDATA)>25

(Normative) Represents the fully-qualified interface name that a type implements.26

<!ELEMENT Interfaces (Interface*)>27

(Normative) Specifies information on the interfaces, if any, a type implements. There is one Interface element for each28
interface implemented by the type.29

<!ELEMENT Libraries (Types+)>30

(Normative) This is the root element. Specifies all of the information necessary for all of the class libraries of the standard.31
This includes all of the types and all children elements underneath.32

<!ELEMENT Member (MemberSignature+, MemberType, Attributes?, ReturnValue, Parameters,33
MemberValue?, Docs, Excluded, ExcludedLibrary*)>34

(Normative) Specifies information about a member of a type. This information includes the signatures, type of the member,35
parameters, etc., all of which are elements in the XML specification.36

<!ATTLIST Member37

MemberName NMTOKEN #REQUIRED38

(Normative) MemberName specifies the name of the current member.39

>40

<!ELEMENT MemberOfLibrary (#PCDATA)>41

(Normative) PCDATA is the name of the library containing the type.42

<!ELEMENT MemberSignature EMPTY>43

(Normative) Specifies the text (in source code format) for the signature of a given member of a type.44

<!ATTLIST MemberSignature45

Language CDATA #REQUIRED46

(Normative) CDATA is the programming language the signature is written in. All members are described in both ILASM47
and C#.48

Value CDATA #REQUIRED49

(Normative) CDATA is the text of the member signature in a given language.50



- 12 -

>1
<!ELEMENT MemberType (#PCDATA)>2

(Normative) Specifies the kind of the current member. The member kinds are: method, property, constructor, field, and3
event.4

<!ELEMENT MemberValue (#PCDATA)>5

(Normative) Specifies the value of a static literal field.6

<!ELEMENT Members (Member*)>7

(Normative) Specifies information about all of the members of a given type.8

<!ELEMENT PRE EMPTY>9

(Rendering/Formatting) This element exists for rendering purposes only to specify, for example, that future text should be10
separated from the previous text11

<!ELEMENT Parameter (Attributes?)>12

(Normative) Specifies the information about a specific parameter of a method or property.13

<!ATTLIST Parameter14

Name NMTOKEN #REQUIRED15

(Normative) Specifies the name of the parameter.16

Type CDATA #REQUIRED17

(Normative) Specifies the fully-qualified name of the type of the parameter.18

>19

<!ELEMENT Parameters (Parameter*)>20

(Normative) Specifies information for the parameters of a given method or property. The information specified is included in21
each Parameter element of this element. This element will contain one Parameter for each parameter of the method or22
property.23

<!ELEMENT ReturnType (#PCDATA)>24

(Normative) Specifies the fully-qualified name of the type that the current member returns.25

<!ELEMENT ReturnValue (ReturnType?)>26

(Normative) Specifies the return type of a member. ReturnType shall be present for all kinds of members except constructors.27

<!ELEMENT SPAN (#PCDATA | paramref | SPAN | see | block)*>28

(Rendering/Formatting) This element specifies that the text should be segmented from other text (e.g. with a carriage return).29
References to parameters, other types, and even blocks of text can be included within a SPAN element.30

<!ELEMENT ThreadingSafetyStatement (#PCDATA)>31

(Normative) Specifies a thread safety statement for a given type.32

<!ELEMENT Type (TypeSignature+, MemberOfLibrary, AssemblyInfo,33
ThreadingSafetyStatement?, TypeKind, Docs, Base, Interfaces, Attributes?, Members,34
TypeExcluded)>35

(Normative) Specifies all of the information for a given type.36

<!ATTLIST Type37

Name NMTOKEN #REQUIRED38

(Informative) Specifies the simple name (e.g. “String” rather than “System.String”) of a given type.39

FullName NMTOKEN #REQUIRED40

(Normative) Specifies the fully-qualified name of a given type.41

FullNameSP NMTOKEN #REQUIRED42

(Informative) Specifies the fully-qualified name with each ‘.’ of the fully qualified name replaced by an ‘_’.43

>44

<!ELEMENT TypeExcluded (#PCDATA)>45

(Normative) PCDATA shall be ‘0’.46

<!ELEMENT TypeSignature EMPTY>47
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(Normative) Specifies the text for the signature (in code representation) of a given type.1
<!ATTLIST TypeSignature2

Language CDATA #REQUIRED3

(Normative) Specifies the language the specified type signature is written in. All type signatures are specified in both4
ILASM and C#.5

