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Introduction 

ECMA-418-2 specifies methods for identifying perceptually prominent components in airborne noise emitted by 
information technology and telecommunications (ITT) equipment using models of human perception. The 
content was originally published in ECMA-74 17th edition “Measurement of Airborne Noise emitted by 
Information Technology and Telecommunications Equipment”. Psychoacoustic content of ECMA-74 was moved 
to ECMA-418 Parts 1 and Part 2 to distinguish and separate it from the legacy prescriptions of microphone 
position, equipment operation, and sound level processing, which remain in ECMA-74. 

ECMA-418 Parts 1 and 2 are psychoacoustic standards and as such prescribe methods that represent the 
perception of noise emitted by ITT equipment. Sound signals recorded by the procedures of ECMA-74 are 
analysed using the psychoacoustic methods of ECMA-418 Parts 1 and 2. While intended for ITT equipment, 
the methods may be useful for other applications as well. 

The psychoacoustic methods in this standard, ECMA-418 Part 2 are based on the Sottek Hearing Model that 
expresses specific loudness, which describes level- and frequency-dependent masking and threshold of hearing. 
The model approximates the well-established Zwicker specific loudness method, but was extended by using a 
modified Bark scale covering the entire audible frequency range and an improved nonlinear matching of 
loudness at higher levels, which leads to a significant improvement of the prediction quality for several loudness 
matching experiments using synthetic and technical sounds. 

Additional models described in this standard use the specific loudness to express the strength of perceived 
tonality, roughness and fluctuation strength. The models of this standard, Part 2, are more intricate than those 
of Part 1, which considers sound pressure in narrow and critical bands and hearing threshold. 

The first edition of ECMA-418-2 was issued in December 2020. 

For the 2nd edition, there were several updates as follows: 

− The hearing model, tonality, and roughness procedures of Clauses 5, 6, and 7 were refined, and the 

descriptions of these procedures improved to assist implementation. 

− In Clause 5, a figure showing auditory filter bank response of the hearing model of Sottek was added 

to assist implementation. 

− An entropy weighted roughness based on modulation rate random was added to Clause 7.1 for 

applications in which measured rotational speed is available. 

− Clause 8 was added to describe loudness of sounds with subcritical or larger bandwidths. 

For the 3rd edition, there were several updates as follows: 

− The title of the standard was revised to indicate the origin of the hearing model forming the foundation 

of the standard. 

− The description of filters for the outer and middle ear filtering has been added for the condition of a 

diffuse sound field in addition to the original description of the condition of a free sound field. 

− The zero-padding and segmentation process in Clause 5 was adapted for the roughness procedure of 

Clause 7. 

− The hearing model, the tonality procedure and, in particular, the roughness procedure of Clauses 5, 6, 

and 7 have been further refined, and the descriptions of these procedures have been improved to 

facilitate implementation. 
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For the 4th edition, there were several updates as follows: 

− Clause 9 has been added to describe the fluctuation strength procedure. 

− The parts “Introduction”, “Scope” and “Conformance” were updated to reflect the new fluctuation 

strength procedure. 

− The part “Terms and definitions” also was extended by clarifying the difference between roughness 

and fluctuation strength. 

− Clauses 5.1.2.2 and 5.1.5.2 were updated to reflect the new fluctuation strength procedure. 

− Minor corrections such as typographical errors, incorrect link to a reference or incorrect figure number 

were made and notes were added to Clauses 5, 7 and 8. 

− Inconsistent naming of average specific values of all psychoacoustic parameters was corrected. 

Average specific values of all psychoacoustic parameters were added as optional parameters for the 

reporting. 
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ECMA-418 series consists of the following parts, under the general title “Psychoacoustic metrics for ITT 
equipment”: 

⎯ Part 1 (prominent discrete tones) 

⎯ Part 2 (methods for describing human perception based on the Sottek Hearing Model) 
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Psychoacoustic metrics for IT equipment —  
Part 2 (methods for describing human perception based on the 
Sottek Hearing Model) 

1 Scope 

This standard describes the Sottek Hearing Model and psychoacoustic metrics dependent on the hearing model. 
The input to the hearing model are sound signals recorded according to the procedures of ECMA-74. The 
hearing model expresses specific loudness [1]. Psychoacoustic models use the specific loudness to express the 
strength of any tonalities, roughness or fluctuation strength in the sound generated by Information Technology 
and Telecommunications (ITT) equipment. While developed for ITT equipment, the psychoacoustic methods of 
this standard may be relevant to other applications such as automobiles, consumer appliances, etc. 

The tonality metric of this standard uses the autocorrelation function to describe causes of perceived tonality 
such as individual or multiple steady or time-varying discrete tones, individual or multiple spectrally elevated 
bands or slopes of noise, and combinations of these phenomena. A similar approach was published in 1998 to 
determine “pitch salience” [2]. 

The roughness metric presented in this standard uses a spectrum of sound signal envelopes, refined by a 
quadratic fit estimator, to describe the roughness arising from rapid sound signal envelope variations within the 
critical bands at modulation rates between 20 and around 300 Hz. For steady sounds, the perception of 
roughness peaks at modulation rates of 70 Hz. 

The fluctuation strength metric of this standard is similar in principle to the roughness metric, also uses a 
spectrum of sound signal envelopes, refined by the High-resolution Spectral Analysis (HSA), to describe 
fluctuation strength resulting from slow sound signal envelope variations within the critical bands at modulation 
rates between 0,25 and about 20 Hz. For steady sounds, the perception of fluctuation strength peaks at 
modulation rates of 4 Hz. 

The loudness metric presented in this standard uses a nonlinear combination of tonal and noise loudness 
calculated as intermediate results of the tonality algorithm to achieve a very good match of perceived loudness, 
especially for sounds with a subcritical bandwidth (sounds containing tonal and noise components). 

2 Conformance 

Measurements are in conformity with this Standard if they meet the following requirements: 

a) The measurements are taken in conformity with the Standard ECMA-74. 

b) The measurements are carried out with a sampling rate of 48 kHz or they are resampled to a 

sampling rate of 48 kHz if they were originally taken with a different sampling rate. 

c) For the determination of prominent tonalities, the method specified in Clause 6 is used. 

d) For the determination of prominent roughness, the method specified in Clause 7 is used. 

e) For the determination of loudness, the method specified in Clause 8 is used. 

f) For the determination of prominent fluctuation strength, the method specified in Clause 9 is used. 
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3 Normative references 

The following documents are referred to in the text in such a way that some or all of their content constitutes 
requirements of this document. For dated references, only the edition cited applies. For undated references, the 
latest edition of the referenced document (including any amendments) applies. 

ECMA-74, Measurement of Airborne Noise emitted by Information Technology and Telecommunications 
Equipment, 20th edition (December 2022) 

ISO 226:2003, Acoustics — Normal equal-loudness-level contours 

4 Terms and definitions 

For the purposes of this document, the following terms and definitions apply. 

NOTE  If a definition is identical to that in another standard, that standard and definition number is given in brackets. 

4.1 
loudness 
𝑁  
perceived magnitude of a sound, which depends on the acoustic properties of the sound and the specific 
listening conditions, as estimated by that the average human listener with normal hearing. 

NOTE 1  Loudness is expressed in sones. 

NOTE 2  Loudness depends primarily upon the sound pressure level, although it also depends upon the frequency, 

bandwidth, and duration of the sound. 

NOTE 3  A sound that is twice as loud as another sound is characterized by doubling the number of sones. 

NOTE 4  Adapted from ISO 532-1, 3.18 

4.2 
specific loudness 
𝑁′  
perceived magnitude or volume of sound in a critical band. 

NOTE 1  The unit of specific loudness is expressed in terms of sone per Bark. 

4.3 
equal-loudness-level contour 

the sound pressure level 1 for which the average human listener with normal hearing perceives constant 
loudness when presented with a single frequency (pure) tone. 

NOTE 1  Equal-loudness-level contour is parameterized by the sound pressure level and frequency of the presented 

tone. See ISO 226:2003. 

4.4 
threshold of hearing 
level of a sound at which, under specified conditions, a person gives 50 % of correct detection responses on 
repeated trials. 

[SOURCE: ISO 226 :2003, 3.7 

 

1 The definition of sound pressure level is given in the terms and definitions of ECMA-74. 
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4.5 
critical band 
filter within the human cochlea describing the frequency resolution of the auditory system with characteristics 
that are usually estimated from the results of masking experiments. 

[SOURCE: ISO 532-1[3], 3.12] 

4.6 
critical bandwidth 
bandwidth of a critical band. 

NOTE 1  Each critical bandwidth has a width of one unit on the critical band rate scale. 

4.7 
critical band rate scale 
transformation of the frequency scale, constructed so that an increase in frequency equal to one critical 
bandwidth leads to an increase of one unit on the critical band rate scale. 

NOTE 1  Frequencies on the critical band rate scale are expressed in Bark. 

NOTE 2  Adapted from ISO 532-1, 3.14 

4.8 
tonality 
a characteristic of sound containing a single-frequency component or narrowband components that emerge 
audibly from the total sound. 

NOTE 1  Tonality can arise from individual or multiple steady or time-varying discrete tones, individual or multiple 

spectrally elevated bands or slopes of noise, and combinations of these phenomena. 

4.9 
envelope 
the instantaneous amplitude of a signal. 

NOTE 1  The instantaneous amplitude describes the low-frequent variations of the amplitude. It has a significantly 

lower frequency than the carrier frequency of the signal. 

4.10 
modulation 
fluctuation of the envelope of a signal over time. 

NOTE 1  Modulation is expressed in terms of its strength (modulation index) and the speed at which it changes 

(modulation rate). 

4.11 
modulation rate 
frequency of changes of the envelope of a signal. 

NOTE 1  The modulation rate is expressed in Hertz. 

NOTE 2  The word “rate” is used to avoid confusion with the sound frequency. 

4.12 
roughness 
a characteristic of sound which has the quality of being uneven yet steady. 

NOTE 1  Roughness can occur when the envelope of a sound signal exhibits rapid variation in time (typically above 

20 Hz) within a critical band. 



 

4  © Ecma International 2025 

 

4.13 
fluctuation strength 
a characteristic of sound which has the quality of being uneven yet steady. 

NOTE 1  Fluctuation strength can occur when the envelope of a sound signal exhibits slow variation in time (typically 

below 20 Hz) within a critical band. 
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5 The Sottek Hearing Model to calculate psychoacoustic parameters 

This clause describes a perception-model-based procedure for determining the specific loudness of a sound, 
the Sottek Hearing Model. There are different loudness calculation procedures, such as the German standard 
DIN 45631/A1 [3] and the international standard ISO 532-1 [4] (both based on Zwicker’s loudness model) as well 
as the Dynamic Loudness Model (by Chalupper and Fastl) [5], the Time Varying Loudness model (by Glasberg 
and Moore) [6], and the loudness calculation algorithm based on the Sottek Hearing Model, allowing for the 
prediction of the perceived loudness of time-varying sounds in many cases (ISO 532-2[7] only applies to 
stationary sounds). However, previous studies of Rennies et al. [8], [9] showed that the predictions for some time-
varying sounds do not match the loudness ratings of normal-hearing listeners. To address this issue, the 
influence of specific signal properties of the sounds on the assessment of loudness was examined in 
Reference [1] focusing on impulsive sounds. On the basis of these experiments, it was studied how far the 
hearing model approach to time-varying loudness according to Sottek can account for the specific signal 
properties of these sounds. It could be shown that the hearing model approach to time-varying loudness 
performs better than other existing loudness models: The hearing model, characterized especially by the 
application of an improved nonlinearity and the steeper curve progression at higher levels, leads to a significant 
improvement of the prediction quality for several loudness matching experiments using synthetic and technical 
sounds. In addition, the auditory filter bank used is based on an extended Bark scale covering the entire audible 
frequency range while matching the experimental results related to critical bandwidth better than other models. 
Further, the hearing model is able to predict the nonlinear behaviour with respect to just-noticeable amplitude 
differences and variations. [1] 

The hearing model described in this clause transforms sound pressure to loudness, where the unit of loudness 
is soneHMS, where HMS stands for “according to the Hearing Model of Sottek” and denotes that the loudness 
differs from other definitions. The result of the hearing model can be used as the basis for further psychoacoustic 
analyses. 

5.1 Psychoacoustic hearing model 

5.1.1 Overview 

Figure 1 displays the basic hearing model structure for calculating specific loudness as the basis for determining 
other psychoacoustic sensations. Subsequently, the different signal processing blocks of the hearing model are 
briefly explained. 

 

Figure 1 — Basic hearing model structure, including the auditory filter bank, where CBF is the number 
of critical band filters in the filter bank. 
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The input signal is a discrete time signal containing sound pressure values with a sampling rate of  

𝑟s  =  48 kHz 2. The common sampling rate 𝑟s  =  48 kHz is chosen to ensure that the entire audible frequency 
range is covered. 

5.1.2 Pre-processing of input data 

Initially, the first 5 ms of the input signal (corresponding to 𝑛fade in = 0,005 ⋅ 48000 = 240 samples) are multiplied 
with a trigonometric weighting function 

 𝑤fade in(𝑛) = 0,5−0,5 ⋅ cos (
𝜋𝑛

𝑛fade in
) (1) 

with 𝑛 =  0, 1, … ,  𝑛fade in − 1 in order to reduce artifacts due to filter oscillations in case of signals starting with 
non-zero values. 

5.1.2.1 Zero-padding for the calculation of tonality and loudness 

For the calculation of tonality (Clause 6) and loudness (Clause 8), zero-padding on both ends of the signal shall 
be performed to facilitate later processing steps. The number of zeros at the end 𝑛zeros,end  is calculated as: 

 𝑛zeros,end  = 𝑛new − 𝑛samples, (2) 

where 𝑛samples is the number of samples of the signal and 𝑛new equals to: 

 
𝑛new           = 𝑠h,max ⋅ (ceil (

𝑛samples + 𝑠h,max + 𝑠b,max

𝑠h,max
) − 1) , (3) 

where the ceil(𝑥) operator gives the smallest integer value higher than or equal to the number 𝑥. The band-

dependent block size 𝑠b(𝑧) and the hop size 3 𝑠h(𝑧) are defined in detail in Clause 5.1.5 and 𝑠b,max and 𝑠h,max 

are the largest band-dependent block size and hop size of all used filter stages, which are defined in Clause 
6.2.2 for tonality and loudness. The number of zeros at the start 𝑛zeros,start shall be equal to 𝑠b,max. The zero-

padded sound pressure signal is named 𝑝(𝑛). 

5.1.2.2 Zero-padding for the calculation of roughness and fluctuation strength 

For the calculation of roughness (Clause 7) and fluctuation strength (Clause 9), zero-padding is performed only 
at the start of the signal with 𝑛zeros,start  equal to 𝑠b = 16384 for roughness as defined in Clause 7.1.1 and  

𝑛zeros,start  equal to 𝑠b = 65536  for fluctuation strength as defined in Clause 9.1.1. The zero-padded sound 

pressure signal is named 𝑝(𝑛). 

5.1.3 Outer and middle/inner ear filtering 

5.1.3.1 Theory 

The pre-processing consists of filtering the input signal 𝑝(𝑛) with transfer functions of the outer and of the 
middle/inner ear. The transfer function of the outer ear, which describes the complex filtering effect mainly of 
the head, pinna and torso, was modeled on the basis of measured head-related transfer functions (HRTFs). 
The transfer function of the middle/inner ear was chosen such that the filtering together with the loudness 
threshold LTQ(𝑧) (as explained in Clause 5.1.9) leads to a loudness estimation emulating the equal-loudness-

 

2 If the input data is sampled at a different sampling rate than 48 kHz, a resampling to 48 kHz needs to be performed. 

3 The hop size is the time shift to the next calculation block, smaller than block size if overlapping is used. It is related to the 

percent overlap 𝑜𝑣 by 𝑠h(𝑧) =  𝑠b(𝑧) ∙ (100 − 𝑜𝑣)/100. 
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level contours from 20 to 90 phon (with a step size of 10 phon) and the lower threshold of hearing. 4 The 
middle/inner ear filter is optimized on the equal-loudness-level contours of ISO 226:2003. 

 

Figure 2 — Equal-loudness-level contours (ISO 226:2003) used as target for the filter transfer function 

 
The lower threshold of hearing is also taken from ISO 226:2003. This corresponds also to the data of the lower 
threshold of hearing published in ISO 389-7[10]. The target equal-loudness-level contours are illustrated in Figure 
2. An evaluation of the hearing model showing the emulated equal-loudness-level contours is given in Annex A. 

5.1.3.2 Implementation 

The transfer function of the resulting filter is shown in Figure 3 for the case of a free sound field. The overall 
filter is composed of a filter modelling the influence of the outer ear and a filter modelling the influence of the 
middle/inner ear. Those filters are also shown in Figure 3. 

 

Figure 3 — Transfer function of the outer and middle/inner ear filter for the case of a free sound field 

 
  

 

4 In Zwicker’s loudness model [3] the influence of the outer and middle ear transfer functions is considered by the ear’s 

transmission characteristic 𝑎0. 
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For numerical reasons, it is recommended to implement this high-order filter as 𝐾 = 8 serially-cascaded second-

order filters 𝐻𝑘(𝑓). The filter function 𝐻(𝑓) is then defined as 

 
𝐻(𝑓) = ∏𝐻𝑘(𝑓).

𝐾

𝑘=1

 (4) 

Each second-order filter 𝐻𝑘(𝑓) can be implemented using the recursive Formula (5) 

 
𝑦(𝑛) = ∑ 𝑏𝑚𝑘𝑥(𝑛 −𝑚)

2

𝑚=0

− ∑ 𝑎𝑚𝑘𝑦(𝑛 − 𝑚)

2

𝑚=1

 (5) 

with input 𝑥(𝑛) and output 𝑦(𝑛). The corresponding filter coefficients are given in Table 1 for the case of a free 
sound field. In this case, the first five filters describe the influence of the outer ear and the last three describe 
the influence of the middle/inner ear. The filtering results in a filtered signal 𝑝om(𝑛). 

Table 1 — Filter coefficients of outer and middle/inner ear filter for the case of a free sound field 

 Filter coefficients 

k 𝑏0𝑘  𝑏1𝑘  𝑏2𝑘 𝑎1𝑘 𝑎2𝑘 

1 1,015896 -1,925299 0,922118 -1,925299 0,938014 

2 0,958943 -1,806088 0,876439 -1,806088 0,835382 

3 0,961372 -1,763632 0,821788 -1,763632 0,783160 

4 2,225804 -1,434650 -0,498204 -1,434650 0,727599 

5 0,471735 -0,366092 0,244145 -0,366092 -0,284120 

6 0,115267 0,000000 -0,115267 -1,796003 0,805838 

7 0,988029 -1,912434 0,926132 -1,912434 0,914161 

8 1,952238 0,162320 -0,667994 0,162320 0,284244 

 

In the case of a diffuse sound field, only six of the eight second-order filters defined in Table 1 shall be used: 
here, the third to fifth filters describe the influence of the outer ear. This means that the first two filters describe 
the different filtering effect of the outer ear in free and diffuse sound fields. Binaural recordings are assumed to 
be processed with diffuse-field or free-field equalization. This means that in such an ideal sound field, the 
binaural signals would correspond to a recording with a microphone positioned at the centre of the now absent 
(artificial) head. 

5.1.4 Auditory filtering bank 

5.1.4.1 Theory 

An auditory filter bank consisting of overlapping asymmetric filters models the frequency-dependent critical 
bandwidths and the tuning curves of the frequency-to-place transform of the inner ear, which mediates the firing 
of the auditory hair cells as the traveling wave from an incoming sound event progresses along the basilar 
membrane. The shape of the auditory filters matches the gammatone filters [11]. The amplitude is chosen such 
that the filter has a gain of 0 dB at the centre frequency 𝐹(𝑧), with 𝑧 denoting the critical band rate scale. This 
0 dB gain varies slightly for the first critical bands due to influence of the negative frequencies as seen in  
Figure 4. The critical bandwidth ∆𝑓(𝑧) is chosen such that it corresponds to the equivalent rectangular 
bandwidth (implementation details are given in Formulae (9) and (10)). The inconstant ratio of bandwidth versus 
frequency of the auditory filter bank conveys a high frequency resolution at low frequencies and a high time 
resolution at high frequencies, with a very small product of time and frequency resolution at all frequencies, 
which empowers, for example, human hearing’s recognition of short-duration low-frequency events. The 
impulse responses of the auditory filters are chosen as modulated low-pass filters (𝑗 is the imaginary unit): 

 ℎ𝑧(𝑡)      = 2 ∙  Re( ℎLP,𝑧(𝑡) ∙ exp(𝑗2𝜋𝐹(𝑧)𝑡)) =  2 ∙ ℎLP,𝑧(𝑡) ∙ cos(2𝜋𝐹(𝑧)𝑡) . (6) 
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The filters are calculated using the low-pass function 

 
 ℎLP,𝑧(𝑡) = 𝜀(𝑡) ∙

1

(𝑘 − 1)!
∙
1

𝜏(𝑧)
∙ (

𝑡

𝜏(𝑧)
)
𝑘−1

exp (−
𝑡

𝜏(𝑧)
) (7) 

where 𝑘  is the filter order 5, 𝜀(𝑡) is the unit step function and the exclamation mark denotes the factorial 
operation. 𝜏(𝑧) is a time constant, related to ∆𝑓(𝑧) by 

 
𝜏(𝑧)       =

1

22𝑘−1
∙ (
2𝑘 − 2
𝑘 − 1

) ∙
1

∆𝑓(𝑧)
. (8) 

The centre frequencies 𝐹(𝑧) and corresponding bandwidths ∆𝑓(𝑧) of the filter bank are calculated as 

 
𝐹(𝑧)       =

∆𝑓(𝑓 = 0)

𝑐
sinh(𝑐𝑧) (9) 

and 

 
∆𝑓(𝑧)     = √(∆𝑓(𝑓 = 0))

2
+ (𝑐𝐹(𝑧))2, (10) 

with 𝑧 denoting the critical band rate scale. 

Values for 𝑧 are chosen from 0,5 to 26,5 with a step size of ∆𝑧 = 0,5. ∆𝑓(𝑓 =  0) =  81,9289 Hz and 𝑐 = 0,1618. 
These functions and settings lead to a better matching to the Bark table by Zwicker [12] than other existing 
formulae, as documented in detail in Reference [1]. The unit of the critical band rate scale of this auditory filter 
bank is BarkHMS, where HMS stands for “according to the Hearing Model of Sottek” and denotes that the critical 
bands differ from other definitions. 

