ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-92

CONNECTIONLESS
INTERNETWORK PROTOCOL

March 1984




Free copies of this document are available from ECMA,
European Computer Manufacturers Association

114 Rue du Rhone — 1204 Geneva (Switzerland)




@

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STANDARD ECMA-92

CONNECTIONLESS
INTERNETWORK PROTOCOL

March 1984



e

0®

BRIEF HISTORY

This Standard ECMA-92 is one of a series of Standards for Open
Systems Interconnection,

Open Systems Interconnection Standards are intended to
facilitate homogeneous interconnection of heterogeneous
information processing systems.

The Standard is within the framework of the co-ordination of
Standards for Open Systems Interconnection which is defined by
IS0/7498. It is based on the practical experience of ECMA member
companies worldwide, and the results of their active
participation in the current work of IS0, the CCITT, IEEE and
national standards bodies in Furope and the USA. It represents a
pragmatic and widely based consensus.

Adopted by the General Assembly of ECMA as Standard ECMA-92 on
December 13,1983




TABLE OF CONTENTS

Page
1 GENERAL 2
1.1 Introduction 2
1.2 Scope 3
1.3 References 4
1.4 Definitions 4
l.4.1 Reference Model Definitions 4
1.4.2 Additional Definitions 5
1.5 Acronyms 6
1.5.1 Data Units 6
1.5.2 1Internetwork Protocol Data Unit 6
1.5.3 IPDU Fields 6
0‘ l1.5.4 Parameters A
1.5.5 Miscellaneous 6
2. PROTOCOL 8
2.1 Overview of the Protocol 8
2.1.1 Rationale 8
2.1.2 Internal Organization of the Network
Lavyer 8
2,1.3 Model of Interworking 9
2.1.4 Addressing 10
2.1.5 Service Provided by the Network Layer 10
2.1.6 Service Assumed from Subnetwork Service
Provider 11
2.2 Protocol Functions 12
2.2.1 IPDU Composition Function 12
2.1.2 1IPDU Decomposition Function 13
2.2.3 Header Format Analysis Function 13
O,x' 2.2.4 IPDU Lifetime Control Function 13
¢ 2.2.5 Routing and Forwarding Function 13
2.2.6 Segment IPDU Function 14
2.2.7 Reassemble IPDU Function 14
2.2.8 Discard IPDU Function 15
2.2.9 IPDU Error Detection Function 15
2.2.10 Optional Functions 16
2.3 Description of the Internetwork Protocol 16
2.4 Structure and Encoding of IPDUs 16
2.4.1 Structure 16
2.4.2 Network Layer Protocol Identification
Part 17
2.4.3 Fixed Part 18
2.4.4 Address Part 20
2.4.5 Segmentation Part 21
2.4.6 Options Part 21
2.4.7 Data Part 23
2.4.8 Data (DT) IPDU 23
2.4.9 Zero Length Header IPDU 25




= §4i -

Page

3. INTERCONNECTION OF LOCAL AREA NETWORKS 27
3.1 Introduction to Local Area Network

Requirements 27

3.2 Technical Description 27

33 IPDU Format 28

3.4 Format 29

3.4.1 Fixed Fields 29

3.4.2 Addresses 29

3.4.3 Segmentation and Options 29

3.4.4 Data 29

3.5 IPDU Lifetime Control 29

4, FORMAL DESCRIPTION OF THE PROTOCOL 31

4,1 Introduction 31

4.2 Values of the State Variables 31

4.3 Type and Constants Definition 32

4,4 Interface Definition 33

4.5 Formal Machine Description 34

APPENDIX A - ERROR RECOVERY FUNCTION 42

A.l INTRODUCTION 42

A.2 USE OF ERROR REPORTING FUNCTION 42

A.3 ERROR REPORT IPDU 43

A.3.1 Fixed Part 44

A.3.2 Addresses 44

A.3.3 Options 44

A.3.4 Reason for Discard 44

A.3.5 Error Report Data Field 44




0@

1 General

@




'@

l.

