ecma

Standard ECMA-349

Data Interchange on
 120 mm and 80 mm Optical Disk using +R Format - Capacity:
 4,7 and 1,46 Gbytes
 per Side
 (Recording speed up to 8X)

Standard
 ECMA-349
 $2^{\text {nd }}$ Edition - June 2004

Data Interchange on 120 mm and 80 mm Optical Disk using +R Format - Capacity: 4,7 and 1,46 Gbytes per Side
 (Recording speed up to 8X)

Brief history

Ecma Technical Committee TC31 was established in 1984 for the standardization of Optical Disks and Optical Disk Cartridges (ODC). Since its establishment, the Committee has made major contributions to ISO/IEC toward the development of International Standards for $80 \mathrm{~mm}, 90 \mathrm{~mm}, 120 \mathrm{~mm}, 300 \mathrm{~mm}$, and 356 mm media. Numerous standards have been developed by TC31 and published by Ecma, almost all of which have also been adopted by ISO/IEC under the fast-track procedure as International Standards.

In April 2003 a group of Companies proposed to TC31 to develop a standard for 120 mm recordable optical disks using the WORM recording technology and based on the DVD - Read-Only standard (ECMA-267) and the +RW format (ECMA-337). TC31 adopted this project and started the work that has resulted in the first edition of ECMA-349.

This Ecma Standard specifies two Types of recordable optical disks, one (Type S) making use of recording on only a single side of the disk and yielding a nominal capacity of 4,7 or 1,46 Gbytes per disk and the other (Type D) making use of recording on both sides of the disk and yielding a nominal capacity of 9,4 or 2,92 Gbytes per disk.
In December 2003 a proposal was made to TC31 to update this Ecma Standard for recording speeds up to 8 times the Reference velocity.

This Ecma Standard, taken together with a standard for volume and file structure, such as for instance developed in Ecma Technical Committee TC15, provides the requirements for information interchange between systems.

Table of contents

Section 1 - General 1
1 Scope 1
2 Conformance 1
2.1 Optical Disk 1
2.2 Generating system 1
2.3 Receiving system 1
2.4 Compatibility statement 1
3 References 2
4 Definitions 2
4.1 Channel bit 2
4.2 Clamping Zone 2
4.3 Digital Sum Value (DSV) 2
4.4 Disk Reference Plane 2
4.5 dummy substrate 2
4.6 entrance surface 2
4.7 field 2
4.8 groove 2
4.9 interleaving 2
4.10 mark 2
4.11 Multi-session disk 3
4.12 Physical Sector 3
4.13 recording layer 3
4.14 Reed-Solomon code (RS) 3
4.15 Single-session disk 3
4.16 session 3
4.17 space 3
4.18 substrate 3
4.19 track 3
4.20 track pitch 3
4.21 wobble 3
4.22 zone 3
5 Conventions and notations 3
5.1 Representation of numbers 3
5.2 Names 4
6 Abbreviations and acronyms 4
7 General description of the optical disk 5
8 General Requirements 6
8.1 Environments 6
8.1.1 Test environment 6
8.1.2 Operating environment 6
8.1.3 Storage environment 6
8.1.4 Transportation 6
8.2 Safety requirements 6
8.3 Flammability 6
9 Reference Drive 7
9.1 Optical system 7
9.2 Optical beam 7
9.3 Read channel 1 8
9.4 Disk clamping 8
9.5 Rotation of the disk 9
9.6 Wobble channel (Read channel 2) 9
9.7 Tracking channel (Read channel 2) 9
9.7.1 Normalized servo transfer function 9
9.7.2 Reference Servo for Axial Tracking 10
9.7.3 Reference Servo for Radial Tracking 11
Section 2 - Dimensional, mechanical and physical characteristics of the disk 12
10 Dimensional characteristics 12
10.1 Reference Planes 12
10.2 Overall dimensions 12
10.3 First transition area 13
10.4 Second transition area 13
10.5 Clamping Zone 13
10.6 Third transition area 13
10.7 Information Zone 13
10.8 Rim Area 14
10.9 Remark on tolerances 14
11 Mechanical characteristics 16
11.1 Mass 16
11.2 Moment of inertia 16
11.3 Dynamic imbalance 16
11.4 Axial runout 16
11.4.1 Tracking requirements for all disks 16
11.4.2 Additional tracking requirements for high-speed disks 16
11.5 Radial runout 16
11.5.1 Tracking requirements for all disks 16
11.5.2 Additional tracking requirements for high-speed disks 17
12 Optical characteristics in the Information Zone 17
12.1 Index of refraction 17
12.2 Thickness of the substrate 17
12.3 Reflectivity 18
12.4 Birefringence 18
12.5 Angular deviation 18
Section 3 - Format of information 19
13 Data format 19
13.1 Data Frames 19
13.1.1 Identification Data (ID) 20
13.1.2 ID Error Detection Code (IED) 20
13.1.3 RSV 20
13.1.4 Error Detection Code (EDC) 21
13.2 Scrambled Frames 21
13.3 ECC Blocks 22
13.4 Recording Frames 23
13.5 Modulation and NRZI conversion 24
13.6 Physical Sectors 24
13.7 Layout of a Recording UNit (RUN) 26
13.7.1 Recording Unit position 26
13.8 d.c. component suppression control 27
14 Track format 28
14.1 Track shape 28
14.2 Track path 28
14.3 Track pitch 28
14.4 Track layout 28
14.4.1 ADIP information 28
14.4.2 Physical format information in ADIP 33
Section 4 - Format of the Information Zone 49
15 General description of the Information Zone 49
16 Layout of the Information Zone of a Single-session disk 49
16.1 Physical Sector Numbers (PSNs) 49
17 Inner Drive Area 50
17.1 Initial Zone 51
17.2 Inner Disk Test Zone 51
17.3 Count Zone Run-in 51
17.4 Inner Disk Count Zone 51
17.5 Inner Disk Administration Zone 51
17.6 Table of Contents (TOC) Zone 52
17.6.1 Table of Contents Blocks 52
17.6.2 Recorded Area Indicators 55
18 Lead-in Zone 55
18.1 Guard Zone 1 55
18.2 Reserved Zone 1 55
18.3 Reserved Zone 2 55
18.4 Inner Disk Identification Zone 56
18.5 Reserved Zone 3 56
18.6 Reference Code Zone 56
18.7 Buffer Zone 1 56
18.8 Control Data Zone 57
18.8.1 Physical format information 57
18.8.2 Disk manufacturing information 58
18.8.3 Content provider information 58
18.9 Buffer Zone 2 58
19 Data Zone 59
20 Lead-out Zone 59
20.1 Buffer Zone 3 59
20.2 Outer Disk Identification Zone 59
20.3 Guard Zone 2 59
21 Outer Drive Area 60
21.1 Outer Disk Administration Zone 60
21.2 Outer Disk Count Zone 60
21.3 Outer Disk Test Zone 60
21.4 Guard Zone 3 60
22 Multi-session Layout 61
22.1 Intro 62
22.1.1 Buffer Zone A 62
22.1.2 Inner Session Identification Zone 62
22.1.3 Session Control Data Zone 62
22.1.4 Buffer Zone B 62
22.2 Data Zone 62
22.3 Closure 62
22.3.1 Buffer Zone C 62
22.3.2 Outer Session Identification Zone 62
23 Sequential recording in Fragments 63
23.1 Opening a Session 63
23.1.1 Incomplete Fragment 63
23.1.2 Reserved Fragments 63
23.1.3 Recording User Data in Fragments 64
23.1.4 Closing a Fragment 64
23.2 Closing a Session 65
23.2.1 Lead-in/Intro Zone 65
23.2.2 Closure Zone 65
23.3 Finalizing the disk 65
24 Assignment of Logical Sector Numbers (LSNs) 66
25 Disk Control Blocks 66
25.1 General format of Disk Control Blocks 66
25.2 Format of the Session DCB (SDCB) 67
25.2.1 Session Items 69
Section 5 - Characteristics of the groove 72
26 General 72
27 Method of testing 72
27.1 Environment 72
27.2 Reference Drive 72
27.2.1 Optics and mechanics 72
27.2.2 Read power 72
27.2.3 Read channels 72
27.2.4 Tracking 72
27.3 Definition of signals 73
28 Characteristics of the groove signals 74
28.1 Phase depth 74
28.2 Push-pull signal 74
28.3 Track Cross signal 74
28.4 Normalized wobble signal 74
28.5 Characteristics of the wobble 74
Section 6 - Characteristics of the recording layer 75
29 Method of testing 75
29.1 Environment 75
29.2 Reference Drive 75
29.2.1 Optics and mechanics 75
29.2.2 Read power 75
29.2.3 Read channels 75
29.2.4 Tracking 75
29.2.5 Scanning velocity 75
29.3 Write conditions 76
29.3.1 Write pulse waveform 76
29.3.2 Write power 76
29.3.3 Write power dependency on wavelength 76
29.3.3 Write power window 76
29.4 Measurement conditions 77
30 Characteristics of the recorded signals 78
30.1 Channel bit Iength 78
30.2 Definition of signals 78
30.2.1 High frequency signals (HF) 78
30.2.2 Modulated amplitude 78
30.2.3 Signal asymmetry 79
30.2.4 Normalized Slicing Level jump 79
30.2.5 Jitter 79
30.2.6 Track Cross signal 79
30.3 Read stability 79
31 Additional testing conditions 80
31.1 Test environment 80
31.1.1 Optics 80
31.2 Definition of signals 80
31.2.1 Modulated amplitude 80
31.2.2 Signal asymmetry 80
31.2.3 Jitter 80
31.2.4 Track Cross signal 81
31.2.5 Differential phase tracking error signal 81
31.2.6 Tangential push-pull signal 82
32 Quality of the recording layer 82
32.1 Defects 82
32.2 Data errors 82
Section 7 - Characteristics of user data 83
33 Method of testing 83
33.1 Environment 83
33.2 Reference Drive 83
33.2.1 Optics and mechanics 83
33.2.2 Read power 83
33.2.3 Read channels 83
33.2.4 Error correction 83
33.2.5 Tracking 83
34 Minimum quality of a Recording Unit 84
34.1 Tracking 84
34.2 User-written data 84
Annex A (normative) - $80 \mathrm{~mm}+\mathrm{R}$ disk 85
Annex B (normative) - Measurement of light reflectivity 89
Annex C (normative) - Measurement of birefringence 91
Annex D (normative) - Measuring conditions for operation signals 93
Annex E (normative) - Measurement of the differential phase tracking error 97
Annex F (normative) - The write pulse wave form for testing 101
Annex G (normative) -8-to-16 Modulation 109
Annex H (normative) - Optimum Power Control and Recording Conditions 117
Annex I (informative) - Light fastness of the disk 121
Annex J (informative) - Wavelength dependency 123
Annex K (informative) - Running OPC 127
Annex L (informative) - Transportation 129
Annex M (informative) - Measurement of the groove wobble amplitude 131
Annex N (informative) - How to use the Physical format information in ADIP 133
Annex O (informative) - Values to be Implemented in Existing and Future Specifications 135

Section 1 - General

1 Scope

This Ecma Standard specifies the mechanical, physical and optical characteristics of 120 mm recordable optical disks with capacities of $4,7 \mathrm{Gbytes}$ and $9,4 \mathrm{Gbytes}$. It specifies the quality of the recorded and unrecorded signals, the format of the data and the recording method, thereby allowing for information interchange by means of such disks. The data can be written once and read many times using a non-reversible method. These disks are identified as +R .

The +R system also allows 80 mm disks with capacities of 1,46 Gbytes and 2,92 Gbytes. These disks shall have the same characteristics as the 120 mm disks, except for some parameters related to the smaller dimensions. All parameters unique for the 80 mm disks are specified in Annex A.
This Ecma Standard specifies

- two related but different Types of this disk (see Clause 7),
- the conditions for conformance,
- the environments in which the disk is to be tested, operated and stored,
- the mechanical, physical and dimensional characteristics of the disk, so as to provide mechanical interchange between data processing systems,
- the format of the information on the disk, including the physical disposition of the tracks and sectors, the error correcting codes and the coding method,
- the characteristics of the signals recorded on the disk, thus enabling data processing systems to read the data from the disk.
This Ecma Standard provides for the interchange of disks between optical disk drives. Together with a standard for volume and file structure, it provides for full data interchange between data processing systems.

2 Conformance

2.1 Optical Disk

A claim of conformance with this Ecma Standard shall specify the Type implemented. An optical disk shall be in conformance with this Ecma Standard if it meets all mandatory requirements specified for its Type.

2.2 Generating system

A generating system shall be in conformance with this Ecma Standard if the optical disk it generates is in accordance with 2.1.

2.3 Receiving system

A receiving system shall be in conformance with this Ecma Standard if it is able to handle both Types of optical disk according to 2.1.

2.4 Compatibility statement

A claim of conformance by a Generating or Receiving system with this Ecma Standard shall include a statement listing any other standards supported. This statement shall specify the numbers of the standards, the optical disk types supported (where appropriate) and whether support includes reading only or both reading and writing.

3 References

ECMA-43 8-bit Coded Character Set Structure and Rules, $3^{\text {rd }}$ edition (1991) (ISO/IEC 4873)
ECMA-267 120 mm DVD - Read-Only Disk, $3^{\text {rd }}$ edition (2001) (ISO/IEC 16448)
ECMA-268 80 mm DVD - Read-Only Disk, $3^{\text {rd }}$ edition (2001) (ISO/IEC 16449)
ECMA-287 Safety of Electronic Equipment, $2^{\text {nd }}$ edition (2002)
ECMA-337 Data Interchange on 120 mm and 80 mm Optical Disk using +RW Format - Capacity: 4,7 and 1,46 Gbytes per Side (Recording speed up to 4X), $2^{\text {nd }}$ edition (2003) (ISO/IEC 17341)

4 Definitions

For the purpose of this Ecma Standard the following definitions apply:

4.1 Channel bit

The elements by which the binary values ZERO and ONE are represented by marks and spaces on the disk.

4.2 Clamping Zone

The annular part of the disk within which the clamping force is applied by the clamping device.

4.3 Digital Sum Value (DSV)

The arithmetic sum obtained from a bit stream by allocating the decimal value +1 to bits set to ONE and the decimal value -1 to bits set to ZERO.

4.4 Disk Reference Plane

A plane defined by the perfectly flat annular surface of an ideal spindle onto which the clamping Zone of the disk is clamped, and which is normal to the axis of rotation.

4.5 dummy substrate

A layer which may be transparent or not, provided for the mechanical support of the disk and, in some cases, of the recording layer as well.

4.6 entrance surface

The surface of the disk onto which the optical beam first impinges.

4.7 field

A subdivision of a sector.

4.8 groove

A trench-like feature of the disk, applied before the recording of any information, and used to define the track location. The groove is located nearer to the entrance surface than the so-called land in between the grooves. The recording is made on the groove.

4.9 interleaving

The process of reallocating the physical sequence of units of data so as to render the data more immune to burst errors.
4.10 mark

A non-reversible feature of the recording layer which may take the form of less reflective area, a pit, or any other type or form that can be sensed by the optical system. The pattern of marks and spaces represents the data on the disk.

4.11 Multi-session disk
 A disk containing more than one set of Lead-in/Intro, Data, and Lead-out/Closure Zones.

4.12 Physical Sector
 The smallest addressable part of a track in the Information Zone of a disk that can be accessed independently of other addressable parts of the Zone.
 4.13 recording layer
 A layer of the disk on which data is written during manufacture and / or use.

4.14 Reed-Solomon code (RS)

An error detection and / or correction code.

4.15 Single-session disk

A disk containing a Lead-in Zone, one Data Zone, and a Lead-out Zone.

4.16 session

A continuous part of the Information Zone of the disk consisting of a Lead-in or Intro Zone, a Data Zone and a Lead-out or Closure Zone.

4.17 space

A feature of the recording layer represented by any area between two marks which can be sensed by the optical system. The pattern of marks and spaces represents the data on the disk.

4.18 substrate

A transparent layer of the disk, provided for mechanical support of the recording layer, through which the optical beam accesses the recording layer.

4.19 track

A 360° turn of a continuous spiral.
4.20 track pitch

The distance between adjacent track centrelines, measured in a radial direction.

4.21 wobble

A continuous sinusoidal deviation of the track from the average centreline. Location information is included as phase modulated data in the wobble.

4.22 zone

An annular area of the disk.

5 Conventions and notations

5.1 Representation of numbers

A measured value is rounded off to the least significant digit of the corresponding specified value. For instance, it implies that a specified value of 1,26 with a positive tolerance of $+0,01$ and a negative tolerance of - 0,02 allows a range of measured values from 1,235 to 1,274.

Numbers in decimal notations are represented by the digits 0 to 9 .
Numbers in hexadecimal notation are represented by the hexadecimal digits 0 to 9 and A to F in parentheses.

The setting of bits is denoted by ZERO and ONE.

Numbers in binary notations and bit patterns are represented by strings of digits 0 and 1, with the most significant bit shown to the left. In a pattern of n bits, bit $b_{(n-1)}$ shall be the most significant bit (msb) and bit b_{0} shall be the least significant bit (lsb). Bit $\mathrm{b}_{(n-1)}$ shall be recorded first.
Negative values of numbers in binary notation are given as Two's complement.
In each data field, the data is recorded so that the most significant byte (MSB), identified as Byte 0, shall be recorded first and the least significant byte (LSB) last.
In a field of $8 n$ bits, bit $b_{(8 n-1)}$ shall be the most significant bit (msb) and bit b_{0} the least significant bit (lsb). Bit $\mathrm{b}_{(8 n-1)}$ shall be recorded first.

5.2 Names

The names of entities, e.g. specific tracks, fields, etc., are given with an initial capital.

6 Abbreviations and acronyms

a.c.	alternating current
ADIP	Address in Pre-groove
ASM	Asymmetry
BP	Byte Position
BPF	Band Pass Filter
CAV	Constant Angular Velocity
CLD	Constant Linear Density
CLV	Constant Linear Velocity
cm	current mark
d.c.	direct current
DCB	Disk Control Block
DCC	d.c. Component suppression Control
DSV	Digital Sum Value
ECC	Error Correction Code
EDC	Error Detection Code
EI	Extended Information
HF	High Frequency
ID	Identification Data
IED	ID Error Detection code
LPF	Low Pass filter
Isb	Least Significant Bit
LSB	Least Significant Byte
LSN	Logical Sector Number
msb	Most Significant Bit
MSB	Most Significant Byte
NA	Numerical Aperture
NRZ	Non Return to Zero
NRZI	Non Return to Zero Inverted
NSL	Normalized Slicing Level
NWPW	Normalized Write Power Window
OPC	Optimum Power Control
PAA	Physical Address in ADIP
PBS	Polarizing Beam Splitter
PI	Parity of Inner-code
PLL	Phase Locked Loop
pp	peak-to-peak
PP	Push-Pull
ps	previous space
DR	

PSN	Physical Sector Number
PO	Parity of Outer-code
RIN	Relative Intensity Noise
RS	Reed-Solomon code
RSV	Reserved (in use by specific applications)
RUN	Recording UNit
SDCB	Session DCB
SNR	Signal to Noise Ratio
SYNC	Synchronization code
TOC	Table of Contents

7 General description of the optical disk

The optical disk that is the subject of this Ecma Standard consists of two substrates bonded together by an adhesive layer, so that the recording layer(s) is (are) on the inside. The centring of the disk is performed on the edge of the centre hole of the assembled disk on the side currently accessed. Clamping is performed in the Clamping Zone. This Ecma Standard provides for two Types of such disks.

Type S consists of a substrate, a single recording layer and a dummy substrate. The recording layer can be accessed from one side only. The capacity is 4,7 Gbytes for the 120 mm sized disk and 1,46 Gbytes for the 80 mm sized disk.

Type D consists of two substrates and two recording layers. From each side of the disk only one of the recording layers can be accessed. The capacity is 9,4 Gbytes for the 120 mm sized disk and 2,92 Gbytes for the 80 mm sized disk.

Data can be written onto the disk as marks in the form of low-reflective spots in the recording layer with a focused optical beam. The data can be read with a focused optical beam, using the difference in the reflectivity between recorded marks and unrecorded spaces. The beam accesses the recording layer through a transparent substrate of the disk.

Figure 1 shows schematically the two Types.

Figure 1 - Types of $+R$ disk

8 General Requirements

8.1 Environments

8.1.1 Test environment

In the test environment, the air immediately surrounding the disk shall have the following properties:
temperature $\quad: 23^{\circ} \mathrm{C} \pm 2{ }^{\circ} \mathrm{C}$
relative humidity : 45% to 55% atmospheric pressure $: 60 \mathrm{kPa}$ to 106 kPa
No condensation on the disk shall occur. Before testing, the disk shall be conditioned in this environment for 48 h minimum. It is recommended that, before testing, the entrance surface of the disk shall be cleaned according to the instructions of the manufacturer of the disk.
Unless otherwise stated, all tests and measurements shall be made in this test environment.

8.1.2 Operating environment

This Ecma Standard requires that a disk which meets all requirements of this Ecma Standard in the specified test environment shall provide data interchange over the specified ranges of environmental parameters in the operating environment.
The operating environment is the environment where the air immediately surrounding the disk shall have the following properties:

temperature	$: 5^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
relative humidity	$: 3 \%$ to 85%
absolute humidity	$: 1 \mathrm{~g} / \mathrm{m}^{3}$ to $30 \mathrm{~g} / \mathrm{m}^{3}$
atmospheric pressure	$: 60 \mathrm{kPa}$ to 106 kPa
temperature gradient	$: 10^{\circ} \mathrm{C} / \mathrm{h}$ max.
relative humidity gradient	$: 10 \% / \mathrm{h} \mathrm{max}$.

No condensation on the disk shall occur. If the disk has been exposed to conditions outside those specified in this Clause, it shall be acclimatized in an allowed operating environment for at least 2 h before use.

8.1.3 Storage environment

The storage environment is defined as the environment where the air immediately surrounding the disk shall have the following properties:
temperature
: $-10^{\circ} \mathrm{C}$ to $55^{\circ} \mathrm{C}$
relative humidity
: 3 \% to 90 \%
absolute humidity $\quad: 1 \mathrm{~g} / \mathrm{m}^{3}$ to $30 \mathrm{~g} / \mathrm{m}^{3}$
atmospheric pressure
: 60 kPa to 106 kPa
temperature gradient
: $15^{\circ} \mathrm{C} / \mathrm{h}$ max.
relative humidity gradient
: 10 \%/h max.
No condensation on the disk shall occur.
8.1.4 Transportation

This Ecma Standard does not specify requirements for transportation; guidance is given in Annex L.

8.2 Safety requirements

The disk shall satisfy the safety requirements of Standard ECMA-287, when used in the intended manner or in any foreseeable use in an information processing system.

8.3 Flammability

The disk and its components shall be made from materials that comply with the flammability class for HB materials, or better, as specified in Standard ECMA-287.

9 Reference Drive

The Reference Drive shall be used for the measurement of optical parameters for conformance with the requirements of this Ecma Standard. The critical components of this device have the characteristics specified in this Clause.

9.1 Optical system

The basic set-up of the optical system of the Reference Drive used for measuring the write and read parameters is shown in Figure 2. Different components and locations of components are permitted, provided that the performance remains the same as that of the set-up in Figure 2. The optical system shall be such that the detected light reflected from the entrance surface of the disk is minimized so as not to influence the accuracy of the measurements.

Figure 2-Optical system of the Reference Drive
The combination of a polarizing beam splitter C and a quarter-wave plate D shall separate the entrance optical beam from the laser diode A and the reflected optical beam from the disk F. The beam splitter C shall have a p-s intensity reflectance ratio of at least 100.

9.2 Optical beam

The focused optical beam used for writing and reading data shall have the following properties:
a) Wavelength (λ)
$655 \mathrm{~nm}_{-5 \mathrm{~nm}}^{+10 \mathrm{~nm}}$ (see Annex J)
b) Numerical aperture of the objective lens (NA)
$0,65 \pm 0,01$
c) The objective lens shall be compensated for spherical aberrations caused by a parallel substrate with nominal thickness $(0,6 \mathrm{~mm})$ and nominal refractive index $(1,55)$.
d) Wave front aberration
e) Light intensity at the rim of the pupil of the objective lens
$0,033 \times \lambda$ rms max.
35% to 50% of the maximum intensity in the radial direction and 45% to 60% in the tangential direction.
f) Polarization of the light
g) Read power (average)
h) Write power and pulse width
i) Relative Intensity Noise (RIN)* of the laser diode

Circular

$0,7 \mathrm{~mW} \pm 0,1 \mathrm{~mW}$
(d.c. or HF modulated with a frequency $>400 \mathrm{MHz}$)
see Annex F
$-134 \mathrm{~dB} / \mathrm{Hz}$ max. *RIN $(\mathrm{dB} / \mathrm{Hz})=10 \log [($ a.c. light power density / Hz) / d.c. light power]

9.3 Read channel 1

Read channel 1 shall be provided to generate signals from the marks and spaces in the recording layer. This Read channel shall be used for reading the user-written information, using the change in reflectivity of the marks and spaces. The read amplifiers after the photo detectors in the Read channel shall have a flat response within 1 dB from d.c. to 20 MHz .

For measurement of jitter, the characteristics of the PLL and the slicer, etc. are specified in Annex D.

9.4 Disk clamping

For measuring, the disk shall be clamped between two concentric rings covering most of the Clamping Zone (see 10.5). The top clamping area shall have the same diameters as the bottom clamping area (Figure 3). Clamping shall occur between

$$
d_{\text {in }}=22,3 \mathrm{~mm}_{-0,0 \mathrm{~mm}}^{+0,5 \mathrm{~mm}}
$$

and

$$
d_{\text {out }}=32,7 \mathrm{~mm}_{-0,5 \mathrm{~mm}}^{+0,0 \mathrm{~mm}}
$$

Figure 3-Clamping and chucking conditions

The total clamping force shall be $F_{1}=2,0 \mathrm{~N} \pm 0,5 \mathrm{~N}$. In order to prevent warping of the disk under the moment of force generated by the clamping force and the chucking force F_{2} exerted on the rim of the centre hole of the disk, F_{2} shall not exceed $0,5 \mathrm{~N}$ (see Figure 3).

The tapered cone angle, α, shall be $40,0^{\circ} \pm 0,5^{\circ}$.

9.5 Rotation of the disk

The actual rotation speed for reading the disk shall be such that it results in the Reference velocity of $3,49 \mathrm{~m} / \mathrm{s} \pm 0,03 \mathrm{~m} / \mathrm{s}$ at the nominal Channel bit rate of $26,15625 \mathrm{Mbit} / \mathrm{s}$. The direction of rotation shall be counter-clockwise when viewed from the objective lens.

The actual rotation speed for writing the disk shall be such that it includes all Primary and Upper velocities for which parameters are specified in the Physical format information in the ADIP Aux Frames in the Lead-in Zone of the disk (see 14.4.1.1 and 14.4.2).

9.6 Wobble channel (Read channel 2)

Read channel 2 of the drive provides the wobble signals to control the access to addressed locations on the disk during writing. The wobble signal is generated in Read Channel 2 as a signal $\left(I_{1}-I_{2}\right)$ related to the difference in the amount of light in the two halves of the exit pupil of the objective lens. The read amplifiers after the photo detectors in the Read channel shall have a flat response within 1 dB from d.c. to 20 MHz .

9.7 Tracking channel (Read channel 2)

Read channel 2 of the drive provides the tracking error signals to control the servos for radial tracking of the optical beam. The radial tracking error is generated in Read Channel 2 as a signal $\left(I_{1}-I_{2}\right)$ related to the difference in the amount of light in the two halves of the exit pupil of the objective lens.

The method of generating the axial tracking error is not specified for the Reference Drive.

9.7.1 Normalized servo transfer function

The open-loop transfer function, $\mathrm{H}_{\mathrm{s}}(\mathrm{i} \omega)$ for the axial and radial tracking servos is given by equation (1),
$H_{s}(i \omega)=\frac{1}{3} \times\left(\frac{\omega_{0}}{\mathrm{i} \omega}\right)^{2} \times \frac{1+\frac{3 \mathrm{i} \omega}{\omega_{0}}}{1+\frac{\mathrm{i} \omega}{3 \omega_{0}}}$
where
$i=\sqrt{-1}$
$\omega=2 \pi f$
$\omega_{0}=2 \pi \mathrm{f}_{0}$
and f_{0} is the 0 dB crossover frequency of the open-loop transfer function.
The crossover frequencies of the lead-lag network of the servo are
lead break frequency: $f_{1}=f_{0} / 3$
lag break frequency: $\quad f_{2}=f_{0} \times 3$

9.7.2 Reference Servo for Axial Tracking

The crossover frequency of the normalized servo transfer function (H_{s}) for axial tracking, $\mathrm{f}_{0}=\omega_{0} /(2 \pi)$ shall be given by equation (2), where $\alpha_{\max }$ shall be 1,5 times as large as the maximum expected axial acceleration of $8,0 \mathrm{~m} / \mathrm{s}^{2}$. The resulting tracking error $e_{\max }$ from this $\alpha_{\text {max }}$ shall be $0,20 \mu \mathrm{~m}$.
Thus the crossover frequency f_{0} shall be given by
$\mathrm{f}_{0}=\frac{1}{2 \pi} \sqrt{\frac{3 \times \alpha_{\max }}{e_{\max }}}=\frac{1}{2 \pi} \sqrt{\frac{3 \times 8 \times 1,5}{0,20 \times 10^{-6}}}=2,1 \mathrm{kHz}$
For an open loop transfer function H of the Reference Servo for axial tracking, $|1+\mathrm{H}|$ is limited as schematically shown by the shaded region of Figure 4.

Bandwidth from 100 Hz to 10 kHz

$|1+\mathrm{H}|$ shall be within 20% of $\left|1+\mathrm{H}_{\mathrm{s}}\right|$.

Bandwidth from 26 Hz to 100 Hz

$|1+\mathrm{H}|$ shall be within the limits enclosed by the following four points.

1) $41,7 \mathrm{~dB}$ at $100 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.100 \mathrm{~Hz}-20 \%\right)$
2) $45,2 \mathrm{~dB}$ at $100 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.100 \mathrm{~Hz}+20 \%\right)$
3) $65,1 \mathrm{~dB}$ at $26 \mathrm{~Hz} \quad\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.26 \mathrm{~Hz}-20 \%\right)$
4) $85,1 \mathrm{~dB}$ at $26 \mathrm{~Hz} \quad\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.26 \mathrm{~Hz}-20 \%+20 \mathrm{~dB}\right)$

Bandwidth from 9,5 Hz to 26 Hz

$|1+\mathrm{H}|$ shall be between $65,1 \mathrm{~dB}$ and $85,1 \mathrm{~dB}$.

Figure 4 - Reference servo for axial tracking

ecma

9.7.3 Reference Servo for Radial Tracking

The crossover frequency of the normalized servo transfer function (H_{s}) for radial tracking $f_{0}=\omega_{0} /(2 \pi)$ shall be given by equation (3), where $\alpha_{\max }$ shall be 1,5 times as large as the maximum expected radial acceleration of $1,1 \mathrm{~m} / \mathrm{s}^{2}$. The resulting tracking error $e_{\max }$ from this $\alpha_{\text {max }}$ shall be $0,022 \mu \mathrm{~m}$.
Thus the crossover frequency f_{0} shall be given by
$\mathrm{f}_{0}=\frac{1}{2 \pi} \sqrt{\frac{3 \times \alpha_{\max }}{e_{\max }}}=\frac{1}{2 \pi} \sqrt{\frac{3 \times 1,1 \times 1,5}{0,022 \times 10^{-6}}}=2,4 \mathrm{kHz}$
For an open loop transfer function H of the Reference Servo for radial tracking, $|1+\mathrm{H}|$ is limited as schematically shown by the shaded region of Figure 5.

Bandwidth from 100 Hz to 10 kHz

$|1+\mathrm{H}|$ shall be within 20% of $\left|1+\mathrm{H}_{\mathrm{s}}\right|$.

Bandwidth from $28,2 \mathrm{~Hz}$ to 100 Hz

$|1+\mathrm{H}|$ shall be within the limits enclosed by the following four points.

1) $43,7 \mathrm{~dB}$ at $100 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.100 \mathrm{~Hz}-20 \%\right)$
2) $47,2 \mathrm{~dB}$ at $100 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.100 \mathrm{~Hz}+20 \%\right)$
3) $65,6 \mathrm{~dB}$ at $28,2 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.28,2 \mathrm{~Hz}-20 \%\right)$
4) $85,6 \mathrm{~dB}$ at $28,2 \mathrm{~Hz}\left(\left|1+\mathrm{H}_{\mathrm{s}}\right|\right.$ at $\left.28,2 \mathrm{~Hz}-20 \%+20 \mathrm{~dB}\right)$

Bandwidth from $9,5 \mathrm{~Hz}$ to $\mathbf{2 8 , 2} \mathbf{~ H z}$

$|1+\mathrm{H}|$ shall be between $65,6 \mathrm{~dB}$ and $85,6 \mathrm{~dB}$.

Figure 5 - Reference servo for radial tracking

Section 2 - Dimensional, mechanical and physical characteristics of the disk

10 Dimensional characteristics

Dimensional characteristics are specified for those parameters deemed mandatory for interchange and compatible use of the disk. Where there is freedom of design, only the functional characteristics of the elements described are indicated. The enclosed drawing, Figure 7 shows the dimensional requirements in summarized form. The different parts of the disk are described from the centre hole to the outside rim.

10.1 Reference Planes

The dimensions are referred to two Reference Planes P and Q.
Reference Plane P is the primary Reference Plane. It is the plane on which the bottom surface of the Clamping Zone rests (see 10.5).
Reference Plane Q is the plane parallel to Reference Plane P at the height of the top surface of the Clamping Zone.

10.2 Overall dimensions

The disk shall have an overall diameter (see also Annex A)

$$
d_{1}=120,00 \mathrm{~mm} \pm 0,30 \mathrm{~mm}
$$

The centre hole of a substrate or a dummy substrate shall have a diameter (see Figure 6)

$$
d_{\text {substrate }}=15,00 \mathrm{~mm}_{-0,00 \mathrm{~mm}}^{+0,15 \mathrm{~mm}}
$$

The hole of an assembled disk, i.e. with both parts bonded together, shall have a diameter $d_{2}=15,00 \mathrm{~mm} \mathrm{~min}$.

Figure 6 - Hole diameters for an assembled disk

The corners of the centre hole shall be free of any burrs or sharp features and shall be rounded off or chamfered by

$$
h_{5}=0,1 \mathrm{~mm} \max .
$$

ecma

The thickness of the disk shall be

$$
e_{1}=1,20 \mathrm{~mm}_{-0,06 \mathrm{~mm}}^{+0,30 \mathrm{~mm}}
$$

10.3 First transition area

In the area defined by d_{2} and

$$
d_{3}=16,0 \mathrm{~mm} \mathrm{~min} .
$$

the surface of the disk is permitted to be above Reference Plane P and/or below Reference Plane Q by $0,10 \mathrm{~mm}$ max.

10.4 Second transition area

This area shall extend between diameter d_{3} and diameter

$$
d_{4}=22,0 \mathrm{~mm} \max .
$$

In this area the disk may have an uneven surface or burrs up to $0,05 \mathrm{~mm}$ max. beyond Reference Planes P and/or Q.

10.5 Clamping Zone

This Zone shall extend between diameter d_{4} and diameter
$d_{5}=33,0 \mathrm{~mm} \mathrm{~min}$.
Each side of the Clamping Zone shall be flat within $0,1 \mathrm{~mm}$. The top side of the Clamping Zone, i.e. that of Reference Plane Q shall be parallel to the bottom side, i.e. that of Reference Plane P within $0,1 \mathrm{~mm}$.