As discrete approximation of the low-pass filter, 

 
 ℎLP,𝑧(𝑛) = 𝜀(𝑛) ∙

(1 − 𝑑)𝑘

∑ 𝑒𝑖𝑑
𝑖  𝑘−1

𝑖=1

𝑛𝑘−1𝑑𝑛, (11) 

with time index 𝑛 and 𝑑 = exp (−
1

𝑟𝑠𝜏(𝑧)
) is used 6; 𝑒𝑖  depends on the filter order 𝑘 and is given below for a 

specific value of 𝑘. The band-pass filtering using ℎ𝑧(𝑡) can be implemented using the discrete approximation of 
the band-pass filter 

 
ℎ𝑧(𝑛)          = 2 ∙  Re ( ℎLP,𝑧(𝑛) ∙ exp (

𝑗2𝜋𝐹(𝑧)𝑛

𝑓𝑠
)) =  2 ∙ ℎLP,𝑧(𝑛) ∙ cos (

2𝜋𝐹(𝑧)𝑛

𝑓𝑠
). (12) 

5.1.4.2 Implementation 

In the following, instructions for the implementation of the auditory filters are given: Digital filtering can be 
implemented using the recursive Formula (13): 

 
𝑦(𝑛)        = ∑ 𝑏𝑚𝑥(𝑛 − 𝑚)

𝑘−1

𝑚=0

− ∑ 𝑎𝑚𝑦(𝑛 −𝑚)

𝑘

𝑚=1

. (13) 

 

5 Filter order 𝑘 = 5 is used. 

6 𝑟s  =  48 kHz is the sampling rate. 
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For the discrete low-pass filter  ℎLP,𝑧(𝑛) as described in Formula (11), the real-valued filter coefficients are 

 
𝑎𝑚             = (−𝑑)𝑚 (

𝑘

𝑚
), (14) 

and 

 
𝑏𝑚             =

(1 − 𝑑)𝑘

∑ 𝑒𝑖𝑑
𝑖  𝑘−1

𝑖=1

𝑑𝑚𝑒𝑚. (15) 

With a used filter order of 𝑘 =  5  the coefficients 𝑒𝑖  in Formula (11) and in Formula (15) are given as 

𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 11, 𝑒3 = 11, and 𝑒4 = 1 . As explained above, 𝑑 = exp (−
1

𝑟𝑠𝜏(𝑧)
)  with 𝜏(𝑧)  as defined in 

Formula (8). 

The coefficients 𝑎𝑚 and 𝑏𝑚 can be used for the implementation of the discrete approximation of the low-pass 
function given in Formulae (7) and (11). However, to obtain the discrete approximation of the band-pass filter in 
Formula (12), the filter coefficients of the low-pass filter shall be modified to: 

 
𝑎𝑚
′   = 𝑎𝑚 exp (

𝑗2𝜋𝐹(𝑧)𝑚

𝑟s
) (16) 

and 

 
𝑏𝑚
′   = 𝑏𝑚 exp (

𝑗2𝜋𝐹(𝑧)𝑚

𝑟s
) , (17) 

with a sampling rate of 𝑟s  =  48 kHz. Using these modified filter coefficients in the recursive Formula (13) results 
in a discrete implementation of the auditory filters. The filter results in a complex-valued band-pass signal with 
a single-sided spectrum. Two times the even part of the spectrum of this signal corresponds to the real-valued 
band-pass signal. Thus, the real-valued band-pass signal can be determined as the double real part of the 
complex result. 

Figure 4 shows the magnitude of the transfer functions of the auditory filter bank, calculated by filtering a digital 

Dirac pulse (sampling rate: 48000 Hz, duration 1 s) using the filter coefficients 7 defined in Formulae (16) and 
(17) with a subsequent Fourier transform on the real-value band-pass signal. 

 

Figure 4 — Magnitude of the transfer functions of the auditory filter bank 

 

7 Filtering shall be performed with double precision. 
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The auditory filter bank results in CBF = 53 band-pass signals 𝑝om,𝑧(𝑛) centred around the critical band rate 

scale values 𝑧 ranging from 0,5 to 26,5, thus leading to an extension of the Bark scale for frequencies of the 
entire audibility range up to approximately 20 kHz using 53 critical band filters with an overlap of 50%. 

5.1.5 Segmentation 

For further processing, segmentation into blocks needs to be performed and blockwise root-mean-square (RMS) 
values need to be calculated. 

5.1.5.1 Segmentation for the calculation of tonality and loudness 

For the calculation of the psychoacoustic tonality (Clause 6) and loudness (Clause 8), the segmentation shall 
be performed using the band-dependent block size 𝑠b(𝑧) and the hop size 𝑠h(𝑧) as given in Clause 6.2.2. 

The segmentation can be described as: 

  𝑝𝑙,𝑧(𝑛
′)    = 𝑝om,𝑧(𝑙 ∙ 𝑠h(𝑧) + 𝑖start(𝑧) + 𝑛

′) (18) 

with 0 ≤ 𝑛′ ≤ 𝑠b(𝑧) − 1, where the time index 𝑙 describes the block number of each block, starting with 𝑙 = 0 
(corresponding to a time of 0 ms). 𝑖start(𝑧) is an index offset that guarantees that the first block of all stages 
corresponds to the same time reference. It is defined as: 

 𝑖start (𝑧)        = 𝑠b(0.5) − 𝑠b(𝑧).  (19) 

Thus, each block 𝑝𝑙,𝑧(𝑛
′) ranges from 𝑛 = 𝑙 ∙ 𝑠h(𝑧) + 𝑖start (𝑧) to 𝑛 =  𝑙 ∙ 𝑠h(𝑧) + 𝑖start (𝑧) + 𝑠b(𝑧) − 1. The last 

value of 𝑙, 𝑙last(z), is dependend on the filter band and the value 𝑛new defined in Formula (3): 

 
𝑙last(𝑧)      = ceil (

𝑛new + 𝑠h(𝑧)

𝑠h(𝑧)
) − 1 . (20) 

5.1.5.2 Segmentation for the calculation of roughness and fluctuation strength 

For the calculation of the psychoacoustic roughness (Clause 7) and the psychoacoustic fluctuation strength 
(Clause 9), the segmentation shall be performed using Formula (18) with the fixed block size 𝑠b and the fixed 
hop size 𝑠h as given respectively in Clause 7.1.1 and in Clause 9.1.1, and 𝑖start (𝑧) = 0, for 𝑙 = 0,… , 𝑙last − 1, 

where 𝑙last = ceil ((𝑛samples + 𝑠b)/𝑠h). The last block for 𝑙 = 𝑙last shall contain the last 𝑠b  samples, starting at  

𝑛 = 𝑛samples − 𝑠b to 𝑛 = 𝑛samples − 1. Therefore, the last hop size could be smaller than 𝑠h to account for all 

signal values. This approach is preferred over zero-padding at the end due to the undesired fading-out 
associated with it. 

5.1.6 Rectification 

Subsequent half-wave rectification accounts for the fact that the auditory nerves fire only when the basilar 
membrane vibrates in a specific direction [13]. The resulting band-pass signals are calculated as: 

 
𝑝rect,𝑙,𝑧(𝑛

′) = {
𝑝𝑙,𝑧(𝑛

′), 𝑝𝑙,𝑧(𝑛
′) > 0

0, 𝑝𝑙,𝑧(𝑛
′) ≤ 0

  . (21) 

5.1.7 Calculation of root-mean-square values 

With the segmented and rectified blocks 𝑝rect,𝑙,𝑧(𝑛
′), the RMS-values are calculated for each block as: 
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𝑝(𝑙, 𝑧)      = √
2

𝑠b(𝑧)
∑ 𝑝rect,𝑙,𝑧

2(𝑛′)

𝑠b(𝑧)−1

𝑛′=0

, (22) 

The factor of 2 is necessary to compensate for the signal energy which was lost due to the half-wave rectification. 
The dependency on the time index 𝑙 is dropped in the following, since the further processing steps are applied 
to each time block in the same way. 

5.1.8 Nonlinearity to transform sound pressure into specific loudness 

The compressive nonlinearity of the auditory system is significant for the loudness perception. The specific 
loudness distribution, resulting from the application of this nonlinearity to the excitation pattern, also forms the 
basis for calculating other psychoacoustic parameters such as tonality, roughness or fluctuation. Such a 
nonlinearity function has proven applicable to predict many phenomena like ratio loudness, just-noticeable 
amplitude differences and modulation thresholds as well as the level dependence of roughness. 

The nonlinearity between specific loudness and sound pressure was reconsidered in the hearing model 
according to results of many listening tests [14]. Further improvements for higher levels above approximately 
80 dB were achieved by introducing a nonlinearity function according to Formula (23): 

 

𝐴′(𝑝)    = 𝑐N ∙ (
𝑝

𝑝0
) ∙∏(1 + (

𝑝

𝑝𝑡𝑖
)

𝛼

)

𝑣𝑖−𝑣𝑖−1
𝛼

𝑀

𝑖=1

 (23) 

with root-mean-square values of sound pressure 𝑝 and thresholds 𝑝𝑡𝑖 in Pa, 𝑝0 = 20 µPa. The 𝑀 thresholds 𝑝𝑡𝑖 

can be derived from Table 2; 𝛼  is set to 1,5; 𝑐N = 0,0211964  is a calibration factor with the  

unit soneHMS/BarkHMS 
8 to assure that the total loudness of a sinusoid having a frequency of 1 kHz and a sound 

pressure level of 40 dB equals 1 soneHMS (using the method described in Clause 8.1) 9. The 𝑀 = 8 exponents 
𝜈𝑖 as given in Table 2 were achieved by applying a nonlinear-optimization procedure in order to minimize the 
root-mean-square error between the results of the loudness matching experiment and the results of the model 
calculation. The initial exponent 𝜈0 is set to 1. 

Table 2 — 𝑴 = 𝟖 thresholds and exponents for the nonlinearity function according to Formula (23) 

𝑖 1 2 3 4 5 6 7 8 

20 log10( 𝑝𝑡𝑖 𝑝0⁄ ) [dB] 15 25 35 45 55 65 75 85 

I
𝜈𝑖 0,6602 0,0864 0,6384 0,0328 0,4068  0,2082 0,3994 0,6434 

 

The nonlinearity is applied to 𝑝(𝑧) in each band 𝑧. The resulting variable 

 𝑁′(𝑧)    = 𝐴′(𝑝(𝑧)) (24) 

can be interpreted as the specific loudness of the signal without consideration of the threshold in quiet. 

 

8 HMS stands for “according to the Hearing Model of Sottek” and denotes that the calculated loudness and the critical bands 

differ from other definitions. 

9 The calibration factor 𝑐N can be adjusted within a tolerance of 0,25 % to account for the effects of different implementations. 
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The function according to Formula (23) results from an optimization procedure to fit the experimental data with 
the lowest root-mean-square error [14]. It has a steep slope at high levels, which agrees with results of 
experiments from Buus et al. [15] and Epstein et al. [16] 

5.1.9 Consideration of threshold in quiet 

The specific loudness in each band 𝑧 is zero if it is at or below a critical-band-dependent specific loudness 

threshold LTQ(𝑧). The band-specific loudness threshold LTQ(𝑧) is given for each used band number 𝑧 from 0,5 

to 26,5 in Table 3. Figure 5 shows the loudness threshold LTQ(𝑧) in dependency of the centre frequency of the 
bands. 
 

Table 3 — Specific loudness threshold 𝐋𝐓𝐐(𝒛) for each used value of 𝒛 

𝑧 LTQ(𝑧) 𝑧 LTQ(𝑧) 𝑧 LTQ(𝑧) 𝑧 LTQ(𝑧) 𝑧 LTQ(𝑧) 

0,5 0,3310 6,0 0,0151 11,5 0,0071 17,0 0,0122 22,5 0,0202 

1,0 0,1625 6,5 0,0131 12,0 0,0072 17,5 0,0138 23,0 0,0217 
1,5 0,1051 7,0 0,0115 12,5 0,0073 18,0 0,0157 23,5 0,0237 

2,0 0,0757 7,5 0,0103 13,0 0,0074 18,5 0,0172 24,0 0,0263 

2,5 0,0576 8,0 0,0093 13,5 0,0076 19,0 0,0180 24,5 0,0296 

3,0 0,0453 8,5 0,0086 14,0 0,0079 19,5 0,0180 25,0 0,0339 

3,5 0,0365 9,0 0,0081 14,5 0,0082 20,0 0,0177 25,5 0,0398 

4,0 0,0298 9,5 0,0077 15,0 0,0086 20,5 0,0176 26,0 0,0485 

4,5 0,0247 10,0 0,0074 15,5 0,0092 21,0 0,0177 26,5 0,0622 

5,0 0,0207 10,5 0,0073 16,0 0,0100 21,5 0,0182   

5,5 0,0176 11,0 0,0072 16,5 0,0109 22,0 0,0190   

 

 

Figure 5 — Specific loudness threshold 𝐋𝐓𝐐(𝒛) 

The lower threshold of hearing is applied by subtraction and a limiter: 

 
𝑁basis
′ (𝑧) = {

𝑁′(𝑧) − LTQ(𝑧), 𝑁′(𝑧) ≥ LTQ(𝑧)

0 𝑁′(𝑧) < LTQ(𝑧)
. (25) 

The result 𝑁basis
′ (𝑧) is the specific basis loudness of the signal. The specific basis loudness can be used as basis 

for other psychoacoustic parameters such as tonality (see Clause 6) and roughness (see Clause 7). 

A signal is considered to be audible when its total loudness value exceeds 0,01 soneHMS, where total basis 

loudness is calculated summing all specific basis loudness values, using ∆𝑧 = 0,5 as 



 

14  © Ecma International 2025 

 

 

𝑁basis        = ∑𝑁basis
′ (

𝑖

2
) ∙ ∆𝑧

CBF

𝑖=1

. (26) 

Consideration of both total and specific basis loudness has the benefit of allowing loudness summation of 
sounds consisting of multiple components near threshold. 

Recent investigations showed that existing loudness procedures underestimate the loudness of tonal signals  [17]. 
Clause 8.1 describes a new loudness algorithm based on a nonlinear weighting of the partial loudness of tonal 
and non-tonal components derived in Clause 6.2. 

6 Identification and evaluation of prominent tonalities using a psychoacoustic 
tonality calculation method 

This clause describes a perception-model-based procedure for determining whether or not noise emissions 
contain prominent tonalities, and if present, their strengths: the psychoacoustic tonality calculation method. A 
similar approach was published in 1998 for the determination of “pitch salience” [2]. The calculation is based on 
the specific basis loudness as described in Clause 5. 

Prominent perceived tonalities arise from a variety of causes including but not limited to prominent discrete 
tones: discrete tones, non-pure tones, narrow elevated noise bands, combinations of tones and narrow elevated 
noise bands, band-edges of various slopes terminating elevated noise bands of various bandwidths, and 
combinations of these. This clause defines a procedure for identifying and ranking tonalities from any causes. 

6.1 Determination of tonality 

6.1.1 Tonalities and their relationships to the threshold of hearing 

Discrete tones or other tonalities should only be classified as prominent if they are, in fact, audible in the noise 
emissions of the equipment under test. For the tonality calculation methods as described in ECMA-418 – Part 1: 
Dominant discrete tones, a pre-calculation screening test is recommended concerning audibility of the tonality. 
From calibrated acoustical measurement time-data, this step is not required with the psychoacoustic tonality 
calculation method regardless of proximity to the threshold of hearing because the method inherently considers 
the threshold of hearing and the psychoacoustic loudness of tonal and non-tonal components. 

6.1.2 Multiple tones in a critical band, and time-variation of tonality due to their interaction 

The noise emitted by a machine may contain multiple tones or narrowband tonalities, several of which may fall 
within a single critical band. Besides the likelihood of increased overall tonality strength due to a plurality of 
tones within one critical bandwidth, there is a strong likelihood of beating interference between or among the 
plural tonalities causing time structure (amplitude modulation): periodic additions and cancellations affecting the 
strength of the perceived tonality within that critical band. In this case the sound is often perceived as “rough”, 
leading to the psychoacoustics sensation of “roughness”. A method for the identification of prominent roughness 
is described in Clause 7. 

6.2 Psychoacoustic tonality calculation method 

6.2.1 Overview 

Tonality perceptions arising from spectrally-elevated noise bands of various widths and slopes and from non-
pure tones as well as from discrete (pure) tones, and from combinations of these, can be mis-measured or 
escape measure in “hybrid” sound pressure based tools and tools sensitive only to discrete tones. To address 
such issues, a new psychoacoustically-based tonality calculation method based on the hearing model in 
Clause 5[18] was developed. The applicability of the model was investigated for technical sounds and compared 
to established methods of tonality calculation [19], [20], [21]. The method automatically considers the threshold of 
hearing because the hearing threshold is built into the hearing model [21]. 
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Recent research results show a strong correlation between tonality perception and the partial loudness of tonal 
sound components [22], [23], [24]. Therefore, the new hearing model approach to tonality on the basis of the 
perceived loudness of tonal content has been developed. The new model evaluates the nonlinear and time-
dependent specific loudness of both tonal and broadband components, which are separated using the 
autocorrelation function. This model has been validated by many sound situations and listening tests [19]. 

In early publications, Licklider assumed that human pitch perception is based on both spectral and temporal 
cues [25]. According to Licklider, the neuronal processing in human hearing applies a running autocorrelation 
analysis of the critical band signals. Under this assumption, psychoacoustic tonality phenomena like difference-
tone perception or the missing-fundamental phenomenon (”virtual pitch”) can be explained. 

This work inspired the idea to use the sliding autocorrelation function as a processing block in the hearing model 
for the calculation of roughness and fluctuation strength [20], [26], [27] and later for other psychoacoustic quantities 
like tonality [19] and loudness [1]. The psychoacoustic tonality calculation is based on scaled ACFs 𝜑𝑧′(𝑚) (see 

Clause 6.2.2, with 𝑧 denoting the critical band rate scale and 𝑚 denoting the lag), which are calculated using 

the specific basis loudness 𝑁basis
′ (𝑧) (see Formula (25)) and the CBF =  53 rectified band-pass signals 𝑝𝑧(𝑛) 

(see Clause 5.1.5.2) as described in Clause 5. An evaluation of the psychoacoustic tonality method, including 
application examples, is given in Annex B. 

The further processing for tonality calculation is performed similarly as published in References [19], [20], and 
[21] as shown in Figure 6 and described in detail as follows: 

 

Figure 6 — Calculation of tonality based on the scaled ACFs as described in Reference [19], but with 
frequency-dependent analysis window borders 

6.2.2 Autocorrelation function 

Recently, it was proposed to use the autocorrelation function of the band-pass signals to separate tonal content 
from noise [1]. The autocorrelation function of white Gaussian noise is characterized by a Dirac impulse. Any 
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broadband noise signal has at least a non-periodic autocorrelation function with high values at low lags, whereas 
the autocorrelation function (ACF) of periodic signals shows also a periodic structure [28]. Thus, the loudness of 
the tonal component can be estimated by analysing the ACF at a certain range with respect to the lag 𝑚, and 
also the loudness of the remaining (noisy) part.The calculation of the sliding ACF is time-consuming. Therefore, 
the sliding ACF is calculated block-wise using the discrete Fourier Transform (DFT) to shorten computing time. 
An overlap of 75% is used for neighbouring blocks. There is a low-pass effect due to averaging over the block 
length. The ACF is performed on the same rectified blocks 𝑝rect,𝑙,𝑧(𝑛

′) (see Formula (21)) of the overlapping 

critical band signals, from which the root-mean-square values were calculated in Clause 5.1.7. 

For slowly varying low-frequency band-pass signals, a greater block length 𝑠b(𝑧) is necessary than for higher-
frequency bands. Thus, different block lengths are used, depending on the frequency band. The block length is 
chosen corresponding to the bandwidth ∆𝑓(𝑧) of each frequency band as described in Formula (10). The given 

values for the block size 𝑠b(𝑧) and the hop size 𝑠h(𝑧) also need to be used for the segmentation for the loudness 
calculation (see Clause 5.1.5). 

Table 4 — Block length 𝒔𝐛(𝒛) and hop size 𝒔𝐡(𝒛) for the calculation of the autocorrelation function 

∆𝑓(𝑧) 0 −  85 Hz 85 − 170 Hz 170 − 340 Hz > 340 Hz 

𝑧 0,5 − 1,5 2 − 8 8,5 − 12,5 ≥ 13 

𝑠b(𝑧) 8192 4096 2048 1024 

𝑠h(𝑧) 2048 1024 512 256 

 

For each block of length 𝑠b(𝑧), an unscaled autocorrelation function 𝜑𝑙,𝑧(𝑚) is calculated in two steps: first a 

2𝑠b-point DFT 10 of 𝑝rect,𝑙,𝑧(𝑛′) is performed by zero padding, where 𝑠b(𝑧) is the block size given in Table 4, with 

a subsequent calculation of the squared magnitude: 

 
𝑃rect,𝑙,𝑧(𝑘)          = |DFT2𝑠b (𝑝rect,𝑙,𝑧(𝑛′))|

2

,         0 ≤ 𝑘 < 2𝑠b(𝑧) , (27) 

and second the Inverse Discrete Fourier Transform (IDFT 11) of 𝑃rect,𝑙,𝑧(𝑘) is calculated 12: 

 𝜑unscaled,𝑙,𝑧(𝑚) = IDFT2𝑠b (𝑃rect,𝑙,𝑧(𝑘)) ,              0 ≤ 𝑚 < 2𝑠b(𝑧). (28) 

The next step is to compute a new estimate of an unbiased normalized autocorrelation function that 

compensates for lower overlaps at higher lag 𝑚 (windowed, only values for 0 ≤ 𝑚 <
3

4
𝑠
b
(𝑧) needed): 13 

 

10 The N-point DFT is defined as 𝑋(𝑘) =  DFT𝑁(𝑥(𝑛)) = ∑ 𝑥(𝑛) ∙ e−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0 . 

11 The K-point IDFT is defined as 𝑥(𝑛) =  IDFT𝐾(𝑋(𝑘)) =
1

𝐾
∑ 𝑋(𝑘) ∙ e+𝑗2𝜋𝑘𝑛/𝐾𝐾−1
𝑘=0 . 

12 The presented calculations use two-sided spectra. This must be considered in an implementation since some signal 

processing libraries also use symmetry properties in their function calls to speed up the calculation and thus expect adjusted 

call parameters. 

