cecma

anNal ECMA-419
- - 3" Edition / June 2025

ECMAScript®
embedded systems API
specification

.

Rue du Rhone 114 CH-1204 Geneva T. +41 22 849 6000 F: +41 22 849 6001



eCma

INTERNATIONAL
is the registered trademark of Ecma International

A_ COPYRIGHT PROTECTED DOCUMENT

© Ecma International 2025



seCmna

Contents Page
1 S o 0] o 1T PP TPUPPPPPPTTNN 1
2 (070 171 1= 1o Lo =TSN 1
3 o] 1= L AV (= L (=T A LoT = T 1
4 TErmMS AN AEIINTTIONS ..ttt et e et e e s et e e e e et e e e e et e e se b e e esaaa s s s eaaaseesataeeseannees 2
5 NLo) =\ Ao g b= Mo 0] aAVZ=T 0L (L0 ] o F= TN 4
6 (@ V2= VAT T 4
6.1 1O N ST ox ] o T PP PSP OOPPPTTRPPI 4
6.2 O F= Tl o o1 (=T OO PP PP PUPPP P 4
6.3 Independent iIMPlEMENTALIONS. . ....u i an 5
6.4 S-S NG e 5
6.5 MOAUIE SPECIHTIEIS .. s 5
6.6 L U0 FTaT=To I o 7= T o T 0 5
6.7 U= T Qo 6
6.8 = T 011 o 6
6.9 | =T [ [ =TT T 6
6.10 YN Or=To [0 1 =TS 6
6.11 A =N 2 U = PRSP 7
6.12 DSy o ToRST=T o] LI = LU i (] PO PURERP 7
7 Requirements for standard built-in ECMASCIiPt ODJECTS .....coiiiiiiiiiiii e 7
8 e T S O E TR 2= 1 £ (=] o I 7
8.1 ASYNCHIONOUS MELNOUS ..uuiiiiiiiiiiiiii s 7
8.2 Lo 0] 0 =1 1 U o3 {0 P 7
8.3 (od Fo FoY =N 1 11=1 1 4 Lo Yo E PO UUPUPPPUPPRN 8
8.4 =L 1= o] g ] 6 1=T Y ST 8
8.5 (OF= 111 o F= (o] 1< T PO UUPUPPPUPRRN 9
9 (@ O F= 1T R o= 1 (=T o ISP UTPOPRR PPNt 9
9.1 LTI o L=Tot ) (=T PP PP OUPPPTTPP 9
9.2 oY AT o =T ot} 1= SO PO PPPRP 10
9.3 (00 ] =3 1 003 {1 N 10
9.4 (==« a0 L=11 1 Lo Lo [T 10
9.5 17 o =3 =1 1 o Yo [T 10
9.6 FOPMAE PrOPOITY ittt e e st e e e e e 11
9.7 (OF= 111 o F= (o] 1< TSSO PR UPPPURPPIRS 12
9.7. 1 ONREAUADIE ..o ettt et e e e e e e e e e e et e e a e e e e eeaa e eaeeaeraaa, 12
L I 2 o ] 0 LA €1 =1 o1 = TSRS O PP PPTRPRS 13
Lo TR A T o ] =1 o o ) (P PPN 13
10 (@ o] F= T =TT 13
(0 15 R o 1 = | OO PPOTPRPN 13
10.1.1 Properties of conStructor OPtioNS ODJECT......ouiiiii i 13
O TR 2 -1 11 o= Ve TP 13
O T T B - = {01 4 1 = TR 14
01t T N ) = 14
O B 1o 1 = 1B o -1 o 1 G TP URTPP TP 14
10.2.1 Properties of cONStructor OPtioNS ODJECT......coi i 14
O B O 111 o 1= Lo TR 14
O R T B T\ = {0 ] 1 = T 15
O 2 o ) (=T P 15

© Ecma International 2025 [



secmd

ORI AN o =1 [o Yo I 1 1 o]0 ) SO O T PP P TP RPPPPPPN 15
10.3.1 Properties of cONStructor OPtioNS ODJECT .......eviiiiiiiii e 15
O T D - 1= i (o] 1 = LS ERP TR 15
10.3.3  P@SOLUTION PIrOPOITY ..eiiiiiiiiiiittiie ittt s et e e e e s e s et r e e et e s r e et e e e s s s e e e eee s 15
10.4  Pulse-wWidth MOAUIALION ....ociiiiiii i ettt e e st e e e snb e e e snbee e e e nees 15
10.4.1 Properties of CONStructor OPtioNS ODJECT ....viii it 16
O S D - L= (o] 1 1= L TP P PP TP PPPPPPPP 16
O T oYY o o oY TN o ] 1= 2 16
O A oY fo] o1=T o YT PR TR PPPPPT 16
(0 IR T T O 3 Y o Yo o o] 01U 1< [ SR 16
10.5.1 Properties of cONStructor OPtioNS ODJECT ........oii i 16
O T D - L= {0 ] 1= LSRR 17
10.5.3 Specifying stop bit with read and write MethOodsS .......ccccoiiiiiiiiiii e 17
TR A 1Y =1 g Vo T o ST ER TSR 17
10.6  12C —AaSYNCNIONOUS O it e e e e e e et e e e s e et e e e e e e s e sanbraeeeeeeeseanntnaneeeaes 17
10.6.1 Properties of CONStructor OPtioNS ODJECT ...ciiii it 17
O ST D - L= (o] €11 F- L TR P PP TR PPPPPPPI 18
10.6.3 Specifying stop bit with read and write methodsS ..., 18
IO IR0 A /=1 o Yo £ RS 18
10.7  System management bus (SMBUS) — Synchronous 1O ..o, 18
10.7.1 Properties of cONStruCtor OPtioNS ODJECT .. ... 18
O /=1 s To Yo £ PP TSP P PP TP TTOPPPP 18
10.8 System management bus (SMBuUs) —asynchronous [O ..., 19
10.8.1 Properties of cONStrUCtOr OPLiONS ODJECT .. ... 20
0N C JZ N 11 o To Yo £ PRSP P PP TR TPPPPPPP 20
ORI Y= o - | SRR 20
10.9.1 Properties of CONStructor OPtioNS ODJECT .......evii i 21
IO IR T2 1 =1 o Yo £ RS 21
O JRe TRC T O 111 o - Tod < PRSP 22
ORI A D - 1= i o ] 1 = LSRR 22
10.10 Serial Peripheral INterface (SP1) ......uii oo 22
10.10.1 Properties of cONStrucCtor OPtioNS ODJECT .. ..o 23
O KO A DT L= (o] €1 - LTS EPP TR POTPPPPR 23
0 TR0 e 31 =1 g o T o PRSP 23
O I R e U E=Y I oo 1] o | TP UPP TR PPRTPPPR 24
10.11.1 Properties of constructor OPtioNSs ODJECT ... 24
O N A B - L= o] €1 1= L TP UPP TR POPPPPPP 24
0 B0 I O /=1 o Yo RS 24
000 I 00 @ 11 - T < S 25
I 200 2 I ==Y o o 1= S 25
10.12.1 Properties of consStructor 0ptioNs ODJECT ........ooi i 25
0 B0 2 /=1 o Yo S 25
10.12.3 Properties of Writ€ OptioNS ODJECT......coiiiiiiiii e 26
O 2 N 02 111 o T o] = TP UPP TP 26
O R D - L= (o] €1 1= LT UPP TR PPRTPPTP 27
O I GO =Y To oY 1 Ve [ Lo T 0] 0] o 1= Y OSSP 27
10.12.7 PEMOTEPOIPT PrOPEITY . eeeiieiiiiiiteti ettt ettt e e e e e e e et e e e s e s ettt e e e s e s s e e e e e e e s e annr e reeeee s 27
10.13  TCP lISTENEI SOCKEL ... .eeiiiiiieitite ettt e ettt e e e s e s b bt e e e e e e e e e saabb b e e e e e e e e s annbaeeeeaaeas 27
10.13.1 Properties of cONStructor OPtioNS ODJECT .....coii i 27
0 T 2 1Y =1 3 Vo T o PSPPSR 27
O e TR 07 111 o T o] 1= T TP ERP TP 28
O R R R D - L= (o] 1= L TR URP TP 28
L0.13.5 POPT PrOPOITY e e e e e e e e e e e e e e e e e e e aas 28
LI I A 1 T =Y o 1] = S 28
10.14.1 Properties of cONStructor OPtioNS ODJECT .....coiiiiiiiiiiieie e 28
0 T B 1Y =1 g o T o PSR SR 28
O R 07 111 o T o] 1= TP EPP TP 29
O N R D - L= T o] 1 = L TP EPP TP 29
10.15  TLS CHENT SOCKET .....eeeieiieei ettt et e e e e ettt e e e e e e e s anbb b e e e e e e e s e annbaeeaaaaeas 29

ii © Ecma International 2025



secmd

10.15.1 Properties of constructor Options ODJECT........eiii i 29
10.15.2 Write(DUTFEI], OPTIONS]) ciiiiiieiii ittt ettt e et e e e st e e e e e sabe e e e e sbbeeeesbreeeeane 30
10.16  AUdio INPUL = SYNCRTONOUS 1O ...iiiiiiiiiiiiiiiee ettt e et e e e st e e e sba e e e e abreeeeaaes 30
10.16.1 Properties of constructor OptioNs ODJECT........uiii i 31
O G T2 1V =7 4 Lo Yo 1 PEUPPRS 31
O S TRC R O 11 1 o= o] PP PR 31
O AR A D r 1 = {01 1 - | TP PP PO P PPP PP PPPPPP 31
10.16.5 DAt SPerSaMPLE PrOPEITY oooieee e 32
10.16.6 ChaNN@LS PrOPEITY ...oeiiiiiiiiiieeii ittt e et e e e e e ettt r e e e s et e e e et e e e s e s rr et e e e e s s e ssnrnneees 32
10.16.7 SAMPLERATE PIrOPEITY ..uvireiiiiieiiitiri ettt e et e e e e s e s et e e e e e e s et e e e et e s s rrr e et e e e s e a e n e s 32
O 1T e Y T o] o] o 1= o Y 32
10.17 Audio INPUL —aSYNCNIONOUS 1O ...ttt et e e st e e e st e e e e sbreeeeaaes 32
10.17.1 Properties of CONStructor OPtioNS ODJECT......uiii i e e 32
O D F 1 = {01 1 - | ST TP TP PP PP TPPP R PPPPPP 32
O T A O 111 o - Tox TSR PPPPPRPN 32
O Tt A 1 =1 o T PR PPPRRPN 32
10.18 Audio Output = synchronNOUS 1O ... 32
10.18.1 Properties of constructor options ObJeCT ... 33
000 B2 1V =7 d o Yo SRR 33
00 T0C T @ | 1 o - o] RS 33
O R0 A - - T 1 Y 2 - L SRS 33
10.18.5 it SPerSAMPLE PrOPEITY ooiieeiiiiiiiiiii e e ettt e e e et e e et e st e e e e e s e s s e e e e e e e e s e sn s rnr e e e e e e e e e a s rrnnees 34
O TR R N el =1 =0 K o 0] o1 =] o Y PP UPPPPUTTORRSSPPPIN 34
10.18.7 SAMPLERATE PIrOPEITY ..evrieiiiiieiiiiite ettt e e e et e e e s e st e et e e e s e s e e e e e e e s e s e r e e e e e e s e e nnrrnnee s 34
10.18.8 AUALOTYPE PrOPEITY .ceeeiiee e 34
10.18.9 VOLUME PIOPEITY eeeiiiiitteiie e et ettt e e e e ettt e e e e e sk ettt e e e e e ettt e e e s e e e b e e ettt e e e e e an s b e re e et e e e s e annrnnnees 34
10.19 Audio Output —asynchronoUS 1O ... 34
10.19.1 Properties of constructor options ObJeCT.......ccoii i 34
O R A B - = {01 1 = | TSP PPPT PP TPPPPP 34
O R TRC B 1V =7 d o Yo L TP PP PPPPPP PP 34
10.20 Image Input —sSyNnChronoUS 1O ... 34
10.20.1 Properties of constructor OptioNs ODJECT.......ueiiii i 35
02 0 B2 1 =1 d o Yo RS 35
02 0 Jc T @ 1 |1 o - o] RS 35
02 0B R - - T Y 2 - S 35
10.20.5 AMaBETYPE PrOPEITY ..ueeiiieiiieee ittt e e e e ettt e e e e e e s ettt e e e s e s et et e e e s e s e b e et et e e e s e e e rrr e e et e e e e e e rrne s 36
10.20.6 WAt PrOPEILY oo 36
10.20.7 NeLGRE PrOPEITY oot e et et e e e e et e e e e e e e e e n e 36
10.21 Image Input —asynchronous [O ... 36
10.21.1 Properties of constructor options ObjJeCt.......coooiiiii i 36
O A 07 1 | o F- o] - T PSP PTPPP PP 36
O R BT = T {01 1 = | TP PTPPT PP 36
02 0 =Y d o Yo SRS 36
11 O Provider Class PAtlerIN .......ociiii ittt e et e e e s e st e e e e e e s s ann st eeeaeeeessasntaneeeeaeeasannnes 36
0 R o o 1 1= 4 U o o ] SO PR PP PP TPRRUUPPPPIN 37
5 2 o e XY - o =1 o oY S 37
G B 07 1 | o T- o] - T TSP PTPPP PP 38
12 Peripheral Class Pattern ... ... et e ettt e e e e e s b be e e e e e e e e s s nbebaeeaaaeaeas 38
2 N o101 ¢ 1= { 4 ¥ (o] Ao ] SR PP UPPPPPPPRPPP 38
D o 1o Y -0 ¢ 4 1=1 4 o Yo TP PRT PP 39
12.3  cONFLIGUrE MELNOM ... oot e et e e e st b e e e e sabb e e e e anbaeeeeanbreeeeanes 39
12.4  AcCESSOrS fOr CONFIGUIAION ....eeeiiiiiiiie e e e et e e e e e e e e nnbaneeeas 39
13 Y =T Yo ] @1 = TS == 1 1= o PSS 40
R A o o 1 = 1 U [ o] Ko ) 40
R T oo Tt b i = {1 T TN 4 0 T=1 1 o Yo ORI 41
13.3  sample MEthOd ... 41
R B R O 1| 1 o - Vo] <SS 41

© Ecma International 2025 iii



secmd

14 Y= Yo o] T =Y L P UERT PRI 41
141  COMPOUNG SENSOIS .eeiiiiiiiiieeiittiie ettt e ettt e e s aab et e e e aabe e e e e as b et e e e aabe e e e e asbe e e e e asbe e e e e ambe e e e e anbe e e e e anbeeeeeanbeeeeannes 41
N N o of = 1= do ] 1= (T SRR 42
14.2.1 Properties of @ SAmMPIe OBJECT ... 42
14.3  AMDBDIENT IIGNT ettt e e e e e 42
14.3.1 Properties Of SAMPIE ODJECT......ooi e 42
I R AN 41 0 [0 1=y o] g T=T o o1 =TT U - SR 42
14.4.1 Properties 0f @ SAMPIE ODJECT....uiiii it s 43
I R O T o To] o B e D' = PSPPSR 43
14.5.1 Properties 0f @ SAMPIE ODJECT....uiiii i 43
I R O T o To Y o 1Y (o s [o ' = T PSPPSR 43
14.6.1 Properties 0f @ SAMPIE ODJECT....uiiii i 43
I S I T 1 PR PSR 43
14.7.1 Properties of a8 SamMPIe OBJECT ... 44
I R €11 f o 1T o ] =IO EET TR PPPTPT 44
14.8.1 Properties of @ SAmMPIe OBJECT ...t 44
e R o 010 (YT 11 O PO PR PP PP TPP PPN 44
14.9.1 Properties 0f a8 SAMPIE OBJECT ...t 44
2 0 T Y70 Yo =T o 44
14.10.1 Properties Of @ SAmMPIE ODJECT ... ... ————— 45
2 T o Y70 [ Yo =T TS T U1 o [ 45
14.11.1 Properties Of @ SAmMPIe ODJECT ... ... ————— 45
ot = To [ =] A ] 1= = PSP 45
14.12.1 Properties Of @ SAMPIE ODJECT. ... .. ———— 45
I e T =1 o = = RSP 45
14.13.1 Properties Of @ SAMPIE ODJECT ...t 46
I I S N 11 4 o @ )1 Lo RSP 46
14.14.1 Properties Of @ SAMPIE OBJECT....cooiiiii e 46
50 T 11 4 o I 1o Lo = SRR SSP 46
14.15.1 Properties Of @ SAmMPIE OBJECT....ccoiiiii e 46
I © QY] o =] o PSSP 46
14.16.1 Properties Of @ SAMPIE ODJECT... ... ——— 46
L1407  PArtiCUIALE IMAILET ..ottt e e e e ettt et e e e e e s s s b bt e e e e e e e aeanbbb bt e e e e e e s e annnbneeeeaeeas a7
14.17.1 Properties of @ SAmMPIE ODJECT. ... .. —————— 47
I S 0 D10 11527 47
14.18.1 Properties Of @ SAmMPIE ODJECT... ... ————— 47
0 e TS Yo 11 1Y o 1= AU = S a7
14.19.1 Properties Of @ SAMPIE OBJECT ...t 48
S TS 11V (o] o RSP 48
14.20.1 Properties Of SAMPIE ODJECT......ooi e 48
I R =T o 1] 1] =11 U1 PO TP EPP PR PPPPPPPR 48
14.21.1 Properties 0f @ SAMPIE OBJECT ..ot 48
I 5 o 1§ o3 o PSS 48
L14.22.1 SAMPIE OB JECT. .. e ——————— 48
22 IV o 1 =1 A1 F=I @] o =T o YT R @ ] o Y o o 101 o Vo £ 49
14.23.1 Properties of @ SAmMPIE ODJECT. ... .. ———— 49
15 DTSy o T E= YA O = 1T T = U =1 o o PP 49
ST A o] o7 o = 1 U o] o PPN 49
S T2 oo T4 & =¥ T o YN 0= o 49
LS TRC B - T=Y - N T 4 1 1=1 4 o Yo PRSP 50
SRR - 4 T« I o 4 1=1 4 s T Yo IO TP URP TP 51
1L T8 T - 4 T I 4 1= d o o S 51
15.6 AdaptINValid MELNOU ... ... ———— 51
15.7 [aE] =Yg oT N o] foT o 1= o A= PP PRSPPI 52
15.8  PIiXEl FOPMAt VAIUEGS ...oooiiiiiiiiiiiiiie ettt e e s e et e e e e e s e st e e e e e e s e asnbeae e e e e e e s e snntnnneeeees 52
16 Real-Time ClOCK Class Pattern ...........ueiiiiiiiiie ettt a e s e e e e e e e e 52
16.1  Properties of CONStructor OPtioNS ODJECT ...c.coiiiiiiiiiii e 53
G T2 oo Ty & =¥ 1 o YN 0= o 53

iv © Ecma International 2025



secma

16.3
16.4

17
1711
17.1.2
17.1.3
17.1.4
17.1.5
17.1.6
17.2
17.21
17.3
1731
17.3.2
17.3.3
17.3.4
17.3.5
17.3.6

18
18.1
18.1.1
18.2
18.2.1
18.3
18.3.1

19
1911
19.2

20
20.1
20.1.1
20.2
20.3
20.4
204.1
20.4.2

21
21.1
21.2
21.3
21.4
2141
21.4.2
21.4.3
21.4.4
2145
21.4.6
2147

22
22.1
22,11
22.2
22.2.1

23
23.1

© Ecma International 2025

L T oD o] o1=T YT TP P PP PPP PP PPPPP 53
CONT L GUP AT L ON PO PO Y s 53
Network INterface Class PAttIN ...t 53
Properties of CONStructor OPLtiONS ODJECT.......iiiiiiiiieii e 54
Lo Y41 1= ok 4 1= o Yo 54
Lo B el e 11 s 1T o ol 4 =11 o o [ PSS 54
Falo Y41 U= ok o o] 4 TN 01 Y 1= o 54
T Yo 0T o o =T 5P P PP P PP PPPPPPPOPPPPPPPPPPPPPR 55
Lo T [T X o] do] 0 1=] o VPSP UUPPPTPPPTEN 55
Ethernet NetWorK INtTeI aCe ... .o e 55
CONNECTELON PIOPEITY ooiiiiiiiiiite ettt e e e e e e e e e e e e s e e e e e e e e s s b rre et e e e e s 55
NV T N =) Vo Y Q[ =T = T S PRSPPI 55
Lo 4 1T =T et o 4 1 1= 1 o o T PRSP 55
Lo £ T 1 1= 0 0 56
3 N0 0 o] o] o1=] o 4 PSP UUPPPTRPPNN 57
BSSID PIrOPEITY couniiiiiiiiitii e e e e e e e ee 57
30 N 0] 0] ¢ 1=T 0 4 PP PTTP RPN 57
ChanNEL PrOPEITY ..o s 57
Domain Name ReSOIVer Class Pattern ...t ee e e 57
PESOLVE MELNOU ... et an 57
Properties of resolve OPtioNS ODJECT ......coiiiiiii e 58
[0 LN RS0 LY =T G 1 L USSP 58
Properties of constructor OpPtioNs ODJECT... ..o 58
DINS OVEN HTTPS (DOH) ...ttt ettt e e ettt e e e e e s bbb e e e e e e e e e e s nnbbneeeeaeeeas 58
Properties of constructor OPtioNs ODJECT.. ... 58
I S O 1= o | SO OO PP TR PPPPPPPPP 58
Properties of constructor OpPtionNs ODJECT... ..o 59
getTime MethOd.. ... 59
HTTP Client Class Pattern ... naan 59
[0 T2 1= I (01 2 = 1 59
Properties of constructor OptionNs ODJECT... ..o 59
CLOSE MELNOA ... e 59
LT 13 T3 o =3 d o o PP PPRRR 59
HTTP Client REQUEST INSTANCE ... s 60
L= T I 0 1= 1 o X 60
L g A =3 ¢ 1= T Yo IR 61
HTTP SErver Class PattBrN ........cooi ittt ettt e e e e e st e e e e e e e e e s s nbbbaeeeeaeeeas 61
(D 1= o] 0 = | SO P TP RPPPUPPPPP 61
Properties of constructor OptionNs ODJECT.... ..o 61
CLOSE MELNOA ... e e 61
HTTP Server CoONNECHION INSTANCE ... aans 61
Lo o o3 =T 4 1= oo 61
detach Method.......... 62
E Y ot o =Y o & ol 1 =1 1o Mo S 62
PESPONA MELNOMU ... euiiiiiiiiiii s nn 62
=Y T I 0 a =) { T Yo [T 63
WPLTE MELNOU .. o an 63
POUTE PIOPEITY Loueiiiiiiirinniirinere s 63
HTTP Server CONNECLION FOULES ....uuuiiiiice i eiee e 63
Static Data rOULE ..o 63
PrOPErtiES OF FOULE ..eeiiiiii ittt e e e ettt e e e e e s e bbb e e e e e e e e s e nbbbbeeaeaeeeas 64
WebSocket HANASNAKE FOULE ......ooviiiiiiiieeeeeeeeeeeeee ettt e e e s e asaeasasesssssasssesesasssesnsnsnnnnes 64
PrOPErtiES OF FOULE ..ottt e e e e ettt e e e e e s ab bt be e e e e e e e e e nbbbbeeaeaeeeas 64
WebSocKket ClieNt ClasSS PAttErN ........ceviiiiiiiiiiiiiiiiiieeieeeteeeeeeeeeeeeeeeseeesaeesesesssssasesasesssssssssssssasesssssssrsnres 64
[0 7= 1= I {0 12 = | 65



23.2
23.3
23.4
23.5
23.6

24

24.1
24.2
24.3
24.4
24.5
24.6

25
25.1
25.11
25.1.2
25.1.3
25.2
25.2.1
25.2.2
25.3
25.3.1
25.3.2
25.3.3
25.4
255
25.6
25.6.1
25.6.2
25.6.3
25.6.4

26
26.1
26.2
26.3
26.4
26.5
26.6
26.7
26.8
26.9
26.10
26.11
26.12
26.13
26.14
26.15
26.16
26.17
26.18
26.19
26.20

27
27.1
27.2
27.3
27.3.1

Vi

»eCna

Properties of CONStructor OPtioNS ODJECT .......oiuiiiiiiiiiii e 65
(o e 1Y 0 011 o Yo USRI 66
(=TT 411 Yo Lo PRSP SRP 66
Lo o 0 1= Lo Yo PRSPPI 66
Static properties of the CONSIIUCTON......uuiiiiii e e e e e s e raarreeee s 66
MQTT ClENT ClasSS PaAlt@I N uuuuutururuiiiireruiirurerererererererer .., .—.—————.———————————.—.—.—.—.—.—.—.—.—.—.t.r.r.r............... 67
(D= 1= o] f 10 - LA TP PP PP PP PPPPPPPPPPN 67
Properties of cONStructor OptionNS ODJECT.........uiiiiiii e 68
Lo N TN 1 1 1= o Yo PRSP 69
(=T T« 10 011 o Yo PR PRRRRPN 69
Lo o 0 1= Lo Yo RO PRRTPRPPN 69
Static properties Of the CONSIIUCTON ........ii e 70
S S R (=T S o = Lo [ S OO PP PPUPPPPI 71
1 =T PP PRRPRRN 71
SUDPALN STFINQ ettt et e e et e e s e s e e e e e a b et e e e b b e e e e eab b et e e e nbe e e e anbe e e e e eneee 72
L O TS o= 11 (=] [ TSP P PP PTOPPPPPRPPPN 72
Do Tod Ao ] A O = TS T ST = L (=] o o P 73
LSV £ 11 = 76
OPEN fUNCHION ..o 76
Key-Value DOmain Class PaAtTEIM ......c..eiiiiiiiiiiiiiie ettt e e as 76
= ] o RSO PRRRR 78
FoT 7= 4 T8 0 o3 T Y o USSR 78
[Symbol.Iterator] fUNCLION ... 78
Flash Partition Class Pattern .........coueiiiiiiie i te ettt e e e e e e s e e e e s e snntrreeeeaaeeeaanns 79
0T o b1 (= PO PP PP OPUPPPPII 79
FoT =Y 4 I8 0 o T Y o SRR 80
Lo Yo Fo =TT 013 oY o =P 80
CLOSE MELNOM ...ttt e e oottt et e e e e s s s b bbbttt e e e e s e aanb bbb e e e ee e e e e annbreeeeaaeas 80
T 1T J = o =T 4 1= 1 o Yo USRI 80
WPLEE METNOMA ... ettt e e e s e e e e e e s e bbb e e e e e e e e nneenees 80
FOPMAT PIOPOITY e e e e e e e e e e 81
L [ORS Y A o oAV ATo [=T T 1] €= U Ko = PP 81
GlODAI VANIADIE ...t e e e e e re e e e s 81
e eI o= e o] foT o 1=T o o PRSPPI 81
(@3 o TU SR o] go] o 1= o 1= 2T PRSPPI 81
L@ I o] = TS ORI 82
L@ I 0 Yo 1T SRR 83
Y= 1] 0 T 83
(D E] o] F= NV PP PRSPPI 83
REAIIME CIOCKS ...ttt e e e e ettt e e e e e e st b be e e e e e e e e aan 83
DOMAIN NAME FESOIVEN ...ttt e e e e e s bbb e e e e e e e e e nnbbbeeeeaaeaeann 83
NI o] 11T o | PP PP OPPPPPPPPP 83
[ I I o 1= o | TP PP OTPPPPPPPP 83
[ I I ST o 1= o | TP PP PP OTPPPPPPPP 83
L I ST =T RV T PP TP TP PP PP TP PE PR PR PRPRPRPRPRPRIN 84
1771 I o] = o O PRERR 84
171 I IS T ] 11T o SRR 84
WS (WEDSOCKEL) CHIENT ...ttt e ettt e e et e e e sbe e e e e snbaeeeeans 84
WSS (WebhSO0CKEt SECUTE) CHENT ...ttt e e et e e e sbaeee e 84
IS 3 o = o | SRR 84
NS Yo T S L (=T - o =SOSR 84
S S I (=T L RS (o] = o [P UP PP UTOTRTPPRPTP 84
Provenance Sensor Class PAtierN .........ou ittt e e e e e e e e e e 85
Properties of CONStructor OPtioNS ODJECT .......eeiiiiiiie e 85
CONTIGUPATION PrOPEITY . ettt e ettt e e e e e e e e e bbbt e e e e e e e s e annbeeeeaaeeas 85
1dentification PrOPErtY ..o 86
Properties Of SaMPLe ODjJECT.......coi ittt e e e et e e e e s e bbb e e e e e e e 86

© Ecma International 2025



secma

Annex A (normative) Formal algorithms ... 89
Al Ta N =T g o= U 1= o £ RO PPRRPRR 89
A.1.1  CheckInternalFieldS(ODJECT) ....ouiiiiiee e e 89
A.1.2  ClearInternalFieldS(ODJECT) ...t e rb e e nens 89
A.1.3  GetinternalField(0DJECT, NAME) ... i i e enees 89
A.1.4 SetinternalField(object, Name, VAlUE) ... 89
FN SR [0} (=T 4 = L 1 0= 1 o o £ PRSP 90
A.2 LR E= T 6 <1 TP PPTP PRSPPI 90
F N R = Yo To ] =T 1 o 1= PRSP 90
F N N 11 41 oY= T PRSP 90
N T @ | o =T o3 £SO ESR 91
N 2 YA (=N o YU i T SRS 91
A.3 10 41 T O P PO P TP PPPOPPPPP 91
A.3. 1 ASYNCIIONOUS OPEIALIONS ....ieiiieiitiiie ettt ettt e e et bt e e e s bt e e e bt et e e e anb et e e e anbe e e e s anbeeeeeannns 91
A4 ST Y O o T - U (=] [ RO 91
YN O R of o] -5 of o U e oo Yol (0] e 40 ] = O O T PO PP PP P TUPPPP 91
ALA.2 N O S s 92
ALB.3  CLOSE() cuuuuuunnnnnni s 93
Y O A o N o Y= (o= o T Yol g O O PO PP PPPUPPPO 93
A.5 (O N O = LTS - L (=T o TP PP PP PPPPPPPPPTTN 93
AL CONSTrUCTON(OPLIONS) L s 93
F N o] [0 11 =T § I O PO PP PP PP UPPPO 94
F NI B =T To [ o] o1 4 Lo 1 ) I O PO PP TP PP PUPPPOO 94
F N A g1 (=T (o F= 1= ) O PSP PP TUPPPO 95
ADD SO TOIMAI(VAIUER) ... s 96
AD.6 GO TOIMIAL() .. uuuuuununniii s 96
AL DT N O S s 96
A.6 IO Class Pattern — aSYNCHIONOUS ......uuuuuiiiiiiiiiiiiii s 96
AB.1  CLOSE(CAIDACK) ..uuuiiiiiiii s 96
A.6.2  read(OptioNn], CAIIDACK]) .. ..o e 96
A.6.3  write(data], CallDACK]) ... 97
ALB.d N O S s 98
A7 1@ I 3 = TS = SO PPREE 98
F N % R b 1o | = | O PSPPSR TSP 98
AT7.2  DiIgital DANK ..o ———————————————————— 99
ALT.3  ANAIOG TN DUt 99
A.7.4  Pulse-Width MOAUIALION ...t e e st e e e e e s e bbbreeeeaeeeas 100
A.7.5  2C = SYNCNIONOUS O Lo s 100
A.7.6  2C —aSYNCNIONOUS O ..o s 101
A.7.7 System management bus (SMBUS) — SYNChronous 1O ........cccooiiiiiiiiiiiiiie e 102
A.7.8 System management bus (SMBUS) —asynchronous [O........ccooiiiiiiiiiiii e 104
A T T o - | PR 106
A.7.10 Serial Peripheral INterface (SPI) ... ..ottt e e 108
At R WY = = oo 11 o SRR 110
0 I 8 = =Y o o = SRR 110
A T I8 e 11 4= =T Y o Yo = PSR 111
AT LA UDP SOCKEL ...ciii ittt ettt e oottt e e e oo o b ettt et e e e e e o a bbb et e e e e e e e e aab bbb e et e e e e e e e nbabneeeeaeeean 112
A.8 Peripheral Class Pattern ......ccccoooioiiiieeecee s 112
PNt = T A oY o 15 of ol U T o ol (o] o] £ o ¢ K= RO TP TSP 112
R ot o 1Y =T § TSP RPR PSR 113
YN TR T oo T o b o K= 4T ot =T (o] o 10 ] 1 1= I TP TP 113
A.9 Y =T Yo T O 1= 1T == 1 1 1= o S 114
PN I R of o1 T3 of a1 T o oo ol (] 0} (T 0 =) TSRS 114
F N I ol o 11 T ) TP 114
AL9.3  CONTIGUPE(OPTIONS) weeeiiiiieiieiite ettt e e oo e s bbbttt e e e e s e e et b e et e e e e e e e e aabbbbe e e e e e e e s aanbbbaneaaaaaeas 114
A9 4 SAMPLE([PArAIMS]) cutiiieiiiiiie ettt et e e et e e e sttt e e e ettt e e e aa bt e e e e e be e e e e aR b e e e e e anbe e e e e anbee e e e anbeeeeenreas 114
F N O B T =T o KT o | g O F= 1o X = =2 TP TOPPPPT 115
N 0 A Y o o = =T o 1 1= = SRR 115
F O 2 N 1 01 o 11T a1 0 T | ] TP 115