In the Clamping Zone the thickness e_{2} of the disk shall be

$$
e_{2}=1,20 \mathrm{~mm}_{-0,10 \mathrm{~mm}}^{+0,20 \mathrm{~mm}}
$$

10.6 Third transition area

This area shall extend between diameter d_{5} and diameter
$d_{6}=44,0 \mathrm{~mm}$ max.
In this area the top surface is permitted to be above Reference Plane Q by
$h_{1}=0,25 \mathrm{~mm}$ max.
or below Reference Plane Q by
$h_{2}=0,10 \mathrm{~mm}$ max.
The bottom surface is permitted to be above Reference Plane P by
$h_{3}=0,10 \mathrm{~mm}$ max.
or below Reference Plane P by
$h_{4}=0,25 \mathrm{~mm}$ max.

10.7 Information Zone

The Information Zone shall extend from diameter d_{6} to diameter (see also Annex A)
$d_{7}=117,5 \mathrm{~mm} \mathrm{~min}$.
This Zone consists of the Lead-in Zone, the Data Zone, the Lead-out Zone and the Inner and Outer Drive Areas (see also Clause 15).

10.8 Rim Area

The rim area is that area extending from diameter d_{7} to diameter d_{1}. In this area the surfaces are permitted to both extend beyond Reference Plane Q or Reference Plane P

$$
h_{6}=0,1 \mathrm{~mm} \max .
$$

The outer corners of the disk shall be free of any burrs or sharp features and shall be rounded off or chamfered by

$$
h_{7}=0,2 \mathrm{~mm} \max .
$$

10.9 Remark on tolerances

All heights specified in the preceding clauses and indicated by h_{i} are independent from each other. This means that, for example, if the top surface of the third transition area is below Reference Plane Q by up to h_{2}, there is no implication that the bottom surface of this area has to be above Reference Plane P by up to h_{3}. Where dimensions have the same - generally maximum - numerical value, this does not imply that the actual values have to be identical.

View A - Transition areas and Clamping zone

Figure 7 - Physical disk dimensions

11 Mechanical characteristics

11.1 Mass

The mass of the disk shall be in the range of $13,0 \mathrm{~g}$ to $20,0 \mathrm{~g}$ (see also Annex A).

11.2 Moment of inertia

The moment of inertia of the disk, relative to its rotation axis, shall not exceed $0,040 \mathrm{~g} \cdot \mathrm{~m}^{2}$ (see also Annex A).

11.3 Dynamic imbalance

The dynamic imbalance of the disk, relative to its rotation axis, shall not exceed $2,5 \mathrm{~g} \cdot \mathrm{~mm}$ (see also Annex A).

11.4 Axial runout

When measured by the optical system with the Reference Servo for axial tracking, the disk rotating at the Reference velocity of $3,49 \mathrm{~m} / \mathrm{s}$ (see 9.5), the deviation of the recording layer from its nominal position in the direction normal to the Reference Planes shall not exceed $0,30 \mathrm{~mm}$.
11.4.1 Tracking requirements for all disks

The residual tracking error below 10 kHz , measured using the Reference Servo for axial tracking and the disk rotating at the Reference velocity, shall not exceed $0,13 \mu \mathrm{~m}$. The measuring filter shall be a Butterworth LPF,
$\mathrm{f}_{\mathrm{c}}(-3 \mathrm{~dB})$: 10 kHz , with slope : $-80 \mathrm{~dB} /$ decade.
11.4.2 Additional tracking requirements for high-speed disks

Disks suited to be recorded at speeds $>4 \times$ the reference velocity, shall also fulfill the following requirement:
the residual tracking error below 10 kHz , measured using the Reference Servo for axial tracking and the disk rotating at a fixed rotational speed of 3000 RPM, shall not exceed $\mathrm{E}_{\mathrm{ax}}(r) \mu \mathrm{m}$, where E_{ax} is a function of the radius r according to the following specifications:
for $r \leq 29 m m: \mathrm{E}_{\mathrm{ax}}(r)=0,20 \mu \mathrm{~m}$
for $r \geq 29 \mathrm{~mm}: \mathrm{E}_{\mathrm{ax}}(r)=\left(\frac{r}{29}\right)^{2} \times 0,20 \mu \mathrm{~m}$, with r expressed in mm
If present, the 50 Hz component shall be removed from the residual tracking error before applying these requirements (e.g. by software processing of the sampled measurement data).

11.5 Radial runout

The runout of the outer edge of the disk shall not exceed $0,30 \mathrm{~mm}$ peak-to-peak.
The radial runout of tracks shall not exceed $70 \mu \mathrm{~m}$ peak-to-peak.

11.5.1 Tracking requirements for all disks
 The residual tracking error below $1,1 \mathrm{kHz}$, measured using the Reference Servo for radial tracking and the disk rotating at the Reference velocity of $3,49 \mathrm{~m} / \mathrm{s}$ (see 9.5), shall not exceed $0,015 \mu \mathrm{~m}$.

The measuring filter shall be a Butterworth LPF,

$$
\mathrm{f}_{\mathrm{c}}(-3 \mathrm{~dB}): 1,1 \mathrm{kHz} \text {, with slope : }-80 \mathrm{~dB} / \text { decade. }
$$

The rms noise value of the residual error signal in the frequency band from $1,1 \mathrm{kHz}$ to 10 kHz , measured with an integration time of 20 ms , using the Reference Servo for radial tracking, shall not exceed 0,016 $\mu \mathrm{m}$.

ecma

The measuring filter shall be a Butterworth BPF,
frequency range (-3 dB) : $1,1 \mathrm{kHz}$, with slope : +80 dB/decade
to $\quad: 10 \mathrm{kHz}$, with slope : $-80 \mathrm{~dB} / \mathrm{decade}$.

11.5.2 Additional tracking requirements for high-speed disks

Disks suited to be recorded at speeds $>4 \times$ the reference velocity, shall also fulfill the following requirement:
the residual tracking error below 10 kHz , measured using the Reference Servo for radial tracking and the disk rotating at a fixed rotational speed of 3000 RPM, shall not exceed $\mathrm{E}_{\mathrm{rad}}(r) \mu \mathrm{m}$, where $\mathrm{E}_{\mathrm{rad}}$ is a function of the radius r according to the following specifications:
for $r \leq 29 \mathrm{~mm}: \mathrm{E}_{\mathrm{rad}}(r)=0,020 \mu \mathrm{~m}$
for $r \geq 29 \mathrm{~mm}: \mathrm{E}_{\mathrm{rad}}(r)=\left(\frac{r}{29}\right)^{2} \times 0,020 \mu \mathrm{~m}$, with r expressed in mm
If present, the 50 Hz component shall be removed from the residual tracking error before applying these requirements (e.g. by software processing of the sampled measurement data). This process effectively removes the influence of the pure eccentricity of the disk.

12 Optical characteristics in the Information Zone

12.1 Index of refraction

The index of refraction of the substrate in the Information Zone shall be $1,55 \pm 0,10$.

12.2 Thickness of the substrate

The thickness of the substrate, from the entrance surface to the recording layer, varies with the index of refraction of the substrate and shall be defined as the enclosed region in Figure 8.

Figure 8 - Thickness of the substrate

12.3 Reflectivity

The double-pass optical transmission of the substrate and the reflectivity of the recording layer are measured together as the reflectivity R of the disk. When measured according to Annex B the value of R shall be
in the Information Zone $\quad 45 \% \leq R_{\mathrm{d}} \leq 85 \%$ in the unrecorded groove $45 \% \leq R_{14 \mathrm{H}} \leq 85 \%$ in the recorded groove
The product of the reflectivity of the unrecorded groove R_{d} and the optimized write power Ppeak for the write strategy concerned (see 29.3.2) shall fulfil the following requirement:

$$
R_{\mathrm{d}} \times \text { actual } P \text { peak } \leq \frac{P \text { peak_max for } \lambda \leq \lambda_{\text {IND }} \text { for write strategy concerned }(\mathrm{mW})}{15} \times 9 \mathrm{~mW}
$$

12.4 Birefringence

The birefringence of the substrate shall not exceed 60 nm when measured according to Annex C.

12.5 Angular deviation

The angular deviation is the angle α between a parallel incident beam perpendicular to the Reference Plane P and the reflected beam (see Figure 9). The incident beam shall have a diameter in the range $0,3 \mathrm{~mm}$ to $3,0 \mathrm{~mm}$. This angle α includes deflection due to the entrance surface and to the unparallelism of the recording layer with the entrance surface.

Figure 9-Angular deviation α

The angular deviation shall be
In radial direction: $\quad|\alpha|=0,70^{\circ}$ max.
The variation of α in radial direction over one revolution shall be $0,80^{\circ}$ peak-to-peak max.
In tangential direction: $\quad|\alpha|=0,30^{\circ}$ max.

Section 3 - Format of information

13 Data format

The data received from the host, called Main Data, is formatted in a number of steps before being recorded on the disk.
It is transformed successively into

- a Data Frame,
- a Scrambled Frame,
- an ECC Block,
- 16 Recording Frames,
- 16 Physical Sectors,
- a Recording Unit.

These steps are specified in the following clauses.

13.1 Data Frames

A Data Frame shall consist of 2064 bytes arranged in an array of 12 rows each containing 172 bytes (Figure 10). The first row shall start with three fields, called Identification Data (ID), ID Error Detection Code (IED), and RSV bytes, followed by 160 Main Data bytes. The next 10 rows shall each contain 172 Main Data bytes, and the last row shall contain 168 Main Data bytes followed by four bytes for recording an Error Detection Code (EDC). The 2048 Main Data bytes are identified as D_{0} to $D_{2} 047$.

	$\begin{gathered} 4 \\ \text { bytes } \end{gathered}$	$\begin{gathered} 2 \\ \text { bytes } \end{gathered}$	6 bytyes	172 bytes	
12 rows	ID	IED	RSV	Main data 160 bytes	
	Main data 172 bytes ($\mathrm{D}_{160}-\mathrm{D}_{331}$)				
	Main data 172 bytes ($\left.\mathrm{D}_{332}-\mathrm{D}_{503}\right)$				
	Main data 172 bytes ($\mathrm{D}_{504}-\mathrm{D}_{675}$)				
	Main data 172 bytes ($\mathrm{D}_{676}-\mathrm{D}_{847}$)				
	Main data 172 bytes ($\left.\mathrm{D}_{848}-\mathrm{D}_{1} 019\right)$				
	Main data 172 bytes ($\mathrm{D}_{1020}-\mathrm{D}_{1} 191$)				
	Main data 172 bytes ($\mathrm{D}_{1} 192-\mathrm{D}_{1} 363$)				
	Main data 172 bytes ($\mathrm{D}_{1364}-\mathrm{D}_{1} 535$)				
	Main data 172 bytes ($\mathrm{D}_{1536}-\mathrm{D}_{1} 707$)				
	Main data 172 bytes ($\left.\mathrm{D}_{1708}-\mathrm{D}_{1} 879\right)$				
	Main data 172 bytes ($\mathrm{D}_{1880}-\mathrm{D}_{2} 047$)				EDC
					$\begin{gathered} 4 \\ \text { bytes } \end{gathered}$

Figure 10 - Data Frame

13.1.1 Identification Data (ID)

This field shall consist of four bytes, the bits of which are numbered consecutively from b_{0} (Isb) to $b_{31}(\mathrm{msb})$, see Figure 11.

Figure 11-Identification Data (ID)

The bits of the most significant byte, the Sector Information, shall be set as follows:
Bit b_{31} shall be set to ZERO, indicating a CLD format
Bit $b_{30} \quad$ shall be set to ZERO, indicating pit tracking capability (see 31.2.5)
Bit b_{29} shall be set to ZERO indicating that the reflectivity is greater than 40%
Bit b_{28} shall be set to ZERO
Bits b_{27} to b_{26} shall be set to
ZERO ZERO in the Data Zone
ZERO ONE in the Lead-in Zone ONE ZERO in the Lead-out Zone
Bit b_{25} shall be set to ZERO, indicating read only data.
Bit b_{24} shall be set to ZERO, indicating that through an entrance surface only one recording layer can be accessed.
The least significant three bytes, bits b_{23} to b_{0}, shall specify the Physical Sector Number in binary notation. The Physical Sector Number of the first Physical Sector of an ECC Block shall be an integer multiple of 16 .
13.1.2 ID Error Detection Code (IED)

When identifying all bytes of the array shown in Figure 10 as $C_{i, j}$ for $i=0$ to 11 and $j=0$ to 171 , the bytes of IED are represented by $\mathrm{C}_{0, j}$ for $j=4$ to 5 . Their setting is obtained as follows.

$$
\operatorname{IED}(x)=\sum_{j=4}^{5} \mathrm{C}_{0, j} x^{5-j}=\mathrm{I}(x) x^{2} \bmod \mathrm{G}_{\mathrm{E}}(x)
$$

where

$$
\mathrm{I}(x)=\sum_{j=0}^{3} \mathrm{C}_{0, j} x^{3-j} \quad \text { and } \quad \mathrm{G}_{\mathrm{E}}(x)=(x+1)(x+\alpha)
$$

α is the primitive root of the primitive polynomial $\mathrm{P}(x)=x^{8}+x^{4}+x^{3}+x^{2}+1$

13.1.3 RSV

This field shall consist of 6 bytes. The first byte can be set by the application. If not specified by the application, it is reserved and shall be set to (00). The remaining 5 bytes are reserved and shall all be set to (00).
Under no circumstance may other data received from the host be recorded in this field.

ecma

Circumvention: Recorders and recording drives shall be considered as circumvention devices when these are produced to record, or can easily be modified to record, in any manner, a user-defined number in this field.

13.1.4 Error Detection Code (EDC)

This 4-byte field shall contain the parities of an Error Detection Code computed over the preceding 2060 bytes of the Data Frame. Considering the Data Frame as a single bit field starting with the most significant bit of the first byte of the ID field and ending with the least significant bit of the EDC field, then this msb will be $\mathrm{b}_{16} 511$ and the Isb will be b_{0}. Each bit b_{i} of the EDC is shown as follows for $i=0$ to 31 :

$$
\mathrm{EDC}(x)=\sum_{i=0}^{31} \mathrm{~b}_{i} x^{i}=\mathrm{I}(x) \bmod \mathrm{G}(x)
$$

where

$$
\mathrm{I}(x)=\sum_{i=32}^{16511} \mathrm{~b}_{i} x^{i} \quad \text { and } \quad \mathrm{G}(x)=x^{32}+x^{31}+x^{4}+1
$$

13.2 Scrambled Frames

The 2048 Main Data bytes shall be scrambled by means of the circuit shown in Figure 12 which shall consist of a feedback bit shift register in which bits r_{7} (msb) to r_{0} (Isb) represent a scrambling byte at each 8 -bit shift. At the beginning of the scrambling procedure of a Data Frame, positions r_{14} to r_{0} shall be pre-set to the value(s) specified in Table 1 (the msb of the pre-set value shall be discarded). The same pre-set value shall be used for 16 consecutive Data Frames. After 16 groups of 16 Data Frames, the sequence is repeated. The initial pre-set number is equal to the value represented by bits $b_{7}(\mathrm{msb})$ to $b_{4}(\mathrm{lsb})$ of the ID field of the Data Frame. Table 1 specifies the initial pre-set value of the shift register corresponding to the 16 initial pre-set numbers.

Table 1 - Initial values of the shift register

Initial pre-set number	Initial pre-set value	Initial pre-set number	Initial pre-set value
(0)	(0001)	(8)	(0010)
(1)	(5500)	(9)	(5000)
(2)	(0002)	(A)	(0020)
(3)	$(2 A 00)$	(B)	(2001)
(4)	(0004)	(C)	(0040)
(5)	(5400)	(D)	(4002)
(6)	(0008)	(E)	(0080)
(7)	(2800)	(F)	(0005)

Figure 12 - Feedback shift register

The part of the initial value of r_{7} to r_{0} is taken out as scrambling byte S_{0}. After that, an 8-bit shift is repeated 2047 times and the following 2047 bytes shall be taken from r_{7} to r_{0} as scrambling bytes S_{1} to $S_{2} 047$. The Main Data bytes D_{k} of the Data Frame become scrambled bytes D' ${ }_{k}$ where

$$
\mathrm{D}_{k}^{\prime}=\mathrm{D}_{k} \oplus \mathrm{~S}_{k} \quad \text { for } k=0 \text { to } 2047
$$

\oplus stands for Exclusive OR

13.3 ECC Blocks

An ECC Block is formed by arranging 16 consecutive Scrambled Frames in an array of 192 rows of 172 bytes each (Figure 13). To each of the 172 columns 16 bytes of Parity of Outer Code are added, then, to each of the resulting 208 rows, 10 bytes of Parity of Inner Code are added. Thus a complete ECC Block comprises 208 rows of 182 bytes each. The bytes of this array are identified as $\mathrm{B}_{i, j}$ as follows, where i is the row number and j is the column number.
$\mathrm{B}_{i, j}$ for $i=0$ to 191 and $j=0$ to 171 are bytes from the Scrambled Frames
$\mathrm{B}_{i, j}$ for $i=192$ to 207 and $j=0$ to 171 are bytes of the Parity of Outer Code
$\mathrm{B}_{i, j}$ for $i=0$ to 207 and $j=172$ to 181 are bytes of the Parity of Inner Code

Figure 13-ECC Block
The PO and PI bytes shall be obtained as follows.
In each of columns $j=0$ to 171 , the 16 PO bytes are defined by the remainder polynomial $\mathrm{R}_{j}(x)$ to form the outer code $\operatorname{RS}(208,192,17)$.

$$
\mathrm{R}_{j}(x)=\sum_{i=192}^{207} \mathrm{~B}_{i, j} x^{207-i}=\mathrm{I}_{j}(x) x^{16} \bmod \mathrm{G}_{\mathrm{PO}}(x)
$$

where

$$
\mathrm{I}_{j}(x)=\sum_{i=0}^{191} \mathrm{~B}_{i, j} x^{191-i} \quad \text { and } \quad \mathrm{G}_{\mathrm{PO}}(x)=\prod_{k=0}^{15}\left(x+\alpha^{k}\right)
$$

ecma

In each of rows $i=0$ to 207 , the 10 PI bytes are defined by the remainder polynomial $\mathrm{R}_{i}(x)$ to form the inner code RS(182,172,11).

$$
\mathrm{R}_{i}(x)=\sum_{j=172}^{181} \mathrm{~B}_{i, j} x^{181-j}=\mathrm{I}_{i}(x) x^{10} \bmod \mathrm{G}_{\mathrm{PI}}(x)
$$

where

$$
\mathrm{I}_{i}(x)=\sum_{j=0}^{171} \mathrm{~B}_{i, j} x^{171-j} \quad \text { and } \quad \mathrm{G}_{\mathrm{PI}}(x)=\prod_{k=0}^{9}\left(x+\alpha^{k}\right)
$$

α is the primitive root of the primitive polynomial $\mathrm{P}(x)=x^{8}+x^{4}+x^{3}+x^{2}+1$

13.4 Recording Frames

Sixteen Recording Frames shall be obtained by interleaving one of the 16 PO rows at a time after every 12 rows of an ECC Block (Figure 14). This is achieved by re-locating the bytes $\mathrm{B}_{i, j}$ of the ECC Block as $\mathrm{B}_{m, n}$ for

$$
\begin{array}{ll}
m=i+\operatorname{int}[i / 12] & \text { and } n=j \text { for } i \leq 191 \\
m=13 \times(i-191)-1 & \text { and } n=j \text { for } i \geq 192
\end{array}
$$

where int $[x]$ represents the largest integer not greater than x.
Thus the 37856 bytes of an ECC Block are re-arranged into 16 Recording Frames of 2366 bytes. Each Recording Frame consists of an array of 13 rows of 182 bytes.

Figure 14 - Recording Frames obtained from an ECC Block

13.5 Modulation and NRZI conversion

The 8-bit bytes of each Recording Frame shall be transformed into 16-bit Code Words with the run length limitation that between 2 ONEs there shall be at least 2 ZEROs and at most 10 ZEROs ($R L L(2,10)$). Annex G specifies the conversion tables to be applied. The Main Conversion table and the Substitution table specify a 16-bit Code Word for each 2568 -bit bytes with one of 4 States. For each 8-bit byte, the tables indicate the corresponding Code Word, as well as the State for the next 8-bit byte to be encoded.
The 16-bit Code Words shall be NRZI-converted into Channel bits before recording on the disk (see Figure 15). The Channel clock period is the time between 2 consecutive Channel bits.

Figure 15-NRZI conversion

13.6 Physical Sectors

The structure of a Physical Sector is shown in Figure 16. It shall consist of 13 rows, each comprising two Sync Frames. A Sync Frame shall consist of a SYNC Code from Table 2 and 1456 Channel bits representing 91 8-bit bytes. Each row of the Physical Sector shall consist of two Sync Frames with the first 1456 Channel bits representing the first 91 bytes of each row of a Recording Frame and the second 1456 Channel bits representing the second 91 bytes of each row of a Recording Frame.

	$\leftarrow 32 \rightarrow$	$\longleftarrow 1456 \longrightarrow$	$\leftarrow 32 \rightarrow$	$\longleftarrow 1456 \longrightarrow$
\uparrow	SYO		SY5	
	SY1		SY5	
	SY2		SY5	
	SY3		SY5	
	SY4		SY5	
	SY1		SY6	
13 rows	SY2		SY6	
	SY3		SY6	
	SY4		SY6	
	SY1		SY7	
	SY2		SY7	
	SY3		SY7	
\downarrow	SY4		SY7	
	-	Sync Frame \longrightarrow	\longleftarrow	Sync Frame \longrightarrow

Figure 16 - Physical Sector

Recording of the Physical Sector shall start with the first Sync Frame of the first row, followed by the second Sync Frame of that row, and so on, row-by-row. The state of each SYNC Code and each subsequent set of 16 Channel bits shall follow the rules defined in 13.8.

Table 2 - SYNC Codes

13.7 Layout of a Recording UNit (RUN)

A RUN shall consist of an integer number ($M \geq 1$) of sets of 16 Physical Sectors, each from a single ECC Block. The M ECC Blocks shall be preceded by 8 Channel bits, which are meant to reduce possible influences of inaccuracies of the linking point, while the last 8 Channel bits of the last Physical Sector shall be discarded at recording. The 8 linking Channel bits and the next SYNC Code SYO (chosen from State $1 / 2$ or State $3 / 4$) shall be chosen randomly, such that the runlength constraints specified in 13.5 are fulfilled.

Each RUN of M ECC Blocks ($M \geq 1$) starting with ECC Block N shall be recorded in the following way:

8 Channel bits for linking in ECC Block $N-1$,
full ECC Blocks N to $N+M-2$ (if $M \geq 2$),
ECC Block $N+M-1$, except for the last 8 Channel bits, which bits shall not be recorded.
The positioning of a Recording Unit is shown in Figure 17.
When the RUN starting with ECC Block N is to be recorded, and ECC Block $N-1$ has not yet been recorded, then the RUN shall be extended with a dummy ECC Block $N-1$ of which all Main Data bytes shall be set to (00) (see also Clause 23: Sequential recording).

Figure 17-Recording Unit

13.7.1 Recording Unit position

Each ECC Block, consisting of 16 Physical Sectors, shall correspond to 4 ADIP words (see 14.4.1.1). RUNs shall be mapped onto the structure of tracks (see 14.4), such that the Physical Sector Numbers (PSN), of which the 2 least significant bits have been discarded, correspond to the local Physical Address in ADIP (PAA). In mathematical form: PSN $=4 \times$ PAA $+i$, where $i=0,1,2$, or 3 (for example: Physical Sector Numbers (030000) to (030003) correspond to Physical ADIP Address (00C000)).
The reference for the theoretical start positions is wobble 15 following the ADIP word sync unit of the ADIP words of which the 2 least significant address bits are 00 (see 14.4.1.1 and Figure 21). The theoretical start position is 8 Channel bits after the nominal position of the zero crossing in the middle of the above mentioned wobble 15 of the wobble signal from Read channel 2.
The start of each recording shall be within ± 5 Channel bits of the theoretical start position. During writing the Channel bit clock shall be phase locked to the wobble frequency.

13.8 d.c. component suppression control

To ensure a reliable radial tracking and a reliable detection of the HF signals, the low frequency content of the stream of Channel bit patterns should be kept as low as possible. In order to achieve this, the Digital Sum Value (DSV, see 4.3) shall be kept as close to zero as possible. At the beginning of the modulation, the DSV shall be set to 0 .
The different ways of diminishing the current value of the DSV are as follows:
a) Choice of SYNC Codes between Primary or Secondary SYNC Codes.
b) For the 8 -bit bytes in the range 0 to 87 , the Substitution table offers an alternative 16 -bit Code Word for all States.
c) For the 8 -bit bytes in the range 88 to 255 , when the prescribed State is 1 or 4 , then the 16 -bit Code Word can be chosen either from State 1 or from State 4, so as to ensure that the RLL requirement is met.
In order to use these possibilities, two data streams, Stream 1 and Stream 2, are generated. Stream 1 shall start with the Primary SYNC Code and Stream 2 with the Secondary SYNC Code of the same category of SYNC Codes. As both streams are modulated individually, they generate a different DSV because of the difference between the bit patterns of the Primary and Secondary SYNC Codes.
In the cases b) and c), there are two possibilities to represent a 8-bit byte. The DSV of each stream is computed up to the 8 -bit byte preceding the 8 -bit byte for which there is this choice. The stream with the lowest |DSV| is selected and duplicated to the other stream. Then, one of the representations of the next 8 -bit byte is entered into Stream 1 and the other into Stream 2. This operation is repeated each time case b) or c) occurs.
Whilst case b) always occurs at the same pattern position in both streams, case c) may occur in one of the streams and not in the other because, for instance, the next State prescribed by the previous 8 -bit byte can be 2 or 3 instead of 1 or 4 . In that case the following 3 -step procedure shall be applied:

1) Compare the $|\mathrm{DSV}| \mathrm{s}$ of both streams.
2) If the $|D S V|$ of the stream in which case c) occurs is smaller than that of the other stream, then the stream in which case c) has occurred is chosen and duplicated to the other stream. One of the representations of the next 8 -bit byte is entered into this stream and the other into the other stream.
3) If the $|\mathrm{DSV}|$ of the stream in which case c) has occurred is larger than that of the other stream, then case c) is ignored and the 8 -bit byte is represented according to the prescribed State.
In both cases b) and c), if the $|\mathrm{DSV}| \mathrm{s}$ are equal, the decision to choose Stream 1 or Stream 2 is implementation-defined.
The procedure for case a) shall be as follows:
4) At the end of each Sync Frame, whether or not case b) and or case c) have occurred, the accumulated DSVs of both streams are compared. The stream with the lower |DSV| is selected and duplicated to the other stream. Then the next Primary SYNC Code and the Secondary SYNC Code of the proper category are inserted each in one of the streams.
Optionally the procedure for case a) can be extended in the following way:
5) If the DSV at the end of the resulting Sync Frame is greater than +63 or smaller than -64 , then the SYNC Code at the beginning of the Sync Frame is changed from Primary to Secondary or vice versa. If this yields a smaller $|\mathrm{DSV}|$, the change is permanent, if the $|\mathrm{DSV}|$ is not smaller, the original SYNC Code is retained.
During the DSV computation, the actual values of the DSV may vary between -1000 and +1000 , thus it is recommended that the count range for the DSV be at least from -1 024 to +1023 .

14 Track format

14.1 Track shape

The area in the Information Zone (see 10.7) shall contain tracks formed from a single spiral groove. Each track shall form a 360° turn of a continuous spiral. The shape of each track is determined by the requirements in Section 5. Recordings shall be made in the groove.

The tracks in the Information Zone contain a phase modulated sinusoidal deviation from the nominal centrelines, called wobble, which contains addressing information.
The tracks shall be continuous in the Information Zone.
The groove tracks shall start at a radius of $\quad 22,00 \mathrm{~mm}$ max, and end at a radius of $58,75 \mathrm{~mm}$ min (see also Annex A).

14.2 Track path

The track path shall be a continuous spiral from the inside (beginning of the Lead-in Zone) to the outside (end of the Lead-out Zone) when the disk rotates counter-clockwise as viewed from the optical head.

14.3 Track pitch

The track pitch is the distance measured between the average track centrelines of adjacent tracks, measured in the radial direction. The track pitch shall be $0,74 \mu \mathrm{~m} \pm 0,03 \mu \mathrm{~m}$. The track pitch averaged over the Information Zone shall be $0,74 \mu \mathrm{~m} \pm 0,01 \mu \mathrm{~m}$.

14.4 Track layout

The wobble of the tracks is a sinusoidal deviation from the nominal centrelines, with a wavelength of $4,2656 \mu \mathrm{~m} \pm 0,0450 \mu \mathrm{~m}$ (equivalent to 32 Channel bits). The Total Harmonic Distortion (THD) of the oscillator for generating the wobble sine wave shall be $\leq-40 \mathrm{~dB}$.

The wobble is phase modulated by inverting wobble cycles. The information contained in the wobble modulation is called Address-in-Pregroove or ADIP (see 14.4.1.1).

14.4.1 ADIP information

The data to be recorded onto the disk must be aligned with the ADIP information modulated in the wobble. Therefore 93 wobbles shall correspond to 2 Sync Frames. Of each 93 wobbles, 8 wobbles are phase modulated with ADIP information (see Figure 18).
1 wobble equals 32 Channel bits (= 32 T)
one ADIP unit $=8$ modulated wobbles per 2 Sync Frames

Figure 18 - General ADIP structure

ecma

14.4.1.1 ADIP word structure

52 ADIP units are grouped into one ADIP word each.
This means that one ADIP word corresponds to $4 \times 13 \times 2$ Sync Frames $\equiv 4$ Physical Sectors.

Each ADIP word shall consist of: 1 ADIP sync unit + 51 ADIP data units.
ADIP sync unit = 4 inverted wobbles for word sync +4 monotone wobbles.
ADIP data unit = 1 inverted wobble for bit sync +3 monotone wobbles +4 wobbles representing one data bit. (see 14.4.1.3)
ADIP word structure:

			wobble 0	wobble 1 to 3	wobble 4 to 7		
\uparrow	\uparrow	sync unit	word sync			\uparrow	\uparrow
		data unit	bit sync		data bit 1		
	ADIP	data unit	bit sync		data bit 2	4 Physical	
4	word	:	:	:	:		1
ADIP		:	:	:	:	Sectors	ECC
words	\downarrow	data unit	bit sync		data bit 51	\downarrow	Block
\downarrow							\downarrow

Figure 19 - ADIP word structure

The information contained in the data bits is as follows:
bit 1: this bit is reserved and shall be set to ZERO.
bits 2 to 23: these 22 bits contain a Physical ADIP Address. Data bit 2 is the msb and data bit 23 is the Isb. The addresses increase by one for each next ADIP word. The first address in the Information Zone shall be such that Physical ADIP Address $(00 \mathrm{C} 000)$ is located at radius $24,000_{-0,20}^{+0,00} \mathrm{~mm}$.
Physical ADIP Address (098150), which is the first address corresponding to the Lead-out Zone, shall be located at a radius $\leq 58,00 \mathrm{~mm}$ (see also Annex A).
bits 24 to 31: these 8 bits contain auxiliary information about the disk.
In the Data Zone and the Lead-out Zone / Outer Drive Area of the disk the auxiliary bytes shall be set to (00).

In the Lead-in Zone and the Inner Drive Area of the disk the auxiliary bytes shall be used as follows:
Bit 24 to 31 from 256 consecutive ADIP words, shall form one ADIP Aux Frame with 256 bytes of information. The first byte of each ADIP Aux Frame shall be located in an ADIP word with a Physical ADIP Address that is a multiple of 256 (Physical ADIP Address = (xxxx00)).

The contents of the 256 bytes are defined in Table 3 and 14.4.2.
bits 32 to 51: these 20 bits contain error correction parities for the ADIP information (see 14.4.1.2).

14.4.1.2 ADIP error correction

For the ADIP error correction the ADIP data bits are grouped into 4-bit nibbles.
The mapping of the data bits into the nibble array is defined in Figure 20. Bit 0 is a dummy bit, which shall be considered as set to ZERO for the error corrector.

nibble N_{0}	bit 0	bit 1	bit 2	bit 3	\uparrow	
nibble N_{1}	bit 4	bit 5	$:$	$:$	6	ADIP
$:$	$:$	$:$	$:$	$:$	nibbles	address
$:$	bit 20	$:$	$:$	bit 23	\downarrow	
$:$	bit 24				$\uparrow 2$	AUX
nibble N_{7}	bit 28		$:$	bit 31	\downarrow nibbles	data
nibble N_{8}	bit 32	$:$	$:$	$:$	\uparrow	nibble
$:$	$:$	$:$	$:$	$:$	5	based
$:$	$:$	$:$	$:$	$:$	nibbles	R-S
nibble N_{12}	bit 48	bit 49	bit 50	bit 51	\downarrow	ECC

Figure 20-ADIP error correction structure

A nibble-based $R S(13,8,6)$ code is constructed, of which the 5 parity nibbles N_{8} to N_{12}, are defined by the remainder polynomial $\mathrm{R}(x)$:

$$
\mathrm{R}(x)=\sum_{i=8}^{12} \mathrm{~N}_{i} x^{12-i}=\mathrm{I}(x) x^{5} \bmod \mathrm{GPA}(x)
$$

where

$$
\mathrm{I}(x)=\sum_{i=0}^{7} \mathrm{~N}_{i} x^{7-i} \quad \text { and } \quad \mathrm{G}_{\mathrm{PA}}(x)=\prod_{k=0}^{4}\left(x+\alpha^{k}\right)
$$

α is the primitive root 0010 of the primitive polynomial $\mathrm{P}(x)=x^{4}+x+1$
All bits of the 5 parity nibbles N_{8} to N_{12} shall be inverted before recording.

14.4.1.3 ADIP modulation rules

The ADIP units are modulated by inverting some of the 8 wobble cycles:

- PW is a positive wobble, which shall start moving towards the inside of the disk.
- NW is a negative wobble, which shall start moving towards the outside of the disk.
- all monotone wobbles shall be PWs.