13 A common problem in estimating a blockwise autocorrelation function is the decreasing overlap of the blocks with 

increasing lag 𝑚. The unscaled autocorrelation 

𝜑𝑧(𝑚)  =  ∑ 𝑝𝑧(𝑛′)𝑝𝑧(𝑛′ + 𝑚)               

𝑠b(𝑧)−𝑚−1

𝑛′=0

 

does not consider this problem and thus leads to decreasing values for higher lag values, even if the signal is perfectly 

periodic. The commonly used approach for the unbiased autocorrelation, which aims to compensate for this problem, is 

𝜑𝑧(𝑚) =
1

𝑠b(𝑧) − |𝑚|
 ∑ 𝑝𝑧(𝑛′)𝑝𝑧(𝑛′ + 𝑚)

𝑠b(𝑧)−𝑚−1

𝑛′=0

. 
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 𝜑𝑙,𝑧(𝑚)

=

{
 
 

 
 

𝜑unscaled,𝑙,𝑧(𝑚)

√∑ 𝑝rect,𝑙,𝑧
2(𝑛′)

𝑠b(𝑧)−𝑚−1

𝑛′=0 ⋅ ∑ 𝑝rect,𝑙,𝑧
2(𝑛′ + 𝑚)

𝑠b(𝑧)−𝑚−1

𝑛′=0 + 𝜀

, 0 ≤ 𝑚 <
3

4
𝑠b(𝑧)

0,
3

4
𝑠b(𝑧) ≤ 𝑚 < 2𝑠b(𝑧)

, 
(29) 

where the additive constant 𝜀 = 10−12 prevents division by zero 14. The dependency on the time index 𝑙 is 
dropped in the following, since the further processing steps are applied to each time block in the same way. 

The autocorrelation function has to to be calculated with two different block lengths for some frequency bands 
to allow averaging over neighbouring bands in later processing steps, as explained in the following Clause 6.2.3. 

The entire ACF is multiplied with the specific basis loudness of the signal 15: 

 𝜑𝑧′(𝑚)   = 𝑁basis
′ (𝑧) ∙ 𝜑𝑧(𝑚), (30) 

resulting in scaled 16 ACFs 𝜑𝑧
′(𝑚) which can be used for further analysis of the tonality. 

6.2.3 Averaging of ACFs 

First, ACFs of neighbouring bands are averaged in order to reduce noise. Averaging is performed over 2𝑁𝐵 +  1 

bands, i.e., each band is averaged with the neighbouring 𝑁𝐵 lower and 𝑁𝐵 higher frequency bands. The value 

𝑁𝐵 is chosen depending on the block size as described in Table 5. Since averaging needs to be performed with 
identical block size, it needs to be ensured that the autocorrelation function of neighbouring bands is available 
in the same block size. Thus, for frequency bands close to block size changes, the autocorrelation function 
needs to be calculated with two different block sizes. If not enough neighbouring frequency bands exist (for the 
lower frequency bands), 𝑁𝐵 is reduced such that averaging is still performed symmetrically centred around the 
particular frequency band. An exception is made for the lowest frequency band, which is averaged only with the 
second-lowest frequency band. This is necessary, because a symmetric averaging is not possible because of 
the missing lower band. No averaging on the other hand results in high noise artifacts. 

Table 5 — Number of bands to average 𝑵𝑩 depending on block size 𝒔𝐛 

𝑠b 8192 4096 2048 1024 

𝑁𝐵 2 2 1 0 

 

In a next step, the ACFs are averaged over neighbouring blocks in time for further reduction of noise. This block 
averaging is performed only for the block sizes 𝑠b = 8192 and 𝑠b = 4096, in which case the ACF in a given block 
is averaged with the ACFs in the preceding and the subsequent blocks. The averaging is not performed for the 
first and the last block because there is no preceding or subsequent block. 

The outcome of the two averaging steps is a modified, noise reduced scaled ACF �̅�𝑧′(𝑚). 

 

However, this approach may lead to unwanted effects, since the result does not necessarily satisfy the condition 
𝜑𝑧(𝑚) ≤ 𝜑𝑧(0), which is an essential property of the ACF. The new approach for the unbiased autocorrelation solves this 

problem by considering the energies of the overlapping parts of the blocks [29]. A drawback of this approach is the 

overestimation of the ACF of noise signals for higher lag values, but these values are neglected in further processing. 

14 The additive constant 𝜀 = 10−12 is used throughout the complete document to avoid division by zero in several formulae. 

15 𝑁basis
′ (𝑧) is the specific loudness calculated in Formula (25). 

16 The ACF is scaled such that 𝜑𝑧′(0) represents the specific loudness 𝑁′(𝑧). 
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6.2.4 Application of ACF window 

A lag window with frequency-dependent limits (𝜏start(𝑧) and 𝜏end(𝑧)) according to Formulae (31) and (32) is 

applied to the ACF �̅�𝑧′(𝑚) to separate tonal from noisy content: 

 
𝜏start(𝑧) = max (

0,5

∆𝑓(𝑧)
, 𝜏min) , (31) 

 
𝜏end(𝑧)  = max (

4

∆𝑓(𝑧)
, 𝜏start(𝑧) + 1 ms) . (32) 

Here ∆𝑓(𝑧) is the bandwidth of the critical band centred at 𝑧, 𝜏min is 2 ms. 

It can be shown that the autocorrelation function of a periodic signal is itself periodic  [28]. In the case of a pure 
tone, the period of the ACF equals the period of the tone. Consequently, the signal energy of a pure tone can 
be identified at multiples of the signal period. For white Gaussian noise, the autocorrelation function is a Dirac 
impulse, weighted by the power spectral density of the noise [28]. In case of broadband white noise, the 
autocorrelation function converges towards a Dirac impulse. 

 

Figure 7 — Positioning of the ACF window for tonal content separation. This example shows the 
autocorrelation function of a tone in pink background noise 

Figure 7 visualizes the placement of the ACF window for the autocorrelation function of a tone in pink 

background noise. 17 

From the calculated lag times, indices are calculated as 

 𝑚start(𝑧) = ceil(𝜏start(𝑧) ⋅ 𝑟𝑠) − 1, (33) 

 𝑚end(𝑧)  = floor(𝜏end(𝑧) ⋅ 𝑟𝑠) − 1, (34) 

where the ceil(𝑥) operator gives the smallest integer value higher than or equal to the number 𝑥 and the floor(𝑥) 
operator gives the greatest integer value smaller than or equal to the number 𝑥. The window is applied by setting 

all elements of �̅�𝑧′(𝑚′) except the ones from index 𝑚start(𝑧) to index 𝑚end(𝑧) to zero and subtracting the mean 
of the windowed part of the ACF: 

 

17 The motivation for the limits given in Formulae (31) and (32) is as follows: In Figure 7, the energy distribution at small 

lags results from the noisy background and is disregarded by appropriately choosing the lower window border. Nevertheless, 

narrowband noise also causes a perception of tonality when the bandwidth is comparatively small (i.e., few critical bands). 
This effect leads to a trade-off in the placement of the window borders: For a smaller bandwidth, the effect of the low-pass 

filtered noise on the ACF reaches higher lags than for a larger bandwidth. Thus, the window needs to be moved to higher 
lags for a lower bandwidth. On the other hand, higher lags are less reliable because they are calculated from a smaller 

number of samples. Therefore, the upper limit of the window should not be chosen too large. 
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𝜑𝑧,𝜏
′ (𝑚)       = {�̅�𝑧′(𝑚) −

∑ �̅�𝑧′(𝑚)
𝑚end(𝑧)

𝑚=𝑚start(𝑧)

𝑀
, 𝑚start(𝑧) ≤ 𝑚 ≤ 𝑚end(𝑧)

0, else

 (35) 

𝑀 = 𝑚end(𝑧) − 𝑚start(𝑧) + 1 is the number of samples in the window. 

6.2.5 Estimation of tonal loudness 

The specific loudness of the tonal component is estimated by evaluating the spectrum of the ACF inside the lag 

window 𝜑𝑧,𝜏
′ (𝑚′). A 16384-point DFT 18 of the 𝑀 samples is performed by zero-padding, where the number 

16384 is chosen as two times the largest block size 𝑠b(𝑧) given in Table 4: 

 Φ′𝑧,𝜏(𝑘)     = DFT16384 (𝜑𝑧,𝜏
′ (𝑚′)) . (36) 

The maximum magnitude of the spectrum is searched, meaning, that the largest tonal content is extracted 19: 

 

�̂�tonal
′ (𝑧)   =

{
 

 
2
max 
𝑘
(|Φ′𝑧,𝜏(𝑘)| )  

𝑀
2

, 2
max 
𝑘
(|Φ′

𝑧,𝜏(𝑘)| )

𝑀
2

≤ �̅�𝑧′(0)

�̅�𝑧′(0), else

. (37) 

�̂�tonal
′ (𝑧) is a first estimation of the specific loudness of the tonal component. The frequency 𝑓ton(𝑧) of this 

component in the critical band centred around 𝑧  can be estimated by first finding the DFT index 𝑘max 
corresponding to the maximum of Φ′𝑧,𝜏(𝑘). 

 𝑘max(𝑧)     = arg max
𝑘

(Φ′𝑧,𝜏(𝑘)) . (38) 

and calculating the corresponding frequency 
 
 𝑓ton(𝑧)       = 𝑘max(𝑧)  ∙

𝑟s
16384

. (39) 

While this approach is capable of analysing tonalities with a rather high frequency resolution, it might 
underestimate tonal content when the corresponding frequency changes quickly inside of one block. This should 
be considered, even though the adaptive block size with smaller blocks for high frequencies aims at reducing 
this problem, since quickly varying frequencies usually occur at high frequencies. 

6.2.6 Resampling to common time basis 

For the further processing, the dependency of the time of each processed block becomes important. Thus, the 
time index 𝑙 (which was dropped in Clause 6.2.2) needs to be considered. Since the results of different bands 
are in a different time basis at this stage of the processing due to a different block length, the bands with a 
higher block size are resampled to correspond to the time basis of the blocks calculated with the smallest block 
size of 1024. The resampling is done by linear interpolation. In Table 6, the interpolation factors 𝑖 for each critical 

band 𝑧 are given. 

  

 

18 The N-point DFT is defined as 𝑋(𝑘) =  DFT𝑁(𝑥(𝑛)) = ∑ 𝑥(𝑛) ∙ e−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0 . 

19 The normalization by 
𝑀

2
 is necessary to calculate the energy of the windowed ACF from the DFT result. The scaling factor 

2 is necessary because of the half-wave rectified signal. 
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Table 6 — Interpolation factors for critical bands with different block size 

𝑧 0,5 − 1,5 2 − 8 8,5 − 12,5 ≥ 13 

𝑠b(𝑧) 8192 4096 2048 1024 

𝑖 8 4 2 1 

 

For all time-dependent variables (𝑖 − 1) new samples are inserted between two given adjacent samples by 
simple linear interpolation. 

The final time index 𝑙 is the one corresponding to the original time index of the smallest block size. In the 

following, �̂�tonal
′ (𝑙, 𝑧) denotes the estimation of the specific loudness of the tonal component in the critical band 

centred around 𝑧 at time index 𝑙. The sampling rate of these estimations is 𝑟sd =
𝑟s

𝑠h,min
=

48000 Hz

256
= 187,5 Hz. 

Here, the results belonging to the zero-padding done at the start of the processing need to be removed. Thus 
the last evaluated block shall be: 

 𝑙end              =  ceil (
𝑛samples

𝑟s
⋅ 𝑟sd). (40) 

6.2.7 Noise reduction 

�̂�tonal
′ (𝑙, 𝑧) is a first estimation of the specific loudness of the tonal component. However, the specific loudness 

of the tonal component is usually overestimated at this stage of the estimation process due to the tonal character 
of noise in the narrowband filtered bands. Thus, further noise reduction is necessary. This is done by application 

of nonlinear sigmoid weighting of tonal vs. noise components. �̂�tonal
′ (𝑙, 𝑧) is the tonal part of the specific loudness 

of the complete band-pass signal. The corresponding specific loudness of the complete band-pass signal is 
given by the autocorrelation function at zero lag: 

 𝑁signal
′ (𝑙, 𝑧)   = �̅�𝑙,𝑧

′ (𝑚 = 0). (41) 

A first approximation of the signal-to-noise ratio in the band of interest can be derived as 

 
SNR̂(𝑙, 𝑧)   =

�̂�tonal
′ (𝑙, 𝑧)

𝑁signal
′ (𝑙, 𝑧) − �̂�tonal

′ (𝑙, 𝑧) + 𝜀
. (42) 

Since the estimation of the tonal component might contain unsteady parts, low-pass filtering is performed over 

the temporal dimension of �̂�tonal
′ (𝑙, 𝑧) and SNR̂(𝑙, 𝑧). A cutoff frequency of 3,5 Hz is used. 20 Low-pass filters with 

the same filter coefficients are used for all critical bands. The filter defined in Formula (11) is used with order 
𝑘 =  3. The filter coefficients of the low-pass filter  ℎLP(𝑙) can be calculated according to Formulae (14) and 

(15). 21 The filtered signals are then 

 𝑁tonal
′ (𝑙, 𝑧) = �̂�tonal

′ (𝑙, 𝑧) ∗  ℎLP(𝑙) (43) 

and 

 SNR̃(𝑙, 𝑧)   = SNR̂(𝑙, 𝑧) ∗  ℎLP(𝑙), (44) 

 

20 Please note that the bandwidth of the lowpass filter is twice as large as the cut-off frequency! Therefore, the variable 𝑑 in 

Formulae (14) and (15) should be calculated using 𝜏(𝑧) =
1

32
∙ 6 ∙

1

7 Hz
=  0,0268s for all critical bands according to  

Formula (8). 

21 For Formula (15) the following factors 𝑒𝑖 have to be used for a filter order of 𝑘 = 3: 𝑒0 = 0, 𝑒1 = 1, 𝑒2 = 1. 
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where ∗ denotes the convolution. These filtered signals are used for further processing in Formulae (45) and 
(47). 

Band-dependent noise reduction is achieved by weighting the filtered specific loudness 𝑁tonal
′ (𝑙, 𝑧) of the tonal 

component by a sigmoid function 

 

nr(𝑙, 𝑧)       = {
1 − e

−𝛼∙(
SNR̃(𝑙,𝑧)
𝑔(𝑧)

−𝛽)
, e

−𝛼∙(
SNR̃(𝑙,𝑧)
𝑔(𝑧)

−𝛽)
< 1

0 e
−𝛼∙(

SNR̃(𝑙,𝑧)
𝑔(𝑧)

−𝛽)
≥ 1

, (45) 

with parameters 𝛼 and 𝛽 as given in Table 7.  

Table 7 — Parameters for the noise reduction function 𝐧𝐫(𝒍, 𝒛) (Formula (45)) 

Parameter 𝛼 𝛽 

Value 20 0,07 

 

Sigmoidal weighting significantly reduces wrongly-detected specific loudness of tonal components for 
broadband signals. The frequency dependent factor 𝑔(𝑧) is calculated as 

 
𝑔(𝑧)            =

𝑐(𝑠b(𝑧))

𝐹(𝑧)𝑑(𝑠b(𝑧))
, (46) 

where the parameters 𝑐 and 𝑑 are given in Table 8 depending on the block size 𝑠b(𝑧) (see Table 4). This 
function mitigates frequency-dependent overestimations of the tonality estimation (due to the different block 
sizes) such that SNR(𝑙, 𝑧)/𝑔(𝑧) is approximately constant over 𝑧 for pink noise signals. 

Table 8 — Parameters for the frequency dependent factor 𝒈(𝒛) (Formula (46)) 

𝑠b(𝑧) 8192 4096 2048 1024 

𝑐(𝑠b(𝑧)) 18,21 12,14 417,54 962,68 

𝑑(𝑠b(𝑧)) 0,36 0,36 0,71 0,69 

 

The specific loudness of the tonal component, 𝑁tonal
′ (𝑙, 𝑧), is then modelled as 

 𝑁tonal
′ (𝑙, 𝑧) = nr(𝑙, 𝑧) ∙ 𝑁tonal

′ (𝑙, 𝑧). (47) 

6.2.8 Calculation of time-dependent specific tonality 

The perceived tonality is not only dependent on the tonal content in each band, but also on the signal-to-noise 
ratio over all bands at each time instance 𝑙. Thus, to finally model the tonality of the signal, the overall loudness 
signal-to-noise ratio is evaluated across all bands. First, a new estimation of the specific loudness of the noise 
component is calculated, using the final estimation of the specific loudness of the tonal component: 

 𝑁noise
′ (𝑙, 𝑧) = 𝑁signal

′ (𝑙, 𝑧) ∗  ℎLP(𝑙) − 𝑁tonal
′ (𝑙, 𝑧). (48) 

The overall loudness signal-to-noise ratio is calculated as 

 
SNR(𝑙)       =

max
𝑧
𝑁tonal
′ (𝑙, 𝑧)

𝜀 + ∑ 𝑁noise
′ (𝑙, 𝑧)𝑧

. (49) 

A scaling factor 
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𝑞(𝑙)             = {

1 − e−𝐴∙(SNR(𝑙)−𝐵), e−𝐴∙(SNR(𝑙)−𝐵) < 1

0 e−𝐴∙(SNR(𝑙)−𝐵) ≥ 1
 (50) 

is applied multiplicatively. The parameters 𝐴 and 𝐵 are given in Table 9. 

Table 9 — Parameters for the scaling factor (Formula (50)) 

Parameter 𝐴 𝐵 

Value 35 0,003 

 

Thus, the final estimation of the time-dependent specific tonality is given as: 

 𝑇′(𝑙, 𝑧)   = 𝑐T ∙ 𝑞(𝑙) ∙ 𝑁tonal
′ (𝑙, 𝑧), (51) 

where 𝑐T = 2,8758615 is a calibration factor. The time index 𝑙 can be mapped to the time 𝑡 in seconds as: 

 
𝑡               =

𝑙

𝑟sd
=

𝑙

187,5
 s. (52) 

The unit of the tonality calculated by the psychoacoustic tonality method is given in tuHMS (HMS stands for tonality 
units “according to the Hearing Model of Sottek” described in Clause 5). The psychoacoustic tonality method is 
calibrated using a 1 kHz tone with a sound pressure level of 40 dB. The tonality value shall be for this signal 

1 tuHMS 22. 

6.2.9 Calculation of average specific tonality 

The average specific tonality 𝑇′(𝑧) is taken by averaging the time-dependent specific tonality 𝑇′(𝑙, 𝑧). The 
averaging is performed as follows: 

1. The first tonality values 𝑇′(𝑙, 𝑧) for 0 ≤ 𝑙 ≤ 56 (corresponding approximately to the first 300 ms of the 

input signal) are discarded due to the transient response of the digital filters. 

2. Only values that exceed a specific tonality value of 0,02 tuHMS are used for averaging. This step 

ensures that the single value is independent of parts of the signal without noticeable tonal 

components. 

This averaging can be described mathematically as 

 
𝑇′(𝑧)       =

1

#(𝑙′(𝑧)) + 𝜀
∑𝑇′(𝑙′(𝑧), 𝑧)

𝑙′

, (53) 

with 

 𝑙′(𝑧)        = {57 ≤ 𝑙 ≤ 𝑙end | 𝑇′(𝑙, 𝑧) > 0,02 tu𝐻𝑀𝑆}, (54) 

using set notation 23. The frequencies 𝑓ton,z(𝑧) are calculated by accordingly averaging the frequency 𝑓ton(𝑙, 𝑧) 

(see Formula (39) 24) over corresponding time indices: 

 

22  The calibration factor 𝑐T  can be adjusted within a tolerance of 0,25 % to account for the effects of different 

implementations. 

23 In set notation, {𝑥 | Φ(𝑥)} denotes all elements 𝑥 with the property Φ(𝑥). #(𝐴) denotes the cardinality (i.e. the number 

of elements) of a set 𝐴. 

24 Note that 𝑓ton(𝑙, 𝑧) is denoted 𝑓ton(𝑧) in Eq. (39), since the time index 𝑙 was neglected in this computation step. 
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𝑓ton,z(𝑧) =

1

#(𝑙′(𝑧)) + 𝜀
∑𝑓ton(𝑙

′(𝑧), 𝑧)

𝑙′
. (55) 

6.2.10 Calculation of time-dependent tonality 

The time-dependent tonality 𝑇(𝑙) is taken as the maximum of the time-dependent specific tonalities 𝑇′(𝑙, 𝑧) over 
all bands 𝑧. If the user is only interested in one specific tonal event, a user defined frequency range [𝑓L, 𝑓H] can 

be specified. In this case, only critical bands with the critical band number 𝑧 are considered that fulfill the 
following requirements: 

 
16 Hz   <    𝑓L  <

𝐹(𝑧) + 𝐹(𝑧 + 0,5)

2
 (56) 

and 

 
20 kHz   >    𝑓H >

𝐹(𝑧) + 𝐹(𝑧 − 0,5)

2
 (57) 

leading to a range of critical bands between 𝑧L and 𝑧H. With this calculation procedure, the actually considered 

frequency range is [𝑓L
′, 𝑓H

′ ] with 

 𝑓L
′            = min

𝑓
𝑅(𝑧L). (58) 

and 

 𝑓H
′           = min

𝑓
𝑅(𝑧H). (59) 

with the frequency range 𝑅(𝑧) 

 
𝑅(𝑧)       = [𝐹(𝑧) −

∆𝑓(𝑧)

2
, 𝐹(𝑧) +

∆𝑓(𝑧)

2
 ] . (60) 

All frequency bands between 𝑧L and 𝑧H. are used for the maximum search: 

 𝑇(𝑙)        = max
𝑧∈[𝑧𝐿 ,𝑧𝐻]

𝑇′(𝑙, 𝑧). (61) 

The corresponding frequency 𝑓ton,l(𝑙) is given as 

 𝑓ton,l(𝑙) = 𝑓ton(𝑙, 𝑧max(𝑙)). (62) 

where 𝑧max(𝑙) is the band in which the maximum of the time-dependent specific tonality 𝑇′(𝑙, 𝑧) was found for a 

given time instance 𝑙. 

6.2.11 Calculation of a representative tonality value 

The single value 𝑇 of the tonality of the signal is taken by averaging the time-dependent overall tonality 𝑇(𝑙). 
The averaging is performed in the same way as described in Formula (53) 

 
𝑇             =

1

#(𝑙′) + 𝜀
∑𝑇(𝑙′)

𝑙′

, (63) 

with 

 𝑙′              = {57 ≤ 𝑙 ≤ 𝑙end | 𝑇(𝑙) > 0,02 tu𝐻𝑀𝑆}. (64) 
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6.3 Information to be recorded for prominent tonalities 

For stationary sounds, a tonal component in the critical band 𝑧tonal is identified as prominent, if the specific 

tonality 𝑇′(𝑧tonal)  exceeds a value of 0,4 tuHMS and the specific tonality has a local maximum in 𝑧tonal . 
Additionally, the frequency 𝑓ton,𝑧(𝑧tonal) needs to be in the range [𝐹(𝑧tonal − 1),  𝐹(𝑧tonal + 1)] for the component 

to be identified as prominent. If the user is only interested in one specific tonal event, a user defined frequency 

range [𝑓L, 𝑓H] can be specified. Then, only tonalities that are in the frequency range 25 [𝑓L
′, 𝑓H

′] are considered. 