© Ecma International 2025 Vii



secmd

A.L0.3 AlMOSPNEIIC PrESSUIE ..ttt ettt e et e e ettt e e e et et e e e aa b et e e e e s b et e e e anbr e e e e anbe e e e e anbneeeennes 116
y N O S @F= 1¢ oTo] ¢ I 1T ) q [ = 2 PP UPPRTPR 116
A.L10.5 CaArbON MONOXIA@...eeiiiieiiiiitieiie ettt e e e e e sttt et e e e s e s a e beeeeeaeeesaanasbaeeeaaeesaaanbnbeeeaaaeaeannn 116
N O G 5 11 ] PR UPRRRPR 116
N O B A €37 fo =Y oTo ] o1 OO P O PPPTPPRRPR 117
F O S I o TU 0 YT 1 2 PR PPPUPRRRPR 117
0 e o 1Yo [ o Yo =T o SO PSRERR 117
y O I 01 o Y7o [ oo [ = o TS o =SOSR 118
O Bt B AV =T Y] Ko ] 4= = PP TPPPPTPPRTPR 118
F O Tt 2 Y/ 1= 1 =T o = USSP 118
F Tt N T @ ) Lo = PO SPRTPRR 119
O Tt N o 1 e ) (o = PRSPPI 119
N O R 51 @) Vo =T o OO PO PP PP PPPUPPRPPP 119
ALLO. 1B PAMTICUIALE MBI ....eiii ittt ettt et e e e s s s bt et e e e e e e s e annabaeeeeaeeesaanbnbeeeeaaeaeanns 119
F N O Tt A (0 ) (] 1 V1 TP PO PP P PSP PUPRPN 120
ALLO. L8 SO0 MOTSTUTE ..ttt e e ettt ettt e e e e e s e bttt e e e e e e s e aasbeeeeeaeeesaannsbaeeeaaeeeaaanbnbeeeeaaeaeaann 120
E N O R B =Ty T o L= =AU OO PO PP PP PP PPPTPPRPPPR 121
N 0 021 0 I o T o USSR 121
A.10.21Volatile Organic COMPOUNGTS .....uuuuuuieieieiuieieieuerererererererererererere.—.—.—————.—————.—.———.—.—.———.———.—.—.———.—————————. 121
N R B TS o1 = YA O - o R T = U =T o o 122
N I O R oo Y o 3 o U el o] (e o1 [0 1= 122
A.11.2 adaptINVAlid(BIrEA) ...coccueeiiiiiiiieiiiiie ettt ettt ettt e bt e e e e e e e e anes 122
I O T ol o 13 =T 123
E N oYY & g T (o] o] £ o] 4 1) I PP PP PPROUPRRN 123
F N SR oo T (U o= (o] o] £ o] 4 1) IO PP PSP PUPRRN 124
N G =T o e ) OO TP PP TP PPPUPPPPPRN 124
A.LL.7 SENA(SCANIINES) 1ttt ettt e e e et bt e e e s h b et e e e sk b et e e ek b et e e e aabe e e e e anbe e e e e nnbr e e e eanee 124
ALLL8 Bt WIATN() i e e e s e e e e e e e s b e e e e e e e e aaa 124
E e T ==L o o= = o of () PP PSP OUPRRN 124
N I I 0] N\ o ] £ TP PP TP PPPPPPPPPRN 124
N I O I o 0] 13 4 U o o T 0 0} 0 125
A.12 Real-Time CIOCK Class Pattern ........c..uuiiiiiiiiiiiiiiiie ettt e e e e s s e e e e e s s st rreeaeeeeeannns 125
YN 5 R oo T 1 o L e ol oY ol (0] o] {1 ] K= O PP SPROUPRRN 125
N A ol Mo 1 =1 ST SPR U PRR 125
) e B oo Y o i =Wt =T (o o1 4 e 1 0 =) 125
E N A - o o 1Y (TSP UT TP SPRUUPRR 125
N 2 ST =Y = i o 11 T=T 1 =) 126
A.L12.6 CONSTIUCTON OPTIONS .oiiiitiiieiitie ettt e et bt e e s bt e e e as b et e e e s abe e e e e aa b e e e e e anbe e e e e sabeeeeannnes 126
AL2.7 CONTIGUIE OPTIONS ..ttt ettt e e e e bt e e e e a b et e e e et b et e e e aabe e e e e aabe e e e e anbeeeeennnes 126
A.13  Network Interface Class Patlern...........coi et e e e e e e e 126
G T R ol Y o 3 o U el o] o (o o1 40 ¢ 1= 126
N J A ol o 13 =1 PP T PSP OUPRR 126
F N e T T oo T 1 Y=Yl of (0] o1 £ 0] K= FO PSP U PR 126
G T A B Y el oY oo 1= ok f ) 127
F N TR =L o 7. Yo R PP UT PSP PR 127
G T G T == - T [ LT =1 =3 () 127
Y S T A == ol oo o =T ol i e o I PO SPRPUPRR 128
G 78S I o0 ¢ 3 U o (o] 0 0} {10 1= 128
A. 14 Ethernet NetWOrK INTEIFACE .....ooii i ittt e e e e e e e e e 128
N 0 R ol o T [ [T on of (o] o 4101 1 1= IR TP PPPUPPPTPR 128
I VAV o N = Yo T G =T - Vo - OSSR 128
F N 70t A oo T 1 =Yl of (0] o] £ 0] K= OO PRSPPI 128
E N I Y of- [ (o] o1 £ o] ¢ K= FO TP TP PP PPPTPR 129
AL15.3 GO BSSID().eouiveuiiereieteiteeeeteseete et etetete et ete et et e et ese et e s e et e st et e ettt e e e a et et et et e et et et ene et ens et et et e s eae e ere s s 131
N -1y o S O PPUT T PPPUPPPRPP 131
R ST ST == S 0 OSSR 131
E N N I - 2=) ol ol s =T o T K TP TP PP PPPTPR 132
A.16 Domain Name ReSOIVer Class PatterN..........cccuuiiiiiiiiiiiiiiiee e s e e e e e e e snrnee e e e e e e e e 132

viii © Ecma International 2025



secma

AN G 70 Aol o 1 of ¥ el T o (0 o1 Lo 1 ¢ =3 [PPSR 132
LN X G2 ol o 1= PO OO PP PP OPPPPTPPPRPN 132
A.16.3 resolve(options[, CAlDACK]) ... 132
N A B 1N S o A7 Y U PR PRRPT 133
N A A o ] K=Y A 0o (o] o o1 f [0 ¢ =S PRRP 133
ALLT.2 NOTES -ttt ettt oo oottt e e e e oo E ettt e e e e e o R b e e e et e e e e e o AR e R e e et e e e e e e Rbnbe e et e e et e e e brrrereaeeeean 133
ALLB  DINS OVEI HT TP S ittt ettt e ettt e e e e oo b e e et e e e e e s e ab et e e et e e e e e s nabebe e e e e e e e e sannbnnneeaeaeaaan 133
y A S A o0 ] K=Y A 0o (o] o o f [0 4 = PRSP 133
LN S N (o] 1 OO PP PP PPPPPPPPPPN 133
N T N I O 1 =T o | TP RP PSR 134
WA IS 8 Aol o 15 of U el T o (0 o1 Lo 1 ¢ =3 [P PRRR 134
LN K B ol o 1= PO PO O PP PPPPPPTPPPPPTN 134
F N S I 1= ol I =Y (o= | o = o3 7<) PRSP 134
ALL19.4 CONSTIUCTON OPTIONS ..ottt ittt ettt e e e st e e e st e e e e e st b et e e sabe e e e e aabb e e e e abbeeeeaabbeeeeabrneeeane 134
N S T N[ ] (PRSP PRRRT 134
A.20  TCP ClieNt Class PatterN .......eciiiiiiiee ettt et e et e e e e st e e e snbe e e e e snbee e e e anbaeeeennres 135
A.20.1 CONSTrUCTON(OPLIONS) .uiuiiii s 135
F N O 7 ol o 1= TP P O PP PPPPPPTPPPRRN 135
A.20.3 #resolveCallback(error, Name, A0ArESS) . ..ccui i iiiiiiiee e s s e e e s e e e e e e s sennnaeeeeeeeeas 135
F N I T =T Te [ (o1 01U ] o1 o PO PP U TR PPPPPPPPPN 136
A.20.5 write(datal, OPTIONS]) cooi it e e b e b e e e st b e e e e breeeeane 136
AL 20,6 P E P PO (BITOT) ittt s 136
A.20.7 HECPREAAADIE(COUNT) . cciiiitiiiii ittt ettt et e e e st e e e st b e e e sabb e e e e aabbeeeesbbeeeesbreeeeanes 136
A.20.8 HECPWriTabLe(COUNT) ... s 136
YN RS I T <F- T I Y o oo - - SRS 136
F N I (0 [ ] (T T OO PP TU PR PPPPPPPPPN 136
F A R o N I O 1= o | ST OO PP PTT T PTPPPPPPPPPN 137
A2L.1 CONSTErUCTON(OPLIONS) wuiueiii s 137
N A ol N o 1= PO P PP PPPPPPTPPPRRN 137
AL2L1.3 FROUEST(OPTIONS) it s 137
A.21.4 CONSTIUCTON OPTIONS ..t s 137
AL2LD N O S et s 138
A.22  HTTP CHENE REQUEST .ottt ettt et e ettt e e ot et e e e sabb e e e e aabbe e e e abbeeeesbbeeeeane 138
F N R ol oY 1= { U o3 o] o] o1 110 L= PR UPPRPTTPRR 138
A.22.2 1read [ WPITE LA ..uuuiiiii e nnnnanan 138
F N2 T /(@ I I O 1= o | TSP PUTT O TPPPPPPPPT 139
A.23.1 CONSTIUCTON O IONS ..t s 139
AL23.2 WP ITE O TIONS it 140
ALi23.3 N O S i s 140
F N V1Y L= o 1o Tod 1] A 11T o S SRER 140
Y o R oo o 15 of U Tex oo Y ol (0] e 40 ] = PP PPPRPTTPRRN 140
A.24.2 CONSTIUCTON OPTIONS ..t s 141
AL24.3 W ITE O IONS et 141
F N [0} (T TSP PUU PR TPPPPPPPPPN 141
A.25  TCP Server Class PallIN .........eiiiiiiiiiiiiiie ettt e ettt e e e e e s et e e e e e e e e s s bbbneeeeaeaean 142
A.25.1 CONSTrUCTON(OPLIONS) i s 142
F A T ol N o 1= PP UPPRPPTPRR 142
A.25.3 HECPREAAADLE(COUNT) . ..eiiii s 142
YN SR o] K= (U (o] o] o] o 1 1o o K= PRSPPI 143
22 T8 T N0 ) PSPPIt 143
A.26 TCP Server Connection Class Pattern .........oicciiiiiiiee et e s r e e e e s snnnaneeeeee s 143
A.26.1 conSTrUCTOP(SEIVEL, TIOM) ittt e e et e e e e snbae e e e snneas 143
YN I 2 ol Ko 11 T ) PP PP 143
F N ST B =T [ (oo 1U ] 1 P PSPPSR 144
A.26.4 wWrite(data], OPTiONS]) ciiieeiiiiiiiiiie ettt e e e et e e e e e e s e e e e e e e e e e e bbb e e e e e e e e e s e bbbaneaaaaaean 144
F N I 2 ool o] = ol e Yo (=T o (oY o I TSP EP TP 144
A.26.6 HECPREAADIE(COUNT)..ciiiii ittt e e e e ettt et e e e e s e e ae b e et e e e e e e e e sabbbe e e e e e e e e s e nbnbnneaaaeaeas 144
YN T ool o) ok o= o B =Y (o 01U | PRSP 144

© Ecma International 2025 ix



A.26.8
A.26.9
A.27

A.27.1
A.28

A.28.1
A.28.2
A.28.3
A.28.4
A.28.5
A.28.6
A.29

A.29.1
A.29.2
A.29.3
A.30

A.30.1
A.30.2
A.30.3
A.30.4
A.30.5
A.30.6
A.30.7
A.30.8
A.30.9
A.31

A3l.1
A.32

A.32.1
A.32.2
A.32.3
A.32.4
A.32.5
A.32.6
A.32.7
A.32.8
A.32.9
A.33

A.33.1
A.34

A.34.1
A.34.2
A.34.3
A.34.4
A.34.5
A.34.6
A.34.7
A.34.8
A.34.9
A.35

A.35.1
A.35.2
A.36

A.36.1
A.36.2
A.36.3
A.37

A.37.1

»eCna

Q=Y Lo B AT o Yo - - TSP 144
NOTES ettt e e e e e e e e r e e e 144
HTTP SEIVEL ..o e e e e r e e e 144
NOTES .ttt r e s e e s e e e e 144
HTTP Server CONNECTION ...ocuviiiiieiiiee ittt et n e ss e s n e e n e e e sne e e nnneennneas 144
(o =Y o= el o () P 144
ETelofTok o (o] o1 4[0] 1 1= FUPT PP P PP PP PUPRPON 145
=g ol o 11 oY () SRR 145
Y o e 1T ot =T (o] o1 {01 1 1= PO OT PP PTPRPON 145
(=T o Y] oo [ (o] 6 1 4T 1 K= S SRR 145
N[0 X (=T ST PO PR PP PRPRPPPRPRPR 146
Provenance Sensor Class Patiern ...t e e e e s beeeea e e e e anes 146
ool ok X UL =T (o] o1 4 [0] 1 1= P OO PP PPN 146
3 TR =Y o= U= L 1= ) RSP 146
N[0 X (=T ST PO PR PP PRPRPPPRPRPR 147
AUTIO INPUL CLASS ittt e ettt e e bb e e s b b et e s bbbt e e s bt et e e s nbe e e e s nnne e e s annneeas 148
(oTo] o111 (U Toa o] gfo] o1 4[0] o 1= J N O PO PP PP PPPPRPPPPPP 148
[N [0] { = PP UU PP PPPPTRT PP 148
Q1Yo I R I of Y0 = - SRR 148
L3 o o o (S 148
S eTo] (o] o1 uTe] 4 1) HT PP P PO 149
Bt AUAIOTYPO() i 149
BET DIESPENSAMPLE() . it iteiieiiiiie ettt et e bt b e et e e e s ba e e e e abreeeean 149
gt ChANNELS() i 149
BT SAMPLERATE() . eteeieiiitiie ettt ettt ettt e b e e b e e e s b e e e e e ba e e e e abrreeean 150
Audio INput Class — AaSYNCRTONOUS.........uuiiiiiiiiiiiieie it ee e e e rereeeeererereeerererererernrnrnrnnes 150
NOTES ettt e e et e e e e s e e e s r e e e s e s e e e e e e s er e e e s 150
AUCIO OULPUL CIASS ..eeiviiiiiiiiiiiieieieteeeeeteeteeeeaeesesaeeseeseaeseseeeeesessssaeeeessessssessesesssssssssesssssssnsssnsssssssnsnrnnns 150
(oTo] o111 gV Toa o] g o] o1 4 [0] o 1= SN PP PP PPPPPPPPPPPU 150
[N [0] { TP U PPPPPPTRT P 150
Q1T Yo I o I of e = - SRR 151
L3 o o o (S 151
S eTo] (o] o1 uTe] 4 )RR TR PTPRT 151
L= L A Y0 Lo b Kol Y] =T (PO PUPPRPPPPPR 151
get DIitsSPerSample() .. 152
L= L A ol - o T L= R PP PUPPRPPPPPPR 152
get SAMPLERALE().ccii i 152
Audio Output Class — aSYNCRIONOUS .......uiiiiiiiiii et 152
[N [0] {1 PP TSP PTPPTRTR P 152
L= Vo L= LT o LU L = 1= PP 153
CONSIIUCTOT OPLIONS oo 153
NOTES it e e et e e e e s s e e et e e e e e e e e e e e s e e e e e e e s a e e e e e e e s 153
(T Yo I ok R of e = = DT PPUP PP 153
- Tel (o] o1 uTe] o | TP P PP PRSP PP 153
L3 o o o (PP 154
S eTo] (o] o1 uTe] 4 )RR TR PTPRT 154
et AMAETYPE() i 155
F= N e i of o1 PO T PR PUPPRPPPPPR 155
L= o (=T = o o ) PR PO 155
Image INput Class — @SYNCRTONOUS ......oiiiiiiiie i 155
[ [0] € PP TR P PPPPTR 155
Yol (oY o 1A ToT o] IAot= 111 o = Tod | PSPPI 155
IMage INPUL BUTFEr PrOtOtYPE ..ottt e e e e e e bbb e e e e e e e e aes 156
N[0 X (=T ST PP T P PP PP PR PR PR PRPRPPPRPRPRE 156
CreatelmagelNpUtBUTfEr(F@SOUICES) ...uuiiiiiiie et e e 156
Lo Ko 11T T TP PTPTPURPTRN 156
(@ o YA Yo Lo g @ T 1T == 11 =] o o SRR 156
oo T3 o ol ¥ Tk oo Tl (o] o 1A Te ] 4 =) PR 156

© Ecma International 2025



seCmna

A.37.2
A.38

A.38.1
A.38.2
A.38.3
A.38.4
A.39

A.39.1
A.39.2
A.39.3
A.39.4
A.39.5
A.39.6
A.39.7
A.40

A.40.1
A.40.2
A.40.3
A.40.4
A.41

A.41.1
A.41.2
A.42

A42.1
A.42.2
A.42.3
A.42.4
A.42.5
A.43

A.43.1
A.43.2
A.44

A.44.1
A.44.2
A.44.3
A.44.4
A.44.5
A.44.6
A.44.7
A.45

A.45.1
A.45.2
A.45.3
A.45.4
A.46

A.46.1
A.46.2
A.46.3
A.46.4
A.46.5
A.46.6
A.46.7
A.46.8
A.46.9
A.47

A.47.1
A.47.2
A.47.3

L o 1Y =T ) SRR 158
[ F= TS AT\ (o T LU =T @ ] o] = o3 SRR 158
N O TS .t 158
oY o Y=Y aT (o] o1 410 1 1= PSSR 158
N O S s 158
YL oL N A R =Y - oo Y o T T PP P PP POUPSPPO 159
Flash Partition Class PATEIN ........cociiiiiieiiie it e e e eennes 159
o) 413 f o U Tl o o ) SRR 159
Lo Ko 1Y =T § T O PP P PUP PP PPPPP 159
LYo T =1 = 2 Ko Tl 0T 1] IR o ) TSR 159
PEAA(COUNT, OFFSEL)..iiiiiiiiii ittt s et s et e e et e e e s e e e e nneas 160
L3 oF= U K=Y (S PEPPR 160
Ll o= (o B = W o i £~ ) PSSR 161
LYo B T R o < o - - PP PPPRPPR 161
Flash Partition ITErator CIASS .......iciiiiiiiieiie ittt 161
o) 4 13 f o ¥ Tl o o () SR 161
120G o (T PO PU PP OPPPRO 161
T2 o o o 162
L [0] 4= PP PP PPPTRR PRSPPI 162
Update MOAUIE OB JECT ... . s 162
N O S .ttt e e e e e e e 162
OPEN(OPLIONS) c o 163
UPAAte ClasSs PATEIM .....eiiiiiiiii ettt ettt e e e et e e e et b e e e e anbre e e e anens 164
(oo 013 of a1V T o o ol T PP P PP PPPPRP 164
o 0 X3 - () 164
ool =T =Y T T PP OO PR PPPPRP 164
L g R =T (o == 0 1 5T =3 1 ) PSPPIt 164
PEAA / WIPIEE AL .eeeiiiii ittt e e e e e e e s bbb et e e e e s e e nb b e eeeeeeeeaannne 165
Key-Value MOdUIE OBJECT ... . s 165
N O S .ttt e e e e e e e 165
OPEN(OPLIONS) c o 165
Key-Value DOmMain Class PatlErN ........c.uiiiiiiiiiiiiiiiee ettt 166
(o] 013 ol a1V T o o o o TP UT T PPPRRO 166
o e X3 - () 166
(o LN N =T (=) PP PP PRPPPPPPPNE 166
PEAA(KEY [, DUTTEIT) ittt et e et e e e st e e e e st e e e e st e e e enbeeeeeneeas 166
L g R =T = Y2 U LU 1) PP PPPPPRt 167
3L oo X A A oY - ol oY o TP SO OTPRPP PSR 167
QYo I Ao R o =l o - - R TP PP TP PPUPPPPPPTNE 168
Key-Value DOMaIN ILEratOr ClaSS .....coiuiiiiiiiiii ettt ettt et e e e e 168
o] 013 ol al¥ Tk oo ol (o [e] 1 1= 1 o ) F O TP PP ST PPPRO 168
Tt o () 168
L1 ULl T PO PP PP PPPPPO 169
LI [0 1T PO PPPTPPPI 169
L L= O = 1Y = 11 =] o o SRR 169
0] 4= PP PPPPTR PRSPPI 169
(o] 013 of a1V T o o o ol T PP PRT P UPPRO 169
o e X3 - () 170
L L1 o1 PP PPPPPPPN 170
PEAA(COUNT, OFFSEL) . ittt sttt e e e e e e bt e e e enbe e e e e naeas 170
YR o = (] 4= ) TP T PR PPPRPPR 171
=X ol 1 (PRSP 171
WP E(DUTTEE, OFfSBE) o et e et e e e e e e s et b e e e e e e e e s e nnnes 171
L= Yo I P T ol < o - - OSSR 172
DIreCtory Class PatterN ........eeeeiiiiie ittt et e e e et e e e e e e s e bbb e e e e e e e e e s aanbabreeeaaaaeas 172
N O S s 172
(oo 4 15 of ol Tl ol o ol ) PSP UP PR PPPUPPPRP 172
Lo Ko 11 =T § TP UR PP 173

© Ecma International 2025 Xi



secmd

A.47.4 createDirectory(Path) e e e e e s s raaeaaaan 173
A.A7.5 createLink(Path, TArgEOL) . ..o e 173
E N SR =N N o =T (1= {1 ) [P SPR PR 173
A.47.7 move(fromPath, toPath[, dir€CTOIY]) ..o ouiiiiiiiiii e 174
YN S I oYo Y= o A ot Yol o] Y7 (o] o1 4 [0 1 13 1 OSSR 174
F N e oo 1=T oY o B =T (o] o kAT o] ¢ ) TP P PSP PUPPPN 174
AA7.20readLinK(Path) .o e e e e e e nnee 175
E N B Y o T ([ = L1 ] ) PO PP PP PU PSP PP PPN 175
A =3 - ol £ (o - 4 ) OSSR 175
E N B Y o To N A A o Y o= o T o I PP PP PU PSP PPUPRPN 176
y Nt B B 11 ¢ =Toa (o] VA L (=] = o O = TSR 176
A.48.1 constructor(direCtory], PAth]) .o e e aaeeaaans 176
F N B =D ol F PRSPPI 177
b R B o = ol U [ ol ¥ SO PEERPR 177
F b S N[ ] £ PP UPPRTPR 178
A.49  HOME DIrECIOTY ODJECT ...eiiiiiiiiie ittt e e et et e e e bt e e e anbr e e e e aabe e e e eeeee 178
e T R N[ ) (= PP 178
7Tl TeTo ] =T o] 1 AT PP PP PPPPPPPPPPR 179

Xii © Ecma International 2025



secmd

Introduction

This Standard defines APIs for use on embedded systems. Embedded systems are far more diverse than
personal computers, smartphones, and web servers where ECMAScript is most widely used. The diversity of
embedded hardware is a consequence of devices being optimized for a specific product or class of products.

It is not enough for these APIs to support the features embedded systems have in common. To be truly useful,
they must allow access to the unique hardware capabilities of each embedded system. This requirement makes
this Standard very different from that of a computer language which is grounded in the formality and rigor of
mathematics. Hardware can be inconsistent, even sometimes messy, but it needs to be accommodated.

The ability for scripts to access unique hardware capabilities has an important consequence. It means that not
all correct scripts will run correctly on all hardware. If a script requires a feature that is unavailable, it cannot run.
While it is common in ECMAScript to emulate missing language and runtime features with a “polyfill”, this is
usually impractical, if not impossible, for hardware capabilities. Therefore, the goal of this Standard is to make
it possible to write portable scripts for specific operations, not to guarantee that all scripts execute correctly on
any conformant deployment.

One important consideration when designing hardware products is cost. The APIs are designed to allow efficient
execution with minimal resource use. They assume no minimum or maximum configuration. Advances in the
state-of-the-art of ECMAScript engines, microcontrollers, and runtime libraries will determine where these APIs
may be used.

This Standard is influenced by the Extensible Web Manifesto. It aims to provide low-level APIs that do things —
primarily related to hardware and communication — that the ECMAScript language cannot do by itself. These
low-level APIs are functional, simple, and efficient. The APIs may be used directly. However, it is expected that
many developers will interact with them indirectly through higher-level modules and frameworks that build upon
the low-level APIs. This layered approach keeps the low-level APIs small and focused while allowing a variety
of uses and API styles to be built upon them.

The first edition is built around the 10 Class Pattern which provides consistent, efficient, extensible access to
the 10 capabilities of embedded systems. Driver-style classes for 10 extenders, sensors, and displays build on
the 10 foundation. The first edition was adopted by the General Assembly of June 2021.

The second edition extends 10 with asynchronous capabilities used by 12C and the system management bus. It
introduces new sensor classes, including many gas sensors; classes to manage and monitor network interfaces;
client support for common network protocols including HTTP, MQTT, NTP, DNS, WebSocket, and TLS; server
support for the HTTP and WebSocket protocols; and a real-time clock peripheral class. It was adopted by the
General Assembly of June 2023.

The third edition introduces new 10 classes for audio input, audio output, and image input, such as cameras. It

includes persistent storage classes for files, flash memory partitions, and key-value pair stores, and to apply
over-the-air firmware updates.

This Ecma Standard was developed by Technical Committee 53 and was adopted by the General
Assembly of June 2025.

© Ecma International 2025 xiii


https://github.com/extensibleweb/manifesto#the-extensible-web-manifesto

secma

COPYRIGHT NOTICE
© 2025 Ecma International

This document may be copied, published and distributed to others, and certain derivative works of it may
be prepared, copied, published, and distributed, in whole or in part, provided that the above copyright
notice and this Copyright License and Disclaimer are included on all such copies and derivative works.
The only derivative works that are permissible under this Copyright License and Disclaimer are:

(i) works which incorporate all or portion of this document for the purpose of providing commentary or
explanation (such as an annotated version of the document),

(i) works which incorporate all or portion of this document for the purpose of incorporating features that
provide accessibility,

(iii) translations of this document into languages other than English and into different formats and

(iv) works by making use of this specification in standard conformant products by implementing (e.g. by
copy and paste wholly or partly) the functionality therein.

However, the content of this document itself may not be modified in any way, including by removing the
copyright notice or references to Ecma International, except as required to translate it into languages
other than English or into a different format.

The official version of an Ecma International document is the English language version on the Ecma
International website. In the event of discrepancies between a translated version and the official version,
the official version shall govern.

The limited permissions granted above are perpetual and will not be revoked by Ecma International or
its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and ECMA
INTERNATIONAL DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED
TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY
OWNERSHIP RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A
PARTICULAR PURPOSE.

Xiv © Ecma International 2025




secmd

ECMAScript® embedded systems API specification

1 Scope

This Standard defines application programming interfaces (APIls) for ECMAScript modules that support
programs executing on embedded systems.

This Standard defines APlIs for capabilities found in common across embedded systems. Implementations for
embedded systems that include additional capabilities are encouraged to provide ECMAScript APIs for those
using the many extensibility options provided by this Standard.

This Standard does not make any changes to the ECMAScript language as defined by ECMAScript Language
Specification (ECMA-262). It does strongly encourage all deployments to execute only in strict-mode. It
recommends hosts incorporate an engine that supports Hardened JavaScript and that script code is written to
conform to the Hardened JavaScript runtime constraints.

2 Conformance

A conforming implementation of the ECMAScript Embedded Systems API Specification must conform to
ECMA-262 and must provide and support all the objects, properties, functions, and program semantics required
by this specification.

A conforming implementation of the ECMAScript Embedded Systems API Specification is permitted to provide
additional objects, properties, and functions beyond those described in this specification.

In particular, a conforming implementation of this Standard is permitted to provide properties not described
herein, and values for those properties, for objects that are described in this specification. A conforming
implementation is permitted to add optional arguments to the functions defined in this specification only where
noted.

Because implementation differences are permitted (for example, to accommodate differentiating hardware
features), this Standard does not guarantee that all scripts execute correctly on every conformant deployment.

Self-hosted implementations are permitted as long as they conform to the requirements of this Standard (for
example, ensuring internal properties are not visible).

3 Normative references

The following referenced documents are required for the application of this document. For dated references,
only the edition cited applies. For references without a date or version number, the latest edition of the
referenced document (including any amendments) applies.

ECMA-262, ECMAScript Language Specification
https://www.ecma-international.org/publications/standards/Ecma-262.htm

ECMA-402, ECMAScript Internationalization API
https://www.ecma-international.org/publications/standards/Ecma-402.htm

RFC 2119, Key words for use in RFCs to Indicate Requirement Levels
https://tools.ietf.org/html/rfc2119

© Ecma International 2025 1


https://www.ecma-international.org/publications/standards/Ecma-262.htm
https://www.ecma-international.org/publications/standards/Ecma-402.htm
https://tools.ietf.org/html/rfc2119

secma

RFC 7230 - 7240, Hypertext Transfer Protocol (HTTP/1.1)
https://tools.ietf.org/html/rfc7230

RFC 6455, The WebSocket Protocol
https://tools.ietf.org/html/rfc6455

RFC 4346, The Transport Layer Security (TLS) Protocol Version 1.1
https://tools.ietf.org/html/rfc4346

RFC 5246, The Transport Layer Security (TLS) Protocol Version 1.2
https://tools.ietf.org/html/rfc5246

RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3
https://tools.ietf.org/html/rfc8446

RFC 6066, Transport Layer Security (TLS) Extensions: Extension Definitions
https://tools.ietf.org/html/rfc6066

RFC 7301, Transport Layer Security (TLS) Application-Layer Protocol Negotiation Extension
https://tools.ietf.org/html/rfc7301

ITU X.690, Information technology - ASN.1 encoding rules: Specification of Basic Encoding Rules (BER),
Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER)
https://www.itu.int/rec/T-REC-X.690

RFC 7468, Textual Encodings of PKIX, PKCS, and CMS Structures
https://www.rfc-editor.org/rfc/rfc7468

RFC 1035, DOMAIN NAMES - IMPLEMENTATION AND SPECIFICATION
https://www.rfc-editor.org/rfc/rfc1035

RFC 8484, DNS Queries over HTTPS (DoH)
https://www.rfc-editor.org/rfc/rfc8484

RFC 5905, Network Time Protocol Version 4: Protocol and Algorithms Specification
https://www.rfc-editor.org/rfc/rfc5905

IEEE 802
https://standards.ieee.org/featured/ieee-802/

MQTT 3.1.1 Standard
http://docs.oasis-open.org/maqtt/matt/v3.1.1/os/mqtt-v3.1.1-0s.html

HTML Living Standard
https://html.spec.whatwg.org/multipage/

4  Terms and definitions
For the purposes of this document, the following terms and definitions apply

4.1
address
an identifier for interfacing with a specific component, device, or board

4.2

baud rate
the rate at which information is transferred, measured in bits per second

2 © Ecma International 2025


https://tools.ietf.org/html/rfc7230
https://tools.ietf.org/html/rfc6455
https://tools.ietf.org/html/rfc4346
https://tools.ietf.org/html/rfc5246
https://tools.ietf.org/html/rfc8446
https://tools.ietf.org/html/rfc6066
https://tools.ietf.org/html/rfc7301
https://www.itu.int/rec/T-REC-X.690
https://www.rfc-editor.org/rfc/rfc7468
https://www.rfc-editor.org/rfc/rfc1035
https://www.rfc-editor.org/rfc/rfc8484
https://www.rfc-editor.org/rfc/rfc5905
https://standards.ieee.org/featured/ieee-802/
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.html
https://html.spec.whatwg.org/multipage/

secmd

4.3
bus
a communications system that transfers data. A “Bus” includes hardware, software, and the protocol

4.4
connected sensing device
a sensing device that communicates with a remote endpoint

4.5
direct measurement
a sample that has been captured from a configured sensor without alteration

4.6
expander
a device that provides additional inputs and/or outputs

4.7
instance
an object that has been created by a function constructor, class constructor, or function factory

4.8
10
an abbreviation for “Input and Output”

4.9
microcontroller
a single integrated circuit with one or more CPUs, memory, and programmable 10

4.10
protocol
a system of rules that define how data is exchanged between systems

4.11

register

locations in a device’s memory that can be written to or read from. These memory locations may contain
configuration settings or the current state of the device.

4,12
remote endpoint
a computing system in communication with the microcontroller

4.13
sensing device
a system comprising an embedded controller with at least one attached sensor

4.14

sensor

a device that detects and responds to some type of input from the physical environment, attached to a
microcontroller used to capture data

4.15

sensor classification

sensor type, as determined by the real quantity that is, or quantities that are, subject to measurement, e.g. mass,
power, or humidity. Uses names of Sensor Classes defined by this Standard. If a sensor measures real
guantities defined as properties in multiple unique Sensor Classes, the name of any applicable Sensor Class
may be used.

© Ecma International 2025 3



secma

4.16

sensor configuration

user-defined parameters impacting the sampling, processing, representation, and/or transmission of peripheral
data

4.17

synthetic measurement

a direct measurement that has been modified in some form so as to potentially lose accuracy, precision, or
fidelity

5 Notational conventions

The key words “MUST”, “MUST NOT", “REQUIRED”, “SHALL", “SHALL NOT”, “SHOULD”, “SHOULD NOT”,
“RECOMMENDED”, “MAY”, and “OPTIONAL” in this document are to be interpreted as described in REC 2119.

ECMAScript source code examples in this document are for illustrative purposes. Consequently, they are
informative, not normative.

6 Overview

6.1 ECMAScript

This Standard builds on the ECMAScript Standard as defined in ECMA-262. As of this writing, that is
ECMAScript 2025.

This Standard is not an extension or subset of ECMAScript Standard. It is a set of APIs to use with that standard.
The relationship between ECMA-419 and ECMA-262 is analogous to the relationship between ECMA-402
(ECMAScript Internationalization API) and ECMA-262.

This Standard is intended to be used in strict mode only. Sloppy mode has known issues that detract from
building a robust system. Sloppy mode is maintained primarily for web compatibility and provides no benefit to
embedded systems.

6.2 Class patterns

A Class Pattern, as used in this Standard, is a combination of requirements and guidelines for a class. For
example, the 10 Class Pattern defines behaviors for all 10 classes.

The standard defines classes in terms of Class Patterns. In the future, there may be true formal classes as
found in the ECMAScript Language.

The requirements of a Class Pattern are behaviors defined by this Standard and must be adhered to for a
conformant implementation. A Class Pattern can be seen as similar to a collection of Abstract Operations in the
ECMA-262.

Guidelines are primarily for extensibility. Extensibility is essential to this Standard as it must be possible to
access unique hardware capabilities. Extensibility is problematic because of the potential for collisions. This
Standard provides requirements for how extensibility may be implemented.

Unless stated, there are no requirements about class inheritance. An implementation of a class pattern may
inherit from Object or any other class, so long as it conforms.

4 © Ecma International 2025


https://www.rfc-editor.org/rfc/rfc2119

secmd

6.3 Independent implementations

This Standard is intended to facilitate multiple independent implementations of the APIs. A given APl may
warrant an entirely different implementation depending on a variety of factors that include the host hardware,
operating system, and ECMAScript engine.

6.4  Self-hosting

The ECMAScript language is defined in terms of a host that provides the runtime environment for the execution
of scripts. This Standard does not change that. The APIs defined herein are provided by a host. However, this
Standard does anticipate that portions of the runtime environment provided by the host may themselves be
implemented in ECMAScript. This Standard refers to a host that includes ECMAScript code in its implementation
as self-hosting.

One challenge of self-hosting is fully separating host scripts from hosted scripts to eliminate security, robustness,
and compatibility problems. The Compartment model in the Hardened JavaScript proposal is a tool to separate
host scripts from hosted scripts. Compartments also allow separation of modules within a host which mitigates
supply-chain attacks.

Self-hosted implementations must ensure that no internal properties or methods are visible to client scripts using
the implementation. Private fields and private methods as defined by ECMA-262 are one way to shield internal
properties and methods from client code.

NOTE Self-hosting is not required.

6.5 Module specifiers

This Standard defines classes which are accessed through modules. Because many embedded systems lack
a file system, using file paths to access modules is impractical and contrived. Instead, modules are accessed
using bare module specifiers. While such specifiers are currently forbidden in a web browser, they are permitted
in other environments.

A namespace prefix is used to minimize the chance of hame collisions with other bare module specifiers. This
Standard uses the namespace prefix embedded: .

import Digital from "embedded:io/digital"”;

The “embedded:” namespace prefix is registered as a URI scheme with IANA to reduce the possibility of
collisions.

The use of module namespaces in this Standard is intended to be compatible with the Built In Modules Proposal.

For the avoidance of doubt, the use of bare module specifiers by this Standard does not prevent a host from
also supporting other kinds of module specifiers for modules not defined by this specification.

6.6 Hardened JavaScript

The Hardened JavaScript proposal extends the ECMAScript language to support provably secure execution of
scripts in an environment that includes both trusted and untrusted scripts. The two foundations of Hardened
JavaScript are immutability and compartments. Hardened JavaScript makes all primordials immutable prior to
the execution of any untrusted script code. This ensures built-in objects behave as defined by the language and
disables common attack vectors including prototype poisoning. Compartments allow scripts to sandbox other
scripts to limit the globals and modules that are available in the sandbox.

The security guarantees provided by Hardened JavaScript reduce vulnerabilities in systems that combine code

from multiple sources, some of which may contain security flaws. The mechanisms proposed by Hardened
JavaScript allow for an efficient implementation. Further, the immutability requirement for Hardened JavaScript

© Ecma International 2025 5


https://www.iana.org/assignments/uri-schemes/prov/embedded
https://github.com/tc39/proposal-built-in-modules#namespace

»ecma

allows primordials to be stored in read-only memory, reducing RAM use and enabling them to be securely
shared by multiple virtual machines.