Modulation of the ADIP word sync:

Modulation of an ADIP ZERO bit:

Modulation of an ADIP ONE bit:

Figure 21-ADIP modulation rules

Table 3 - Physical format information

Byte number	Content	Number of bytes
0	Disk Category and Version Number	1
1	Disk size	1
2	Disk structure	1
3	Recording density	1
4 to 15	Data Zone allocation	12
16	Set to (00)	1
17	Disk Application Code	1
18	Extended Information indicators	1
19 to 26	Disk Manufacturer ID	8
27 to 29	Media type ID	3
30	Product revision number	1
31	number of Physical format information bytes in use in ADIP up to byte 63	1
32	Primary recording velocity for the basic write strategy	1
33	Upper recording velocity for the basic write strategy	1
34	Wavelength $\lambda_{\text {IND }}$	1
35	normalized Write power dependency on Wavelength ($\mathrm{dP/d} \lambda) /\left(\mathrm{P}_{\text {IND }} / \lambda_{\text {IND }}\right)$	1
36	Maximum read power at Primary velocity	1
37	PIND at Primary velocity	1
38	$\beta_{\text {target }}$ at Primary velocity	1
39	Maximum read power at Upper velocity	1
40	PIND at Upper velocity	1
41	$\beta_{\text {target }}$ at Upper velocity	1
42	$\mathrm{T}_{\text {top }}\left(\geq 4 \mathrm{~T}\right.$) first pulse duration for $\mathrm{cm}^{*} \geq 4 \mathrm{~T}$ at Primary velocity	1
43	$\mathrm{T}_{\text {top }}\left(=3 \mathrm{~T}\right.$) first pulse duration for $\mathrm{cm}^{*}=3 \mathrm{~T}$ at Primary velocity	1
44	T_{mp} multi pulse duration at Primary velocity	1
45	$\mathrm{T}_{\text {Ip }}$ last pulse duration at Primary velocity	1
46	$\mathrm{dT}_{\text {top }}\left(\geq 4 \mathrm{~T}\right.$) first pulse lead time for $\mathrm{cm}^{*} \geq 4 \mathrm{~T}$ at Primary velocity	1
47	$\mathrm{dT}_{\text {top }}\left(=3 \mathrm{~T}\right.$) first pulse lead time for $\mathrm{cm}^{*}=3 \mathrm{~T}$ at Primary velocity	1
48	$\mathrm{dT}_{\text {le }}$ first pulse leading edge shift for $\mathrm{ps}^{*}=3 \mathrm{~T}$ at Primary velocity	1
49	$\mathrm{T}_{\text {top }}\left(\geq 4 \mathrm{~T}\right.$) first pulse duration for $\mathrm{cm}^{*} \geq 4 \mathrm{~T}$ at Upper velocity	1
50	$\mathrm{T}_{\text {top }}(=3 \mathrm{~T})$ first pulse duration for $\mathrm{cm}^{*}=3 \mathrm{~T}$ at Upper velocity	1
51	T_{mp} multi pulse duration at Upper velocity	1
52	$\mathrm{T}_{\text {Ip }}$ last pulse duration at Upper velocity	1
53	$\mathrm{d} \mathrm{t}_{\text {top }}\left(\geq 4 \mathrm{~T}\right.$) first pulse lead time for $\mathrm{cm}^{*} \geq 4 \mathrm{~T}$ at Upper velocity	1
54	$d \mathrm{~T}_{\text {top }}\left(=3 \mathrm{~T}\right.$) first pulse lead time for $\mathrm{cm}^{*}=3 \mathrm{~T}$ at Upper velocity	1
55	$\mathrm{dT}_{\text {le }}$ first pulse leading edge shift for $\mathrm{ps}^{*}=3 \mathrm{~T}$ at Upper velocity	1
56 to 63	Reserved - All (00)	8
64 to 95	Extended Information block 0	32
96 to 127	Extended Information block 1	32
128 to 159	Extended Information block 2	32
160 to 191	Extended Information block 3	32

[^0]| Byte number | Content | Number of bytes |
| :---: | :---: | :---: |
| 192 to 223 | Extended Information block 4 | 32 |
| 224 to 247 | Extended Information block 5 | 24 |
| 248 to 255 | Reserved for use in the Control Data Zone - All (00) | 8 |

14.4.2 Physical format information in ADIP

This information shall comprise the 256 bytes shown in Table 3. It contains disk information and values for the write strategy parameters to be used with the Optimum Power Control (OPC) algorithm to determine optimum laser power levels for writing (see Annex F and Annex H). The information is copied to the Control Data Zone (see 18.8.1) during finalization of the Lead-in Zone of the disk.

This version of this document specifies several types of disks, with different recording velocity ranges. The specific write parameters for each recording velocity range shall be specified in separate blocks (El blocks, see 14.4.2.3). The following types of disks (characterized by the so-called X-speed) have now been defined and their ADIP shall contain the El Blocks as indicated in Table 4.

Table 4 - Types of disks

type of disk	basic write strategy bytes 32 to 63 (1x \& 2,4x speed)	$4 x+$ write strategy El block format 1 (4x speed)	$6 x+$ write strategy El block format 2 ($6 x \sim 8 x$ speed)	remarks
"2,4x"	+	-	-	this disk shall be suited for recording speeds of $3,49 \& 8,44 \mathrm{~m} / \mathrm{s}$ only
" $4 x$ "	+	+	-	this disk shall be suited for recording speeds of $3,49 \& 8,44 \mathrm{~m} / \mathrm{s}$ and $13,95 \mathrm{~m} / \mathrm{s}$
" 8 x "	+	+	+	this disk shall be suited for recording speeds of $3,49 \& 8,44 \mathrm{~m} / \mathrm{s}$, $13,95 \mathrm{~m} / \mathrm{s}$ and $20,9 \sim 27,9 \mathrm{~m} / \mathrm{s}$

14.4.2.1 General information - Bytes 0 to 31
 Byte 0 - Disk Category and Version Number

Bits b_{7} to b_{4} shall specify the Disk Category,
bit b_{7} shall be set to 1 indicating a disk according to the +R/+RW system, bit b_{6} shall be set to 0 indicating a single layer disk,
bits b_{5} and b_{4} shall be set to 10 indicating $a+\mathrm{R}$ disk.
Bits b_{3} to b_{0} shall specify the Version Number,
they shall be set to 0001 indicating this Ecma Standard.
This Version Number identifies amongst others the definitions of the data in bytes 32 to 63. Drives not acquainted with the specific Version Number of a disk should not try to record on that disk using the information in bytes 32 to 63 , which bytes contain the basic write strategy parameters (see Annex N).

Byte 1 - Disk size and maximum transfer rate

Bits b_{7} to b_{4} shall specify the disk size, they shall be set to 0000, indicating a 120 mm disk (see also Annex A)
Bits b_{3} to b_{0} shall specify the maximum read transfer rate, they shall be set to 1111 indicating no maximum read transfer rate is specified

Byte 2 - Disk structure

Bits b_{7} to b_{4} shall be set to 0000
Bits b_{3} to b_{0} shall specify the type of the recording layer(s):
they shall be set to 0010, indicating a write-once recording layer.

Byte 3 - Recording density

Bits b_{7} to b_{4} shall specify the average Channel bit length in the Information Zone, they shall be set to 0000, indicating $0,133 \mu \mathrm{~m}$.
Bits b_{3} to b_{0} shall specify the average track pitch, they shall be set to 0000 , indicating an average track pitch of $0,74 \mu \mathrm{~m}$.

Bytes 4 to 15 - Data Zone allocation

Byte 4 shall be set to (00).
Bytes 5 to 7 shall be set to (030000) to specify PSN 196608 of the first Physical Sector of the Data Zone

Byte 8 shall be set to (00).
Bytes 9 to 11 shall be set to (26053F) to specify PSN 2491711 as the last possible Physical Sector of the Data Zone (see also Annex A).

Bytes 12 to 15 shall be set to (00).
Byte 16 - (00)
This byte shall be set to (00).

Byte 17 - Disk Application Code

This byte can identify disks that are restricted to be used for special applications only. Drives not able to identify the particular application related to a specific Disk Application Code or not able to act according to the rules as defined for this particular application are not allowed to write on a disk with such a code.
(00) identifies a disk for General Purpose use
(no restrictions, all drives are allowed to write on a disk carrying this code),
all other codes are reserved.

Byte 18 - Extended Information indicators

Bits b_{7} to b_{6} are reserved and shall be set to 00
Bits b_{5} to b_{0} each of these bits shall indicate the presence of an Extended Information block.
Bit b_{i} shall be set to 1 if Extended Information block i, consisting of bytes $(64+i \times 32)$ to $(95+i \times 32)$, is in use. Else bit b_{i} shall be set to 0 .

Bytes 19 to 26 - Disk Manufacturer ID

These 8 bytes shall identify the manufacturer of the disk. This name shall be represented by characters from the G0 set + SPACE according to ECMA-43. Trailing bytes not used shall be set to (00).

If the Disk Manufacturer ID is not used, these 8 bytes shall be set to (00).

Bytes 27 to 29 - Media type ID

Disk manufacturers can have different types of media, which shall be specified by these 3 bytes. The specific type of disk is denoted in this field by characters from the G0 set + SPACE according to ECMA-43. Trailing bytes not used shall be set to (00).

If the Media type ID is not used these 3 bytes shall be set to (00)
note
Disks with different characteristics shall be identified by different and unique combinations of Disk Manufacturer ID / Media type ID. Therefore the contents of bytes 19 to 29 shall be approved by the licensors of the $+R$ system.

Byte 30 - Product revision number

This byte shall identify the product revision number in binary notation. All disks with the same Disk Manufacturer ID and the same Media type ID, regardless of Product revision numbers, must have the same recording properties (only minor differences are allowed: Product revision numbers shall be irrelevant for recorders). The content of this byte can be chosen freely by the disk manufacturer.

If not used this byte shall be set to (00).

Byte 31 - number of Physical format information bytes in use in ADIP up to byte 63

This byte forms one 8-bit binary number indicating the number of bytes actually in use for the basic Physical format information (in bytes 0 to 63). It shall be set to (38) indicating that only the first 56 bytes of the Physical format information are used.

14.4.2.2 Basic write strategy parameters - Bytes 32 to 63

Byte 32 - Primary recording velocity for the basic write strategy
This byte indicates the lowest recording velocity of the disk for the parameters as defined in bytes 34 to 63 in this Physical format information. This recording velocity is equal to the Reference velocity and shall be specified as a number n such that

$$
n=10 \times \text { v Primary,basic }(n \text { rounded off to an integral value) }
$$

It shall be
set to (23) indicating a Primary writing speed of $3,49 \mathrm{~m} / \mathrm{s}$.

Byte 33 - Upper recording velocity for the basic write strategy

This byte indicates the highest recording velocity of the disk for the parameters as defined in bytes 34 to 63 in this Physical format information. This recording velocity shall be specified as a number n such that

$$
n=10 \times v_{\text {Upper, basic }} \text { (} n \text { rounded off to an integral value) }
$$

It shall be
set to (54) indicating a Upper writing speed of $8,44 \mathrm{~m} / \mathrm{s}$.

Byte 34 - Wavelength $\lambda_{\text {IND }}$

This byte shall specify the laser wavelength in nanometers at which the optimum write parameters in the following bytes are specified, as a number n such that

$$
n=\text { Wavelength }-600
$$

For this version of the +R system, n shall be equal to (37) indicating that $\lambda_{\text {IND }}$ is 655 nanometers.

Byte 35 - Normalized Write power dependency on Wavelength

This byte shall specify the average write power dependency on the wavelength normalized by the ratio of $P_{\text {IND }}$ and $\lambda_{\text {IND }}$ (see 29.3.3 and Annex J), as a number n such that

$$
n=(\mathrm{d} P / \mathrm{d} \lambda) /\left(\mathrm{P}_{\mathrm{IND}} / \lambda_{\mathrm{IND}}\right)
$$

Byte 36 - Maximum read power, P_{r} at Primary velocity

This byte shall specify the maximum read power P_{r} in milliwatts at Primary velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 37 - $P_{\text {IND }}$ at Primary velocity

$P_{\text {IND }}$ is the starting value for the determination of P wo used in the OPC algorithm, see Annex H and Annex J .

This byte shall specify the indicative value $P_{\text {IND }}$ of P wo in milliwatts at Primary velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=20 \times\left(\mathrm{P}_{\text {IND }}-5\right)
$$

Byte 38 - $\beta_{\text {target }}$ at Primary velocity

This byte shall specify the target value for $\beta, \beta_{\text {target }}$ at Primary velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 39 - Maximum read power, P_{r} at Upper velocity

This byte shall specify the maximum read power P_{r} in milliwatts at Upper velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 40 - $\mathrm{P}_{\text {IND }}$ at Upper velocity

$P_{\text {IND }}$ is the starting value for the determination of P wo used in the OPC algorithm, see Annex H and Annex J.

This byte shall specify the indicative value $\mathrm{P}_{\text {IND }}$ of P wo in milliwatts at Upper velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=20 \times\left(\mathrm{P}_{\mathrm{IND}}-5\right)
$$

Byte 41 - $\beta_{\text {target }}$ at Upper velocity

This byte shall specify the target value for β, $\beta_{\text {target }}$ at Upper velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 42 - $\mathrm{T}_{\text {top }}(\geq 4 \mathrm{~T})$ first pulse duration for current mark $\geq 4 \mathrm{~T}$ at Primary velocity
This byte shall specify the duration of the first pulse of the multi pulse train when the current mark is a 4T or greater mark for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 40
$$

Byte 43 - $\mathrm{T}_{\text {top }}(=3 \mathrm{~T}$) first pulse duration for current mark $=3 \mathrm{~T}$ at Primary velocity
This byte shall specify the duration of the first pulse of the multi pulse train when the current mark is a 3T mark for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 40
$$

Byte 44 - T_{mp} multi pulse duration at Primary velocity

This byte shall specify the duration of the 2 nd pulse through the $2^{\text {nd }}$ to last pulse of the multi pulse train for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{mp}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 14
$$

Byte 45 - T_{Ip} last pulse duration at Primary velocity

This byte shall specify the duration of the last pulse of the multi pulse train when the current mark is a 4 T or greater mark for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{lp}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 24
$$

Byte 46 - dT top $(\geq 4 \mathrm{~T}$) first pulse lead time for current mark $\geq 4 \mathrm{~T}$ at Primary velocity
When the current mark is a 4 T or greater mark, this byte shall specify the lead time of the first pulse of the multi pulse train relative to the trailing edge of the second Channel bit of the data pulse, for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{d} \mathrm{t}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 24
$$

Byte 47 - dT top $(=3 T)$ first pulse lead time for current mark $=3 T$ at Primary velocity

When the current mark is a 3T mark, this byte shall specify the lead time of the first pulse of the multi pulse train relative to the trailing edge of the second Channel bit of the data pulse, for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{d} T_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 24
$$

Byte 48 - $\mathrm{dT}_{\mathrm{le}}$ first pulse leading edge shift for previous space $=3 \mathrm{~T}$ at Primary velocity
This byte shall specify the leading edge correction for the $1^{\text {st }}$ pulse of the multi pulse train when the previous space was a 3T space for recording at Primary velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{dT}_{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Byte $49-\mathrm{T}_{\text {top }}(\geq 4 \mathrm{~T}$) first pulse duration for current mark $\geq 4 \mathrm{~T}$ at Upper velocity
This byte shall specify the duration of the first pulse of the multi pulse train when the current mark is a 4T or greater mark for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 40
$$

Byte 50 - $\mathrm{T}_{\text {top }}$ (3T) first pulse duration for current mark =3T at Upper velocity
This byte shall specify the duration of the first pulse of the multi pulse train when the current mark is a 3T mark for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 40
$$

Byte 51 - \mathbf{T}_{mp} multi pulse duration at Upper velocity

This byte shall specify the duration of the 2 nd pulse through the $2^{\text {nd }}$ to last pulse of the multi pulse train for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\mathrm{mp}} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 14
$$

Byte 52 - T_{lp} last pulse duration at Upper velocity

This byte shall specify the duration of the last pulse of the multi pulse train when the current mark is a 4T or greater mark for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{lp}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 24
$$

Byte $53-\mathrm{dT}_{\text {top }}$ ($\geq 4 \mathrm{~T}$) first pulse lead time for current mark $\geq 4 \mathrm{~T}$ at Upper velocity
When the current mark is a 4 T or greater mark, this byte shall specify the lead time of the first pulse of the multi pulse train relative to the trailing edge of the second Channel bit of the data pulse, for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \frac{d T_{\text {top }} / T_{W} \quad \text { and } \quad 0 \leq n \leq 24, ~}{\text { d }} \quad \text {. }
$$

Byte 54 - $\mathrm{dT}_{\text {top }}$ (=3T) first pulse lead time for current mark =3T at Upper velocity

When the current mark is a $3 T$ mark, this byte shall specify the lead time of the first pulse of the multi pulse train relative to the trailing edge of the second Channel bit of the data pulse, for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \frac{\mathrm{d}}{} \mathrm{t}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 24
$$

Byte $55-\mathrm{dT}_{\mathrm{le}}$ first pulse leading edge shift for previous space $=3 \mathrm{~T}$ at Upper velocity

This byte shall specify the leading edge correction for the 1 st pulse of the multi pulse train when the previous space was a 3T space for recording at Upper velocity (see Annex F.1). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{d} \mathrm{~T}_{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Bytes 56 to 63 - Reserved - All (00)
These bytes shall be set to all (00).
(i=0 to 5)

Extended Information (EI) blocks are meant to facilitate future extensions. Each such block consists of 32 bytes. These bytes can hold for instance parameters for alternative write strategies or other advanced parameters. The presence of an Extended Information block shall be indicated by the appropriate bit in byte 18. If an Extended Information block is not used, all 32 bytes shall be set to (00).

Byte (64 + ix32) Extended Information block \boldsymbol{i} format number

indicates the format number which identifies the definitions of the data in bytes ($65+i \times 32$) to ($95+i \times 32$).

A disk can have several Extended Information blocks. The contents of blocks with different format numbers have to be interpreted each according to their respective definitions. The contents of blocks with the same format number are interpreted in the same way; the parameters specified in these blocks can have different values. Drives not acquainted with the specific format number in block i, should not use the parameters in this Extended Information block (see Annex N).
If the format number is set to 255 , the related Extended Information block is not an independent block but a continuation of the preceding Extended Information block (to be used if 32 bytes are not sufficient for a set of parameters).
NOTE
The contents of an El block are identified by the format number of the block only. The position of the El block in the ADIP Aux Frame is irrelevant for this, so an El block with format number n could be allocated at any position i. Therefore drives should always check the format numbers in the El blocks to be sure that the write strategies are correctly interpreted.
Bytes ($65+i \times 32$) to $(95+i \times 32)$
Each parameter set defined for these bytes shall be identified by a unique format number.
Bytes 248 to 255 - Reserved for use in the Control Data Zone - All (00)
These bytes can not be copied to the Control Data Zone and shall therefore not be used and be set to (00).
14.4.2.3.1 Extended information for the " $4 x+$ " write strategy

This Extended Information block specifies the parameters for a write strategy usable at speeds of 4 times the basic DVD speed ($4 \times 3,49 \mathrm{~m} / \mathrm{s}$) or higher. The write strategy used at these speeds is a so-called "Blocked" write strategy as defined in Annex F.2.
If the disk can not be recorded under these " $4 x+$ " conditions, this El block shall not be used (all bytes set to (00)).

Byte 18 - Extended Information indicators

This byte shall be set to $x x x x$ xxx1 indicating Extended Information block 0 is in use.
Table 5 - Extended Information block 0

Byte number	Content	Number of bytes
64	Format number	1
65	Reserved - set to (00)	1
66	Primary recording velocity for the parameter set in this El block	1
67	Upper recording velocity for the parameter set in this El block	1
68	Maximum read power at Primary velocity	1
69	PIND at Primary velocity	1
70	$\beta_{\text {target }}$ at Primary velocity	1
71	$\mathrm{d} P \mathrm{w}$ (=3T) power enhancement for $\mathrm{cm}=3 \mathrm{~T}$ at Primary velocity	1
72	dPw (=4T) power enhancement for $\mathrm{cm}=4 \mathrm{~T}$ at Primary velocity	1
73	$\mathrm{T}_{\text {top }}$ ($\geq 4 \mathrm{~T}$) first part of write pulse for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Primary velocity $\left(=d T_{\text {top }}(\geq 4 \mathrm{~T})+\mathrm{T}_{\mathrm{W}}\right)$	1
74	$\mathrm{T}_{\text {top }}$ (=3T) write pulse duration for $\mathrm{cm}=3 \mathrm{~T}$ at Primary velocity	1
75	T_{mp} at Primary velocity ($=\mathrm{T}_{\mathrm{W}}$)	1
76	$\mathrm{T}_{\text {lp }}$ last part of write pulse for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Primary velocity	1
77	$d T_{\text {top }}(\geq 4 \mathrm{~T}$) write pulse lead time for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Primary velocity	1
78	dT top ($=3 \mathrm{~T}$) write pulse lead time for $\mathrm{cm}=3 \mathrm{~T}$ at Primary velocity	1
79	$\mathrm{dT}_{\text {le }}$ write pulse leading edge correction for $\mathrm{ps}=3 \mathrm{~T}$ at Primary velocity	1
80	Reserved - set to (00)	1

Byte number	Content	Number of bytes
81	Reserved - set to (00)	1
82	Maximum read power at Upper velocity	1
83	PIND at Upper velocity	1
84	$\beta_{\text {target }}$ at Upper velocity	1
85	$\mathrm{d} P \mathrm{w}$ (=3T) power enhancement for $\mathrm{cm}=3 \mathrm{~T}$ at Upper velocity	1
86	dPw (=4T) power enhancement for $\mathrm{cm}=4 \mathrm{~T}$ at Upper velocity	1
87	$\mathrm{T}_{\text {top }}(\geq 4 \mathrm{~T})$ first part of write pulse for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Upper velocity $\left(=d \mathrm{~T}_{\text {top }}(\geq 4 \mathrm{~T})+\mathrm{T}_{\mathrm{W}}\right)$	1
88	$\mathrm{T}_{\text {top }}(=3 \mathrm{~T}$) write pulse duration for $\mathrm{cm}=3 \mathrm{~T}$ at Upper velocity	1
89	T_{mp} at Upper velocity ($=\mathrm{T}_{\mathrm{W}}$)	1
90	$\mathrm{T}_{\text {Ip }}$ last part of write pulse for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Upper velocity	1
91	$\mathrm{dT}_{\text {top }}(\geq 4 \mathrm{~T}$) write pulse lead time for $\mathrm{cm} \geq 4 \mathrm{~T}$ at Upper velocity	1
92	$\mathrm{d} \mathrm{T}_{\text {top }}$ (=3T) write pulse lead time for $\mathrm{cm}=3 \mathrm{~T}$ at Upper velocity	1
93	$\mathrm{dT}_{\text {le }}$ write pulse leading edge correction for $\mathrm{ps}=3 \mathrm{~T}$ at Upper velocity	1
94	Reserved - set to (00)	1
95	Reserved - set to (00)	1

Byte 64 - Extended Information block 0 format number

This byte shall be set to 00000001 indicating format 1, for which bytes 65 to 95 have the following meaning:

Byte 65 - Reserved

This byte is reserved and shall be set to (00)

Byte 66 - Primary recording velocity for the parameter set in this El block

This byte indicates the lowest recording velocity of the disk for the parameters as defined in this El block. This recording velocity shall be specified as a number n such that

$$
n=4 \times \mathrm{v}_{\text {Primary, El } 0} \text { (} n \text { rounded off to an integral value) }
$$

It shall be
set to (38) indicating a Primary writing speed of $14 \mathrm{~m} / \mathrm{s}$.

Byte 67 - Upper recording velocity for the parameter set in this El block

This byte indicates the highest recording velocity of the disk for the parameters as defined in this El block. This recording velocity shall be specified as a number n such that $n=4 \times \mathrm{V}_{\text {Upper, El } 0}$ (n rounded off to an integral value)
It shall be
set to (38) indicating an Upper writing speed of $14 \mathrm{~m} / \mathrm{s}$. (In future when higher recording speeds which are compatible with this write strategy become possible, higher values can be allowed.)

Byte 68 - Maximum read power, P_{r} at Primary velocity

This byte shall specify the maximum read power P_{r} in milliwatts at Primary velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 69 - $P_{\text {IND }}$ at Primary velocity

$P_{\text {IND }}$ is the starting value for the determination of P wo used in the OPC algorithm, see Annex H and Annex J.

This byte shall specify the indicative value $P_{\text {IND }}$ of P wo in milliwatts at Primary velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=5 \times\left(\mathrm{P}_{\mathrm{IND}}-5\right)
$$

Byte 70 - $\beta_{\text {target }}$ at Primary velocity
This byte shall specify the target value for $\beta, \beta_{\text {target }}$ at Primary velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 71 - dPw (=3T) power enhancement for current mark $=3 \mathrm{~T}$ at Primary velocity
This byte shall specify the additional power for writing the 3T marks (see Annex F.2) at Primary velocity as a number n such that

$$
n=200 \times \mathrm{d} P \mathrm{w} / P \mathrm{wo} \quad \text { and } \quad 0 \leq n \leq 100
$$

Byte 72 - dPw (=4T) power enhancement for current mark $=4 \mathrm{~T}$ at Primary velocity

This byte shall specify the additional power for writing the 4T marks (see Annex F.2) at Primary velocity as a number n such that

$$
n=200 \times \mathrm{d} P \mathrm{w} / \mathrm{P}_{\mathrm{wo}} \quad \text { and } \quad 0 \leq n \leq 100
$$

Byte 73 - $T_{\text {top }}(\geq 4 T$) first part of write pulse for current mark $\geq 4 T$ at Primary velocity

This byte shall specify the duration of the first part of the write pulse when the current mark is a 4T or greater mark for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad n=\text { value of byte } 77+16
$$

Byte 74 - $\mathrm{T}_{\text {top }}$ (=3T) write pulse duration for current mark $=3 \mathrm{~T}$ at Primary velocity

This byte shall specify the duration of the write pulse when the current mark is a $3 T$ mark for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 48
$$

Byte 75 - T_{mp} at Primary velocity

This byte has been added for consistency with the basic description of the write strategy (see Annex F). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\mathrm{mp}} / T_{\mathrm{W}} \quad \text { and } \quad n=16
$$

Byte 76 - $\mathrm{T}_{\text {lp }}$ last part of write pulse at Primary velocity

This byte shall specify the duration of the last part of the write pulse when the current mark is a $4 T$ or greater mark for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{Ip}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 16
$$

Byte 77 - dT top ($\geq 4 \mathrm{~T}$) write pulse lead time for current mark $\geq 4 \mathrm{~T}$ at Primary velocity

When the current mark is a 4T or greater mark, this byte shall specify the lead time of the write pulse relative to the trailing edge of the second Channel bit of the data pulse, for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{d} \mathrm{~T}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 32
$$

Byte 78 - $\mathrm{dT}_{\text {top }}(=3 \mathrm{~T}$) write pulse lead time for current mark $=3 \mathrm{~T}$ at Primary velocity
When the current mark is a $3 T$ mark, this byte shall specify the lead time of the write pulse relative to the trailing edge of the second Channel bit of the data pulse, for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{d} T_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 32
$$

Byte $79-\mathrm{dT}_{\text {le }}$ write pulse leading edge correction for previous space $=3 T$ at Primary
velocity
This byte shall specify the leading edge correction for the write pulse when the previous space was a 3 T space for recording at Primary velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{dT}_{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Bytes 80 to 81 - Reserved - All (00)

These bytes shall be set to all (00).

Byte 82 - Maximum read power, P_{r} at Upper velocity

This byte shall specify the maximum read power P_{r} in milliwatts at Upper velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 83 - PIND at Upper velocity

$P_{\text {IND }}$ is the starting value for the determination of P wo used in the OPC algorithm, see Annex H and Annex J.

This byte shall specify the indicative value $P_{\text {IND }}$ of P wo in milliwatts at Upper velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=5 \times\left(P_{\mathrm{IND}}-5\right)
$$

Byte 84 - $\beta_{\text {target }}$ at Upper velocity
This byte shall specify the target value for $\beta, \beta_{\text {target }}$ at Upper velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 85 - dPw (=3T) power enhancement for current mark $=3 \mathrm{~T}$ at Upper velocity
This byte shall specify the additional power for writing the $3 T$ marks (see Annex F.2) at Upper velocity as a number n such that

$$
n=200 \times \mathrm{d} P \mathrm{w} / P \mathrm{wo} \quad \text { and } \quad 0 \leq n \leq 100
$$

Byte 86 - dPw (=4T) power enhancement for current mark =4T at Upper velocity

This byte shall specify the additional power for writing the 4 T marks (see Annex F.2) at Upper velocity as a number n such that

$$
n=200 \times \mathrm{d} P \mathrm{w} / P \mathrm{wo} \quad \text { and } \quad 0 \leq n \leq 100
$$

Byte 87 - $\mathrm{T}_{\text {top }}(\geq 4 \mathrm{~T}$) first part of write pulse for current mark $\geq 4 \mathrm{~T}$ at Upper velocity

This byte shall specify the duration of the first part of the write pulse when the current mark is a 4T or greater mark for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad n=\text { value of byte } 91+16
$$

Byte 88 - $\mathrm{T}_{\text {top }}$ ($=3 \mathrm{~T}$) write pulse duration for current mark $=3 \mathrm{~T}$ at Upper velocity
This byte shall specify the duration of the write pulse when the current mark is a 3 T mark for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\text {top }} / T_{W} \quad \text { and } \quad 4 \leq n \leq 48
$$

Byte 89 - $\mathbf{T}_{\mathbf{m p}}$ at Upper velocity

This byte has been added for consistency with the basic description of the write strategy (see Annex F). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{mp}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad n=16
$$

Byte 90 - $\mathrm{T}_{\text {Ip }}$ last part of write pulse at Upper velocity

This byte shall specify the duration of the last part of the write pulse when the current mark is a 4T or greater mark for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{lp}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 16
$$

Byte 91 - $\mathrm{dT}_{\text {top }}(\geq 4 \mathrm{~T}$) write pulse lead time for current mark $\geq 4 \mathrm{~T}$ at Upper velocity
When the current mark is a 4T or greater mark, this byte shall specify the lead time of the write pulse relative to the trailing edge of the second Channel bit of the data pulse, for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times d \mathrm{t}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 32
$$

Byte 92 - $\mathrm{dT}_{\text {top }}(=3 \mathrm{~T})$ write pulse lead time for current mark $=3 \mathrm{~T}$ at Upper velocity

When the current mark is a 3 T mark, this byte shall specify the lead time of the write pulse relative to the trailing edge of the second Channel bit of the data pulse, for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \frac{\mathrm{dT}}{\text { top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 32
$$

Byte $93-\mathrm{dT}_{l e}$ write pulse leading edge correction for previous space $=3 \mathrm{~T}$ at Upper velocity
This byte shall specify the leading edge correction for the write pulse when the previous space was a $3 T$ space for recording at Upper velocity (see Annex F.2). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{dT}_{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Bytes 94 to 95 - Reserved - All (00)
These bytes shall be set to all (00).

14.4.2.3.2 Extended information for the " $6 x+$ " write strategy

This Extended Information block specifies the parameters for a write strategy usable at speeds of 6 times the basic DVD speed $(6 \times 3,49 \mathrm{~m} / \mathrm{s})$ or higher. The write strategy used at these speeds is a so-called "Castle" write strategy as defined in Annex F.3.

Because of too high rotational speeds at the inner side, the write strategy parameters for the Upper velocity shall be determined at the outer diameter of the disk.
If the disk can not be recorded under these " $6 x+$ " conditions, this El block shall not be used (all bytes set to (00)).

Byte 18 - Extended Information indicators
This byte shall be set to $x x x x \operatorname{xx1x}$ indicating Extended Information block 1 is in use.
Table 6 - Extended Information block 1

Byte number	Content	Number of bytes
96	Format number	1
97	Reserved - set to (00)	1
98	Primary recording velocity for the parameter set in this El block	1
99	Upper recording velocity for the parameter set in this El block	1
100	Maximum read power at Primary velocity	1
101	$\mathrm{P}_{\text {IND }}$ at Primary velocity	1
102	$\beta_{\text {target }}$ at Primary velocity	1
103	dPw power enhancement at Primary velocity	1
104	T_{13} write pulse duration for 3T marks at Primary velocity	1
105	$\mathrm{T}_{\text {top }}$ duration of power enhancement at Primary velocity	1
106	$\mathrm{T}_{\text {end }}(\geq 5)$ duration of power enhancement for $\mathrm{cm} \geq 5$ at Primary velocity	1
107	$\mathrm{T}_{\text {end }}$ ($=4$) duration of power enhancement for $\mathrm{cm}=4$ at Primary velocity	1
108	$\mathrm{dT}_{\text {le }}$ write pulse leading edge correction for $\mathrm{ps}=3$ at Primary velocity	1
109	T_{C} end of cooling gap at Primary velocity	1
110	Reserved - set to (00)	1
111	Reserved - set to (00)	1
112	Reserved - set to (00)	1
113	Reserved - set to (00)	1
114	Maximum read power at Upper velocity	1
115	PIND at Upper velocity	1
116	$\beta_{\text {target }}$ at Upper velocity	1

Byte number	Content	Number of bytes
117	dPw power enhancement at Upper velocity	1
118	$\mathrm{~T}_{\text {I3 }}$ write pulse duration for 3T marks at Upper velocity	1
119	$\mathrm{~T}_{\text {top }}$ duration of power enhancement at Upper velocity	1
120	$\mathrm{~T}_{\text {end }}(\geq 5)$ duration of power enhancement for $\mathrm{cm} \geq 5$ at Upper velocity	1
121	$\mathrm{~T}_{\text {end }}(=4)$ duration of power enhancement for $\mathrm{cm}=4$ at Upper velocity	1
122	$\mathrm{dT}_{\text {le }}$ write pulse leading edge correction for ps $=3$ at Upper velocity	1
123	$\mathrm{~T}_{\text {C }}$ end of cooling gap at Upper velocity	1
124	Reserved - set to (00)	1
125	Reserved - set to (00)	1
126	Reserved - set to (00)	1
127	Pupper $/ P_{\text {primary }}$ ratio	1

Byte 96 - Extended Information block 1 format number

This byte shall be set to 00000010 indicating format 2, for which bytes 96 to 127 have the following meaning:

Byte 97 - Reserved

This byte is reserved and shall be set to all (00).

Byte 98 - Primary recording velocity for the parameter set in this El block

This byte indicates the lowest recording velocity of the disk for the parameters as defined in this El block. This recording velocity shall be specified as a number n such that

$$
n=4 \times \mathrm{V}_{\text {Primary, El } 1} \text { (} n \text { rounded off to an integral value) }
$$

It shall be
set to (54) indicating a Primary writing speed of $21 \mathrm{~m} / \mathrm{s}$.

Byte 99 - Upper recording velocity for the parameter set in this El block

This byte indicates the highest recording velocity of the disk for the parameters as defined in this El block. This recording velocity shall be specified as a number n such that

$$
n=4 \times \mathrm{v}_{\text {Upper, El } 1} \text { (} n \text { rounded off to an integral value) }
$$

It shall be
set to (70) indicating an Upper writing speed of $28 \mathrm{~m} / \mathrm{s}$. (In future, when higher recording speeds which are compatible with this write strategy become possible, higher values can be allowed.)

Byte 100 - Maximum read power, P_{r} at Primary velocity

This byte shall specify the maximum read power P_{r} in milliwatts at Primary velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 101-P IND at Primary velocity

$\mathrm{P}_{\text {IND }}$ is the starting value for the determination of Pwo used in the OPC algorithm, see Annex H and Annex J .

This byte shall specify the indicative value $\mathrm{P}_{\text {IND }}$ of Pwo in milliwatts at Primary velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=5 \times\left(P_{\mathrm{IND}}-5\right)
$$

Byte 102- $\beta_{\text {target }}$ at Primary velocity

This byte shall specify the target value for $\beta, \beta_{\text {target }}$ at Primary velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 103-dPw power enhancement at Primary velocity

This byte shall specify the additional power for the $3 T$ write pulse and for the beginning and end of all other write pulses (see Annex F.3) at Primary velocity as a number n such that

$$
n=200 \times \mathrm{dPw} / \text { Pwo } \quad \text { and } \quad 0 \leq n \leq 255
$$

Byte 104 - T_{13} write pulse duration for $3 T$ marks at Primary velocity

This byte shall specify the duration of the write pulse when the current mark is a $3 T$ mark for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{13} / T_{\mathrm{W}} \quad \text { and } \quad 16 \leq n \leq 48
$$

Byte 105 - $\mathrm{T}_{\text {top }}$ duration of power enhancement at Primary velocity

This byte shall specify the duration of the power enhancement at the beginning of each write pulse when the current mark is a 4T or greater mark for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\text {top }} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 106 - $\mathrm{T}_{\text {end }}(\geq 5)$ duration of power enhancement for $\mathrm{cm} \geq 5$ at Primary velocity

This byte shall specify the duration of the power enhancement at the end of each write pulse when the current mark is a 5 T or greater mark for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\text {end }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 107 - $\mathrm{T}_{\text {end }}(=4)$ duration of power enhancement for $\mathbf{c m}=4$ at Primary velocity
This byte shall specify the duration of the power enhancement at the end of each write pulse when the current mark is a 4T mark for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{end}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 108 - $\mathrm{dT}_{\mathrm{le}}$ write pulse leading edge correction for previous space $=3$ at Primary velocity

This byte shall specify the leading edge correction for the write pulse when the previous space was a 3 T space for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \frac{\mathrm{dT}}{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Byte 109 - T_{C} end of cooling gap at Primary velocity

This byte shall specify the end of the cooling gap for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 16 \leq n \leq 32
$$

Bytes 110 to 113 - Reserved - All (00)

These bytes shall be set to all (00).
Byte 114 - Maximum read power, P_{r} at Upper velocity
This byte shall specify the maximum read power P_{r} in milliwatts at Upper velocity as a number n such that

$$
n=20 \times\left(P_{r}-0,7\right)
$$

Byte 115-P IND at Upper velocity

$P_{\text {IND }}$ is the starting value for the determination of Pwo used in the OPC algorithm, see Annex H and Annex J.