For each tonal component that has been identified as prominent according to this standard, the following 
information shall be recorded: 

a) the sound under consideration; 

b) the method used to record the sound and the assumed presentation conditions (free field, diffuse field); 

c) details of the method used to evaluate the tonality (ECMA 418 – Part 2: Psychoacoustic metrics based on 
the Sottek Hearing Model – Clause 6.2 Psychoacoustic tonality calculation method), together with a reference 
to this Standard; 

d) if a frequency range was defined, the resulting frequency range [𝑓L
′, 𝑓H

′ ] for searching prominent tonalities 
(Formulae (56) and (57)); 

e) the frequency, 𝑓ton,z(𝑧tonal) , in hertz, of the tonality in the corresponding critical band 𝑧tonal  (see 

Formula (55)); 

f) the psychoacoustic tonality value 𝑇′(𝑧tonal) (see Formula (53)); 

g) optionally, the time-dependent specific tonality 𝑇′(𝑙, 𝑧) (see Formula (51)). 

For non-stationary sounds, a signal is considered to contain prominent tonalities, if the time-independent single 

value 𝑇 of the time-dependent tonality 26 𝑇(𝑙) exceeds a value of 0,4 tuHMS (see Formula (63)). If the signal has 
been identified to contain prominent tonalities according to this clause, the following information shall be 
recorded: 

a) the sound under consideration; 

b) the method used to record the sound and the assumed presentation conditions (free field, diffuse field); 

c) details of the method used to evaluate the tonality (ECMA 418 – Part 2: Psychoacoustic metrics based on 
the Sottek Hearing Model – Clause 6.2 Psychoacoustic tonality calculation method), together with a reference 
to this Standard; 

d) if a frequency range was defined, the resulting frequency range [𝑓L
′, 𝑓H

′ ] for searching prominent tonalities 
(Formulae (56) and (57)); 

e) the time-dependent frequency, 𝑓ton,l(𝑙), in hertz (see Formula (62)) of the time-dependent tonality 𝑇(𝑙); 

f) the time-dependent psychoacoustic tonality value 𝑇(𝑙) (see Formula (61)); 

g) the time-independent single value 𝑇 (see Formula (63)); 

 

25 [𝑓L
′, 𝑓H

′ ] is calculated from [𝑓L, 𝑓H] as explained in Formulae (56) - (60). 

26 The time index 𝑙 can be mapped to a time in seconds according to Formula (52). 



 

© Ecma International 2025  25 
 

h) optionally: the time-dependent specific tonality 𝑇′(𝑙, 𝑧) (see Formula (51)) and the average specific tonality 

𝑇′(𝑧) (see Formula (53)). 

NOTE The criterion for prominence of tonalities for the psychoacoustic tonality calculation method (Clause 6.2) is 
independent of frequency 0,4 tuHMS (HMS stands for tonality units “according to the Hearing Model of Sottek” described in 

Clause 5). 

7 Identification and evaluation of prominent roughness using a psychoacoustic 
roughness calculation method 

This clause describes a perception-model-based procedure for determining whether or not noise emissions 
contain prominent roughness, and if present, their strengths: the psychoacoustic roughness calculation method. 
The calculation is based on the specific loudness as described in Clause 5. 

The auditory sensation roughness describes, together with the auditory sensation fluctuation strength, the 
perception of temporal variations of sounds. While fluctuation strength covers slow variations (typically below 
20 Hz), roughness is produced by faster variations up to around 500 Hz. The maximum of the auditory sensation 
is located at around 4 Hz modulation rate for fluctuation strength and 70 Hz modulation rate for roughness. Both 
auditory sensations can be produced either by amplitude modulation or by frequency modulation. Generally, 
periodic modulations produce higher values of fluctuation strength and roughness than stochastic variations. 

Roughness is used for the perceptual evaluation of sound characteristics as well as for sound design. With 
increasing roughness, sounds are increasingly attracting attention and perceived as increasingly aggressive, 
and annoying, without showing a difference in loudness or A-weighted sound pressure level. 

The impression of roughness arises if a time-variant envelope is present in one critical band, for example tones 
with a temporal structure because of a change in amplitude or frequency. If these variations are rather slow (for 
example lower than 10 Hz), the auditory system is capable to follow the changes and a perception of fluctuation 
arises. With increasing modulation rates, sensations like R-roughness (around 20 Hz) arise and turn into actual 
roughness, where the auditory system is not capable of resolving the temporal variations. Variations of the 
envelope with modulation rates between 20 Hz and 300 Hz are perceived as “rough”. Roughness depends on 
the carrier frequency, the modulation rate 𝑓mod, the degree of modulation 𝑚 and the sound pressure level. 
Frequency modulated sounds produce a similar roughness as amplitude modulated sounds. The unit of 
roughness is “asper”. As reference signal with 𝑅 = 1 asper, an amplitude modulated sinusoid of 1 kHz carrier 

frequency, 𝑚 = 1, 𝑓mod = 70 Hz and a sound pressure level of 60 dB was chosen. 

Roughness originates for example from a multiplicative combination of two vibrations – such as for example the 
gear mesh frequency and the rotational speed in a gear wheel – or from superposition of two or more tonal or 
narrowband sounds with a similar frequency. In practice, roughness often occurs in rotating components 
(engines, gearboxes, fans). 

7.1 Psychoacoustic roughness calculation method 

7.1.1 Overview 

The psychoacoustic roughness calculation is based on scaled envelope power spectra ΦE,𝑙,𝑧(𝑘) as described 

in Clause 7.1.3, which are calculated using the specific basis loudness 𝑁basis
′ (𝑙, 𝑧) (see Formula (25)) and the 

envelope of the CBF = 53 segmented critical band signals 𝑝𝑙,𝑧(𝑛′) (see Clause 5.1.5). 

For the calculation of these values, a block size of 𝑠b = 16384 and a hop size of 𝑠h = 4096 for the segmentation 
in Clause 5.1.5 shall be used. 

The processing steps for the calculation of specific roughness 𝑅′(𝑙50, 𝑧), where 𝑙50  is the block index after 
interpolation as described in Clause 7.1.7, is shown in Figure 8 and described in detail as follows: 
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Figure 8 — Calculation of specific roughness 𝑹′(𝒍𝟓𝟎, 𝒛) based on critical band signals 𝒑𝒍,𝒛(𝒏′) and the 

specific basis loudness 𝑵𝐛𝐚𝐬𝐢𝐬
′ (𝒍, 𝒛) calculated as described in Clause 5. 

7.1.2 Envelope calculation and downsampling 

The low-frequency envelopes are calculated from the segmented band-pass filtered sound pressure signals 
𝑝𝑙,𝑧(𝑛′) (see Clause 5.1.5) using the Hilbert transform. The envelopes 𝑝E,𝑙,𝑧(𝑛′) are taken as magnitude of the 

analytic signals 

 𝑝E,𝑙,𝑧(𝑛′)  = |𝑝𝑙,𝑧(𝑛′) + 𝑗ℋ(𝑝𝑙,𝑧(𝑛′))|, (65) 

with ℋ(∙) denoting the Hilbert transform. Since the envelopes only contain low modulation rates, downsampling 

with a factor of 32 is performed 27. The resulting downsampled envelopes of the band-pass signals are denoted 

𝑝E,𝑙,𝑧(�̃�) 
28. With this step, the sampling rate changes from 𝑟s = 48 kHz to �̃�s = 1500 Hz. The block size �̃�b = 512 

and a hop size of �̃�h = 128 are the values corresponding to the block size of 𝑠b = 16384 and the hop size of 

𝑠h = 4096 for the segmentation in Clause 5.1.5. 

 

27 Here downsampling with a factor of 32 means: decrease the sample rate by keeping the first sample and then every 32nd 

sample after the first sample. No downsampling with an anti-aliasing low-pass filter is performed to be more efficient at the 

cost of a very small deviation. 

28 �̃� refers to the index of the downsampled signal. 

envelope calculation and downsampling

calculation of scaled power spectrum

noise reduction

specific roughness

spectral weighting

calculation of specific roughness

specific basis loudness 

segmented critical band signals 
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7.1.3 Calculation of scaled power spectrum 

The envelopes 𝑝E,𝑙,𝑧(�̃�)  are windowed with a von-Hann window 29 𝑤Hann(�̃�). A scaled power spectrum 30 

ΦE,𝑙,𝑧(𝑘) is generated by using 

 ΦE,𝑙,𝑧(𝑘)

=

{
 

 
0, 𝑁max

′ (𝑙) ∙ 𝜑E,𝑙,𝑧(0) = 0

(𝑁basis
′ (𝑙, 𝑧))

2
∙ (
BarkHMS
soneHMS

)

𝑁max
′ (𝑙) ∙ 𝜑E,𝑙,𝑧(0)

  
|DFT�̃�b (𝑝E,𝑙,𝑧(�̃�) ∙ 𝑤Hann(�̃�))|

2

, else
, 

(66) 

where DFT�̃�b denotes the �̃�b-point Discrete Fourier Transform 31, 𝑘 is the index corresponding to a modulation 

rate of 𝑘 ∙
�̃�s

�̃�b
 Hz, 𝑁basis

′ (𝑙, 𝑧) is the specific basis loudness, 𝑁max
′ (𝑙) = max

𝑧
(𝑁basis

′ (𝑙, 𝑧)) and 

 
𝜑E,𝑙,𝑧(0)

   = ∑ (𝑝E,𝑙,𝑧(�̃�) ∙ 𝑤Hann(�̃�))
2�̃�b−1

�̃�=0
. (67) 

The resulting quantities of ΦE,𝑙,𝑧(𝑘) are without units. 

This step consideres the fact that the sensation of roughness changes nonlinearly with loudness. The results 
are scaled envelope power spectra ΦE,𝑙,𝑧(𝑘) which are used for further analysis of the roughness. 

7.1.4 Noise reduction of the envelopes 

Noise reduction of the envelopes is performed in two steps: First, the scaled power spectra of neighbouring 
bands are averaged to reduce noise effects. Averaging is performed over 3 bands. Each band is averaged with 
one higher and one lower band. No averaging is performed for the first and last band because symmetrical 

averaging is not possible: their values are retained. This step results in averaged scaled power spectra Φ̅E,𝑙,𝑧(𝑘). 

Then, the sum of the averaged scaled power spectra 

 𝑠(𝑙, 𝑘)        = ∑Φ̅E,𝑙,𝑧(𝑘)

𝑧

 (68) 

is calculated, showing an overview of all the modulation patterns over time. Each band may contain fluctuations 
even in the case of unmodulated noise due to the band-pass-filtering, but in this case the correlation between 
neighbouring bands is very low, while for modulated noise, the correlation is very high. The summation of the 
averaged scaled power spectra amplifies the correlated components (peaks) stronger than the uncorrelated 
ones. As a result, constant and/or time-varying peaks of the modulation spectrum become cleary visible. Now, 
the averaged scaled power spectra are weighted with a noise suppression weighting factor 𝑤(𝑙, 𝑘) depending 

on 𝑠(𝑙, 𝑘), that is applied to each individual critical band 𝑧, in order to distinguish between peaks related to the 
roughness perception and the background noise of the envelope 

 Φ̂E,𝑙,𝑧(𝑘)  = Φ̅E,𝑙,𝑧(𝑘) ∙ 𝑤(𝑙, 𝑘)  (69) 

  

 

29 Here, the scaled von-Hann window is defined as 𝑤Hann(�̃�) =
0,5−0,5 cos(

2𝜋�̃�

512
)

√0,375
. The scaling factor in the denominator ensures 

a correct estimation of the magnitude of the power spectrum. 

30 In the original version of the algorithm [26], the spectrum of the autocorrelation function 𝜑E,𝑙,𝑧(𝑚) of the envelope 𝑝E,𝑙,𝑧(𝑛) 

was evaluated (𝑚: lag time), corresponding to the power spectrum of the envelope. It should be noted that ΦE,𝑙,𝑧(𝑘) is not 

the Fourier transform of 𝜑E,𝑙,𝑧(𝑚) since the scaling of ΦE,𝑙,𝑧(𝑘) is not part of the autocorrelation function 𝜑E,𝑙,𝑧(𝑚). 

31 DFT of length N is defined as: 𝑋(𝑘) =  DFT𝑁(𝑥(𝑛)) = ∑ 𝑥(𝑛) ∙ e−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  with 𝑘 =  0,1,… , 𝑁 − 1. 
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with the mirror-symmetric weighting factor (with respect to 𝑘 = 256: 𝑤(𝑙, 𝑘) = 𝑤(𝑙, 512 − 𝑘), for 𝑘 = 257,… ,511) 

 
𝑤(𝑙, 𝑘) = {

clip(�̃�(𝑙, 𝑘) − 0,1407,0,1) , �̃�(𝑙, 𝑘) ≥ 0,05 ∙ max
𝑘=2,…,255 

(�̃�(𝑙, 𝑘)) 

0, else
 (70) 

for 𝑘 = 0,… ,256, where clip(𝑥, 𝑥min, 𝑥max) returns clipped values of 𝑥 between 𝑥min and 𝑥max. �̃�(𝑙, 𝑘) is calculated 
as 

 
�̃�(𝑙, 𝑘) = 0,0856 ∙

𝑠(𝑙, 𝑘)

�̃�(𝑙) + 𝛿
∙ clip(0,1891 ∙ e0,0120∙𝑘, 0,1) (71) 

for 𝑘 = 0,… ,256, with the median �̃�(𝑙)  of 𝑠(𝑙, 𝑘)  over 𝑘 = 2,… ,255 , and an additional exponential weighting 

depending on the modulation rate. The constant 𝛿 = 10−10 ensures a defined value of �̃�(𝑙, 𝑘) if �̃�(𝑙) = 0. 

Note that for modulated signals the median value �̃�(𝑙) is small compared to the peaks, whereas for unmodulated 
signals, �̃�(𝑙) and the random peaks have almost the same magnitude, thus leading to large ratios 𝑠(𝑙, 𝑘)/�̃�(𝑙) 
for modulated signals; 𝑤(𝑙, 𝑘)  tends to be 1, whereas for unmodulated signals 𝑤(𝑙, 𝑘)  becomes 0. The 
parameters in the Formulae (70) and (71) were chosen that for an unmodulated White Gaussian Noise with a 
level of 80 dB all the weighting values 𝑤(𝑙, 𝑘) become 0, consequently leading to a roughness value of 0 asper. 

7.1.5 Spectral weighting 

In this step, the amplitudes of the averaged scaled power spectra are weighted according to the perception of 
roughness, which depends on the modulation rate. The spectral weighting is divided into four steps: First, 
spectral peaks are identified, and the modulation rate of those peaks is estimated with high precision. The 
amplitudes of peaks with a high modulation rate are weighted corresponding to the estimated modulation rate 
in the second step. Since usually, more than one peak is found, a third step is performed to analyse the relation 
of the different peaks. It is assumed that there is one dominant harmonic complex (a fundamental modulation 
rate with harmonics at multiples of the fundamental modulation rate) which is the dominant cause for roughness 
perception. The fundamental modulation rate of such a harmonic complex is estimated in the third step. In the 
fourth step, the amplitudes of peaks with a low modulation rate are weighted corresponding to the estimated 
fundamental modulation rate and summed to result in a first, uncalibrated estimation of the specific roughness. 

7.1.5.1 Peak picking 

In the peak picking steps, maxima of the averaged scaled power spectra are searched. To obtain a very precise 
estimation of the modulation rates corresponding to these maxima, a quadratic fit of the envelope spectrum is 
performed. Since the use of the von-Hann window in the calculation of the DFT does not lead to an exact 
quadratic shape in the spectrum, an additional refinement step is performed to reduce this bias. 

First, local maxima of the averaged scaled power spectra Φ̂E,𝑙,𝑧(𝑘) for 𝑘 = 2,… ,255 are searched. For each 

maximum (Please note: possible indices are 𝑘 = 3,… ,254!), a corresponding prominence is calculated as the 
difference between the amplitude of the maximum and the surrounding values.To measure the prominence of 
a peak, a horizontal line is first extended from the peak to the left and right of the peak. The points where the 
line intersects the data on the left and right (this is either another peak or the end of the data) are marked as 
the outer endpoints of the left and right intervals. Next, the lowest valley is searched in both intervals. The larger 
of these two valleys is taken, and the vertical distance from that valley to the peak is measured. This distance 
is the prominence. Only the ten maxima with the highest prominence are considered. The maxima are numbered 
with 𝑖, where 𝑖 = 1 is the maximum corresponding to the lowest modulation rate. 

Only maxima at a modulation rate fulfilling the condition 

 Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧)) > 0,05 ∙ max
𝑖
(Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧))) (72) 

are considered, where 𝑘p,𝑖(𝑙, 𝑧) desribes the modulation rate index 𝑘 of the 𝑖th maximum. 
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Since the modulation rate index 𝑘 only provides a limited resolution of the modulation rate, a refinement step is 
performed, which improves the spectral resolution of the estimated modulation rate and the corresponding 

amplitudes of each peak. First, a quadratic fit coefficient vector 𝐂 = (𝑐0, 𝑐1, 𝑐2)
𝑇 is calculated for each maximum, 

which contains three coefficients for a quadratic fit of the envelope spectrum around a centre modulation rate 
index. The vector is calculated by solving the system of equations 

 �̂�E,𝑙,𝑧               = 𝐊 ∙ 𝐂 (73) 

with 

 

�̂�E,𝑙,𝑧               = (

Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧) − 1)

Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧))        

Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧) + 1)

) (74) 

and the modulation index matrix for the quadratic fit, 

 

𝐊                     =

(

 
 
(𝑘p,𝑖(𝑙, 𝑧) − 1)

2
𝑘p,𝑖(𝑙, 𝑧) − 1 1

(𝑘p,𝑖(𝑙, 𝑧))
2
        𝑘p,𝑖(𝑙, 𝑧)        1

(𝑘p,𝑖(𝑙, 𝑧) + 1)
2

𝑘p,𝑖(𝑙, 𝑧) + 1 1
)

 
 
. (75) 

From these coefficients, a first corrected modulation rate 

 𝑓p,𝑖(𝑙, 𝑧)          = −
𝑐1
2𝑐0

∙ ∆𝑓 (76) 

is calculated with the DFT resolution ∆𝑓 =
�̃�s

�̃�b
= 1500 Hz / 512 =  2,9297 Hz. The estimated modulation rate is 

refined by applying a bias correction term 𝜌(𝑓p,𝑖(𝑙, 𝑧)) 

 𝑓p,𝑖(𝑙, 𝑧)          = 𝑓p,𝑖(𝑙, 𝑧) + 𝜌 (𝑓p,𝑖(𝑙, 𝑧)). (77) 

The bias comes from approximating the spectrum of the von-Hann window with a quadratic function, when 
estimating the true modulation rate from the peaks in the sampled spectrum. The bias adjustment term depends 
almost only on the difference between the peak index and the corresponding exact modulation rate. This term 
𝐸(𝜃)  is calculated for 32 steps, covering a range of ∆𝑓 , using integer steps 𝜃 = 0,… , 32  to indicate the 
corresponding sub-interval. A higher resolution of the modulation rate could be achieved by using more sub-
intervals. Another option is the linear interpolation of 𝐸(𝜃) as a function of 𝛽(𝜃), the theoretical error after 

applying a correction, and 𝜃corr, the argument leading to the smallest error 𝛽(𝜃), as shown in the following: 

 
𝜌 (𝑓p,𝑖(𝑙, 𝑧))  = 𝐸(𝜃corr − 1) − (𝐸(𝜃corr) − 𝐸(𝜃corr − 1)) ∙

𝛽(𝜃corr − 1)

𝛽(𝜃corr) − 𝛽(𝜃corr − 1)
 (78) 

𝜃corr is determined from the set of possible integer 𝜃 values that lie between 0 and 32 (the value of 𝜃 = 33 in 
Table 10 is given only to simplify the implementation, to avoid the use of additional conditions in Formula (81)). 
For each possible value of 𝜃, 𝛽(𝜃) is calculated from: 

 
𝛽(𝜃)                = (floor (

𝑓p,𝑖(𝑙, 𝑧)

∆𝑓
) +

𝜃

32
) ∙ ∆𝑓 − (𝑓p,𝑖(𝑙, 𝑧) + 𝐸(𝜃)) (79) 

where floor(𝑥) gives the greatest integer value smaller than or equal to the number 𝑥. 𝜃min is the 𝜃 value that 
produces the smallest beta value magnitude: 

 𝜃min                 = argmin
0≤𝜃≤32 

|𝛽(𝜃)|. (80) 
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𝜃corr is then calculated from: 

 
𝜃corr      = {

𝜃min        , 𝜃min > 0 and 𝛽(𝜃min) ∙ 𝛽(𝜃min − 1) < 0 
𝜃min + 1, else

. (81) 

Table 10 and Formula (79) are used to calculate the parameters needed to calculate the bias term given in 
Formula (78). 

Table 10 – Error correction values 𝑬(𝜽) 

𝜃 0 1 2 3 4 5 6 7 8 

𝐸(𝜃)/Hz 0,0000 0,0457 0,0907 0,1346 0,1765 0,2157 0,2515 0,2828 0,3084 

          𝜃 9 10 11 12 13 14 15 16 17 

𝐸(𝜃)/Hz 0,3269 0,3364 0,3348 0,3188 0,2844 0,2259 0,1351 0,0000 -0,1351 

          𝜃 18 19 20 21 22 23 24 25 26 

𝐸(𝜃)/Hz -0,2259 -0,2844 -0,3188 -0,3348 -0,3364 -0,3269 -0,3084 -0,2828 -0,2515 

          𝜃 27 28 29 30 31 32 33   

𝐸(𝜃)/Hz -0,2157 -0,1765 -0,1346 -0,0907 -0,0457 0,0000 0,0000   

 

The amplitudes of the maxima are calculated as 

 
𝐴𝑖(𝑙, 𝑧) =∑�̂�E,𝑙,𝑧 = ∑ Φ̂E,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧) + 𝑚)

1

𝑚=−1

, (82) 

where it is assumed that the energy of a peak is mainly distributed over the index of the maximum and the two 
neighbouring indices due to the use of the von-Hann window in the DFT calculation. 

7.1.5.2 Weighting of high modulation rates 

In a next step, these amplitudes are weighted with a modulation-rate-dependent factor 𝐺𝑙,𝑧,𝑖(𝑓p,𝑖(𝑙, 𝑧)) and a 

scaling factor 𝑟max(𝑧). This weighting (together with the weighting of low modulation rates described in 7.1.5.4) 
consideres the dependency of the perceived roughness on the modulation rate. The weighting parameters were 
obtained by an optimization procedure, fitting the results of the roughness algorithm to the results of listening 
tests for sinusoids of different carrier frequencies with different modulation rates from Reference [12]. Those 
results are shown in the evaluation of the roughness algorithm in Annex C, Figure C.1 and also in Reference [30]. 