This Standard is designed to be used with Hardened JavaScript when a runtime security solution is required. If
and when the Hardened JavaScript proposal is an approved standard, this Standard will reference it normatively.

Hardened JavaScript consists of two major execution phases — pre-lockdown and post-lockdown. Prior to
lockdown, primordials are mutable; afterwards, they are immutable. A host is not required to support pre-
lockdown on an embedded system. It may instead complete lockdown during the build process, for example.

6.7 Multitasking

On embedded systems capable of multitasking, this Standard recommends Web workers from the HTML Living
Standard for the ECMAScript API. The HTML Living Standard describes workers as “relatively heavy-weight,”
noting that they “are not intended to be used in large numbers.” Consequently, an embedded project may have
just a single worker to augment the main task, allowing it to use the full CPU power of a dual-core microcontroller.

Implementations of this Standard must manage resource contention between workers and ensure hardware
operations are executed atomically.

A Web worker is not required to provide the same functionality as the main virtual machine: a host may attenuate
the functionality available to a worker. One consequence of this attenuation is that the host provider instance
and corresponding device global variable may differ between the main task and workers.

6.8 Naming
This Standard uses the lower camel case naming convention (e.g. exampleProperty) for property names.

It follows the ECMAScript convention of naming classes with upper camel case (e.g. ExampleClass) and
methods with lower camel case (e.g. exampleMethod).

Callback function names begin with on (e.g. onExampleCallback).

Words are preferred over abbreviations and acronyms (e.g. address instead of addr, clock instead of scl,
receive instead of rx), though common acronyms are acceptable (e.g. hz instead of hertz).

6.9 IP address
This Standard represents an IP address value as a string.

An IPv4 address has the form x.Xx.X.X, where X is a decimal value from 0 to 255 and the values are separated
by periods.

An IPv6 address has the form y:y:y:y:y:y:y:y, where y is a hexadecimal value from 0x0000 to OxFFFF
and the values are separated by colons.

6.10 MAC address
This Standard represents a media access control address (MAC address) value as a string. The value has the

form zz:2z:zz:2z:2z:2z, where zz is a two-digit hexadecimal value from 0x00 to OxFF and the values are
separated by colons.

6 © Ecma International 2025


https://html.spec.whatwg.org/multipage/#toc-workers
/Users/hoddie/Projects/tc53-admin/docs/converted/$host-provider-instance

secmd

6.11 Byte Buffer

This Standard uses the term “Byte Buffer’” to mean an instance of the following ECMAScript types:
ArrayBuffer (resizable or not, immutable or not), SharedArrayBuffer (growable or not), Uint8Array,
Int8Array, and DataView.

6.12 Disposable Buffer

This Standard uses the term “Disposable Buffer” to mean an instance of a Byte Buffer with a close method
which immediately releases the memory used by the backing buffer. After invoking close, the buffer shall
behave as a detached buffer.

NOTE The Disposable Buffer behavior is intended to be forward-compatible with the Explicit Resource Management
proposal. The Disposable Buffer's c1ose method is an alias for the [ Symbol.dispose] method specified
by that proposal.

7 Requirements for standard built-in ECMAScript objects

Unless specified otherwise in this document, the objects, functions, and constructors described in this Standard
are subject to the generic requirements and restrictions specified for standard built-in ECMAScript objects in
ECMA-262.

8 Base Class Pattern

The Base Class Pattern defines common behaviors used by other class patterns. The Base Class Pattern is
purely abstract and cannot be instantiated directly.

Classes conforming to the Base Class Pattern may be subclassed.

See Annex A for the formal algorithms of the Base Class Pattern.

8.1  Asynchronous methods

By default, methods are synchronous: they consume their inputs, perform their work, and generate their result
by the time they return. A class may provide asynchronous methods.

Asynchronous methods take an optional final argument which is a completion callback function. A completion
callback function is called once, at the completion of the operation to indicate success or failure and deliver the
result of the operation.

The first argument to the completion callback is always a result code. A value of null indicates success; an
Error object indicates failure. Additional arguments may be specified by the method.

Whether or not a completion callback is provided, the method is performed asynchronously.

If an instance provides any asynchronous methods, it should provide an asynchronous close method.

NOTE As defined here, an “asynchronous method” is not an ECMAScript function declared with the async keyword.
Here “asynchronous” refers only to the operation being performed in without blocking the current thread of
execution.

8.2 constructor

The constructor of the Base Class Pattern takes an options object as its first argument.

© Ecma International 2025 7


https://github.com/tc39/proposal-explicit-resource-management
https://tc39.es/ecma262/#sec-ecmascript-standard-built-in-objects

secma

The target property is the only property the Base Class Pattern defines in the options object.

Typically there are no other arguments as additional configuration options can and should be added to the
options object. However, additional arguments are not prohibited.

It is an error to invoke the constructor without the options object. An exception will be thrown.

The implementation of the constructor should validate all supported option properties before allocating any
resources. This behavior avoids enabling or changing the state of any hardware should the constructor fail due
to invalid parameters.

The implementation must ignore any unrecognized properties on the options object.

If the constructor fails to complete execution successfully, it must release any resources allocated prior to exiting.

The constructor must not modify the options object. It must accept an immutable options object.

Once the instance has been successfully constructed, it must not be eligible for garbage collection until it is
explicitly released by calling close. This is done so scripts do not need to maintain a reference to the object to
prevent it from being collected, similar to setInterval/clearInterval and the W3C Generic Sensor
specification.

8.3 close method
The close method releases all resources associated with the instance before completing.

Once the close operation, an Error exception is thrown if any other instance methods are called. It is not an
error to call the close method more than once.

Once the close operation completes, the object is eligible for garbage collection.

Once close has been called, calling other methods on the instance throws an exception. The sole exception
is close itself which is safe to call multiple times.

For synchronous close:

» the close operation is complete when it returns

* no callbacks may be invoked after the close method is called

For asynchronous close:

» the close operation completes some time after it returns

« the completion callback, if provided, is invoked after close completes

« callbacks may be invoked after close is called and before the completion callback is invoked
» if possible, pending asynchronous operations should be cancelled

8.4  target property

The target property is opaque to the object’s implementation. It may be initialized by the constructor using the
target property in the options object. Scripts may both read and write the target property, though it is typically
only set at construction.

8 © Ecma International 2025



secmd

8.5  Callbacks
Instances of the Base Class Pattern typically use function callbacks to deliver asynchronous events.
Callback functions are provided to the instance as properties in the options object.

new Button({
onPush() {
¥
onRelease() {
}

})s

Callback functions are invoked with this set to the instance. This can be overridden using standard
ECMAScript features, such as arrow functions:

new Button({
onPush: () => {
s
onRelease: () => {
}
1)

The callbacks are stored internally by the implementation. They are not public methods. The callback functions
cannot be read and are only set using the constructor’s options object.

A callback function may only be invoked when no script is running in its host virtual machine to respect the
single-thread evaluation semantics of ECMAScript. This means that callbacks may not be invoked by the
instance from within its public method calls, including the constructor.

Callbacks must be invoked in the same virtual machine in which they were created.

9 IO Class Pattern

The 10 Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access to a
variety of hardware inputs and outputs.

All 10 is non-blocking, consistent with ECMAScript APl behavior on the web platform. That said, not all
operations are instantaneous. Implementations determine how long is too long for a given operation.

Non-blocking 10 is facilitated by two callback functions, onReadable and onWritable, which eliminate the
need for polling in most cases.

See Annex A for the formal algorithms of the 10 Class Pattern.

9.1 Pin specifier

A pin specifier is an ECMAScript value used by 10 classes to refer to hardware connections represented by
pins. Typically these pins correspond to a particular connection point on the hardware package, although this is
not required.

The value of a pin specifier is host-dependent. It is often a number corresponding to the logical GPIO pin number
as per the hardware data sheet (e.g. GPIO 5), but it may be a string ("D1") or even an object ({port: 1,

pin: 5}).

© Ecma International 2025 9


https://tc39.es/ecma262/#sec-happens-before

»ecma

9.2 Port specifier

A port specifier is an ECMAScript value used by IO classes to refer to a hardware interface. Port specifier
values are defined by the host and are usually either a number or string.

For example, consider a microcontroller may support two serial connections, each with different capabilities that
may be configured to be available on a set of pins. The port specifier indicates which serial connection to use.

9.3 constructor

The options object contains the specification of the hardware resources to be used by the instance. For example,
the digital class indicates the physical pin to use with a pin property that has a pin specifier value.

If the constructor requires a resource that is already in use — whether by a script or the native host — an Error
exception is thrown.

This Standard allows but does not require, an implementation to open multiple instances for the same hardware
resource if the instances cannot interfere with each other’s operation. For example, this can work for a digital
input but would not for a digital output.

The 10 Class Pattern is designed to be used both with IO types that have only a current value (e.g. Digital,
analog, PWM) and 10 types that use streams of data (e.g. serial, SPI).

The 10 Class Pattern reserves the 10 property name in the options object. If present, it must be ignored by 10
implementations.

9.4 read method

The read method returns data from the 10 instance. If no data is available, it returns undefined. The type of
the data returned depends on the value of the format property.

The read method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type.

If the instance does not support reading (because the IO type is inherently unreadable or because it is configured
for write-only) an exception is thrown.

When the format property is "buffer", the read method accepts a data argument that is a Number or Byte
Buffer. When it is a Number, read allocates the result as an ArrayBuffer with up to as many bytes as the
Number argument. When it is a Byte Buffer, read fills in as many bytes as possible and the result is the number
of bytes read as a Number.

For synchronous read, the result is the return value. For asynchronous read, the result is passed to the
completion callback as the second argument.

If a resizable Byte Buffer is passed to an asynchronous read and the buffer shrinks so that it cannot hold the
number of bytes requested at the time the operation is queued, an error is passed to the completion callback. It
is implementation dependent if and how the content of the buffer is modified.

9.5 write method
The write method sends data to the 10 instance.

The following conditions cause an Error exception to be thrown: the device cannot accept the data because
its buffers are full, the data is incompatible, or a hardware error.

10 © Ecma International 2025



»ecma

The write method may take any number of arguments, including zero. The arguments are defined by the
specific 10 type. The type of data accepted by write depends on the value of the format property.

If this instance does not support writing (because the 10 type cannot be written or because it is configured for
read-only) an Error exception is thrown.

When the format property is "buffer", the write method accepts a data argument that is a Byte Buffer.

Calls to write must write all the data provided. If all the data cannot be output, write must not output any
data and instead must throw an exception.

If a non-shared Byte Buffer is passed to an asynchronous write method, the implementation sends the contents
of the buffer from the time the operation is queued. If a shared buffer is passed, the implementation may read
from the buffer at any time; the caller is responsible for ensuring that the bytes are not modified until the
completion callback is invoked.

9.6 format property

The format property is a string that indicates the type of data used by the read and write methods. It is
initialized by the constructor to the default defined for its 10 type. The format property may be set by the script
at any time to change how it reads and writes data.

The following values are defined by the 10 Class Pattern for the format property. 10 types may choose to
support one or more and may define others.

© Ecma International 2025 11



secma

Format string Description
number an ECMAScript number value, typically used for bytes
buffer a Byte Buffer. For buffer types with defined byteOffset

and bytelLength properties, these restrict the bytes
accessed in views. Implementations always allocate
ArrayBuffer instances for return values.

object an ECMAScript object, for data representing a data
structure (e.g. JSON)

buffer/disposable a Disposable Buffer, a Byte Buffer that can be explicitly
disposed

string an ECMAScript string

int8 an 8-bit signed integer

intle a 16-bit signed integer

int32 a 32-bit signed integer

inte4d a 64-bit signed integer

uint8 an 8-bit unsigned integer

uintie a 16-bit unsigned integer

uint32 a 32-bit unsigned integer

uinte4d a 64-bit unsigned integer

The format property is implemented as a getter and setter. Attempting to set the format property to an
unsupported value does not change the value and instead throws an Error exception.

9.7 Callbacks

The 10 Class Pattern specifies three callbacks which are set by the options object passed to the constructor.
Most IO types operate with or without these callbacks installed, but a particular 10 type may require one or more
callbacks.

9.7.1 onReadable

The onReadable callback is invoked when the instance has data available to be read. Data is retrieved using
the read method.

The onReadable callback may receive one or more arguments with information about the data available to
read. The arguments are defined by the specific 10 type.

The onReadable callback is invoked once when data arrives and not again until additional data is available to
read.

12 © Ecma International 2025



»ecma

9.7.2 onWritable
The onlWritable callback is invoked when the instance can accept more data for output.

The onWritable callback may receive one or more arguments with information about the amount of data that
may be written. The arguments are defined by the specific 10 type.

9.7.3 onError

The onError callback is invoked when a non-recoverable error occurs. The instance is no longer usable. The
only method that should be called is close.

Details of the error may be passed to the callback using arguments defined by the specific 10 type.

10 IO classes
This section defines 10 Classes conforming to the 10 Class Pattern.

The classes support capabilities commonly supported by hardware and runtimes. Capabilities that are not
supported here may be added using the extensibility options of the IO Class Pattern and Base Class Pattern.

10.1 Digital
The Digital IO class is used for digital inputs and outputs.
import Digital from "embedded:io/digital";

See Annex A for the formal algorithms of the Digital IO Class.

10.1.1  Properties of constructor options object

Property Description
pin A pin specifier indicating the pin to control. This property is required.
mode A value indicating the mode of the 10. May be Digital.Input,

Digital.InputPullUp, Digital.InputPullDown,
Digital.InputPullUpDown, Digital.Output, or
Digital.OutputOpenDrain. This property is required.

edge A value indicating the conditions for invoking the onReadable callback.
Values are Digital.Rising, Digital.Falling, and
Digital.Rising + Digital.Falling. This value is required if the
onReadable property is present and ignored otherwise.

10.1.2  Callbacks
onReadable()

Invoked when the input value changes depending on the value of the edge property.

© Ecma International 2025 13



secma

10.1.3 Data format

The Digital class data format is always "number" with a value of either 0 or 1.

10.1.4 Notes

A digital 10 instance configured as an input does not implement write; one configured as an output does not

implement read.

10.2 Digital bank

The DigitalBank class provides simultaneous access to a group of digital inputs or outputs.

import DigitalBank from "embedded:io/digitalbank";

See Annex A for the formal algorithms of the DigitalBank bank IO Class.

10.2.1  Properties of constructor options object

Property

Description

pins

A bitmask with pins to include in the bank set to 1. This property is
required.

mode

A value indicating the mode of the 10, May be DigitalBank.Input,
DigitalBank.InputPullUp, DigitalBank.InputPullDown,
DigitalBank.InputPullUpDown, DigitalBank.Output, or
DigitalBank.OutputOpenDrain. All pins in the bank use the same
mode. This property is required.

rises

A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 0 to 1. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

falls

A bitmask indicating the pins in the bank that should trigger an
onReadable callback when transitioning from 1 to 0. When an
onReadable callback is provided, at least one pin must be set in rises
and falls.

bank

For implementations with more than a single digital bank, a number or
string value specifying the digital bank for this instance. This property is
optional.

10.2.2 Callbacks

onReadable(triggers)

Invoked when the input value changes depending on the value of the mode, rises, and falls properties. The
onReadable callback receives a single argument, triggers, which is a bitmask indicating each pin that
triggered the callback with a 1.

14

© Ecma International 2025



secmd

10.2.3 Data format

The DigitalBank class data format is always "number". The value is a bitmask. On a read operation, any
bit positions that are not included in the pins bitmask are set to 0.

NOTE The requirement to zero bit positions not included in the bitmask prevents leaking the state of pins unused by
this bank.

10.2.4 Notes

A digital 10 bank instance configured as an input does not implement write; one configured as an output does
not implement read.

A bitmask contains at least one, and not more than, thirty-two bits. Digital banks may distribute their pins across
multiple banks using the bank property of the constructor dictionary.

10.3 Analog input
The Analog |0 class represents an analog input source.
import Analog from "embedded:io/analog";

See Annex A for the formal algorithms of the Analog IO Class.

10.3.1  Properties of constructor options object

Property Description

pin A pin specifier indicating the analog input pin. This property is
required.

resolution The requested number of bits of resolution of the input. This property
is optional.

10.3.2 Data format

The Analog class data format is always a number. The value returned is an integer from 0 to a maximum value
based on the resolution of the analog input.

10.3.3 resolution property

The read-only resolution property indicates the number of bits of resolution provided in values returned by
the instance.

10.4 Pulse-width modulation
The PWM 10 class provides access to the pulse-width modulation capability of pins.
import PWM from "embedded:io/pwm";

See Annex A for the formal algorithms of the PWM 10 Class.

© Ecma International 2025 15



secma

10.4.1  Properties of constructor options object

Property Description

pin A pin specifier indicating the pin to operate as a PWM output. This
property is required.

hz A number specifying the requested frequency of the PWM output in hertz.
This property is optional.

10.4.2 Data format

The PWM class data format is always a number. The write call accepts integers between 0 and a maximum
value based on the resolution of the PWM output.

10.4.3 resolution property

The read-only resolution property indicates the number of bits of resolution in values passed to the write
method.

10.4.4  hz property
The read-only hz property returns the frequency of the PWM.

NOTE A PWM instance defaults to a duty cycle of 0% until write is called with a different value.

10.5 I2C - synchronous IO

The I2C class implements an I2C Initiator to communicate with an I2C Peripheral over I2C bus. The I2C class
performs synchronous IO.

import I2C from "embedded:io/i2c";
If synchronous IO is not supported, the constructor throws.

See Annex A for the formal algorithms of the I2C IO Class.

10.5.1 Properties of constructor options object

Property Description

data Pin specifier for the 12C data pin. This property is required.

clock Pin specifier for the 12C clock pin. This property is required.

hz The speed of communication on the I12C bus. This property is required.

address The 7-bit address of the target I12C Peripheral to communicate with. This
property is required.

port Port specifier for the 12C instance. This property is optional.

16 © Ecma International 2025



»ecma

NOTE The property name timeout is reserved for future use.

10.5.2 Data format

The I2C class data format is always "buffer”.

10.5.3  Specifying stop bit with read and write methods

The I2C protocol is transaction-based. At the end of each read and write operation, a stop bit is sent. If the stop
bit is 1, it indicates the end of the transaction; if 0, it indicates that the transaction has additional operations
pending.

The read and write methods set the stop bit to 1 by default. An optional argument to the read and write

methods allows the stop bit to be specified. Pass false to set the stop bit to 0, and true to set the stop bit to
1.

10.5.4 Methods

When the number of bytes to read or write is zero the target device address is sent over the I2C bus but no
data bytes follow.

The read and write methods may operate synchronously. Doing so does not violate the requirement that 10
is non-blocking because these operations typically complete within a short period of time. Additionally,
synchronous operation is required for microcontrollers which do not support asynchronous I2C 10.

read(byteLength | buffer[, stop])

The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.
The optional second argument is a Boolean specifying the stop bit behavior.

write(buffer[, stop])

The first argument to the write method is a buffer. The optional second argument is a Boolean specifying the
stop bit behavior.

10.6 12C —asynchronous IO

The I2C.Async class implements an I2C Initiator to communicate with an 12C Peripheral over 12C bus using
asynchronous 10.

import I2C from "embedded:io/i2c";

The I2C class provides an implementation using asynchronous 10 through the I2C.Async constructor. The
I2C.Async constructor is only present if asynchronous IO is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the I2C.Async IO Class.

10.6.1  Properties of constructor options object

Same as synchronous 12C.

© Ecma International 2025 17



secma

10.6.2 Data format

Same as synchronous 12C.

10.6.3  Specifying stop bit with read and write methods

Same as synchronous 12C.

10.6.4 Methods

read(byteLength | buffer)

read(byteLength | buffer, stop)
read(byteLength | buffer, callback)
read(byteLength | buffer, stop, callback)

The byteLength, buffer, and stop arguments are the same as synchronous 12C. There is no return value.
The callback property is a completion callback function. The second argument is the byteLength or buffer
that would be returned by synchronous read.

write(buffer)

write(buffer, stop)
write(buffer, callback)
write(buffer, stop, callback)

The buffer and stop arguments are the same as synchronous I2C. The callback property is a completion
callback function.

10.7 System management bus (SMBus) — synchronous 10

The SMBus class extends the I2C class with additional methods to communicate with devices that implement
the SMBus protocol. The SMBus class performs synchronous I1O.

import SMBus from "embedded:io/smbus";
If synchronous 1O is not supported, the constructor throws.

See Annex A for the formal algorithms of the SMBus 10 Class.

10.7.1  Properties of constructor options object

Property Description

stop A boolean value indicating whether to set the stop bit when writing the
SMBus register number. This property is optional and defaults to false.

10.7.2  Methods
readUint8(register)

Reads and returns an unsigned 8-bit integer value from the specified register.

18 © Ecma International 2025



»ecma

writeUint8(register, value)
Writes the unsigned 8-bit integer value to the specified register.
readUint16(register[, bigEndian])

Reads and returns an unsigned 16-bit integer value from the specified register. By default, the value is read in
little-endian byte order. If the optional bigEndian argument is true the value is read in big-endian byte order.

writeUintl6(register, value[, bigEndian])

Writes the unsigned 16-bit integer value to the specified register. By default, the value is written in little-endian
byte order. If the optional bigEndian argument is true the value is written in big-endian byte order.

readBuffer(register, byteLength | buffer)

Reads a stream of bytes starting at the specified register. The second argument to readBuffer follows the
behavior of the 10 Class Pattern read method for the "buffer" data format.

writeBuffer(register, buffer)

Write a stream of bytes from the buffer argument starting at the specified register. The buffer argument
to writeBuffer follows the behavior of the 10 Class Pattern write method for the "buffer" data format.

readQuick()

Send an SMBus Quick command with the Read/Write bit set to 1.
writeQuick()

Send an SMBus Quick command with the Read/Write bit set to 0.
receiveByte()

Read an 8-bit unsigned value.

sendByte(command)

Send the 8-bit unsigned command byte.

NOTE The method names readUint32, writeUint32, readUint64, and writeUint64 are reserved for
32 and 64-bit SMBus operations in the future.

10.8 System management bus (SMBus) —asynchronous IO

The SMBus . Async class extends the I2C.Async class with additional methods to communicate with devices
that implement the SMBus protocol using asynchronous IO.

import SMBus from "embedded:io/smbus";

The SMBus class provides an implementation using asynchronous 10 through the SMBus . Async constructor.
The SMBus . Async constructor is only present if asynchronous 10 is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the SMBus . Async |0 Class.

© Ecma International 2025 19



»ecma

10.8.1  Properties of constructor options object

Same as synchronous SMBus.

10.8.2 Methods

readUint8(register[, callback])

readUint16(register[, bigEndian][, callback])
readBuffer(register, byteLength | buffer[, callback])
readQuick([callback])

receiveByte([callback])

All asynchronous SMBus methods read methods accept an optional final completion callback argument that
behaves consistently with the read behavior of the 10 Class Pattern.

writeUint8(register, value[, callback])
writeUintl6(register, value[, bigEndian][, callback])
writeBuffer(register, buffer[, callback])
writeQuick([callback])

sendByte(command[, callback])

All asynchronous SMBus methods write methods accept an optional final completion callback argument that
behaves consistently with the write behavior of the IO Class Pattern.

10.9 Serial
The Serial class implements bi-directional serial (UART) communication.
import Serial from "embedded:io/serial”;

See Annex A for the formal algorithms of the Serial 10 Class.

20 © Ecma International 2025



»ecma

10.9.1  Properties of constructor options object

Property Description

receive Pin specifier for the receive pin. This property is required by
some implementations to use the serial connection to read
data.

transmit Pin specifier for the transmit pin. This property is required
by some implementations to use the serial connection to
write data.

baud A number specifying the baud rate of the connection. This
property is required.

flowControl A string specifying the kind of flow control, if any, used on
the connection. The valid values are "hardware™ and
"none". This property is optional and defaults to "none".

dataTerminalReady Pin specifier for the data terminal ready pin. This property is
optional.

requestToSend Pin specifier for the request to send pin. This property is
optional.

clearToSend Pin specifier for the clear to send pin. This property is
optional.

dataSetReady Pin specifier for the data set ready pin. This property is
optional.

port Port specifier for the serial connection. This property is
optional.

NOTE The serial connection is eight data bits, no parity bit, and one stop bit (8N1). The property names parity,

stop, and data are reserved to support other communication configurations in the future.

10.9.2 Methods

read([byteLength | buffer])

When using the "number" data format, read always returns the next available byte as a Number (from 0 to

255).

When using the "buffer" data format, read follows the behavior of the IO Class Pattern read method for the
"buffer" data format with one addition: if there are no arguments and data is available to read, read returns

one or more bytes (implementation-dependent).

If no data is available, read returns undefined.

The read method must not wait for additional bytes to arrive.

write(bytevValue | buffer)

When using the "number" data format, the first argument is a byte value to transmit.

© Ecma International 2025




pecma

If the output buffer cannot accept all the bytes to be written, an exception is thrown — partial data must not be
written.

flush([input, output])

Flushes the input and/or output queues of the serial instance. If no arguments are passed, both input and output
queues are flushed. If both arguments are provided, the corresponding queues are flushed based on the value
of the arguments. An exception is thrown if one argument is passed.

If flushing the output causes the serial instance to be able to accept data for output, the onWritable callback
will be invoked.

set(options)
The set method controls the value of the data terminal ready and request to send pins of the serial connection
together with the break. The sole argument is an options object which contains optional dataTerminalReady,

requestToSend, and break properties with boolean values.

If dataTerminalReady, requestToSend, or break is not specified in the dictionary, the corresponding
serial behavior is left unchanged.

get([options])

The get method returns the value of the clear to send and data set ready pins. It returns the state of the pins
as booleans in an options object using the clearToSend and dataSetReady properties.

If the optional options object property is provided, get sets the clearToSend and dataSetReady properties
on the options object and returns the provided options object as the result of get.

10.9.3  Callbacks
onReadable(bytes)

The onReadable callback is invoked when new data is available to read. The callback receives a single
argument that indicates the number of bytes available.

onWritable(bytes)
The onWritable callback is first invoked when the serial instance is ready for use.

The onWritable callback is invoked when space has been freed in the output buffer. The callback receives a
single argument that indicates the number of bytes that may be written without overflowing the output buffer.

10.9.4 Data format

The Serial class data format is either "number" for individual bytes or "buffer" for groups of bytes. The
default data format is "buffer".

10.10 Serial Peripheral Interface (SPI)

The SPI class implements a Serial Peripheral Interface (SPI) controller to communicate with a single SPI
peripheral.

22 © Ecma International 2025



secmd

import SPI from "embedded:io/spi”;

See Annex A for the formal algorithms of the SPI 10 Class.

10.10.1 Properties of constructor options object

Property Description

out Pin specifier for the Serial Data Out pin. This property is required when
using the SPI bus to write data.

in Pin specifier for the Serial Data In pin. This property is required when
using the SPI bus to read data.

clock Pin specifier for the clock pin. This property is required.

select Pin specifier for the chip select pin. This property is optional and should
not be specified if chip select will be managed by the caller.

active The value to write to the select pin when the SPI instance is active.
Must be 1 or 0. This property is optional and defaults to O.

hz The speed of communication on the SPI bus. This property is required.

mode The SPI bus mode, a two-bit mask that specifies the SPI clock polarity (bit
1) and phase (bit 0). This property is optional and defaults to 0b0O.

port Port specifier for the SPI connection. This property is optional.

If both out and in are unspecified, a TypeError is thrown by the constructor during validation.

The in and out properties may refer to the same physical pin (e.g. 3-wire SPI).

10.10.2 Data format

The data format for the SPI class is always "buffer".

10.10.3 Methods

read(byteLength | buffer)

The first argument follows the behavior of the 10 Class Pattern read method for the "buffer" data format.

If the buffer argument has a bitLength property, it specifies the number of bits to read, overriding the
byteLength property to allow reading of partial bytes. buffer.bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are read into the start of buffer (i.e. bit
offset zero).

The behavior of the Serial Data Out pin is implementation-dependent during the read operation.

write(buffer)

Write buffer to the SPI bus. Any input data is discarded.

© Ecma International 2025 23



pecma

If the buffer argument has a bitLength property, it specifies the number of bits to write, overriding the
byteLength property to allow writing of partial bytes. buffer.bitLength must be less than or equal to the
number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are written from the start of buffer (i.e. bit
offset zero).

transfer(buffer)

Write buffer to the SPI bus while simultaneously reading buffer.byteLength 8-bit bytes from the SPI bus.
The results of the read are placed into buffer, replacing the original contents.

If the buffer argument has a bitLength property, it specifies the number of bits of the buffer to swap in the
transfer, overriding the byteLength property to allow transfer of partial bytes. buffer.bitLength must be
less than or equal to the number of bits in the buffer (i.e. buffer.byteLength * 8). Bits are transferred from
the start of buffer (i.e. bit offset zero).

flush([deselect])

Flushes any buffers of the SPI controller instance. The flush operation is synchronous and completes before
returning.

Some SPI peripherals require that the chip select pin be set inactive at specific times (for instance, to mark the
end of a transaction). The flush method supports this with the optional deselect argument which, when
present and true, causes the chip select pin to be set to inactive after the flush completes.

10.11 Pulse count
The PulseCount class implements a bi-directional counter typically used with a rotary encoder.
import PulseCount from "embedded:io/pulsecount”;

See Annex A for the formal algorithms of the PulseCount 10 Class.

10.11.1 Properties of constructor options object

Property Description
signal Pin specifier for the signal input pin. This property is required.
control Pin specifier for the control input pin. This property is required.

10.11.2 Data format

The PulseCount class data format is always a number. The values are always integers.
10.11.3 Methods

read()

The read method returns the current count. It takes no arguments.

The count is initialized to zero at the time of instantiation. The initial call to read may return a non-zero value if
pulses have been counted in the intervening interval.

24 © Ecma International 2025



secmd

write(count)

The write method sets the current count.

10.11.4 Callbacks

onReadable()

The onReadable callback is invoked when the value of the counter has changed. Multiple changes to the
counter may be combined into a single invocation of the callback.

onError()

The onError callback is invoked when an error is detected, for example, underflow or overflow of the counter.

10.12 TCP socket

The TCP network socket class implements a general-purpose, bi-directional TCP connection.

import TCP from "embedded:io/socket/tcp";

The TCP socket is not a TCP listener, as in some networking libraries. The TCP listener is a separate class.

See Annex A for the formal algorithms of the TCP 10 Class.

10.12.1 Properties of constructor options object

Property

Description

address

A string with the IP address of the remote endpoint to connect to. This
property is required.

port

A number specifying the remote port to connect to. This property is
required.

noDelay

A boolean indicating whether to disable Nagle’s algorithm on the
socket. This property is equivalent to the TCP_NODELAY option in the
BSD sockets API. This property is optional and defaults to false.

keepAlive

A number specifying the keep-alive interval of the socket in
milliseconds. This property is optional and if not present, the keep-alive
capability of the socket is not used.

from

An existing TCP socket instance from which the native socket instance
is taken to use with the newly created socket instance. This property is
optional and intended for use with a TCP listener. When the from
property is present, the address, and port properties are not
required and are ignored if specified. The original instance is closed
with ownership of the native socket transferred to the new instance.

10.12.2 Methods

read([byteLength | buffer])

© Ecma International 2025

25



»ecma

When using the "number" data format, read always returns the next available byte as a Number (from 0 to
255).

When using the "buffer" data format, read follows the behavior of the 10 Class Pattern read method for the
"buffer" data format with one addition: if there are no arguments and data is available to read, read returns
one or more bytes (implementation-dependent).

The read method must not wait for additional bytes to arrive.

write(byteValue | buffer[, options])

When using the "number" data format, the first argument is a byte value to transmit.

The write method returns the updated writable count.

The optional second argument is an options object.

10.12.3 Properties of write options object

Property Description

more Set to false FOR the last fragment of a sequence and true if there
is at least one more fragment. Defaults to false.

byteLength Number of bytes to be written across a sequence of write operations
with more set to true and terminating with more set to false.

The following example transmits a message over TCP using a sequence of writes. The use of more and
byteLength provide the implementation of TCP socket information needed to efficiently packetize and transmit
the data.

const payload = new Float32Array(sensorReadingl, sensorReading2,
sensorReading3);

const header = Uint8Array.of(0x80, 0x01);

const length = Uint8Array.of(payload.length >> 8, payload.length);
tcp.write(header, {more: true, bytelLength: header.bytelLength + length.bytelLength
+ payload.bytelLength});

tcp.write(length, {more: true});

tcp.write(payload);

10.12.4 Callbacks

onReadable(bytes)

Invoked when new data is available to be read. The callback receives a single argument that indicates the
number of bytes available to read.

onWritable(bytes)
Invoked when space has been made available to output additional data. The callback receives a single argument

that indicates the total number of bytes that may be written to the TCP socket without overflowing the output
buffers.

26 © Ecma International 2025



»ecma

The onWritable callback is first invoked when the socket successfully connects to the remote endpoint and it
is possible to write data.

onError()

The onError callback is invoked when an error occurs or the TCP socket disconnects. Once onError is
invoked, the connection is no longer usable. Reporting the error type is an area for future work.

10.12.5 Data format

The TCP class data format is either "number" for individual bytes or "buffer" for groups of bytes. The default
data format is "buffer".

10.12.6 remoteAddress property

The read-only remoteAddress property provides the IP address of the remote end-point as a string. If the
remote address is not available, the value is undefined.

10.12.7 remotePort property

The read-only remotePort property provides the port of the remote end-point as a number. If the remote port
is not available, the value is undefined.

10.13 TCP listener socket
The TCP Listener class listens for and accepts incoming TCP connection requests.
import Listener from "embedded:io/socket/listener";

See Annex A for the formal algorithms of the Listener 10 Class.

10.13.1 Properties of constructor options object

Property Description

port A number specifying the port to listen on. This property is optional and
defaults to 0.

address A string with the IP address of the network interface to bind to. This
property is optional.

10.13.2 Methods

read()

The read function returns a TCP Socket instance. The instance is already connected to the remote endpoint.
There are no callback functions installed.

NOTE To set the callbacks and configure the socket, pass the socket to the TCP Socket constructor using the from
property.

write()

Unsupported.

© Ecma International 2025 27



secma

10.13.3 Callbacks
onReadable(requests)

Invoked when one or more new connection requests are received. The callback receives a single argument that
indicates the total number of pending connection requests.

10.13.4 Data format

The TCP Listener class uses socket/tcp as its sole data format.

10.13.5 port property

The read-only port property provides the local port the listener is bound to as a number.
10.14 UDP socket

The UDP network socket class implements the sending and receiving of UDP packets.
import UDP from "embedded:io/socket/udp”;

See Annex A for the formal algorithms of the UDP IO Class.

10.14.1 Properties of constructor options object

Property Description

port The local port number to bind the UDP socket to. This property is
optional.

address A string with the IP address of the network interface to bind to. This

property is optional.

multicast A string with the IP address of a multicast address to bind to. This
property is optional.

timeToLive A number with the multicast time-to-live value as a number from 1 to
255. This property is required if the multicast property is provided
and otherwise ignored.

10.14.2 Methods
read([buffer])
The read call reads a complete UDP packet.

If there are no arguments, read allocates an ArrayBuffer the size of the packet, copies the packet data to
the buffer, and returns the buffer. If first argument is a Byte Buffer, the packet data is copied to the buffer and
the number of bytes copied is returned. If the buffer is too small to hold the packet, an exception is thrown.

The following properties are attached to the buffer containing the packet data:

* address, a string containing the packet sender’s IP address

28 © Ecma International 2025



secmd

« port, the port number used to send the packet.

write(buffer, address, port)

The write call takes three arguments: the packet data as a Byte Buffer, the remote address string, and the
remote port number.

10.14.3 Callbacks
onReadable(packets)

Invoked when one or more packets are received. The callback receives a single argument that indicates the
total number of packets available to read.

10.14.4 Data format

The UDP class data format is always "buffer”.