This byte shall specify the indicative value $\mathrm{P}_{\text {IND }}$ of Pwo in milliwatts at Upper velocity and $\lambda_{\text {IND }}$ as a number n such that

$$
n=5 \times\left(P_{\mathrm{IND}}-5\right)
$$

Byte 116- $\beta_{\text {target }}$ at Upper velocity

This byte shall specify the target value for $\beta, \beta_{\text {target }}$ at Upper velocity used in the OPC algorithm (see Annex H) as a number n such that

$$
n=100 \times\left(\beta_{\text {target }}+1\right)
$$

Byte 117-dPw power enhancement at Upper velocity

This byte shall specify the additional power for the $3 T$ write pulse and for the beginning and end of all other write pulses (see Annex F.3) at Upper velocity as a number n such that

$$
n=200 \times \mathrm{dPw} / \text { Pwo } \quad \text { and } \quad 0 \leq n \leq 255
$$

Byte 118 - T_{13} write pulse duration for 3 T marks at Upper velocity

This byte shall specify the duration of the write pulse when the current mark is a 3 T mark for recording at Upper velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{13} / T_{\mathrm{W}} \quad \text { and } \quad 16 \leq n \leq 48
$$

Byte 119 - Ttop $_{\text {top }}$ duration of power enhancement at Upper velocity

This byte shall specify the duration of the power enhancement at the beginning of each write pulse when the current mark is a 4T or greater mark for recording at Upper velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\text {top }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 120 - $T_{\text {end }}(\geq 5)$ duration of power enhancement for $\mathbf{c m} \geq 5$ at Upper velocity

This byte shall specify the duration of the power enhancement at the end of each write pulse when the current mark is a 5 T or greater mark for recording at Upper velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{end}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 121 - $T_{\text {end }}(=4)$ duration of power enhancement for $\mathbf{c m}=4$ at Upper velocity
This byte shall specify the duration of the power enhancement at the end of each write pulse when the current mark is a 4T mark for recording at Primary velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times T_{\text {end }} / T_{\mathrm{W}} \quad \text { and } \quad 4 \leq n \leq 32
$$

Byte 122 - $\mathrm{dT}_{\mathrm{le}}$ write pulse leading edge correction for previous space $=3$ at Upper velocity
This byte shall specify the leading edge correction for the write pulse when the previous space was a $3 T$ space for recording at Upper velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{dT}_{\mathrm{le}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 0 \leq n \leq 4
$$

Byte 123 - T_{C} end of cooling gap at Upper velocity

This byte shall specify the end of the cooling gap for recording at Upper velocity (see Annex F.3). The value is expressed in fractions of the Channel bit clock period as a number n such that

$$
n=16 \times \mathrm{T}_{\mathrm{C}} / \mathrm{T}_{\mathrm{W}} \quad \text { and } \quad 16 \leq n \leq 32
$$

Bytes 124 to 126 - Reserved - All (00)

These bytes shall be set to all (00).

Byte 127 - $\mathrm{P}_{\text {upper }} / \mathrm{P}_{\text {primary }}$ ratio

This byte shall specify the ratio of the optimized write power at the Upper recording velocity, Pwoupper, and the optimized write power at the Primary recording velocity speed, Pwoprimary, where Pwo Upper and Pwo Primary shall be determined at about the same diameter. The ratio is expressed as a number n such that

$$
n=200 \times\left(\frac{\text { Pwo }_{\text {Upper }}}{\text { Pwo }_{\text {Primary }}}-1\right)
$$

Section 4 - Format of the Information Zone

15 General description of the Information Zone

The Information Zone shall contain all information on the disk relevant for data interchange. The Information Zone may contain one or more sessions (see Clause 22). In double-sided disks there is one Information Zone per side. The Data Zones are intended for the recording of User Data.

The Lead-in Zone contains control information. The Lead-out Zone allows for a continuous smooth lead-out and also contains control information.

The Inner and Outer Drive Areas are meant for disk testing.
In the next Clauses 16 to 21 a description is given for a Single-session disk. In such a disk, the Lead-in Zone, the Data Zone and the Lead-out Zone constitute the recordable area in which the information is recorded using a non-reversible effect. The layout of a Multi-session disk is defined in Clause 22.

16 Layout of the Information Zone of a Single-session disk

The Information Zone of single-sided and of each side of double-sided disks shall be sub-divided as shown in Table 7. The radii indicated in Table 7 for some of the Zones are the nominal values of the centre of the first (or last) track of the Zone.

16.1 Physical Sector Numbers (PSNs)

The first Physical Sector of the Data Zone shall have PSN (030000). The PSNs increase by 1 for each next Physical Sector in the whole Information Zone (Figure 22).

Figure 22 - Physical Sector numbering

[^1]
ecma

Table 7 - Layout of a fully recorded Single-session disk (see also Annex A)

	Description	Nominal radius in mm	PSN of the first Physical Sector	Number of Physical Sectors
Inner Drive Area	Initial Zone	start 22,000 mm	--	blank
	Inner Disk Test Zone	start 22,616 mm	(023080)	16384
	Count Zone Run-in	start 23,052 mm	(027080)	1024
	Inner Disk Count Zone	start 23,079 mm	(027480)	4096
	Inner Disk Administration Zone	start 23,186 mm	(028480)	4096
	Table of Contents Zone	start 23,293 mm	(029480)	4096
Lead-in	Guard Zone 1	start $23,400 \mathrm{~mm}$	(02A480)	14848
	Reserved Zone 1		(02DE80)	4096
	Reserved Zone 2		(02EE80)	64
	Inner Disk Identification Zone		(02EEC0)	256
	Reserved Zone 3		(02EFC0)	64
	Reference Code Zone	start 23,896 mm	(02F000)	32
	Buffer Zone 1		(02F020)	480
	Control Data Zone		(02F200)	3072
	Buffer Zone 2		(02FE00)	512
Data	Data Zone	start 24,000 mm	(030000)	2295104 max
Lead-out	Buffer Zone 3	start $58,000 \mathrm{~mm}$ (at full capacity)	(260540) max	768
	Outer Disk Identification Zone		(260840) max	256
	Guard Zone 2		(260940) max	4096 min
Outer Drive Area	Outer Disk Administration Zone	start 58,053 mm	(261940)	4096
	Outer Disk Count Zone	start 58,096 mm	(262940)	4096
	Outer Disk Test Zone	start 58,139 mm	(263940)	16384
	Guard Zone 3	start $58,310 \mathrm{~mm}$ end $\geq 58,500 \mathrm{~mm}$	(267940)	blank

17 Inner Drive Area

The Inner Drive Area is the innermost zone of the disk which is used by the drive for performing disk tests and OPC algorithms. It shall consist of the parts shown in Figure 23.

The Physical Sector Number of the first and last Physical Sector of each part is indicated in Figure 23 in hexadecimal and decimal notation and the number of Physical Sectors in each part are indicated in decimal notation.

Unused ECC Blocks in the Inner Drive Area shall be left unrecorded (also at finalization of the disk).

Physical Sector 143488	Initial Zone	Physical Sector (023080)
	Inner Disk Test Zone 16384 Physical Sectors	
Physical Sector 159871		Physical Sector (02707F)
Physical Sector 159872	Count Zone Run-in 1024 Physical Sectors	Physical Sector (027080)
Physical Sector 160895		Physical Sector (02747F)
Physical Sector 160896	Inner Disk Count Zone 4096 Physical Sectors	Physical Sector (027480)
Physical Sector 164991		Physical Sector (02847F)
Physical Sector 164992	Inner Disk Administration Zone 4096 Physical Sectors	Physical Sector (028480)
Physical Sector 169087		Physical Sector (02947F)
Physical Sector 169088	Table of Contents Zone 4096 Physical Sectors	Physical Sector (029480)
Physical Sector 173183	Lead-in Zone	Physical Sector (02A47F)

Figure 23 - Inner Drive Area

17.1 Initial Zone

This Zone shall remain blank.

17.2 Inner Disk Test Zone

16384 Physical Sectors reserved for drive testing and OPC algorithms (see Annex H). The order in which these Physical Sectors shall be used is from the outer side of the disk towards the inner side of the disk, so from the highest address towards the lowest address.

17.3 Count Zone Run-in

This area with the size of 1024 Physical Sectors is meant as a Run-in area for the Inner Disk Count Zone and shall be left unrecorded.

17.4 Inner Disk Count Zone

4096 Physical Sectors reserved for counting the number of OPC algorithms performed in the Inner Disk Test Zone (see Annex H).
Whenever an ECC Block or part of it in the Inner Disk Test Zone has been recorded, the ECC Block shall be flagged by recording 4 Physical Sectors in the Inner Disk Count Zone. These 4 Physical Sectors shall be formatted according to the rules specified in 13.1 and the underlying subclauses, 13.2, 13.4, 13.5 and 13.6, whereby the Main Data bytes and the PI and PO bytes (see 13.3) can be chosen freely.
The relation between the first Physical Sector number PSN ${ }_{\text {IDT }}$ of the used ECC Block in the Inner Disk Test Zone and the Physical Sector numbers PSN IDC to PSN IDC +3 of the 4 Physical Sectors in the Inner Disk Count Zone is determined by the following mathematical expression:
$P_{S N}{ }_{\text {IDC }}=\left\{\left(\mathrm{PSN}_{\text {IDT }}\right)-(023080)\right\} /(04)+(027480)$

17.5 Inner Disk Administration Zone

4096 Physical Sectors to be used for optional drive specific information. The first 16 physical sectors of this Zone shall be filled with all Main Data set to (00).

Table 8 - General format of Disk Administration ECC Blocks

Physical Sector of each Adm. Block	Main Data $B P$	Description
0	D_{0} to D_{3}	Content Descriptor
0	D_{4} to D_{7}	Reserved and set (00)
0	D_{8} to D_{39}	Drive ID
0	D_{40} to D_{63}	Reserved and set (00)
0	D_{64} to D_{2047}	Drive Specific
1 to 15	$\mathrm{D}_{0}-\mathrm{D}_{2047}$	Drive Specific

Physical Sector 0 / bytes D_{0} to D_{3} - Content Descriptor

these bytes identify the Administration Block and shall be set to (41444D00), representing the characters "ADM" and the version number 0.
Physical Sector 0 / bytes D_{4} to D_{7} - Reserved
these bytes are reserved and shall be set to (00).
Physical Sector 0 / bytes $D_{\mathbf{8}}$ to D_{39} - Drive ID
these bytes shall contain the drive ID as specified in 25.1 , bytes D_{8} to D_{39}.
Physical Sector 0 / bytes D_{40} to D_{63} - Reserved
these bytes are reserved and shall be set to (00).

Physical Sector 0 / bytes D_{64} to D_{247} - Drive Specific

these bytes can be used to store Drive Specific information. The format is not defined and can be freely chosen by the drive manufacturer.

Physical Sectors 1 to 15 / bytes D_{0} to $D_{2} 047$ - Drive Specific

these bytes can be used to store Drive Specific information. The format is not defined and can be freely chosen by the drive manufacturer.

17.6 Table of Contents (TOC) Zone

4096 Physical Sectors to store information about the locations of Sessions and recordings on the disk. The first 16 physical sectors of this Zone shall be filled with all Main Data set to (00).
This Zone consists of 2 parts:

- part 1: consists of 191 ECC Blocks (TOC Blocks) to be used to store the locations of all Closed Sessions,
- part 2: consists of 1024 Physical Sectors, grouped in units of 4 sectors, where each unit corresponds to one ADIP word. These units shall be used as Recorded Area Indicators.

17.6.1 Table of Contents Blocks

Whenever a Session is closed, the next ECC Block in the Table of Contents Zone, immediately following the last TOC Block, shall be recorded with the locations of all Closed Sessions. The first ECC Block in the Table of Contents Zone has to be used as a run-in for the second ECC Block. If all 191 TOC Blocks have been used, no additional Sessions shall be added (see also 23.2 and 23.3).

The format of the TOC Blocks shall be as defined in Table 9:
Table 9 - Format of the TOC Blocks

Physical Sector of TOC block	Main Data byte position	Description	number of bytes
0	D_{0} to D_{3}	Content Descriptor	4
0	D_{4} to D_{7}	Reserved and set to (00)	4
0	D_{8} to D_{39}	Drive ID	32
0	D_{40} to D_{63}	Reserved and set to (00)	24
0	D_{64} to D_{79}	TOC Item 0	16
0	...		
0	$\mathrm{D}_{64+\mathrm{i} \times 16}$ to $\mathrm{D}_{79+\mathrm{i} \times 16}$	TOC Item i	16
0	\ldots	\ldots	
0	$\begin{gathered} D_{64+(N-1) \times 16} \text { to } \\ D_{79+(N-1) \times 16} \end{gathered}$	TOC Item N -1	16
0	$\mathrm{D}_{64+\mathrm{N} \times 16}$ to $\mathrm{D}_{2} 047$	Reserved and set to (00)	$1984-\mathrm{N} \times 16$
1 to 3	D_{0} to $\mathrm{D}_{2} 047$	Extension for TOC Items or Reserved and set to (00)	3×2048
4 to 7	D_{0} to $D_{2} 047$	Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)	4×2048
8 to 11	D_{0} to $D_{2} 047$	```Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)```	4×2048
12 to 15	D_{0} to D_{2047}	```Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)```	4×2048

Physical Sector 0 / bytes D_{0} to D_{3} - Content Descriptor

these bytes identify the TOC Block and shall be set to (544F4300), representing the characters "TOC" and the version number 0 .

Physical Sector 0 / bytes D_{4} to D_{7} - Reserved

these bytes are reserved and shall be set to (00).

Physical Sector 0 / bytes D_{8} to D_{39} - Drive ID

these bytes shall contain the drive ID as specified in 25.1 , bytes D_{8} to D_{39}.

Physical Sector 0 / bytes D_{40} to D_{63} - Reserved

these bytes are reserved and shall be set to (00).

Physical Sector 0 / bytes D_{64} to $D_{2} 047$ - TOC Items

these bytes are grouped in units of 16 bytes each. Each unit of 16 bytes can contain a TOC Item according to the format defined in 17.6.1.1. All unused bytes shall be set to (00).
Physical Sectors 1 to 3 / bytes D_{0} to D_{2047} - Extension for TOC Items or Reserved
these bytes can be used to hold additional TOC Items.
All unused bytes shall be set to (00).

Physical Sectors 4 to 15 / bytes D_{0} to $D_{2047-R e p e t i t i o n s ~ o f ~ S e c t o r s ~}^{0}$ to 3 or all Reserved
For robustness reasons it is recommended to repeat the content of Sectors 0 to 3 in Sectors 4 to 7, in Sectors 8 to 11 and in Sectors 12 to 15.

If this option is not used, these bytes shall be set to (00).
It is a matter of drive implementation to recognize and make use of the repetitions.

17.6.1.1 TOC Items:

Item byte position	Description	number of bytes
B_{0} to B_{2}	TOC Item descriptor	3
$\mathrm{~B}_{3}$	Session Status	1
$\mathrm{~B}_{4}$	Session number	1
$\mathrm{~B}_{5}$ to B_{7}	Session start address	3
$\mathrm{~B}_{8}$ to B_{10}	Session end address	3
$\mathrm{~B}_{11}$ to B_{12}	Last Fragment number in Session	2
$\mathrm{~B}_{13}$ to B_{15}	Reserved and set to (00)	3

The TOC Block shall contain a TOC Item for each Closed Session on the disk. The TOC Items shall be ordered with increasing numbers and addresses.

TOC Item bytes $\mathbf{B}_{\mathbf{0}}$ to $\mathbf{B}_{\mathbf{2}} \mathbf{- T O C}$ Item descriptor

these 3 bytes identify the item type and shall be set to (544349), representing the characters "TCI".

TOC Item byte B_{3} - Session Status

this byte shall indicate the Status of the last Session. It shall be set to (00) in all TOC Items, except in the TOC Item describing the last Session on the disk.

If set to (00) in the last TOC Item, adding a new Session to the disk is allowed.
If set to (01) in the last TOC Item, the last Session shall be the final Session on the disk. The disk has been finalized and adding new Sessions is not allowed (see 23.3).

TOC Item byte $\mathbf{B}_{\mathbf{4}}$ - Session number

this byte shall specify the sequence number of the Session specified in this item.

TOC Item bytes B_{5} to B_{7} - Session start address

these 3 bytes shall specify the PSN of the first Physical Sector in the Data Zone of the Session specified in this item.

TOC Item bytes $\mathbf{B}_{\mathbf{8}}$ to $\mathbf{B}_{\mathbf{1 0}}$ - Session end address

these 3 bytes shall specify the PSN of the last Physical Sector in the Data Zone of the Session specified in this item.

TOC Item bytes B_{11} to B_{12} - Last Fragment number in Session

these 2 bytes specify the sequence number of the last Fragment in the Session specified in this item. If this option is not used, these bytes shall be set to (00).

TOC Item bytes \mathbf{B}_{13} to \mathbf{B}_{15} - Reserved
these 3 bytes are reserved and shall be set to (00).

ecma

17.6.2 Recorded Area Indicators

To speed up the access of the disk, the recorder needs to know in which region of the disk the last written ECC Block can be found. For this purpose a kind of "bitmap" is defined, based on recorded areas with the size of 4 Physical Sectors, each area corresponding to one ADIP word. The 4 Physical Sectors shall be formatted according to the rules specified in 13.1 and the underlying subclauses, 13.2, 13.4, 13.5 and 13.6, whereby the Main Data bytes and the PI and PO bytes (see 13.3) can be chosen freely.

1024 Physical Sectors have been reserved for this "bitmap" purpose, allowing to divide the disk into maximum 256 regions. The Recorded Area Indicators shall be used from the outer side of the TOC Zone towards the inner side of the TOC Zone (see Figure 24). By means of an "HF-detection" the recorder can find the locations of the Recorded Area Indicators and determine the regions which contain recorded ECC Blocks.

Figure 24 - Use of Recorded Area Indicators

Each region of 640 ECC Blocks between PSN $=(030000)$ and PSN $=(26053 F)$ corresponds to one Recorded Area Indicator. All regions that contain one or more recorded ECC Blocks shall be indicated by their Recorded Area Indicator. In mathematical form:
if the Recorded Area Indicator composed of the Physical Sectors with PSN RAI to $P_{\text {PSN }}$ RAI +3
has been recorded, than the region between:
PSN $\left.=(02 \mathrm{~A} 47 \mathrm{C})-\left(\mathrm{PSN}_{\mathrm{RAI}}\right)\right\} \times(\mathrm{A} 00)+(030000)$ and
PSN $=\left\{(02 \mathrm{~A} 47 \mathrm{C})-\left(\mathrm{PSN}_{\mathrm{RAI}}\right)\right\} \times(\mathrm{A} 00)+(0327 \mathrm{FF})$ contains recorded ECC Blocks, or in decimal notation:
PSN $=\left\{173180-\right.$ PSN $\left._{\text {RAI }}\right\} \times 2560+196608$ and PSN $=\left\{173180-P^{2} N_{R A I}\right\} \times 2560+206847$.
Whenever the disk is ejected from the drive, the Recorded Area Indicators shall reflect the actual status of the recordings on the disk.

18 Lead-in Zone

The Lead-in Zone is located at the inner side of the Information Zone. It shall consist of the parts shown in Figure 25.

The Physical Sector Number of the first and last Physical Sector of each part is indicated in Figure 25 in hexadecimal and decimal notation and the number of Physical Sectors in each part are indicated in decimal notation.

A maiden disk does not have any data recorded in the Lead-in Zone. After finalization of the disk or closing of the first Session, the Lead-in Zone shall be recorded according to 18.1 to 18.9.

18.1 Guard Zone 1

This Guard Zone is used to create a minimum amount of Lead-in Zone required for compatibility. This zone shall contain 14848 Physical Sectors, all filled with Main Data set to (00).

18.2 Reserved Zone 1

4096 Physical Sectors are reserved and shall be set (00).

18.3 Reserved Zone 2

64 Physical Sectors are reserved and shall be set (00).

Physical Sector 173184	Inner Drive Area	Physical Sector (02A480)
	Guard Zone 1 14848 Physical Sectors with Main Data set to (00)	
Physical Sector 188031 Physical Sector 188032	Reserved Zone 1 4096 Physical Sectors	Physical Sector (02DE80)
Physical Sector 192127Physical Sector 192128		Physical Sector (02EE7F)
	Reserved Zone 2 64 Physical Sectors	Physical Sector (02EE80)
Physical Sector 192191 Physical Sector 192192		Physical Sector (02EEBF)
	Inner Disk Identification Zone 256 Physical Sectors	Physical Sector (02EEC0)
Physical Sector 192447 Physical Sector 192448		Physical Sector (02EFBF)
	Reserved Zone 3 64 Physical Sectors	Physical Sector (02EFC0)
Physical Sector 192511Physical Sector 192512		Physical Sector (02EFFF)
	Reference Code Zone 32 Physical Sectors	Physical Sector (02F000)
Physical Sector 192543 Physical Sector 192544		Physical Sector (02F01F)
	Buffer Zone 1 480 Physical Sectors with Main Data set to (00)	Physical Sector (02F020) Physical Sector (02F1FF)
Physical Sector 193023 Physical Sector 193024	Control Data Zone 3072 Physical Sectors	Physical Sector (02F200)
Physical Sector 196095 Physical Sector 196096		Physical Sector (02FDFF)
	Buffer Zone 2 512 Physical Sectors with Main Data set to (00)	Physical Sector (02FE00) Physical Sector (02FFFF)
Physical Sector 196607	Data Zone	

Figure 25 - Lead-in Zone

18.4 Inner Disk Identification Zone

256 Physical Sectors reserved for information agreed upon by the data interchange parties. Each set of 16 Physical Sectors from one ECC Block is either a Disk Control Block (DCB) (see Clause 25) or recorded with all (00) Main Data. Each ECC Block in this Zone following one recorded with all (00) Main Data shall also be recorded with all (00) Main Data.

18.5 Reserved Zone 3

64 Physical Sectors are reserved and shall be set (00).

18.6 Reference Code Zone

The recorded Reference Code Zone shall consist of the 32 Physical Sectors from two ECC Blocks which generate a specific Channel bit pattern on the disk. This shall be achieved by setting to (AC) all 2048 Main Data bytes of each corresponding Data Frame. Moreover, no scrambling shall be applied to these Data Frames, except to the first 160 Main Data bytes of the first Data Frame of each ECC Block.

18.7 Buffer Zone 1

This Zone shall consist of 480 Physical Sectors from 30 ECC Blocks. The Main Data of the Data Frames in this Zone shall be set to all (00).

18.8 Control Data Zone

This Zone shall consist of 3072 Physical Sectors from 192 ECC Blocks. The content of the 16 Physical Sectors of each ECC Block is repeated 192 times. The structure of a Control Data Block shall be as shown in Figure 26.

Physical format information
2048 bytes
Disk manufacturing information
2048 bytes
Content provider information
14×2048 bytes

Figure 26 - Structure of a Control Data Block

18.8.1 Physical format information

This information shall comprise the 2048 bytes shown in Table 10. It contains disk and format information.

Table 10 - Physical format information

Byte number	Content	Number of bytes
0	Disk Category and Version Number	1
1	Disk size	1
2	Disk structure	1
3	Recording density	1
4 to 15	Data Zone allocation	12
16	Set to (00)	1
17	Disk Application Code	1
18	Extended Information indicators	1
19 to 26	Disk Manufacturer ID	8
27 to 29	Media type ID	3
30	Product revision number	1
31	number of Physical format information bytes in use in ADIP up to byte 63	1
32 to 63	Basic write strategy parameters	32
64 to 95	Extended Information block 0	32
96 to 127	Extended Information block 1	32
128 to 159	Extended Information block 2	32
160 to 191	Extended Information block 3	32
192 to 223	Extended Information block 4	32
224 to 247	Extended Information block 5	24
248 to 251	Start of Session	4
252 to 255	End of Session	4
256 to 2047	Reserved - All (00)	1792

The information in bytes 0 to 255 have the same definitions and shall have the same contents as the Physical format information in ADIP defined in Table 3 and 14.4.2, except the following bytes:

Byte 1 - Disk size and maximum transfer rate

Bits b_{7} to b_{4}
Bits b_{3} to b_{0}
same as 14.4.2
shall specify the maximum read transfer rate.
These bits may be set to one of the following values (depending on the maximum read-out speed needed by the application):
0000: specify a maximum transfer rate of $2,52 \mathrm{Mbits} / \mathrm{s}$ (See note at 30.3)
0001: specify a maximum transfer rate of $5,04 \mathrm{Mbits} / \mathrm{s}$ (See note at 30.3)
0010: specify a maximum transfer rate of $10,08 \mathrm{Mbits} / \mathrm{s}$
1111: specify no maximum transfer rate is specified.
All other combinations are reserved and shall not be used.
Bytes 4 to 15 - Data Zone allocation
Bytes 4 to 8 same as 14.4.2
Bytes 9 to 11 on a finalized Single Session disk (see 23.3): shall specify the Sector Number of the last Physical Sector of the Data Zone.
on a Multi-session disk (see Clause 22): shall be set to (26053F) to specify PSN 2491711 as the last possible Physical Sector on the disk for the storage of User Data (see also Annex A).

Bytes 12 to 15 same as 14.4.2
Bytes 248 to 251 - Start of first Session
Byte 248 shall be set to (00).
Bytes 249 to 251 shall be set to (030000) to specify PSN 196608 of the first Physical Sector of the Data Zone of the first Session (see Clause 22).
Bytes 252 to 255 - End of first Session
Byte 252 shall be set to (00).
Bytes 253 to 255 shall specify the Sector Number of the last Physical Sector of the Data Zone of the first Session (see Clause 22).

Bytes 256 to 2047 - Reserved - All (00)
These remaining bytes have no relation to the ADIP information and shall be set to all (00).
18.8.2 Disk manufacturing information

This Ecma Standard does not specify the format and the content of these 2048 bytes. They shall be ignored in interchange.
18.8.3 Content provider information

These 28672 bytes shall be set to all (00).
Under no circumstance may data received from the host be recorded in this field.
Circumvention: Recorders and recording drives shall be considered as circumvention devices when these are produced to record, or can easily be modified to record, in any manner, a user-defined number in this field.

18.9 Buffer Zone 2

This recorded Zone shall consist of 512 Physical Sectors from 32 ECC Blocks. The Main Data of the Data Frames in this Zone shall be set to all (00).

19 Data Zone

2295104 Physical Sectors for the storage of user data (see also Annex A).
The start radius of the Data Zone is determined by the location of Physical ADIP Address (00C000) and the maximum end radius is determined by the location of Physical ADIP Address (098150) (see 14.4.1.1, bit 2 to 23 and 13.7.1)

20 Lead-out Zone

The Lead-out Zone is located at the outer side of the Information Zone. It shall consist of the parts specified in Figure 27. The Physical Sector Number of the first and the last Physical Sector of each part is indicated in Figure 27 in hexadecimal and decimal notation and the number of Physical Sectors in each part is indicated in decimal notation (see also Annex A).

Physical Sector 2491712 max	Data Zone	Physical Sector (260540) max
	Buffer Zone 3 768 Physical Sectors with Main Data set to (00)	
Physical Sector 2492480 max	Outer Disk Identification Zone 256 Physical Sectors	Physical Sector (260840) max
Physical Sector 2492735 max		Physical Sector (26093F) max
Physical Sector 2492736 max	Guard Zone 2 min 4096 Physical Sectors with Main Data set to (00) (remaining sectors are allowed to be unrecorded)	Physical Sector (260940) max Physical Sector (26193F)
	Outer Drive Area	

Figure 27 - Lead-out Zone

20.1 Buffer Zone 3

This recorded Zone shall consist of 768 Physical Sectors. The last possible start location of Buffer Zone 3 is (260540) (see also Annex A). The Main Data of the Data Frames in this Zone shall be set to all (00).

20.2 Outer Disk Identification Zone

256 Physical Sectors reserved for information agreed upon by the data interchange parties. Each set of 16 Physical Sectors from one ECC Block is either a Disk Control Block (DCB) (see Clause 25) or recorded with all (00) Main Data. The contents of this Zone shall be equivalent to the contents of the last Inner Session Identification Zone (or to the contents of the Inner Disk Identification Zone in case of a Single-session disk).

20.3 Guard Zone 2

This Guard Zone is used as a protection for separating test writing zones from information zones containing user data. This zone shall contain a minimum of 4096 Physical Sectors filled with Main Data set to (00).

If the total storage capacity of the disk is not fully used, the Guard Zone 2 can be extended with Physical Sectors filled with Main Data set to (00) to fill up the gap up to a certain radius or up to the Outer Drive Area, or this gap can be left unrecorded. The choice for these options is left to the drive manufacturer.

21 Outer Drive Area

The Outer Drive Area is the outermost zone of the disk which is used by the drive for performing disk tests and OPC algorithms. It shall consist of the parts shown in Figure 28.
The Physical Sector Number of the first and last Physical Sector of each part is indicated in Figure 28 in hexadecimal and decimal notation and the number of Physical Sectors in each part are indicated in decimal notation (see also Annex A).

	Lead-out Zone	
Physical Sector 2496832	Outer Disk Administration Zone 4096 Physical Sectors	Physical Sector (261940)
Physical Sector 2500927		Physical Sector (26293F)
Physical Sector 2500928	Outer Disk Count Zone 4096 Physical Sectors	Physical Sector (262940)
Physical Sector 2505023		Physical Sector (26393F)
Physical Sector 2505024	Outer Disk Test Zone 16384 Physical Sectors	Physical Sector (263940)
Physical Sector 2521407		Physical Sector (26793F)
Physical Sector 2521408	Guard Zone 3 Blank	Physical Sector (267940)

Figure 28 - Outer Drive Area

21.1 Outer Disk Administration Zone

4096 Physical Sectors to be used for optional drive specific information. The first 16 physical sectors of this Zone shall be filled with all Main Data set to (00). This zone can be used in the same way as the Inner Disk Administration Zone (see 17.5).

21.2 Outer Disk Count Zone

4096 Physical Sectors reserved for counting the number of OPC algorithms performed in the Outer Disk Test Zone (see Annex H).

Whenever an ECC Block or part of it in the Outer Disk Test Zone has been recorded, the ECC Block shall be flagged by recording 4 Physical Sectors in the Outer Disk Count Zone. These 4 Physical Sectors shall be formatted according to the rules specified in 13.1 and the underlying subclauses, 13.2, 13.4, 13.5 and 13.6, whereby the Main Data bytes and the PI and PO bytes (see 13.3) can be chosen freely.
The relation between the first Physical Sector number PSNODT of the used ECC Block in the Outer Disk Test Zone and the Physical Sector numbers PSN ${ }_{\text {ODC }}$ to $\mathrm{PSN}_{\mathrm{ODC}}+3$ of the 4 Physical Sectors in the Outer Disk Count Zone is determined by the following mathematical expression (see also Annex A):
$\mathrm{PSN}_{\mathrm{ODC}}=\{(\mathrm{PSN} \mathrm{ODT})-(263940)\} /(04)+(262940)$

21.3 Outer Disk Test Zone

16384 Physical Sectors reserved for drive testing and OPC algorithms (see Annex H). The order in which these Physical Sectors shall be used is from the outer side of the disk towards the inner side of the disk, so from the highest address towards the lowest address.

21.4 Guard Zone 3

This Zone shall remain blank.

ecma

22 Multi-session Layout

To enable data retrieval by Read-Only devices, the disk should have a Lead-in Zone, no blank areas in the Data Zone, and some form of Lead-out Zone. However one also wants to have the ability to append additional data to a partially recorded disk. For this purpose the following Multi-session concept is specified.

On a Multi-session disk there can exist more than one session. A session with an Intro and a Closure is called a Closed Session. The first Session shall be preceded by a Lead-in Zone instead of an Intro Zone, the final Session shall be followed by a Lead-out Zone instead of a Closure Zone. Once a Lead-out Zone has been recorded, the disk is called "finalized" and no additional recordings to the disk shall be allowed.

The general layout of a Multi-session disk is shown in Table 11.
Table 11 - Layout of the Information Zone of a Multi-session disk

Session	Zone	Description		Number of Physical Sectors
	Inner Drive Area	--		--
Session 1	Lead-in	\ldots	$\begin{gathered} \text { See Clause } \\ 18 \end{gathered}$	\ldots
		Reserved Zone 2		64
		Inner Disk Identification Zone		256
		\ldots		\ldots
		Control Data Zone		3072
		Buffer Zone 2		512
	Data	Data Zone		min 16
	Closure	Buffer Zone C	See 22.3	768
	Clos	Outer Session Identification Zone	See 22.3	256
		Buffer Zone A		64
	Intro	Inner Session Identification Zone	See 22.1	256
		Session Control Data Zone		640
Session 2		Buffer Zone B		64
	Data	Data Zone		min 16
	Closure	Buffer Zone C	See 22.3	768
	$\underline{ }$	Outer Session Identification Zone		256
-	-	-		...

$\begin{gathered} \text { Session } N \\ (N \leq 191) \end{gathered}$	Intro	...	See 22.1	\ldots
	Data	Data Zone		min 16
	Lead-out	Buffer Zone 3	$\begin{gathered} \text { See Clause } \\ 20 \end{gathered}$	768
		Outer Disk Identification Zone		256
		...		\ldots
	Outer Drive Area	--		--

A session with a partially recorded Lead-in or Intro Zone and no Lead-out or Closure Zone is called an Open Session. All sessions must be Closed Sessions, except for the last one, which is allowed to be an Open Session. User Data can only be appended to an Open Session. If all session are closed, a new Open Session has to be created first (see 23.1).

The first Closed Session on the disk shall have a Lead-in that complies with Clause 18. Subsequent Closed Sessions shall have a Intro as defined in 22.1. Every Closed Session shall have a Closure as defined in 22.3, except for the Final Session, which shall have a Lead-out as defined in Clause 20.

22.1 Intro

Each new Session that occurs after the first Session, shall start with an Intro Zone consisting of a Buffer Zone A, an Inner Session Identification Zone, a Session Control Data Zone and a Buffer Zone B.
All Physical Sectors in the Intro Zone shall have bits b_{27} to b_{26} of the Data Frame set to ZERO ZERO, identifying the Intro Zone as if it was a Data Zone (see 13.1.1).

22.1.1 Buffer Zone A

64 Physical Sectors are reserved and shall be set (00).

22.1.2 Inner Session Identification Zone

256 Physical Sectors reserved to store information about the Sessions. Each set of 16 Physical Sectors from one ECC Block is either a Disk Control Block (DCB) (see Clause 25) or recorded with all (00) Main Data. Each ECC Block in this Zone following one recorded with all (00) Main Data shall also be recorded with all (00) Main Data.

22.1.3 Session Control Data Zone

This Zone shall consist of 640 Physical Sectors from 40 ECC Blocks. The content of the 16 Physical Sectors of each ECC Block is repeated 40 times. The structure of a Control Data Block shall be as shown in Figure 26.
22.1.4 Buffer Zone B

64 Physical Sectors are reserved and shall be set (00).

22.2 Data Zone

Each Data Zone shall consist of a multiple of 16 Physical Sectors, with a minimum of 16. The first Data Zone shall start at PSN (030000). If needed (e.g. for filling up the last ECC Block or for facilitating compatibility with certain Read-Only drives that require the disk to be recorded up till a certain radius) a Data Zone can be padded with Data Frames containing all (00) Main Data.

22.3 Closure

Each Session shall end with a Closure Zone consisting of two parts; a Buffer Zone C and an Outer Session Identification Zone.
All Physical Sectors in the Closure Zone shall have bits b_{27} to b_{26} of the Data Frame set to ZERO ZERO, identifying the Closure Zone as if it was a Data Zone (see 13.1.1).