 

�̃�𝑖(𝑙, 𝑧) = {

0, 𝑓p,𝑖(𝑙, 𝑧) ≤ ∆𝑓

𝐴𝑖(𝑙, 𝑧) ∙ 𝑟max(𝑧), ∆𝑓 < 𝑓p,𝑖(𝑙, 𝑧) ≤ 𝑓max(𝑧)

𝐺𝑙,𝑧,𝑖(𝑓p,𝑖(𝑙, 𝑧)) ∙ 𝐴𝑖(𝑙, 𝑧) ∙ 𝑟max(𝑧), 𝑓p,𝑖(𝑙, 𝑧) > 𝑓max(𝑧)

 (83) 

with the DFT resolution ∆𝑓 =
�̃�s

�̃�b
= 1500 Hz / 512 =  2,9297 Hz, 

 
𝑟max(𝑧) =

1

1 + 𝑟1 |log2 (
𝐹(𝑧)
1 kHz

)|
𝑟2

 
(84) 

and the corresponding parameters 𝑟1 and 𝑟2 as given in Table 11. 

Table 11 – Parameters for 𝒓𝐦𝐚𝐱(𝒛) 

 𝐹(𝑧) < 1 kHz 𝐹(𝑧) ≥ 1 kHz 

𝑟1 0,3560 0,8024 

𝑟2 0,8049 0,9333 
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The weighting factor 𝐺𝑙,𝑧,𝑖(𝑓p,𝑖(𝑙, 𝑧)) is calculated as 

 
𝐺𝑙,𝑧,𝑖(𝑓p,𝑖(𝑙, 𝑧)) =

1 

(1 + ((
𝑓p,𝑖(𝑙, 𝑧)

𝑓max(𝑧)
−
𝑓max(𝑧)
𝑓p,𝑖(𝑙, 𝑧)

) ∙ 𝑞1)

2

)

𝑞2(𝑧)
 (85) 

where 

 
𝑓max(𝑧)                   = 72,6937 ∙ (1 − 1,1739 ∙ 𝑒

−5,4583∙
𝐹(𝑧)
1 kHz)  Hz (86) 

is the modulation rate at which the weighting factor reaches the maximum of one. 𝐹(𝑧) is the centre frequency 

of the auditory filter bank as described in Clause 5. The parameter 𝑞1 = 1,2822 and 𝑞2(𝑧) is calculated as 

 

𝑞2(𝑧)                        =

{
 
 

 
 0,2471,

𝐹(𝑧)

1 kHz
< 2−3,4253

0,2471 + 0,0129 ∙ (log2 (
𝐹(𝑧)

1 kHz
) + 3,4253)

2

,
𝐹(𝑧)

1 kHz
≥ 2−3,4253

 (87) 

7.1.5.3 Estimation of fundamental modulation rate 

In this step, the maxima of the averaged scaled power spectra, which were found in 7.1.5.1 are further analysed. 
It is assumed that there is one dominant harmonic complex (a fundamental modulation rate with harmonics at 
multiples of the fundamental modulation rate) which is the dominant cause for roughness perception. The 
fundamental modulation rate of such a harmonic complex is estimated in this step. 

For each block 𝑙  and band 𝑧 , the fundamental modulation rate of the envelope is estimated in the next 

processing step considering the modulation rate 𝑓p,𝑖(𝑙, 𝑧) and the amplitude �̃�𝑖(𝑙, 𝑧) of the block. Since the 

dependencies on 𝑙  and 𝑧  are not relevant for this processing step, the variables will be denoted only in 

dependency of the index of the corresponding maximum, 𝑖, 𝑓p(𝑖) and �̃�(𝑖) in the following to simplify the notation. 

For each maximum with index 𝑖, it is tested whether the corresponding modulation rate 𝑓p(𝑖) is the best estimate 

for the fundamental modulation rate of the envelope, by assuming that the sum over the harmonic complex 
corresponding to the best estimate will result in the highest value. The excact procedure is described in the 
following, where 𝑖0 describes the index of the currently tested maximum. 

First, integer ratios of the modulation rates 𝑓p(𝑖) of all found maxima to the modulation rate 𝑓p(𝑖0) are calculated 

 
𝑅𝑖0(𝑖)                        = round (

𝑓p(𝑖)

𝑓p(𝑖0)
) , (88) 

by rounding to the nearest integer. If several 𝑖 result in the same integer ratio 𝑅𝑖0(𝑖), it needs to be decided 

which of the maxima is used further. In this case, the maximum with the index 

 
𝑖                                 =  argmin

𝑖
|

𝑓p(𝑖)

𝑅𝑖0(𝑖) ∙ 𝑓p(𝑖0)
− 1| (89) 

is used, while the other maxima are discarded. From all remaining maxima, a set 𝐼𝑖0  of indices of all maxima, 

which belong to a harmonic complex with fundamental modulation rate 𝑓p(𝑖0) is defined (using a tolerance of 

4%): 

 
𝐼𝑖0                                =  {𝑖 |(|

𝑓p(𝑖)

𝑅𝑖0(𝑖) ∙ 𝑓p(𝑖0)
− 1| < 0,04)}. (90) 
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For this set of indices, the energy of the harmonic complex is calculated as 

 𝐸𝑖0       =  ∑ �̃�(𝑖)

𝑖∈𝐼𝑖0

. (91) 

The index 𝑖0 leading to the highest energy is denoted 𝑖max in the following, the corresponding set of indices 𝐼𝑖0  

is denoted 𝐼max. The fundamental modulation rate of the envelope is 𝑓p(𝑖max). 

In the following, only peaks corresponding to the indices in 𝐼max are considered as part of the envelope. The 
amplitudes of these peaks are weighted depending on the distance between the centre of gravity of these peaks 
and the modulation rate of the peak with the highest amplitude: 

 �̂�(𝑖)    =  𝑤peak ∙ �̃�(𝑖) (92) 

with 𝑖 ∈ 𝐼max and 

 

𝑤peak  =  1 + 0,1 ∙ |
|
∑ (

𝑓p(𝑖)

Hz
∙ �̃�(𝑖))𝑖∈𝐼max

(∑ �̃�(𝑖)𝑖∈𝐼max ) + 𝜀
−
𝑓p(𝑖peak)

Hz |
|

0,749

 (93) 

and 

 𝑖peak    =  argmax
𝑖∈𝐼max

�̃�(𝑖). (94) 

7.1.5.4 Weighting of low modulation rates 

In this next step, another weighting based on the fundamental modulation rate and a summation of amplitudes 
is performed. The block index 𝑙  and the band index 𝑧  are reintroduced for this step. Thus, the weighted 

amplitudes are denoted �̂�𝑖(𝑙, 𝑧), the corresponding fundamental modulation rates 𝑓p,𝑖max(𝑙, 𝑧) and the set of 

relevant maxima 𝐼max(𝑙, 𝑧). 

The summation and weighting is performed as 

 

𝐴(𝑙, 𝑧) =

{
 
 

 
 

0, 𝑓p,𝑖max(𝑙, 𝑧) ≤ ∆𝑓

∑ 𝐺𝑙,𝑧,𝑖(𝑓p,𝑖max(𝑙, 𝑧)) ∙ �̂�𝑖(𝑙, 𝑧)

𝑖∈𝐼max(𝑙,𝑧)

, ∆𝑓 < 𝑓p,𝑖max(𝑙, 𝑧) ≤ 𝑓max(𝑧)

∑ �̂�𝑖(𝑙, 𝑧)

𝑖∈𝐼max(𝑙,𝑧)

, 𝑓p,𝑖max(𝑙, 𝑧) > 𝑓max(𝑧)

 (95) 

where 𝐺𝑙,𝑧,𝑖(𝑓p,𝑖max(𝑙, 𝑧))  is calculated as described in Formula (85) but with parameters  

𝑞1 = 0,7066 and 

 
𝑞2(𝑧)  = 1,0967 − 0,0640 ∙ log2 (

𝐹(𝑧)

1 kHz
). (96) 

The parameter 𝑓max(𝑧) in Formula (95) is calculated according to Formula (86). 

Values of 𝐴(𝑙, 𝑧) that fall below a threshold of 0,074376 are set to zero.  

7.1.6 Optional entropy weighting based on randomness of modulation rate 

In an optional processing step, 𝐴(𝑙, 𝑧) is weighted depending on the randomness (measured using the entropy) 
of the estimated modulation rates. This method has been shown to improve the estimation of the roughness[31][32]. 
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For this processing step, a signal of rotational speed 𝑑(𝑛) (unit revolutions per minute) as reference variable 

with the same sampling rate as the sound pressure signal 𝑝(𝑛) needs to be available. 

First, the rotational speed signal is segmented in the same way as the sound pressure signal (see Clause 5.1.5, 
with 𝑠b and 𝑠h as given in Clause 7.1.1). The result is a segmented rotational speed signal 𝑑S(𝑛′, 𝑙). In each time 

block 𝑙, the median of 𝑑S(𝑛′, 𝑙) over 𝑛′ is calculated. The result �̃�S(𝑙) is an estimation of one rotational speed 
value for each block. This estimation is transformed to an estimation of the frequency of the rotational speed in 
Hertz: 

 
𝑓D(𝑙)        =

�̃�S(𝑙)

60 
R
min

 
 Hz (97) 

Now the maxima of the modulation rate, which were found in Clause 7.1.5.1 to calculate a weighting factor 
based on the entropy of these maxima. First, a set 

 𝐼f(𝑙, 𝑧)      = {𝑖 | 𝑖 ∉ 𝐼max(𝑙, 𝑧)  ∨  𝑖 = 𝑖max} (98) 

is defined. This set contains all indices of maxima, which were not identified as corresponding to the harmonic 
complex of the estimated fundamental frequency in Clause 7.1.5.3, and the index corresponding to the 
fundamental frequency (but not the ones of the harmonics). For all 𝑖 ∈ 𝐼f(𝑙, 𝑧) an estimation of the order is 

calculated as the ratio between the frequency of the maximum 𝑓p,𝑖(𝑙, 𝑧) (see Clause 7.1.5.1) and the frequency 

of the rotational speed: 

 

𝑜𝑖(𝑙, 𝑧)     = {

0, 𝑓D(𝑙) = 0

𝑓p,𝑖(𝑙, 𝑧)

𝑓D(𝑙)
, else

. (99) 

Now a histogram of all estimated orders is calculated for each time index 𝑙 and frequency band 𝑧 from all 

maxima of the current time block and the three preceding and subsequent blocks 32. In these histograms, 160 
classes of constant width are used between the values 0,0625 and 20,625. The result is the histogram 𝐻(𝑏, 𝑙, 𝑧), 
where 𝑏  is the class number and 𝐻(𝑏, 𝑙, 𝑧)  contains the number of elements in the respective class. For 
calculation of the entropy, probabilities of occurrence  

 

𝑃(𝑏, 𝑙, 𝑧) =

{
 

 0, ∑ 𝐻(𝑏, 𝑙, 𝑧)
𝑏

= 0

𝐻(𝑏, 𝑙, 𝑧)

∑ 𝐻(𝑏, 𝑙, 𝑧)𝑏

, else
 (100) 

are calculated from the histogram for all classes. From this probability, the Shannon entropy 

 

𝐸(𝑙, 𝑧)      = {

0, 𝑃(𝑏, 𝑙, 𝑧) = 0

−∑(𝑃(𝑏, 𝑙, 𝑧) ⋅ log2 𝑃(𝑏, 𝑙, 𝑧))

𝑏

, else , (101) 

is calculated 33. Finally, 𝐴(𝑙, 𝑧) is weighted with the entropy, if 𝐸(𝑙, 𝑧) > 1: 

 
𝐴E(𝑙, 𝑧)    =

𝐴(𝑙, 𝑧)

max(𝐸(𝑙, 𝑧); 1)
. (102) 

 

32 In the border regions less preceding or subsequent blocks are used. 

33 In the case of a probability of zero, a result of 0 ∙ log
2
0 = 0 is used according to the limit lim

𝑥→0
(𝑥log

2
𝑥) = 0. 
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If this optional weighting step is used, 𝐴E(𝑙, 𝑧) needs to be used instead of 𝐴(𝑙, 𝑧) in all following processing 
steps of this algorithm. 

7.1.7 Calculation of time-dependent specific roughness 

𝐴(𝑙, 𝑧) is interpolated to a sampling rate of 𝑟s50 = 50 Hz using a piecewise cubic Hermitian function (temporal 

resolution of 20 ms). The time corresponding to the original time index 𝑙 (non-equidistant sampling at the end) 
is: 

 

𝑡(𝑙)         = {

𝑙 ⋅
𝑠h
𝑟s
, 𝑙 = 0,1, … , 𝑙last − 1

𝑛samples

𝑟s
, 𝑙 = 𝑙last

 . (103) 

The new time index for the given sampling rate 𝑟s50 is 𝑙50 (equidistant sampling at time values 𝑙50/𝑟50, starting 

with 𝑙50 = 0). The last value of 𝑙50 is taken as floor(𝑡(𝑙last) ⋅ 𝑟s50). Negative values resulting from the interpolation 

are set then to zero, resulting in a first, uncalibrated estimate of the specific roughness 𝑅est
′ (𝑙50, 𝑧). 

The next step in the calculation of the specific roughness is a nonlinear transformation, depending on the 
distribution of 𝑅est

′ (𝑙50, 𝑧) over the critical bands 𝑧. This step is necessary to take into account that the roughness 

perception is different for broadband signals (i.e., signals with a broader distribution of 𝑅est
′ (𝑙50, 𝑧) over the critical 

bands) compared to narrowband signals such as modulated sinusoids (i.e., signals with a narrow distribution of 
𝑅est
′ (𝑙50, 𝑧) over the critical bands). With this step it is possible to model the roughness for very different kinds of 

synthetic and technical sounds as described in Reference [30]. 

Together with the nonlinear transformation, a calibration is performed to ensure that the calibration signal 
(amplitude modulated sinusoid, 60 dB SPL, 1 kHz carrier frequency, 70 Hz modulation rate) results in a 

roughness of 1 asper 34. 

 �̂�′(𝑙50, 𝑧) = 𝑐R ∙ (𝑅est
′ (𝑙50, 𝑧))

𝐸(𝑙50) (104) 

with the calibration factor 𝑐R = 0,0180685 
asper

BarkHMS
, 

 𝐸(𝑙50)          = 0,37106 ∙ (tanh(1,6407 ∙ (𝐵(𝑙50) − 2,5804)) + 1) ∙ 0,5 + 0,58449 (105) 

and 

 

𝐵(𝑙50)          = {

�̃�est
′ (𝑙50)

�̅�est
′ (𝑙50)

, �̅�est
′ (𝑙50) ≠ 0

0, �̅�est
′ (𝑙50) = 0

 (106) 

The squared and linear mean �̃�est
′ (𝑙50) and �̅�est

′ (𝑙50) are defined as 

 

�̃�est
′ (𝑙50)  = √∑ (𝑅est

′ (𝑙50, 𝑧))
2

𝑧

CBF
, (107) 

and 

 
�̅�𝑒𝑠𝑡
′ (𝑙50) =

∑ (𝑅est
′ (𝑙50, 𝑧))𝑧

CBF
 (108) 

 

34  The calibration factor 𝑐R  can be adjusted within a tolerance of 0,25 % to account for the effects of different 

implementations. 
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where CBF = 53  is the number of critical bands. The resulting estimate of the time-dependent specific 

roughness, �̂�′(𝑙50, 𝑧), is smoothed by using a lowpass filter of order one with different time constants for rising 
and falling slopes. This filtering consideres the fact, that the perception of sound events rises quickly with the 
beginning of the sound event, but only decays slowly when the sound event ends. A similar filtering is used in 
the loudness model for time-varying sounds of Moore and Glasberg [6]. The filtering can be described as 

 

𝑅′(𝑙50, 𝑧)     = {

�̂�′(𝑙50, 𝑧), 𝑙50 = 0

�̂�′(𝑙50, 𝑧) ∙ (1 − e
− 

1
𝑟s50∙𝜏(𝑙50,𝑧)) + 𝑅′(𝑙50 − 1, 𝑧) ∙ e

− 
1

𝑟s50∙𝜏(𝑙50,𝑧), 𝑙50 ≥ 1
 (109) 

with the different time constants for rising and falling slopes 

 
𝜏(𝑙50, 𝑧)        = {

0,0625 s, �̂�′(𝑙50, 𝑧) ≥ 𝑅
′(𝑙50 − 1, 𝑧)

0,5000 s, �̂�′(𝑙50, 𝑧) < 𝑅
′(𝑙50 − 1, 𝑧)

, (110) 

resulting in the final estimate of the time-dependent specific roughness 𝑅′(𝑙50, 𝑧). 

7.1.8 Calculation of average specific roughness 

The average specific roughness 𝑅′(𝑧) is obtained by averaging the time-dependent specific roughness 𝑅′(𝑙50, 𝑧). 
For the averaging, the first specific roughness values 𝑅′(𝑙50, 𝑧) for 0 ≤ 𝑙50 ≤ 15 (corresponding approximately 
to the first 300 ms of the input signal) are discarded due to the transient response of the digital filters. 

7.1.9 Calculation of time-dependent roughness 

The time-dependent roughness 𝑅(𝑙50) is the integral of 𝑅′(𝑙50, 𝑧) over 𝑧, approximated by summing over all 

bands 𝑧, taking into account the overlap ∆𝑧: 

 𝑅(𝑙50)      = ∆𝑧∑(𝑅′(𝑙50, 𝑧))

𝑧

. (111) 

7.1.10 Calculation of a representative roughness value 

The single value 𝑅 is calculated by taking the 90th percentile of the time-dependent roughness 𝑅(𝑙50), again 

discarding the first roughness values 𝑅(𝑙50) for 0 ≤ 𝑙50 ≤ 15. 

7.1.11 Calculation of roughness for binaural signals 

For binaural signals, the monaural time-dependent specific roughness values 𝑅L
′ (𝑙50, 𝑧) and 𝑅R

′ (𝑙50, 𝑧) of the left 
and right channels shall be calculated separately for each channel (assuming diotic signals). 

A combined binaural time-dependent specific roughness 𝑅B
′ (𝑙50, 𝑧) is calculated using the quadratic mean: 

 

𝑅B
′ (𝑙50, 𝑧) = √(𝑅L

′ (𝑙50, 𝑧))
2
+ (𝑅R

′ (𝑙50, 𝑧))
2

2
 . (112) 

Formula (112) corresponds approximately to the formula for binaural inhibition from the binaural loudness model 
by Moore/Glasberg (ISO 532-2[7], see also Reference [33]). In the case that the roughness value of a channel 

is negligible, Formula (112) results in a roughness, which is √0,5 lower than that of the diotic presentation. 

For binaural signals, the binaural time-dependent specific roughness 𝑅B
′ (𝑙50, 𝑧) shall be used instead of 𝑅′(𝑙50, 𝑧) 

as basis for the calculation of the specific roughness 𝑅′(𝑧), the time-dependent roughness 𝑅(𝑙50) and the single 

value 𝑅 in Clauses 7.1.8, 7.1.9 and 7.1.10. 
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7.2 Information to be recorded for prominent roughness 

A signal is considered to have a prominent roughness if the time-independent single value 𝑅  of the time-

dependent roughness 𝑅(𝑙50)  exceeds a value of 0,2 asper. If the signal has been identified as having a 
prominent roughness according to this standard, the following information shall be recorded: 

a) the sound under consideration; 

b) the method used to record the sound and the assumed presentation conditions (free field, diffuse field); 

c) details of the method used to evaluate the roughness (ECMA 418 – Part 2: Psychoacoustic metrics based 
on the Sottek Hearing Model – Clause 7.1 Psychoacoustic roughness calculation method), together with a 
reference to this Standard; 

d) the time-dependent psychoacoustic roughness values 𝑅(𝑙50) (see Formula (111)); 

e) the time-independent single value 𝑅; 

f) information if the optional entropy weighting was used or not; 

g) optionally: the time-dependent specific roughness 𝑅′(𝑙50, 𝑧) and the average specific roughness 𝑅′(𝑧). 

8 Improved identification and evaluation of loudness using psychoacoustic 
methods of tonal and noise loudness 

This clause describes a procedure based on a perceptual model for determining how loud a sound is perceived 
taking into consideration how people’s perceptions differ for tonal and noise signals. For narrowband signals 
with subcritical bandwidths, it is generally assumed that loudness only depends on the level, independent of  
the bandwidth. This assumption is also demonstrated by standardized loudness models such as ISO 532-1 
(Zwicker) [3] and ISO 532-3 DIS (Moore, Glasberg, Schlittenlacher). Several published experimental  
studies [35]-[38], however, showed that this is not the case, but rather that tonal components are perceived as 
louder than equivalent narrowband (subcritical bandwidth) noise with the same level on the same band. Sottek 
et al [39] have shown that a more accurate loudness estimation can be done by combining the tonal loudness 
and noise loudness presented earlier. This calculation process is described in this Clause. 

8.1 Psychoacoustic loudness calculation method 

The calculation process is simpler compared to the last sections, since most of the calculations were already 
described in Clauses 5 and 6. An overview of the determination of the specific loudness is shown in Figure 9. 

 

Figure 9 — Calculation of loudness based on specific tonal and noise loudness (see Clause 6). 
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8.1.1 Calculation of time-dependent specific loudness 

To obtain a better estimation of the loudness, a power average of the specific tonal loudness 𝑁tonal
′ (𝑙, 𝑧) in 

Formula (47) and the weighted specific noise loudness 𝑁noise
′ (𝑙, 𝑧) in Formula (48) is performed to obtain the 

specific loudness 𝑁′(𝑙, 𝑧): 

 
𝑁′(𝑙, 𝑧) = ((𝑁tonal

′ (𝑙, 𝑧)(𝑙, 𝑧))
𝑒(𝑧)

+ (𝑤n ⋅ 𝑁noise
′ (𝑙, 𝑧))

𝑒(𝑧)
)
1/𝑒(𝑧)

 (113) 

Here 𝑤n =  0,5331 and the exponent 𝑒(𝑧) is a function of the maximal specific basis loudness: 

 𝑒(𝑧)       =
𝑎

max
𝑧
(
𝑁tonal
′ (𝑙, 𝑧) + 𝑁noise

′ (𝑙, 𝑧)

(
soneHMS
BarkHMS

)
) + 𝜖

+ 𝑏 

(114) 

 

with the parameters 𝑎, 𝑏 and 𝜖 given in Table 12. 