10.15 TLS Client socket

The TLSClient network socket class implements a logical subclass of the TCP class that secures the
connection using Transport Layer Security (TLS).

import TLS from "embedded:io/socket/tcp/tls";

A TLS implementation may use certificates from a certificate store. The certificate store is implementation
dependent and not specified by this Standard.

All certificate and key data use DER (binary) format, not PEM (Base64 encoded text).
10.15.1 Properties of constructor options object

The TLS Client socket extends the TCP socket’s options object with a required t1s property set to an object
that contains the TLS options.

The following TLS version strings are defined: "TLSv1.3", "TLSv1.2", "TLSv1.1".

© Ecma International 2025 29



secma

Property Description

tls An object with the following properties. This
property is required.

tls.host Supports Server Name Indication (SNI). A
string with the host name of the remote
endpoint. This property is required.

tls.minimumVersion A TLS version string indicating the minimum

acceptable TLS version for the connection.
This property is optional and the default is
implementation dependent.

tls.maximumVersion

A TLS version string indicating the maximum
acceptable TLS version for the connection.
This property is optional and the default is
implementation dependent.

tls.applicationLayerProtocol

Supports Application-Layer Protocol
Negotiation Extension (ALPN). A String or
Byte Buffer to indicate support for a single
application layer protocol or an Array of one
or more String and Byte Buffers to indicate
support for multiple application layer
protocols. This property is optional.

tls.maximumFragmentLength

Supports Maximum Fragment Length. A
number indicating the maximum fragment
size in bytes. This property is optional. If not
present, the maximum fragment length is not
negotiated.

tls.ca A Byte Buffer or an Array of Byte Buffer
containing certificates chains for the
connection. This property is optional.

tls.clientKey A Byte Buffer or an Array of Byte Buffers

containing client keys for the connection.
This property is optional.

tls.clientCertificate

A Byte Buffer or an Array of Byte Buffers
containing client certificates for the
connection. This property is optional.

10.15.2 write(buffer[, options])

The write method returns the updated writable count. This may be reduced by more than the size of the buffer

written because of TLS protocol overhead.

The write method options object is identical to the TCP Socket’s write options object. The TLS implementation

may use the more and byteLength information to build TLS records.

10.16 Audio Input —synchronous IO

import AudioIn from "embedded:io/audio/in";

30

© Ecma International 2025




»ecma

See Annex A for the formal algorithms of the Audio Input Class.

10.16.1 Properties of constructor options object

Property Description

bitsPerSample A number indicating the number of bits per audio sample when
using uncompressed audio. Allowed values are 8 and 16. This
property is optional and defaults to a host defined value.

channels A number indicating the number of audio channels returned.
Allowed values are 1 and 2. This property is optional and defaults
to a host defined value.

sampleRate A number indicating the sample rate of the audio. This property is
optional and defaults to a host defined value.

audioType A string indicating the encoding of the captured audio. The
allowed value is "LPCM". This property is optional and defaults to
a host defined value.

10.16.2 Methods

read([byteLength | buffer])

The read method may only be used to read complete audio samples. For example, for audioType of "LPCM"
with channels of 2 and bitsPerSample of 16 each audio frame is 32 bits, and consequently reads must be
multiples of four bytes.

start()

The start method begins capturing audio. The audio input instance is stopped when created. The start
method does not acquire hardware resources; that is done by the constructor.

stop([options])

The stop method suspends audio capture. Unlike the close method, the stop method does not release
hardware resources.

The optional options argument is an options object with a single defined property, flush, a boolean with true
indicating that any unread audio should be flushed immediately and false indicating that the unread audio
may still be read after calling stop.

10.16.3 Callbacks
onReadable(byteLength, sampleCount)

The onReadable callback is invoked when audio samples are available to be read. The byteLength
argument is the number of bytes available to read. This number is always an integer number of samples. The
sampleCount argument is the maximum number of samples that may be read.

10.16.4 Data format

The data format is always "buffer".

© Ecma International 2025 31



secma

10.16.5 bitsPerSample property

A number indicating the number of bits per sample when using an uncompressed audioType. This property is
read-only.

10.16.6 channels property

A number indicating the number of channels. This property is read-only.
10.16.7 sampleRate property

A number indicating the sample rate. This property is read-only.
10.16.8 audioType property

A string indicating the audio encoding. This property is read-only.
10.17 Audio Input —asynchronous IO

import AudioIn from "embedded:io/audio/in";

The AudioIn class provides an implementation using asynchronous IO through the AudioIn.Async
constructor. The AudioIn.Async constructor is only present if asynchronous IO is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the Audio Input Class Asynchronous.

10.17.1 Properties of constructor options object
Same as synchronous Audio Input.

10.17.2 Data format

Same as synchronous Audio Input.

10.17.3 Callbacks

The onReadable callback is not invoked.

10.17.4 Methods
read(byteLength | buffer, callback)

The byteLength and buffer arguments are the same as synchronous Audio Input. There is no return value.
The callback property is a completion callback function with a second argument that is the byteLength or
buffer that would be returned by synchronous read.

10.18 Audio Output —synchronous 10
import AudioOut from "embedded:io/audio/out";

See Annex A for the formal algorithms of the Audio Output Class.

32 © Ecma International 2025



»ecma

10.18.1 Properties of constructor options object

Property Description

bitsPerSample A number indicating the number of bits per audio sample when
outputting uncompressed audio. Allowed values are 8 and 16.
This property is optional and defaults to a host defined value.

channels A number indicating the number of audio channels provided.
Allowed values are 1 and 2. This property is optional and defaults
to a host defined value.

sampleRate A number indicating the sample rate of the audio. This property is
optional and defaults to a host defined value.

audioType A string indicating the encoding of the audio. The allowed value is
"LPCM". This property is optional and defaults to a host defined
value.

10.18.2 Methods

write(buffer)

The write method may only be used to output complete audio samples. For example, for audioType of
"LPCM" with channels of 2 and bitsPerSample of 16 each audio frame is 32 bits, and consequently writes
must be multiples of four bytes.

start()

The start method begins outputting audio. The audio output instance is stopped when created. The start
method does not acquire hardware resources; that is done by the constructor.

stop([options])

The stop method suspends audio output. Unlike the close method, the stop method does not release
hardware resources.

The optional options argument is an options object with a single defined property, flush, a boolean with true

indicating that any unplayed audio should be flushed and false indicating that the unplayed audio will be output
after calling start.

10.18.3 Callbacks
onWritable(byteLength, sampleCount)
The onWritable callback is invoked when the space to write audio samples has increased. The byteLength

argument is the maximum number of bytes that may be written. This number is always an integer number of
samples. The sampleCount argument is the maximum number of samples that may be written.

10.18.4 Data format

The data format is always "buffer".

© Ecma International 2025 33



secma

10.18.5 bitsPerSample property

A number indicating the number of bits per sample when using an uncompressed audioType. This property is
read-only.

10.18.6 channels property

A number indicating the number of channels. This property is read-only.

10.18.7 sampleRate property

A number indicating the sample rate. This property is read-only.

10.18.8 audioType property

A string indicating the audio encoding. This property is read-only.

10.18.9 volume property

A number indicating the volume level to be applied to the audio output. Full volume is 1.0 and fully muted is

0.0. Setting a value outside of this range throws a RangeError. The default value is 1.0. This property may
be read and written.

10.19 Audio Output —asynchronous IO
import AudioOut from "embedded:io/audio/out"”;

The AudioOut class provides an implementation using asynchronous 10 through the AudioOut.Async
constructor. The AudioOut.Async constructor is only present if asynchronous IO is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the Audio Output Class Asynchronous.

10.19.1 Properties of constructor options object
Same as synchronous Audio Output.

10.19.2 Data format

Same as synchronous Audio Output.

10.19.3 Methods

write(buffer, callback)

The buffer argument is the same as synchronous Audio Output. The callback property is a completion
callback function.

10.20 Image Input —synchronous IO
import ImageIn from "embedded:io/image/in";

See Annex A for the formal algorithms of the Image Input Class Pattern.

34 © Ecma International 2025



»ecma

10.20.1 Properties of constructor options object

Property Description

imageType A value indicating the encoding of the image. If the value is a number,
the image is uncompressed in a pixel format defined by the Display
Class Pattern. If the value is a string, the allowed value is "jpeg". This
property is optional and defaults to a host defined value.

width A number indicating the requested pixel width of the captured image.
This property is optional and defaults to a host defined value.

height A number indicating the requested pixel height of the captured image.
This property is optional and defaults to a host defined value.

10.20.2 Methods

read([byteLength | buffer])

The behavior of the read method depends on the data format.

When the data format is "buffer/disposable”, the read method returns one frame in a disposable buffer
or undefined, if a frame is not available. The caller should dispose the returned buffer as soon as practical to

minimize the chance of dropping frames because the implementation may support only a small number of
outstanding disposable buffers. The disposable buffer returned may be immutable.

When the data format is "buffer", the read method conforms to the 10 Class Pattern.
start()

The start method begins capturing images. The image input instance is stopped when created. The start
method does not acquire hardware resources; that is done by the constructor.

stop([options])

The stop method suspends image capture. Unlike the close method, the stop method does not release
hardware resources.

The optional options argument is an options object with a single defined property, flush, a boolean with true
indicating that unread frames should be flushed and false indicating that unread frames may be read after
calling stop.

10.20.3 Callbacks
onReadable(byteLength)

The onReadable callback is invoked when a new frame is available to be read. The byteLength argument
indicates the size of the frame in bytes.

10.20.4 Data format

The data format is either "buffer/disposable” or "buffer”.

© Ecma International 2025 35



secma

10.20.5 imageType property

A string or number indicating the image encoding. See the imageType property of the constructor options
object for details. This property is read-only.

10.20.6 width property

A number indicating the image’s pixel width. This property is read-only.
10.20.7 height property

A number indicating the image’s pixel height. This property is read-only.
10.21 Image Input —asynchronous IO

import ImageIn from "embedded:io/image/in";

The ImageIn class provides an implementation using asynchronous IO through the ImageIn.Async
constructor. The ImageIn.Async constructor is only present if asynchronous IO is supported.

Asynchronous operations occur serially in the order issued.

See Annex A for the formal algorithms of the Image Input Class Asynchronous.

10.21.1 Properties of constructor options object

Same as synchronous Image Input.

10.21.2 Callbacks

The onReadable callback is not invoked.

10.21.3 Data format

Same as synchronous Image Input.

10.21.4 Methods

read([byteLength | buffer,] callback)

The behavior of the read method depends on the data format.

When the data format is "buffer/disposable", the read method takes only a completion callback function

argument that is invoked with the buffer containing the image data. As with the read method in the synchronous
Image Input, the buffer may be immutable and should be disposed as soon as practical.

When the data format is "buffer", the read method conforms to the 10 Class Pattern.

11 10 Provider Class Pattern

The 10 Provider Class Pattern builds on the Base Class Pattern to provide a foundation to access a collection
of 10 Classes.

36 © Ecma International 2025



»ecma

An 10 Provider contains one or more IO Classes. The IO Provider may be connected to the host in any way,
including:

» Adirect hardware connection such as I12C or SPI
* Alocal wireless connection such as BLE using the Automation IO Service profile

« A TCP/IP connection to an internet cloud service

It is anticipated, but not required, that implementations of the 10 Provider Class Pattern will perform IO using
instances conforming to the 10 Class Pattern. To facilitate that, the constructor uses IO constructor properties
to specify their IO connections.

An 10 Provider instance contains 10 Classes which conform to the 10 Class Pattern. The following code is an
example of using an 10 Provider to access a Digital pin on a GPIO expander connected via I2C.

import I2C from "embedded:io/i2c";

const expander = new Expander({
io: I2C,
data: 5,
clock: 4,
hz: 1_000_000,
address: 0x20,

1
const led = new expander.Digital({
pin: 13,
mode: expander.Digital.Output,
})s

led.write(1);

Here the data and clock pins passed to the Expander constructor refer to pins of the host whereas the pin
passed to the expander.Digital constructor refers to a pin of the GPIO expander.

See Annex A for the formal algorithms of the 10 Provider Class Pattern.

11.1 constructor

Following the Base Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor. These use the same properties as the 10 types corresponding
to the hardware connection. As in the Peripheral Class Pattern, the 10 properties in the Provider Class Pattern
are grouped to avoid collisions.

The options object is not limited to 10 connection information and must contain all information needed by the
implementation to establish the connection.

11.2 close method

In addition to releasing all resources as required by the Base Class Pattern, the close method causes the
onError callback to be invoked on all open instances. Note that onError may not be invoked from within
close (see Callbacks section).

A class may specify that close accepts an optional callback function to invoke after the close operation
completes. The callback must the last argument to close. The first argument to the callback is a Number with
0 indicating success and other values indicating failure. Pending callbacks from other operations are invoked
before the callback passed to close.

© Ecma International 2025 37



secma

11.3 Callbacks

onReady()

The onReady callback is invoked once the 10 Provider instance is ready for use.

The 10 provider may not know what IO resources are available until it has successfully established a connection
to the remote resource. For this reason, a provider may not have any 10 constructors on its instance until the
onReady is invoked.

The IO constructors of an 10 Provider, if present on the instance, may be used prior to onReady being invoked.

onError()

The onError callback is invoked on a non-recoverable error to indicate that the provider instance can no longer
be used.

When a provider fails, its IO instances also become unusable, and consequently onError must also be invoked
on each instance.

12 Peripheral Class Pattern

The Peripheral Class Pattern builds on the Base Class Pattern to provide a foundation for implementing access
to different kinds of peripheral devices. The Peripheral Class Pattern is purely abstract and cannot be
instantiated directly.

See Annex A for the formal algorithms of the Peripheral Class Pattern.

12.1 constructor

Following the Base Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the peripheral. These use the same properties as the 10 types
corresponding to the hardware connection. For example, an 12C peripheral:

import I2CPeripheral from "embedded:example/i2cperipheral”;
import I2C from "embedded:io/i2c";

let t = new I2CPeripheral({
io: I2C,
data: 4,
clock: 5,
address: 0x30

1)

The 1o property specifies the constructor for the 10 Class.

If the peripheral has multiple hardware connections, the options object separates them to avoid collisions. For
example, here the peripheral has an 12C connection for primary communication and a digital connection for an
interrupt:

import I2CPeripheralWithInterrupt from
"embedded:example/i2cperipheralwithinterrupt”;
import I2C from "embedded:io/i2c";

import Digital from "embedded:io/digital”;

38 © Ecma International 2025



secmd

let t = new I2CPeripheralWithInterrupt({
communication: {
io: I2C,
data: 4,
clock: 5,
address: 0x30

}s
interrupt: {
io: Digital,
pin: 5
}
})s

The constructor must reset the peripheral hardware to a consistent initial state so the peripheral’s behavior is
not dependent on a previous instantiation. This reset may include calling the instance’s configure method.

12.2 close method

The close method, as required by the Base Class Pattern, releases all IO connections in use by the instance.

12.3 configure method
The configure method modifies how the peripheral operates. It has a single argument, an options object.

The configure method follows the same rules regarding the options argument as the constructor and
therefore may not modify its content.

Because peripherals have many features, the configure method may implement support for many properties.
A given call to the configure method should only modify the features specified in the options object.

The Peripheral Class Pattern does not require a script call the configure method to use the peripheral,
however specific implementations may require configure to be called.

The configure method may be called more than once to allow scripts to reconfigure the peripheral.

12.4 Accessors for configuration

Classes that follow the Peripheral Class Pattern may choose to provide accessors, e.g. setters and getters, for
configuration properties. A setter should behave in the same way as the configure method invoked with a
single property. For example, a setter for a property named resolution could be implemented as follows:

class ExamplePeripheral {

set resolution(value) {
this.configure({resolution: value});

}

© Ecma International 2025 39



secma

A getter for the same property could be implemented as follows:

class ExamplePeripheral {

get resolution() {
this.configuration.resolution;
}

13 Sensor Class Pattern

The Sensor Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to a variety of sensors.

It is anticipated, but not required, that instances conforming to the Sensor Class Pattern will perform 10 using
instances conforming to the 10 Class Pattern. The Sensor Class Pattern is therefore non-blocking, like 10.
Additionally, the constructor uses 10 constructor properties to specify their IO connections.

The Sensor Class Pattern provides low-level sensor access, similar to a sensor driver provided by a sensor
manufacturer, to support access to all the unique capabilities of the sensor. As with 10, where a given type of
device (e.g. a temperature sensor) has common capabilities across manufacturers, the individual sensor types
define a common way to access that functionality.

Higher-level sensor APIs may be built using instances of the Sensor Class Pattern. The W3C Generic Sensor
specification, for example, may be implemented using sensors conforming to The Sensor Class Pattern.

The Sensor Class Pattern may be used together with the Sensor Data Provenance Rules to improve the usability
of the data collected.

See Annex A for the formal algorithms of the Sensor Class Pattern.

13.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the sensor.

For example, here the temperature sensor has an interrupt on a Digital pin:

import I2C from "embedded:io/i2c";
import Digital from "embedded:io/digital”;

let t = new Temperature({
sensor: {
io: I2C,
data: 4,
clock: 5,
address: 0x30
}s
interrupt: {
io: Digital,
pin: 5

})s

40 © Ecma International 2025



»ecma

The constructor must reset the sensor hardware to a consistent initial state so the sensor’s behavior is not
dependent on a previous instantiation.

13.2 configure method

The configure method is inherited from the Peripheral Class Pattern. For sensors, it modifies how the sensor
operates. This may include the hardware’s sampling interval, what data is sampled, and the range of the data
sampled.

13.3 sample method

The sample method returns readings from the sensor. The Sensor Class Pattern defines no arguments for the
sample method, though individual sensor types may.

The sample method returns an object containing one or more properties. The returned object is mutable. The
implementation must return a different object on each invocation to allow callers to accumulate multiple sensor
readings.

NOTE A sensor implementation of sSample may accept an input argument of the object to use for the sensor data as
an optimization to reduce memory manager work. If supported, this must be specified for the Sensor Class’
sample method.

If the sample data includes timestamps (e.g. when the sample was collected), those timestamps in the returned
sample object should conform to the time or ticks properties of the Sample Object specified by the
Provenance Sensor Class Pattern.

13.4 Callbacks

The Sensor Class Pattern specifies one callback that is set by the options object passed to the constructor.
Individual sensor classes may provide additional callbacks, for instance, to indicate when a sample is available
or a sensed condition has been met.

onError()

The onError callback is invoked on a hon-recoverable error to indicate that the sensor instance can no longer
be used. The only method that should be called is close.

14 Sensor classes
This section defines Sensor Classes conforming to the Sensor Class Pattern.

The classes support common sensor capabilities. Capabilities that are not supported here may be added using
the extensibility options of the Sensor Class Pattern and Base Class Pattern.

14.1 Compound sensors

A single physical sensor may provide more than one kind of sensor reading. For example, a single sensor
package may include both a temperature sensor and a humidity sensor. When a single physical sensor contains
two or more logical sensors, the Sample object returned by the sample method must contain a sub-object for
each logical sensor. For example, a physical sensor that includes both temperature and humidity sensors would
return a Sample object with the following properties:

{
hygrometer: {

humidity: 0.5

© Ecma International 2025 41



secma

}s

thermometer: {
temperature: 23

}
}

The name of the property that contains the sub-object is defined by the sensor class. Here thermometer is
defined by the Temperature sensor class and hygrometer is defined by the Humidity sensor class. Each sub-
object contains a Sample object as defined by its sensor class.

14.2 Accelerometer

The Accelerometer class implements access to a three-dimensional accelerometer. The property name
accelerometer is used when part of a compound sensor.

See Annex A for the formal algorithms of the Accelerometer sensor class.

14.2.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Accelerometer draft.

Property Description

X A number that represents the sampled acceleration along the x axis in
meters per second squared. This property is required.

y A number that represents the sampled acceleration along the y axis in
meters per second squared. This property is required.

z A number that represents the sampled acceleration along the z axis in
meters per second squared. This property is required.

14.3 Ambient light

The AmbientLight class implements access to an ambient light sensor. The property name lightmeter is
used when part of a compound sensor.

See Annex A for the formal algorithms of the AmbientLight sensor class.

14.3.1 Properties of sample object

These properties are compatible with the attributes of the same name in the W3C Ambient Light Sensor draft.

Property Description

illuminance A number that represents the sampled ambient light level in Lux.
This property is required.

14.4 Atmospheric pressure

The AtmosphericPressure class implements access to an atmospheric pressure sensor or barometer. The
property name barometer is used when part of a compound sensor.

42 © Ecma International 2025


https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/

secmd

See Annex A for the formal algorithms of the AtmosphericPressure sensor class.

14.4.1  Properties of a sample object

Property Description

pressure A number that represents the sampled atmospheric pressure in Pascal.
This property is required.

14.5 Carbon Dioxide

The CarbonDioxide class implements access to a sensor that detects the amount of carbon dioxide in air.
The property name carbonDioxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the CarbonDioxide sensor class.

14.5.1 Properties of a sample object

Property Description

co2 A number that represents the sampled carbon dioxide in parts per million.
This property is required.

14.6 Carbon Monoxide

The CarbonMonoxide class implements access to a sensor that detects the amount of carbon monoxide in
air. The property name carbonMonoxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the CarbonMonoxide sensor class.

14.6.1 Properties of a sample object

Property Description

co A number that represents the sampled carbon monoxide in parts per
million. This property is required.

14.7 Dust

The Dust class implements access to a sensor that detects the amount of dust suspended in air. The property
name dustDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Dust sensor class.

© Ecma International 2025 43



secma

14.7.1  Properties of a sample object

Property Description

dust A number that represents the sampled dust levels in micrograms per
cubic meter. This property is required.

14.8 Gyroscope

The Gyroscope class implements access to a three-dimensional gyroscope. The property name gyroscope
is used when part of a compound sensor.

See Annex A for the formal algorithms of the Gyroscope sensor class.

14.8.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Gyroscope draft.

Property Description

X A number that represents the sampled angular velocity around the x axis
in radian per second. This property is required.

y A number that represents the sampled angular velocity around the y axis
in radian per second. This property is required.

z A number that represents the sampled angular velocity around the z axis
in radian per second. This property is required.

The sign of the sampled angular velocity depends on the rotation direction, with a positive number indicating a
clockwise rotation and a negative number indicating a counterclockwise rotation.

14.9 Humidity

The Humidity class implements access to a humidity sensor. The property name hygrometer is used when
part of a compound sensor.

See Annex A for the formal algorithms of the Humidity sensor class.

14.9.1  Properties of a sample object

Property Description

humidity A number that represents the sampled relative humidity as a
percentage. This property is required.

14.10 Hydrogen

The Hydrogen class implements access to a sensor that detects the amount of hydrogen in air. The property
name hydrogenDetector is used when part of a compound sensor.

44 © Ecma International 2025


https://www.w3.org/TR/gyroscope/

secmd

See Annex A for the formal algorithms of the Hydrogen sensor class.

14.10.1 Properties of a sample object

Property Description

H A number that represents the sampled hydrogen in parts per million. This
property is required.

14.11 Hydrogen Sulfide

The HydrogenSulfide class implements access to a sensor that detects the amount of hydrogen sulfide in
air. The property name hydrogenSulfideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the HydrogenSulfide sensor class.

14.11.1 Properties of a sample object

Property Description

H2S A number that represents the sampled hydrogen sulfide in parts per
million. This property is required.

14.12 Magnetometer

The Magnetometer class implements access to a three-dimensional magnetometer. The property name
magnetometer is used when part of a compound sensor.

See Annex A for the formal algorithms of the Magnetometer sensor class.

14.12.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Magnetometer draft.

Property Description

X A number that represents the sampled magnetic field around the x axis in
microtesla. This property is required.

y A number that represents the sampled magnetic field around the y axis in
microtesla. This property is required.

z A number that represents the sampled magnetic field around the z axis in
microtesla. This property is required.

14.13 Methane

The Methane class implements access to a sensor that detects the amount of methane in air. The property
name methaneDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Methane sensor class.

© Ecma International 2025 45


https://www.w3.org/TR/magnetometer/

secma

14.13.1 Properties of a sample object

Property Description

CH4 A number that represents the sampled methane in parts per million. This
property is required.

14.14 Nitric Oxide

The NitricOxide class implements access to a sensor that detects the amount of nitric oxide in air. The
property name nitricOxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the NitricOxide sensor class.

14.14.1 Properties of a sample object

Property Description

NO A number that represents the sampled nitric oxide in parts per million.
This property is required.

14.15 Nitric Dioxide

The NitricDioxide class implements access to a sensor that detects the amount of nitric dioxide in air. The
property name nitricDioxideDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the NitricDioxide sensor class.

14.15.1 Properties of a sample object

Property Description

NO2 A number that represents the sampled nitric dioxide in parts per million.
This property is required.

14.16 Oxygen

The Oxygen class implements access to a sensor that detects the amount of oxygen in air. The property name
oxygenDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the Oxygen sensor class.

14.16.1 Properties of a sample object

Property Description

(0] A number that represents the sampled oxygen in parts per million. This
property is required.

46 © Ecma International 2025



secmd

14.17 Particulate Matter

The ParticulateMatter class implements access to a sensor that detects the amount of particulate matter
suspended in air. The property name particulateMatterDetector is used when part of a compound
sensor.

See Annex A for the formal algorithms of the ParticulateMatter sensor class.

14.17.1 Properties of a sample object

Property Description

particulateMatter A number that represents the sampled particulate matter
levels in micrograms per cubic meter. This property is
required.

14.18 Proximity

The Proximity class implements access to a proximity sensor or range finder. The property name proximity
is used when part of a compound sensor.

See Annex A for the formal algorithms of the Proximity sensor class.

14.18.1 Properties of a sample object

These properties are compatible with the attributes of the same name in the W3C Proximity Sensor draft.

Property Description

near A boolean that indicates if a proximate object is detected. This property
is required.

distance A number that represents the distance to the nearest sensed object in

centimeters or null if no object is detected. This property is optional:
some proximity sensors can only provide the near property.

max A number that represents the maximum sensing range of the sensor in
centimeters.

14.19 Soil Moisture

The SoilMoisture class implements access to a soil moisture detector. The property name
soilMoistureDetector is used when part of a compound sensor.

See Annex A for the formal algorithms of the SoilMoisture sensor class.

© Ecma International 2025 47


https://w3c.github.io/proximity/

secma

14.19.1 Properties of a sample object

Property Description

moisture A number between 0 and 1 (inclusive) that represents the sampled
relative soil moisture level, with 0 being the most dry and 1 the most
wet. This property is required.

14.20 Switch

The Switch class implements access to a switch sensor. The property name switch is used when part of a
compound sensor.

14.20.1 Properties of sample object

Property Description
position A number that represents the current state of the switch. This property is
required.

14.21 Temperature

The Temperature class implements access to a temperature sensor. The property name thermometer is
used when part of a compound sensor.

See Annex A for the formal algorithms of the Temperature sensor class.

14.21.1 Properties of a sample object

Property Description

temperature A number that represents the sampled temperature in degrees
Celsius. This property is required.

14.22 Touch

The Touch class implements access to a touch panel controller. The property name touch is used when part
of a compound sensor.

See Annex A for the formal algorithms of the Touch sensor class.

14.22.1 Sample object

The Touch class sample method returns an array of touch objects, as specified below. If there is no touch in
progress, sample returns undefined.

48 © Ecma International 2025



secmd

14.22.1.1 Properties of touch object

Property Description

X Number indicating the X coordinate of the touch point

y Number indicating the Y coordinate of the touch point

id Number indicating which touch point this entry corresponds to

14.23 Volatile Organic Compounds

The VolatileOrganicCompounds class implements access to a sensor that detects the amount of volatile
organic compounds suspended in air. The property name vocDetector is used when part of a compound
sensor.

See Annex A for the formal algorithms of the VolatileOrganicCompounds sensor class.

14.23.1 Properties of a sample object

Property Description

tvoc A number that represents the sampled total volatile organic compounds in
parts per billion. This property is required.

15 Display Class Pattern

The Display Class Pattern builds on the Peripheral Class Pattern to provide a foundation for implementing
access to displays represented by a two-dimensional array of pixels.

The Display Class Pattern is designed to support displays independent of hardware architecture. For example,
it may be used efficiently with both frame buffers stored in local host memory and frame buffers connected with
the MIPI Display Serial Interface.

See Annex A for the formal algorithms of the Display Class Pattern.

15.1 constructor

Following the Peripheral Class Pattern, the constructor has a single options object argument. The options object
defines the hardware connections of the display. These use the same properties as the 10 types corresponding
to the hardware connection.

A Display Class is not required to have properties to configure its hardware connections. For example, a

memory-mapped display may have no external connections. Or, a Display Class may be preconfigured for the
hardware of a specific host.

15.2 configure method

The following table enumerates the properties defined for the options object argument:

© Ecma International 2025 49


https://mipi.org/specifications/dsi

»ecma

Property Description

format A number indicating the format of pixel data passed to the instance
(for example, to the send method). This property is optional. If the
format provided is not supported by the Display Class, a
RangeError is thrown.

rotation The clockwise rotation of the display as a number. This property is
optional. If the value provided is not 0, 90, 180, or 270, or is
unsupported by the Display Class, a RangeError is thrown.

brightness The relative brightness of the display from 0 (off) to 1.0 (full
brightness). This property is optional.

flip A string indicating whether the pixels should be flipped horizontally
and/or vertically. Allowed values are "", "h", "v", and "hv". The

empty string indicates that neither horizontal nor vertical flip is
applied. This property is optional.

The Display Class Pattern does not define default values for these properties to allow the host to provide default
values that are appropriate for its hardware. Implementations may provide the current configuration through the
configuration property defined by the Provenance Sensor Class Pattern.

15.3 begin method

The begin method starts the process of updating the display’s pixels. If no arguments are passed, the entire
frame buffer is updated starting at the top-left corner (coordinate {@, @}), proceeding left-to-right, top-to-bottom,
ending at the bottom-right corner (coordinate {width, height}).

If an options object is passed as the sole argument, the object may contain x, y, width, and height properties
that define a rectangular area to update. The rectangle must fit within the bounds of the display (e.g. {0, @,
width, height}) or a RangeError is thrown.

A display may not support all possible update areas. For example, a display may only support updates aligned
to even horizontal pixels. A RangeError is thrown if an unsupported update area is passed to begin. Prior to
calling begin, the adaptInvalid method may be used to adjust the update area to the capabilities of the
display.

The options object has an optional continue property to support discontiguous updates on displays that use
page flipping to swap between multiple frame buffers. When continue is false, the default value, the call to
the begin method starts to update a new frame. Calling begin with continue set to true continues updating
the same frame rather than starting a new one.

An Error exception is thrown if the begin method is called more than once without an intervening call to the
end method, unless continue is set to true in the successive calls. For example, this is a valid call sequence
to update three horizontal slices of the display.

display.begin({x: 0, y: @, width: 240, height: 10});
display.send(pixels);

display.begin({x: @, y: 20, width: 240, height: 10, continue: true});
display.send(pixels);

display.begin({x: @, y: 40, width: 240, height: 10, continue: true});
display.send(pixels);

display.end();

50 © Ecma International 2025



»ecma

15.4 send method

The send method delivers one or more horizontal scan lines of pixel data to the display. The sole argument to
send is a Byte Buffer of pixels. The pixels are stored in a packed array with no padding between scan lines.
The format of the pixels matches the format property of the options object of the configure method.

15.5 end method

The end method finishes the process of updating the display’s pixels, by making all pixels visible on the display.
If the display instance buffers pixels, all pixels musts be flushed. If the display uses page flipping, the page must
be flipped to the most recently updated buffer.

15.6 adaptInvalid method

The adaptInvalid method accepts a single options object argument that includes x, y, width, and height
properties that describe an area of the display to be updated. It adjusts these properties as necessary so that
the result is valid for the display and encloses the original update area.

Consider a display which limits the update area horizontally to even pixel positions. The following code calls a
display’s adaptInvalid method with odd numbers for both left and right edges of the update area:

const area = {x: 3, y: 20, width: 10, height: 20};
display.adaptInvalid(area);

display.begin(area);

display.send(pixels);

display.end();

An implementation of adaptInvalid to apply the rules above, if implemented in ECMAScript, would be:

function adaptInvalid(options) {
if (options.x & 1) {
options.x -= 1;
options.width += 1;
}
if (options.width & 1) {
options.width += 1;
}
}

Some displays require that the update area only include full scan lines. The following function shows the
implementation for such a display, assuming a scanline width of 128 pixels;

function adaptInvalid(options) {
options.x = 0;
options.width = 128;

}

For displays that only support full screen updates, adaptInvalid updates the rectangle to be the full display
dimensions. The following function shows the implementation for a QVGA (320 x 240) display:

© Ecma International 2025 51



secma

function adaptInval
options.x = 9;
options.y = 9;
options.width =
options.height

id(options) {

320;
= 240;

15.7 Instance properties

width

The width of the display in pixels as a number. This property is read-only. This value may change based on the
configuration, for example, when changing the rotation causes the orientation to change from portrait to

landscape.

height

The height of the display in pixels as a number. This property is read-only. This value may change based on
the configuration, for example, when changing the rotation causes the orientation to change from portrait to

landscape.

15.8 Pixel format values

Value Description

3 1-bit monochrome

4 4-bit grayscale (0 black, 15 white)
5 8-bit grayscale (0 black, 255 white)
6 8-bit RGB 3:3:2

7 16-bit RGB 5:6:5 little-endian

8 16-bit RGB 5:6:5 big-endian

9 24-bit RGB 8:8:8

10 32-bit RGBA 8:8:8:8

12 12-bit XRGB 4:4:4:4 (x is unused)
20 YUV422 YO U Y1V 8:8:8:8

16 Real-Time Cloc

k Class Pattern

A Real-Time Clock (RTC) provides a time-of-day clock. An RTC is commonly used to initialize time on a
microcontroller. An RTC is usually a separate hardware component from the microcontroller. It usually maintains

the time using a battery so the time survives power being removed from the device.

The RTC Class Pattern conforms to the Peripheral Class Pattern.

52

© Ecma International 2025



secmd

16.1 Properties of constructor options object

Property Description

clock A class constructor options object that describes the hardware
connection for the RTC. This property is required.

interrupt A Digital class constructor options object that describes the hardware
connection to the RTC'’s interrupt. This property is optional.

onAlarm() A function to invoke when an alarm is triggered by the RTC. This
property is optional.

16.2 configure method

The following property is defined for the options object.

Property Description

alarm The time in milliseconds to set the RTC’s alarm. This value is an
ECMAScript time value as a Number.

16.3 time property

The current time of the RTC. Set this property to change the current time of the RTC. This value is an
ECMAScript time value contained in a Number.

The resolution of the RTC component may impact the values. For example, an RTC with one-second resolution
may return time values with a milliseconds of zero.

If the time is unavailable (for example, because it has not been set or is otherwise invalid on the RTC), the
returned value is undefined.

16.4 configuration property

The configuration property returns an object containing the current configuration of the RTC. It contains the
alarm property, if supported.

The configuration property is introduced in the Provenance Sensor Class Pattern.

17 Network Interface Class Pattern

The Network Interface Class Pattern builds on the Base Class Pattern to provide access to the network
interfaces of a device to monitor the connection state and perform operations.

The physical network interfaces may be physically built into the microcontroller or a separate peripheral. The
logical network interfaces are managed by the host.

Creating an instance of a Network Interface class binds to the host’s network interface; it does not initialize the

network interface. Closing an instance of a Network Interface class unbinds from the host’s network interface;
it does not uninitialize the network interface.

© Ecma International 2025 53


https://419.ecma-international.org/#-17-provenance-sensor-class-pattern-configuration-property

secma

There may be multiple simultaneous instances of a Network Interface class, all bound to the same logical
network interface.

See Annex A for the formal algorithms of the Network Interface Class Pattern.

17.1.1  Properties of constructor options object

Property Description

onChanged(name) A function to invoke when the network interface’s state
changes. The name argument is the name of the property that
changed. The onChanged property is optional.

port A port specifier that indicates the logical network interface to
bind to. This property may be optional or required depending
on the implementation of the network interface.