22.3.1 Buffer Zone C

768 Physical Sectors are reserved and shall be set (00).

22.3.2 Outer Session Identification Zone

Each set of 16 Physical Sectors from one ECC Block is either a Disk Control Block (DCB) (see Clause 25) or recorded with all (00) Main Data. The contents of this Zone shall be equivalent to the contents of the Inner Identification Zone of the same Session.

23 Sequential recording in Fragments

+R disks according to this document in principle have to be recorded sequentially. To facilitate the recording of specific data at some pre-determined location on the disk at a later moment in time (such as for instance File System information), a Session can be divided into a number of Fragments. Inside such a Fragment the User Data shall be recorded sequentially from the inner side of the disk towards the outer side of the disk.

23.1 Opening a Session

New data can be added to the disk by appending to an Open Session. If there is no Open Session, a new Session has to be opened (see Table 12).

A new Session is opened by recording Buffer Zone A plus an SDCB (Session Disk Control Block: see 25.2) in the first ECC Block of the Inner Session Identification Zone (or by recording Reserved Zone 2 plus an SDCB in the first ECC Block of the Inner Disk Identification Zone in case of the first Session on a blank disk).
Buffer Zone B of the Intro (or Buffer Zone 2 of the Lead-in Zone in case of the first Session on a blank disk) shall be recorded at the same time the first ECC Block of the Data Zone is recorded.

Table 12 - Details of opened Session n (example)

| Session n-1 | Data | | Data Zone |
| :--- | :--- | :--- | :--- | User Data | Closure |
| :--- |

23.1.1 Incomplete Fragment

When no Reserved Fragments (see 23.1.2) are created, all the remaining area of the Data Zone following Buffer Zone B is called the Incomplete Fragment. In the presence of Reserved Fragments, all the remaining area of the Data Zone following the last Reserved Fragment is called the Incomplete Fragment.
Until the Incomplete Fragment is closed (see 23.1.4), there shall be no Fragment item (see 25.2.1) for the Incomplete Fragment in any SDCB.

23.1.2 Reserved Fragments

To allow for later on adding data, preceding already recorded User Data (such as for instance File System information), it is possible to create so-called Reserved Fragments. All Reserved Fragments in the Open Session shall be contiguous and non-overlapping, while the first Fragment shall start immediately after the end of Buffer Zone B.

Between any 2 Fragments there shall be 1 ECC Block for Run-in purposes. This ECC Block does not belong to any of the Fragments, and shall be recorded after the end of Reserved Fragment i at the same time the first ECC Block of Fragment ($i+1$) is recorded (see Figure 29).

23.1.2.1 Adding a Reserved Fragment

If a new Reserved Fragment is defined, this Fragment shall start from the beginning of the Incomplete Fragment and at least include all data that have already been written to the Incomplete Fragment. The newly defined Reserved Fragment shall be Fragment $n+1$, where n is the number of the previously last (Reserved) Fragment. A new SDCB shall be recorded in the Identification Zone of the Session including a new Fragment item indicating the start and end addresses of the added Reserved Fragment (see 25.2.1).

Reserved Fragments can only be added as long as the number of free locations for SDCBs in the Inner Identification Zone of the current Session is larger than one. The last free location for an SDCB has to be preserved for closing the Session.

The area following the newly defined Reserved Fragment is designated to be the new Incomplete Fragment ($n+2$).

Figure 29 - Creating Reserved Fragments

23.1.3 Recording User Data in Fragments

User Data added to the Data Zone shall be linked immediately to previously written User Data in the Incomplete Fragment or to previously written data in one of the Reserved Fragments.
23.1.4 Closing a Fragment

When a Reserved Fragment is closed, all blank areas in the Fragment shall be recorded with dummy data.

When the Incomplete Fragment is closed, a new SDCB shall be recorded in the Identification Zone of the Session including a new Fragment item indicating the start and end addresses of the (formerly) Incomplete Fragment (see 25.2). This formerly Incomplete Fragment shall not have unrecorded areas.

The area after the formerly Incomplete Fragment can be designated as the new Incomplete Fragment is case more User Data has to be added. For consistency reasons a Run-in Block shall be taken into account between the new Incomplete Fragment and the formerly Incomplete Fragment.

ecma

23.2 Closing a Session

To enable data retrieval from a Session by Read-Only devices, this Session and all preceding ones should be closed. A Session is closed by recording all blank areas in all Fragments with dummy data and recording all remaining parts in the Lead-in or Intro Zone and adding the Closure Zone.
When a Session is closed, the Incomplete Fragment is closed and shall be designated as Fragment $m+1$, where m is the number of the last (Reserved) Fragment preceding the Incomplete Fragment (see Figure 29).
The numbering of the Fragments shall be continuous over all Sessions (see Figure 29).
When the Session to be closed is the 191st Session, then the disk shall be finalized, instead of closing the Session (see 23.3).
Also when the remaining free space on the disk after closing the Session will become less than 128 ECC Blocks (2 048 Physical Sectors), the disk shall be finalized, instead of closing the Session (see 23.3.).

23.2.1 Lead-in/Intro Zone

The SDCB shall be updated, including the Incomplete Fragment as the last Fragment ($n+2$ in the example of Figure 29). In case multiple SDCBs have been recorded, the last written SDCB is the valid one.

In the Lead-in Zone the Control Data Zone shall be according to 18.8.
In each Intro the Session Control Data Zone shall be recorded with 40 ECC Blocks according to the format specified in 18.8 with the following settings:

Physical Format Information:

Bytes 0 to 247 - same as in 18.8.1
These bytes contain a copy of the Physical format information.

Bytes 248 to 251 - Start of current Session

Byte 248
shall be set to (00).
Bytes 249 to 251 shall specify the Sector Number of the first Physical Sector of the Data Zone of the current Session (see Clause 22).
Bytes 252 to 255 - End of current Session
Byte 252 shall be set to (00).
Bytes 253 to 255 shall specify the Sector Number of the last Physical Sector of the Data Zone of the current Session (see Clause 22).
Bytes 256 to 2047 - Reserved - All (00)
These remaining bytes have no relation to the ADIP information and shall be set to all (00).
Disk manufacturing information: see 18.8.2.
Content provider information: see 18.8.3.

23.2.2 Closure Zone

At closing a Session, Buffer Zone C shall be recorded together with the Outer Session Identification Zone.

23.3 Finalizing the disk

When the disk is being finalized, a Lead-out Zone according to Clause 20 shall be recorded instead of a Closure Zone. After finalizing the disk, adding data is no longer possible. The Session Status in the TOC Item describing the last Session shall be set accordingly (see 17.6.1.1: TOC Item, byte B_{3}).

24 Assignment of Logical Sector Numbers (LSNs)

Logical Sector Numbers (LSN) shall be assigned contiguously from LSN 0, starting from the first PSN of the first Data Zone to the end of the last Data Zone. The relation between LSN and PSN shall be: $\mathrm{LSN}=\mathrm{PSN}-(030000)$.

25 Disk Control Blocks

Disk Control ECC Blocks are provided as a structure on the disk to include additional information for interchange between the data interchange parties. DCBs are recorded in the Inner and Outer Identification Zones of the disk and the Sessions. All DCBs shall have the same format for the first 40 data bytes. A special DCB is defined to reflect the status of the Session(s).

25.1 General format of Disk Control Blocks

The Main Data of each Disk Control Block shall be according to Table 13.
If a Disk Control Block has to be updated, a substitute DCB shall be written immediately following the last written DCB in the Inner Disk/Session Identification Zone. If more than one DCB with the same Content Descriptor are present, then the one with the highest address is the only valid one of that type. Once a Session has been closed, the DCBs of that Session can no longer be updated.

Table 13 - General format of each Disk Control Block

Physical Sector of each DCB	Main Data BP	Description
0	D_{0} to D_{3}	Content Descriptor
0	D_{4} to D_{7}	Unknown Content Descriptor Actions
0	D_{8} to D_{39}	Drive ID
0	D_{40} to D_{2047}	Content Descriptor Specific
1 to 15	$D_{0}-D_{2047}$	Content Descriptor Specific

Bytes D_{0} to D_{3} - Content Descriptor

if set to (00000000)
the DCB is unused.
The Content Descriptor of all subsequent DCBs in this Inner or Outer Identification Zone shall be set to (00000000).
All remaining bytes, D_{4} to $D_{2} 047$ of Physical Sector 0 and D_{0} to D_{2047} of Physical Sector 1 to 15 in Table 13 shall be set to (00).
if set to (53444300)
this DCB shall be as defined in 25.2.
All other values for the Content Descriptor are reserved.
Each new DCB added to the Inner or the Outer Identification Zone shall be written at the first available unwritten DCB location.

Each prevailing DCB with a Content Descriptor not set to (00000000) in the Inner Identification Zone of a Session shall have an identical DCB in the Outer Identification Zone of the respective Session (DCBs that have been substituted need not to be present in the Outer Identification Zone).

Bytes $\mathrm{D}_{\mathbf{4}}$ to $\mathrm{D}_{\mathbf{7}}$ - Unknown Content Descriptor Actions

These bits are provided to specify required actions when the content and use of the DCB are unknown to the drive (i.e. the content descriptor is not set to a known assigned value). These bytes form a field consisting of 32 individual bits.

Bits b_{31} to b_{4} Reserved
These bits shall be set to all ZERO.
Bit $b_{3} \quad D C B$ rewrite
if set to ONE, substituting the current DCB shall not be allowed, else it shall be set to ZERO.
Bit $b_{2} \quad$ Formatting shall be set to ONE, indicating that reformatting of the disk is not possible.
Bit $b_{1} \quad D C B$ read protect
if set to ONE, the information in this DCB is meant for use by the drive only and shall not be transferred outside the drive, else it shall be set ZERO.

Bit $b_{0} \quad$ Data Zone write
if set to ONE, recording shall not be allowed in the Data Zone, else it shall be set to ZERO.

Bytes D_{8} to D_{39} Drive ID

Bytes D_{8} to D_{39} shall contain a unique descriptor, identifying the drive that has written the DCB. The format of this unique drive identifier shall be as follows:

- Bytes D_{8} to D_{23} shall identify the manufacturer of the drive. This name shall be represented by characters from the G0 set + SPACE according to ECMA-43. Trailing bytes not used shall be set to (00).
- Bytes D_{24} to D_{35} shall identify the model name/type number of the drive. This model name/type number shall be represented by characters from the G0 set + SPACE according to ECMA-43. Trailing bytes not used shall be set to (00).
- Bytes D_{36} to D_{39} shall contain a unique serial number of the drive. The 4 bytes shall form one 32-bit binary number.

Bytes D_{40} to D_{2047}-Content Descriptor Specific

Bytes specified by the format description for the DCB with the actual Content Descriptor value.

Physical Sectors 1 to 15: Bytes D_{0} to D_{2047} - Content Descriptor Specific

Bytes specified by the format description for the DCB with the actual Content Descriptor value.

25.2 Format of the Session DCB (SDCB)

The Lead-in or Intro Zone of an Open Session shall contain an SDCB describing the structure of the Open Session and the location of all previous Sessions. When the Session is closed, the SDCB in the Inner Identification Zone shall be updated and a copy shall be written to the Outer Identification Zone. The SDCB's shall have the content as defined in Table 14.

Table 14 - Format of the SDCB

Physical Sector of ECC block	Main Data byte position	Description	number of bytes
0	D_{0} to D_{3}	Content Descriptor	4
0	D_{4} to D_{7}	Unknown Content Descriptor Actions	4
0	D_{8} to D_{39}	Drive ID	32
0	D_{40} to D_{41}	Session number	2
0	D_{42} to D_{63}	Reserved and set to (00)	22
0	D_{64} to D_{95}	Disk ID (in Lead-in Zone only)	32
0	D_{96} to D_{127}	Application Dependent	32
0	D_{128} to D_{143}	Session Item 0	16
0	...	\ldots	
0	$\begin{gathered} D_{128+i \times 16} \text { to } \\ D_{143+i \times 16} \end{gathered}$	Session Item i	16
0	...	\ldots	
0	$\begin{aligned} & \mathrm{D}_{128+(\mathrm{N}-1) \times 16} \text { to } \\ & \mathrm{D}_{143+(\mathrm{N}-1) \times 16} \end{aligned}$	Session Item N-1	16
0	$\mathrm{D}_{128+\mathrm{N} \times 16}$ to $\mathrm{D}_{2} 047$	Reserved and set to (00)	$1920-\mathrm{N} \times 16$
1 to 3	D_{0} to $\mathrm{D}_{2} 047$	Extension for Session Items or Reserved and set to (00)	3×2048
4 to 7	D_{0} to $\mathrm{D}_{2} 047$	Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)	4×2048
8 to 11	D_{0} to $\mathrm{D}_{2} 047$	Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)	4×2048
12 to 15	D_{0} to $\mathrm{D}_{2} 047$	Repetition of Sectors 0 to 3 (recommended) or Reserved and set to (00)	4×2048

Physical Sector 0 / bytes D_{0} to D_{3} - Content Descriptor

these bytes identify the Session DCB and shall be set to (53444300), representing the characters "SDC" and the version number 0 .

Physical Sector 0 / bytes $\mathrm{D}_{\mathbf{4}}$ to $\mathrm{D}_{\mathbf{7}}$ - Unknown Content Descriptor Actions

shall be set to (0000000D) indicating that if this DCB is not known to the system, the DCB shall not be substituted, the disk can not be reformatted, writing to the Data Zone shall not be allowed, while transferring the DCB information from the drive to the host computer is allowed.

Physical Sector 0 / bytes D_{8} to D_{39} - Drive ID
these bytes shall contain the drive ID as specified in 25.1 , bytes D_{8} to D_{39}.

ecma

Physical Sector 0 / bytes $\mathrm{D}_{\mathbf{4 0}}$ to $\mathrm{D}_{\mathbf{4 1}}$ - Session number

these bytes shall specify the sequence number of the Session to which the SDCB belongs. The first Session shall have sequence number 1 and each subsequent Session number shall be incremented by one.

Physical Sector 0 / bytes $D_{\mathbf{4 2}}$ to $D_{\mathbf{6 3}}$ - Reserved
these bytes are reserved and shall be set to (00).
Physical Sector 0 / bytes D_{64} to D_{95} - Disk ID
In the SDCB in the Inner Disk Identification Zone in the Lead-in Zone of the disk, these 32 bytes shall be recorded with a random, statistically unique, 256-bit binary number at initialization of the disk (opening of the first Session). In the SDCB in the Inner Session Identification Zone in the Intro of each next Session, bytes D_{64} to D_{95} shall be set to all (00).

Physical Sector 0 / bytes D_{96} to D_{127} - Application dependent

this field shall consist of 32 bytes and is reserved for use by the application to store information such as specific copy protection data. If this setting is not specified by the application, the bytes shall be set to (00).

In each Session these bytes can be set independently.

Physical Sector 0 / bytes D_{128} to D_{2047} - Session Items

these bytes are grouped in units of 16 bytes each. Each unit of 16 bytes can contain one of two different types of Session Items:

- type 1: specifies the Fragments in the current Session,
- type 2: specifies the start and end addresses of all previous Sessions.

All Session Items shall be ordered in the SDCB according to their type number (first type 1, then type 2).

All unused bytes shall be set to (00).
Physical Sectors 1 to 3 / bytes D_{0} to $D_{2} 047$ - Extension for Session Items or Reserved
these bytes can be used to hold additional Session Items.
All unused bytes shall be set to (00).

Physical Sectors 4 to 15 / bytes D_{0} to D_{2047} - Repetitions of Sectors 0 to 3 or all Reserved

For robustness reasons it is recommended to repeat the content of Sectors 0 to 3 in Sectors 4 to 7, in Sectors 8 to 11 and in Sectors 12 to 15.
If this option is not used, these bytes shall be set to (00).
It is a matter of drive implementation to recognize and make use of the repetitions.

25.2.1 Session Items

25.2.1.1 type 1: Fragment item

Item byte position	Description	number of bytes
B_{0} to B_{2}	Fragment item descriptor	3
$\mathrm{~B}_{3}$ to B_{4}	Fragment number	2
$\mathrm{~B}_{5}$ to B_{7}	Fragment start address	3
$\mathrm{~B}_{8}$ to B_{10}	Fragment end address	3
$\mathrm{~B}_{11}$ to B_{15}	Reserved and set to (00)	5

An SDCB can contain more than 1 Fragment item. If there are no Reserved Fragments, there shall be no Fragment items.

If a new Reserved Fragment has to be added to an Open Session, a new SDCB, including the Fragment items needed to reflect the new situation, is written in the Inner Identification Zone of the current Session, immediately following the last SDCB. Reserved Fragments in a Session shall not be overlapping.

When closing a Session, a new SDCB, including a Fragment item for the Incomplete Fragment, is written in the Inner Identification Zone of the current Session, immediately following the last SDCB.

The Fragment items shall be ordered with increasing numbers and addresses. The last written SDCB in the Inner Identification Zone is the valid SDCB.
Fragment item bytes B_{0} to $B_{\mathbf{2}}$ - Fragment item descriptor
these 3 bytes identify the item type and shall be set to (465247), representing the characters "FRG".

Fragment item bytes $B_{\mathbf{3}}$ to $B_{\mathbf{4}}$ - Fragment number

these 2 bytes shall specify the sequence number of the Fragment. The numbers of the Fragments shall be contiguous over all Sessions and increment by one for each subsequent Fragment. The first Fragment in the first Session shall have sequence number 1 and the first Fragment in each next Session shall have a sequence number that is one higher than the number of the last Fragment in the preceding Session.

Fragment item bytes B_{5} to B_{7} - Fragment start address
these 3 bytes shall specify the PSN of the first Physical Sector belonging to the Fragment specified in this item.

Fragment item bytes $\mathbf{B}_{\mathbf{8}}$ to $\mathbf{B}_{\mathbf{1 0}}$ - Fragment end address

these 3 bytes shall specify the PSN of the last Physical Sector belonging to the Fragment specified in this item.

Fragment item bytes B_{11} to B_{15} - Reserved
these 5 bytes are reserved and shall be set to (00).
25.2.1.2 type 2: Previous Session item

Item byte position	Description	number of bytes
B_{0} to B_{2}	Previous Session item descriptor	3
$\mathrm{~B}_{3}$	Reserved and set to (00)	1
$\mathrm{~B}_{4}$	Previous Session number	1
$\mathrm{~B}_{5}$ to B_{7}	Previous Session start address	3
$\mathrm{~B}_{8}$ to B_{10}	Previous Session end address	3
$\mathrm{~B}_{11}$ to B_{15}	Reserved and set to (00)	5

An SDCB shall contain a Previous Session item for each Session preceding the current Session. The SDCB of the first Session shall not contain a Previous Session item. The Previous Session items shall be ordered with increasing addresses.

Previous Session item bytes B_{0} to B_{2} - Previous Session item descriptor

these 3 bytes identify the item type and shall be set to (505253), representing the characters "PRS".

Previous Session item byte B_{3} - Reserved

this byte is reserved and shall be set to (00).

Previous Session item byte $\mathbf{B}_{\mathbf{4}}$ - Previous Session number

this byte shall specify the sequence number of the Previous Session specified in this item.

Previous Session item bytes B_{5} to B_{7} - Previous Session start address

these 3 bytes shall specify the PSN of the first Physical Sector in the Data Zone of the Previous Session specified in this item.

Previous Session item bytes B_{8} to B_{10} - Previous Session end address
these 3 bytes shall specify the PSN of the last Physical Sector in the Data Zone of the Previous Session specified in this item.

Previous Session item bytes \mathbf{B}_{11} to \mathbf{B}_{15} - Reserved

these 5 bytes are reserved and shall be set to (00).

Section 5 - Characteristics of the groove

26 General

All recordings shall occur only in grooved areas. The groove centreline is deviated from the average track centreline with a phase modulated sine-wave. Physical addressing information can be decoded from this phase modulated wobble.
The format of the groove information on the disk is defined in 14.4. Clause 28 specifies the requirements for the signals from grooves, as obtained when using the Reference Drive as defined in Clause 9.

27 Method of testing

27.1 Environment

All signals in Clause 28 shall be within their specified ranges with the disk in the test environment conditions defined in 8.1.1.

27.2 Reference Drive

All signals specified in Clause 28 shall be measured in the indicated channels of the Reference Drive as defined in Clause 9. The drive shall have the following characteristics for the purpose of these tests.

27.2.1 Optics and mechanics

The focused optical beam shall have the properties defined in 9.2 a) to i). The disk shall rotate as specified in 9.5 .
27.2.2 Read power

The optical power incident on the read-out surface of the disk (used for reading the information) shall be $0,7 \mathrm{~mW} \pm 0,1 \mathrm{~mW}$.
27.2.3 Read channels

The drive shall have two read channels. Read Channel 1 gives a signal $\left(I_{1}+I_{2}\right)$ related to the total amount of light in the exit pupil of the objective lens. Read Channel 2 gives a signal $\left(I_{1}-I_{2}\right)$ related to the difference in the amount of light in the two halves of the exit pupil of the objective lens. These channels can be implemented as given in Clause 9.
For measurement of the push-pull and track cross signals, the read channel signals shall be filtered by a 1 st order LPF with a $\mathrm{f}_{\mathrm{c}}(-3 \mathrm{~dB})$ of 30 kHz .
For measurement of the wobble signal, the read channel signals shall be filtered by a 1 st order Band Pass Filter with frequency range (-3 db): 25 kHz , slope $+20 \mathrm{~dB} / \mathrm{decade}$ to $4,0 \mathrm{MHz}$, slope $-20 \mathrm{~dB} /$ decade.

27.2.4 Tracking

During the measurement of the signals, the axial tracking error between the focus of the optical beam and the recording layer shall not exceed $0,20 \mu \mathrm{~m}$ and the radial tracking error between the focus of the optical beam and the centre of a track shall not exceed $0,022 \mu \mathrm{~m}$.

27.3 Definition of signals

All signals are linearly related to currents through a photo detector, and are therefore linearly related to the optical power falling on the detector.

Figure 30 - Signals from grooves in the Read Channels when crossing the tracks

Push-pull signal

The push-pull signal is the filtered sinusoidal difference signal $\left(I_{1}-I_{2}\right)$ in Read Channel 2, when the focus of the optical beam crosses the tracks. The signal can be used by the drive for radial tracking.

Track cross signal

The track cross signal is the filtered sinusoidal sum signal $\left(I_{1}+I_{2}\right)$ in Read Channel 1 , when the focus of the optical beam crosses the tracks.

Wobble signal

The wobble signal I_{W} is the filtered sinusoidal difference signal $\left(I_{1}-I_{2}\right)$ in Read Channel 2 , while the drive meets the minimum tracking requirement.

28 Characteristics of the groove signals

28.1 Phase depth

The phase depth of the groove shall not exceed 90°.

28.2 Push-pull signal

The peak-to-peak value of the push-pull signal PP shall meet the following requirements:
a) before recording:

$$
0,30 \leq \frac{\left(I_{1}-I_{2}\right)_{\mathrm{pp}}}{\left[\left(I_{1}+I_{2}\right)_{\max }+\left(I_{1}+I_{2}\right)_{\min }\right] / 2} \leq 0,60
$$

The maximum variation of the push-pull signal before recording shall be: $\frac{P P_{\max }-P P_{\min }}{P P_{\max }+P P_{\min }}<0,15$
b) after recording: $0,40 \leq \frac{\left(I_{1}-I_{2}\right)_{\mathrm{pp}}}{\left[\left(I_{1}+I_{2}\right)_{\max }+\left(I_{1}+I_{2}\right)_{\min }\right] / 2} \leq 0,80$
c) Ratio of push-pull signal of unrecorded groove to push-pull signal of recorded groove shall be in the range of $0,60 \leq \frac{P P_{\text {before }}}{P P_{\text {after }}} \leq 1,00$

28.3 Track Cross signal

The Track Cross signal for the unrecorded disk shall meet the following requirement:
The $\left(I_{1}+I_{2}\right)_{\text {min }}$ value shall be generated at the groove centre.

28.4 Normalized wobble signal

The deviation from the track centreline shall be measured by the normalized wobble signal. The amount of distance that the centre of the wobble groove deviates from the average track centreline can be calculated according to Annex M.

The wobble signal shall be measured in an empty track during the monotone wobble part, at locations where the amplitude is not enhanced due to the positive interference of the wobble from adjacent tracks.

The normalized wobble signal shall be

$$
0,15 \leq \frac{I_{\mathrm{W}, \mathrm{pp}-\min }}{\left(I_{1}-I_{2}\right)_{\mathrm{pp}}} \leq 0,25
$$

At locations where the amplitude of the wobble signal is enhanced due to the positive interference of the wobble from adjacent tracks, the maximum wobble signal shall be

$$
\frac{I_{\mathrm{W}, \mathrm{pp}-\mathrm{max}}}{I_{\mathrm{W}, \mathrm{pp}-\min }} \leq 2,6
$$

28.5 Characteristics of the wobble

The average Narrow band SNR of the wobble signal before recording shall be greater than 45 dB . The measurement shall be made using a resolution bandwidth of 1 kHz .
The average Narrow band SNR of the wobble signal after recording shall be greater than 38 dB . The measurement shall be made using a resolution bandwidth of 1 kHz .

Section 6 - Characteristics of the recording layer

29 Method of testing

The format of the information on the disk is defined in Clause 13. Clause 30 specifies the requirements for the signals from recorded grooves, as obtained when using the Reference Drive as defined in Clause 9.
This Clause specifies the average quality of the recorded information. Local deviations from the specified values, called defects, can cause tracking errors or errors in the Data fields. These errors are covered by Clause 32 and Section 7.

29.1 Environment

All signals in 30.2 . 2 to 30.2 . shall be within their specified ranges with the disk in the test environment conditions defined in 8.1.1.

29.2 Reference Drive

All signals specified in 30.2 .2 to 30.2 .6 shall be measured in the indicated channels of the Reference Drive as defined in Clause 9. The drive shall have the following characteristics for the purpose of these tests.

29.2.1 Optics and mechanics

The focused optical beam shall have the properties defined in 9.2 a) to i). The disk shall rotate as specified in 9.5 .

29.2.2 Read power

The optical power incident on the read-out surface of the disk (used for reading the information) shall be $0,7 \mathrm{~mW} \pm 0,1 \mathrm{~mW}$.

29.2.3 Read channels

The drive shall have two read channels. Read Channel 1 gives a signal $\left(I_{1}+I_{2}\right)$ related to the total amount of light in the exit pupil of the objective lens. Read Channel 2 gives a signal ($I_{1}-I_{2}$) related to the difference in the amount of light in the two halves of the exit pupil of the objective lens. These channels can be implemented as given in Clause 9.
For measurement of the push-pull and track cross signals, the read channel signals shall be filtered by a 1 st order LPF with a $\mathrm{f}_{\mathrm{c}}(-3 \mathrm{~dB})$ of 30 kHz .
The signal from Read channel 1 is not equalized except when measuring jitter. The threshold level for binarizing the read signal shall be controlled to minimize the effects of mark and space size changes due to parameter variations during writing. Jitter measurements shall be made using the Read Channel 1 with the characteristics in Annex D.

29.2.4 Tracking

During recording and during the measurement of the signals, the axial tracking error between the focus of the optical beam and the recording layer shall not exceed $0,20 \mu \mathrm{~m}$ and the radial tracking error between the focus of the optical beam and the centre of a track shall not exceed $0,022 \mu \mathrm{~m}$.
NOTE
At high recording or playback velocities, advanced servo systems might be needed to achieve tracking errors below these maximum values.

29.2.5 Scanning velocity

All write tests are performed at the velocities of the disk defined in 14.4.2.
The disk shall be tested at all Primary and Upper speeds with the related write strategy.
All read tests are performed at the Reference velocity.

29.3 Write conditions

Marks and spaces are written on the disk by pulsing a laser.

29.3.1 Write pulse waveform

The laser power is modulated according to one of the write pulse waveforms given in Annex F.
A 3T to 14T mark is written by applying a multiple-pulse train of short write pulses or by applying a single write pulse.
The recording power has two basic levels: the Write power $(P \mathrm{w})$ and the Bias power $(P \mathrm{~b})$, which are the optical powers incident at the entrance surface of the disk and used for writing marks and spaces.
In case of the single write pulse, a power enhancement $\mathrm{d} P \mathrm{w}$ can be applied depending on the type and the length of the pulses; furthermore for optimum cooling of the recording layer after writing a mark, the power shall be switched to the lowest possible level (Pc) for some time immediately following the write pulse (see Annex F.2).
The value of the $P \mathrm{w}$ power level shall be optimized according to Annex H .
The actual Pw power level shall be within 5% of its optimum value.

29.3.2 Write power

The optimized write powers, Pwo and Pbo shall meet the following conditions.
Ppeak $=P$ wo in case no power enhancement is applied and
Ppeak $=P$ wo $+\mathrm{d} P$ wo (max applied for any mark) in case power enhancement is applied.
for the basic write strategy defined in 14.4.2.2 (see also 12.3):
Ppeak $\leq 15,0 \mathrm{~mW}$ for $650 \mathrm{~nm} \leq \lambda \leq \lambda_{\text {IND }}$
Ppeak $\leq 19,0 \mathrm{~mW}$ for $\lambda_{\mathrm{IND}}<\lambda \leq 665 \mathrm{~nm}$
for the " $\mathbf{4 x +}$ " write strategy defined in 14.4.2.3.1 (see also 12.3):
Ppeak $\leq 19,0 \mathrm{~mW}$ for $650 \mathrm{~nm} \leq \lambda \leq \lambda_{\text {IND }}$
Ppeak $\leq 22,0 \mathrm{~mW}$ for $\lambda_{\text {IND }}<\lambda \leq 665 \mathrm{~nm}$
for the " $\mathbf{6 x +}$ " write strategy defined in 14.4.2.3.2 (see also 12.3):
Ppeak $\leq 30,0 \mathrm{~mW}$ for $650 \mathrm{~nm} \leq \lambda \leq \lambda_{\text {IND }}$
Ppeak $\leq 35,0 \mathrm{~mW}$ for $\lambda_{\text {IND }}<\lambda \leq 665 \mathrm{~nm}$
$P \mathrm{wo} \geq 6 \mathrm{~mW}$ at $\lambda=\lambda_{\mathrm{IND}}$
$P b o=0,7 \pm 0,1 \mathrm{~mW}$
Pco $<0,1 \mathrm{~mW}$

29.3.3 Write power dependency on wavelength

The change of the optimum write power Pwo induced by a change of the laser wavelength (see Annex J) shall meet the following condition

$$
0 \leq(\mathrm{d} P \mathrm{wo} / \mathrm{d} \lambda) /\left(\mathrm{P}_{\mathrm{IND}} / \lambda_{\mathrm{IND}}\right) \leq 25 \quad(\mathrm{~d} P \mathrm{wo} / \mathrm{d} \lambda \text { averaged over the wavelength range }
$$

$$
\text { from } 645 \mathrm{~nm} \text { to } 670 \mathrm{~nm} \text {) }
$$

29.3.3 Write power window

To allow for some variations in the write power of practical drive implementations, the normalized write power windows (NWPW) shall have a minimum width. The normalized write power windows shall be determined in the following way:

- the jitter is measured as a function of the write power $P \mathrm{w}$ at the inner diameter of the Data Zone and at the outer diameter of the Data Zone; in general those two curves will not coincide (see Figure 31),
- the single write power window is defined as the power range ($\mathrm{P}_{\text {upper, } \mathrm{n}}-\mathrm{P}_{\text {lower, } \mathrm{n}}$) where the jitter curve concerned is below 9 \% (see Figure 31),
the requirement for each normalized single write power window is:

$$
\mathrm{NWPW}_{\mathrm{S}}=\frac{\mathrm{P}_{\text {upper }, \mathrm{n}}-\mathrm{P}_{\text {lower, }, \mathrm{n}}}{\left(\mathrm{P}_{\text {upper }, \mathrm{n}}+\mathrm{P}_{\text {lower, } \mathrm{n}}\right) / 2} \geq 0,12
$$

- the net write power window is defined as the power range where both jitter curves are below 9 \% (see example in Figure 31, where the net power window $=P_{\text {upper, } 1}-P_{\text {lower,2 }}$), the requirement for the normalized net write power window is:

$$
\mathrm{NWPW}_{\mathrm{N}}=\frac{\mathrm{P}_{\text {upper }, \mathrm{m}}-\mathrm{P}_{\text {lower, } \mathrm{n}}}{\left(\mathrm{P}_{\text {upper }, \mathrm{m}}+\mathrm{P}_{\text {lower, } \mathrm{n}}\right) / 2} \geq 0,10
$$

in which $P_{\text {upper, }}$ is the highest power at which both jitter curves are below 9% and $P_{\text {lower, } n}$ is the lowest power at which both jitter curves are below 9%

- the above requirements shall be fulfilled at all defined recording velocities.

Figure 31 - Example of the write power windows

NOTE

Above procedures are based on typical disks which show a monotonic shift of the power window as function of the radius. If this is not the case, power windows shall be measured at several radii and the net power window shall be defined as the power range where all jitter curves are below 9%.

29.4 Measurement conditions

The test for jitter shall be carried out on any group of five adjacent tracks, designated ($m-2$), $(m-1), m,(m+1),(m+2)$, in the Information Zone of the disk. The jitter shall be measured on recordings made at all velocities specified in 14.4.2.2, byte 32 and 33 and in the Extended Information blocks defined under 14.4.2.3.
For measurement of jitter, the system described in Annex D shall be used.
The Jitter shall be measured according to the following procedure:
Write random data on all five tracks as specified in 29.3.1.
Read the data of track m under the conditions specified in 29.2.

30 Characteristics of the recorded signals

The following signals shall be measured, after recording with the write conditions as specified in 29.3.1.

30.1 Channel bit Iength

The average Channel bit length over each RUN shall be

$$
133,3 \mathrm{~nm} \pm 1,4 \mathrm{~nm}
$$

30.2 Definition of signals

All signals are linearly related to currents through a photo-diode detector, and are therefore linearly related to the optical power falling on the detector.
30.2.1 High frequency signals (HF)

The HF signal is obtained by summing the currents of the four elements of the photo detector as generated in Read Channel 1. These currents are modulated by the effects of the marks and spaces representing the information on the recording layer.

Figure 32 - Signals from spaces and marks in Read channel 1

30.2.2 Modulated amplitude

The modulated amplitude l_{14} is the peak-to-peak value of the HF signal generated by the largest mark and space lengths (see Figure 32). The peak value $I_{14 \mathrm{H}}$ shall be the peak value of the HF signal before a.c. coupling. The modulated amplitude I_{3} is the peak-to-peak value generated by the shortest mark and space lengths. The 0 Level is the signal level obtained from the measuring device when no disk is inserted. These parameters shall meet the following requirements under all conditions, also such as when recordings have been made at different speeds.
$I_{14} / I_{14 \mathrm{H}} \geq 0,60$
$I_{3} / I_{14} \geq 0,15$
Within one disk, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,25$
Within one revolution, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,15$

ecma

30.2.3 Signal asymmetry

The signal asymmetry shall meet the following requirement:

$$
-0,05 \leq\left[\frac{\frac{I_{14 \mathrm{H}}+I_{14 \mathrm{~L}}}{2}-\frac{I_{3 \mathrm{H}}+I_{3 \mathrm{~L}}}{2}}{I_{14}}\right] \leq+0,15
$$

30.2.4 Normalized Slicing Level jump

Between any 2 consecutive ECC Blocks, the Normalized Slicing Level (NSL) jump shall be:

$$
\left|\frac{\left(I_{3 H, 2}+I_{3 L, 2}\right)-\left(I_{3 H, 1}+I_{3 L, 1}\right)}{\left(I_{3 H, 2}-I_{3 L, 2}\right)+\left(I_{3 H, 1}-I_{3 L, 1}\right)}\right| \leq 0,35
$$

where $I_{3 H, 1}$ and $I_{3 \mathrm{~L}, 1}$ are the I_{3} levels just before the linking position and $I_{3 H, 2}$ and $I_{3 L, 2}$ are the I_{3} levels just after the linking position.
This requirement shall be fulfilled also when the 2 ECC Blocks have been recorded at different speeds.