Table 12 – Parameters to define the exponent for the loudness power average (Formula (114)) 

Parameter 𝑎 𝑏 𝜖 
Value 0,2918 0,5459 10−12 

 

8.1.2 Calculation of average specific loudness 

The average specific loudness 𝑁′(𝑧) is taken by averaging the time-dependent specific loudness 𝑁′(𝑙, 𝑧). For 

the averaging, the first loudness values 𝑁′(𝑙, 𝑧) for 0 ≤ 𝑙 ≤ 56 (corresponding approximately to the first 300 ms 
of the input signal) are discarded due to the transient response of the digital filters. 

This averaging can be described mathematically as: 

 

𝑁′(𝑧) = (
1

𝑙end − 56
∑𝑁′(𝑙 , 𝑧)𝑒

𝑙 

)

1/𝑒

, (115) 

where 𝑒 =
1

log10(2)
 and 57 ≤ 𝑙 ≤ 𝑙end. A power average is used here because it gives more weight to stronger 

components and correlates better with human loudness perception[39] 

8.1.3 Calculation of time-dependent loudness  

The time-dependent loudness 𝑁(𝑙) is calculated by integrating all specific loudness values, like Formula (26) 

with ∆𝑧 = 0,5: 

 

𝑁(𝑙)       = ∑𝑁′ (𝑙,
𝑖

2
) ∙ ∆𝑧

CBF

𝑖=1

. (116) 

The unit of the result is soneHMS/BarkHMS and no additional calibration is needed since the specific results were 
already calibrated in Formula (23). 
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8.1.4 Calculation of a representative loudness value 

The single value 𝑁 of the loudness of the signal is taken again by a power average of the time-dependent 
loudness 𝑁(𝑙). Like the specific loudness, the values of 𝑁(𝑙) for 0 ≤ 𝑙 ≤ 56 (corresponding approximately to the 
first 300 ms of the input signal) are discarded due to the transient response of the digital filters. 

 

𝑁         = (
1

𝑙end − 56
∑𝑁(𝑙)𝑒

𝑙

)

1/𝑒

, (117) 

where 𝑒 =
1

log10(2)
 and 57 ≤ 𝑙 ≤ 𝑙end. The unit of the result is soneHMS. While this process does not significantly 

modify the loudness of pure tonal signals in comparison to the result in Formula (26), it improves the result of 
noise-like signals and mixtures of tones and noise for which the loudness of the noise components are 
overestimated [39]. 

8.1.5 Calculation of loudness for binaural signals 

For binaural signals, monaural time-dependent specific loudness values 𝑁L
′(𝑙, 𝑧) and 𝑁R

′ (𝑙, 𝑧) of the left and right 
channel shall be calculated separately for each channel (assuming diotic signals). 

A combined binaural time-dependent specific loudness 𝑁B
′ (𝑙, 𝑧) is calculated using the quadratic mean: 

 

𝑁B
′ (𝑙, 𝑧) = √(𝑁L

′(𝑙, 𝑧))
2
+ (𝑁R

′ (𝑙, 𝑧))
2

2
 . (118) 

Formula (118) approximately corresponds to the formula for binaural inhibition from the binaural loudness model 
by Moore/Glasberg (ISO 532-2 [7], see also Reference [33]). In the case that the loudness value of a channel is 

negligible, Formula (118) results in a loudness, which is √0,5 lower than that of the diotic presentation. 

For binaural signals, the binaural time-dependent specific loudness 𝑁B
′ (𝑙, 𝑧) shall be used as basis for the 

calculation of the specific loudness 𝑁′(𝑧), the time-dependent loudness 𝑁(𝑙) and the single value 𝑁 instead of 

𝑁′(𝑙, 𝑧) in Clauses 8.1.2, 8.1.3 and 8.1.4. 

8.2 Information to be recorded for loudness 

The following information shall be recorded: 

a) the sound under consideration; 

b) the method used to record the sound and the assumed presentation conditions (free field, diffuse field); 

c) details of the method used to evaluate the loudness (ECMA 418 – Part 2: Psychoacoustic metrics based 
on the Sottek Hearing Model – Clause 8.1 Psychoacoustic loudness calculation method), together with a 
reference to this Standard; 

d) the time-dependent psychoacoustic loudness values 𝑁(𝑙) (see Formula (116)); 

e) the time-independent single value 𝑁; 

f) optionally: the time-dependent specific loudness 𝑁′(𝑙, 𝑧) and the average specific loudness 𝑁′(𝑧). 
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9 Identification and evaluation of prominent fluctuation strength using a 
psychoacoustic fluctuation strength calculation method 

This clause describes a perception model-based procedure for determining whether noise emissions have a 
pronounced fluctuation strength: the psychoacoustic fluctuation strength calculation method. The calculation 
method is similar to the roughness calculation method as described in Clause 7. The main difference is the 
different weighting of the modulation spectra [40] While fluctuation strength covers slow variations (typically below 
20 Hz), roughness is produced by faster variations up to about 500 Hz. The maximum of the auditory sensation 
is at a modulation rate of about 4 Hz for fluctuation strength and 70 Hz for roughness. 

In addition, spectral analysis is more challenging at low modulation rates because the constant part of the 
envelope interferes with spectral estimation, especially at low modulation rates. To improve the spectral 
estimation, High-resolution Spectral Analysis (HSA) [41],[42] is introduced along with envelope-dependent 
analysis windows in order to reduce artifacts due to the envelope calculation and to reduce the influence of 
quieter periods in the signal. A quieter period within a block of a discrete-time signal is an interval in which all 
values are below a threshold value and the values to the left and right of this interval are greater than or equal 
to this threshold value. If the quieter period is at the beginning or end of a block, only the value to the right or 
left of this interval must be greater than or equal to this threshold value. By using HSA instead of DFT for spectral 
analysis, the noise reduction step used in the roughness algorithm is no longer needed. 

As with the other psychoacoustic parameters, the magnitude of the perceived fluctuation depends on the 
specific loudness. For stationary signals such as modulated sinusoids, loudness scaling should be nearly 
constant over time. For slowly modulated signals, the specific basis loudness as described in Clause 5 shows 
strongly time-varying results (as a function of the block size), because the RMS value of the signal cannot be 
predicted very well (even for the large block size 𝑠b = 65536  used, corresponding to a duration of about 
1,3653 s: four times larger than for the roughness calculation). Therefore, loudness scaling is improved by using 
HSA-based loudness prediction (see Clause 0). 

Fluctuation strength is used for the perceptual evaluation of sound characteristics as well as for sound design, 
e.g., for warning sounds. As fluctuation strength increases, sounds become more noticeable and are perceived 
as increasingly aggressive and annoying, without any difference in loudness or A-weighted sound pressure 
level. Fluctuation strength depends on the modulation rate 𝑓mod, the degree of modulation 𝑚 and the sound 
pressure level. Frequency modulated sounds produce a similar fluctuation strength as amplitude modulated 
sounds. Compared to roughness, fluctuation strength is only slightly dependent on the carrier frequency. The 
unit of fluctuation strength is “vacilHMS ”. As reference signal with 𝐹 = 1 vacilHMS , an amplitude modulated 

sinusoid of 1 kHz carrier frequency, 𝑚 = 1, 𝑓mod = 4 Hz and a sound pressure level of 60 dB was chosen. 

9.1 Psychoacoustic fluctuation strength calculation method 

9.1.1 Overview 

The psychoacoustic fluctuation strength calculation is based on scaled envelope power spectra ΦE,𝑙,𝑧(𝑘) as 

described in Clause 9.1.4, which are calculated using the envelope of the CBF = 53 segmented critical band 

signals 𝑝𝑙,𝑧(𝑛′) (see Clause 5.1.5). 

For the calculation of these values, a block size of 𝑠b = 65536  and a hop size of 𝑠h = 16384  for the 
segmentation in Clause 5.1.5 shall be used. 

The processing steps for the calculation of specific fluctuation strength 𝐹′(𝑙50, 𝑧), where 𝑙50 is the block index 
after interpolation as described in Clause 9.1.11, is shown in Figure 10 and described in detail as follows. 
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Figure 10 — Calculation of specific fluctuation strength 𝑭′(𝒍𝟓𝟎, 𝒛)  
based on segmented critical band signals 𝒑𝒍,𝒛(𝒏′). 

9.1.2 Envelope calculation and downsampling 

The low-frequency envelopes are calculated from the segmented band-pass filtered sound pressure signals 
𝑝𝑙,𝑧(𝑛′) (see Clause 5.1.5) using the Hilbert transform. The envelopes 𝑝E,𝑙,𝑧(𝑛′) are taken as magnitude of the 

analytic signals 

 𝑝E,𝑙,𝑧(𝑛′)  = |𝑝𝑙,𝑧(𝑛′) + 𝑗ℋ(𝑝𝑙,𝑧(𝑛′))|, (119) 

with ℋ(∙) denoting the Hilbert transform. Since the envelopes only contain low modulation rates, downsampling 

with a factor of 32 is performed 35. The resulting downsampled envelopes of the band-pass signals are denoted 

𝑝E,𝑙,𝑧(�̃�) 
36. With this step, the sampling rate changes from 𝑟s = 48 kHz to �̃�s = 1500 Hz. The block size �̃�b = 2048 

and a hop size of �̃�h = 512 are the values corresponding to the block size of 𝑠b = 65536 and the hop size of 

𝑠h = 16384 for the segmentation in Clause 5.1.5. 

 

35 Here downsampling with a factor of 32 means: decrease the sample rate by keeping the first sample and then every 32nd 

sample after the first sample. No downsampling with an anti-aliasing low-pass filter is performed to be more efficient at the 

cost of a very small deviation. 

36 �̃� refers to the index of the downsampled signal. 
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9.1.3 Determination of envelope-dependent analysis windows 

9.1.3.1 Definition of the default analysis window 

For the spectral analysis of the envelopes 𝑝𝐸,𝑙,𝑧(�̃�)
 only a portion of the samples in each block (size �̃�b) is 

considered. Due to the Hilbert transform in Formula (119) there may be distortions at the beginning and end of 
a block. The influence of these distortions shall be reduced by defining an envelope-dependent analysis window 
for �̃� = 0, … , �̃�b − 1: 

 
𝑤E,𝑙,𝑧(�̃�)     = {

1, �̃�1,𝑙,𝑧 = 𝑛zb,𝑙,𝑧 ≤ �̃� ≤ �̃�2,𝑙,𝑧 = �̃�b − 1 − 𝑛ze,𝑙,𝑧
0, else

, (120) 

where 𝑛zb,𝑙,𝑧.and 𝑛ze,𝑙,𝑧 correspond to the number of zeros in the analysis window at the beginning and at the 

end. As a starting point both variables are set to �̃�b/32 = 64 to reduce possible distortion due to the Hilbert 

transform. The number of ones in the analysis window then equals �̃�ones = �̃�b ∙ 15/16 = 1920. 

The effects of quieter periods (as described in the introduction of Clause 9) of smoothed envelope curves in 
accordance with Clause 9.1.3.2 shall also be considered. The threshold values used for the quieter periods are 
described in Clause 9.1.3.3. Only the longest quieter period (see Clause 9.1.3.4) is considered. Depending on 
the position of this quieter period within the entire block under consideration, the part to the left or right resulting 
in a longer part with ones is used to further update the parameters 𝑛zb,𝑙,𝑧.and 𝑛ze,𝑙,𝑧 of 𝑤E,𝑙,𝑧(�̃�) in Formula (120) 

according to Clause 9.1.3.5. Finally, it is checked whether the remaining interval �̃� ∈ [�̃�1,𝑙,𝑧 �̃�2,𝑙,𝑧]  contains 

enough information to estimate the envelope spectrum at lower modulation rates as described in Clause 9.1.3.6. 

9.1.3.2 Smoothing and first weighting of envelope signals 

To detect quieter periods, the envelopes 𝑝𝐸,𝑙,𝑧(�̃�) are first smoothed by a moving median filter 37 with a length 

of �̃�b/64 + 1 = 33 and then rounded to 8 digits to the right of the decimal point in order to reduce differences 

due to different implementations. Second, 𝑝𝐸,𝑙,𝑧(�̃�)
 is multiplied by 𝑤E,𝑙,𝑧(�̃�)  with the initial parameters of 

𝑛zb,𝑙,𝑧.and 𝑛ze,𝑙,𝑧, resulting in 𝑝
E,𝑙,𝑧

(�̃�). Then 𝑝
Emax,𝑙,𝑧

=max (𝑝
E,𝑙,𝑧

(�̃�)) is calculated for �̃� = 0, … , �̃�b − 1. 

If 𝑝
Emax,𝑙,𝑧

> 5 ⋅ 10−6 Pa, the detection of quieter periods is continued. Otherwise the entire block is considered 

to be a quieter period: 𝑤E,𝑙,𝑧(�̃�)  is set to zero for �̃� = 0, … , �̃�b − 1  and nzb,𝑙,𝑧  as well as 𝑛ze,𝑙,𝑧  are set to  

�̃�b/2 = 1024. 

9.1.3.3 Detection of quieter periods 

A quieter period of 𝑝
E,𝑙,𝑧

(�̃�) is defined such that the following relationship holds for all values �̃� ∈ [�̃�qpb,𝑙,𝑧 �̃�qpe,𝑙,𝑧]: 

𝑝
E,𝑙,𝑧

(�̃�) < 𝑝
Ethr,𝑙,𝑧

 and for the values to the left and right of this interval: 𝑝
E,𝑙,𝑧

(�̃�qpb,𝑙,𝑧 − 1) ≥ 𝑝Ethr,𝑙,𝑧  and 

𝑝
E,𝑙,𝑧

(�̃�qpe,𝑙,𝑧 + 1) ≥ 𝑝
Ethr,𝑙,𝑧

 with 𝑝
Ethr,𝑙,𝑧

= 0,01 ∙ 𝑝
Emax,𝑙,𝑧

, also rounded to 8 digits to the right of the decimal point. 

There can be several quieter periods, each starting at a different value for �̃� = �̃�qpb,𝑙,𝑧 and ending at a different 

value for �̃� = �̃�qpe,𝑙,𝑧. 

In the next step, quieter periods at the beginning and the end are determined. The parameters 𝑛zb,𝑙,𝑧 and 𝑛ze,𝑙,𝑧 

are updated: 𝑛zb,𝑙,𝑧 = argmin
�̃�=0,…,�̃�b−1

(𝑝
E,𝑙,𝑧

(�̃�) ≥ 𝑝
Ethr,𝑙,𝑧

) and 𝑛ze,𝑙,𝑧 = �̃�b − 1 − argmax
�̃�=0,…,�̃�b−1

(𝑝
E,𝑙,𝑧

(�̃�) ≥ 𝑝
Ethr,𝑙,𝑧

). 

 

37 A sliding window is centred about the element in the current position. The window size is automatically truncated at the 

endpoints when there are not enough elements to fill the window. When the window is truncated, the median is taken over 

only the elements that fill the window. 
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9.1.3.4 Determination of longest quieter period 

The quieter period with the longest duration �̃�zeros = �̃�qpe,𝑙,𝑧 − �̃�qpb,𝑙,𝑧 + 1 in the updated interval �̃� ∈ [𝑛zb,𝑙,𝑧 𝑛ze,𝑙,𝑧] 

is determined [�̃�qpmb,𝑙,𝑧 �̃�qpme,𝑙,𝑧 ], where �̃�zeros  must also be greater than �̃�zeros,min = �̃�b ∙ 5/32 = 320. In the 

following only the parameters �̃�qpmb,𝑙,𝑧 and �̃�qpme,𝑙,𝑧 of the longest quieter period are required. 

9.1.3.5 Update of the analysis window parameters 

If a valid quieter period [�̃�qpmb,𝑙,𝑧 �̃�qpme,𝑙,𝑧] was found in the last step, there are two candidates for the analysis 

window parameters 𝑛zb,𝑙,𝑧.and 𝑛ze,𝑙,𝑧. Depending on the parameters �̃�qpmb,𝑙,𝑧 and �̃�qpme,𝑙,𝑧 of this quieter period 

within the entire block under consideration, the part on the left or right that leads to a longer part with ones is 
used to further update the parameters 𝑛zb,𝑙,𝑧.and 𝑛ze,𝑙,𝑧 of 𝑤E,𝑙,𝑧(�̃�) in Formula (120). 

If the difference between the beginning of the quieter period �̃�qpmb,𝑙,𝑧  and 𝑛zb,𝑙,𝑧 + 64  is greater than the 

difference between �̃�b − 1 − 𝑛ze,𝑙,𝑧 − 64 and the end of the quieter period �̃�qpme,𝑙,𝑧, then only 𝑛ze,𝑙,𝑧 is updated to 

�̃�b − 1 − �̃�qpmb,𝑙,𝑧 + 64 , otherwise only 𝑛zb,𝑙,𝑧  is updated to �̃�qpme,𝑙,𝑧 + 64 . The updated values also take into 

account that possible distortions due to the Hilbert transform are reduced by adding �̃�b/32 = 64 zeros. 

9.1.3.6 Validity checks of the envelope in the final analysis interval 

The final step is to check whether the remaining interval �̃� ∈ [�̃�1,𝑙,𝑧 �̃�2,𝑙,𝑧] contains enough information to estimate 

the envelope spectrum at lower modulation rates. One constraint is �̃�2,𝑙,𝑧 − �̃�1,𝑙,𝑧 + 1 ≥ �̃�b ∙ 5/32 = 320 and a 

second constraint is �̃�2,𝑙,𝑧 ≥ �̃�b/4 − 1 = 511. 

The final proof is to calculate the relative standard deviation of a linear regression analysis of 𝑝
E,𝑙,𝑧

(�̃�) based on 

a least-squares error minimization for �̃� = �̃�1,𝑙,𝑧 + �̃�b ∙ 5/1024,… , �̃�2,𝑙,𝑧 − �̃�b ∙ 5/1024 = �̃�1,𝑙,𝑧 + 10,… , �̃�2,𝑙,𝑧 − 10. 

The relative standard deviation should be at least 0,1%. 

If these requirements are not fulfilled, the complete block is considered to be a quieter period: 𝑤E,𝑙,𝑧(�̃�) is set to 

zero for �̃� = 0,… , �̃�b − 1 and nzb,𝑙,𝑧.as well as 𝑛ze,𝑙,𝑧 to �̃�b/2 = 1024. 

9.1.4 High-resolution Spectral Analysis (HSA) of envelope signals 

The envelopes 𝑝E,𝑙,𝑧(�̃�) are windowed with 𝑤E,𝑙,𝑧(�̃�) as described in Formula (120) (using the parameters 𝑛zb,𝑙,𝑧 

and 𝑛ze,𝑙,𝑧 as determined in the last section) and both the corresponding spectrum PE,𝑙,𝑧(𝑘) and power spectrum 

ΦE,𝑙,𝑧(𝑘) are calculated: 

 PE,𝑙,𝑧(𝑘) = DFT�̃�b (𝑝E,𝑙,𝑧(�̃�) ∙ 𝑤E,𝑙,𝑧(�̃�)), (121) 

 ΦE,𝑙,𝑧(𝑘) = |PE,𝑙,𝑧(𝑘)|
2
, (122) 

where DFT�̃�b denotes the �̃�b-point Discrete Fourier Transform 38, 𝑘 is the index corresponding to a modulation 

rate of 𝑘 ∙
�̃�s

�̃�b
 Hz. 

Only values for 𝑘 = 0,… ,48 are used to predict the result of the HSA, the vector �̂�E,HSA,𝑙,𝑧 consisting of a constant 

part (modulation rate equal to 0) and 𝑀c spectral lines at an arbitrary modulation rate 39 𝐟c = (0, 𝑓c,1, … , 𝑓c,𝑀c), 

 

38 DFT of length N is defined as: 𝑋(𝑘) =  DFT𝑁(𝑥(𝑛)) = ∑ 𝑥(𝑛) ∙ e−𝑗2𝜋𝑘𝑛/𝑁𝑁−1
𝑛=0  with 𝑘 =  0,1,… , 𝑁 − 1. 

39  Here 𝐟c  denotes the vector of modulation rates of the candidates for a spectral line (a spectral line pair) under 

consideration. 



 

© Ecma International 2025  43 
 

(not limited to the discrete resolution of the DFT). The corresponding conjugate complex spectral lines 40 at the 
corresponding negative frequencies (−𝑓c,𝑚 e.g. for the 𝑚th complex line) are considered for the mathematical 

derivation of the following formulae, but are omitted in the result, as they provide no additional information. 

�̂�E,HSA,𝑙,𝑧 represents the spectrum predicted by the HSA with the influence of the analysis window removed, thus 

providing not only a result at an arbitrary modulation rate, but also with amplitudes at very high resolution. This 
is a major advantage of the HSA over standard spectral analysis such as DFT, and also provides more accurate 
and useful results for other spectral analysis applications. It works by deconvolution of the original signal 
spectrum into different sinusoids (with possible interaction between them) and can achieve theoretically infinite 
resolution for signals without noise and considerably high resolution for signals with noise. 

The result at the modulation rate 0 is real, the other spectral lines are complex and described by their real and 

imaginary parts 41. To simplify the notation, the variable x is used instead of �̂�E,HSA,𝑙,𝑧: 𝐱 = (𝑥1, … , 𝑥2⋅𝑀𝑐+1)
𝑇
 with 

the elements 

 

𝑥𝑖                      =

{
 
 

 
 

�̂�0,𝑙,𝑧 , 𝑖 = 1

ℜ(�̂�𝑓c,𝑚,𝑙,𝑧)

2
, mod(𝑖, 2) = 0

ℑ(�̂�𝑓c,𝑚,𝑙,𝑧)

2
, mod(𝑖, 2) ≠ 0 ⋀ 𝑖 > 1

 (123) 

where �̂�0,𝑙,𝑧  is the real constant, �̂�𝑓c,𝑚,𝑙,𝑧  is the 𝑚 th complex line (𝑚 = 1,… ,𝑀c ) and mod(𝑖, 𝑛)  returns the 

remainder after dividing 𝑖 by 𝑛, where 𝑖 is the dividend and 𝑛 is the divisor (modulo operation). 