Value CDATA #REQUIRED6

(Normative) CDATA is the type signature in the specified language.7

>8

<!ELEMENT Types (Type+)>9

(Normative) Specifies information about all of the types of a library.10

<!ATTLIST Types11

Library NMTOKEN #REQUIRED12

(Normative) Specifies the library in which all of the types are defined. An example of such a library is “BCL”.13

>14

<!ELEMENT altcompliant EMPTY>15

(Informative) Specifies that an alternative, CLS compliant method call exists for the current non-CLS compliant method.16
For example, this element exists in the System.IO.TextWriter.WriteLine(ulong) method to show that17
System.IO.TextWriter.WriteLine(long) is an alternative, CLS compliant method.18

<!ATTLIST altcompliant19

cref CDATA #REQUIRED20

(Informative) Specifies the link to the actual documentation for the alternative CLS compliant method. [Note: In this21
specification, CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]22

>23

<!ELEMENT altmember EMPTY>24

(Informative) Specifies that an alternative, equivalent member call exists for the current method. This element is used for25
operator overloads.26

<!ATTLIST altmember27

cref CDATA #REQUIRED28

(Informative) Specifies the link to the actual documentation for the alternative member call. [Note: In this specification,29
CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]30

>31

<!ELEMENT block (#PCDATA | see | para | paramref | list | block | c | subscript | code32
| sup | pi)*>33

(Rendering/Formatting) Specifies that the children should be formatted according to the type specified as an attribute.34

<!ATTLIST block35

subset CDATA #REQUIRED36

(Rendering/Formatting) This attribute is reserved for future use and currently only has the value of ‘none’.37

type NMTOKEN #REQUIRED38

(Rendering/Formatting) Specifies the type of block that follows, one of: usage, overrides, note, example, default,39
behaviors.40

>41

<!ELEMENT c (#PCDATA | para | paramref | code | see)*>42

(Rendering/Formatting) Specifies that the text is the output of a code sample.43

<!ELEMENT code (#PCDATA)>44

(Informative) Specifies the text is a code sample.45

<!ATTLIST code46

lang CDATA #IMPLIED47
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(Informative) Specifies the programming language of the code sample. This specification uses C# as the language for the1
samples.2
>3

<!ELEMENT codelink EMPTY>4

(Informative) Specifies a piece of code to which a link may be made from another sample. [Note: the XML format specified5
here does not provide a means of creating such a link.]6

<!ATTLIST codelink7

SampleID CDATA #REQUIRED8

(Informative) SampleID is the unique id assigned to this code sample.9

SnippetID CDATA #REQUIRED10

(Informative) SnippetID is the unique id assigned to a section of text within the sample code.11

>12

<!ELEMENT description (#PCDATA | paramref | para | see | c | permille | block | sub)*>13

(Normative) Specifies the text for a description for a given term element in a list or table. This element also specifies the14
text for a column header in a table.15

<!ELEMENT example (#PCDATA | para | code | c | codelink | see)*>16

(Informative) Specifies that the text will be an example on the usage of a type or a member of a given type.17

<!ELEMENT exception (#PCDATA | paramref | see | para | SPAN | block)*>18

(Normative) Specifies text that provides the information for an exception that can be thrown by a member of a type. This19
element can contain just text or other rendering options such as blocks, etc.20

<!ATTLIST exception21

cref CDATA #REQUIRED22

(Rendering/Formatting) Specifies a link to the documentation of the exception. [Note: In this specification, CDATA23
matches the documentation comment format specified in Appendix E of the C# Language specification.]24

>25

<!ELEMENT i (#PCDATA)>26

(Rendering/Formatting) Specifies that the text should be italicized.27

<!ELEMENT item (term, description*)>28

(Rendering/Formatting) Specifies a specific item of a list or a table.29

<!ELEMENT list (listheader?, item*)>30

(Rendering/Formatting) Specifies that the text should be displayed in a list format.31

<!ATTLIST list32

type NMTOKEN #REQUIRED33

(Rendering/Formatting) Specifies the type of list in which the following text will be represented. Values in the34
specification are: bullet, number and table.35

>36

<!ELEMENT listheader (term, description+)>37

(Rendering/Formatting) Specifies the header of all columns in a given list or table.38

<!ELEMENT onequarter EMPTY>39

(Rendering/Formatting) Specifies that text, in the form of ¼, is to be displayed.40

<!ELEMENT para (#PCDATA | see | block | paramref | c | onequarter | superscript | sup |41
permille | SPAN | list | pi | theta | sub)*>42