30.2.5 Jitter

Jitter is the standard deviation σ of the time variations of the binary read signal. This binary read signal is created by a slicer, after feeding the HF signal from the HF read channel through an equalizer and LPF (see Annex D). The jitter of the leading and trailing edges is measured relative to the PLL clock and normalized by the Channel bit clock period.

The jitter shall be measured at the Reference velocity using the circuit specified in Annex D.
The jitter measurement shall be using the conditions specified in 29.4.
The measured jitter shall not exceed 9,0 \%.

30.2.6 Track Cross signal

The Track Cross signal is the filtered sinusoidal sum signal $\left(I_{1}+I_{2}\right)$ in Read Channel 1 when the focus of the optical beam crosses the tracks. The Track Cross signal shall meet the following requirement:

$$
\frac{\left(I_{1}+I_{2}\right)_{\mathrm{pp}}}{\left(I_{1}+I_{2}\right)_{\max }} \geq 0,13
$$

30.3 Read stability

When read with a read power of $0,8 \mathrm{~mW}$ at a temperature of $55^{\circ} \mathrm{C}$, all parameters specified in 30.2.2 to 30.2 .6 shall be within their specified ranges after 1000000 repeated reads.

NOTE
Reading with the same read power at lower speeds than the reference speed might degrade the read stability.

31 Additional testing conditions

Recorded +R disks compliant with this +R Ecma Standard shall also fulfil the following basic signal specifications when measured with the Pick Up Head according to the ECMA-267 Standard.

31.1 Test environment

All conditions are the same as in 29.1 to 29.2 .5 except for the following.

31.1.1 Optics

The focused optical beam used for reading data shall have the following properties:
a) Wavelength (λ)
$650 \mathrm{~nm} \pm 5 \mathrm{~nm}$
b) Numerical aperture of the objective lens (NA)
$0,60 \pm 0,01$
c) The objective lens shall be compensated for spherical aberrations caused by a parallel substrate with nominal thickness $(0,6 \mathrm{~mm})$ and nominal refractive index $(1,55)$.
d) Wave front aberration
$0,033 \times \lambda$ rms max.
e) Light intensity at the rim of the pupil of the objective lens
60% to 70% of the maximum intensity in the radial direction and over 90% in the tangential direction.
f) Polarization of the light

Circular
g) Read power
$0,7 \mathrm{~mW} \pm 0,1 \mathrm{~mW}$
h) Relative Intensity Noise (RIN)* of laser diode $-134 \mathrm{~dB} / \mathrm{Hz}$ max. *RIN (dB/Hz) = 10 log [(a.c. light power density / Hz) / d.c. light power]

31.2 Definition of signals

For the definition of the following signals see 30.2 and the underlying subclauses.

31.2.1 Modulated amplitude

$I_{14} / I_{14 \mathrm{H}} \geq 0,60$
$I_{3} / I_{14} \geq 0,15$
Within one disk, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,33$ (with PBS)
Within one disk, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,20$ (without PBS)
Within one revolution, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,15$ (with PBS)
Within one revolution, $\left(I_{14 \mathrm{H} \max }-I_{14 \mathrm{H} \min }\right) / I_{14 \mathrm{H} \max } \leq 0,10$ (without PBS)
31.2.2 Signal asymmetry
$-0,05 \leq\left[\frac{\frac{I_{14 \mathrm{H}}+I_{14 \mathrm{~L}}}{2}-\frac{I_{3 \mathrm{H}}+I_{3 \mathrm{~L}}}{2}}{I_{14}}\right] \leq+0,15$
31.2.3 Jitter

The jitter shall be measured at the Reference velocity using the circuit specified in Annex D. The jitter measurement shall be using the conditions specified in 29.4.
The measured jitter shall not exceed 9,0 \%.

ecma

31.2.4 Track Cross signal

$$
\frac{\left(I_{1}+I_{2}\right)_{\mathrm{pp}}}{\left(I_{1}+I_{2}\right)_{\max }} \geq 0,10
$$

31.2.5 Differential phase tracking error signal

The output currents of the four quadrants of the split photo detector shown in Figure 33 are identified by $I_{\mathrm{a}}, I_{\mathrm{b}}, I_{\mathrm{c}}$, and I_{d}.

The differential phase tracking error signal shall be derived from the phase differences between the sum of the currents of diagonal pairs of photo detector elements when the light beam crosses the tracks:
$\left\{\right.$ Phase $\left(I_{\mathrm{a}}+I_{\mathrm{c}}\right)$ - Phase $\left.\left(I_{\mathrm{b}}+I_{\mathrm{d}}\right)\right\}$, see Figure 34 and Annex E.
The phase difference signals shall be low-pass filtered with $\mathrm{f}_{\mathrm{c}}(-3 \mathrm{db})$ of 30 kHz .
This differential phase tracking error signal shall meet the following requirements (see Figure 34):

Amplitude

At the positive 0 crossing $\overline{\Delta t} / \mathrm{T}$ shall be in the range 0,50 to 1,10 at $0,10 \mu \mathrm{~m}$ radial offset, where Δt is the average time difference derived from the phase differences between the sum of the currents of diagonal pairs of photo detector elements, and T is the Channel bit clock period.

Asymmetry (see Figure 34)
The asymmetry shall meet the following requirement:

$$
\begin{array}{r}
\frac{\left|T_{1}-T_{2}\right|}{\left|T_{1}+T_{2}\right|} \leq 0,20 \text { where } T_{1} \text { is the positive peak value of } \overline{\Delta t} / \mathrm{T} \\
\text { and } \quad T_{2} \text { is the negative peak value of } \overline{\Delta t} / \mathrm{T}
\end{array}
$$

Figure 33 - Quadrant photo detector

Figure 34 - Differential phase tracking error signal

31.2.6 Tangential push-pull signal

This signal shall be derived from the instantaneous level of the differential output $\left(I_{\mathrm{a}}+I_{\mathrm{d}}\right)-\left(I_{\mathrm{b}}+I_{\mathrm{c}}\right)$. It shall meet the following requirements, see Figure 35:

$$
0 \leq \frac{\left[\left(I_{\mathrm{a}}+I_{\mathrm{d}}\right)-\left(I_{\mathrm{b}}+I_{\mathrm{c}}\right)\right]_{\mathrm{pp}}}{I_{14}} \leq 0,9
$$

Figure 35 - Tangential push-pull signal

32 Quality of the recording layer

For the integrity of the data on the disk, the recording layer shall fulfil the following initial quality requirements.

32.1 Defects

Defects are air bubbles and black spots. Their diameter shall meet the following requirements:

- for air bubbles it shall not exceed $100 \mu \mathrm{~m}$,
- for black spots causing birefringence it shall not exceed $200 \mu \mathrm{~m}$,
- for black spots not causing birefringence it shall not exceed $300 \mu \mathrm{~m}$.

In addition, over a distance of 80 mm in scanning direction of tracks, the following requirements shall be met:

- the total length of defects larger than $30 \mu \mathrm{~m}$ shall not exceed $300 \mu \mathrm{~m}$,
- there shall be at most 6 such defects.

32.2 Data errors

A byte error occurs when one or more bits in a byte have a wrong value, as compared to their original recorded value.
A row of an ECC Block as defined in 13.3 that has at least 1 byte in error constitutes a PI error.
If a row of an ECC Block as defined in 13.3 contains more than 5 erroneous bytes, the row is said to be "PI-uncorrectable".

The disk shall be recorded with arbitrary data in one single uninterrupted writing action from the start of the Lead-in Zone until the end of the Lead-out Zone ("Disk-At-Once" mode).

During playback after the initial recording, the errors as detected by the error correction system shall meet the following requirements:

- in any 8 consecutive ECC Blocks the total number of PI errors before correction shall not exceed 280,
- in any ECC Block the number of PI-uncorrectable rows should not exceed 4.

Section 7 - Characteristics of user data

33 Method of testing

Clause 34 describes a series of measurements to test conformance of the user data on the disk with this Ecma Standard. It checks the legibility of the user-written data. The data is assumed to be arbitrary. The data may have been written by any drive in any operating environment (see 8.1.2). The read tests shall be performed on the Reference Drive as defined in Clause 9.

Whereas Clause 29 disregards defects, Clause 34 includes them as an unavoidable deterioration of the read signals. The severity of a defect is determined by the correctability of the ensuing errors by the error detection and correction circuit in the read channel defined below. The requirements in Clause 34 define a minimum quality of the data, necessary for data interchange.

33.1 Environment

All signals in 34.1 to 34.2 shall be within their specified ranges with the disk in any environment in the range of allowed operating environments defined in 8.1.2. It is recommended that before testing, the entrance surface of the disk shall be cleaned according to the instructions of the manufacturer of the disk.

33.2 Reference Drive

All signals specified in Clause 34 shall be measured in the indicated channels of the Reference Drive as defined in Clause 9. The drive shall have the following characteristics for the purpose of these tests:

33.2.1 Optics and mechanics

The focused optical beam shall have the properties already defined in 9.2 a) to i). The disk shall rotate as specified in 9.5.

33.2.2 Read power

The optical power incident on the entrance surface of the disk (used for reading the information) shall be $0,7 \mathrm{~mW} \pm 0,1 \mathrm{~mW}$.

33.2.3 Read channels

The drive shall have two read channels. Read Channel 1 gives a signal $\left(I_{1}+I_{2}\right)$ related to the total amount of light in the exit pupil of the objective lens. Read Channel 2 gives a signal $\left(I_{1}-I_{2}\right)$ related to the difference in the amount of light in the two halves of the exit pupil of the objective lens. These channels can be implemented as given in 9.3 and 9.6.

The signal from Read channel 1 is equalized and filtered before processing. The threshold level for binarizing the read signal shall be controlled to minimize the effects of mark and space size changes due to parameter variations during writing. For measurement of the disk quality as specified in Clause 34, the equalizer, filter and slicer, and the characteristics of the PLL shall be the same as specified in Annex D for the jitter measurement.

33.2.4 Error correction

Correction of errors in the data bytes shall be carried out by an error detection and correction system based on the definition in 13.3.

33.2.5 Tracking

During the measurement of the signals, the axial tracking error between the focus of the optical beam and the recording layer shall not exceed $0,20 \mu \mathrm{~m}$
and the radial tracking error between the focus of the optical beam and the centre of a track shall not exceed $0,022 \mu \mathrm{~m}$.

34 Minimum quality of a Recording Unit

This Clause specifies the minimum quality of the data of a Recording Unit as required for data interchange. The quality shall be measured on the Reference Drive as defined in Clause 9 and Annex D.

A byte error occurs when one or more bits in a byte have a wrong value, as detected by the ECC and/or EDC circuits.

34.1 Tracking

The focus of the optical beam shall not jump tracks unintentionally.

34.2 User-written data

The user-written data in a Recording Unit as read in Read channel 1 shall not contain any byte errors that cannot be corrected by the error correction defined in 13.3.

Annex A (normative)

80 mm +R disk

The + R System also allows an 80 mm disk with capacities of 1,46 Gbytes and 2,92 Gbytes. All mechanical, physical and optical characteristics shall be equal to those of the 120 mm disks specified in this document, except for the following items:

see: 10.2 Overall dimensions

The disk shall have an overall diameter $d_{1}=80,00 \mathrm{~mm} \pm 0,30 \mathrm{~mm}$.
see: 10.7 Information Zone
The Information Zone shall extend from diameter d_{6} to diameter
$d_{7}=77,5 \mathrm{~mm} \mathrm{~min}$.
This Zone consists of the Lead-in Zone, the Data Zone, the Lead-out Zone and the Inner and Outer Drive Areas (see also Clause 15).
see: 11.1 Mass
The mass of the disk shall be in the range of $6,0 \mathrm{~g}$ to $9,0 \mathrm{~g}$.
see: 11.2 Moment of inertia
The moment of inertia of the disk, relative to its rotation axis, shall not exceed $0,010 \mathrm{~g} \cdot \mathrm{~m}^{2}$.
see: 11.3 Dynamic imbalance
The dynamic imbalance of the disk, relative to its rotation axis, shall not exceed $1,5 \mathrm{~g} \cdot \mathrm{~mm}$.
see: 14.1 Track shape
The tracks shall be continuous in the Information Zone. The groove tracks shall start at a radius of $22,0 \mathrm{~mm}$ max. and end at a radius of $38,75 \mathrm{~mm}$ min.
see: 14.4.1.1 ADIP word structure, bit 2 to 23
Physical ADIP Address (0379CC), which is the first address corresponding to the Lead-out Zone, shall be located at a radius $\leq 38,00 \mathrm{~mm}$.
see: 14.4.2.1 General information - Bytes 0 to 31

Byte 1 - Disk size and maximum transfer rate

Bits b_{7} to b_{4} shall specify the disk size, they shall be set to 0001 , indicating a 80 mm disk.

Bytes 4 to 15 - Data Zone allocation

Bytes 9 to 11 shall be set to (0DE72F) to specify PSN 911151 as the last possible Physical Sector of the Data Zone.
see: 16 Layout of the Information Zone of a Single-session disk
Table 7 - Layout of a fully recorded Single-session disk (see also Annex A)

	Description	Nominal radius in mm	PSN of the first Physical Sector	Number of Physical Sectors
$\frac{\text { Inner }}{\text { Drive Area }}$	all the same as 120 mm disk	---	---	---
Lead-in	all the same as 120 mm disk	---	---	---
Data	Data Zone	start 24,000 mm	(030000)	714544 max
Lead-out	Buffer Zone 3	start $38,000 \mathrm{~mm}$ (at full capacity)	(0DE730) max	768
	Outer Disk Identification Zone		(0DEA30) max	256
	Guard Zone 2		(0DEB30) max	4096 min
Outer Drive Area	Outer Disk Administration Zone	start 38,082 mm	(0DFB30)	4096
	Outer Disk Count Zone	start 38,147 mm	(0E0B30)	4096
	Outer Disk Test Zone	start 38,212 mm	(0E1B30)	16384
	Guard Zone 3	start $38,472 \mathrm{~mm}$ end $\geq 38,500 \mathrm{~mm}$	(0E5B30)	blank

see: 18.8.1 Physical format information
Bytes 4 to 15 - Data Zone allocation
Bytes 9 to 11 on a finalized Single Session disk (see 23.3):
shall specify the Sector Number of the last Physical Sector of the Data Zone.
on a Multi-session disk (see Clause 22):
shall be set to (ODE72F) to specify PSN 911151 as the last possible Physical Sector on the disk for the storage of User Data.
see: 19

Data Zone

714544 Physical Sectors for the storage of user data area.
The start radius of the Data Zone is determined by the location of Physical ADIP Address (00C000) and the maximum end radius is determined by the location of Physical ADIP Address (0379CC) (see 14.4.1.1, bit 2 to 23 and 13.7.1).

ecma

Lead-out Zone

	Data Zone	
Physical Sector 911152	Buffer Zone 3 768 Physical Sectors	Physical Sector (0DE730)
Physical Sector 911919	with Main Data set to (00)	Physical Sector (0DEA2F)
Physical Sector 911920	Outer Disk Identification Zone 256 Physical Sectors	Physical Sector (0DEA30)
Physical Sector 912175		Physical Sector (0DEB2F)
Physical Sector 912176	Guard Zone 2 min 4096 Physical Sectors	Physical Sector (0DEB30)
Physical Sector 916271	with Main Data set to (00)	Physical Sector (0DFB2F)
	Outer Drive Area	

Figure 27 - Lead-out Zone

see: 20.1 Buffer Zone 3

The last possible start location of Buffer Zone 3 is (0DE730).
see: 21 Outer Drive Area

Physical Sector 916272	Lead-out Zone	Physical Sector (0DFB30)
	Outer Disk Administration Zone	
Physical Sector 920367	4096 Physical Sectors	Physical Sector (0E0B2F)
Physical Sector 920368	Outer Disk Count Zone 4096 Physical Sectors	Physical Sector (0E0B30)
Physical Sector 924463		Physical Sector (0E1B2F)
Physical Sector 924464	Outer Disk Test Zone 16384 Physical Sectors	Physical Sector (0E1B30)
Physical Sector 940847		Physical Sector (0E5B2F)
Physical Sector 940848	Guard Zone 3 Blank	Physical Sector (0E5B30)

Figure 28 - Outer Drive Area

see: 21.2 Outer Disk Count Zone

The relation between the first Physical Sector number PSN Outer Disk Test Zone and the Physical Sector numbers PSN 4 Physical Sectors in the Outer Disk Count Zone is determined by the following mathematical expression:
$\mathrm{PSN}_{\mathrm{ODC}}=\left\{\left(\mathrm{PSN}_{\mathrm{ODT}}\right)-(0 \mathrm{E} 1 \mathrm{~B} 30)\right\} /(04)+(0 \mathrm{E} 0 \mathrm{~B} 30)$

INTERNATIONAL

Annex B
 (normative)

Measurement of light reflectivity

B. 1 Calibration method

The reflectivity of a disk can be measured in several ways. The two most common methods are:

- parallel method,
- focused method.

For use in players the focused method with the help of a reference disk with known reflectivity is the most relevant and easiest one, while for the calibration of the reference disk the parallel method is easier.

When measuring the reflectivity in the focused way, only the light returned by the reflective layer of the disk $\left(R_{m}\right)$ will fall onto the photo detector. The reflected light coming from the front surface of the disk and the light coming from the parasitic reflectance's inside the disk will mainly fall outside the photo detector. Because in the parallel method only the "total" reflectance ($\mathrm{R}_{/ /}$) can be measured, a calculation is needed to determine the "main" reflectance from the reflective layer.
A good reference disk shall be chosen, for instance $0,6 \mathrm{~mm}$ glass disk with a golden reflective mirror. This reference disk shall be measured by a parallel beam as shown in Figure B. 1

Figure B. 1 - Reflectivity calibration
In this Figure the following applies:
$R=$ reflectivity of the recording layer (including the double pass substrate transmission)
$r_{\mathrm{s}}=$ reflectivity of the entrance surface
$R_{\text {ref }}=$ reflectivity as measured by the focussed beam (is by definition $=R_{\mathrm{m}} / /_{\mathrm{B}}$)
$I_{B}=$ incident beam
$R_{\mathrm{s}}=$ reflectance caused by the reflectivity of the entrance surface
$R_{\mathrm{m}}=$ main reflectance caused by the reflectivity of the recording layer
$R_{\text {int }}=$ reflectance caused by the internal reflectances between the entrance surface and the recording layer
$R_{/ /}=$measured value $\left(R_{\mathrm{s}}+R_{\mathrm{m}}+R_{\mathrm{int}}\right)$

The reflectivity of the entrance surface is defined by:

$$
r_{\mathrm{s}}=\left(\frac{n-1}{n+1}\right)^{2}, \text { where } n \text { is the index of refraction of the substrate. }
$$

The main reflectance $R_{\mathrm{m}}=R_{/ /}-R_{\mathrm{s}}-R_{\mathrm{int}}$ which leads to:

$$
R_{\mathrm{ref}}=\frac{R_{\mathrm{m}}}{I_{\mathrm{B}}}=\left[\frac{\left(1-r_{\mathrm{s}}\right)^{2} \times\left(\frac{R_{/ /}}{I_{\mathrm{B}}}-r_{\mathrm{s}}\right)}{1-r_{\mathrm{s}} \times\left(2-\frac{R_{/ /}}{I_{\mathrm{B}}}\right)}\right]
$$

The reference disk shall be measured on a reference drive. The total detector current $\left(I_{1}+I_{2}\right)$ obtained from the reference disk, and measured by the focused beam is equated to R_{m} as determined above.

Now the arrangement is calibrated and the focused reflectivity is a linear function of the reflectivity of the recording layer and the double pass substrate transmission, independently from the reflectivity of the entrance surface.

B. 2 Measuring method

Reflectivity in the unrecorded Information Zone

A method of measuring the reflectivity using the reference drive.
(1) Measure the total detector current $\left(I_{1}+I_{2}\right)_{s}$ from the reference disk with calibrated reflectivity $R_{\text {ref }}$.
(2) Measure the total detector current $\left(I_{1}+I_{2}\right)_{g}$ from a groove track in an area of the disk under investigation where the groove track and the two adjacent tracks on each side of the track to be measured have not been recorded.
(3) Calculate the unrecorded disk reflectivity R_{d} as follows

$$
R_{\mathrm{d}}=\frac{\left(I_{1}+I_{2}\right)_{\mathrm{g}}}{\left(I_{1}+I_{2}\right)_{\mathrm{s}}} \times R_{\mathrm{ref}}
$$

Reflectivity in the recorded Information Zone

A method of measuring the reflectivity using the reference drive.
(1) Measure the total detector current $\left(I_{1}+I_{2}\right)_{\mathrm{s}}$ from the reference disk with calibrated reflectivity $R_{\text {ref. }}$
(2) Measure $I_{14 \mathrm{H}}$ from a recorded groove track in an area of the disk under investigation where at least the two adjacent tracks on each side of the track to be measured have been recorded.
(3) Calculate the recorded disk reflectivity $R_{14 \mathrm{H}}$ as follows:

$$
R_{14 \mathrm{H}}=\frac{I_{14 \mathrm{H}}}{\left(I_{1}+I_{2}\right)_{\mathrm{s}}} \times R_{\mathrm{ref}}
$$

Annex C (normative)

Measurement of birefringence

C. 1 Principle of the measurement

In order to measure the birefringence, circularly polarized light in a parallel beam is used. The phase retardation is measured by observing the ellipticity of the reflected light.

Figure C. 1 - Ellipse with ellipticity e = b/a and orientation θ

The orientation θ of the ellipse is determined by the orientation of the optical axis

$$
\begin{equation*}
\theta=\gamma-\pi / 4 \tag{1}
\end{equation*}
$$

where γ is the angle between the optical axis and the radial direction.
The ellipticity, $e=\mathrm{b} / \mathrm{a}$, is a function of the phase retardation δ

$$
\begin{equation*}
e=\tan \left[\frac{1}{2}\left(\frac{\pi}{2}-\delta\right)\right] \tag{2}
\end{equation*}
$$

When the phase retardation δ is known the birefringence $B R$ can be expressed as a fraction of the wavelength

$$
\begin{equation*}
B R=\frac{\lambda}{2 \pi} \delta \mathrm{~nm} \tag{3}
\end{equation*}
$$

Thus, by observing the elliptically polarized light reflected from the disk, the birefringence can be measured and the orientation of the optical axis can be assessed as well.

C. 2 Measurements conditions

The measurement of the birefringence specified above shall be made under the following conditions. Mode of measurement in reflection, double pass through the substrate.

Wavelength λ of the laser light
Beam diameter (FWHM)
Angle β of incidence in radial direction relative to the radial plane perpendicular to Reference Plane P
Disk mounting
Rotation
Temperature and relative humidity
$640 \mathrm{~nm} \pm 15 \mathrm{~nm}$
$1,0 \mathrm{~mm} \pm 0,2 \mathrm{~mm}$
$7,0^{\circ} \pm 0,2^{\circ}$
horizontally
less than 1 Hz
as specified in 8.1.1

C. 3 Example of a measurement set-up

Whilst this Ecma Standard does not prescribe a specific device for measuring birefringence, the device shown schematically in Figure C. 2 as an example, is well suited for this measurement.

Figure C. 2 - Example of a device for the measurement of birefringence
Light from a laser source, collimated into a polarizer (extinction ratio $\approx 10-5$), is made circular by a $\lambda / 4$ plate. The ellipticity of the reflected light is analyzed by a rotating analyzer and a photo detector. For every location on the disk, the minimum and the maximum values of the intensity are measured. The ellipticity can then be calculated as

$$
\begin{equation*}
e^{2}=I_{\min } / I_{\max } \tag{4}
\end{equation*}
$$

Combining equations (2), (3), and (4) yields

$$
B R=\frac{\lambda}{4}-\frac{\lambda}{\pi} \arctan \sqrt{\frac{I_{\min }}{I_{\max }}}
$$

This device can be easily calibrated as follows

- $I_{\text {min }}$ is set to 0 by measuring a polarizer or a $\lambda / 4$ plate,
- $I_{\text {min }}=I_{\text {max }}$ when measuring a mirror

Apart of the d.c. contribution of the front surface reflection, a.c. components may occur, due to the interference of the reflection(s) of the front surface with the reflection(s) from the recording layer. These a.c. reflectivity effects are significant only if the disk substrate has an extremely accurate flatness and if the light source has a high coherence.

Annex D
(normative)

Measuring conditions for operation signals

D. 1 System diagram for jitter measurement and characterization of user data

The general system diagram shall be as shown in Figure D.1.

Figure D. 1 - General diagram for jitter measurement

D. 2 Open Ioop transfer function for PLL

The open-loop transfer function for the PLL shall be as shown in Figure D.2.

Figure D. 2 - Schematic representation of the open-loop transfer function for PLL

D. 3 Slicer

The slicer shall be a 1 st order, integrating feed-back auto-slicer with a -3 dB closed-loop bandwidth of 5 kHz .

D. 4 Conditions for measurement

The bandwidth of the pre-amplifier of the photo detector shall be greater than 20 MHz in order to prevent group-delay distortion.

Equalizer: 3-tap transversal filter with transfer function $H(z)=1,364 z^{-2}-0,182\left(1+z^{-4}\right)$
Low-pass filter: 6th order Bessel filter, $f_{c}(-3 \mathrm{~dB})=8,2 \mathrm{MHz}$
Filtering plus equalization :

- Gain variation : 1 dB max. (below 7 MHz)
- Group delay variation: 1 ns max. (below 7 MHz)
- (Gain at $5,0 \mathrm{MHz}-$ Gain at 0 Hz) : $3,2 \mathrm{~dB} \pm 0,3 \mathrm{~dB}$
a.c. coupling (high-pass filter) $=1 \mathrm{st}$ order, $\mathrm{f}_{\mathrm{c}}(-3 \mathrm{~dB})=1 \mathrm{kHz}$

Correction of the angular deviation : only d.c. deviation shall be corrected.

Figure D. 3 - Frequency characteristics for the equalizer and the low-pass filter

D. 5 Measurement

The jitter of all leading and trailing edges over one revolution shall be measured.

INTERNATIONAL

Annex E (normative)

Measurement of the differential phase tracking error

E. 1 Measuring method for the differential phase tracking error

The reference circuit for the measurement of the tracking error shall be that shown in Figure E. 1. Each output of the diagonal pairs of elements of the quadrant photo detector shall be converted to binary signals independently after equalization of the wave form with the transfer function defined by:

$$
\mathrm{H}(\mathrm{i} \omega)=\left(1+1,6 \times 10^{-7} \times \mathrm{i} \omega\right) /\left(1+4,7 \times 10^{-8} \times \mathrm{i} \omega\right)
$$

The gain of the comparators shall be sufficient to reach full saturation on the outputs, even with minimum signal amplitudes. Phases of the binary pulse signal edges (signals B1 and B2) shall be compared to each other to produce a time-lead signal C 1 and a time-lag signal C 2 . The phase comparator shall react to each individual edge with signal $C 1$ or C 2 , depending on the sign of Δt_{i}. A tracking error signal shall be produced by smoothing the C1, C2 signals with low-pass filters and by subtracting by means of a unity gain differential amplifier. The low-pass filters shall be 1st order filters with a cut-off frequency (-3 dB) of 30 kHz .
Special attention shall be given to the implementation of the circuit because very small time differences have to be measured (1% of T equals only 0.38 ns). Careful averaging is needed.
The average time difference between two signals from the diagonal pairs of elements of the quadrant detector shall be

$$
\overline{\Delta t}=\frac{1}{N} \sum \Delta t_{i}
$$

where N is the number of edges, both rising and falling.

E. 2 Measurement of $\overline{\Delta t} / T$ without time interval analyzer

The relative time difference $\overline{\Delta t} / T$ is represented by the amplitude of the tracking error signal provided that the amplitudes of the C1 and C2 signals and the frequency component of the read-out signals are normalized. The relation between the tracking error amplitude $\overline{\Delta T V E}$ and the time difference is given by:

$$
\overline{\Delta T V E}=\frac{\sum \Delta t_{\mathrm{i}}}{\sum T_{\mathrm{i}}} \mathrm{Vpc}=\frac{\sum \Delta t_{\mathrm{i}}}{N \mathrm{nT}} \mathrm{Vpc}=\frac{\overline{\Delta t}}{\mathrm{~T}} \times \frac{\mathrm{Vpc}}{\mathrm{n}}
$$

where:
Vpc is the amplitude of the C1 and C2 signals
T_{i} is the actual length of the read-out signal in the range 3 T to 14 T
n.T is the weighted average value of the actual lengths
N.n.T is the total averaging time.

The specification for the tracking gain can now be rewritten by using the tracking error amplitude as follows:

$$
0.50 \times(\mathrm{Vpc} / \mathrm{n}) \leq \overline{\Delta T V E} \leq 1.10 \times(\mathrm{Vpc} / \mathrm{n}), \text { at } 0.1 \mu \mathrm{~m} \text { radial offset. }
$$

Figure E. 1 - Circuit for tracking error measurements

E. 3 Calibration of the circuit

Assuming that Vpc equals $\approx 5 \mathrm{~V}$ and that the measured value of n equals ≈ 5, then the above relation between the tracking error amplitude $\overline{\Delta T V E}$ and the time difference $\overline{\Delta t}$ can be simplified to:

$$
\overline{\Delta T V E}=\frac{\overline{\Delta t}}{\mathrm{~T}} \times \frac{\mathrm{Vpc}}{\mathrm{n}} \approx \frac{\overline{\Delta t}}{\mathrm{~T}}
$$

The average runlength n of the 8 -to- 16 modulated signal is depending on the data content and the averaging time. Therefore the circuit shall be calibrated with a fixed frequency signal, corresponding to a modulated signal with 5T runlengths. For this purpose sinusoidal signals with a frequency of 2.616 MHz can be used.

Typically the pulses of signals C1 and C2 will be generated by some digital gate circuit with an output signal switching between ground and the supply voltage. This voltage swing is assumed to be about 5 volts, however, depending on the applied technology, it may deviate from 5 volts significantly.
Because the formal specification for the DPD signal is:
$0,50 \leq \frac{\overline{\Delta t}}{\mathrm{~T}} \leq 1,10$ at $0.1 \mu \mathrm{~m}$ radial offset,
the measurement by means of $\overline{\Delta T V E}$ is influenced by the actual values of $V p c$ and n. Therefore the following calibration procedure shall be applied.

E.3.1 Saturation of comparators

Make sure that the gain of the level comparators is such that for all actual input signal levels, the signals B1 and B2 are square wave signals. In this case the amplitude of the signal TVE is independent of the amplitude of the input signals.

Figure E.2-Tracking error signal amplitude versus comparator input signal amplitude

E.3.2 Correction for n and Vpc

Because of the above mentioned deviations of n and Vpc , and possibly some other circuit parameters, a correction factor K has to be determined, such that:

$$
\overline{\Delta t} / \mathrm{T}(\text { real })=\mathrm{K} \times \overline{\Delta T V E}(\text { measured }) .
$$

This can be achieved in the following way:
a) Generate two sinusoidal signals A 1 and A 2 of frequency 2.616 MHz with a phase difference, and inject them into the two equalizer circuits.
b) Measure the relation between $\overline{\Delta t} / T$ and $\overline{\Delta T V E}$, and determine K from Figure E.3:

$$
\mathrm{K}=\frac{\overline{\Delta t} / \mathrm{T}(\text { injected })}{\overline{\Delta T V E}(\text { measured })} . \text { Now the set-up is ready for use. }
$$

Figure E. $3-\overline{\Delta T V E}$ versus $\overline{\Delta t} / T$

Annex F (normative)

The write pulse wave form for testing

For different speed ranges, different write strategies can be used. This version of this document specifies 3 options:

- a pulsed write strategy, where each single mark is created by a number of subsequent separated short pulses,
- a blocked write strategy, where each single mark is created by one continuous pulse,
- a "Castle" write strategy, where each single mark is created by one continuous pulse with a power emphasis at the beginning and at the end of the pulse.

F. 1 Pulsed write strategy

The write pulse waveform obtained from the NRZI data and the channel clock is shown in Figure F.1. It consists of $N-2$ pulses, where N is the length of the NRZI pulse expressed in channel clock cycles.

The write pulse waveform for writing marks of length $N=3$ consists of only the top pulse ($T_{\text {top }}$).
The write pulse waveform for writing marks of length $N \geq 4$ consist of the top pulse ($\mathrm{T}_{\text {top }}$), N-4 multi-pulses (T_{mp}) and the last pulse (T_{Ip}).

Figure F. 1 - Write pulse waveform

The nominal pulse width times $T_{m p}$ and $T_{l p}$ shall be as indicated in the Physical format information in Table 3 and in 14.4.2.2. The duration can be dependent on the writing speed:

$$
\begin{array}{lll}
T_{m p}=m \times 1 / 16 & \text { with } m=4,5, . . \text { or } 14 & \left(0,25 T_{W} \leq T_{m p} \leq 0,875 T_{W}\right) \\
T_{I p}=n \times 1 / 16 & T_{W} & \text { with } n=4,5, . . \text { or } 24
\end{array} \quad\left(0,25 T_{W} \leq T_{l p} \leq 1,5 T_{W}\right)
$$

The laser power shall be switched to bias level between each pair of separated pulses for at least $2 / 16 \mathrm{~T}_{\mathrm{W}}$.

The nominal pulse width time $T_{\text {top }}$, is dependent upon the length of the current mark (cm). It shall be as indicated in the Physical format information in Table 3 and in 14.4.2.2. The duration can also be dependent on the writing speed:

$$
\begin{array}{lll}
T_{\text {top }}(\mathrm{cm}=3 \mathrm{~T})=\mathrm{i} \times 1 / 16 T_{\mathrm{W}} & \text { with } \mathrm{i}=4,5, . . \text { or } 40 & \left(0,25 T_{\mathrm{W}} \leq T_{\text {top }} \leq 2,5 T_{\mathrm{W}}\right) \\
T_{\text {top }}(\mathrm{cm} \geq 4 T)=j \times 1 / 16 T_{\mathrm{W}} & \text { with } \mathrm{j}=4,5, . . \text { or } 40 & \left(0,25 T_{\mathrm{W}} \leq T_{\text {top }} \leq 2,5 T_{\mathrm{W}}\right)
\end{array}
$$

The nominal first pulse lead-time $\mathrm{dT}_{\text {top }}$ relative to the trailing edge of the second Channel bit of the NRZI data pulse, is dependent upon the length of the current mark (cm). It shall be as indicated in the Physical format information in Table 3 and in 14.4.2.2. The value of $d T_{\text {top }}$ can also be dependent on the writing speed:

$$
\begin{array}{lll}
d T_{\text {top }}(c m=3 T)=p \times 1 / 16 & \text { with } p=0,1, . . \text { or } 24 & \left(0,0 T_{W} \leq d T_{\text {top }}(c m=3 T) \leq 1,5 T_{W}\right) \\
d T_{\text {top }}(c m \geq 4 T)=q \times 1 / 16
\end{array} \quad \text { with } q=0,1, . . \text { or } 24 \quad\left(0,0 T_{W} \leq d T_{\text {top }}(c m \geq 4 T) \leq 1,5 T_{W}\right)
$$

With the individual values for $T_{\text {top }}(c m=3 T)$ and $d T_{\text {top }}(c m=3 T)$, the $3 T$ mark can be enhanced and shifted for optimum resulting jitter.
The widening of the $3 T$ write pulse is: $\quad \Delta T=\left\{T_{\text {top }}(\mathrm{cm}=3 T)-T_{\text {top }}(\mathrm{cm} \geq 4 \mathrm{~T})\right\}$,
and the shift of the $3 T$ write pulse is: $\quad \delta T=\left\{d T_{\text {top }}(\mathrm{cm}=3 \mathrm{~T})-\mathrm{d} \mathrm{T}_{\text {top }}(\mathrm{cm} \geq 4 \mathrm{~T})\right\}$.
In principle the shift δT and the widening ΔT of the $3 T$ pulse can be chosen independently. However because of limitations in certain implementations, for this version of this document there is one exception:
if a shift of the $3 T$ pulse is needed, such a shift shall be combined with a widening resulting in a symmetrical change of the $3 T$ write pulse.
Or in mathematical terms: if $\delta \mathrm{T} \neq 0$, then $\Delta \mathrm{T}$ shall be $=2 \times \delta \mathrm{T}$ (see Figure F.2).
The position of the leading edge and hence the length of the first pulse may be corrected by $\mathrm{dT}_{\text {le }}$ dependent upon the length of the previous space (ps). This feature is called "thermal balancing". $\mathrm{dT}_{\text {le }}$ shall be as indicated in the Physical format information in Table 3 and in 14.4.2.2. If the previous space is ≥ 4 channel clock cycles, then $d T_{l e}$ shall be 0 . The value of $d T_{l e}$ can be dependent on the writing speed:

$$
d T_{l e}(p s=3 T)=u \times 1 / 16 T_{W} \quad \text { with } u=0,1, . . \text { or } 4 \quad\left(0,0 T_{W} \leq d T_{l e} \leq 0,25 T_{W}\right)
$$

($\mathrm{dT}_{\mathrm{le}}$ will give a delay and reduce the length of the first pulse as indicated in Figure F.1)
The values for $P \mathrm{w}$, and Pb are determined according to the OPC algorithm (see Annex H). An example of the write pulse waveform is shown in Figure F.2.