17.1.2 connect method

Initiates the process of connecting to a network. If a connection attempt is already in progress, connect throws
an exception.

The sole argument is an options object. Each Network Interface class defines properties for the options object.

17.1.3 disconnect method

Disconnects from the currently connected network. If in the process of connecting, the connection attempt is
abandoned. If already disconnected, does nothing. No arguments are specified.

17.1.4 connection property

The read-only connection property indicates the current connection state of the network interface as a number.
The following values are defined:

Value Description

0 unavailable

100 initializing

200 disconnected

300 connecting

400 connected

500 IP address assigned

Larger values indicate a later stage in the connection process. This allows values to be compared with greater
and less than operators. Additional states may be added by specific types of network interfaces.

54 © Ecma International 2025



secmd

17.1.5 MAC property

The read-only MAC property is the MAC address assigned to the network interface as a string. If the MAC
address is unavailable, the value is undefined.

17.1.6  address property

The read-only address property is the IP address assigned to the network interface as a string. If the address
has not yet been assigned, the value is undefined.

17.2 Ethernet Network Interface

The Ethernet Network Interface is a logical subclass of the Network Interface Class Pattern for Ethernet network
interfaces.

import Ethernet from "embedded:network/interface/ethernet";

See Annex A for the formal algorithms of the Ethernet Network Interface.

17.2.1  connection property

For an Ethernet network interface, connection 200 (“disconnected”) indicates that the physical Ethernet link
has been lost and connection 400 (“connected”) indicates that the physical Ethernet link has been established.
Ethernet network interfaces add the following value for connection.

Value Description

150 Ethernet 10 initialized

17.3 Wi-Fi Network Interface

The Wi-Fi Network Interface is a logical subclass of the Network Interface Class Pattern for Wi-Fi network
interfaces.

import WiFi from "embedded:network/interface/wifi";

See Annex A for the formal algorithms of the Wi-Fi Network Interface.

17.3.1 connect method

Initiates the process of connecting to a Wi-Fi base station. The connection is defined by the properties of the
options object. If a connection attempt is already in progress, connect throws an exception.

© Ecma International 2025 55



secma

Property Description

SSID Name of the base station as a String. This property is optional.

BSSID BSSID of the base station as a MAC address formatted string. This
property is optional.

password The base station’s password as a string. This property is optional.

secure Boolean that indicates if connections to open access points are allowed.
This property is optional and defaults to false.

channel Wi-Fi channel of the base station as a number. This property is optional.

Either the SSID or BSSID property is required. If both are provided, BSSID is used.

17.3.2 scan method

Initiates a scan for Wi-Fi base stations. The scan is time-limited to no more than 10 seconds. A continuous scan
may be performed by repeated scans. If a scan is already active when scan is called, an exception is thrown.
The sole argument is an options object.

Properties of the scan options object:

Property Description

onFound(options) A callback function to invoke with information about an
access point discovered by the scan. This property is
required.

onComplete() A callback function invoked when the scan is complete. This
property is optional.

channel Wi-Fi channel number to scan as a number. This property is
optional.

frequency Wi-Fi frequency to scan: 2.4 or 5. This property is optional
and the default is implementation dependent.

secure Limit scan results to secure access points, omitting open
access points, as a boolean. This property is optional and
defaults to false.

Properties of the onFound options object for each access point found by the scan:

56

© Ecma International 2025



secmd

Property Description
SSID Service Set Identifier of the access point as a string.
BSSID Basic Service Set Identifier of the access point as a MAC address

formatted string.

RSSI Radio Signal Strength Indicator of the access point as a number.
channel Channel number of the access point as a number.
security Security mode of the access point as a string.

The scan cannot be cancelled. If the instance is closed while scanning, the host may complete the scan but
must not invoke the callbacks.

17.3.3  SSID property

The Service Set Identifier of the connected access point as a string or undefined if not connected. Read-only.

17.3.4  BSSID property

The Basic Service Set ldentifier of the connected access point as a MAC address formatted string or
undefined if not connected. Read-only.

17.3.5 RSSI property

The Radio Signal Strength Indicator of the connected access point as a number or undefined if not connected.
Read-only.

17.3.6  channel property

The channel number of the connected access point as a number or undefined if not connected. Read-only.

18 Domain Name Resolver Class Pattern

The Domain Name Resolver Class Pattern resolves DNS names to IP addresses. It conforms to the Base Class
Pattern. The Domain Name Resolver Class Pattern is not instantiated directly. Logical subclasses of the Domain
Name Resolver are instantiated, such as DNS over UDP and DNS over HTTPS.

18.1 resolve method

The resolve method begins the process of resolving a DNS name to an address. Several resolve operations
may be queued and be pending at the same time. The resolve requests complete in an implementation
dependent order, which may not be the order requested.

The first argument is a required options object. The second argument is a required completion callback function
that is invoked when resolution completes. If successful, the resolved address is provided in the second
argument and the requested hostname in the third.

© Ecma International 2025 57



»ecma

18.1.1  Properties of resolve options object

Property Description

host A string containing the hostname to resolve. This property is required.

The host property may be either a Domain Name or an IP address. If it is an IP address, the completion
callback is invoked with the resolved address and request hostname arguments set to that IP address.

18.2 DNS over UDP

DNS over UDP is a logical subclass of the Domain Name Resolver Class Pattern that resolves DNS names
over UDP.

import Resolver from "embedded:network/dns/resolver/udp";

18.2.1  Properties of constructor options object

Property Description

socket A UDP class constructor options object for a UDP socket. This property is
required.

servers Array of one or more IP address strings to use as DNS servers. This
property is required.

18.3 DNS over HTTPS (DoH)

DNS over HTTPS is a logical subclass of the Domain Name Resolver Class Pattern that resolves DNS names
using an HTTPS connection (DoH).

import Resolver from "embedded:network/dns/resolver/doh";

18.3.1 Properties of constructor options object

Property Description

http An HTTP Client class constructor options object. This property is
required.

servers An array of one or more objects containing host and address
properties to use as DoH servers. This property is required.

19 NTP Client

The NTP Client retrieves the current time from a network time source using the Network Time Protocol (NTP).
It conforms to the Base Class Pattern.

Implementations may use the Simple Network Time Protocol (SNTP).

import NTP from "embedded:network/ntp/client”;

58 © Ecma International 2025



secmd

19.1.1  Properties of constructor options object

Property Description

socket UDP class constructor options object. This property is required.

servers An array of one or strings indicating the NTP hosts to use to synchronize
time. This property is required.

19.2 getTime method

The getTime method initiates a time synchronization operation. Only one time synchronization operation may
be active at a time. If a second request is made before the current request completes, getTime throws. The
sole argument is a required completion callback function that is invoked when synchronization completes. If
successful, the time value is provided in the second argument.

20 HTTP Client Class Pattern

The HTTP Client Plass Pattern makes one or more Hypertext Transfer Protocol (HTTP/1.1) requests to a single
host. It conforms to the Base Class Pattern.

import HTTPClient from "embedded:network/http/client”;

20.1 Data format

The HTTPClient class data format is always "buffer”.

20.1.1  Properties of constructor options object

Property Description

socket An object containing a TCP class constructor options object. This property
is required.

port The remote port number to connect to as a number. This property is
optional and defaults to 80.

host The remote hostname to connect to as a string. This property is required.

dns A Domain Name Resolver class constructor options object to use to
resolve the host. This property is required.

onError A function to invoke when the remote connection closes. This property is
optional.

20.2 close method

In addition to the behaviors defined in the Base Class Pattern, all outstanding requests are cancelled.

20.3 request method

Queues an HTTP request described by the required options object, the sole argument.

© Ecma International 2025

59



secma

The options object supports the following properties:

Property Description

method The HTTP method to use to access the resource as a
string. This property is optional and defaults to "GET".

path The HTTP resource to access as a string. This property is
optional and defaults to " /".

headers A Map instance containing request headers. The map
keys are the header names and their values are the
header values. This property is optional.

onHeaders(status, A function to invoke to provide the HTTP status result
headers) code and a Map containing the response headers. The
map keys are the header names normalized to lowercase
and their values are the header values. This property is
optional.

onReadable(count) A function to invoke when bytes are available to read from
the HTTP response body. The count argument is a
number indicating the number of bytes available to read.
This property is optional.

onWritable(count) A function to invoke when the HTTP request is ready to
receive bytes for the request body. The count argument
is a number indicating the maximum number of bytes that
may be written. The onWritable callback is only invoked
if a request has a request body. To signal that a request
has a request body, set either the content-length
header to a non-zero value or the transfer-encoding
header to "chunked". This property is optional.

onDone() A function to invoke when the HTTP request has been
completed successfully. This property is optional.

The return value of the request method is an HTTP Client Request instance. This instance is the receiver
when the callback functions of the options object are invoked. The request instance has read and write
methods.

20.4 HTTP Client Request instance

The HTTP Client Request instance conforms to the 10 Class Pattern. It is instantiated by the HTTP Client and
so has no constructor. No close method is available because the protocol does not support cancelling a
reguest in progress.

20.4.1 read method

Reads payload body from the HTTP request’s response. If this HTTP Request instance is not currently receiving
the response body, returns undefined.

60 © Ecma International 2025



»ecma

20.4.2 write method

Writes to the payload body of the HTTP request’s request. If this HTTP Request instance is not currently sending
the request body, write throws an exception.

For HTTP requests using chunked transfer-encoding, calling write with no arguments signals the end of the
request body.

The write method returns the number of bytes that may be written. This may be reduced by more than the
size of the payload due to overhead in the protocol.

21 HTTP Server Class Pattern

The HTTP Server Class Pattern responds to Hypertext Transfer Protocol (HTTP/1.1) requests. It conforms to
the Base Class Pattern.

import HTTPServer from "embedded:network/http/server”;

21.1 Dataformat

The HTTPServer class data format is always "buffer".

21.2 Properties of constructor options object

Property Description

io An object containing a TCP Listener class
constructor options object. This property is required.

port The port number to listen on to as a number. This
property is optional and defaults to 80.

onConnect(connection) A function to invoke when a new connection is
initiated. It is passed an HTTP Server Connection
instance as the sole argument. This property is
required.

21.3 close method

In addition to the behaviors defined in the Base Class Pattern, all active connections are closed.

21.4 HTTP Server Connection instance

The HTTP Server Connection instance conforms to the IO Class Pattern. It is instantiated by the HTTP Server
and so has no constructor.

21.4.1 close method

Connections are automatically closed when the request is complete. Calling the close method before that
terminates a connection prematurely (for example, for a connection timeout).

© Ecma International 2025 61



secma

21.4.2 detach method
The detach method returns the TCP socket instance used by this connection. There are no arguments. On

return, the HTTP Server Connection instance maintains no reference to the instance and is effectively closed.
The detach capability is useful for protocols that use the HTTP Upgrade mechanism.

21.4.3 accept method

The accept method accepts the incoming connection so that processing of the HTTP request may begin. The
sole argument is an options object which contains callback functions to invoke as the HTTP request is processed.

21431 Properties of accept options object
Property Description
onRequest(method, A callback function to invoke after the HTTP request
path, headers) headers have been received. The first argument is

the HTTP request method as a string. The second
argument is the HTTP request path as a string. The
third argument is a map containing the headers. The
map keys are the header names normalized to
lowercase and their values are the header values.
This property is optional.

onReadable(count) A callback function to invoke when data is available to
read from the request body. This property is optional.

onResponse(response) A callback function to invoke when the request body
has been fully received. The sole argument is an
options object with a status property set to 200 and
a headers property set to an empty map. The
callback may update these values. The option object
is passed to the respond method to begin
transmitting the HTTP response. This property is
optional.

onWritable(count) A callback function to invoke when there is room in
the output buffers to transmit part of the response
body. This property is optional.

onDone() A callback function to invoke when the request
successfully completes. This property is optional.

onError(error) A callback function to invoke if an error occurs before
the response is complete, such as the connection
being terminated. This property is optional.

21.4.4 respond method
The respond method is called to begin transmitting the HTTP response. The respond method may only be

called once for a given instance and must be called after the request body has been fully received. The sole
argument to the respond method is an options object.

62 © Ecma International 2025



secmd

21.4.4.1 Properties of respond options object
Property Description
status A number indicating the status code for the HTTP response. This property
is required.
headers A map containing the HTTP response headers. The map keys are the
header names and their values are the header values. This property is
required.

21.45 read method

Reads the payload body from the HTTP request body. If this HTTP Server Connection instance is not currently
receiving the request body, returns undefined.

21.4.6 write method

Writes to the payload body of the HTTP response body. If this HTTP Server Connection instance is not currently
sending the response body, write throws an exception.

For HTTP Server Connection instances using chunked transfer-encoding, calling write with no arguments
signals the end of the response body.

The write method returns the number of bytes that may be written. This may be reduced by more than the
size of the payload due to overhead in the protocol.

21.4.7 route property

The route of an HTTP Server Connection instance is an object that is used to override the callbacks set in the
call to accept. This may be used to dispatch incoming requests to different handlers based on the request
method, path, and request headers.

If the route is set from within the onRequest callback, the onRequest callback of the route is called
immediately.

The instance copies the callback functions. Changes to the properties of the route after setting the route are

ignored.

22 HTTP Server Connection routes

22.1 Static Data route

The Static route sends a buffer or string as an HTTP Response body.

import StaticRoute from "embedded:network/http/server/route/static"”;
connection.route = {

...StaticRoute,
data: "hello, world"

}s

© Ecma International 2025 63



»ecma

22.1.1  Properties of route

Property Description

data A Byte Buffer or string to be transmitted as the HTTP Response
body. If the value is a string, it is transmitted as UTF-8 data. This
property is required.

contentType The MIME type of response body to be set as the HTTP Content-
Type header. This property is optional and defaults to “text/html”.

22.2 WebSocket Handshake route

The WebSocket Handshake route implements the server side of the WebSocket handshake to upgrade an
HTTP connection to the WebSocket protocol.

import WebSocketHandshake from "embedded:network/http/server/route/ws/handshake";

The onDone callback of the route is invoked when the handshake completes successfully; onError, if the
handshake fails. After the handshake succeeds, the TCP socket may be detached and used with a WebSocket
implementation.

connection.route = {
.. .WebSocketHandshake,
onDone() {
const ws = new WebSocketClient({
socket: this.detach(),
onReadable(count, options) {
}
})s
}

onError() {
console.log("failed");

}
}s
22.2.1 Properties of route
Property Description
protocol Array of strings. This property is optional.

23 WebSocket Client Class Pattern

The WebSocket Client Class Pattern establishes a connection to an endpoint hosting a WebSocket server and
exchanges messages using the WebSocket protocol. The WebSocket Client Class Pattern conforms to the 10
Class Pattern.

import WebSocketClient from "embedded:network/ws/client";

The WebSocket Client Class Pattern replies to ping and close messages by replying with a pong or close
message with the same payload received, as required by the protocol.

64 © Ecma International 2025



»ecma

23.1

Data format

The WebSocketClient class data format is either "number" for individual bytes or "buffer" for groups of

bytes. The default data format is "buffer".

23.2 Properties of constructor options object

Property

Description

socket

An object containing a TCP Class constructor options
object. This property is optional.

host

The remote hostname to connect to as a string. This
property is optional.

attach

An instance of a TCP Class. This property is optional.

port

The remote port number to connect to as a number. This
property is optional and defaults to 80.

protocol

The WebSocket sub-protocol as a string. This property is
optional.

headers

A Map of HTTP headers to add to the request. The map
keys are the header names and their values are the
header values. This property is optional.

dns

A Domain Name Resolver class constructor options object
to use to resolve the host. This property is required.

onReadable(count,
options)

A function to invoke when part of a WebSocket binary or
text message is available to read. The first argument is the
number of bytes available to read. The second argument
is an options object. It has a more property set to false if
this is the last fragment of a message and true if there is
at least one more fragment. It has a binary property set
to true for binary messages and false for text
messages. This property is optional.

onWritable(count)

A function to invoke when more data may be written to the
connection. The sole argument indicates the number of
bytes that maybe written. This property is optional.

onError(error)

A function to invoke when the remote connection
terminates unexpectedly. This property is optional.

onControl(opcode,
control)

A function to invoke when a control message is received.
The first argument is the control message opcode. The
second argument is an ArrayBuffer containing the
complete control message payload. This property is
optional.

onClose

A function to invoke when the connection closes cleanly.
This property is optional.

Either both socket and host are required or attach is required. The attach property takes precedence.

© Ecma International 2025

65



secma

23.3 close method

The close method does not initiate a clean close, as defined by the WebSocket protocol, of the connection
(use write with a close opcode instead).

23.4 read method

A single call to read returns bytes from the current message. Once the current message has been completely
read, the onReadable callback is invoked when the next message is available to read.

23.5 write method

The write method sends both message data and control messages. The first argument contains the message
payload in a Byte Buffer. The second argument is an options object that has the following properties to specify
the message to send.

Property Description

binary A boolean value set to true for a binary payload and false for a text
payload. This property is optional and defaults to true.

more A boolean value set to false for the last fragment of a message and
true for all others. This property is optional and defaults to false.

opcode This property is a number specifying the opcode of a control message
(the data argument is the control message’s payload). This property is
optional and must not be set for text and binary messages. Because
control messages cannot be fragmented, the more property is ignored
when opcode is present.

The write method may be used to send all or part of a single binary or text message based on the properties
of the options object.

The options object is optional. If not provided, the default values are used.

The return value is the number of bytes that may be written. This may be reduced by more than the size of the
payload due to overhead in the protocol.

23.6 Static properties of the constructor

The following properties are present on the constructor. The property names and values correspond to
WebSocket opcodes. The values are numbers and the properties are read-only.

66 © Ecma International 2025



secmd

Property Value
text 1
binary 2
close 8
ping 9
pong 10

24 MQTT Client Class Pattern

The MQTT Client Class Pattern establishes a connection to a remote endpoint hosting an MQTT server (broker)
and exchanges messages using the MQTT protocol (MQTT Version 3.1.1, OASIS Standard, 29 October 2014
6455). It allows messages of unlimited size to be sent and received, and supports all control messages. The
MQTT Client class Pattern conforms to the 10 Class Pattern.

import MQTTClient from "embedded:network/mqtt/client”;

The MQTT Client Class Pattern must implement the following:

+ Transmit keep alive message if configured with a non-zero keep-alive interval

*  Reply to PINGREQ messages with PINGREQ

The MQTT Client Class Pattern should implement the following. Sending a PUBLISH or SUBSCRIBE message
with an unimplemented quality of service level must throw an exception.

*  Reply to PUBLISH with PUBACK for quality of service 1
* Reply to PUBLISH with PUBREC for quality of service 2
* Reply to PUBREL with PUBCOMP for quality of service 2

* Reply to PUBREC with PUBREL for quality of service 2

The MQTT Client Class Pattern may not implement the following. They may be provided by layers built on the
MQTT Client Class Pattern.

+ caching messages and, consequently, message retransmit messages after disconnect
*  reconnect

* maintaining a list of active subscriptions
NOTE This specification supports MQTT Version 3. It is designed to be extensible to support MQTT Version 5.

24.1 Dataformat

The MQTTClient class data format is always "buffer".

© Ecma International 2025 67


http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc
http://docs.oasis-open.org/mqtt/mqtt/v3.1.1/os/mqtt-v3.1.1-os.doc

secma

24.2 Properties of constructor options object

Property

Description

socket

An object containing a TCP Class constructor options
object. This property is required.

port

The remote port number to connect to as a number. This
property is optional and defaults to 1883.

host

The remote hostname to connect to as a string. This
property is required.

dns

A Domain Name Resolver class constructor options object
to use to resolve the host. This property is required.

onReadable(count,
options)

A function to invoke when part of an MQTT message is
available to read. The first argument is the number of
bytes available to read. The second argument is an
options object. It has a more property set to false if this
is the last fragment of a message and true if there is at
least one more fragment. For the first fragment of a
message, the options object contains topic property with
a string indicating the message topic, a QoS property with
a number indicating the quality of service, and a
byteLength property with a number indicating the total
number of bytes in the message. The onReadable
property is optional.

onWritable(count)

A function to invoke when more data may be written to the
connection. The sole argument is a number indicating how
many bytes may be written. This property is optional.

onError(error)

A function to invoke when the remote connection
terminates. This property is optional.

onControl(opcode,
message)

A function to invoke when a control message is received.
The first argument is the control message opcode. The
second argument is an object containing an operation
property indicating the control message (CONNACK,
PUBACK, PUBREC, PUBREL, PUBCOMP, SUBACK,
UNSUBACK, PINGREQ, etc.) and an id property if included
in the message. The SUBACK message payload is
provided on the payload property as an array of byte
values. The onControl property is optional.

id

The MQTT client identifier as a string. This property is
optional and defaults to an empty string.

user

The MQTT user for establishing a connection as a string.
This property is optional and defaults to an empty string.

password

The MQTT password for establishing a connection as a
string or Byte Buffer. This property is optional and defaults
to an empty string.

© Ecma International 2025




secma

keepAlive The MQTT connection keep-alive time in milliseconds as a
number. This property is optional and defaults to 0. (This
value is in milliseconds as required for durations in this
specification. The MQTT protocol uses seconds for the
keep-alive value.)

clean The MQTT clean session flag as a boolean. This property
is optional and defaults to true.

will An object with the following properties. This property is
optional.
will.topic The topic for the MQTT will for this connection as a string.

This property is optional.

will.message The message for the MQTT will for this connection as a
String or Byte Buffer. This property is optional.

will.QoS The requested quality of service for the will message for
this connection as number with values 0, 1, or 2. This
property is optional and defaults to 0.

will.retain A Boolean indicating whether the will message should be
retained by the server. This property is optional and
defaults to false.

24.3 close method

The close method does not send an MQTT close message (use write with a DISCONNECT opcode to
initiate a clean disconnect).

24.4 read method

A single call to read returns bytes from the current message. Once the current message has been completely
read, the onReadable callback is invoked when the next message is available to read.

24.5 write method

The write method sends both message data and control messages. The first argument contains the message
payload in a Byte Buffer. The second argument is an options object that has the following properties to specify
the message to send.

The options object has the following properties to specify the message to publish or control message to send.

© Ecma International 2025 69



secma

Property Description

operation This property is a number specifying the opcode of a control
message (the data argument is the control message’s payload). This
property is optional and defaults to PUBLISH.

id A number specifying the id for the message. If an id is not provided
the MQTT client generates one. As a rule, either the caller should
provide the id for all messages or none to avoid the possibility of
values colliding. This property is optional.

topic A string specifying an MQTT topic for a PUBLISH message. This
property is required for PUBLISH messages.

QoS A number specifying the quality of service of PUBLISH message.
Allowed values are 0, 1, and 2. This property is for PUBLISH
messages only. It is optional and defaults to 0.

retain A boolean indicating if a PUBLISH message should be retained by
the server. This property is for PUBLISH messages only. It is optional
and default to false.

duplicate A boolean indicating if a PUBLISH message is being retransmitted by
the client. This property is for PUBLISH messages only. It is optional
and default to false.

byteLength A number indicating the total size of a PUBLISH message to allow a
single PUBLISH message payload to be split across two or more calls
to write. This property is optional and defaults to
data.bytelLength

items An array of objects indicating the topics to subscribe or unsubscribe
from. Each object must contain a topic property with a string
indicating the topic and, for SUBSCRIBE messages, may contain an
optional QoS property with the requested quality of service as a value
of 0, 1, or 2. This property is required for SUBSCRIBE and
UNSUBSCRIBE messages and must contain at least one element.

The options object is required, except when writing fragments of a PUBLISH message after the first fragment.
It is an error to call write before the CONNACK control message has been received.

The return value is the number of bytes that may be written. This may be reduced by more than the size of the
payload due to overhead in the protocol.

24.6 Static properties of the constructor
The following properties are present on the constructor. The property names and values correspond to MQTT

Control Packet types in Section 2.1.1 of the MQTT 3.1.1 Standard. The values are numbers and the properties
are read-only.

70 © Ecma International 2025



secma

Property Value
CONNECT 1
CONNACK 2
PUBLISH 3
PUBACK 4
PUBREC 5
PUBREL 6
PUBCOMP 7
SUBSCRIBE 8
SUBACK 9
UNSUBSCRIBE 10
UNSUBACK 11
PINGREQ 12
PINGRESP 13
DISCONNECT 14

25 Persistent Storage

The Persistent Storage Class Patterns store, retrieve, and delete data from several different kinds of storage.

Persistent Storage is accessed using open methods; their constructors always throw an exception.

Most Persistent Storage Class Patterns have a mode property in their constructor options argument. This table

lists the defined values for mode:

Property Description

"a" Append

"r" Read-only

"r+" Read-write

"w" Write-only, create new file if doesn’t exist

"w+" Read-write, create new file if doesn’t exist
25.1 Files

The Files module provides operations for files, directories, and links.

import files from "embedded:storage/files";

© Ecma International 2025

71



secma

The Files module’s default export is a Directory instance for the file system root. Whether the file system root
provided to scripts is the host’s file system root is host-dependent.

NOTE 1  The Files module is designed to follow POSIX API semantics to allow direct implementation on POSIX and the
many other environments that use POSIX as a model for their file APIs.

NOTE 2 For implementations of the Files module on POSIX, new files should be created with @666 permissions, new
directories should be created with @777 permissions, and that directories should be opened with O_RDONLY
flags.

25.1.1  Subpath string

The Files module Directory class methods often have a path argument, which must be a subpath string
specifying a child of the current instance. Subpath strings use / as the path separator, regardless of the host.
Multiple sequential path separators without an intervening name (e.g. a//b.txt) must be rejected. A subpath
string that begins with a path separator (e.g. /a.txt) must be rejected. The Files module does not allow the
special path specifiers . and . .. An empty subpath string "" specifies the current instance.

25.1.2 File Class Pattern

See Annex A for the formal algorithms of the File Class Pattern.

25.1.2.1 close method

Conforms to the 10 Class pattern’s close method.

25.1.2.2 read method
Conforms to the 10 Class pattern’s read method.

The required second argument to the read method is a number indicating the offset within the file to begin
reading from.

If the file is write-only, the read method throws an Error instance.
25.1.2.3 write method
Conforms to the 10 Class pattern’s write method.

The required second argument to the write method is a number indicating the offset within the file to begin
writing to.

If the file is read-only, the write method throws an Error instance.

25.1.2.4 status method

The status method returns a status instance with information about the file. It has no arguments. The following
table enumerates the properties defined for the returned status instance:

72 © Ecma International 2025



secmd

Property Description

size A number indicating the length of the file in bytes.

mode A number indicating the file’s mode (implementation
dependent).

isFile() A method that returns true.

isDirectory() A method that returns false.

isSymbolicLink() A method that returns false.

25.1.25 setSize method

The setSize method changes the length of the file to the number of bytes specified by the first argument. This
method may shrink or grow the file.

If the file is read-only, the setSize method throws an Error instance.

25.1.2.6 flush method

The flush method ensures that any data cached in memory for this file instance is persisted to storage before
returning. It has no arguments.

25.1.3 Directory Class Pattern

All path arguments to Directory instance methods are resolved relative to the directory instance unless specified
otherwise.

See Annex A for the formal algorithms of the Directory Class Pattern.

25.1.3.1 close method

Conforms to the 10 Class pattern’s close method.

25.1.3.2 openDirectory method

The openDirectory function instantiates a Directory instance from a directory subpath. It has a single
argument, an options object. The following table enumerates the properties defined for the openFile options
object:

Property Description
path A subpath string indicating the directory to open. This property is required.

The openDirectory function returns a Directory instance.
If the file path resolves to a file, openDirectory throws an Error instance.

In the following example, the resolved path of the network Directory instance is settings/network/wifi:

© Ecma International 2025 73



secma

const settings = device.files.openDirectory({path: "settings"});
const network = settings.openDirectory({path: "network/wifi"});

25.1.3.3 openFile method

The openFile function instantiates a File instance from a file path. It has a single argument, an options object.
The following table enumerates the properties defined for the openFile options object:

Property Description
path A subpath string indicating the name of the path of the file to open. This

property is required.

mode A string indicating the mode used access to the file. Values are "r",

r+", "w" , and "w+". This property is optional and defaults to "r".

The openFile function returns a File instance.
If the file path resolves to a directory, openFile throws an Error instance.

In the  following example, the resolved path of the help file instance is
documentation/network/wifi/help.txt:

const documentation = device.files.openDirectory({path:
"documentation/network"});
const help = documentation.openFile({path: "wifi/help.txt"});

25.1.3.4 delete method
The delete method removes the file or directory specified by the first argument, a subpath string.

The delete method returns true if the file or directory is deleted and false if there is no file or directory at
the path specified.

If the path is a directory, it must be empty or the delete method throws an Error instance.

25.1.3.5 move method

The move method moves and/or renames a file or directory. The first argument is a subpath string indicating
the path of the file or directory to move. The second argument is a subpath string indicating the path to move
the file or directory to. Both are relative to the directory instance, unless the optional third argument is provided
which is another instance of Directory. In this case, the path of the second argument is resolved relative to the
third argument.

This example passes two arguments to move “network_update.json” from the root to the “settings” directory and
rename it “network.json”:

device.files.move("network update.json", "settings/network.json");
The following examples performs the same operation as the preceding example passing three arguments:

const settings = device.files.openDirectory("settings");
device.files.move("network _update.json"”, "network.json", settings);

74 © Ecma International 2025



secmd

The three argument form is most useful when a host uses Directory instances to limit access by scripts to
portions of the file system.

25.1.3.6 status method

The status method returns a status instance with information about the file, directory, or link specified by the
first argument, a subpath string. The following table enumerates the properties defined for the returned status
instance:

Property Description

size A number indicating the length of the file in bytes.

mode A number indicating the file’s mode (implementation
dependent).

isFile() A method that returns true if the path resolves to a file and

false otherwise.

isDirectory() A method that returns true if the path resolves to a directory
and false otherwise.

isSymbolicLink() A method that returns true if the path resolves to a link and
false otherwise.

25.1.3.7 createDirectory method
The createDirectory method creates a directory at the path specified by the first argument, a subpath string.

The createDirectory method returns true if the directory is successfully created and false if a directory
already exists at the path specified.

25.1.3.8 createLink method

The createlLink method creates a link at the path specified by the first argument to the path specified by the
second argument. Both arguments are subpath strings.

25.1.3.9 readLink method

The readLink method resolves a link at the path specified by the first argument subpath string and returns the
resolved path as a string. The resolved path should be within the root of the directory instance.

25.1.3.10 scan method

The scan method provides an iterator that enumerates the contents of a directory. The scan method has a
single argument, a subpath string indicating the path to scan. If the path resolves to a file or there is not a
directory at the path, an Error instance is thrown. If the scan method is invoked with no arguments, it returns
an iterator for the root of the directory instance.

The following example uses the iterator returned by the scan method to create an array of all hidden files and
directories in the “settings” directory.

const hidden = device.files.scan("settings").filter(name =>
name.startsWith(".")).toArray();

© Ecma International 2025 75



secma

See Annex A for the formal algorithms of the Directory Iterator class.

25.1.3.11 [Symbol.iterator] method

The [Symbol.iterator] is an alias for the Directory Class Pattern’s scan method. It allows a directory
instance to be used as an iterable that conforms to the ECMAScript lterable interface.

The following example uses the Iterable interface to output the names of the files at the root.
for (const path of device.files) {

if (device.files.status(path).isFile())
console.log(path);

}

25.2 Key-Value

The Key-Value module provides read, write, and delete operations for key-value pairs within domains. The Key-
Value module is intended to be used only with relatively small values. Consequently, the read and write
always operate on the entire value; there is no support for reading or writing partial values.

import keyValue from "embedded:storage/key-value";

The default export is an object with an open function.

See Annex A for the formal algorithms of the Key-Value Module object.

25.2.1 open function

The open function instantiates a Key-Value Domain instance from a key-value domain name. It has a single
argument, an options object. The following table enumerates the properties defined for the open options object:

Property Description

path A string indicating the name of the name of the key-value domain to open.
This property is required.

mode A string indicating the mode used to access the domain. Values are "r
and "r+". This property is optional and defaults to "r+".

format A string indicating the initial data format to use for read and write
operations. This property is optional and defaults to "buffer".

The open function returns a Key-Value Domain instance.

25.2.2 Key-Value Domain Class Pattern
The following example shows how the Key-Value Domain is used:

let settings = keyValue.open({path: "settings", format: "string"});
settings.write("one", "ONE");

settings.format = "uint8";
settings.write("two", 2);

76 © Ecma International 2025


https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-iterable-interface

secmd

settings.format = "buffer";
settings.write("threes"”, Uintl6Array.from(3, 3, 3).buffer);

console.log(new Uintl6Array(settings.read("three")));

settings.format = "uint8";
console.log(settings.read("two"));

settings.format = "string";
console.log(settings.read("one"));

settings.close();

See Annex A for the formal algorithms of the Key-Value Domain Class Pattern.

25.2.2.1 close method

Conforms to the 10 Class pattern’s close method.

25.2.2.2 delete method

The delete method takes a single argument, a string indicating the key to remove. If the key does not exist,
the delete method returns without throwing an exception.

If the domain is in read-only mode ("r"), the delete method throws an Error instance.

25.2.2.3 read method

The read method has two arguments. The first argument, required, is a string indicating the key to return the
value for. The second argument, optional, is only used when the data format is "buffer". Itis an optional Byte
Buffer that is used as specified by the read method of the IO Class Pattern.

The current data format must match the data format used to write the value — the read method does not perform
any conversions. If there is a data format mismatch, a TypeError is thrown. If the key does not exist, the read
method returns without throwing an exception.

25.2.2.4 write method

The write method has two arguments, both required. The first argument is a string indicating the key to write
the value of. The second argument is the value to store for the key. The write method stores the value using
the current data format. If the value cannot be coerced to the current data format, a TypeError is thrown.

If a value is already stored for the key, the value is replaced.

If the domain is in read-only mode ("r"), the write method throws an Error instance.

25.2.2.5 [Symbol.iterator] method

The Key-Value Domain instance conforms to the ECMAScript lIterable interface through its
[Symbol.Iterator] method. The iterator returns the keys within the domain as strings.

for (const key in device. keyValue)
console.log(key);

See Annex A for the formal algorithms of the Key-Value Domain Iterator class.

© Ecma International 2025 77


https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-iterable-interface

secma

25.2.2.6 format property

Conforms to the 10 Class pattern’s format property. The only data format value an implementation is required
to support is the default, "buffer". The following data formats may also be supported: "string", "uint8",
"int8", "uintle6"”, "int16", "uint32", "int32", "uint64"”, and "int64".

25.3 Flash

The Flash module provides read, write, and erase operations for the content of flash partitions.

import flash from "embedded:storage/flash";

The default export is an object with an open function. The default export object also conforms to the ECMAScript

Iterable interface through a [Symbol.Iterator] function. The following example shows the use of open and
iteration:

let partition;
for (const path of device.flash) {
if (path.startsWith("ota")) {
partition = device.flash.open({path});
break;

}

See Annex A for the formal algorithms of the Flash Module object.

25.3.1 open function

The open function instantiates a Flash Partition instance from a flash partition path name. It has a single
argument, an options object. The following table enumerates the properties defined for the open options object:

Property Description

path A string indicating the name of the flash partition path name to open. This
property is required.

mode A string indicating the mode used to access the partition. Values are "r
and "r+". This property is optional and defaults to "r+".

format A string indicating the data format to use for read and write operations.
The only supported value is "buffer". This property is optional and
defaults to "buffer".

The open function returns a Flash Partition instance.

25.3.2 [Symbol.Iterator] function

The [Symbol.Iterator] function returns an object that conforms to the ECMAScript Iterator interface. The
returned iterator enumerates the path names of the device’s flash partitions, providing the path names as strings.

See Annex A for the formal algorithms of the Flash Partition iterator class.