(Rendering/Formatting) Specifies that the text is part of what can be considered a paragraph of its own.43

<!ELEMENT param (#PCDATA | paramref | see | block | para | SPAN)*>44

(Normative) Specifies the information on the meaning or purpose of a parameter. The name of the parameter and a textual45
description will be associated with this element.46

<!ATTLIST param47
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name CDATA #REQUIRED1

(Nomrative) Specifies the name of the parameter being described.2

>3

<!ELEMENT paramref EMPTY>4

(Rendering/Formatting) Specifies a reference to a parameter of a member of a type.5

<!ATTLIST paramref6

name CDATA #REQUIRED7

(Rendering/Formatting) Specifies the name of the parameter to which the paramref element is referring.8

>9

<!ELEMENT permille EMPTY>10

(Rendering/Formatting) Represents the current text is to be displayed as the ‘‰’ symbol.11

<!ELEMENT permission (#PCDATA | see | paramref | para | block)*>12

(Normative) Specifies the permission, given as a fully-qualified type name and supportive text, needed to call a member of a13
type.14

<!ATTLIST permission15

cref CDATA #REQUIRED16

(Rendering/Formatting) Specifies a link to the documentation of the permission. [Note: In this specification, CDATA17
matches the documentation comment format specified in Appendix E of the C# Language specification.]18

>19

<!ELEMENT pi EMPTY>20

(Rendering/Fomatting) Represents the current text is to be displayed as the ‘π’ symbol21

<!ELEMENT pre EMPTY>22

(Rendering/Formatting) Specifies a break between the preceding and following text.23

<!ELEMENT remarks (#PCDATA | para | block | list | c | paramref | see | note | pre |24
SPAN | code | PRE)*>25

(Normative) Specifies additional information, beyond that supplied by the summary, on a type or member of a type.26

<!ELEMENT returns (#PCDATA | para | list | paramref | see)*>27

(Normative) Specifies text that describes the return value of a given type member.28

<!ELEMENT see EMPTY>29

(Informative) Specifies a link to another type or member.30

<!ATTLIST see31

cref CDATA #IMPLIED32

(Informative) cref specifies the fully-qualified name of the type or member to link to. [Note: In this specification,33
CDATA matches the documentation comment format specified in Appendix E of the C# Language specification.]34

langword CDATA #IMPLIED35

(Informative) langword specifies that the link is to a language agnostic keyword such as “null”.36

qualify CDATA #IMPLIED37

(Informative) Qualify indicates that the type or member specified in the link must be displayed as fully-qualified. Value of38
this attribute is ‘true’ or ‘false’, with a default value of ‘false’39

>40

<!ELEMENT sub (#PCDATA | paramref)*>41

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation.42

<!ELEMENT subscript EMPTY>43

(Rendering/Formatting) Specifies that current piece of text is to be displayed in subscript notation.44

<!ATTLIST subscript45

term CDATA #REQUIRED46
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(Rendering/Formatting) Specifies the value to be rendered as a subscript.1
>2

<!ELEMENT summary (#PCDATA | para | see | block | list)*>3

(Normative) Specifies a summary description of a given type or member of a type.4

<!ELEMENT sup (#PCDATA | i | paramref)*>5

(Rendering/Formatting) Specifies that the current piece of text is to be displayed in superscript notation.6

<!ELEMENT superscript EMPTY>7

(Rendering/Formatting) Specifies that current piece of text is to be displayed in superscript notation.8

<!ATTLIST superscript9

term CDATA #REQUIRED10

(Rendering/Formatting) Specifies the value to be rendered as a superscript.11

>12

<!ELEMENT term (#PCDATA | block | see | paramref | para | c | sup | pi | theta)*>13

(Rendering/Formatting) Specifies the text is a list item or an item in the primary column of a table.14

<!ELEMENT theta EMPTY>15

(Rendering/Formatting) Specifies that text, in the form of ‘θ’, is to be displayed.16

<!ELEMENT threadsafe (para+)>17

(Normative) Specifies that the text describes additional detail, beyond that specified by ThreadingSafetyStatement, the18
thread safety implications of the current type. For example, the text will describe what an implementation must do in terms of19
synchronization.20

<!ELEMENT value (#PCDATA | para | list | see)*>21

(Normative) Specifies description information on the “value” passed into the set method of a property.22

7.1 Value Types as Objects23

Throughout the textual descriptions of methods in the XML there are places where a parameter of type object24
or an interface type is expected, but the description refers to passing a value type for that parameter. In these25
cases, the caller shall box the value type before making the call.26

27

28

29
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