The vector 𝐱 is determined for a given set of modulation rates 𝐟c in order to obtain the smallest error 

 𝐸𝑙,𝑧(𝐟c)            = ∑ |P̂E,𝑙,𝑧,𝐟c(𝑘) − PE,𝑙,𝑧(𝑘)|
2𝐾L−1

𝑘=0 , (124) 

with 42 

 𝐾L                     = min (max(17, round(max(𝑓c Δ𝑓⁄ )) + 8 ) , 49). (125) 

The spectrum P̂E,𝑙,𝑧,𝐟c(𝑘)  in Formula (124) corresponds to �̂�E,HSA,𝑙,𝑧  including the influence of the analysis 

window. 43 

For the calculation of �̂�E,HSA,𝑙,𝑧, the matrix 𝐖 = (𝑊1, … ,𝑊2⋅𝑀c+1) is required with the vectors 

 

𝑊𝑖(𝑘)              = {

𝑊E,𝑙,𝑧,0(𝑘), 𝑖 = 1

𝑊E,𝑙,𝑧,𝑓c,𝑚
+ (𝑘), 𝑖 = 2 ⋅ 𝑚

𝑊E,𝑙,𝑧,𝑓c,𝑚
−

∗ (𝑘), 𝑖 = 2 ⋅ 𝑚 + 1

 (126) 

that can be calculated using the following Formulae (127)-(129) 

 

𝑊E,𝑙,𝑧,𝑓c,𝑚
(𝑘)   =  e−𝑗2𝜋𝑓n(𝑘)⋅(�̃�b−𝑛ze,𝑙,𝑧+nzb,𝑙,𝑧−1) ⋅

sin (𝜋𝑓n(𝑘) ⋅ (�̃�b − 𝑛ze,𝑙,𝑧 − nzb,𝑙,𝑧))

sin(𝜋𝑓n(𝑘))
 (127) 

 

40 The complex conjugate of a complex variable 𝑧 is denoted as 𝑧∗. 

41 ℜ(𝑧) is the real part of the complex valued variable 𝑧 and ℑ(𝑧) is the imaginary part. 

42 The round function rounds to the nearest integer. In the case of a tie, where an element has a fractional part of 0.5 (within 

roundoff error) in decimal, the round function rounds away from zero to the nearest integer with larger magnitude. 

43 The calculation of P̂E,𝑙,𝑧,𝐟c(𝑘) is only necessary for deriving the algorithm. 
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where 𝑓n(𝑘) =
𝑘

�̃�b
−

𝑓c,𝑚

�̃�𝑠
+ 𝜀0  is a normalized frequency; 𝜀0 , the smallest positive computer number so that 

1 + 𝜀0 > 1, is added to avoid division by zero, 𝑊E,𝑙,𝑧,0(𝑘) is calculated using Formula (127) with 𝑓c,𝑚 = 0 and 

 𝑊E,𝑙,𝑧,𝑓c,𝑚
+ (𝑘) =  𝑊E,𝑙,𝑧,𝑓c,𝑚

(𝑘) +𝑊E,𝑙,𝑧,−𝑓c,𝑚
(𝑘), (128) 

 𝑊E,𝑙,𝑧,𝑓c,𝑚
− (𝑘)  =  𝑊E,𝑙,𝑧,𝑓c,𝑚

(𝑘) −𝑊E,𝑙,𝑧,−𝑓c,𝑚
(𝑘). (129) 

The optimal values of �̂�E,HSA,𝑙,𝑧 can be calculated by solving a system of 2 ⋅ 𝑀c + 1 equations. This results in a 

matrix equation of the type 

 𝐀 ⋅ 𝐱                =  𝐛  (130) 

with a symmetric matrix 𝐀 = (𝑎𝑖𝑗) and a vector 𝐱 as described in Formula (123): 

 

𝑎𝑖𝑗                    = {
∑ ℜ(𝑊i(𝑘)) ⋅ ℜ (𝑊j(𝑘)) + ℑ(𝑊i(𝑘)) ⋅ ℑ (𝑊j(𝑘))
𝐾L−1
𝑘=0 , (𝑖, 𝑗) ∈ 𝐼𝐽

∑ ℑ(𝑊i(𝑘)) ⋅ ℜ (𝑊j(𝑘)) + ℜ(𝑊i(𝑘)) ⋅ ℑ (𝑊j(𝑘))
𝐾L−1
𝑘=0 , else

, (131) 

using the elements of 𝑾  according to Formula (126) and the following set of indices defined for  

 𝑖 = 1, … ,2 ⋅ 𝑀c + 1 and 𝑗 = 𝑖, … ,2 ⋅ 𝑀c + 1: 

 𝐼R                      = {𝑖| 𝑖 = 1 ∨  mod(𝑖, 2) = 0}                  

𝐽R                      = {𝑗| 𝑗 = 1 ∨  mod(𝑗, 2) = 0}                  
, (132) 

 𝐼𝐽                     = {(𝑖, 𝑗)| (𝑖 ∈ 𝐼R ⋀ j ∈ 𝐽R) ⋁ (𝑖 ∉ 𝐼R ⋀ j ∉ 𝐽R)}. (133) 

The elements of the vector 𝐛 can be calculated as 

 

𝑏𝑖                      = {
∑ ℜ(PE,𝑙,𝑧(𝑘)) ⋅ ℜ(𝑊i(𝑘)) + ℑ (PE,𝑙,𝑧(𝑘)) ⋅ ℑ(𝑊i(𝑘))
𝐾L−1
𝑘=0 , 𝑖 ∈ 𝐼𝑅

∑ ℑ(PE,𝑙,𝑧(𝑘)) ⋅ ℜ(𝑊i(𝑘)) + ℜ(PE,𝑙,𝑧(𝑘)) ⋅ ℑ(𝑊i(𝑘))
𝐾L−1
𝑘=0 , else

. (134) 

The error function 𝐸𝑙,𝑧(𝐟c) can be expressed advantageously with the already calculated coefficients 𝑎𝑖𝑗, 𝑏𝑖 and 

the elements 𝑥𝑖 of the solution of the system of equations: 

 𝐸𝑙,𝑧(𝐟c) =  ∑ ΦE,𝑙,𝑧(𝑘) +
𝐾L−1
𝑘=0 ∑ 𝑎𝑖𝑖

2⋅𝑀c+1
𝑖=1 ⋅ 𝑥𝑖

2 + 2 ⋅ (∑ ∑ 𝑎𝑖𝑗
2⋅𝑀c+1
𝑗=𝑖+1 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗

2⋅𝑀c
𝑖=1 −∑ 𝑏𝑖

2⋅𝑀c+1
𝑖=1 ⋅ 𝑥𝑖). (135) 

The calculation of the error function 𝐸𝑙,𝑧(𝐟c) is necessary for a further step of the HSA, the fine tuning of the 

modulation rates in an optimization process as described in Clause 9.1.7. In this case, only one spectral line 
pair is considered. The solution for this special case is given in the next section. 

9.1.4.1 High-resolution Spectral Analysis (HSA) of envelope signals for only one spectral line pair 

The calculation of �̂�E,HSA,𝑙,𝑧 for only one spectral line pair (𝑀c = 1, 𝐟c = (0, 𝑓c,1)) is as follows. 

In this case, a matrix equation of the type 𝐀 ⋅ 𝐱 = 𝐛  with a symmetric matrix 𝐀 = (𝑎𝑖𝑗)  and a vector 𝐱  as 

described in Formula (123) has to be solved for three variables: 

 

(

𝑎11 𝑎12 𝑎13
𝑎12 𝑎22 𝑎23
𝑎13 𝑎23 𝑎33

) ⋅ 𝐱 = (

𝑏1
𝑏2
𝑏3

) (136) 

with the diagonal elements of 𝐀 
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 𝑎11    = ∑ |𝑊E,𝑙,𝑧,0(𝑘)|
2
     

𝐾L−1
𝑘=0

𝑎22    = ∑ |𝑊E,𝑙,𝑧,𝑓c,1
+ (𝑘)|

2

 
𝐾L−1
𝑘=0

𝑎33    = ∑ |𝑊E,𝑙,𝑧,𝑓c,1
−

∗ (𝑘)|
2

  
𝐾L−1
𝑘=0

  (137) 

with 𝐾L = min (max( 17, round(𝑓c,1 Δ𝑓⁄ ) + 8) , 49) and the elements of the upper triangular matrix 

 𝑎12    = ∑ ℜ(𝑊E,𝑙,𝑧,0(𝑘))     ⋅ ℜ (𝑊E,𝑙,𝑧,𝑓c,1
+ (𝑘)) + ℑ(𝑊E,𝑙,𝑧,0(𝑘))    ⋅ ℑ (𝑊E,𝑙,𝑧,𝑓c,1

+ (𝑘))          
𝐾L−1
𝑘=0                

𝑎13    = ∑ ℑ(𝑊E,𝑙,𝑧,0(𝑘))     ⋅ ℜ (𝑊E,𝑙,𝑧,𝑓c,1
−

∗ (𝑘)) + ℜ(𝑊E,𝑙,𝑧,0(𝑘))    ⋅ ℑ (𝑊E,𝑙,𝑧,𝑓c,1
−

∗ (𝑘)) 
𝐾L−1
𝑘=0                          

𝑎23    = ∑ ℑ (𝑊E,𝑙,𝑧,𝑓c,1
+ (𝑘)) ⋅ ℜ (𝑊E,𝑙,𝑧,𝑓c,1

−
∗ (𝑘)) + ℜ(𝑊E,𝑙,𝑧,𝑓c,1

+ (𝑘)) ⋅ ℑ (𝑊E,𝑙,𝑧,𝑓𝑐,1
−

∗ (𝑘))
𝐾L−1
𝑘=0                          

  (138) 

and the elements of the vector 𝑏 

 𝑏1      = ∑ ℜ(𝑊E,𝑙,𝑧,0(𝑘))     ⋅ ℜ (PE,𝑙,𝑧(𝑘)) + ℑ(𝑊E,𝑙,𝑧,0(𝑘))     ⋅ ℑ (PE,𝑙,𝑧(𝑘))
𝐾L−1
𝑘=0      

𝑏2      = ∑ ℜ(𝑊E,𝑙,𝑧,𝑓c,1
+ (𝑘)) ⋅ ℜ (PE,𝑙,𝑧(𝑘)) + ℑ(𝑊E,𝑙,𝑧,𝑓c,1

+ (𝑘)) ⋅ ℑ (PE,𝑙,𝑧(𝑘))
𝐾L−1
𝑘=0      

𝑏3      = ∑ ℜ(𝑊E,𝑙,𝑧,𝑓c,1
−

∗ (𝑘)) ⋅ ℑ (PE,𝑙,𝑧(𝑘)) + ℑ (𝑊E,𝑙,𝑧,𝑓c,1
−

∗ (𝑘))  ⋅ ℜ (PE,𝑙,𝑧(𝑘))
𝐾L−1
𝑘=0      

  (139) 

The solution to this system of equations can be given in analytical form using Cramer’s rule: 

 
𝑥1      =

𝑏1   ⋅ (𝑎22 ⋅ 𝑎33 − 𝑎23
2) − 𝑎12 ⋅ (𝑏2 ⋅ 𝑎33   − 𝑎23 ⋅ 𝑏3)    + 𝑎13 ⋅ (𝑏2 ⋅ 𝑎23  − 𝑎22 ⋅ 𝑏3)

det 𝐴

𝑥2      =
𝑎11 ⋅ (𝑏2 ⋅ 𝑎33 − 𝑎23 ⋅ 𝑏3) − 𝑏1 ⋅ (𝑎12 ⋅ 𝑎33 − 𝑎23 ⋅ 𝑎13) + 𝑎13 ⋅ (𝑎12 ⋅ 𝑏3 − 𝑏2 ⋅ 𝑎13)

det 𝐴

𝑥3       =
𝑎11 ⋅ (𝑎22 ⋅ 𝑏3 − 𝑏2 ⋅ 𝑎23) − 𝑎12 ⋅ (𝑎12 ⋅ 𝑏3   − 𝑏2 ⋅ 𝑎13) + 𝑏1 ⋅ (𝑎12 ⋅ 𝑎23 − 𝑎22 ⋅ 𝑎13)

det 𝐴

 (140) 

with 

 det 𝐴    =  𝑎11 ⋅ (𝑎22 ⋅ 𝑎33 − 𝑎23
2) − 𝑎12 ⋅ (𝑎12 ⋅ 𝑎33 − 𝑎23 ⋅ 𝑎13) + 𝑎13 ⋅ (𝑎12 ⋅ 𝑎23 − 𝑎22 ⋅ 𝑎13) (141) 

and the error function 

 𝐸𝑙,𝑧(𝐟𝑐) =  ∑ ΦE,𝑙,𝑧(𝑘) +
𝐾𝐿−1
𝑘=0

∑ 𝑎𝑖𝑖
3
𝑖=1 ⋅ 𝑥𝑖

2 + 2 ⋅ (∑ ∑ 𝑎𝑖𝑗
3
𝑗=𝑖+1 ⋅ 𝑥𝑖 ⋅ 𝑥𝑗

2
𝑖=1 −∑ 𝑏𝑖

3
𝑖=1 ⋅ 𝑥𝑖). (142) 

9.1.5 Identification of prominent spectral line pairs 

In the next two steps prominent spectral line pairs are identified searching for 

1. local maxima ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧)) of the power spectrum ΦE,𝑙,𝑧(𝑘) fulfilling the condition 

 ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧)) ≥ max(0,001 ∙ ΦE,𝑙,𝑧(0), ΦEmin) (143) 

with ΦEmin = 0,15 and 𝑖 = 1,… , 𝐼𝑚. Here, the number of local maxima 𝐼𝑚 cannot exceed 24 due to the 

limited number of spectral lines considered (48 for positive modulation rates). 

The modulation rates of the remaining local maxima are predicted as 
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𝑓p,𝑖(𝑙, 𝑧) = (

∑ (𝑘p,𝑖(𝑙, 𝑧) + 𝑗) ⋅ ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧) + 𝑗)
1
𝑗=−1

∑ ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧) + 𝑗)
1
𝑗=−1

− 1) ⋅ Δ𝑓 (144) 

with 𝛥𝑓 =
�̃�𝑠

�̃�𝑏
. 

and local minima of an error function 𝐸𝑙,𝑧((0, 𝑓𝑖)), according to Clause 9.1.4.1, calculated for modulation 

rates 𝑓𝑖 = 0,25 ⋅ 2(𝑖−2) 3⁄  Hz, 𝑖 = 1,… ,16 with the actual frequency 𝑓c,1 = 𝑓𝑖 of the first and only candidate 

of the prominent spectral line pair. 

Finally, in addition to the local maxima ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧))  at the modulation rates 𝑓p,𝑖(𝑙, 𝑧) , only the 

component with the modulation rate 𝑓min(𝑙, 𝑧) corresponding to the minimum of all local minima of 

𝐸𝑙,𝑧((0, 𝑓𝑖)) is taken as a candidate for a prominent spectral component. All modulation rates of the 

candidates for a prominent spectral component are set as elements of the vector 𝐟c in ascending order, 
starting with the modulation rate 0. 

If there is no local minimum 𝑓min(𝑙, 𝑧), all local maxima are considered as candidates for prominent 

spectral line pairs and the spectrum �̂�E,𝑙,𝑧,HSA is obtained using the HSA, providing the constant part and 

all spectral line pairs at the modulation rates 𝐟c and the corresponding error 𝐸𝑙,𝑧(𝐟c). Except for the case 

of no local maximum (𝐼𝑚 = 0), there is no modulation in this block (�̂�E,𝑙,𝑧,HSA and 𝐸𝑙,𝑧(𝐟c) is set to zero) 

and further processing for this block is stopped. 

If a local minimum 𝑓min(𝑙, 𝑧) exists, it is further necessary to check whether there are duplicates of 

spectral line pairs among the local maxima ΦE,𝑙,𝑧(𝑘p,𝑖(𝑙, 𝑧)) at the modulation rates 𝑓p,𝑖(𝑙, 𝑧). The set 

 𝐼𝑖𝑑               = {𝑖 ||𝑓min(𝑙, 𝑧)−𝑓p,𝑖(𝑙, 𝑧)| < 1,25 ⋅ 𝛥𝑓} (145) 

of the indices of duplicates of spectral line pairs may or may not be empty. 44 

If 𝐼𝑖𝑑 is not empty, two cases must be checked to remove duplicates of spectral line pairs: 

I. consider 𝑓min(𝑙, 𝑧) and all values of 𝑓p,𝑖(𝑙, 𝑧) for all indices 𝑖 = 1,… , 𝐼𝑚 except for the indices in 

𝐼𝑖𝑑  and calculate the spectrum �̂�E,𝑙,𝑧,HSA  using the HSA, providing the constant part and all 

spectral line pairs at the modulation rates 𝐟c and the corresponding error 𝐸𝑙,𝑧(𝐟c), 

II. consider only all values of 𝑓p,𝑖(𝑙, 𝑧)  for all indices 𝑖 = 1,… , 𝐼𝑚  and calculate the spectrum 

�̂�E,𝑙,𝑧,HSA and the corresponding error 𝐸𝑙,𝑧(𝐟c). 

From the two cases choose the one that the gives the lower error 𝐸𝑙,𝑧(𝐟c). 

If 𝐼𝑖𝑑 is empty, then consider 𝑓min(𝑙, 𝑧) and all values of 𝑓p,𝑖(𝑙, 𝑧) for all indices 𝑖 = 1,… , 𝐼𝑚 and calculate 

the spectrum �̂�E,𝑙,𝑧,HSA  using the HSA, providing the constant part and all spectral line pairs at the 

modulation rates 𝐟c and the corresponding error 𝐸𝑙,𝑧(𝐟c). 

In the next step only spectral line pairs with a modulation rate satisfying the condition 

 𝐴𝑖(𝑙, 𝑧)      > 0,05 ∙ max
𝑖
(𝐴𝑖(𝑙, 𝑧)) (146) 

are considered, where 𝐴𝑖(𝑙, 𝑧) is the 𝑖th preselected component of |�̂�E,𝑙,𝑧,HSA(𝑓c,𝑖(𝑙, 𝑧) )|
2
 and 𝑓c,𝑖(𝑙, 𝑧) is 

the modulation rate of the 𝑖th preselected spectral line pair, resulting in the subset 𝑓c,𝑖(𝑙, 𝑧). 

 

44 Such duplicates of spectral line pairs can only occur at slightly higher modulation rates in the given range for 𝑓min(𝑙, 𝑧) 

(here: 𝑓2 = 0,25 Hz ≤ 𝑓min(𝑙, 𝑧) ≤𝑓15 = 0,25 ⋅ 2
13 3⁄ ≈ 5,0397 Hz), where also local maxima in the spectrum can be observed. 
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9.1.6 Determination of the weighted power spectrum and the modulation rate of the maximum 

Then the weighted power spectrum of the remaining spectral line pairs 

 �̃�𝑖(𝑙, 𝑧)       = |P̂E,𝑙,𝑧,HSA(𝑓c,𝑖(𝑙, 𝑧))|
2
⋅ 𝑤𝑙ℎ(𝑓c,𝑖(𝑙, 𝑧)) (147) 

and the modulation rate 𝑓c,𝑖max(𝑙, 𝑧)  of the maximum of the weighted power spectrum are determined: 

𝑖max = argmax
𝑖 

(�̃�𝑖(𝑙, 𝑧)); 𝑤𝑙ℎ(𝑓c,𝑖(𝑙, 𝑧)) is a weighting function with respect to lower and higher modulation rates 

(band-pass characteristic of fluctuation strength): 

 

𝑤𝑙ℎ(𝑓𝑐,𝑖(𝑙, 𝑧)) =

{
 
 
 
 
 

 
 
 
 
 

0, 𝑓c,𝑖(𝑙, 𝑧) = 0

1 

(1 + ((
𝑓𝑐,𝑖(𝑙, 𝑧)
𝑓max

−
𝑓max

𝑓𝑐,𝑖(𝑙, 𝑧)
) ∙ 𝑞1,l)

2

)

𝑞2,l
, 𝑓c,𝑖(𝑙, 𝑧) ≤ 𝑓max(𝑧)

(1 + 0,092623 |log2 (
𝐹(𝑧)
1 kHz

)|
1,24

)

−1

(1 + ((
𝑓𝑐,𝑖(𝑙, 𝑧)
𝑓max

−
𝑓max

𝑓𝑐,𝑖(𝑙, 𝑧)
) ∙ 𝑞1,h)

2

)

𝑞2,h
, 𝑓c,𝑖(𝑙, 𝑧) > 𝑓max(𝑧)

 (148) 

where 𝑞1,l = 0,33048, 𝑞2,l = 0,85902, 𝑞1,h = 0,21792, 𝑞2,h = 4,6728, 𝑓max = 4,8659 Hz is the modulation rate at 

which the weighting factor reaches the maximum of one and 𝐹(𝑧) is the centre frequency of the auditory filter 
bank as described in Clause 5. 

9.1.7 Fine tuning of the modulation rate of the maximum of the weighted power spectrum 

The modulation rate of the maximum of the weighted power spectrum 𝑓c,𝑖max(𝑙, 𝑧) is used as a starting point 𝑥0 

for a fine tuning based on the constant part and only one spectral line pair. The modulation rate 𝑓c,1,opt(𝑙, 𝑧), 

giving the minimum error 𝐸𝑙,𝑧(𝐟c), is determined by a modified damped Newton method applied to 𝐸𝑙,𝑧
′ (𝐟c), the 

first derivative of 𝐸𝑙,𝑧(𝐟c), with 𝐟c = (0, 𝑥𝑘). 𝐸𝑙,𝑧
′′ (𝐟c), the second derivative of 𝐸𝑙,𝑧(𝐟c) is also used. Both derivatives 

are approximated by differential quotients with Δ𝑥 = 10−5, the first derivative as 

 𝐸𝑙,𝑧
′ (𝑥𝑘−1) =

1

2⋅Δ𝑥
(𝐸𝑙,𝑧(𝑥𝑘−1 + Δ𝑥) − 𝐸𝑙,𝑧(𝑥𝑘−1 − Δ𝑥))  (149) 

and the second derivative as 

 𝐸𝑙,𝑧
′′ (𝑥𝑘−1) =

1

(Δ𝑥)2
(𝐸𝑙,𝑧(𝑥𝑘−1 + Δ𝑥) − 2 ⋅ 𝐸𝑙,𝑧(𝑥𝑘−1) + 𝐸𝑙,𝑧(𝑥𝑘−1 − Δ𝑥))  (150) 

The iteration is started for 𝑘 = 1 and 𝑥0 = 𝑓c,𝑖max(𝑙, 𝑧) 

 𝑥𝑘 = 𝑥𝑘−1 − Δ𝑥𝑘−1  (151) 

with 45 

 
Δ𝑥𝑘−1 =

1

4
⋅ sign(𝐸𝑙,𝑧

′ (𝑥𝑘−1)) ⋅ min (
|𝐸𝑙,𝑧
′ (𝑥𝑘−1)|

|𝐸𝑙,𝑧
′′ (𝑥𝑘−1)|+𝜀0

, 2 ⋅ 10−4)  (152) 

and continued until |Δ𝑥𝑘−1| > 10−7 ∧ 𝑘 < 40. 