78 © Ecma International 2025


https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-iterable-interface
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-iterable-interface
https://tc39.es/ecma262/multipage/control-abstraction-objects.html#sec-iteration

»ecma

25.3.3 Flash Partition Class Pattern

See Annex A for the formal algorithms of the Flash Partition Class Pattern.

25.3.3.1 close method
Conforms to the 10 Class pattern’s close method.

25.3.3.2 status method

The status method returns an object with information about the partition. There are no arguments to the
status method.

Property Description

size The number of bytes in the partition as a number.

blockLength The number of bytes in a block (sometimes called a sector) as a
number.

blocks The number of blocks in the partition as a number.

NOTE blocks multiplied by blockLength is equal to size.

25.3.3.3 eraseBlock method

The eraseBlock method erases one or more blocks in the partition. The first argument is the block number to
begin erasing. The optional second argument is the block nhumber to end erasing. If the second argument is
omitted, one block erased.

The eraseBlock method set the bits in an erased to either all @ or 1 depending on the flash technology. For
example, the bits are set to 1 for NOR flash and @ for NAND flash.

25.3.34 read method

Conforms to the 10 Class pattern’s read method.

25.3.3.5 write method
Conforms to the 10O Class pattern’s write method.

If the partition is in read-only mode ("r"), the write method throws an Error instance.

After erasing, each byte may be reliably written once. The behavior of subsequent writes without an intervening
erase depends on the flash technology.

25.3.3.6 format property

Conforms to the 10 Class pattern’s format property. The value must be "buffer".

25.4 Update

The Update module applies updates to flash partitions, typically firmware for an over-the-air update.

© Ecma International 2025 79



secma

import update from "embedded:update”;
The default export is an object with an open function.

See Annex A for the formal algorithms of the Update Module object.

25.5 open function

The open function instantiates an Update instance from a Flash partition. It has a single argument, an options
object. The following table enumerates the properties defined for the open options object:

Property Description

partition An Flash Partition instance for the partition be updated. The instance
must not be closed until after the update is complete. This property is
required.

mode A string indicating the mode used to write the update. Values are "a"

for append and "w" for random access. This property is optional and

defaults to "a".

byteLength A number indicating the size of the update in bytes that will written to
the partition. This value must be less than or equal to the byte length
of the partition. This property is optional and should not be specified if
the number of bytes is unknown.

The open function returns an Update instance.

25.6 Update instance

See Annex A for the formal algorithms of the Update Class Pattern.

25.6.1 close method
Conforms to the 10 Class pattern’s close method.
25.6.2 complete method

Calling the complete method indicates that the update has been completely applied and should be activated.
If the complete method is not called, the update will not be used.

The complete method does not restart the device to begin using the updated partition.

If the complete method determines that the update is invalid — not completely written, corrupted, out of date,
etc. — it throws an exception and does not activate the update.

The complete method is not required to release any resources, so the close method should be called after
calling the complete method.

25.6.3 write method

Conforms to the 10 Class pattern’s write method.

80 © Ecma International 2025



secmd

When the mode is "w" (random access), the write method request requires a second argument, a number
indicating the byte offset at which to write the data.

When the mode is "a" (append), an error is thrown if there is more than one argument.
If the write method detects the data to be written is invalid, it throws an exception.

The write method throws an exception if called after the complete method.

25.6.4 format property

Conforms to the 1O Class pattern’s format property. The value must be "buffer".

26 Host provider instance

The Host Provider instance aggregates data and code available to scripts from the host. The host provider
instance is available as a module import:

import device from "embedded:provider/builtin”;

The Host Provider instance is instantiated before hosted scripts are executed. Only a single instance of the host
provider may be created, and the host provider cannot be closed or garbage collected.

The following sections define properties of the Host Provider instance. The Host Provider instance has no
required properties.

26.1 Global variable

Hosts are not required to make the host provider instance available in a global variable. A host that does should
use the global variable named device.

26.2 Pin name property

The pin property is an object that maps pin names to pin specifiers. More than one pin name may map to the
same pin specifier.

import Digital from "embedded:io/digital”;
let led = new Digital({
pin: device.pin.led,

mode: Digital.Output
)

26.3 10 bus properties

An IO Bus is two or more pins used to implement a communication protocol such as Serial, SPI, or I2C. There
may be one or more instances of an IO Bus and one may be designated as the default bus of that type.

The Host Provider instance may contain properties corresponding to each bus type. The following bus types
are defined for those host provider instance.

© Ecma International 2025 81



secma

Bus Type Property Name
12C i2c

Serial serial

SPI spi

Each bus type may contain one or more buses. Each bus may have one or more names. It is recommended to
provide a property named default when there is a default bus.

// example host implementation
const A = {

in: 12,

out: 13,

clock: 14,

select: 15,

hz: 10_000_000

}s

const B = {

in: 9,

out: 1,

clock: 2,
select: 3,

hz: 20 000 000

¥

device.spi = {
A,
B,
default: B

}

// example hosted script use
import SPI from "embedded:io/spi";

let spi = new SPI(device.spi.default);

26.4 1O classes

The host provider instance may provide access to its 10 constructors through its io property. This is analogous
to the 10 constructors available from an 10 Provider.

// example host provider implementation
import Digital from "embedded:io/digital”;
import I2C from "embedded:io/i2c";

import SPI from "embedded:io/spi";

export default {
pin: {

82 © Ecma International 2025



secmd

button: 9,
led: 2

}s

io: {
Digital,
I2C,
SPI

}

}s
// example hosted script use
import device from "embedded:provider/builtin";

let spi = new device.io.SPI(device.spi.default);

26.5 10 Providers

The host provider instance should include its IO Provider constructors in its provider property.
26.6 Sensors

The host provider instance should include its Sensor constructors in its sensor property.

26.7 Displays

The host provider instance should include its Display constructors through its display property.

26.8 Real-time clocks

The host provider instance should include a default Real-time clock constructor options object on its rtc
property.

26.9 Domain Name resolver

The host provider instance should include a default Domain Name Resolver class constructor options object on
its network.dns.resolver property.

26.10 NTP client

The host provider instance should include a default NTP Client class constructor options object on its
network.ntp.client property.

26.11 HTTP client

The host provider instance should include a default HTTP Client class constructor options object on its
network.http.client property.

26.12 HTTPS client

The host provider instance should include a default secure HTTP Client class constructor options object on its
network.https.client property.

© Ecma International 2025 83



»ecma

26.13 HTTP server

The host provider instance should include a default HTTP Client class constructor options object on its
network.http.server property.

26.14 MQTT client

The host provider instance should include a default MQTT Client class constructor options object on its
network.mqtt.client property.

26.15 MQTTS client

The host provider instance should include a default secure MQTT Client class constructor options object on its
network.mqtts.client property.

26.16 WS (WebSocket) client

The host provider instance should include a default WebSocket Client class constructor options object on its
network.ws.client property.

26.17 WSS (WebSocket Secure) client

The host provider instance should include a default secure WebSocket Client class constructor options object
on its network.wss.client property.

26.18 TLSclient

The host provider instance should include a default TLS Client class constructor options object on its
network.tls.client property.

26.19 Network Interfaces

The host provider instance should include a Network Interface class constructor options object for each of its
network interfaces on its network.interface property.

const Ethernet® = device.network.interface.Etherneto;
const eth® = new Ethernet@.io(Etherneto);

26.20 Persistent Storage

The host provider instance should include its root Directory instance through its file property.

const settings = device.files.openDirectory({path: "settings"});

The host provider instance should include its Flash default export through its f1ash property.

const settings = device.flash.open({path: "ota-bootloader"});

The host provider instance should include its Key-Value default export through its keyValue property.
const settings = device.keyValue.open({path: "settings", format: "string"});

The host provider instance should include its Update default export through its update property.

84 © Ecma International 2025



»ecma

const partition = device.flash.open({path: "ota-bootloader"});
const update = device.update.open({partition});

27 Provenance Sensor Class Pattern

Sensor data provenance is metadata associated with sensor samples. It encapsulates the specific, instance
source of data, the data transmission mechanism(s), and data transformations occurring at any point between
the sensor and the end-user or end-use application. Provenance applies both to direct and synthetic
measurements.

This section specifies the Provenance Sensor Class Pattern, which builds on the Sensor Class Pattern by
specifying an API for making sensor metadata available to scripts.

The Provenance Sensor Class Pattern adds one optional property to the constructor options object, two required
instance properties, and three properties to the object returned by the sample method.

The additions the Provenance Sensor Class Pattern makes to the Sensor Class Pattern are a lightweight means
of enabling provenance-aware scripts using Sensor Classes. Provenance-aware scripts may support more
robust analytics and/or high-assurance tasks.

A separate Technical Report, ECMA TR/110, Recommendations and Best Practices for Scripts on Connected
Sensing Devices, describes the best practices for using the Provenance Sensor Class Pattern to support scripts
running on connected sensing devices, for propagating static and dynamic device and state metadata, and for
accurately propagating sensor samples.

27.1 Properties of constructor options object

Property Description

onConfiguration() Callback to invoke when a new sensor configuration has
been applied. The configuration details are obtained from
the configuration property of the instance. This property
is optional.

The onConfiguration callback is invoked whenever configuration parameters are changed from the
originally-constructed instance.

27.2 configuration property

The required read-only configuration property indicates the current configuration of the sensor. Non-default
values must be reported. All configured parameters may optionally be included.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Configuration information recommended for the configuration property includes, but is not limited to:

© Ecma International 2025 85



secma

Property Description

calibration Calibration factors / parameters that impact samples presented as
raw.

mode Sampling operating mode.

scaling Scaling factors that impact samples presented as raw.

units Configured sample unit.

27.3 identification property

The required read-only identification property provides static identification information about the physical
sensor and/or sensor driver.

The data format of this property is implementation-dependent. For instance, the data may be a binary value or
may be human-readable. The data do not have to be interoperable to the connected sensing device if they can
be parsed by the relevant endpoint.

Identification information recommended for the identification property includes, but is not limited to:

Property Description

model Identification of the manufacturer and part number of the
sensor. Required.

classification Identification of the sensor classification of the sensor instance.
Required for instances of defined classes.

uniquelD Hard-coded unique identifiers associated with the sensor part.
This includes serial numbers, time and date of manufacture, etc.
Optional.

27.3.1  Properties of sample Object

The Provenance Sensor Class Pattern extends the sample object described in the Sensor Class Pattern to
include the following properties.

86 © Ecma International 2025



dmr

Property

Description

time

Number originating from an absolute clock describing the instant that the
sample returned was captured. If reported, time must be represented as
a time value as defined in ECMA-262 in “Time Values and Time Range”
(https://tc39.es/ecma262/#sec-time-values-and-time-range). The time
should originate from the most accurate clock associable to the start of a
sampling event, or be derived from the same.

ticks

Number originating from a non-absolute clock describing the instant that
the sample returned was captured. If reported, ticks must be reported
as an integer representing the number of time units occurring from an
arbitrary, connected sensing device-consistent start time as reported by
the sensor instance.

faults

Object representing a record of any sensor-level faults that occurred
during this sensor sample or since the previously reported sample.
Optional.

In the event disparate sensing modalities may be measured from a single sensor as discretely-sampled events
(e.g. requesting from an IMU first acceleration and only later angular rate), those modalities are assumed to be
treated as independent sensors for the purposes of recording time, ticks, and faults.

See Annex A for the formal algorithms of the Provenance Sensor Class Pattern.

© Ecma International 2025

87


https://tc39.es/ecma262/#sec-time-values-and-time-range

cecma

88 © Ecma International 2025



secmd

Annex A
(normative)

Formal algorithms

This annex defines formal algorithms for behaviors defined by this specification. These algorithms are useful
primarily for implementing the specification and validating implementations.

A.1 Internal fields

Internal fields are implementation-dependent and must not be accessible outside the implementation. For
instance they can be C structure fields, ECMAScript private fields, or a combination of both.

Every object conforming to a Class Pattern is expected to have one or several internal fields. This document
uses the following operators on internal fields.

A.1.1 ChecklinternalFields(object)
1. For each internal field of the class being defined

1. Let name be the name of the internal field
2. Throw if object has no internal field named name

CheckinternalFields throws if an internal field is absent. That can be implicit when internal fields are

ECMAScript private fields, or can be explicit when internal fields are C structure fields. The purpose of
CheckiInternalFields is to ensure that object is an instance of the class being defined.

A.1.2 ClearinternalFields(object)
1. For each internal field of the class being defined

1. Let name be the name of the internal field
2. Clear the internal field named name of object

ClearInternalFields zeroes all internal fields. That can be storing null in ECMAScript private fields, or can be

storing NULL in C structure fields. The purpose of ClearinternalFields is to ensure that object is in a consistent
state when constructed and closed.

A.1.3 GetinternalField(object, name)
1. Return the value stored in the internal field named name of object

GetlInternalField is trivial for ECMAScript private fields, but can involve value conversion for C structure field
like converting C NULL into ECMAScript null.

A.1.4 SetinternalField(object, name, value)
1. Store value in the internal field named name of object

SetinternalField is trivial for ECMAScript private fields, but can involve value conversion for C structure field
like converting ECMAScript null into C NULL.

© Ecma International 2025 89



secma

A.1.5 Internal methods

Internal methods are implementation-dependent and must not be accessible outside the implementation. This
document uses ECMAScript private method syntax to indicate internal methods, prefixing the names of internal

methods with #.

A.2 Ranges

A.2.1 Booleans

For boolean ranges, the value is converted into a ECMAScript boolean.

A.2.2 Numbers

For number ranges, the value is converted into a ECMAScript number, then the value is checked to be in range.

The special value NaN is never in range.

For integer ranges, the value is converted into a ECMAScript number, then the value is checked to be an

integer, then the value is checked to be in range.

Range From To

number -Infinity Infinity

negative -Infinity -Number .MIN_VALUE
number

positive Number .MIN_VALUE Infinity

number

integer Number .MIN_SAFE_INTEGER Number .MAX_SAFE_INTEGER
negative Number .MIN_SAFE_INTEGER -1

integer

positive 1 Number .MAX_SAFE_INTEGER
integer

8-bit integer -128 127

8-bit unsigned 0 255

integer

16-bit integer -32768 32767

16-bit 0 65535

unsigned

integer

32-bit integer -2147483648 2147483647

32-bit 0 4294967295
unsigned

integer

Further restrictions are specified with from x to y, meaning the value must be >= x and <=y.

90

© Ecma International 2025




»ecma

A.2.3 Objects
For object ranges like ArrayBuffer, the value is checked to be an instance of one of specified class.
Further restrictions can be specified, for instance on the byteLength of the ArrayBuffer instance.

If the object can be null, it is explicitly specified like Function or null.

A.2.4 Byte buffers

For byte buffer ranges, the value is checked to be an instance of ArrayBuffer, SharedArrayBuffer,
Uint8Array, Int8Array or DataView.

Further restrictions can be specified, for instance on the byteLength.

To access the data contained in a byte buffer, algorithms uses a host specific operator:

GetBytePointer(buffer)

The operator throws if buffer is not an instance of ArrayBuffer, SharedArrayBuffer, Uint8Array,
Int8Array, or DataView, or if buffer is detached. For a TypedArray and DataView instances, the pointer
takes the view’s byte offset into account.

A.3 Strings

For string ranges like "buffer", the value is converted into a ECMAScript string, then checked to be strictly
equal to one of the specified values.

A.3.1 Asynchronous operations

Asynchronous operations are never synchronous: the callback is never invoked directly by the method that
starts the asynchronous operation, but indirectly at the end of the asynchronous operation.

To emphasize such a rule, the algorithms uses steps like:

1. Queue atask that performs

1. Call(this, callback)

The mechanism can be similar to what is necessary to implement setTimeout.

print(1);
setTimeout (0, () => print(3));
print(2);
// 123

A.4 Base Class Pattern

A.4.1 constructor(options)

1. ClearInternalFields(this)

2. Throw if options is not an object

© Ecma International 2025 91



ecma

3. Let params be an empty object
4.  For each supported option
1. Let name be the name of the supported option
2. If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)
2.  Throw if value is not in the valid range of the supported option
3. Else
1. Throw if the supported option has no default value
2.  Letvalue be the default value of the supported option
4. DefineProperty(params, name, value)
5.  For each supported callback option
1. Let name be the name of the supported callback option
2. Letcallback be GetProperty(params, name)
3. Ifcallback is not null
1. SetinternalField(this, name, callback)
6. Letvalue be GetProperty(params, "target")
7.  If value is not undefined
1. DefineProperty(this, "target", value)

8. Mark this as ineligible for garbage collection

A.4.2 Notes

» Supported options, with their names, default values and valid ranges, are defined by a separate table
for each class conforming to the Base Class Pattern.

* The params object is unobservable. Its purpose in the algorithm is to ensure that properties of the
options object are only accessed once and that the options object can be frozen. Local variables can
be used instead, for instance:

let pin = 2;
if (options !== undefined) {
if ("pin" in options)) {
pin = options.pin;
if ((pin < @) || (3 < pin))
throw new RangeError( invalid pin ${pin} );

* Most classes conforming to the Base Class Pattern are expected to support one or several callbacks.
Callbacks are supported options: their default value is null, their valid range is null or a

92 © Ecma International 2025



eCina

ECMAScript function. Callbacks are stored in internal fields and are always called with this set to

the constructed object.

« There is only one option that is always supported: its name is "target", its default value is
undefined and its range is any ECMAScript value.

A.4.3 close()

1. ChecklInternalFields(this)
2. Mark this as eligible for garbage collection
3. Cancel any pending callbacks for this

4. ClearinternalFields(this)
A.4.4 close(callback)

1. ChecklInternalFields(this)
2.  Throw if callback is not undefined and not IsCallable(callback)
3. Optionally, cancel asynchronous operations
4.  When all asynchronous operations succeeded or failed

1. Mark this as eligible for garbage collection

2. ClearinternalFields(this)

3. Ifcallback is not undefined

1. Queue atask that performs

1. Call(this, callback, null)

A.5 10 Class Pattern

A.5.1 constructor(options)

1. Execute steps 1 to 7 of the Base Class Pattern constructor
2. Letvalue be GetProperty(params, "format")
3. SetinternalField(this, "format", value)
4. Try
1. Letresources be the hardware resources specified by params
2. Throw if resources are unavailable
3. Allocate and configure resources
4.  Throw if allocation or configuration failed

5. SetinternalField(this, "resources", resources)

© Ecma International 2025

93



ecma

5.  Catch exception
1. Call(this, GetProperty(this, "close™))
2.  Throw exception

6. Execute step 8 of the Base Class Pattern constructor

A.5.2 close()

1. Execute step 1 of the Base Class Pattern close method

2. Letresources be GetinternalField(this, "resources™)

3. Return if resources is null

4.  Execute steps 2 and 3 of the Base Class Pattern close method
5.  Free resources

6. Execute step 4 of the Base Class Pattern close method

A.5.3 read([option])

1. CheckinternalFields(this)
2. Letresources be GetinternalField(this, "resources™)
3. Throw if resources is null
4. If resources is not readable
1. Return undefined
5. Letformat be GetinternalField(this, "format")
6. If formatis "buffer"
1. Letavailable be the number of readable bytes
2. If option is absent
1. Throw if available is undefined
2. Letn be available
3. Letdata be Construct("ArrayBuffer", n)
4.  Let pointer be GetBytePointer(data)
5. Read n bytes from resources into pointer
6. Return data
3.  Else if option is a number
1.  Throw if option is no positive integer
2. Letn be option

3. If available is not undefined and n > available

94

© Ecma International 2025



secmd

1. Letn be available
4. Letdata be Construct("ArrayBuffer”, n)
5. Let pointer be GetBytePointer(data)
6. Read n bytes from resources into pointer

7. Return data

1. Let pointer be GetBytePointer(option)

2.  Letn be GetProperty(option, "byteLength")

3. If available is not undefined and n > available
1. Letn be available

4. Read n bytes from resources into pointer

5. Return n

7.  Throw if option is present

8. Read data from resources

9. Format data according to format

10. Return data
A.5.4 write(data)

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources")

3. Throw if resources is null or not writable

4.  Throw if data is absent

5. Let format be GetinternalField(this, "format")

6. If formatis "buffer"

1.

2.

3.

4,

5.

Let pointer be GetBytePointer(data)

Let n be GetProperty(data, "byteLength™)
Throw if n bytes would overflow resources
Write n bytes from pointer into resources

Return

7. Throw if data is not formatted according to format

8. Write data into resources

© Ecma International 2025

95



ecma

A.5.5 set format(value)

1. CheckinternalFields(this)
2.  Throw if value is not in the valid range of "format"

3. SetinternalField(this, "format", value)

A.5.6 get format()

1. CheckinternalFields(this)

2. Return GetInternalField(this, "format")

A.5.7 Notes

* Hardware resources can require one or several internal fields which should be all cleared and

checked. The "resources" internal field is only a convention in this document.

« Several IO classes read/write bytes into/from buffers so the read and write methods detail the
relevant steps, for instance to optimize the read method memory usage by passing a buffer.

« 10 classes that do not use buffers can skip steps 6 of the read and write methods.

« Theranges of read and write data are defined by a separate table for each class conforming

to the 10 Class Pattern.

«  When the parameters of read or write differ from the 10 Class Pattern, they are defined by a

separate table.

A.6 10 Class Pattern — asynchronous

A.6.1 close(callback)

1. Execute step 1 of the Base Class Pattern close method

2. Letresources be GetinternalField(this, "resources")

3. Return if resources is null

4.  Optionally, cancel asynchronous operations

5. When all asynchronous operations succeeded or failed

1. Mark this as eligible for garbage collection
2. ClearinternalFields(this)

3. Free resources

4.  Execute step 5.2 and 5.3 of the Base Class Pattern close method

A.6.2 read(option], callback])

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources™)

96

© Ecma International 2025



eCina

3. Throw if resources is null or not readable
4.  Throw if option is absent
5. If option is a number
1.  Throw if option is no positive integer
2. Letn be option

3. Letdata be Construct("ArrayBuffer”, n)

1. Letdata be option
2.  Let pointer be GetBytePointer(data)
3. Letn be GetProperty(data, "byteLength")
7.  Throw if callback is not undefined and not IsCallable(callback)
8.  Start an input operation to read n bytes into data
1. When the input operation succeeded
1. If callback is not undefined
1. Queue atask that performs
1. Call(this, callback, null, data, n)
2. When the input operation failed
1. If callback is not undefined
1. Leterror be an ECMAScript Error object describing the failure
2. Queue a task that performs

1. Call(this, callback, error)

A.6.3 write(data[, callback])

1. ChecklInternalFields(this)

2.  Letresources be GetiInternalField(this, "resources™)

3.  Throw if resources is null or not writable

4.  Throw if data is absent

5. Let pointer be GetBytePointer(data)

6. Letn be GetProperty(data, "byteLength")

7.  Throw if callback is not undefined and not IsCallable(callback)
8.  Start an output operation to write n bytes from data

1. When the output operation succeeded

© Ecma International 2025

97



ecma

1. If callback is not undefined
1. Queue atask that performs
1. Call(this, callback, null, data, n)
2. When the output operation failed
1. If callback is not undefined
1. Leterror be an ECMAScript Error object describing the failure
2. Queue a task that performs
1. Call(this, callback, error)
A.6.4 Notes

» The input and output operations represent the implementation dependent mechanism that
ensures that asynchronous read and write operations happen in the order issued.

- Step 4 of the close method is optional since operations can be cancellable or not. Cancelled
operations fail with a corresponding Error object.

« Step 6.2 of the read method and step 5 of the write method ensures data is a byte buffer.

A.7 10 Classes
A.7.1 Digita

A.7.1.1 constructor options

Property

Required

Range Default

pin

yes

pin specifier

mode

yes

Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,
Digital.InputPullUpDown,
Digital.Output, or
Digital.OutputOpenDrain.

edge

no*

Digital.Rising,
Digital.Falling, and
Digital.Rising +
Digital.Falling

onReadable

no

null or Function

null

format

no

"number"

"number

» Ifthe onReadable option is not null, edge is required to have a non-zero value.

98 © Ecma International 2025



eCina

A.7.1.2 read/write data

Format Read Write
"number" Qorl Qorl
A.7.2 Digital bank
A.7.2.1 constructor options
Property Required Range Default
pins yes 32-bit unsigned integer
mode yes Digital.Input,
Digital.InputPullUp,
Digital.InputPullDown,
Digital.InputPullUpDown,
Digital.Output, or
Digital.OutputOpenDrain.
rises no* 32-bit unsigned integer 0
falls no* 32-bit unsigned integer 0
bank no number or string
onReadable no null or Function null
format no "number" "number"
» Both rises and falls cannot be ©; at least one pin must be selected.
A.7.2.2 read/write data
Format Read Write
"number" 32-bit unsigned integer 32-bit unsigned integer
A.7.3 Analog input
A.7.3.1 constructor options
Property Required Range Default
pin yes pin specifier
resolution no positive integer host-dependent
format no "number" "number"

© Ecma International 2025

99



2eCma

A.7.3.2 read/write data

Format Read Write
"number" all
A.7.4 Pulse-width modulation
A.7.4.1 constructor options
Property Required Range Default
pin yes pin specifier
hz no positive number host-dependent
format no "number" "number"
A.7.4.2 read/write data
Format Read Write
"number" positive integer
A.7.5 12C - synchronous IO
A.7.5.1 constructor options
Property Required Range Default
data yes pin specifier
clock yes pin specifier
hz yes positive integer
address yes 8-bit unsigned
integer from 0 to
127
port no port specifier host-
dependent
onReadable no null or Function null
format no "buffer" "buffer"

100 © Ecma International 2025



eCina

A.7.5.2 read/write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.7.5.3 read(option[, stop])

Param Required Range Default
option yes* positive integer, byte buffer
stop no true or false true

The number of readable bytes is undefined so option is required

A.7.5.4 write(data[, stop])

Param Required Range Default
data yes byte buffer
stop no true or false true

A.7.6 12C —asynchronous IO

A.7.6.1 read(option], stop][, callback])

1.

2.

3.

4,

5.

Execute steps 1 to 7 of the 10.Async Class Pattern read method
If callback is not undefined
1. Throw if not IsCallable(callback)
2. Convert stop to an ECMAScript boolean
Else if stop is not undefined
1. IfIsCallable(stop)
1. Let callback be stop
2. Letstop be true
2. Else
1. Convert stop to an ECMAScript boolean
Else
1. Letstop be true

Execute step 8 of the 10.Async Class Pattern read method

© Ecma International 2025

101



ecma

A.7.6.2 write(data[, stop][, callback])

1. Execute steps 1 to 6 of the 10.Async Class Pattern write method
2. If callback is not undefined
1. Throw if not IsCallable(callback)
2.  Convert stop to an ECMAScript boolean
3. Else if stop is not undefined
1. IfIsCallable(stop)
1. Let callback be stop
2. Letstop be true
2. Else
1. Convert stop to an ECMAScript boolean
4. Else
1. Letstop be true

5.  Execute step 8 of the 10.Async Class Pattern write method

A.7.6.3 Notes

+ The read and write methods algorithms describe how to handle an optional argument before
the optional callback argument.

A.7.7 System management bus (SMBus) — synchronous IO

A.7.7.1 constructor options

All properties from I2C plus the following:

Property Required Range Default

stop no true or false false

A.7.7.2 read/write data

Format Read Write

"buffer" any any

102 © Ecma International 2025



eCina

A.7.7.3 read(option)

Param Required Range Default
option yes* positive integer, byte buffer
«  The number of readable bytes is undefined so option is required
A.7.7.4 readUint8(register)
Param Required Range Default
register yes integer
A.7.7.5 writeUint8(register, value)
Param Required Range Default
register yes integer
value yes 8-bit unsigned integer
A.7.7.6 readUintl6(register, bigEndian)
Param Required Range Default
register yes integer
bigEndian no true or false false
A.7.7.7 writeUintl6(register, value)
Param Required Range Default
register yes integer
value yes 16-bit unsigned integer

A.7.7.8 readBuffer(register, buffer)

Param Required Range Default
register yes integer
buffer yes byte buffer

© Ecma International 2025

103



secma

A.7.7.9 writeBuffer(register, buffer)

Param Required Range Default
register yes integer
buffer yes byte buffer
A.7.8 System management bus (SMBus) —asynchronous IO
All properties from 12C.Async plus the following:
A.7.8.1 readUint8(register[, callback])
Param Required Range Default
register yes integer N/A
callback no Function null
A.7.8.2 writeUint8(register, value[, callback])
Param Required Range Default
register yes integer
value yes 8-bit unsigned integer N/A
callback no Function null
A.7.8.3 readUintl6(register[, bigEndian][, callback])
Param Required Range Default
register yes integer N/A
bigEndian no true or false false
callback no Function null

104

© Ecma International 2025




secma

A.7.8.4 writeUint16(register, value[, bigEndian][, callback])

Param Required Range Default
register yes integer N/A
value yes 16-bit unsigned integer N/A
callback no Function null
A.7.8.,5 readBuffer(register, option[, callback])
Param Required Range Default
register yes integer N/A
buffer yes number or byte buffer N/A
callback no Function null

A.7.8.6 writeBuffer(register, buffer[, callback])

Param Required Range Default
register yes integer N/A
buffer yes byte buffer N/A
callback no Function null

A.7.8.7 Notes

*  The asynchronous methods to read and write data behaves analogously to the 12C.Async read

and write method.

© Ecma International 2025

105



secma

A.7.9 Serial
A.7.9.1 constructor options

Property Required Range Default

receive no* pin specifier

transmit no* pin specifier

baud yes positive
integer

flowControl no "hardware" "none"
and "none"

dataTerminalReady no pin specifier

requestToSend no pin specifier

clearToSend no pin specifier

dataSetReady no pin specifier

port no port specifier

onReadable no null or null
Function

onWritable no null or null
Function

format no "number" or "buffer"
"buffer"

A host may require the receive and/or transmit properties.

A.7.9.2 read/writedata
Format Read Write
"number" 8-bit unsigned integer 8-bit unsigned integer
"buffer" ArrayBuffer byte buffer

A.7.9.3 flush([input, output])

106

ChecklInternalFields(this)

If input and output are absent

1. Letflushinput be true

2.  Let flushOutput be true

Else if input and output are present

© Ecma International 2025



secmd

3.

4.

4. Else

1.

Convert input into an ECMAScript boolean
Let flushinput be input
Convert output into an ECMAScript boolean

Let flushOutput be output

Throw

5. If flushinput is true

1.

Flush all received but unread data

6. If flushOutput is true

1.

Flush all written but unsent data

A.7.9.4 set(options)

1. ChecklInternalFields(this)

2. Throw if options is not an object

3. If HasProperty(options, "dataTerminalReady")

1.

2.

3.

4,

Let value be GetProperty(options, "dataTerminalReady")
Convert value into an ECMAScript boolean
If value is true, set serial connection’s DTR pin

Else clear serial connection’s DTR pin

4. If HasProperty(options, "requestToSend")

1.

2.

3.

4,

Let value be GetProperty(options, "requestToSend")
Convert value into an ECMAScript boolean
If value is true, set serial connection’s RTS pin

Else clear serial connection’s RTS pin

5. If HasProperty(options, "break")

1.

2.

3.

4,

Let value be GetProperty(options, "break™)
Convert value into an ECMAScript boolean
If value is true, set serial connection’s break signal

Else clear serial connection’s break signal

A.7.9.5 get(options)

1. CheckinternalFields(this)

2. If options is absent

© Ecma International 2025

107



secma

1. Letresult be an empty object

3. Else

1. Throw if options is not an object

2. Letresult be options

4.  If serial connection’s CTS pin is set

1. SetProperty(result, "clearToSend", true)

5. Else

1. SetProperty(result, "clearToSend", false)

6. If serial connection’s DSR pin is set

1. SetProperty(result, "dataSetReady", true)

7. Else

1. SetProperty(result, "dataSetReady", false)

8. Return result

A.7.10 Serial Peripheral Interface (SPI)

A.7.10.1 constructor options

Property Required Range Default

out no* pin specifier

in no* pin specifier

clock yes pin specifier

select no* pin specifier

active no Oorl 0

hz yes positive integer

mode no 0,1,2,0r3 0

port no port specifier

format no "buffer" "buffer"
A.7.10.2 read / write data

Format Read Write

"buffer" ArrayBuffer byte buffer

108

© Ecma International 2025



secma

A.7.10.3 read(option)

Param Required Range Default

option yes* positive integer, byte buffer

* The number of readable bytes is undefined so option is required

A.7.10.4 transfer(buffer)

1. ChecklInternalFields(this)
2. If buffer is an ArrayBuffer
1. LettransferBuffer be buffer
2. LettransferOffset be O
3. Else
1. LettransferBuffer be GetProperty(buffer, “buffer”)
2. Let transferOffset be GetProperty(buffer, “byteOffset”)
4.  If HasProperty(buffer, “bitLength”))
1. LettransferBits be GetProperty(buffer, “bitLength”)
2. LetavailableBits be GetProperty(buffer, “byteLength”) * 8
3.  Throw if transferBits is greater than availableBits
5. Else
1. LettransferBits be GetProperty(buffer, “byteLength”) * 8
6.  Simultaneously write and read transferBits bits into buffer starting at byte offset transferOffset

7. Return buffer
A.7.10.5 flush([deselect])

1. ChecklInternalFields(this)
2. Flush all written but unsent data
3. If deselect is present
1. Convert deselect into an ECMAScript boolean
2. Ifdeselectis true
1. If GetinternalField(this, "active")is 0
1. Setthe select pinto 1
2. Else

1. Setthe select pinto 0

© Ecma International 2025

109



secma

A.7.11 Pulse count

A.7.11.1 constructor options

Property Required Range Default
signal yes pin specifier

control yes pin specifier

onReadable no null or Function null
format no "number" "number"

A.7.11.2 read/write data

Format Read Write

"number" integer integer

A.7.12 TCP socket

A.7.12.1 constructor options

Property Required Range Default
address yes string
port yes 16-bit unsigned
integer
noDelay no true or false false
keepAlive no positive integer N/A
from no instance of TCP N/A
Socket
onError no null or Function null
onlWritable no null or Function null
onReadable no null or Function null
format no "number" or "buffer"
"buffer"

110 © Ecma International 2025



eCina

A.7.12.2 read/write data

Format Read Write
"buffer" ArrayBuffer byte buffer
"number" 8-bit unsigned integer 8-bit unsigned integer

A.7.12.3 write options

Property Required Range Default
more no boolean false
byteLength no positive integer N/A
A.7.13 TCP listener socket
Property Required Range Default
port no 16-bit unsigned 0
integer
address no string N/A
onError no null or null
Function
onReadable no null or null
Function
format no "socket/tcp" "socket/tcp"
A.7.13.1 read/write data
Format Read Write
"socket/tcp" instance of TCP Socket

A.7.13.2 get port()

1. CheckinternalFields(this)

2. Return the local port the listener is bound to as a number

© Ecma International 2025 111



secma

A.7.14 UDP socket

A.7.14.1 constructor options

Property Required Range Default

address no string N/A

port no 16-bit signed N/A
integer

multicast no string N/A

timeTolLive yes, if multicast integer from 1 N/A

used to 255

onError no null or null
Function

onhritable no null or null
Function

format no "buffer" "buffer"

A.7.14.2 read/write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.7.14.3 write(data, address, port)

Param Required Range Default
data yes byte buffer

address yes string

port yes 16-bit unsigned integer

A.8 Peripheral Class Pattern

A.8.1 constructor(options)

1. Execute steps 1to 7 of the Base Class Pattern constructor
2. Try

1. For each supported IO connection

112 © Ecma International 2025



secmd

5.