1.1

GENERAL

Introduction

The protocol defined in this Standard ECMA-92 is intended
as a common subnetwork-independent means to communicate
across separate heterogeneous subnetworks, in order to
provide a larger combined network with a homogeneous
connectionless service.

Though a connectionless global network service is still
under study within ISO, ECMA identified the need for the
standardization of a Connectionless Internetwork protocol
as it is a pragmatic approach to satisfy urgent needs for
LAN interconnection. For this approach the following
assumptions have been made:

- If several LAN are interconnected no subnetwork
enhancement function in sublayer 3b need to be
performed.

- If an 0OSI end system consists of several interconnected
(possibly via WAN) LAN, it is assumed that the quality
of transport service maintained by this end system is
high compared with the quality of service provided by
the network connection to and from this end system.

It is the intention of ECMA to continue its work with the
definition of a Connectionless Internetwork protocol as a
separate Standard.

The Internetwork protocol operates between the peer
entities of sublayer 3c of the Network Layer (reference
ECMA TR/13 and TR/14). It is closely related to the
Network service and is built upon the services provided by
subnetworks. The interrelationship of this Standard with
these services is depicted in Figure 1.

0OSI Network Service Definition

Internetwork J’]

Protocol

Specification __W\J

Assumes Subnetwork Services

Fig. 1 Interrelationship with Adjacent Services



Some examples of possible applications of the protocol
are:

- the interconnection of a number of LAN on a single site;
- the interconnection of LAN via a public network.

This Standard defines the Connectionless Internetwork
protocol using both the English language and a formal
description. The formal description is intended to clarify
and make explicit the English language description where
ambiguity might otherwise arise.

1.2 Scope
This Standard ECMA-92 specifies:

- procedures for the connectionless transmission of data
and control information from one internetwork entity to
a peer internetwork entity;

- the encoding of the internetwork protocol data units
used for the transmission of data and control
information;

— procedures for the correct interpretation of
internetwork protocol control information;

- the functional requirements for implementations claiming
conformance to the Standard.

The procedures are defined in terms of:

- the interactions among peer internetwork entities
through the exchange of internetwork protocol data
units;

- the interactions between an internetwork entity and a
network service user through the exchange of Network
Service Primitives; and

- the interactions between an internetwork entity and a
subnetwork dependent service provider through the
exchange of subnetwork dependent service primitives.

This Standard ECMA-92 specifies a Connectionless
Internetwork protocol. This protocol relies upon the
provision of a connectionless subnetwork service,

A specific need has been identified for a subset of the
Connectionless Internetwork protocol appropriate to simple
interconnection of Local Area Networks, either directly or
via a single Wide Area Network. This Standard includes the
specification of such a subset as a simplified form of the
protocol.



1.3 References

150/7498 Data Processing - Open Systems
Interconnection - Basic Reference Model

ECMA-72 Transport Protocol (June 1982)

ECMA TR/13 Network Layer Principles

ECMA TR/14 Local Area Networks - Layer 1 to 4
Architecture and Protocols

ECMA TR/20 Layers 4 to 1 addressing

150/97/14 N1347 A Formal Description Technique based on an
Extended State Transition Model

I150/97/6 N2613 1Internal Organization of the Network Layer

1S0/97/6 N2713 1Information Processing Systems - Data
Communications - Addendum to the Network
Service Definition Covering Connectionless
Data Transmission

1.4 Definitions

1.4.1 Reference Model Definitions

The following terms in this Standard ECMA-92 have the
definition given in ISO 7498:

1.4.1.1 Network-Entity

An active element within a Network-Subsystem.
l1.4.1.2 Network Layer

A subdivision of the 0SI architecture, constituted
by subsystems of the same rank.

l1.4.1.3 Network Protocol

A set of rules and formats (semantic and syntactic)
which determines the communication behaviour of
Network entities in the performance of Network
functions.

1.4.1.4 Network Protocol Data Unit

A unit of data specified in a network-protocol and
consisting of network-protocol- control-information
and possibly network-user-data.

1.4.1.5 Network Relay

A network-function by means of which a network
entity forwards data received from one correspondent
network-entity to another correspondent
network—-entity.