Figure F. 2 - Example of a Multiple-pulse

F. 2 Blocked write strategy

The waveform for the blocked write strategy (see Figure F.3) is derived from the waveform for the pulsed write strategy by setting $T_{m p}$ equal to $T_{W}(m=16)$ and setting $T_{\text {top }}(\mathrm{cm} \geq 4 \mathrm{~T})$ equal to $d T_{\text {top }}+T_{W}(j=q+16) . T_{\text {top }}(\mathrm{cm}=3 \mathrm{~T})$ can be optimised individually.
The write pulse waveform for writing marks of length $N=3$ is a pulse with a length $T_{\text {top }}(c m=3 T)$. The write pulse waveform for writing marks of length $N \geq 4$ is a pulse with a length $d T_{\text {top }}(\mathrm{cm} \geq 4 \mathrm{~T})+(N-3) \times \mathrm{T}_{\mathrm{W}}+\mathrm{T}_{\mathrm{lp}}$.
Especially at higher recording speeds, optimum cooling down of the recording layer after writing a mark may be needed. For this purpose the bias power shall be switched to Pc between the trailing edge of the write pulse and a quarter of the second Channel bit after the trailing edge of the NRZI data pulse. Pc shall be $<0,1 \mathrm{~mW}$.
At higher recording speeds with a blocked write strategy also a power enhancement for the shorter marks might be needed. The additional power dPw shall only be applied for the 3 T and 4T marks and shall extend over the full width of the write pulse waveform (see Figures F. 3 and F.4). It shall be as indicated in the Physical format information in Table 5 and in 14.4.2.3.1.

$$
\begin{array}{lll}
\mathrm{d} P \mathrm{w}(\mathrm{~cm}=3 \mathrm{~T})=\frac{y}{200} \times P \mathrm{w} & \text { with } y=0,1, . . \text { or } 100 \quad(0,00 P \mathrm{w} \leq \mathrm{d} P \mathrm{w} \leq 0,50 P \mathrm{w}) \\
\mathrm{d} P \mathrm{w}(\mathrm{~cm}=4 \mathrm{~T})=\frac{z}{200} \times P \mathrm{w} & \text { with } z=0,1, . . \text { or } 100 \quad(0,00 \mathrm{Pw} \leq \mathrm{d} P \mathrm{w} \leq 0,50 P \mathrm{w}) \\
\mathrm{d} P \mathrm{w}(\mathrm{~cm} \geq 5 \mathrm{~T})=0
\end{array}
$$

Figure F. 3 - General blocked waveform

The nominal pulse width times T_{mp} and T_{Ip} shall be as indicated in the Physical format information in Table 5 and in 14.4.2.3.1. The duration can be dependent on the writing speed:

$$
\begin{array}{lll}
T_{m p}=m \times 1 / 16 T_{W} & \text { with } m=16 & \left(T_{m p}=1,0 T_{W}\right) \\
T_{l p}=n \times 1 / 16 T_{W} & \text { with } n=0,1, \ldots \text { or } 16 & \left(0,0 T_{W} \leq T_{l p} \leq 1,0 T_{W}\right)
\end{array}
$$

The nominal pulse width time $T_{\text {top }}$, is dependent upon the length of the current mark (cm). It shall be as indicated in the Physical format information in Table 5 and in 14.4.2.3.1. The duration can also be dependent on the writing speed:

$$
\begin{array}{cc}
T_{\text {top }}(c m=3 T)=i \times 1 / 16 T_{W} & \text { with } i=16,17, \ldots \text { or } 48 \quad\left(1 T_{W} \leq T_{\text {top }} \leq 3 T_{W}\right) \\
T_{\text {top }}(c m \geq 4 T)=j \times 1 / 16 T_{W} & \text { with } j=16,17, . . \text { or } 48 \quad\left(1 T_{W} \leq T_{\text {top }} \leq 3 T_{W}\right) \\
\left(j=q+16, \text { see at } d T_{\text {top }}\right)
\end{array}
$$

The nominal first pulse lead-time $\mathrm{dT}_{\text {top }}$ relative to the trailing edge of the second Channel bit of the NRZI data pulse, is dependent upon the length of the current mark (cm). It shall be as indicated in the Physical format information in Table 5 and in 14.4.2.3.1. The value of $\mathrm{dT}_{\text {top }}$ can also be dependent on the writing speed:

$$
\begin{aligned}
& d T_{\text {top }}(c m=3 T)=p \times 1 / 16 T_{W} \quad \text { with } p=0,1, . . \text { or } 32 \quad\left(0,0 T_{W} \leq d T_{\text {top }}(c m=3 T) \leq 2 T_{W}\right) \\
& d T_{\text {top }}(c m \geq 4 T)=q \times 1 / 16 T_{W} \quad \text { with } q=0,1, . . \text { or } 32 \quad\left(0,0 T_{W} \leq d T_{\text {top }}(c m \geq 4 T) \leq 2 T_{W}\right) \\
& \text { (} q=j-16 \text {, see at } T_{\text {top }} \text {) }
\end{aligned}
$$

With the individual values for $T_{\text {top }}(\mathrm{cm}=3 \mathrm{~T})$ and $\mathrm{d}_{\text {top }}(\mathrm{cm}=3 \mathrm{~T})$ the $3 T$ mark can be adapted and shifted for optimum resulting jitter.
The relative shift of the $3 T$ write pulse is: $\delta T=\left\{d T_{\text {top }}(c m=3 T)-d T_{\text {top }}(c m \geq 4 T)\right\}$.
The position of the leading edge and hence the length of the first pulse may be corrected by $\mathrm{dT}_{\text {le }}$ dependent upon the length of the previous space (ps). This feature is called "thermal balancing". $\mathrm{dT}_{\mathrm{le}}$ shall be as indicated in the Physical format information in Table 5 and in 14.4.2.3.1. If the previous space is ≥ 4 channel clock cycles, then $d T_{l e}$ shall be 0 . The value of $d T_{l e}$ can be dependent on the writing speed:

$$
\mathrm{dT}_{\mathrm{le}}(\mathrm{ps}=3)=\mathrm{u} \times 1 / 16 \mathrm{~T}_{\mathrm{W}} \quad \text { with } \mathrm{u}=0,1, . . \text { or } 4 \quad\left(0,0 T_{\mathrm{W}} \leq d T_{\mathrm{le}} \leq 0,25 \mathrm{~T}_{\mathrm{W}}\right)
$$

($\mathrm{dT}_{l e}$ will give a delay and reduce the length of the first pulse as indicated in Figure F.3)
The values for $P \mathrm{w}$, and Pb are determined according to the OPC algorithm (see Annex H). An example of the write pulse waveform is shown in Figure F.4.

Figure F. 4 - Examples of a "blocked" waveform

ecma

F. 3 Castle write strategy

The write pulse waveform obtained from the NRZI data and the channel clock is shown in Figure F.5. It consists of an uninterrupted pulse with a power boost at the beginning and at the end.

The write pulse waveform for writing marks of length $N=3$ is a pulse with a length T_{13}.
The write pulse waveform for writing marks of length $N \geq 4$ is a pulse with a length $T_{13}+(N-3) \times T_{W}$.
The additional power dPw shall be applied during the whole write pulse for the $3 T$ mark (T_{13}) and during $T_{\text {top }}$ and $T_{\text {end }}$ at the beginning respectively at the end of the write pulses for the $\geq 4 T$ marks. It shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2.

$$
\mathrm{d} P \mathrm{w}=\frac{y}{200} \times P \mathrm{w} \quad \text { with } \mathrm{y}=0,1, . . \text { or } 255 \quad(0,00 \mathrm{Pw} \leq \mathrm{dPw} \leq 1,275 \mathrm{Pw})
$$

NRZI channel bits

Figure F. 5 - General Castle waveform

The nominal pulse width time T_{13} shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2. The duration can be dependent on the writing speed:

$$
T_{I 3}=k \times 1 / 16 T_{W} \quad \text { with } k=16,17, . . \text { or } 48 \quad\left(1,0 T_{W} \leq T_{I 3} \leq 3,0 T_{W}\right)
$$

The nominal pulse width time $T_{\text {top }}$ shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2. The duration can be dependent on the writing speed:

$$
T_{\text {top }}=\mathrm{i} \times 1 / 16 \mathrm{~T}_{\mathrm{W}} \quad \text { with } \mathrm{i}=4,5, . \text { or } 32 \quad\left(0,25 \mathrm{~T}_{\mathrm{W}} \leq \mathrm{T}_{\text {top }} \leq 2,0 \mathrm{~T}_{\mathrm{W}}\right)
$$

The nominal pulse width time $\mathrm{T}_{\text {end }}$, is dependent upon the length of the current mark (cm). It shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2. The duration can also be dependent on the writing speed:

$$
\begin{array}{lll}
T_{\text {end }}(c m=4)=m \times 1 / 16 & T_{W} & \text { with } m=4,5, . . \text { or } 32
\end{array} \quad\left(0,25 T_{W} \leq T_{\text {end }} \leq 2,0 T_{W}\right)
$$

ecma

Because of limitations in certain implementations, the following constraints shall be kept until further notice:
$T_{\text {end }}$ (any mark) $<T_{13}$ and $T_{13}+(n-3) \times T_{W}-T_{\text {top }}-T_{\text {end }}(c m=n) \geq 4 / 16 T_{W}$ for each $n \geq 4$ (the power level P_{W} shall be kept for at least $0,25 \mathrm{~T}_{\mathrm{W}}$)

The position of the leading edge and hence the start position of the pulse may be corrected by $\mathrm{dT}_{\text {le }}$ dependent upon the length of the previous space (ps). This feature is called "thermal balancing". $d T_{l e}$ shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2. If the previous space is ≥ 4 channel clock cycles, then $d T_{l e}$ shall be 0 . The value of $d T_{l e}$ can be dependent on the writing speed:

$$
d T_{\mathrm{le}}(\mathrm{ps}=3)=\mathrm{u} \times 1 / 16 \mathrm{~T}_{\mathrm{W}} \quad \text { with } \mathrm{u}=0,1, . . \text { or } 4 \quad\left(0,0 T_{\mathrm{W}} \leq d T_{\mathrm{le}} \leq 0,25 T_{\mathrm{W}}\right)
$$

($\mathrm{dT}_{l e}$ will give a delay and reduce the length of the pulse as indicated in Figure F.5)
At high recording speeds, optimum cooling down of the recording layer after writing a mark is needed. For this purpose the bias power shall be switched to Pc between the trailing edge of the write pulse and T_{C} after the trailing edge of the NRZI data pulse. Pc shall be $<0,1 \mathrm{~mW} . \mathrm{T}_{\mathrm{C}}$ shall be as indicated in the Physical format information in Table 6 and in 14.4.2.3.2. The value of T_{C} can be dependent on the writing speed:

$$
T_{C}=v \times 1 / 16 T_{W} \quad \text { with } v=16,17, \ldots \text { or } 32 \quad\left(1,0 T_{W} \leq T_{C} \leq 2,0 T_{W}\right)
$$

NOTE

The length of the cooling gap might have some influence on the position of the leading edge of the next written mark, especially in the case of a short space. Therefore some fine-tuning between $d T_{l e}$ and T_{C} possibly could improve the recording characteristics of the disk.
The values for Pw , and Pb are determined according to the OPC algorithm (see Annex H). An example of the write pulse waveform is shown in Figure F.6.

Figure F. 6 - Example of a Castle waveform

F. 4 Rise and fall times

The rise times, T_{r}, and fall times, T_{f}, as specified in Figure F. 7 shall not exceed 2 ns. Possible overshoots shall be $<20 \%$ of the step size P.

Figure F.7-Rise Times and Fall Times

INTERNATIONAL

Annex G (normative)

8-to-16 Modulation

8-to-16 modulation shall satisfy $\operatorname{RLL}(2,10)$ requirements. The encoding system is shown in Figure G. 1 with the conversion tables shown in Table G. 1 and Table G.2.

Where:
$\mathrm{X}(\mathrm{t})=\mathrm{H}\{\mathrm{B}(\mathrm{t}), \mathrm{S}(\mathrm{t})\} \quad \mathrm{X}_{15}(\mathrm{t})=\mathrm{msb}$ and $\mathrm{X}_{0}(\mathrm{t})=\mathrm{Isb}$
$S(\mathrm{t}+1)=\mathrm{G}\{\mathrm{B}(\mathrm{t}), \mathrm{S}(\mathrm{t})\}$
H is the output function from the conversion tables
G is the next-state function from the conversion tables

Figure G. 1 - Code Word generating system

The States of the Code Words, $X(t)$, shall be chosen to satisfy the $\operatorname{RLL}(2,10)$ requirements of a minimum of 2 ZEROs and a maximum of 10 ZEROs between ONEs of adjacent Code Words.

Code Word X(t)	Next State X(t+1)	Code Word X(t+1)
Ends with 1 or no trailing ZEROs	State 1	Starts with 2 to 9 leading ZEROs
Ends with 2 to 5 trailing ZEROs	State 2	Starts with 1or up to 5 leading ZEROs and $X_{15}(t+1), \mathrm{X}_{3}(\mathrm{t}+1)=0,0$
Ends with 2 to 5 trailing ZEROs	State 3	Starts with none or up to 5 leading ZEROs and $X_{15}(t+1), X_{3}(t+1) \neq 0,0$
Ends with 6 to 9 trailing ZEROs	State 4	Starts with 1 or no leading ZEROs

Figure G. 2 - Determination of States

Note that when decoding the recorded data, knowledge about the encoder is required to be able to reconstitute the original bytes.
$B(t)=H^{-1}\{X(t), S(t)\}$
Because of the involved error propagation, such state-dependent decoding is to be avoided. In the case of this 8 -to-16 modulation, the conversion tables have been chosen in such a way that knowledge about the State is not required in most cases. As can be gathered from the tables, in some cases, two 8-bit bytes, for
instance the 8 -bit bytes 5 and 6 in States 1 and 2 in Table G. 1 generate the same 16 -bit Code Words. The construction of the tables allows to solve this apparent ambiguity. Indeed, if two identical Code Words leave a State, one of them goes to State 2 and the other to State 3 . Because the setting of bits X_{15} and X_{3} is always different in these two States, any Code Word can be uniquely decoded by analysing the Code Word itself together with bits X_{15} and X_{3} of the next Code Word:
$B(t)=H^{-1}\left\{X(t), X_{15}(t+1), X_{3}(t+1)\right\}$
The Substitution table, Table G.2, is included to insure meeting the DCC requirements of 13.8.
Table G. 1 - Main Conversion Table

8-bit byte	State 1		State 2		State 3		State 4	
	Code Word	Next						
	msb Isb	State						
0	0010000000001001	1	0100000100100000	2	0010000000001001	1	0100000100100000	2
1	0010000000010010	1	0010000000010010	1	1000000100100000	3	1000000100100000	3
2	0010000100100000	2	0010000100100000	2	1000000000010010	1	1000000000010010	1
3	0010000001001000	2	0100010010000000	4	0010000001001000	2	0100010010000000	4
4	0010000010010000	2	0010000010010000	2	1000000100100000	2	1000000100100000	2
5	0010000000100100	2	0010000000100100	2	1001001000000000	4	1001001000000000	4
6	0010000000100100	3	0010000000100100	3	1000100100000000	4	1000100100000000	4
7	0010000001001000	3	0100000000010010	1	0010000001001000	3	0100000000010010	1
8	0010000010010000	3	0010000010010000	3	1000010010000000	4	1000010010000000	4
9	0010000100100000	3	0010000100100000	3	1001001000000001	1	1001001000000001	1
10	0010010010000000	4	0010010010000000	4	1000100100000001	1	1000100100000001	1
11	0010001001000000	4	0010001001000000	4	1000000010010000	3	1000000010010000	3
12	0010010010000001	1	0010010010000001	1	1000000010010000	2	1000000010010000	2
13	0010001001000001	1	0010001001000001	1	1000010010000001	1	1000010010000001	1
14	0010000001001001	1	0100000000100100	3	0010000001001001	1	0100000000100100	3
15	0010000100100001	1	0010000100100001	1	1000001001000001	1	1000001001000001	1
16	0010000010010001	1	0010000010010001	1	1000000100100001	1	1000000100100001	1
17	0010000000100010	1	0010000000100010	1	1000001001000000	4	1000001001000000	4
18	0001000000001001	1	0100000010010000	2	0001000000001001	1	0100000010010000	2
19	0010000000010001	1	0010000000010001	1	1001000100000000	4	1001000100000000	4
20	0001000000010010	1	0001000000010010	1	1000100010000000	4	1000100010000000	4
21	0000100000000010	1	0000100000000010	1	1000000010010001	1	1000000010010001	1
22	0000010000000001	1	0000010000000001	1	1000000001001001	1	1000000001001001	1
23	0010001000100000	2	0010001000100000	2	1000000001001000	2	1000000001001000	2
24	0010000100010000	2	0010000100010000	2	1000000001001000	3	1000000001001000	3
25	0010000010001000	2	0100000000100100	2	0010000010001000	2	0100000000100100	2
26	0010000001000100	2	0010000001000100	2	1000000000100010	1	1000000000100010	1
27	0001000100100000	2	0001000100100000	2	1000000000010001	1	1000000000010001	1
28	0010000000001000	2	0100000010010000	3	0010000000001000	2	0100000010010000	3
29	0001000010010000	2	0001000010010000	2	1001001000000010	1	1001001000000010	1
30	0001000001001000	2	0100000100100000	3	0001000001001000	2	0100000100100000	3
31	0001000000100100	2	0001000000100100	2	1001000100000001	1	1001000100000001	1
32	0001000000000100	2	0001000000000100	2	1000100100000010	1	1000100100000010	1
33	0001000000000100	3	0001000000000100	3	1000100010000001	1	1000100010000001	1
34	0001000000100100	3	0001000000100100	3	1000000000100100	2	1000000000100100	2
35	0001000001001000	3	0100001001000000	4	0001000001001000	3	0100001001000000	4
36	0001000010010000	3	0001000010010000	3	1000000000100100	3	1000000000100100	3
37	0001000100100000	3	0001000100100000	3	1000010001000000	4	1000010001000000	4
38	0010000000001000	3	0100100100000001	1	0010000000001000	3	0100100100000001	1
39	0010000001000100	3	0010000001000100	3	1001000010000000	4	1001000010000000	4
40	0010000010001000	3	0100010010000001	1	0010000010001000	3	0100010010000001	1
41	0010000100010000	3	0010000100010000	3	1000010010000010	1	1000010010000010	1
42	0010001000100000	3	0010001000100000	3	1000001000100000	2	1000001000100000	2
43	0010010001000000	4	0010010001000000	4	1000010001000001	1	1000010001000001	1
44	0001001001000000	4	0001001001000000	4	1000001000100000	3	1000001000100000	3
45	0000001000000001	1	0100010001000000	4	1000001001000010	1	0100010001000000	4
46	0010010010000010	1	0010010010000010	1	1000001000100001	1	1000001000100001	1
47	0010000010001001	1	0100001001000001	1	0010000010001001	1	0100001001000001	1
48	0010010001000001	1	0010010001000001	1	1000000100010000	2	1000000100010000	2
49	0010001001000010	1	0010001001000010	1	1000000010001000	2	1000000010001000	2
50	0010001000100001	1	0010001000100001	1	1000000100010000	3	1000000100010000	3

Table G. 1 - Main Conversion Table (continued)

51	0001000001001001	1	0100000100100001	1	0001000001001001	1	0100000100100001	1
52	0010000100100010	1	0010000100100010	1	1000000100100010	1	1000000100100010	1
53	0010000100010001	1	0010000100010001	1	1000000100010001	1	1000000100010001	1
54	0010000010010010	1	0010000010010010	1	1000000010010010	1	1000000010010010	1
55	0010000001000010	1	0010000001000010	1	1000000010001001	1	1000000010001001	1
56	0010000000100001	1	0010000000100001	1	1000000001000010	1	1000000001000010	1
57	0000100000001001	1	0100000010010001	1	0000100000001001		0100000010010001	1
58	0001001001000001	1	0001001001000001	1	1000000000100001	1	1000000000100001	1
59	0001000100100001	1	0001000100100001	1	0100000001001001		0100000001001001	1
60	0001000010010001	1	0001000010010001	1	1001001000010010	1	1001001000010010	1
61	0001000000100010	1	0001000000100010	1	1001001000001001	1	1001001000001001	1
62	0001000000010001	1	0001000000010001	1	1001000100000010	1	1001000100000010	1
63	0000100000010010	1	0000100000010010	1	1000000001000100	2	1000000001000100	2
64	0000010000000010	1	0000010000000010	1	0100000001001000	2	0100000001001000	2
65	0010010000100000	2	0010010000100000	2	1000010000100000	2	1000010000100000	2
66	0010001000010000	2	0010001000010000	2	1000001000010000	2	1000001000010000	2
67	0010000100001000	2	0100000000100010	1	0010000100001000	2	0100000000100010	1
68	0010000010000100	2	0010000010000100	2	1000000100001000	2	1000000100001000	2
69	0010000000010000	2	0010000000010000	2	1000000010000100	2	1000000010000100	2
70	0001000010001000	2	0100001000100000	2	0001000010001000	2	0100001000100000	2
71	0001001000100000	2	0001001000100000	2	0100000010001000	2	0100000010001000	2
72	0001000000001000	2	0100000100010000	2	0001000000001000	2	0100000100010000	2
73	0001000100010000	2	0001000100010000	2	1000000001000100	3	1000000001000100	3
74	0001000001000100	2	0001000001000100	2	0100000001001000	3	0100000001001000	3
75	0000100100100000	2	0000100100100000	2	1000010000100000	3	1000010000100000	3
76	0000100010010000	2	0000100010010000	2	1000001000010000	3	1000001000010000	3
77	0000100001001000	2	0100000001000100	2	0000100001001000	2	0100000001000100	2
78	0000100000100100	2	0000100000100100	2	1000000100001000	3	1000000100001000	3
79	0000100000000100	2	0000100000000100	2	1000000010000100	3	1000000010000100	3
80	0000100000000100	3	0000100000000100	3	0100000010001000	3	0100000010001000	3
81	0000100000100100	3	0000100000100100	3	1000100001000000	4	1000100001000000	4
82	0000100001001000	3	0100000001000100	3	0000100001001000	3	0100000001000100	3
83	0000100010010000	3	0000100010010000	3	1000000010001000	3	1000000010001000	3
84	0000100100100000	3	0000100100100000	3	1001001001001000	2	1001001001001000	2
85	0001000000001000	3	0100000100010000	3	0001000000001000	3	0100000100010000	3
86	0001000001000100	3	0001000001000100	3	1001001000100100	2	1001001000100100	2
87	0001000010001000	3	0100001000100000	3	0001000010001000	3	0100001000100000	3
88	0001000100010000	3	0001000100010000	3	1001001001001000	3	1001001001001000	3
89	0001001000100000	3	0001001000100000	3	1001000010000001	1	1001000010000001	1
90	0010000000010000	3	0010000000010000	3	1000100100010010	1	1000100100010010	1
91	0010000010000100	3	0010000010000100	3	1000100100001001	1	1000100100001001	1
92	0010000100001000	3	0100000000010001	1	0010000100001000	3	0100000000010001	1
93	0010001000010000	3	0010001000010000	3	1000100010000010	1	1000100010000010	1
94	0010010000100000	3	0010010000100000	3	1000100001000001	1	1000100001000001	1
95	0000001000000010	1	0100100100000010	1	1000010010010010	1	0100100100000010	1
96	0000000100000001	1	0100100010000001	1	1000010010001001	1	0100100010000001	1
97	0010010010001001	1	0100010000100000	2	0010010010001001	1	0100010000100000	2
98	0010010010010010	1	0010010010010010	1	1001001000000100	2	1001001000000100	2
99	0010010001000010	1	0010010001000010	1	1001001000100100	3	1001001000100100	3
100	0010010000100001	1	0010010000100001	1	1000010001000010	1	1000010001000010	1
101	0010001001001001	1	0100010010000010	1	0010001001001001	1	0100010010000010	1
102	0010001000100010	1	0010001000100010	1	1000010000100001	1	1000010000100001	1
103	0010001000010001	1	0010001000010001	1	1000001001001001	1	1000001001001001	1
104	0010000100010010	1	0010000100010010	1	1000001000100010	1	1000001000100010	1
105	0010000010000010	1	0010000010000010	1	1000001000010001	1	1000001000010001	1
106	0010000100001001	1	0100001000010000	2	0010000100001001	1	0100001000010000	2
107	0010000001000001	1	0010000001000001	1	1000000100010010	1	1000000100010010	1
108	0001001001000010	1	0001001001000010	1	1000000100001001	1	1000000100001001	1
109	0001001000100001	1	0001001000100001	1	1000000010000010	1	1000000010000010	1
110	0001000100100010	1	0001000100100010	1	1000000001000001	1	1000000001000001	1
111	0001000100010001	1	0001000100010001	1	0100000010001001	1	0100000010001001	1
112	0001000010010010	1	0001000010010010	1	1001001001001001	1	1001001001001001	1
113	0001000001000010	1	0001000001000010	1	1001001000100010	1	1001001000100010	1
114	0001000010001001	1	0100010000100000	3	0001000010001001	1	0100010000100000	3
115	0001000000100001	1	0001000000100001	1	1001001000010001	1	1001001000010001	1
116	0000100100100001	1	0000100100100001	1	1001000100010010	1	1001000100010010	1

Table G. 1 - Main Conversion Table (continued)

117	0000100010010001	1	0000100010010001	1	1001000100001001	1	1001000100001001	1
118	0000100001001001	1	0100010001000001	1	0000100001001001	1	0100010001000001	1
119	0000100000100010	1	0000100000100010	1	1000100100100100	2	1000100100100100	2
120	0000100000010001	1	0000100000010001	1	1000100100000100	2	1000100100000100	2
121	0000010000001001	1	0100001001000010	1	0000010000001001	1	0100001001000010	1
122	0000010000010010	1	0000010000010010	1	1000100000100000	2	1000100000100000	2
123	0010010010000100	2	0010010010000100	2	1000010010000100	2	1000010010000100	2
124	0010010000010000	2	0010010000010000	2	1000010000010000	2	1000010000010000	2
125	0010001000001000	2	0100001000100001	1	0010001000001000	2	0100001000100001	1
126	0010001001000100	2	0010001001000100	2	1000001001000100	2	1000001001000100	2
127	0001000100001000	2	0100000100100010	1	0001000100001000	2	0100000100100010	1
128	0010000100100100	2	0010000100100100	2	1000001000001000	2	1000001000001000	2
129	0000100010001000	2	0100000100010001	1	0000100010001000	2	0100000100010001	1
130	0010000100000100	2	0010000100000100	2	1000000100100100	2	1000000100100100	2
131	0010000000100000	2	0010000000100000	2	1001001000000100	3	1001001000000100	3
132	0001001000010000	2	0001001000010000	2	1000100100100100	3	1000100100100100	3
133	0000100000001000	2	0100000010010010	1	0000100000001000	2	0100000010010010	1
134	0001000010000100	2	0001000010000100	2	1000100000100000	3	1000100000100000	3
135	0001000000010000	2	0001000000010000	2	1000010010000100	3	1000010010000100	3
136	0000100100010000	2	0000100100010000	2	1000010000010000	3	1000010000010000	3
137	0000100001000100	2	0000100001000100	2	1000001001000100	3	1000001001000100	3
138	0000010001001000	2	0100000001000010	1	0000010001001000	2	0100000001000010	1
139	0000010010010000	2	0000010010010000	2	1000001000001000	3	1000001000001000	3
140	0000010000100100	2	0000010000100100	2	1001000010000010	1	1001000010000010	1
141	0000010000000100	2	0000010000000100	2	1000000100000100	2	1000000100000100	2
142	0000010000000100	3	0000010000000100	3	1000000100100100	3	1000000100100100	3
143	0000010000100100	3	0000010000100100	3	1000000100000100	3	1000000100000100	3
144	0000010001001000	3	0100000010000100	2	0000010001001000	3	0100000010000100	2
145	0000010010010000	3	0000010010010000	3	1001000001000000	4	1001000001000000	4
146	0000100000001000	3	0100000000010000	2	0000100000001000	3	0100000000010000	2
147	0000100001000100	3	0000100001000100	3	1000000000100000	2	1000000000100000	2
148	0000100010001000	3	0100000010000100	3	0000100010001000	3	0100000010000100	3
149	0000100100010000	3	0000100100010000	3	1000000000100000	3	1000000000100000	3
150	0001000000010000	3	0001000000010000	3	0100000100001000	3	0100000100001000	3
151	0001000010000100	3	0001000010000100	3	1000000001000000	4	1000000001000000	4
152	0001000100001000	3	0100001000010000	3	0001000100001000	3	0100001000010000	3
153	0001001000010000	3	0001001000010000	3	1001000001000001	1	1001000001000001	1
154	0010000000100000	3	0010000000100000	3	0100000100001000	2	0100000100001000	2
155	0010000100000100	3	0010000100000100	3	1001000100100100	3	1001000100100100	3
156	0010000100100100	3	0010000100100100	3	1000100100100010	1	1000100100100010	1
157	0010001000001000	3	0100000000100001	1	0010001000001000	3	0100000000100001	1
158	0010001001000100	3	0010001001000100	3	1000100100000100	3	0100100100000000	4
159	0010010000010000	3	0010010000010000	3	1001001001000100	2	1001001001000100	2
160	0010010010000100	3	0010010010000100	3	1001001000001000	2	1001001000001000	2
161	0000001000010010	1	0100000000010000	3	1000100100010001	1	0100000000010000	3
162	0000001000001001	1	0100100100100100	2	1000100010010010	1	0100100100100100	2
163	0000000100000010	1	0100100100100100	3	1000100010001001	1	0100100100100100	3
164	0000000010000001	1	0100100100010010	1	1000100001000010	1	0100100100010010	1
165	0010010010010001	1	0010010010010001	1	1001000100100100	2	1001000100100100	2
166	0010010000100010	1	0010010000100010	1	1001000100000100	2	1001000100000100	2
167	0010010001001001	1	0100100100000100	2	0010010001001001	1	0100100100000100	2
168	0010010000010001	1	0010010000010001	1	1001001001000100	3	1001001001000100	3
169	0010001000010010	1	0010001000010010	1	1000100000100001	1	1000100000100001	1
170	0010000100000010	1	0010000100000010	1	1000010010010001	1	1000010010010001	1
171	0010001000001001	1	0100100000100000	3	0010001000001001	1	0100100000100000	3
172	0010000010000001	1	0010000010000001	1	1000010001001001	1	1000010001001001	1
173	0001001000100010	1	0001001000100010	1	1000010000100010	1	1000010000100010	1
174	0001001000010001	1	0001001000010001	1	1000010000010001	1	1000010000010001	1
175	0001000100010010	1	0001000100010010	1	1000001000010010	1	1000001000010010	1
176	0001000010000010	1	0001000010000010	1	1000001000001001	1	1000001000001001	1
177	0001001001001001	1	0100100010000010	1	0001001001001001	1	0100100010000010	1
178	0001000001000001	1	0001000001000001	1	1000000100000010	1	1000000100000010	1
179	0000100100100010	1	0000100100100010	1	1000000010000001	1	1000000010000001	1
180	0000100100010001	1	0000100100010001	1	0100100100001001	1	0100100100001001	1
181	0001000100001001	1	0100100000100000	2	0001000100001001	1	0100100000100000	2
182	0000100010010010	1	0000100010010010	1	0100010010001001	1	0100010010001001	1

Table G. 1 - Main Conversion Table (continued)