Let name be the name of the supported 10 connection.
Let ioOptions be GetProperty(params, name)

Let ioConstructor be GetProperty(ioOptions, "io")

Let ioConnection be Construct(ioConstructor, ioOptions)

SetinternalField(this, name, ioConnection)

2. Configure the peripheral with params

3.  Throw if the communication with the peripheral is not operational

4.  Activate the peripheral

5. SetinternalField(this, "status”, "ready")

3.  Catch exception

1. Call(this, GetProperty(this, "close"))

2. Throw exception

4. Execute step 8 of the Base Class Pattern constructor

A.8.2 close()

1. Execute step 1 of the Base Class Pattern close method

2.  Let status be GetInternalField(this, "status")

3. Return if status is null

4. Execute steps 2 and 3 of the Base Class Pattern close method

5.  Deactivate the peripheral

6. For each supported IO connection

1. Let name be the name of the supported IO connection.

2. LetioConnection be GetinternalField(this, name)

3. IfioConnection is not null

1.

Call(ioConnection, "close")

7. Execute step 4 of the Base Class Pattern close method

A.8.3 configure(options)

1. CheckinternalFields(this)

2.  Let status be GetInternalField(this, "status")

3. Throw if status is null

4.  Throw if options is undefined or null

5.  For each supported option

© Ecma International 2025

113



ecma

1. Let name be the name of the supported option
2. If HasProperty(options, name)
1. Letvalue be GetProperty(options, name)
2.  Throw if value is not in the valid range of the supported option

6. Configure the peripheral with options

A.8.3.1 Notes

«  Supported 10 connections are supported options. Their value must be an object with an io
property, which is the class of the 10 connection.

A.9 Sensor Class Pattern

A.9.1 constructor(options)

1. Execute all steps of the Peripheral Class Pattern constructor

A.9.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.9.3 configure(options)

1.  Execute all steps of the Peripheral Class Pattern configure method

A.9.4 sample([params])

1. CheckinternalFields(this)
2.  Let status be GetInternalField(this, "status™)
3. Throw if status is null
4.  Throw if params are absent but required, or present but not in the valid range
5. If the peripheral is readable
1. Letresult be an empty object
2. For each sample property
1. Let name be the name of the sample property
2. Letvalue be undefined
3. Read from the peripheral into value
4.  DefineProperty(result, name, value)
6. Else
1. Letresult be undefined

7. Return result

114 © Ecma International 2025



secma

A.9.4.1 Notes

* The order, requirements and ranges of sample params are defined by a separate table for each

class conforming to the Sensor Class Pattern.

* The requirements and ranges of properties in sample result are defined by a separate table for

each class conforming to the Sensor Class Pattern.

A.10 Sensor Classes
A.10.1 Accelerometer

A.10.1.1 sample params:

None

A.10.1.2 sample result:

Property Required

Range

Description

X yes

number

acceleration
along the x
axis in meters
per second
squared

y yes

number

acceleration
along the y
axis in meters
per second
squared

z yes

number

acceleration
along the z
axis in meters
per second
squared

A.10.2 Ambient light

A.10.2.1 sample params:

None

A.10.2.2 sample result:

Property

Required

Range

Description

illuminance

yes

positive
number

ambient light level
in lux

© Ecma International 2025

115



2eCma

A.10.3 Atmospheric pressure

A.10.3.1 sample params:

None

A.10.3.2 sample result:

Property Required Range Description
pressure yes number atmospheric pressure in
Pascal
A.10.4 Carbon Dioxide
A.10.4.1 sample params:
None
A.10.4.2 sample result:
Property Required Range Description
co2 yes number carbon dioxide in parts per
million
A.10.5 Carbon Monoxide
A.10.5.1 sample params:
None
A.10.5.2 sample result:
Property Required Range Description
co yes number carbon monoxide in parts per
million
A.10.6 Dust

A.10.6.1 sample params:

None

116

© Ecma International 2025



secma

A.10.6.2 sample result:

Property Required Range Description
dust yes number dust levels in micrograms per
cubic meter
A.10.7 Gyroscope
A.10.7.1 sample params:
None
A.10.7.2 sample result:
Property Required Range Description
X yes number angular velocity
around the x axis
in radian per
second
y yes number angular velocity
around the y axis
in radian per
second
z yes number angular velocity
around the z axis
in radian per
second
A.10.8 Humidity
A.10.8.1 sample params:
None
A.10.8.2 sample result:
Property Required Range Description
humidity yes number relative
fromOto 1 humidity as a
percentage

A.10.9 Hydrogen

A.10.9.1 sample params:

None

© Ecma International 2025

117




2eCma

A.10.9.2 sample result:

Property Required Range Description
H yes number hydrogen in parts per million
A.10.10 Hydrogen Sulfide
A.10.10.1sample params:
None
A.10.10.2sample result:
Property Required Range Description
H2S yes number hydrogen sulfide in parts per
million
A.10.11 Magnetometer
A.10.11.1sample params:
None
A.10.11.2sample result:
Property Required Range Description
X yes number magnetic field around the x
axis in microtesla
y yes number magnetic field around the y
axis in microtesla
z yes number magnetic field around the z
axis in microtesla
A.10.12 Methane
A.10.12.1sample params:
None
A.10.12.2sample result:
Property Required Range Description
CH4 yes number methane in parts per million

118

© Ecma International 2025



secma

A.10.13 Nitric Oxide

A.10.13.1sample params:

None

A.10.13.2sample result:

Property Required Range Description
NO yes number nitric oxide in parts per million
A.10.14 Nitric Dioxide
A.10.14.1sample params:
None
A.10.14.2sample result:
Property Required Range Description
NO2 yes number nitric dioxide in parts per
million
A.10.15 Oxygen
A.10.15.1sample params:
None
A.10.15.2sample result:
Property Required Range Description
o yes number oxygen in parts per million

A.10.16 Particulate Matter

A.10.16.1sample params:

None

© Ecma International 2025

119




2eCma

A.10.16.2sample result:

Property Required Range Description
particulate yes number particulate
Matter matter
levels in
microgram
s per
cubic
meter
A.10.17 Proximity
A.10.17.1sample params:
None
A.10.17.2sample result:
Property Required Range Description
near yes boolean indicator of a
detected proximate
object
distance yes positive distance to the
number nearest sensed
or object in
null centimeters or
null if no object is
detected
max yes positive maximum sensing
number range of the sensor
in centimeters
A.10.18 Soil Moisture
A.10.18.1sample params:
None
A.10.18.2sample result:
Property Required Range Description
moisture yes number relative soil
between 0 moisture level
and 1

120

© Ecma International 2025



secma

A.10.19 Temperature

A.10.19.1sample params:

None

A.10.19.2sample result:

Property

Required

Range

Description

temperature

yes

number

temperature in degrees
Celsius

A.10.20 Touch

A.10.20.1sample params:

None

A.10.20.2sample result:

Array of touch objects or undefined if no touch is in progress.

A.10.20.3touch object:

Property

Required

Range

Description

X

yes

number

X
coordinate
of the touch
point

yes

number

Y
coordinate
of the touch
point

id

yes

positive
integer

indicator of
which touch
point this
entry
corresponds
to

A.10.21 Volatile Organic Compounds

A.10.21.1sample params:

None

© Ecma International 2025

121



secma

A.10.21.2sample result:

Property Required Range

Description

tvoc yes number

total volatile
organic
compounds in
parts per
billion

A.11 Display Class Pattern

A.11.1 constructor(options)

1.

Execute all steps of the Peripheral Class Pattern constructor

A.11.2 adaptInvalid(area)

10.

11.

122

ChecklinternalFields(this)
Throw if area is absent

If HasProperty(area, "x")

1. Letx be GetProperty(area, "x")
Else

1. Letxbe©
If HasProperty(area, "y")

1. Lety be GetProperty(area, "y")
Else

1. Letybe®©
If HasProperty(area, "width")

1. Let width be GetProperty(area, "width")
Else

1. Let width be the width of the frame buffer in pixels
If HasProperty(area, "height")

1. Let height be GetProperty(area, "height")
Else

1. Let height be the height of the frame buffer in pixels

Adjust x, y, width, height to define a valid area to update

© Ecma International 2025



secmd

12. SetProperty(area, "x", x)

13. SetProperty(area, "y",y)

14. SetProperty(area, "width", width)
15. SetProperty(area, "height", height)

A.11.3 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.11.4 begin(options)

1. ChecklInternalFields(this)

2.  Let status be GetInternalField(this, "status")
3.  Throw if status is null

4. Letxbeo©

5. Letybe©

6. Letwidth be the width of the frame buffer in pixels
7.  Let height be the height of the frame buffer in pixels
8. Letcontinue be false

9. If options is present

1. If HasProperty(options, "x")

1. Letxbe GetProperty(options, "x")

2. If HasProperty(options, "y")
1. Lety be GetProperty(options, "y")
3. If HasProperty(options, "width")
1. Let width be GetProperty(options, "width")
4. If HasProperty(options, "height")
1. Let height be GetProperty(options, "height™")
5. If HasProperty(options, "continue")
1. Let continue be GetProperty(options, "continue™)
10. Throw if the area defined by x, y, width, and height is invalid.
11. |If status is ready

1. SetinternalField(this, "status"”, "updating™)

12. Else

© Ecma International 2025 123



ecma

1. Throw if continue is false
13. Use x, Yy, width, height to prepare the frame buffer to receive scanlines

A.11.5 configure(options)

1. Execute all steps of the Peripheral Class Pattern configure method

A.11.6 end()

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status™)

3. Throw if status is not "updating"

4, SetinternalField(this, "status”, "finishing")
5. Make updated frame buffer visible

6. SetinternalField(this, "status"”, "ready")

A.11.7 send(scanlines)

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status™)
3. Throw if status is not "updating"

4.  Throw if scanlines is absent

5. Let pointer be GetBytePointer(scanlines)

6. Letn be GetProperty(lines, "byteLength")

7. Transfer n bytes from pointer to the frame buffer

A.11.8 get width()

1. CheckinternalFields(this)

2. Return the width of the frame buffer in pixels

A.11.9 get height()

1. CheckinternalFields(this)

2. Return the height of the frame buffer in pixels

A.11.10 Notes

«  When the frame buffer rotation is 90 or 270 degrees, get width returns the height of the
frame buffer in pixels and get height returns the width of the frame buffer in pixels.

124 © Ecma International 2025



eCina

A.11.11 constructor options

Property Required Range Default
format no see text

rotation no 0, 90, 180, or 270

brightness no 0.0to 1.0

flip no “’h”, v, or “hv”

A.12 Real-Time Clock Class Pattern

A.12.1 constructor(options)

=

Execute step 1 of the Peripheral Class Pattern constructor
2. Letinterrupt be GetinternalField(this, "interrupt")
3. LetonAlarm be GetInternalField(this, "onAlarm")
4. Ifinterrupt is not null and onAlarm is not null
1. LetinterruptParams be GetProperty(params, "interrupt")
2. LetonReadable be a function with the following steps:

1. Queue atask that performs

1. Call(this, onAlarm)

3. SetProperty(interruptParams, "onReadable", onReadable)

5.  Execute steps 2 to 4 of the Peripheral Class Pattern constructor

A.12.2 close()

1. Execute all steps of the Peripheral Class Pattern close method

A.12.3 configure(options)

1.  Execute all steps of the Peripheral Class Pattern configure method

A.12.4 get time()

1. CheckinternalFields(this)

2. Let status be GetInternalField(this, "status")
3. Throw if status is null

4.  If the peripheral is readable

1. Letresult be the clock time as an ECMAScript number

© Ecma International 2025 125



ecma

5. Else
1. Letresult be undefined

6. Return result

A.12.5 set time(time)

1. CheckinternalFields(this)
2. Let status be GetInternalField(this, "status™)
3. Throw if status is null
4.  If the peripheral is writable
1. Convert time into an ECMAScript number

2.  Set the clock time to time

A.12.6 constructor options

Property Required Range Default

clock yes Object

interrupt no null or Object null

onAlarm no null or Function null
A.12.7 configure options

Property Required Range Default

alarm no number 0

A.13 Network Interface Class Pattern

A.13.1 constructor(options)

1. Execute all steps of the Base Class Pattern constructor

A.13.2 close()

1. Execute all steps of the Base Class Pattern close method

A.13.3 connect(options)

1. CheckinternalFields(this)
2. Letconnection be GetInternalField(this, "connection")

3.  Throw if connection is not O

126

© Ecma International 2025



eCina

4. SetinternalField(this, "connection", 100)
5. Let port be GetInternalField(this, "port")
6. LetonChanged be GetinternalField(this, "onChanged")
7.  Monitor the network interface specified by port
1. When changed
1. If onChanged is not null
1. Queue a task that performs

1. Call(this, onChanged)
A.13.4 disconnect()

1. ChecklInternalFields(this)
2. Letconnection be GetInternalField(this, "connection")
3. If connection is not O

1. Disconnect the network interface

A.13.5 get MAC()

1. ChecklInternalFields(this)
2. Let connection be GetInternalField(this, "connection™)
3. If connection is more than 0
1. Letresult be the MAC address of the network interface as an ECMAScript string
4. Else
1. Letresult be undefined

5. Return result

A.13.6 get address()

1. CheckinternalFields(this)
2. Let connection be GetInternalField(this, "connection™)
3.  If connection is more than or equal to 500
1. Letresult be the IP address of the network interface as an ECMAScript string
4. Else
1. Letresult be undefined

5. Return result

© Ecma International 2025

127



ecma

A.13.7 get connection()

1. CheckinternalFields(this)
2.  Letconnection be GetinternalField(this, "connection")

3. Return connection

A.13.8 constructor options

Property Required Range Default
onChanged no null or Function null
port no string

A.14 Ethernet Network Interface

A.14.1 connect(options)

1. Execute steps 1 to 6 of the Network Interface Class Pattern connect method
2.  Start connecting the network interface specified by port

3. Execute step 7 of the Network Interface Class Pattern connect method

A.15 Wi-Fi Network Interface

A.15.1 connect(options)

1. Execute steps 1 to 6 of the Network Interface Class Pattern connect method
2.  Throw if options is not an object
3. If HasProperty(options, "SSID")
1. Let SSID be GetProperty(options, "SSID")
2. Convert SSID into an ECMAScript string
4. Else
1. Let SSID be undefined
5. If HasProperty(options, "BSSID")
1. Let BSSID be GetProperty(options, "BSSID")
2. Convert BSSID into an ECMAScript string
6. Else

1. Let BSSID be undefined

128

© Ecma International 2025



secmd

7.

10.

11.

12.

13.

14.

15.
A.15.2

Throw if both SSID and BSSID are undefined

If HasProperty(options, "channel™)
1. Letchannel be GetProperty(options, "channel")
2. Convert channel into an ECMAScript number

Else
1. Letchannel be undefined

If HasProperty(options, "secure")
1. Letsecure be GetProperty(options, "secure")
2. Convert secure into an ECMAScript boolean

Else
1. Letsecure be false

If HasProperty(options, "password™)
1. Let password be GetProperty(options, "password")
2. Convert password into an ECMAScript string

Else
1. Let password be undefined

Start connecting the network interface specified by port to the access point specified by SSID,
BSSID, channel and secure with password

Execute step 7 of the Network Interface Class Pattern connect method

scan(options)

CheckinternalFields(this)

Let scanning be GetInternalField(this, "scanning")

Throw if scanning is true

Throw if options is not an object

Let onFound be GetProperty(options, "onFound")

Throw if not IsCallable(onFound )

If HasProperty(options, "onComplete™)
1. LetonComplete be GetProperty(options, "onComplete")
2. Throw if not IsCallable(onComplete)

Else

1. Let onComplete be undefined

© Ecma International 2025

129



secma

9.

10.

11.

12.

13.

14.

15.

16.

130

If HasProperty(options, "channel™)

1. Letchannel be GetProperty(options, "channel™)

2.  Convert channel into an ECMAScript number

Else

1. Letchannel be undefined

If HasProperty(options, "frequency")

1. Letfrequency be GetProperty(options, "frequency")

2.  Convert frequency into an ECMAScript number

3. Throw if frequency is neither 2.4 nor 5

Else

1. Letfrequency be undefined

If HasProperty(options, "secure™)

1. Letsecure be GetProperty(options, "secure")

2. Convert secure into an ECMAScript boolean

Else

1. Let secure be false

SetinternalField(this, "scanning", true)

Start scanning for access points matching channel, frequency and secure

1.  When an access point is found

1.

2.

10.

11.

12.

Let result be an empty object
Let value be the SSID of the access point as an ECMAScript string
SetProperty(result, "SSID", value)

Let value be the BSSID of the access point as a MAC address ECMAScript
string

SetProperty(result, "BSSID", value)

Let value be the RSSI of the access point as an ECMAScript number
SetProperty(result, "RSSI", value)

Let value be the channel of the access point as an ECMAScript number
SetProperty(result, "channel”, value)

Let security be the security mode of the access point as an ECMAScript string
SetProperty(security, "security”, value)

Queue a task that performs

© Ecma International 2025



eCina

1. Call(this, onFound, null, result)
2. When done
1. SetinternalField(this, "scanning", false)
2. If onComplete is not undefined
1. Queue atask that performs
1. Call(this, onComplete)
A.15.3 get BSSID()

1. CheckinternalFields(this)
2.  Letconnection be GetInternalField(this, "connection")
3.  If connection is more than or equal to 400
1. Letresult be the BSSID of the access point as an ECMAScript string
4. Else
1. Letresult be undefined

5. Return result

A.15.4 get RSSI()

1. ChecklInternalFields(this)
2. Letconnection be GetInternalField(this, "connection")
3. If connection is more than or equal to 400
1. Letresult be the RSSI of the access point as an ECMAScript string
4. Else
1. Letresult be undefined

5. Return result

A.15.5 get SSID()

1. ChecklInternalFields(this)
2. Letconnection be GetInternalField(this, "connection")
3. If connection is more than or equal to 400
1. Letresult be the SSID of the access point as an ECMAScript string
4. Else
1. Letresult be undefined

5. Return result

© Ecma International 2025

131



ecma

A.15.6 get channel()

CheckinternalFields(this)
Let connection be GetInternalField(this, "connection™)

If connection is more than or equal to 400

1. Letresult be the channel of the access point as an ECMAScript number

Else
1. Letresult be undefined

Return result

A.16 Domain Name Resolver Class Pattern

A.16.1 constructor(options)

1.

Execute all steps of the Base Class Pattern constructor

A.16.2 close()

1.

Execute all steps of the Base Class Pattern close method

A.16.3 resolve(options|, callback])

132

ChecklinternalFields(this)
Throw if options is not an object
If HasProperty(options, "host")

1. Let name be GetProperty(options, "host")

2. Convert name to an ECMAScript string
Else

1. Throw
Throw if callback is not undefined and not IsCallable(callback)
If name matches an IP address

1.  If callback is not undefined

1. Queue a task that performs
1. Call(this, callback, null, name, name)

Else

1.  Start the resolution with name

1. When the resolution succeeded

© Ecma International 2025



eCina

1.  If callback is not undefined
1. Let address be the resolved address as an ECMAScript string
2. Queue a task that performs

1. Call(this, callback, null, name, address)
2. When the resolution failed

1.  If callback is not undefined
1. Leterror be an ECMAScript Error object describing the failure
2. Queue a task that performs

1. Call(this, callback, error)

A.17 DNS over UDP

A.17.1 constructor options

Property Required Range Default

socket yes Object N/A

servers yes Array of strings N/A
A.17.2 Notes

*  The resolution itself can be implemented in ECMAScript. See the sample code

A.18 DNS over HTTPS

A.18.1 constructor options

Property Required Range Default

http yes Object N/A

servers yes Array of strings N/A
A.18.2 Notes

* The resolution itself can be implemented in ECMAScript.

© Ecma International 2025

133


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/udp/dns/dns.js

ecma

A.19 NTP Client

A.19.1 constructor(options)

1. Execute all steps of the Base Class Pattern constructor

A.19.2 close()

1. Execute all steps of the Base Class Pattern close method

A.19.3 getTime(callback)

1. CheckinternalFields(this)
2.  Let synchronizing be GetinternalField(this, "synchronizing")
3. Throw if synchronizing is true
4.  Throw if not IsCallable(callback)
5.  SetinternalField(this, "synchronizing", true)
6.  Start the synchronization
1.  When the synchronization succeeded
1. Lettime be the synchronized time as an ECMAScript number
2. Queue a task that performs
1. Call(this, callback, null, time)
2. SetinternalField(this, "synchronizing", false)
2. When the synchronization failed
1. Leterror be an ECMAScript Error object describing the failure
2.  Queue a task that performs
1. Call(this, callback, error)
2. SetinternalField(this, "synchronizing", false)

A.19.4 constructor options

Property Required Range Default

socket yes Object N/A

servers yes Array of strings N/A
A.19.5 Notes

»  The synchronization itself can be implemented in ECMAScript. See the sample code

134 © Ecma International 2025


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/udp/sntp/sntp.js

secmd

A.20

A.20.1

1.

10.
11.

12.
A.20.2

5.

TCP Client Class Pattern

constructor(options)

Execute all steps of the Base Class Pattern constructor

Let dnsOptions be GetlInternalField(this, "dns™)

Let dnsConstructor be Get(dnsOptions, "io")

Let dnsParams be a copy of dnsOptions

Set(dnsParams, "target", this)

Let dnsResolver be New(dnsConstructor, dnsParams)
SetInternalField(target, "dnsResolver", dnsResolver)

Let resolve be Get(dnsResolver, "resolve")

Let resolveParams be a new object

Set(resolveParams, "host", GetInternalField(this, "host"))
Let resolveCallback be GetInternalField(this, "resolveCallback")

Call(dnsResolver, resolve, resolveParams, resolveCallback)

close()

Let tcpSocket be GetInternalField(this, "tcpSocket")
If tcpSocket is not null
1. Call(tcpSocket, Get(tcpSocket, "close™))
Let dnsResolver be GetInternalField(this, "dnsResolver")
If dnsResolver is not null
1. Call(dnsResolver, Get(dnsResolver, "close"))

Execute all steps of the Base Class Pattern close method

A.20.3 #resolveCallback(error, name, address)

1.

2.

3.

4,

Let target be Get(this, "target")

Call(this, Get(this, "close™))

SetinternalField(target, "dnsResolver", null)

If error is null
1. LettcpOptions be GetinternalField(target, "socket")
2.  LettcpConstructor be Get(tcpOptions, "i0")

3. LettcpParams be a copy of tcpOptions

© Ecma International 2025 135



secma

10.
11.

5. Else

Set(tcpParams, "address", address)
Set(tcpParams, "port", GetinternalField(target, "port™"))

Set(tcpParams, "onError", GetinternalField(this, #tcpError))

Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))

Set(tcpParams, "onWritable", GetinternalField(this, #tcpWritable))

Set(tcpParams, "target"”, this)
Let tcpSocket be New(tcpConstructor, tcpParams)

SetinternalField(target, "tcpSocket™, tcpSocket)

Let onError be GetInternalField(target, "onError™")

If onError is not null

1. Queue a task that performs

1. Call(target, onError, error)

A.20.4 read(count)

A.20.5 write(data[, options])

A.20.6 #tcpError(error)

A.20.7 #tcpReadable(count)

A.20.8 #tcpWritable(count)

A.20.9 read / write data

Format

Read

Write

"buffer" ArrayBuffer

byte buffer

A.20.10 Notes

« Theread, write, #tcpError, #tcpReadable, #tcpWritable functions implement the
network protocol, which usually requires a state machine, buffers, parsers, serializers, etc.

*  Such methods can read and write from the TCP socket and can queue tasks to call the client
callbacks.

«  For each network protocol, the client has specific methods and callbacks, and the write
method can have specific options.

136

© Ecma International 2025



secmd

A.21 HTTP Client

A.21.1 constructor(options)

1.

2.

3.

4,

Execute step 1 of the TCP Client Class Pattern constructor

Let requests be a new Array object

SetinternalField(this, "requests"”, requests)

Execute steps 2 to 12 of the TCP Client Class Pattern constructor

A.21.2 close()

1.

2.

3.

Let requests be GetInternalField(this, "requests™)

For each request of requests

1. Cancel request

Execute all steps TCP Client Class Pattern close method

A.21.3 request(options)

1.

Let requests be GetInternalField(this, "requests™)

Let requestConstructor be the HTTP Client Request constructor

Let requestParams be a copy of options

Set(requestParams, "target", this)

Let request be New(requestConstructor, requestParams)

Add request to request

When this is ready

1. Start the request

A.21.4 constructor options

Property Required Range Default
dns yes Object N/A
host yes string N/A
socket yes Object N/A
port no number 80
onError no null or Function null

© Ecma International 2025

137



secma

A.21.5 Notes

A.22

The HTTP Client Request constructor is available only to the HTTP Client class.

The HTTP Client class conforms to the TCP Client Class Pattern here above except:

— The read and write methods are provided by the HTTP Client Request instance.

— The HTTP Client Request instance owns the network protocol specific callbacks.

If the HTTP Client handles a single request at time, step 7 of the request method waits for the
former request to complete.

For details about the implementation of the HTTP Client, see the sample code

HTTP Client Request

A.22.1 constructor options

Property Required Range Default
method no string GET
path no string /
headers no Map null
port no number 80
onHeaders no Function null
onReadable no Function null
onlWritable no Function null
onDone no Function null
A.22.2 read / write data
Format Read Write
"buffer" ArrayBuffer byte buffer

138

© Ecma International 2025


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/httpclient/httpclient.js

secma

A.23 MQTT Client

A.23.1 constructor options

Property Required Range Default
dns yes Object N/A
host yes string N/A
socket yes Object N/A
port no number 1883
id no string
user no string
password no string or Byte Buffer
keepAlive no number 0
clean no boolean true
will no Object* null
onReadable no Function null
onWritable no Function null
onError no Function null
onControl no Function null
* The will object has:
Property Required Range Default
topic yes string N/A
message yes string or Byte Buffer N/A
QoS no 0,1,0r2 0
retain no boolean false

© Ecma International 2025

139



ecma

A.23.2 write options

Property Required Range Default

operation no number MQTTCLient.PUBLISH
id no number

topic yes* string N/A

QoS no* 0,1,0r2 0

retain no* boolean false

duplicate no* boolean false

byteLength no* number data.byteLength
items yes* Array N/A

« topicisrequired when operation is MQTTCLient.PUBLISH

* QoS, retain, duplicate, bytelLength are used when operation is
MQTTCLient.PUBLISH

e 1items is required and used when operation is MQTTCLient.SUBSCRIBE or

MQTTCLient.UNSUBSCRIBE.

« 1items is an array of objects that have:

Property Required Range Default
topic yes string N/A
QoS no* 0,1,0r2 0

e QoS is used when operation is MQTTCLient.SUBSCRIBE
A.23.3 Notes

+ The MQTT Client class conforms to the TCP Client Class Pattern here above.

* For details about the implementation of the MQTT Client, see the sample code
A.24 WebSocket Client
A.24.1 constructor(options)

1. Execute step 1 of the TCP Client Class Pattern constructor
2. LettcpSocket be GetinternalField(this, "attach™)
3. IftcpSocketis null

1. Execute steps 2 to 12 of the TCP Client Class Pattern constructor

140

© Ecma International 2025


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/mqttclient/mqttclient.js

eCina

4. Else

1. SetinternalField(this, "tcpSocket"”, tcpSocket)

A.24.2 constructor options

Property Required Range Default
attach no instance of TCP null
Socket
dns yes* Object N/A
host yes* string N/A
socket yes* Object N/A
port no* number 80
protocol no* string
headers no* Map null
onReadable no Function null
onlWritable no Function null
onError no Function null
onControl no Function null
onClose no Function null
format no "number" or "buffer"
"buffer"

« Ifattachis present, dns, host, socket, port, protocol and headers are neither required
nor used.

A.24.3 write options

Property Required Range Default
binary no boolean true
more no boolean false
opcode no number

A.24.4 Notes

< The WebSocket Client class conforms to the TCP Client Class Pattern here above.

* For details about the implementation of the WebSocket Client, see the sample code

© Ecma International 2025

141


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/tcp/websocketclient/websocketclient.js

»ecma

A.25

A.25.1

10.
11.
A.25.2

5.
A.25.3

=

142

TCP Server Class Pattern

constructor(options)

Execute all steps of the Base Class Pattern constructor

Let connections be a new Set object

SetinternalField(this, "connections", connections)

Let tcpOptions be GetInternalField(target, "1istener")

Let tcpConstructor be Get(tcpOptions, "io")

Let tcpParams be a copy of tcpOptions

Set(tcpParams, "port", GetinternalField(target, "port™))
Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))
Set(tcpParams, "target"”, this)

Let tcpSocket be New(tcpConstructor, tcpParams)

SetinternalField(this, "tcpSocket", tcpSocket)

close()

Let connections be GetinternalField(this, "connections")
For each connection of connections
1. Call(connection, "close™")
Let tcpSocket be GetInternalField(this, "tcpSocket™)
If tcpSocket is not null
1. Call(tcpSocket, "close")

Execute all steps of the Base Class Pattern close method

#tcpReadable(count)

Let target be Get(this, "target")
Let connections be GetInternalField(target, "connections™)
Let onConnect be GetlnternalField(target, "onConnect")
Let connectionConstructor be a class conforming to the TCP Server Connection Class Pattern
While count >0
1. Letfrom be Call(this, Get(this, "read"))
2.  Let connection be New(connectionConstructor, target, from)

3.  Add connection to connections

© Ecma International 2025



eCina

4.  Queue atask that performs
1. Call(target, onConnect, connection)

5. Letcountbe count-1

A.25.4 constructor options

Property Required Range Default

listener yes Object N/A

port no* number 80

onConnect yes Function N/A
A.25.5 Notes

*  The connection constructor is specific to each network protocol, and available only to the
implementation: a static private field of the server class, a closure of the server module, etc.

A.26 TCP Server Connection Class Pattern

A.26.1 constructor(server, from)

1. SetinternalField(this, "server", server)

2. LettcpConstructor be Get(from, "constructor")

3. LettcpParams be New("Object")

4.  Set(tcpParams, "from", from)

5. Set(tcpParams, "onError", GetinternalField(this, #tcpError))

6. Set(tcpParams, "onReadable", GetinternalField(this, #tcpReadable))
7. Set(tcpParams, "onWritable", GetinternalField(this, #tcpWritable))
8.  Set(tcpParams, "target"”, this)

9. LettcpSocket be New(tcpConstructor, tcpParams)

10. SetinternalField(this, "tcpSocket"”, tcpSocket)
A.26.2 close()

1. LettcpSocket be GetinternalField(this, "tcpSocket™)
2.  IftcpSocketis not null
1. Call(tcpSocket, Get(tcpSocket, "close"))

3. Letserver be GetInternalField(this, "server")

© Ecma International 2025 143



secma

4.  Let connections be GetInternalField(server, "connections™")

5. Remove this from connections

A.26.3 read(count)

A.26.4 write(data[, options])
A.26.5 #tcpError(error)
A.26.6 #tcpReadable(count)
A.26.7 #tcpWritable(count)

A.26.8 read / write data

Format Read Write
"buffer" ArrayBuffer byte buffer
A.26.9 Notes

« The read, write, ##tcpError, ##tcpReadable, #tcpWritable functions implement the
network protocol, which usually requires a state machine, buffers, parsers, serializers, etc.

*  Such methods can read and write from the TCP socket and can queue tasks to call the server
connection callbacks.

» For each network protocol, the server connection has specific methods and callbacks, and the
write method can have specific options.

A.27 HTTP Server

A.27.1 Notes

* The HTTP Server class conforms to the TCP Server Class Pattern here above.
* The server connection constructor is the HTTP Server Connection class.

*  For details about the implementation of the HTTP Server, see the sample code

A.28 HTTP Server Connection

A.28.1 detach()

=

Let tcpSocket be GetInternalField(this, "tcpSocket™)
2. SetinternalField(this, "tcpSocket", null)
3. Letserver be GetinternalField(this, "server")

4. Let connections be GetInternalField(server, "connections™)

144 © Ecma International 2025


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/listener/httpserver/httpserver.js

eCina

5. Remove this from connections

6. Return tcpSocket

A.28.2 accept(options)

1. Throw if options is not an object

2. For each supported callback

1. Let name be the name of the supported callback

2. Let callback be GetProperty(options, name)

3. If callback is not undefined

1. Throw if not IsCallable(callback)

2. SetinternalField(this, name, callback)

3.  Startreceiving the request

A.28.3 get route()

1. Letresult be GetinternalField(this, "route")

2. Return result

A.28.4 set route(options)

1. Execute steps 1 and 2 of the accept method

2. SetinternalField(this, "route", options)

A.28.4.1 accept and set route options

Property Required Range Default
onDone no Function null
onError no Function null
onReadable no Function null
onRequest no Function null
onlWritable no Function null

A.28.5 respond(options)

1. Throw if options is not an object
2.  Let status be GetProperty(options, "status")
3.  Convert status into an ECMAScript number

4.  Throw if status is no positive integer

© Ecma International 2025

145



ecma

5. Let headers be GetProperty(options, "headers")
6. Throw if headers is no Map instance

7.  Start sending the response with status and headers

A.28.5.1 respond options

Property Required Range Default

status yes positive integer N/A

headers yes Map N/A
A.28.6 Notes

e The HTTP Server Connection class conforms to the TCP Server Connection Class Pattern here
above.

+ The HTTP Connection callbacks can be changed with the route setter, usually in the
onRequest callback, when the HTTP method, path, and headers are available.

*  For examples of routes, see the sample code

A.29 Provenance Sensor Class Pattern

A.29.1 configure(options)

1. Execute all steps of the Sensor Class Pattern configure method

A.29.2 sample([params])

1. Execute steps 1 to 6 of the Sensor Class Pattern sample method
2. Ifresult is an object
1. If an absolute clock is available
1. Lettime be the value of the absolute clock upon sampling
2. DefineProperty(result, "time", time)
2. Ifarelative clock is available
1. Letticks be the value of a relative clock upon sampling
2. DefineProperty(result, "ticks", ticks)
3. Iffaults are readable from the sensor upon sampling
1. Read from the sensor into faults
2. DefineProperty(result, "faults", faults)

3. Execute steps 7 of the Sensor Class Pattern sample method

146 © Ecma International 2025


https://github.com/Moddable-OpenSource/moddable/blob/public/examples/io/listener/httpserver/options

secma

A.29.2.1 Notes

* The absolute clock is the most precise clock available to get an absolute time value (since the
Epoch), from either the sensor, the microcontroller, or another peripheral.

* The relative clock is any clock available to get a consistent relative time value (for instance since
the device started), from either the sensor, the microcontroller, or another peripheral.

A.29.2.2 sample params:

None

A.29.2.3 sample result:

In addition to the sample results defined in the Sensor Class Pattern, the Provenance Sensor Class Pattern
adds properties as follows:

Property Required Range Description
time yes, if available positive number
number originating from
an absolute

clock describing
the instant that

the sample
returned was
captured
ticks yes, if available positive number
number originating from

a non-absolute
clock describing
the instant that
the sample
returned was
captured

faults no boolean, object

number, representing a
or string record of any
sensor-level
faults that
occurred during
this sensor
sample or since
the previously
reported sample

A.29.3 Notes

* The order, requirements, and ranges of options for configure extend those found in a separate
table for every class conforming to the Sensor Class Pattern, and add the options
configuration and identification as defined in the Sensor Provenance Class Pattern.

* Metadata (time, ticks, faults) reflect only the metadata associated with the first sample. In cases

where multiple samples may be taken from a single device, timing and fault data may be
imprecise for subsequent samples.

© Ecma International 2025 147



secma

A.30 Audio Input Class

A.30.1 constructor options

Property Required Range Default
audioType no "LPCM" "LPCM"
bitsPerSample no 8or16 (host
defined)
channels no lor2 (host
defined)
sampleRate no positive integer (host
defined)
onReadable no null or null
Function
format no "buffer" "buffer"
A.30.2 Notes

« The Audio Input Class conforms to the 10 Class Pattern for its constructor, close and read
methods. There is no write method.

« The "resources" internal field of an Audio Input instance represents the hardware and
software necessary to capture audio samples on the device.

*+ The constructor does not start capturing audio samples. Use the start method.

*  When audio samples are available to read, the onReadable callback is invoked with two
arguments, byteLength and sampleCount.