 

45 The signum function is defined as sign(𝑥) = {
1, 𝑥 > 0
0, 𝑥 = 0

−1, 𝑥 < 0
. 
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If |𝑓c,1,opt − 𝑓c,𝑖max(𝑙, 𝑧)| > 1,25 ⋅ 𝛥𝑓, it is assumed that the optimization failed and the fine tuning is cancelled, 

otherwise 𝑓c,𝑖max(𝑙, 𝑧) is replaced by 𝑓c,1,opt(𝑙, 𝑧) and the corresponding spectral component of �̂�E,𝑙,𝑧,HSA as well as 

�̃�𝑖max(𝑙, 𝑧) are updated accordingly. 

If 𝑓c,1,opt < 0,125 Hz, then the modulation in this block is discarded (�̂�E,𝑙,𝑧,HSA and 𝐸𝑙,𝑧(𝐟c) are set to zero) and 

further processing for this block is stopped. 

9.1.8 Harmonic analysis of the power spectrum 

In this step, the weighted power spectra �̃�𝑖(𝑙, 𝑧) are further analysed. It is assumed that there is a dominant 
harmonic complex (a fundamental modulation rate with harmonics at multiples of the fundamental modulation 
rate) which is the dominant cause of the fluctuation perception. The fundamental modulation rate of such a 

harmonic complex is estimated in this step. It is further assumed that 𝑓c,𝑖max(𝑙, 𝑧) or more precisely the tuned 

value 𝑓c,1,opt(𝑙, 𝑧) is part of the harmonic complex and that the maximum order of this component is three, 

resulting in three cases to be tested: 𝑓c,𝑖max(𝑙, 𝑧) is the fundamental modulation rate or second or third order. 

Additionally, the highest order to be considered is the fifth order. 

For each block 𝑙  and band 𝑧 , the fundamental modulation rate of the envelope is estimated in the next 

processing step, taking into account the modulation rates 𝑓c,𝑖(𝑙, 𝑧) and the amplitudes �̃�𝑖(𝑙, 𝑧) of the block. 

For each assumed order 𝑜 = 1,2,3  of 𝑓c,1,opt(𝑙, 𝑧) , it is tested whether the corresponding modulation rate 

𝑓c,1,𝑜(𝑙, 𝑧) = 𝑓c,1,opt(𝑙, 𝑧) 𝑜⁄  is the best estimate for the fundamental modulation rate of the envelope, assuming 

that the sum over the harmonic complex corresponding to the best estimate gives the highest value. The exact 
procedure for each assumed order 𝑜 is described below. 

First, the integer ratios of all the modulation rates 𝑓c,𝑖(𝑙, 𝑧) to the modulation rate 𝑓c,1,𝑜(𝑙, 𝑧) are calculated 

 
𝑅𝑖,𝑜(𝑙, 𝑧)    = round (

𝑓c,𝑖(𝑙, 𝑧)

𝑓c,1,𝑜(𝑙, 𝑧)
) , (153) 

by rounding to the nearest integer. All integer ratios greater than five are set to zero. 

From all remaining values, a set 𝐼𝑖,𝑜  of indices of all components belonging to a harmonic complex with 

fundamental modulation rate 𝑓c,1,𝑜(𝑙, 𝑧) is defined (using a tolerance of 4%): 

 
𝐼𝑖,𝑜(𝑙, 𝑧)      =  {𝑖 |(|

𝑓c,𝑖(𝑙, 𝑧)

𝑅𝑖,𝑜(𝑙, 𝑧) ∙ 𝑓c,1,𝑜(𝑙, 𝑧)
− 1| < 0,04)}. (154) 

For this set of indices, the energy of the harmonic complex is calculated as 

 𝐸𝑖,𝑜(𝑙, 𝑧)     =  ∑ �̃�𝑖(𝑙, 𝑧)

𝑖∈𝐼𝑖,𝑜

. (155) 

The order 𝑜 leading to the highest energy is denoted in the following as 𝑜max, the corresponding set of indices 

𝐼𝑖,𝑜(𝑙, 𝑧) is denoted as 𝐼max(𝑙, 𝑧). The fundamental modulation rate of the envelope is 

 𝑓1(𝑙, 𝑧)        =  𝑓c,𝑜max(𝑙, 𝑧). (156) 

In the following, only the components corresponding to the indices in 𝐼max(𝑙, 𝑧) are considered as part of the 

envelope. The modulation rates of these remaining components, except for 𝑓c,1,𝑜(𝑙, 𝑧), are corrected according 

to their integer ratios to 𝑓c,𝑜max(𝑙, 𝑧) and the corresponding spectral line pairs of �̂�E,𝑙,𝑧,HSA are calculated for the 

given orders (based on the integer ratios, maximum up to the fifth order) using the HSA with the constant part 
and one spectral line pair for each order of interest. The constant part is predicted several times for all the 
different orders. The mean value of all these predictions is taken as the final result of the constant part. The 

weighted power spectra �̃�𝑖(𝑙, 𝑧) are updated for the improved modulation rates. 
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9.1.9 Weighting the sum of the harmonic complex 

The sum of the harmonic complex is weighted according to the distance between the centre of gravity of its 
components and the modulation rate of the component with the largest amplitude: 

 �̂�(𝑙, 𝑧)         =  𝑤bw ∙ ∑ �̃�𝑖(𝑙, 𝑧)𝑖∈𝐼max(𝑙,𝑧)   (157) 

with 

 

𝑤bw             =  1 + 0,79577 ∙
|

|
∑ (

𝑓c,𝑖(𝑙, 𝑧)
Hz

∙ �̃�𝑖(𝑙, 𝑧))𝑖∈𝐼max(𝑙,𝑧)

(∑ �̃�𝑖(𝑙, 𝑧)𝑖∈𝐼max(𝑙,𝑧)
) + 𝜀0

−
𝑓c,1,opt(𝑙, 𝑧)

Hz |

|

0,43461

 (158) 

9.1.10 Scaling with HSA-based loudness 

Finally, �̂�(𝑙, 𝑧) is weighted with a factor depending on the power of the harmonic complex and the specific 

loudness 𝑁HSA
′ (𝑙, 𝑧) based on the HSA: 46 

 

𝐴(𝑙, 𝑧)         =  
1

(�̂�0,𝑙,𝑧
2 + 2 ⋅ ∑ 𝐴𝑖(𝑙, 𝑧)+𝜀0𝑖∈𝐼max(𝑙,𝑧) )

⋅
(𝑁HSA

′ (𝑙, 𝑧))
2
∙ (
BarkHMS
soneHMS

)

max
𝑧
(𝑁HSA

′ (𝑙, 𝑧)) + 𝜀0
⋅ �̃�b ⋅ �̂�(𝑙, 𝑧) (159) 

𝑁HSA
′ (𝑙, 𝑧) is calculated in two steps. First, the nonlinearity described in Formula (23) is applied to the RMS value 

of the harmonic complex: 

 
𝑁HSA
′ (𝑙, 𝑧) = 𝐴′ (√0,5 ⋅ √�̂�0,𝑙,𝑧

2 + 2 ⋅ ∑ 𝐴𝑖(𝑙, 𝑧)𝑖∈𝐼max(𝑙,𝑧) ). (160) 

Second, the lower threshold of hearing, LTQ(𝑧) as described in Table 3 in Clause 5.1.9, is applied by subtraction 
and a limiter: 

 
𝑁HSA
′ (𝑙, 𝑧)  = {

𝑁HSA
′ (𝑙, 𝑧) − LTQ(𝑧), ÑHSA

′ (𝑙, 𝑧) ≥ LTQ(𝑧)

0 ÑHSA
′ (𝑙, 𝑧) < LTQ(𝑧)

. (161) 

All values of 𝐴(𝑙, 𝑧) below a threshold of 5.2519 are set to zero. The corresponding fundamental modulation 

rates 𝑓1(𝑙, 𝑧) are also set to zero. 

9.1.11 Calculation of time-dependent specific fluctuation strength 

𝐴(𝑙, 𝑧) is interpolated to a sampling rate of 𝑟s50 = 50 Hz using a piecewise cubic Hermitian function (temporal 

resolution of 20 ms). The time corresponding to the original time index 𝑙 (non-equidistant sampling at the end) 
is: 

 

𝑡(𝑙)         = {

𝑙 ⋅
𝑠h
𝑟s
, 𝑙 = 0,1, … , 𝑙last − 1

𝑛samples

𝑟s
, 𝑙 = 𝑙last

 . (162) 

 

46 The weighting in Formula (159) corresponds to the weighting In Formula (66) for the roughness calculation. Note that the 

DFT results in Formula (66) compared to the HSA results �̂�E,𝑙,𝑧,HSA are multiplied by the DFT length �̃�b. 
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The new time index for the given sampling rate 𝑟s50 is 𝑙50 (equidistant sampling at time values 𝑙50/𝑟50, starting 

with 𝑙50 = 0). The last value of 𝑙50 is taken as floor(𝑡(𝑙last) ⋅ 𝑟s50). Negative values resulting from the interpolation 

are then set to zero, resulting in a first, uncalibrated estimate of the specific fluctuation strength 𝐹est
′ (𝑙50, 𝑧). 

The next step in the calculation of the specific fluctuation strength is a nonlinear transformation, depending on 
the distribution of 𝐹est

′ (𝑙50, 𝑧) over the critical bands 𝑧. This step is necessary to take into account that the 
fluctuation strength perception is different for broadband signals (i.e., signals with a broader distribution of 
𝐹est
′ (𝑙50, 𝑧) over the critical bands) compared to narrowband signals such as modulated sinusoids (i.e., signals 

with a narrow distribution of 𝐹est
′ (𝑙50, 𝑧)  over the critical bands). With this step it is possible to model the 

fluctuation strength for very different kinds of synthetic and technical sounds as described in Reference [40]. 

Together with the nonlinear transformation, a calibration is performed to ensure that the calibration signal 
(amplitude modulated sinusoid, 60 dB SPL, 1 kHz carrier frequency, 4 Hz modulation rate) results in a 

fluctuation strength of 1 vacilHMS 
47. 

 �̂�′(𝑙50, 𝑧) = 𝑐F ∙ (𝐹est
′ (𝑙50, 𝑧))

𝐸(𝑙50) (163) 

with the calibration factor 𝑐F = 0,003840572 
vacilHMS

BarkHMS
, 

 𝐸(𝑙50)          = 0,37106 ∙ (tanh(1,6407 ∙ (𝐵(𝑙50) − 2,5804)) + 1) ∙ 0,5 + 0,58449 (164) 

and 𝐵(𝑙50) as described in the following 

 
�̂�(𝑙50)          =

�̃�est
′ (𝑙50)

�̅�est
′ (𝑙50) + 𝜀

 (165) 

The squared and linear mean �̃�est
′ (𝑙50) and �̅�est

′ (𝑙50) are defined as 

 

�̃�est
′ (𝑙50)  = √∑ (𝐹est

′ (𝑙50, 𝑧))
2

𝑧

CBF
, (166) 

and 

 
�̅�est
′ (𝑙50) =

∑ (𝐹est
′ (𝑙50, 𝑧))𝑧

CBF
 (167) 

where CBF = 53 is the number of critical bands. �̂�(𝑙50) is smoothed with a moving median filter of length 71, 

resulting in 𝐵(𝑙50). 

The estimate of the time-dependent specific fluctuation strength �̂�′(𝑙50, 𝑧) is smoothed by using a lowpass filter 
of order one. The filtering can be described as 

 

𝐹′(𝑙50, 𝑧)     = {

�̂�′(𝑙50, 𝑧), 𝑙50 = 0

�̂�′(𝑙50, 𝑧) ∙ (1 − e
− 

1
𝑟s50∙𝜏(𝑙50,𝑧)) + 𝐹′(𝑙50 − 1, 𝑧) ∙ e

− 
1

𝑟s50∙𝜏(𝑙50,𝑧), 𝑙50 ≥ 1
 (168) 

with the time constant 𝜏(𝑙50, 𝑧) = 0,75 s 

resulting in the final estimate of the time-dependent specific fluctuation strength 𝐹′(𝑙50, 𝑧). 

 

47  The calibration factor 𝑐F  can be adjusted within a tolerance of 0,25 % to account for the effects of different 

implementations. 
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9.1.12 Calculation of average specific fluctuation strength 

The average specific fluctuation strength 𝐹′(𝑧) is obtained by averaging the time-dependent specific fluctuation 
strength 𝐹′(𝑙50, 𝑧) . For the averaging, the first fluctuation strength values 𝐹′(𝑙50, 𝑧)  for 0 ≤ 𝑙50 ≤ 35 
(corresponding approximately to the first 683 ms of the input signal) are discarded due to the transient response 
of the digital filters. 

9.1.13 Calculation of time-dependent fluctuation strength 

The time-dependent fluctuation strength 𝐹(𝑙50) is the integral of 𝐹′(𝑙50, 𝑧) over 𝑧, approximated by summing 

over all bands 𝑧, taking into account the overlap ∆𝑧: 

 𝐹(𝑙50)      = ∆𝑧∑(𝐹′(𝑙50, 𝑧))

𝑧

. (169) 

9.1.14 Calculation of a representative fluctuation strength value 

The single value 𝐹 is calculated by taking the 90th percentile of the time-dependent fluctuation strength 𝐹(𝑙50), 
again discarding the first fluctuation strength values 𝐹(𝑙50) for 0 ≤ 𝑙50 ≤ 35. 

9.1.15 Calculation of fluctuation strength for binaural signals 

For binaural signals, the monaural time-dependent specific fluctuation strength values 𝐹L
′(𝑙50, 𝑧) and 𝐹R

′ (𝑙50, 𝑧) 
of the left and right channels shall be calculated separately for each channel (assuming diotic signals). 

A combined binaural time-dependent specific fluctuation strength 𝐹B
′ (𝑙50, 𝑧) is calculated using the quadratic 

mean: 

 

𝐹B
′ (𝑙50, 𝑧) = √(𝐹L

′(𝑙50, 𝑧))
2
+ (𝐹R

′ (𝑙50, 𝑧))
2

2
 . (170) 

Formula (170) corresponds approximately to the formula for binaural inhibition from the binaural loudness model 
by Moore/Glasberg (ISO 532-2[7], see also Reference [33]). In the case that the fluctuation strength value of a 

channel is negligible, Formula (170) results in a fluctuation strength, that is √0,5 lower than that of the diotic 

presentation. 

For binaural signals, the binaural time-dependent specific fluctuation strength 𝐹B
′ (𝑙50, 𝑧) shall be used instead of 

𝐹′(𝑙50, 𝑧) as basis for the calculation of the specific fluctuation strength 𝐹′(𝑧), the time-dependent fluctuation 

strength 𝐹(𝑙50) and the single value 𝐹 in Clauses 9.1.12, 9.1.13 and 9.1.14. 

9.2 Information to be recorded for prominent fluctuation strength 

A signal is considered to have a prominent fluctuation strength, if the time-independent single value 𝐹 of the 

time-dependent fluctuation strength 𝐹(𝑙50) exceeds a value of 0,2 vacilHMS. If the signal has been identified as 
having a prominent fluctuation strength according to this standard, the following information shall be recorded: 

a) the sound under consideration; 

b) the method used to record the sound and the assumed presentation conditions (free field, diffuse field); 

c) details of the method used to evaluate the fluctuation strength (ECMA 418 – Part 2: Psychoacoustic metrics 
based on the Sottek Hearing Model – Clause 9.1 Psychoacoustic fluctuation strength calculation method), 
together with a reference to this Standard; 

d) the time-dependent psychoacoustic fluctuation strength values 𝐹(𝑙50) (see Formula (169)); 
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e) the time-independent single value 𝐹; 

f) optionally: the time-dependent specific fluctuation strength 𝐹′(𝑙50, 𝑧) and the average specific fluctuation 

strength 𝐹′(𝑧). 
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Annex A 
(informative) 

 
Evaluation of the psychoacoustic loudness calculation method 

The psychoacoustic loudness calculation is evaluated by comparison with the target equal-loudness-level 
contours as shown in Figure 2. The loudness was calculated for sinusoidal signals with a frequency of 1000 Hz 
and a sound pressure level of 20 to 80 dB with a step size of 20 dB. For other frequencies, the level was varied 
to match the loudness calculated for the 1000 Hz tone. The same procedure was performed for the lower 
threshold of hearing. The results are shown in Figure A.1. The target equal-loudness-level contours are 
emulated well by the results of the hearing model. 

 

Figure A.1— Results for the equal-loudness-level contours. The dotted lines show the target equal-
loudness-level contours, the solid lines are the equal-loudness-level contours obtained with the Sottek 
Hearing Model 
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Annex B 
(informative) 

 
Evaluation of the psychoacoustic tonality calculation method 

B.1 Application examples 

Figure B.1 shows analysis results for a frequency-modulated signal with a low modulation rate of 2 Hz, a 
modulation index of 150 at a frequency of 2 kHz and with very low sound pressure (L = 30 dB). 

From top to bottom, it shows: 

1. the spectrum (FFT size 65536, sampling rate 48 kHz), a smoothed spectrum (1/24th octave smoothed 

FFT: the “background noise”, useful to show general shapes while not resolving pure tones), and a  

1-critical-bandwidth peak-hold spectrum as “critical bandwidth ruler”; 

2. the tone-to-noise ratio 48 (TNR) results along with the TNR tolerance line. 

3. the prominence ratio 49 (PR) calculated as a full spectrum for each frequency of interest (specific 

prominence ratio, SPR), both with and without recognition only of pure tones, along with the  

PR tolerance line. 

TNR and PR fail since the corresponding tolerance lines are not exceeded. Only SPR shows a marginal value 
for a signal with a clearly prominent tonality (even though at a very low sound pressure level). 

 

48 The calculation of the tone-to-noise Ratio is described in ECMA-418-1. 

49 The calculation of the prominence ratio is described in ECMA-418-1. 
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Figure B.1— Top: Different spectral representations (FFT and smoothed FFT) of a frequency-modulated 
tone; Middle: corresponding TNR results (scale gives dB of tonal audibility); Bottom: corresponding PR 
values tones-only (according to ECMA-418-1) using critical bands (CB) and complete SPR not 
constrained only to pure tones results 

Figure B.2 depicts the specific psychoacoustic tonality analysis of the same sound as shown in Figure B.1 with 
a distinct tonal content: The location of the maximum of the specific tonality is changing over time, but the 
magnitude is almost constant, leading to a stable tonality prediction based on the assumption that the perceived 
tonality is taken as the maximum of the specific tonality. This corresponds well to the auditory impression. 

 

Figure B.2— Specific psychoacoustic tonality analysis of the same sound used as source for the results 
of the analyses shown in Figure B.1 
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B.2 Evaluation 

The psychoacoustic tonality is evaluated by comparison with listening test results. As a reference, PR is also 
added to the comparison. TNR values were also calculated. However, since they were very similar to the results 
of the PR, they are not displayed in the results for reasons of clarity. 

For the listening tests, mixtures of a sinusoidal tone with a frequency of 1000 Hz with different levels and pink 
noise with different levels were used. Thus, the effect of different signal-to-noise-ratios can be evaluated for 
different levels. Five different tests were performed. In all five tests, the level of the pink noise was varied from 
40 dB SPL to 80 dB SPL with a step size of 5 dB SPL. The tests differed in the level of the sinusoidal tone, 
which was chosen from 55 dB SPL to 75 dB SPL with a step size of 5 dB SPL. 

The tests were performed with 16 test subjects. The test subjects were asked to rate the tonality of each sound 
on a 13-point categorical scale (ranging from “0 - not tonal” to “12 - extremely tonal”). To compare the results of 
the listening tests with the results of the psychoacoustic model, a linear scaling factor was used for the results 
of the listening tests. Another scaling factor was used to map the results of the listening tests to the results of 
the PR. The scaling factors were derived by minimizing the root-mean-square error between the mean ratings 
of all participants and the calculated psychoacoustic tonality (or the PR, respectively) of all five experiments. 

The results of the evaluation are shown in Figure B.3. The results illustrate one problem of the PR: it decreases 
linearly for decreasing SNR. The tonality perception however does not decrease linearly according to the 
experimental results. The results of the psychoacoustic hearing model fit much better to the perceived tonality. 

 

Figure B.3 — Psychoacoustic tonality and prominence ratio compared to results of listening tests 
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Since experimental results are subject to statistical uncertainty, the variance of the results needs to be 
considered. Thus, an error measure was defined, taking into account the 95% confidence interval of the results. 
First, the results of the psychoacoustic tonality were scaled such that they are comparable to the tonality ratings 
of the listening tests. The experimental results are compared to the scaled psychoacoustic tonality. If the 
psychoacoustic tonality lies within the 95% confidence interval, no error is assumed. If it is outside of the 
confidence interval, the error is taken as the difference to the confidence interval. The root-mean-square error 
of this value is calculated. An error for the PR was calculated in the same way, scaling the PR to make it 
comparable with the results of the listening tests. 

The better performance of the psychoacoustic hearing model is also reflected in this error measure. For the 
psychoacoustic tonality, the error measure over all five experiments (related to the 13-pt categorical scale) was 
0,21, for the PR it was 0,70, for the TNR (not shown in the figures) it was 0,74. 

Further application examples related to IT equipment can be found in Reference [34]. 
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Annex C 
(informative) 

 
Evaluation of the psychoacoustic roughness calculation method 

The psychoacoustic roughness is evaluated by comparison with listening test results and data from 
Reference [12]. Figure C.1 shows results for amplitude modulated sinusoids with seven different carrier 
frequencies (125 Hz, 250 Hz, 500 Hz, 1000 Hz, 2000 Hz, 4000 Hz, 8000 Hz) and different modulation rates. 
The results from Reference [12] are idealized, smoothed curves that were fit to the results of jury tests. The 
results of the model are close to these idealized curves and never exceed a tolerance of ±0,1 asper. 

 

Figure C.1 — Results for modulated sinusoids with different carrier frequencies and modulation rates. 
All sounds were modulated with 100% degree of modulation and a sound pressure level of 60 dB. 
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In order to investigate the applicability of the method to technical sounds, listening tests with the sounds 
described in Table C.1 were carried out. 

Table C.1 — Technical Sounds 

ESA_02 Electrical Seat Adjuster 

ETB_01 Electrical Toothbrush 

GEN_02 Generator 

HDD_07 Hard Disk Drive 

HDD_09 Hard Disk Drive 

SCOOT Pass-by of Scooter 

SINUS Calibration Signal: Modulated Sinus Tone 

TOF_03 Take-Off (Airplane) 

 

In Figure C.2, the results of the psychoacoustic roughness model are compared with listening test results (mean 
values and 95% confidence intervals) for the seven technical sounds and a reference sound (SINUS), which 
was used as anchor. It can be seen that the calculated results are all within the 95% confidence intervals of the 
listening test data, thus proving that the algorithm performs well for technical sounds. More results can be found 
in Reference [30]. 

 

Figure C.2 — Results of several technical sounds. The results of the listening tests are displayed: mean 
values with 95% confidence intervals. 
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