183	0000100001000010	1	0000100001000010	1	0100001001001001	1	0100001001001001	1
184	0000100010001001	1	0100010010000100	3	0000100010001001	1	0100010010000100	3
185	0000100000100001	1	0000100000100001	1	1001000000100000	2	1001000000100000	2
186	0000010010010001	1	0000010010010001	1	1000100100001000	2	1000100100001000	2
187	0000010000100010	1	0000010000100010	1	1000100010000100	2	1000100010000100	2
188	0000010001001001	1	0100100001000001	1	0000010001001001	1	0100100001000001	1
189	0000010000010001	1	0000010000010001	1	1000100000010000	2	1000100000010000	2
190	0000001001001000	2	0100010010000100	2	1000010010001000	2	0100010010000100	2
191	0000001000100100	2	0100010000010000	2	1000010001000100	2	0100010000010000	2
192	0000001000000100	2	0100001001000100	2	1000010000001000	2	0100001001000100	2
193	0010010010001000	2	0100010000010000	3	0010010010001000	2	0100010000010000	3
194	0010010001000100	2	0010010001000100	2	1000001001001000	2	1000001001001000	2
195	0010010000001000	2	0100010010010010	1	0010010000001000	2	0100010010010010	1
196	0010001000100100	2	0010001000100100	2	1000001000100100	2	1000001000100100	2
197	0010001000000100	2	0010001000000100	2	1000001000000100	2	1000001000000100	2
198	0010001001001000	2	0100010001000010	1	0010001001001000	2	0100010001000010	1
199	0001001001000100	2	0001001001000100	2	0100001000001000	2	0100001000001000	2
200	0001000100100100	2	0001000100100100	2	1001000000100000	3	1001000000100000	3
201	0001000100000100	2	0001000100000100	2	1000100100001000	3	1000100100001000	3
202	0001001000001000	2	0100010000100001	1	0001001000001000	2	0100010000100001	1
203	0001000000100000	2	0001000000100000	2	1000100010000100	3	1000100010000100	3
204	0000100010000100	2	0000100010000100	2	1000010010001000	3	1000010010001000	3
205	0000100000010000	2	0000100000010000	2	1000010001000100	3	1000010001000100	3
206	0000100100001000	2	0100001000100010	1	0000100100001000	2	0100001000100010	1
207	0000010010001000	2	0100001000010001	1	0000010010001000	2	0100001000010001	1
208	0000010001000100	2	0000010001000100	2	1000001000100100	3	1000001000100100	3
209	0000010000001000	2	0100000100010010	1	0000010000001000	2	0100000100010010	1
210	0000001000000100	3	0100000010000010	1	1000010000001000	3	0100000010000010	1
211	0000001000100100	3	0100000100100100	2	1000001001001000	3	0100000100100100	2
212	0000001001001000	3	0100000100000100	2	1000001000000100	3	0100000100000100	2
213	0000010000001000	3	0100000001000001	1	0000010000001000	3	0100000001000001	1
214	0000010001000100	3	0000010001000100	3	0100001000001000	3	0100001000001000	3
215	0000010010001000	3	0100000000100000	2	0000010010001000	3	0100000000100000	2
216	0000100000010000	3	0000100000010000	3	1001001000010000	3	1001001000010000	3
217	0000100010000100	3	0000100010000100	3	1001000100000100	3	1001000100000100	3
218	0000100100001000	3	0100000100000100	3	0000100100001000	3	0100000100000100	3
219	0001000000100000	3	0001000000100000	3	0100000100001001	1	0100000100001001	1
220	0001000100000100	3	0001000100000100	3	1001001000010000	2	1001001000010000	2
221	0001000100100100	3	0001000100100100	3	1001000100001000	2	1001000100001000	2
222	0001001000001000	3	0100000100100100	3	0001001000001000	3	0100000100100100	3
223	0001001001000100	3	0001001001000100	3	1001001000001000	3	1001001000001000	3
224	0010001000000100	3	0010001000000100	3	1000100000010000	3	1000100000010000	3
225	0010001000100100	3	0010001000100100	3	1001001001000010	1	1001001001000010	1
226	0010001001001000	3	0100001001000100	3	0010001001001000	3	0100001001000100	3
227	0010010000001000	3	0100100100000100	3	0010010000001000	3	0100100100000100	3
228	0010010001000100	3	0010010001000100	3	1001000100001000	3	1001000100001000	3
229	0010010010001000	3	0100000000100000	3	0010010010001000	3	0100000000100000	3
230	0010000001000000	4	0010000001000000	4	1001001000100001	1	1001001000100001	1
231	0000001001001001	1	0100100100100010	1	1001000100100010	1	0100100100100010	1
232	0000001000100010	1	0100100010000100	2	1001000100010001	1	0100100010000100	2
233	0000001000010001	1	0100100000010000	2	1001000010010010	1	0100100000010000	2
234	0000000100010010	1	0100000001000000	4	1001000010001001	1	0100000001000000	4
235	0000000100001001	1	0100100100010001	1	1001000001000010	1	0100100100010001	1
236	0000000010000010	1	0100100010010010	1	1001000000100001	1	0100100010010010	1
237	0000000001000001	1	0100100001000010	1	1000100100100001	1	0100100001000010	1
238	0010010000010010	1	0010010000010010	1	1000100010010001	1	1000100010010001	1
239	0010001000000010	1	0010001000000010	1	1001000010000100	3	1001000010000100	3
240	0010010000001001	1	0100100010000100	3	0010010000001001	1	0100100010000100	3
241	0010000100000001	1	0010000100000001	1	1001000010000100	2	1001000010000100	2
242	0001001000010010	1	0001001000010010	1	1000000010000000	4	1000000010000000	4
243	0001000100000010	1	0001000100000010	1	1000100001001001	1	1000100001001001	1
244	0001001000001001	1	0100100000100001	1	0001001000001001	1	0100100000100001	1
245	0001000010000001	1	0001000010000001	1	1000100000100010	1	1000100000100010	1
246	0000100100010010	1	0000100100010010	1	1000100000010001	1	1000100000010001	1
247	0000100010000010	1	0000100010000010	1	1000010000010010	1	1000010000010010	1
248	0000100100001001	1	0100010010010001	1	0000100100001001	1	0100010010010001	1

INTERNATIONAL

Table G. 1 - Main Conversion Table (concluded)

249	0000100001000001	1	0000100001000001	1	1000010000001001	1	1000010000001001	1
250	0000010010010010	1	0000010010010010	1	1000001000000010	1	1000001000000010	1
251	0000010001000010	1	0000010001000010	1	1000000100000001	1	1000000100000001	1
252	0000010010001001	1	0100010000100010	1	0000010010001001	1	0100010000100010	1
253	0000010000100001	1	0000010000100001	1	0100100010001001	1	0100100010001001	1
254	0000001001000100	2	0100010000010001	1	1001000000010000	2	0100010000010001	1
255	0000001000001000	2	0100001000010010	1	1000100100010000	2	0100001000010010	1

Table G. 2 - Substitution Conversion Table

8-bit byte	State 1		State 2		State 3		State 4	
	Code Word	Next	Code Word	Next	Code Word		Code Word	ext
	msb Isb	State						
0	0000010010000000	4	0000010010000000	4	0100100001001000	2	0100100001001000	2
1	0000100100000000	4	0000100100000000	4	0100100001001000	3	0100100001001000	3
2	0001001000000000	4	0001001000000000	4	0100100000001001	1	0100100000001001	1
3	0000001001000000	4	0100010000000001	1	1000001000000000	4	0100010000000001	1
4	0000000100100000	3	0100100000000010	1	1001000000000100	3	0100100000000010	1
5	0000000010010000	3	0100001000000000	4	1001000000100100	3	0100001000000000	4
6	0000000001001000	3	0100100000000100	2	1001000001001000	3	0100100000000100	2
7	0000000001001000	2	0100000100000000	4	1001000000000100	2	0100000100000000	4
8	0000000010010000	2	0100100010010000	3	1001000000100100	2	0100100010010000	3
9	0000000100100000	2	0100100000100100	2	1001000001001000	2	0100100000100100	2
10	0000010001000000	4	0000010001000000	4	1001001001000000	4	1001001001000000	4
11	0000100010000000	4	0000100010000000	4	1000100001001000	3	1000100001001000	3
12	0001000100000000	4	0001000100000000	4	0100010001001000	3	0100010001001000	3
13	0010001000000000	4	0010001000000000	4	1000100000000100	3	1000100000000100	3
14	0000001000100000	3	0100100000000100	3	1001000010010000	3	0100100000000100	3
15	0000000100010000	3	0100100010010000	2	1001000100100000	3	0100100010010000	2
16	0000000010001000	3	0100001000000001	1	0100100000001000	3	0100001000000001	1
17	0000000001000100	3	0100010000000010	1	0100100010001000	3	0100010000000010	1
18	0000000001000100	2	0100100000100100	3	1001000010010000	2	0100100000100100	3
19	0000000010001000	2	0100100100100000	3	1001000100100000	2	0100100100100000	3
20	0000000100010000	2	0100100100100000	2	0100010001001000	2	0100100100100000	2
21	0000001000100000	2	0100100000010010	1	0100100000001000	2	0100100000010010	1
22	0000010010000001	1	0000010010000001	1	1000100000100100	3	1000100000100100	3
23	0000100100000001	1	0000100100000001	1	1000100010010000	3	1000100010010000	3
24	0001001000000001	1	0001001000000001	1	0100100010001000	2	0100100010001000	2
25	0010010000000001	1	0010010000000001	1	1000100000000100	2	1000100000000100	2
26	0000000001001001	1	0100010000000100	3	1000010000000001	1	0100010000000100	3
27	0000000010010001	1	0100000100000001	1	1000100000000010	1	0100000100000001	1
28	0000000100100001	1	0100010000000100	2	1001000000001001	1	0100010000000100	2
29	0000001001000001	1	0100001000000010	1	1001000000010010	1	0100001000000010	1
30	0000100001000000	4	0000100001000000	4	1000100000100100	2	1000100000100100	2
31	0001000010000000	4	0001000010000000	4	1000100001001000	2	1000100001001000	2
32	0010000100000000	4	0010000100000000	4	0100010000001001	1	0100010000001001	1
33	0000010000100000	3	0000010000100000	3	0100100001001001	1	0100100001001001	1
34	0000001000010000	3	0100010000010010	1	1000100100100000	3	0100010000010010	1
35	0000000100001000	3	0100100000010001	1	1001000000001000	3	0100100000010001	1
36	0000000010000100	3	0100000010000000	4	1001000001000100	3	0100000010000000	4
37	0000010000100000	2	0000010000100000	2	1000001000000001	1	1000001000000001	1
38	0000000010000100	2	0100010000100100	3	1000100010010000	2	0100010000100100	3
39	0000000100001000	2	0100010000100100	2	1000100100100000	2	0100010000100100	2
40	0000001000010000	2	0100100000100010	1	1001000000001000	2	0100100000100010	1
41	0000010001000001	1	0000010001000001	1	1000010000000010	1	1000010000000010	1
42	0000010010000010	1	0000010010000010	1	1000000100000000	4	1000000100000000	4
43	0000100010000001	1	0000100010000001	1	1001000001000100	2	1001000001000100	2
44	0000100100000010	1	0000100100000010	1	1000100000001001	1	1000100000001001	1
45	0001000100000001	1	0001000100000001	1	1001000010001000	3	1001000010001000	3
46	0001001000000010	1	0001001000000010	1	1001000100010000	3	1001000100010000	3
47	0010001000000001	1	0010001000000001	1	1000100000010010	1	1000100000010010	1
48	0010010000000010	1	0010010000000010	1	0100010000001000	3	0100010000001000	3
49	0000000001000010	1	0100100010010001	1	1001000000010001	1	0100100010010001	1
50	0000000010001001	1	0100100001000100	3	1001000000100010	1	0100100001000100	3
51	0000000010010010	1	0100010010010000	3	1001000001001001	1	0100010010010000	3
52	0000000100010001	1	0100010010010000	2	1001000010010001	1	0100010010010000	2
53	0000000100100010	1	0100100001000100	2	1001000100100001	1	0100100001000100	2
54	0000001000100001	1	0100100100100001	1	1001001001000001	1	0100100100100001	1
55	0000001001000010	1	0100100100010000	3	0100001000001001	1	0100100100010000	3
56	0001000001000000	4	0001000001000000	4	1001001000100000	3	1001001000100000	3
57	0010000010000000	4	0010000010000000	4	1001000010001000	2	1001000010001000	2
58	0010010010010000	3	0010010010010000	3	1001000100010000	2	1001000100010000	2
59	0010010001001000	3	0100100100010000	2	0010010001001000	3	0100100100010000	2
60	0010010000100100	3	0010010000100100	3	1001001000100000	2	1001001000100000	2
61	0010010000000100	3	0010010000000100	3	0100001001001000	2	0100001001001000	2

Table G. 2 - Substitution Conversion Table (concluded)

62	0001001001001000	3	0100000010000001	1	0001001001001000	3	0100000010000001	1
63	0001001000100100	3	0001001000100100	3	0100001001001000	3	0100001001001000	3
64	0001001000000100	3	0001001000000100	3	0100010010001000	3	0100010010001000	3
65	0000100100100100	3	0000100100100100	3	0100100100001000	3	0100100100001000	3
66	0000100100000100	3	0000100100000100	3	1000010000000100	3	1000010000000100	3
67	0000100000100000	3	0000100000100000	3	1000010000100100	3	1000010000100100	3
68	0000010010000100	3	0000010010000100	3	1000010001001000	3	1000010001001000	3
69	0000010000010000	3	0000010000010000	3	1000010010010000	3	1000010010010000	3
70	0000001001000100	3	0100001000000100	2	1000100000001000	3	0100001000000100	2
71	0000001000001000	3	0100100000010000	3	1000100010001000	3	0100100000010000	3
72	0000000100100100	3	0100010001000100	3	1000100100010000	3	0100010001000100	3
73	0000000100000100	3	0100001000100100	3	1001000000010000	3	0100001000100100	3
74	0000010000010000	2	0000010000010000	2	1000100001000100	3	1000100001000100	3
75	0001001001001000	2	0100001000000100	3	0001001001001000	2	0100001000000100	3
76	0000010010000100	2	0000010010000100	2	0100010000001000	2	0100010000001000	2
77	0000100000100000	2	0000100000100000	2	0100010010001000	2	0100010010001000	2
78	0010010001001000	2	0100000100000010	1	0010010001001000	2	0100000100000010	1
79	0000100100000100	2	0000100100000100	2	0100100100001000	2	0100100100001000	2
80	0000100100100100	2	0000100100100100	2	1000010000000100	2	1000010000000100	2
81	0001001000000100	2	0001001000000100	2	1000010000100100	2	1000010000100100	2
82	0001001000100100	2	0001001000100100	2	1000010001001000	2	1000010001001000	2
83	0010010000000100	2	0010010000000100	2	1000010010010000	2	1000010010010000	2
84	0010010000100100	2	0010010000100100	2	1000100000001000	2	1000100000001000	2
85	0010010010010000	2	0010010010010000	2	0100010001001001	1	0100010001001001	1
86	0000000100000100	2	0100001000100100	2	1000100001000100	2	0100001000100100	2
87	0000000100100100	2	0100010001000100	2	1000100010001000	2	0100010001000100	2

Annex H (normative)

Optimum Power Control and Recording Conditions

H. 1 Optimum writing power

The optimum recording power Pwo that should be used for recording a disk is dependent on the disk, the recorder and the recording speed.
For the disk there are three main parameters involved:

- The sensitivity of the recording layers to laser power at a given wavelength.
- The change in sensitivity when the laser wavelength is changed.
- The "pit-formation mechanism" in the recording layer, which is dependent on the applied layer technology.
For the recorder the three main parameters involved are:
- The dimensions and optical quality of the laser light spot at the recording layer.
- The applied write strategy.
- The actual wavelength of the laser when recording the disk (see Annex J).

This wavelength depends on e.g.:

- the type of laser,
- the spread in wavelength for each individual laser of this type (and so for each individual recorder),
- the actual write power,
- the temperature of the laser.

As the optimum writing power Pwo depends on the disk, the recorder and the recording speed that are actually used, this power should be determined for each recorder/disk combination at the actual recording speed. Such a determination of the actual optimum writing power Pwo is called an Optimum Power Control procedure (OPC procedure).

H.1.1 Asymmetry and optimum writing power

For different writing powers, the asymmetry of the recorded 8 -to-16 modulated data is different.
By test recording random 8-to-16 modulated data with different writing powers, and measuring the resulting asymmetry in the HF signal, the optimum writing power for the specific combination of disk and recorder at a specific recording speed can be obtained.
Figure H. 1 shows schematically the procedure with the OPC and write strategy. The main signals that are influenced by the applied write strategy and power level are the modulation, the asymmetry and the jitter. In practice the asymmetry appears to be a sensitive parameter for OPC. An easier to handle alternative for the asymmetry is β.

Figure H. 1 - Schematical diagram of OPC procedure

H.1.2 Measurement of asymmetry by means of β

Using the definition of asymmetry directly, may result in complicated recorder electronics. Therefore a different parameter is used as a representation of asymmetry. This parameter β is based on using the AC coupled HF signal before equalization.

By definition: $\beta=\left(\mathrm{A}_{1}+\mathrm{A}_{2}\right) /\left(\mathrm{A}_{1}-\mathrm{A}_{2}\right)$ as the difference between the peak levels A_{1} and $\mathrm{A}_{2}\left(\mathrm{~A}_{1}+\mathrm{A}_{2}\right)$, normalized to the peak-peak value $\left(A_{1}-A_{2}\right)$ of the HF signal. See Figure H.2.
β defined in this way, will be approximately equal to the asymmetry.
Zero asymmetry of the measured HF signal will, in general, correspond to $\beta \approx 0$.

Figure H. 2 - AC-coupled HF signals recorded with different writing powers

H. 2 The OPC procedure

To facilitate the OPC procedure, an indicative value (an estimation) for the writing power is given at several writing speeds (see 14.4.2).

These values cannot be used as the exact optimum writing power for the actual disk/recorder/speed combination, but can be used as a starting value for an OPC procedure.

As the setpoint in the OPC procedure, the target β value indicated in 14.4.2 is used.
The OPC procedure must be performed in an area on the disk that is specially reserved for this purpose: the Inner or Outer Disk Test Zone (see Table 7).

H. 3 Write strategy parameters at other speeds

It is recommended that +R recorders compliant with this document use the indicated test speeds as follows:

- the Primary recording velocity indicates the lowest speed at which the disk has been verified for a specific write strategy,
- the Upper recording velocity indicates the highest speed at which the disk has been verified for a specific write strategy,
an estimate for the write parameters at any intermediate speed can be determined by linear interpolation between the parameters at the Primary recording velocity and the Upper recording velocity as indicated in 14.4.2.

NOTE
Disk Manufacturers should design media with a reasonable "linear" behaviour of the write strategy parameters over the speed range indicated in 14.4.2.

H. 4 Media margins at non-optimum write power

To create some margins for practical accuracy requirements for drive implementations, the disk should allow for some deviations of the write power from the optimum values. Therefore the following specifications should be fulfilled (strongly recommended):
For actual write powers $P \mathrm{w}$ in the range $0,90 \times P \mathrm{wo}$ to $1,05 \times P \mathrm{wo}$, and $P \mathrm{~b}=P \mathrm{bo}$, the disk is recordable within all specifications.

INTERNATIONAL

Annex
 (informative)

Light fastness of the disk

Light fastness of the + R disk should be tested with an air cooled Xenon lamp and test apparatus complying with ISO-105-B02.

Test conditions:

- Black Panel Temperature $:<40^{\circ} \mathrm{C}$
- Relative humidity: : 70-80\%

Disk illumination:

- Through the substrate, normal incident.
- Disk not packed, out of cassette.

Requirement:

All disk specifications must be fulfilled, after illumination with a Xenon lamp corresponding with the European Wool Reference \#5 (see ISO-105-B02).

Remark:
The change in color of the +R disk is irrelevant for this test.

INTERNATIONAL

Annex J

(informative)

Wavelength dependency

When organic dyes are used as a recording layer, the +R disk characteristics are fundamentally wavelength dependent (ΔP wo/Pwo is typical 1 to 3.5% per $\Delta \lambda=1 \mathrm{~nm}$). On the other hand, the Laser Diode that generates the light used for recording and read-out of the +R disk has a wavelength with a certain tolerance. Moreover, the wavelength of the light emitted by the Laser Diode will depend on the temperature of the device.

This attachment intends to describe the tolerances in temperature and wavelength that are needed by the recorder. Furthermore the disk parameter ($\mathrm{d} P / \mathrm{d} \lambda) /(P / \lambda)$ is introduced which can speed up the recorder in determining the optimum write power under the recorder's specific conditions. This parameter shall be indicated in the Physical format information in ADIP (see 14.4.2).

J. 1 Wavelength/Temperature behaviour of recorders

Figure J. 1 shows a typical Wavelength/Temperature diagram which can be considered as operating conditions for the disk. The disk should comply with all specifications for the unrecorded and recorded disk within the operating conditions as defined by the shaded area in Figure J.1.

Figure J. 1 - Wavelength/Temperature diagram
indicating the disk operating conditions
NOTE
The temperature of the Laser Diode itself may be higher than the ambient temperature of the disk due to dissipation in the laser. In the graph of Figure J.1, a constant temperature difference is assumed between the disk and the laser.

J. 2 Write power / Wavelength dependency of the disk

In practice it is not easy to determine the write power dependency of the disk on the laser wavelength directly. What can be measured by using usual optical equipment is the absorption of the recording layer as a function of the wavelength. When assuming that the write power is inversely proportional to the absorption of the recording layer, the dependency of this absorption on the wavelength can be translated into a dependency of the write power on the wavelength.

J.2.1 Measurement of the absorption of the recording layer of the disk

The absorption of the recording (dye) layer of the disk is determined by measuring the reflection and transmission versus the wavelength. For this purpose a parallel beam is used at a small angle to the normal on the disk surface. The wavelength is controlled by means of a monochromator.
The measurements are performed on a mirror area at the inner side of the disk in order to prevent wavelength dependent diffraction of the light caused by grooved areas.

Figure J. 2 - Definitions of reflectivity, transmission and absorption

In Figure J. 2 the following applies:
(for the transparency of the formulas, the intensity of the incident beam is assumed to be normalized to 1)
$r_{s}=$ reflectivity of the entrance surface
$t_{s}=$ transmission of the substrate
$R=$ reflectivity of the recording layer
$\mathrm{A}=$ absorption of the recording layer
$\mathrm{T}=$ transmission of the recording layer
$R_{/ /}=$total measured reflected light
$\mathrm{T}_{/ /}=$total measured transmitted light

From: $\quad R_{/ /}=r_{s}+\frac{\left(1-r_{s}\right)^{2} \cdot R \cdot t_{s}^{2}}{\left(1-r_{s} \cdot t_{s}^{2} \cdot R\right)}$
the reflectivity of the dye can be calculated: $R=\frac{R_{/ /}-r_{s}}{\left(1+r_{s} \cdot R_{/ /}-2 \cdot r_{s}\right) \cdot t_{s}^{2}}$
and from: $\quad T_{/ /}=\frac{\left(1-r_{\mathrm{s}}\right) \cdot \mathrm{t}_{\mathrm{s}} \cdot \mathrm{T}}{1-\mathrm{r}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{s}}^{2} \cdot \mathrm{R}}$ it follows that $\mathrm{T}=\mathrm{T}_{/ /} \cdot \frac{1-\mathrm{r}_{\mathrm{s}} \cdot \mathrm{t}_{\mathrm{s}}^{2} \cdot \mathrm{R}}{\left(1-\mathrm{r}_{\mathrm{s}}\right) \cdot \mathrm{t}_{\mathrm{s}}}$
Because $A+T+R=1$, the absorption of the dye layer is given by: $A=1-R-T$

J.2.2 Determination of parameters for the Physical format information in ADIP

Figure J. 3 - Example of absorption and power versus wavelength

The absorbed power $P \mathrm{x}=P_{\mathrm{w}}(\lambda) \times \mathrm{A}(\lambda)$ is creating the marks in the recording layer. It is assumed that this power P_{x} is more or less independent on the wavelength. In this case, $P_{\mathrm{w}}(\lambda)$, a function of the wavelength λ, can be determined from $A(\lambda)$ with the help of the following formula:
$P \mathrm{w}(\lambda)=\frac{P \mathrm{w}\left(\lambda_{\text {ref }}\right) \times \mathrm{A}\left(\lambda_{\text {ref }}\right)}{\mathrm{A}(\lambda)}$, in which $P \mathrm{w}\left(\lambda_{\text {ref }}\right)$ is the measured write power at $\lambda_{\text {ref }}$.
The parameter $n=(\mathrm{d} P \mathrm{w} / \mathrm{d} \lambda) /\left(\mathrm{P}_{\mathrm{IND}} / \lambda_{\mathrm{IND}}\right)$ to be recorded in the Physical format information in ADIP can be determined from the power curve. $\mathrm{d} P \mathrm{w} / \mathrm{d} \lambda$ shall be averaged over the wavelength range from 645 nm to 670 nm . $\lambda_{\text {IND }}$ has been chosen to be 655 nm and $P_{\text {IND }}$ shall be $P_{\mathrm{w}}\left(\lambda_{\text {IND }}\right)$ as determined from the calculated power curve.
The parameter ($\mathrm{d} P \mathrm{w} / \mathrm{d} \lambda) /\left(\mathrm{P}_{\mathrm{IND}} / \lambda_{\mathrm{IND}}\right)$ is in principal speed independent.

J.2.3 Determination of start power for the OPC procedure in a specific recorder

The corrected power indication $P_{\text {cor }}$ at the actual wavelength of the recorder $\lambda_{\text {actual }}$ can be approximated by:

$$
P_{\text {cor }}\left(\lambda_{\text {actual }}\right)=\mathrm{P}_{\text {IND }}+\frac{\mathrm{d} P_{\mathrm{w}}}{\mathrm{~d} \lambda} \times\left(\lambda_{\text {actual }}-\lambda_{\text {IND }}\right),
$$

in which as well $\mathrm{P}_{\text {IND }}$ as $\mathrm{d} P \mathrm{w} / \mathrm{d} \lambda$ are speed dependent.
The value of $\mathrm{d} P \mathrm{w} / \mathrm{d} \lambda$ at a speed v 1 can be calculated from the values specified in ADIP:

$$
\left(\frac{\mathrm{d} P \mathrm{w}}{\mathrm{~d} \lambda}\right)_{\text {at } \mathrm{v} 1}=\frac{n}{\lambda_{\text {IND }}} \times \mathrm{P}_{\text {IND at } \mathrm{v} 1}
$$

The optimum start value of the power for the OPC procedure at a speed v1 can now be determined by the following formula:

$$
\mathrm{P}_{\text {start at v1 }}\left(\lambda_{\text {actual }}\right)=\mathrm{P}_{\mathrm{IND} \text { at } \mathrm{v} 1}+\frac{n \times \mathrm{P}_{\text {IND at } \mathrm{v} 1}}{\lambda_{\text {IND }}} \times\left(\lambda_{\text {actual }}-\lambda_{\text {IND }}\right)
$$

Annex K (informative)

Running OPC

The correct writing power for the +R disk is to be determined by means of an Optimum Power Calibration procedure as described in Annex H of this document. However, after this calibration, the optimum power may change because of:

- power sensitivity fluctuation over the disk,
- wavelength shift of the laser diode due to change in operating temperature,
- change of spot aberrations due to change in disk skew, substrate thickness, defocus, etc.,
- changed conditions of disk and/or optics, when OPC was carried out a long time before actual recording.

The purpose of a Running OPC is to actively monitor the mark formation process and continuously adjust the writing power to the optimum power that is required. During the OPC procedure, also a "Running OPC signal" may be obtained that can be associated with optimally written marks (for example using the instantaneously reflected light signal). Such a "Running OPC signal" can be used to maintain subsequent recordings at the same optimal level as that determined by the OPC procedure.

INTERNATIONAL

Annex L (informative)

Transportation

L. 1 General

As transportation occurs under a wide range of temperature and humidity variations, for differing periods, by many methods of transport and in all parts of the world, it is not practical to specify mandatory conditions for transportation or for packaging.

L. 2 Packaging

The form of packaging should be agreed between sender and recipient or, in absence of such an agreement, is the responsibility of the sender. It should take into account the following hazards.

L.2.1 Temperature and humidity

Insulation and wrapping should be designed to maintain the conditions for storage over the estimated period of transportation.

L.2.2 Impact loads and vibrations

a) Avoid mechanical loads that would distort the shape of the disk.
b) Avoid dropping the disk.
c) Disks should be packed in a rigid box containing adequate shock-absorbent material.
d) The final box should have a clean interior and a construction that provides sealing to prevent the ingress of dirt and moisture.

INTERNATIONAL

Annex M

(informative)

Measurement of the groove wobble amplitude

M. 1 Relation between wobble signal and wobble amplitude

The wobble amplitude in nm cannot easily be measured directly. However, it can be derived from the normalized wobble signal. The theoretical results for such a derivation are given below.
The peak value of the wobble signal I_{W} can be seen as:

$$
I_{\mathrm{Wp}}=A \times \sin (2 \times \pi \times a / p)
$$

where:
$a=$ wobble amplitude in nm
$p=$ track pitch of the radial error signal
$A=$ the peak value of the radial error signal
In Figure M. 1 the parameters $a, ~ p, A$ and $I_{W p}$ are shown. The groove has a peak displacement of 'a' (wobble amplitude) from the averaged centre of the groove to the actual centre of the groove. The normalized wobble signal can now be defined as:

$$
\frac{I_{\mathrm{Wpp}}}{\left(I_{1}-I_{2}\right)_{\mathrm{pp}}}=\frac{2 \times I_{\mathrm{Wp}}}{2 \times \mathrm{A}}=\sin \left(2 \times \pi \times \frac{\mathrm{a}}{\mathrm{p}}\right)
$$

where

$$
\left(I_{1}-I_{2}\right)_{p p}=2 \times \mathrm{A}
$$

The wobble signal I_{W} is not only dependent on the wobble amplitude a, but also the track pitch p . Due to normalization, dependencies on groove geometry, spot shape and optical aberrations have been eliminated.

M. 2 Tolerances of the normalized wobble signal

From the above formulae for the normalized wobble signal, the tolerances as given in 28.4 can be converted to nm for a given track pitch of ' p ' $=0,74 \mu \mathrm{~m}$.

Lower limit: 0,15 corresponds to $a=18 \mathrm{~nm}$.
Upper limit: 0,25 corresponds to $a=30 \mathrm{~nm}$.

Figure M. 1 - Wobble amplitude of the groove

Annex N (informative)

How to use the Physical format information in ADIP

To fully exploit the Physical format information in the ADIP, the following rules are given as a recommended guideline (see also the flowchart in Figure N.1).

Drives should read the ADIP and check for the following information:

1) check the Disk Category in byte 0
\Rightarrow determine if the disk is a + R or + RW disk, also check if the disk is a single layer disk or a dual layer disk; see also clause 3.

Drives shall respect the Disk Application Code:

2) check the Disk Application Code in byte 17
\Rightarrow if the drive is not able to obey the rules related to a specific Disk Application Code, the drive shall block the disk for recording.

If the drive can do "media recognition" (i.e. the drive can uniquely determine the manufacturer and the type of the disk and has optimum sets of write parameters for certain disks in its memory):
3) check for Disk Manufacturer and Media type ID (bytes 19 to 29)
\Rightarrow choose the optimum write strategy for this specific media from the drive's memory.

If the drive fails to recognize the media:

4) check the version number in byte 0
\Rightarrow if the version number is unknown: do not use the contents of bytes 32 to 63 ,
\Rightarrow if the version number is known: interpret bytes 32 to 63 according to the correct book version.
5) check byte 18 for the presence of Extended Information blocks
\Rightarrow if no El blocks are present: only basic write strategy is available.

If El blocks present:

6) check the format number in each present El block
\Rightarrow if the format number is unknown: do not use the contents of the related El block,
\Rightarrow if the format number is known: interpret the El block according to the correct book version.

Now the drive can choose the best fitting recording speed and write strategy from the available options:
\Rightarrow basic write strategy $(1 x \sim 2,4 x)$ as defined in bytes 32 to 63 ,
\Rightarrow write strategy from one of the known El blocks,
\Rightarrow for each available write strategy the drive should check the actually supported recording speeds indicated in the related bytes (supported recording speeds can be adapted in future versions of this document).

Note: in future more than one El block can exist on one disc!

Figure N. 1 - Flowchart showing the use of Physical format information in ADIP

Annex 0 (informative)

Values to be implemented in Existing and Future Specifications

The values for bytes which this Ecma Standard specifies are related to Recordable disks which are in conformance with this Ecma Standard, viz. +R Format disks. It is expected that other categories of disks will be standardized in future. It is therefore recommended that the following values be used for these other disks. Further possible bit patterns are intended for future standardization.
All standards are subject to revisions, so the information in this Annex can be subject to changes. Therefore it is recommended to check this information against the most recent edition of the indicated standards.

Identification Data	
Bit b_{31}	shall be set to
	ZERO, indicating CLD format ONE, indicating Zoned format
Bit b_{30}	shall be set to
	ZERO, indicating pit tracking ONE, indicating groove tracking
Bit b_{29}	shall be set to
	ZERO if the reflectivity is greater than 40% with a PBS optical system ONE if the reflectivity is less than 40% max. with a PBS optical system
Bit b_{28}	Reserved, shall be set to ZERO
Bits b_{27} to b_{26}	shall be set to
	ZERO ZERO in the Data Zone ZERO ONE in the Lead-in Zone ONE ZERO in the Lead-out Zone ONE ONE in the Middle Zone
Bit b_{25}	shall be set to
	ZERO, indicating read-only data ONE, indicating other than read-only data
Bit b_{24}	shall be set to
	ZERO on Layer 0 of Dual Layer disks ONE on Layer 1 of Dual Layer disks ZERO on Single Layer disks
Bits b_{23} to b_{0}	shall specify the Physical Sector Number

Physical format information in the ADIP in the Lead-in Zone

Byte 0 - Disk Category and Version Number

Bits b_{7} to b_{4} shall specify the Disk Category

> if set to 0000, they indicate a DVD - Read-Only disk if set to 0001, they indicate a DVD Rewritable disk (DVD-RAM) if set to 0010, they indicate a DVD-Recordable disk (DVD-R)
if set to 0011, they indicate a DVD Re-recordable disk (DVD-RW) if set to 1001, they indicate a +RW disk
if set to 1010, they indicate a +R Single Layer disk
Bits b_{3} to b_{0} shall specify the Version Number. Together with b_{7} to b_{4} they specify the related document.
if b_{7} to b_{4} set to 0000 and b_{3} to b_{0} set to 0001, they specify ECMA-267/268
if b_{7} to b_{4} set to 0001 and b_{3} to b_{0} set to 0001, they specify ECMA-272
if b_{7} to b_{4} set to 0001 and b_{3} to b_{0} set to 0110 , they specify ECMA-330
if b_{7} to b_{4} set to 0010 and b_{3} to b_{0} set to 0001, they specify ECMA-279
if b_{7} to b_{4} set to 0011 and b_{3} to b_{0} set to 0010, they specify ECMA-338
if b_{7} to b_{4} set to 1001 and b_{3} to b_{0} set to 0001, they specify ECMA-274
if b_{7} to b_{4} set to 1001 and b_{3} to b_{0} set to 0010, they specify ECMA-337
if b_{7} to b_{4} set to 1010 and b_{3} to b_{0} set to 0001, they specify this Ecma Standard

Byte 1 - Disk size and maximum transfer rate

Bits b_{7} to b_{4} shall specify the disk size
if set to 0000, they specify a 120 mm disk
if set to 0001, they specify an 80 mm disk
Bits b_{3} to b_{0} shall specify the maximum transfer rate
if set to 0000 , they specify a maximum transfer rate of $2,52 \mathrm{Mbits} / \mathrm{s}$
if set to 0001, they specify a maximum transfer rate of $5,04 \mathrm{Mbits} / \mathrm{s}$
if set to 0010, they specify a maximum transfer rate of $10,08 \mathrm{Mbits} / \mathrm{s}$
if set to 1111, they specify no maximum transfer rate is specified

Byte 2 - Disk structure

Bit $\mathrm{b}_{7} \quad$ shall be set to ZERO.
Bits b_{6} and b_{5} shall specify the disk Type
if set to 00 , they specify a single recording layer per side
if set to 01, they specify two recording layers per side
Bit b_{4} shall specify the track path
if set to ZERO, it specifies PTP on Dual Layer disks or a Single Layer disk, if set to ONE, it specifies OTP on Dual Layer disks
Bits b_{3} to b_{0} specify the layer type

$$
\begin{aligned}
& \begin{array}{l}
\text { Bit } b_{3} \\
\text { shall be set to ZERO } \\
\text { Bit } b_{2} \\
\text { if set to } \\
\text { ZERO, shall specify that the disk does not contain re-writable Data Zones } \\
\text { ONE, shall specify that the disk contains re-writable Data Zones }
\end{array} \\
& \text { Bit } b_{1} \quad \begin{array}{l}
\text { if set to } \\
\text { ZERO, shall specify that the disk does not contain recordable Data Zones } \\
\text { ONE, shall specify that the disk contains recordable Data Zones }
\end{array} \\
& \text { Bit } b_{0} \quad \begin{array}{l}
\text { if set to } \\
\text { ZERO, shall specify that the disk does not contain embossed Data Zones }
\end{array} \\
& \begin{array}{l}
\text { ONE, shall specify that the disk contains embossed Data Zones }
\end{array}
\end{aligned}
$$

Byte 3-Recording density

Bits b_{7} to b_{4} shall specify the average Channel bit length
if set to 0000 , they specify $0,133 \mu \mathrm{~m}$
if set to 0001, they specify $0,147 \mu \mathrm{~m}$
if set to 0010 , they indicate that this average length is in the range $0,205 \mu \mathrm{~m}$ to $0,218 \mu \mathrm{~m}$
if set to 1000 , they specify $0,17637 \mu \mathrm{~m}$

INTERNATIONAL

Bits b_{3} to b_{0} shall specify the average track pitch
if set to 0000, they indicate a track pitch of $0,74 \mu \mathrm{~m}$ if set to 0001, they indicate a track pitch of $0,80 \mu \mathrm{~m}$

[^0]: * $\mathrm{cm}=$ current mark, $\mathrm{ps}=$ previous space (see also Annex F)

[^1]: NOTE
 The Physical Sector Number of the first Physical Sector of the Data Zone is large enough so as to prevent a Physical Sector Number ≤ 0 to occur anywhere on the disk.