A.30.3 read / write data

Format Read Write

"buffer" ArrayBuffer

A.30.4 start()

1. CheckinternalFields(this)
2. Letresources be GetinternalField(this, "resources™)
3.  Throw if resources is null
4. Ifresources already started
1. Return

5.  Start capturing audio with resources

148 © Ecma International 2025



secmd

A.30.5 stop(options)

1.

CheckinternalFields(this)
Let resources be GetInternalField(this, "resources")
Throw if resources is null
Let flush be false
If options is provided
1. If HasProperty(options, "flush")
1. Letflush be GetProperty(options, "flush")
2. Convert flush into an ECMAScript boolean
If resources capturing audio
1.  Stop capturing audio with resources
If flush

1. Flush unread samples in resources

A.30.6 get audioType()

4.

5.

CheckinternalFields(this)

Let resources be GetInternalField(this, "resources")
Throw if resources is null

Let audioType be the encoding of resources

Return audioType

A.30.7 get bitsPerSample()

1.

4.

5.

CheckinternalFields(this)
Let resources be GetInternalField(this, "resources")

Throw if resources is null

Let bitsPerSample be the number of bits per sample of resources

Return bitsPerSample

A.30.8 get channels()

CheckinternalFields(this)
Let resources be GetInternalField(this, "resources")
Throw if resources is null

Let channels be the number of channels of resources

© Ecma International 2025

149



ecma

5. Return channels

A.30.9 get sampleRate()

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources")
3. Throw if resources is null

4. Let sampleRate be the sample rate of resources

5. Return sampleRate

A.31 Audio Input Class —asynchronous

A.31.1 Notes

* The asynchronous version of the Audio Input Class extends the Audio Input Class in order to
conform to the asynchronous version of the 10 Class Pattern.

« The onReadable callback is never invoked.

« The callback of the read method is invoked when audio samples have been read.

A.32 Audio Output Class

A.32.1 constructor options

Property Required Range Default
audioType no "LPCM" "LPCM"
bitsPerSample no 8o0r16 (host
defined)
channels no lor2 (host
defined)
sampleRate no positive integer (host
defined)
onWritable no null or null
Function
format no "buffer" "buffer"
A.32.2 Notes

«  The Audio Output Class conforms to the 10 Class Pattern for its constructor, close and
write methods. There is no read method.

« The "resources" internal field of an Audio Output instance represents the hardware and
software necessary to play audio samples on the device.

150 © Ecma International 2025



eCina

* The constructor does not start playing audio samples. Use the start method.

«  When space is available to write audio samples, the onWritable callback is invoked with two
arguments, byteLength and sampleCount.

A.32.3 read / write data

Format Read Write

"buffer" byte buffer

A.32.4 start()

1. ChecklInternalFields(this)
2. Letresources be GetinternalField(this, "resources™)
3.  Throw if resources is null
4. If resources already started
1. Return

5.  Start playing audio with resources

A.32.5 stop(options)

1. ChecklInternalFields(this)
2. Letresources be GetinternalField(this, "resources")
3.  Throw if resources is null
4. Letflush be false
5.  If options is provided
1. If HasProperty(options, "flush")
1. Let flush be GetProperty(options, "flush")
2. Convert flush into an ECMAScript boolean
6. If resources playing audio
1. Stop playing audio with resources
7. Ifflush

1.  Flush unplayed samples in resources

A.32.6 get audioType()

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources")

© Ecma International 2025

151



secma

3.

4.

5.

Throw if resources is hull
Let audioType be the encoding of resources

Return audioType

A.32.7 get bitsPerSample()

4.

5.

ChecklinternalFields(this)

Let resources be GetInternalField(this, "resources™)

Throw if resources is null

Let bitsPerSample be the number of bits per sample of resources

Return bitsPerSample

A.32.8 get channels()

4.

5.

ChecklinternalFields(this)

Let resources be GetlInternalField(this, "resources")
Throw if resources is null

Let channels be the number of channels of resources

Return channels

A.32.9 get sampleRate()

ChecklinternalFields(this)

Let resources be GetiInternalField(this, "resources")
Throw if resources is null

Let sampleRate be the sample rate of resources

Return sampleRate

A.33 Audio Output Class —asynchronous

A.33.1 Notes

152

The asynchronous version of the Audio Output Class extends the Audio Output Class in order to

conform to the asynchronous version of the 10 Class Pattern.

The onWritable callback is never invoked.

The callback of the write method is invoked when audio samples have been written.

© Ecma International 2025



eCina

A.34 Image Input Class

A.34.1 constructor options

Property Required Range Default
imageType no a pixel format (host
or "jpeg” defined)
width no positive (host
integer defined)
height no positive (host
integer defined)
onReadable no null or null
Function
format no "buffer" or "buffer"
"buffer/dis
posable"
A.34.2 Notes

« The Image Input Class conforms to the 10 Class Pattern for its constructor and close
method. There is no write method.

« The "resources" internal field of an Image Input instance represents the hardware and
software necessary to capture image frames on the device. Typically, an Image Input instance
manages a queue of image frames.

* The constructor does not start capturing image frames. Use the start method.

* When an image frame is available to read, the onReadable callback is invoked.

« If the application provides a byte buffer to the read method, its byte length must be at least the
byte length of a frame.

A.34.3 read / write data

Format Read Write
"buffer" ArrayBuffer
"buffer/disposable” Image Input Buffer

A.34.4 read([option])

1. CheckinternalFields(this)
2. Letresources be GetinternalField(this, "resources")

3.  Throw if resources is null

© Ecma International 2025

153



ecma

4. Letformat be GetInternalField(this, "format")
5. Ifformatis "buffer/disposable™
1. If an image frame is available in resources
1. Let buffer be CreatelmagelnputBuffer(resources)
2. Return buffer
2. Else
1. Return undefined
6. Else

1. Execute step 6 to 10 of the 10 Class Pattern read method
A.34.5 start()

1. CheckinternalFields(this)
2. Letresources be GetinternalField(this, "resources™)
3. Throw if resources is null
4. If resources already started
1. Return

5.  Start capturing image frames with resources

A.34.6 stop(options)

1. CheckinternalFields(this)

n

Let resources be GetinternalField(this, "resources")

3. Throw if resources is null

»

Let flush be false
5. If options is provided
1. If HasProperty(options, "flush")
1. Let flush be GetProperty(options, "flush")
2. Convert flush into an ECMAScript boolean
6. If resources capturing image frames

1.  Stop capturing image frames with resources

~

If flush

1.  Flush unread image frames in resources

154 © Ecma International 2025



secmd

A.34.7 get imageType()

1.

4.
5.

CheckinternalFields(this)

Let resources be GetInternalField(this, "resources")
Throw if resources is null

Let imageType be the image type of resources

Return imageType

A.34.8 get width()

1.

4,

5.

CheckinternalFields(this)

Let resources be GetInternalField(this, "resources")
Throw if resources is null

Let width be the image width of resources

Return width

A.34.9 get height()

1. ChecklInternalFields(this)
2. Letresources be GetinternalField(this, "resources™)
3.  Throw if resources is null
4. Let height be the image height of resources
5. Return height
A.35 Image Input Class — asynchronous
A.35.1 Notes

The asynchronous version of the Image Input Class extends the Image Input Class in order to
conform to the asynchronous version of the 10 Class Pattern.

The onReadable callback is never invoked.

The callback of the read method is invoked when a frame has been read.

A.35.2 read(option], callback])

1.

2.

3.

4,

CheckinternalFields(this)
Let resources be GetInternalField(this, "resources")
Throw if resources is null or not readable

Let format be GetInternalField(this, "format")

© Ecma International 2025

155



ecma

5. Ifformatis "buffer/disposable™
1. Throw if callback is not undefined and not IsCallable(callback)
2. When an image frame is available in resources
1. Queue a task that performs
1. Let buffer be CreatelmagelnputBuffer(resources)
2. Call(this, callback, null, buffer)
6. Else

1. Execute step 4 to 8 of the 10 Class Pattern — asynchronous read method
A.36 Image Input Buffer Prototype

A.36.1 Notes

» The Image Input Buffer Prototype conforms to the Disposable Buffer Pattern. Its instances are
byte buffers that reference image frames in the Image Input instance.

+ ltis the responsibility of the application to close Image Input Buffer instances as soon as
possible to allow the Image Input instance to reuse the referenced image frames.

A.36.2 CreatelmagelnputBuffer(resources)

1. Letresult be a new byte buffer whose prototype is Image Input Buffer Prototype
2. Letframe be the current image frame of resources

3.  Lock frame in resources

4.  Attach result to frame

5. SetinternalField(this, "resources"”, resources)

6. SetinternalField(this, "frame", frame)

A.36.3 close()

1. CheckinternalFields(this)

2. Letresources be GetinternalField(this, "resources™)
3. Letframe be GetInternalField(this, "frame")

4. Detach this from frame

5. Unlock frame in resources

A.37 10 Provider Class Pattern

A.37.1 constructor(options)

1. Execute steps 1to 7 of the Base Class Pattern constructor

156 © Ecma International 2025



eCina

2. Let onReadable be a function with the following steps:

1. Letdata be Call(this, GetProperty(this, "read"))

2.  Let provider be GetProperty(this, "target")

3. Dispatch data among IO objects of provider

3. Let count be the number of supported 10 connection

4.  Let onWritable be a function with the following steps:

1. Letcountbecount-1

2. If count is O

1.

Let provider be GetProperty(this, "target")
Configure provider with params

Add supported IO constructors to provider
SetinternalField(provider, "status", "ready")

Let callback be GetInternalField(provider, "onReady")

If callback is not null

1. Call(provider, callback)

5.  Let onError be a function with the following steps:

1. Let provider be GetProperty(this, "target")

2. Dispatch the error to open IO objects of provider

3.  Call(provider, GetProperty(provider, "close"))

4. Let callback be GetinternalField(provider, "onError")

5. If callback is not null

1.

6. Try

Call(provider, callback)

1. For each supported IO connection

1.

2.

© Ecma International 2025

Let name be the name of the supported 10 connection.
Let ioOptions be GetProperty(params, name)

Let ioParams be a copy of ioOptions

Let ioConstructor be GetProperty(ioParams, "io")
DefineProperty(ioParams, "onReadable", onReadable)
DefineProperty(ioParams, "onWritable", onWritable)

DefineProperty(ioParams, "onError", onError)

157



ecma

8. DefineProperty(ioParams, "target"”, this)
9. LetioConnection be Construct(ioConstructor, ioParams)
10. SetinternalField(this, name, ioConnection)
7.  Catch exception
1. Call(this, GetProperty(this, "close™))
2.  Throw exception

8. Execute step 8 of the Base Class Pattern constructor

A.37.2 close()
1. Execute all steps of the Peripheral Class Pattern close method

A.38 Flash Module Object

A.38.1 Notes

* The Flash module default export is an object with an open method that creates Flash Partition
instances.

A.38.2 open(options)

1. Let this be a new instance of the Flash Partition class
2.  Execute all steps of the IO Class Pattern constructor

3. Return this
A.38.2.1 options

FIOILET) Required Range Default

name yes string N/A

mode no " r\" or " r+ " " r+ "

format no "buffer” "buffer"
A.38.3 Notes

+ The "resources" internal field of a Flash Partition instance describes the access to a specific
region of flash memory. The access is read-only if mode is "r".

* For a Flash Partition instance, step 4 of the IO Class Pattern constructor opens the access to the
flash partition specified by name.

158 © Ecma International 2025



secmd

A.38.4 [Symbol.iterator]()

1. Let constructor be the Flash Partition Iterator Class
2.  Letiterator be New(constructor)

3. Return iterator

A.39 Flash Partition Class Pattern
A.39.1 constructor()

1. Throw
A.39.1.1 Notes

* Use the open method of the Flash Module Object to create Flash Partition instances.

A.39.2 close()

1. Execute all steps of the IO Class Pattern close method

A.39.2.1 Notes

« For a Flash Partition instance, step 5 of the 10 Class Pattern close method closes the access
to the flash partition.

A.39.3 eraseBlock(from[, to])

1. ChecklInternalFields(this)
2.  Let partition be GetInternalField(this, "resources")
3.  Throw if partition is null or not writable
4.  Let blocks be the number of blocks in partition
5.  Convert from into an ECMAScript number
6. Iftois absent
1. Lettobefrom+1
7. Else
1. Convert to into an ECMAScript number
8.  Throw if from < 0 or from >= blocks
9.  Throw if to <= from or to > blocks
10. While from < to
1. Erase block from in partition

2. Let from be from + 1

© Ecma International 2025 159



ecma

A.39.4 read(count, offset)

1. CheckinternalFields(this)
2.  Let partition be GetInternalField(this, "resources™)
3.  Throw if partition is null
4.  Convert offset into an ECMAScript number
5.  Throw if offset is neither @ nor a positive integer
6. Let size be number of bytes in partition
7. Letavailable be size - offset
8.  Throw if available <=0
9. If count is a number

1. Throw if count is not a positive integer

2. If count > available

1. Letcount be available
3. Letresult be New("ArrayBuffer", count)

4.  Let pointer be GetBytePointer(result)

1. Let pointer be GetBytePointer(count)
2.  Let count be GetProperty(count, "byteLength™)
3. If count > available
1. Letcount be available
4.  Letresult be count
11. Read count bytes into pointer from partition at offset

12. Return result

A.39.5 status()

1. CheckinternalFields(this)

2.  Let partition be GetInternalField(this, "resources")
3. Throw if partition is null

4.  Let size be number of bytes in partition

5.  Let blocks be number of blocks in partition

6. Let blockLength be number of bytes by block

7. Letresult be New("Object")

160

© Ecma International 2025



secmd

8. Set(result, "size", size)
9. Set(result, "blocks", blocks)
10. Set(result, "blockLength™, blockLength)

11. Return result

A.39.6 write(data, offset)

1. CheckinternalFields(this)

2.  Let partition be GetInternalField(this, "resources")
3.  Throw if partition is null or not writable

4.  Convert offset into an ECMAScript number

5.  Throw if offset is neither @ nor a positive integer

6. Let pointer be GetBytePointer(data)

7.  Letcount be GetProperty(data, "byteLength")

8. Let size be number of bytes in partition

9. Letavailable be size - offset

10. Throw if available < count

11. Write count bytes from pointer into partition at offset

A.39.7 read / write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.40 Flash Partition lterator Class

A.40.1 constructor()

1. Letlist be the result of opening the list of available partitions
2. SetinternalField(this, "1ist", list)
A.40.2 next()

1. Letlist be GetinternalField(this, "1ist")
2. Iflistis null
1. Let partition be null

3. Else

© Ecma International 2025

161



ecma

1. Let partition be the next partition in list
2.  If partition is null
1. Close list
2. SetinternalField(this, "1ist", null)
3. Else
1. Let name be the name of partition
4, Letresult be New("Object™")
5.  If partition is null
1. Set(result, "done", true)
2.  Set(result, "value”, undefined)
6. Else
1. Set(result, "done"”, false)
2.  Set(result, "value", name)

7. Return result

A.40.3 return()

1. Letlist be GetinternalField(this, "1ist")
2. Iflistis not null
1. Close list
2. SetinternalField(this, "1list", null)
3. Letresult be New("Object")
4.  Set(result, "done", true)
5. Set(result, "value", undefined)

6. Return result

A.40.4 Notes

* The list order is system dependent.

A.41 Update Module Object

A.41.1 Notes

» The Update module default export is an object with an open method that creates Update
instances.

162 © Ecma International 2025



eCina

A.41.2 open(options)

1. Letthis be a new instance of the Update Class

2.  Execute steps 1 to 3 of the IO Class Pattern constructor

3. Try

1.

10.
11.

12.

Let partition be GetInternalField(GetProperty(params, "partition™),

"resources")
Throw if partition is null or not writable
Let mode be GetProperty(params, "mode")
Let size be the size of partition
Let byteLength be GetProperty(params, "byteLength")
If byteLength is not undefined
1. Throw if byteLength > size
2. Let size be byteLength
Let update be a new over the air update process for partition
Set the mode of update to mode
Set the offset of update to @
Set the size of update to size
Begin update

SetlInternalField(this, "resources", update)

4.  Execute steps 5 to 6 of the 10 Class Pattern constructor

5. Return this

A.41.2.1 options

Property Required Range Default

partition yes Flash Partition N/A
instance

mode no llall Or llwll llall

byteLength no positive integer or undefined
undefined

A.41.2.2 Notes

« The "resources" internal field of an Update instance describes the over the air update
process for a specific partition.

© Ecma International 2025

163



secma

A.42 Update Class Pattern

A.42.1 constructor()

1. Throw
A.42.1.1 Notes

* Use the open method of the Update Module Object to create Update instances.

A.42.2 close()

1. Execute all steps of the |0 Class Pattern close method

A.42.2.1 Notes

« For an Update instance, step 5 of the 10 Class Pattern close method aborts the over the air
update process if the complete method has not been called.

A.42.3 complete()

1. CheckinternalFields(this)

2. Letupdate be GetinternalField(this, "resources")
3.  Throw if update is null

4.  End and activate update

5.  Throw if former step failed

A.42.3.1 Notes

+ Step 4 can fail if written data are invalid.

A.42.4 write(data], offset])

1. CheckinternalFields(this)
2. Letupdate be GetInternalField(this, "resources")
3. Throw if update is null
4.  Let pointer be GetBytePointer(data)
5. Letcount be GetProperty(data, "byteLength")
6. Let mode be the mode of the update
7. Ifmodeis "a"
1. Throw if offset is present
2. Let offset be the offset of the update

8. Else

1. Throw if offset is absent

164 © Ecma International 2025



secma

2. Convert offset into an ECMAScript number
3.  Throw if offset is neither @ nor a positive integer
9. Let size be the size of the update
10. Let available be size - offset
11. Throw if available < count
12. Write count bytes from pointer into update at offset
13. Throw if former step failed
14. If modeis "a"

1. Letthe offset of the update be offset + count

A.42.4.1 Notes

*  Step 12 can fail if written data are invalid.

A.42.5 read / write data

Format Read Write

"buffer" byte buffer

A.43 Key-Value Module Object

A.43.1 Notes

* The Key-Value module default export is an object with an open method that creates Key-Value

Domain instances.

A.43.2 open(options)

1. Let this be a new instance of the Key-Value Domain class

2. Execute all steps of the IO Class Pattern constructor

3. Return this

A.43.2.1 options

Property Required Range Default
path yes string N/A

mode no "r"or"r+" "r+"
format no string "buffer"

© Ecma International 2025

165



secma

A.43.2.2 Notes

« The "resources" internal field of a Key-Value Domain instance describes a specific part of the non-
volatile storage used by the system to store key-value pairs.

* For a Key-Value Domain instance, step 4 of the IO Class Pattern constructor opens the storage.

A.44 Key-Value Domain Class Pattern

A.44.1 constructor()

1. Throw
A.44.1.1 Notes

+ Use the open method of the Key-Value Module Object to create Key-Value instances.

A.44.2 close()

1. Execute all steps of the |0 Class Pattern close method

A.44.2.1 Notes

* For a Key-Value Domain instance, step 5 of the IO Class Pattern close method closes the
storage.

A.44.3 delete(key)

1. CheckinternalFields(this)

2. Let storage be GetiInternalField(this, "resources™)
3. Throw if storage is null or not writable

4.  Convert key into an ECMAScript string

5.  Let pair be the pair matching key in storage

o

If pair is undefined
1. Return false
7. Remove pair from storage

8. Return true

A.44.4 read(key][, buffer])

1. CheckinternalFields(this)
2. Let storage be GetinternalField(this, "resources")
3.  Throw if storage is null

4.  Convert key into an ECMAScript string

166 © Ecma International 2025



secmd

10.

11.

Let pair be the pair matching key in storage
If pair is undefined
1. Return
Let value be the value of pair
Let format be GetinternalField(this, "format")
Throw if value format does not conform to format
If format is "buffer" and buffer is present
1. Let available be the byte length of value
2.  Let pointer be GetBytePointer(buffer)
3. Letn be GetProperty(buffer, "byteLength")
4.  Throw if available > n
5. Read available bytes from value into pointer
6. Return available

Return value

A.44.5 write(key, value)

1.

CheckinternalFields(this)

Let storage be GetInternalField(this, "resources")
Throw if storage is null or not writable

Convert key into an ECMAScript string

Let format be GetinternalField(this, "format")

Convert value into the ECMAScript value corresponding to format

Let pair be the pair matching key in storage

If pair is undefined
1. Let pair be a new pair with key and value
2. Insert pair into storage

Else

1. Replace the value of pair with value

A.44.6 [Symbol.iterator]()

1.

2.

3.

Let constructor be the Key-Value Domain Iterator Class
Let iterator be New(constructor, this)

Return iterator

© Ecma International 2025

167



secma

A.44.7 read / write data

Format Read Write
"buffer" ArrayBuffer byte buffer
"string" string string
"uint8" number number
"int8" number number
"uintl6" number number
"intie6" number number
"uint32" number number
"int32" number number
"uinte4" bigint bigint
"int64" bigint bigint

A.45 Key-Value Domain Iterator Class

A.45.1 constructor(domain)

1. Throw if domain is not a Key-Value Domain instance

2. Let storage be GetlInternalField(domain, "resources")

3. Letlist be the result of opening the list of pairs in storage

4. SetinternalField(this, "1ist", list)

A.45.2 next()

1. Letlist be GetinternalField(this, "1ist")

2. Iflistis null

1. Let pair be null

3. Else

1. Let pair be the next pair in list

2. Ifpairis null

1. Close list

2. SetinternalField(this, "1ist", null)

3. Else

168

© Ecma International 2025



secmd

1. Letkey be the key of pair

4. Letresult be New("Object")
5. Ifpairis null

1. Set(result, "done", true)

2.  Set(result, "value", undefined)
6. Else

1. Set(result, "done", false)

2.  Set(result, "value", key)

7. Return result

A.45.3 return()

1. Letlist be GetInternalField(this, "1ist")
2. Iflistis not null
1. Close list
2. SetinternalField(this, "1ist", null)
3. Letresult be New("Object")
4.  Set(result, "done", true)
5. Set(result, "value", undefined)

6. Return result

A.45.4 Notes

* The list order is system dependent
A.46 File Class Pattern
A.46.1 Notes

* The "resources" internal field of a File instance describes a specific file in the file system. On
POSIX, the internal field is a file descriptor.

A.46.2 constructor()

1. Throw
A.46.2.1 Notes

» Use the openFile method of a Directory instance to create File instances.

© Ecma International 2025 169



secma

A.46.3 close()

1. Execute all steps of the |10 Class Pattern close method

A.46.3.1 Notes

« On POSIX, step 5 of the 10 Class Pattern close method closes the file descriptor.

See man close

A.46.4 flush()

1. CheckinternalFields(this)

2. Letfd be GetInternalField(this, "resources™)

3.  Flushfile fd

See man fsync

A.46.5 read(count, offset)

1. CheckinternalFields(this)

2. Letfd be GetInternalField(this, "resources™)

3. Throwiffdis null

4, Convert

offset into an ECMAScript number

5.  Throw if offset is neither @ nor a positive integer

6. If count
1.

2.

7. Else

170

is a number

Throw if count is not a positive integer

Let option be New("Object™")

Set(option, "maxByteLength", count)

Let result be New("ArrayBuffer", count, option)

Let pointer be GetBytePointer(result)

Read count bytes into pointer from fd at offset

Let count be the number of bytes read by the former step

Call(result, GetProperty(result, "resize"), count)

Let pointer be GetBytePointer(count)
Let count be GetProperty(count, "byteLength")
Read count bytes into pointer from fd at offset

Let result be the number of bytes read by the former step

© Ecma International 2025


https://linux.die.net/man/2/close
https://linux.die.net/man/2/fsync

secmd

8.

Return result

See man pread

A.46.6 setSize(size)

1.

5.
6.

CheckinternalFields(this)

Let fd be GetInternalField(this, "resources™)
Throw if fd is null or not writable

Convert size into an ECMAScript number

Throw if size is not a positive integer

Set the size of fd to size

See man ftruncate

A.46.7 status()

1.

10.

11.

12.

13.

14.

15.

16.

CheckinternalFields(this)

Let fd be GetlInternalField(this, "resources")
Throw if fd is null

Let status be the status of fd

Let size be status size

Let mode be status mode

Let isFile be a function that returns true

Let isDirectory be a function that returns false

Let isSymbolicLink be a function that returns false link

Let result be New("Object")

Set(result, "size", size)

Set(result, "mode", mode)

Set(result, "isFile", isFile)

Set(result, "isDirectory", isDirectory)
Set(result, "isSymbolicLink", isSymbolicLink)

Return result

See man fstat

A.46.8 write(buffer, offset)

1.

CheckinternalFields(this)

© Ecma International 2025

171


https://linux.die.net/man/2/pread
https://linux.die.net/man/2/ftruncate
https://linux.die.net/man/2/fstat

secma

7.

8.
See man pwrite

Let fd be GetInternalField(this, "resources™)

Throw if fd is null or not writable
Convert offset into an ECMAScript number
Throw if offset is neither @ nor a positive integer

Let pointer be GetBytePointer(buffer)

Let count be GetProperty(buffer, "byteLength")

Write count bytes from pointer into fd at offset

A.46.9 read / write data

Format Read Write

"buffer" ArrayBuffer byte buffer

A.47 Directory Class Pattern

A.47.1 Notes

The "resources" internal field of a Directory instance describes a specific directory in the file

system. On POSIX, the internal field is a file descriptor.

All directory and file entries are specified by a path relative to the specific directory described by the

Directory instance resources.

Paths are strings. The path separator is "/". CheckPath enforces paths to be beneath the specific

directory described by the Directory instance resources.

A.47.1.1 CheckPath(path)

4.

5.

Convert path into an ECMAScript string

Throw if pathis "." or ".."

Throw if path starts with " /", " . /", or "../"
Throw if path contains "//","/./",or"/../"

Return path

A.47.2 constructor()

1.

172

Throw

© Ecma International 2025


https://linux.die.net/man/2/pwrite

secmd

A.47.2.1 Notes

Use the openDirectory method of a Directory instance to create Directory instances.

A.47.3 close()

1.

Execute all steps of the |0 Class Pattern close method

A.47.3.1 Notes

On POSIX, step 5 of the 10 Class Pattern close method closes the file descriptor.

See man close

A.47.4 createDirectory(path)

5.

6.

CheckinternalFields(this)

Let path be CheckPath(path)

Let fd be GetInternalField(this, "resources™)

If the entry specified by path relative to fd exists
1. Return false

Create a directory specified by path relative to fd

Return true

See man mkdirat

A.47.5 createlLink(path, target)

4.

5.

CheckinternalFields(this)

Let path be CheckPath(path)

Let target be CheckPath(target)

Let fd be GetInternalField(this, "resources")

Create a symbolic link specified by path to the entry specified by target relative to fd

See man symlinkat

A.47.6 delete(path)

CheckinternalFields(this)

Let path be CheckPath(path)

Let fd be GetInternalField(this, "resources")

If the entry specified by path relative to fd does not exist
1. Return false

Remove the entry specified by path relative to fd

© Ecma International 2025

173


https://linux.die.net/man/2/close
https://linux.die.net/man/2/mkdirat
https://linux.die.net/man/2/symlinkat

secma

6. Return true

See man unlinkat

A.47.7 move(fromPath, toPath[, directory])

1. CheckinternalFields(this)
2. LetfromPath be CheckPath(fromPath)
3. LettoPath be CheckPath(toPath)
4. Letfd be GetInternalField(this, "resources")
5. If directory is absent
1. Letfd2 befd
6. Else
1. Throw if directory is not a Directory instance
2. Letfd2 be GetInternalField(directory, "resources")

7. Rename the entry specified by fromPath relative to fd into the entry specified by toPath relative
to fd2

See man renameat

A.47.8 openDirectory(options)

1. CheckinternalFields(this)

2. Throw if options is not an object

3. Let path be GetProperty(options, "path")

4.  Let path be CheckPath(path)

5. Letfd be GetInternalField(this, "resources™)

6. Letfd2 be the result of opening the directory specified by path relative to fd
7. Letresult be a new Directory instance

8. SetinternalField(this, "resources", fd2)

9. Return result

A.47.8.1 Notes

+  Step 6 must throw if the entry does not exist, or if the entry exists but is not a directory.
See man openat2

A.47.9 openFile(options)

1. CheckinternalFields(this)

2. Throw if options is not an object

174 © Ecma International 2025


https://linux.die.net/man/2/unlinkat
https://linux.die.net/man/2/renameat
https://man7.org/linux/man-pages/man2/openat2.2.html

secmd

Let path be GetProperty(options, "path")

w

4. Let path be CheckPath(path)

5. Let mode be GetProperty(options, "mode™")

6. Convert mode into an ECMAScript string

7. Throw if mode is neither "r", nor "r+", nor "w", nor "w+"

8. Letfd be GetInternalField(this, "resources™)

9. Letfd2 be the result of opening the file specified by path relative to fd with mode
10. Letresult be a new File instance

11. SetinternalField(this, "resources”, fd2)

12. Return result

A.47.9.1 Notes

*  Step 9 must throw if the entry does not exist and mode is neither "w" nor "w+", or if the entry
exists but is not a file.

See man openat

A.47.10 readLink(path)

1. ChecklInternalFields(this)

2.  Let path be CheckPath(path)

3. Letfd be GetinternalField(this, "resources")

4. Letresult be the target of the symbolic link specified by path relative to fd

5. Return result

See man readlinkat

A.47.11 scan([path])

1. CheckinternalFields(this)
2. Let constructor be the Directory Iterator Class
3. If path is present
1. Let iterator be New(constructor, this, path)
4. Else
1. Letiterator be New(constructor, this)

5. Return iterator

A.47.12 status(path)

1. ChecklInternalFields(this)

© Ecma International 2025 175


https://linux.die.net/man/2/openat
https://linux.die.net/man/2/readlinkat

secma

Let path be CheckPath(path)

n

3. Letfd be GetInternalField(this, "resources™)

4.  Let status be the status of the entry specified by path relative to fd
5.  Let size be status size

6. Let mode be status mode

7.  LetisFile be a function that returns true if mode is a file

8. LetisDirectory be a function that returns true if mode is a directory
9. LetisSymbolicLink be a function that returns true if mode is a symbolic link
10. Letresult be New("Object")

11. Set(result, "size", size)

12. Set(result, "mode", mode)

13. Set(result, "isFile", isFile)

14. Set(result, "isDirectory", isDirectory)

15. Set(result, "isSymbolicLink", isSymbolicLink)

16. Return result
See man fstatat

A.47.13 [Symbol.iterator]()

1. Return Call(this, GetProperty(this, "scan"))

A.48 Directory lterator Class

A.48.1 constructor(directory[, path])

1. Throw if directory is not a Directory instance
2. Letfd be GetinternalField(directory, "resources")
3. If pathis present
1. Let path be CheckPath(path)
2. Letfd2 be the result of opening the directory specified by path relative to fd
4. Else
1. Letfd2 be the result of duplicating fd
5.  Let stream be the result of opening a directory stream corresponding to fd2

6. SetinternalField(this, "stream", stream)

See man dup and man fdopendir

176 © Ecma International 2025


https://linux.die.net/man/2/fstatat
https://linux.die.net/man/2/dup2
https://linux.die.net/man/3/fdopendir

eCina

A.48.2 next()

1. Letstream be GetInternalField(this, "stream")
2. If streamis null
1. Letentry be null
3. Else
1. Letentry be the next directory entry in stream
2. Ifentryis null
1. Close stream
2. SetinternalField(this, "stream”, null)
3. Else
1. Letname be the name of entry
2. Ifnameis"."or".." gotostep 3.1
4. Letresult be New("Object")
5. Ifentryis null
1. Set(result, "done", true)
2.  Set(result, "value", undefined)
6. Else
1. Set(result, "done", false)
2.  Set(result, "value", name)

7. Return result

See man readdir

A.48.3 return()

1. Letstream be GetinternalField(this, "stream")
2. If stream is not null

1. Close stream

2.  SetinternalField(this, "stream”, null)
3. Letresult be New("Object")
4. Set(result, "done", true)
5. Set(result, "value"”, undefined)

6. Return result

See man closedir

© Ecma International 2025

177


https://linux.die.net/man/3/readdir
https://linux.die.net/man/3/closedir

secma

A.48.4 Notes

» Closing the iterator stream must also close the resources used to open the iterator stream.

A.49 Home Directory Object

A.49.1 Notes

* The File module default export is a Directory instance, which is used to access file and directory
entries in the file system.

« On POSIX, it is typically the $HOME directory.

178 © Ecma International 2025



secma

Bibliography

10

[1] 12C-bus specification and user manual, Rev. 6. https://www.nxp.com/docs/en/user-quide/UM10204.pdf

[2] System Management Bus (SMBus) Specification Version 3.1.
http://smbus.org/specs/SMBus 3 1 20180319.pdf

W3C Sensor

[3] W3C Generic Sensor specification. https://www.w3.org/TR/generic-sensor/

[4] W3C Accelerometer draft. https://w3c.qgithub.io/accelerometer/

[5] W3C Ambient Light Sensor draft. https://www.w3.org/TR/ambient-light/

[6] W3C Proximity Sensor draft. https://w3c.github.io/proximity/

Hardened JavaScript

[7] Ecma TC39 - Compartments Proposal. https://github.com/tc39/proposal-compartments

[8] Ecma TC39 - SES Proposal. https://github.com/tc39/proposal-ses

[9] Draft Specification for Standalone SES. https://github.com/Agoric/SES-
shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md

ResizableArrayBuffer and GrowableSharedArrayBuffer

[10] In-Place Resizable and Growable ArrayBuffers. https://github.com/tc39/proposal-resizablearraybuffer

© Ecma International 2025 179


https://www.nxp.com/docs/en/user-guide/UM10204.pdf
http://smbus.org/specs/SMBus_3_1_20180319.pdf
https://www.w3.org/TR/generic-sensor/
https://w3c.github.io/accelerometer/
https://www.w3.org/TR/ambient-light/
https://w3c.github.io/proximity/
https://github.com/tc39/proposal-compartments
https://github.com/tc39/proposal-ses
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md
https://github.com/Agoric/SES-shim/blob/master/packages/ses/docs/source/draft-standalone-spec.md
https://github.com/tc39/proposal-resizablearraybuffer

secma

Ecma International

Rue du Rhone 114

CH-1204 Geneva

Tel: +41 22 849 6000

Fax: +41 22 849 6001

Web: https://ecma-international.org/

Software license

All Software contained in this document (“Software”) is protected by copyright and is being made available under
the “BSD License”, included below. This Software may be subject to third party rights (rights from parties other
than Ecma International), including patent rights, and no licenses under such third party rights are granted under
this license even if the third party concerned is a member of Ecma International. SEE THE ECMA CODE OF
CONDUCT IN PATENT MATTERS AVAILABLE AT https://ecma-
international.org/memento/codeofconduct.htm FOR INFORMATION REGARDING THE LICENSING OF
PATENT CLAIMS THAT ARE REQUIRED TO IMPLEMENT ECMA INTERNATIONAL STANDARDS.

Redistribution and use in source and binary forms, with or without modification, are permitted provided that the
following conditions are met:

1. Redistributions of source code must retain the above copyright notice, this list of conditions and
the following disclaimer.

2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions
and the following disclaimer in the documentation and/or other materials provided with the
distribution.

3.  Neither the name of the authors nor Ecma International may be used to endorse or promote
products derived from this software without specific prior written permission.

THIS SOFTWARE IS PROVIDED BY THE ECMA INTERNATIONAL “AS IS” AND ANY EXPRESS OR IMPLIED
WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY
AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL ECMA
INTERNATIONAL BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR
CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE
GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
(INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.

180 © Ecma International 2025


https://ecma-international.org/
https://ecma-international.org/memento/codeofconduct.htm
https://ecma-international.org/memento/codeofconduct.htm




oecma

© Ecma International 2025