1.4.1.6 Network Service

A capability of the Network layer and the layers
beneath it, which is provided to transport entities
at the boundary bhetween the Network layer and the
Transport layer.



1.4.1.7 Network-Service—-Access-Point

The point at which network-services are provided by
a network-entity to a transport-entity.

1.4.1.8 Network-Service—-Access-Point-Address

An identifier which tells where a
network-service-access-point may be found.

1.4.1.9 Routing

A function within a layer which translates the title

of an entity or the service—access-point-address to

which the entity is attached into a path by which

the entity can be reached. M.

1.4.1.10 Sublayer
A subdivision of a layer.
1.4.1.11 Subnetwork

A set of one or more intermediate systems which
provide relaying and through which end systems may
establish network-connections.

1.4.2 Additional Definitions

For the purpose of this Standard, the following
definitions apply:

l.4.2.1 Automaton

A machine designed to follow automatically a
predetermined sequence of operations or to respond
to encoded instructions.

1.4.2.2 End System }
®

An Open System which contains all seven layer of the
Open Systems Interconnection archtecture.

1.4.2.3 Internetwork Protocol

A subnetwork Independent Convergence Protocol
comhined with relay and routing functions.

1.4.2.4 1Internetwork Protocol Data Unit

Data unit exchanged between entities implementing
this Standard.

1.4.2.5 1Internetwork Protocol Data Unit Segment

Data unit resulting from segmentation of an original
internetwork protocol data unit.

1.4.2.6 Subnetwork Service

The set of functions provided by a subnetwork.

1.4.2.7 Subnetwork Service Access Point

The point at which subnetwork services are provided
by a subnetwork entity.

—— e




9

- B =

1.5 Acronyms
1.5.1 Data Units

IPDU Internetwork Protocol Data Unit

NSDU Network Service Data Unit

SDSDU Subnetwork Dependent Service Data Unit
1.5.2 Internetwork Protocol Data Unit

DT IPDU Data Internetwork Protocol Data Unit
1.5.3 IPDU Fields

NLPI Network Layer Protocol Identification

LI Length Indicator

V/PE Version/Protocol Identifier Extension

LT Lifetime

SP Segmentation Permitted Flag

MS More Segments Flag

TP Type

SL Segment Length

DAL Destination Address Length

DA Destination Address

SAL Source Address Length

SA Source Address

DUID Data Unit Identifier

SO Segment Offset

TL Total Length
1.5.4 Parameters

DA Destination Address

SA Source Address

00s Quality of Service
1.5.5 Miscellaneous

SNICP Subnetwork Independent Convergence Protocol

SNDCP Subnetwork Dependent Convergence Protocol

SNAP Subnetwork Access Protocol

SN Subnetwork

IP Internetwork Protocol

IPCI Internetwork Protocol Control Information

NS Network Service

N Network




2 Protocol




2. PROTOCOL

2.1 Overview of the Protocol

2.1.1

Rationale

The Connectionless Internetwork protocol provides a
connectionless network service, as described in 2.1.5.
The basis for chosing either a connectionless or
connection-oriented network service is outside the
scope of this Standard; however, the following aspects
of the connectionless network service may be taken into
account:

- connectionless operation is highly tolerant of faults
occurring in the supporting subnetworks;

- connectionless operation is highly tolerant of faults
occurring in internetwork gateways and other network
layer components not comprising part of the
supporting subnetworks;

- connectionless operation may be appropriate when the
configuration of the total network is subject to
frequent or unpredictable change, as when using
dynamic routing techniques.

Internal Organization of the Network Layer

The architecture of the Network layer is described in a
separate document, ISO/TC97/SC6 N2613 (see 1.3), where
a target O0SI Network layer structure is defined, and a
structure to classify protocols as an aid to the
progression toward that target structure is presented.
The Internetwork protocol herein described is a
Subnetwork Independent Convergence protocol combined
with relay and routing functions designed to allow the
incorporation of existing network Standards within the
0SI framework.

A Subnetwork Independent Convergence protocol is one
which can be defined on a subnetwork independent basis
and which is necessary to support the uniform
appearance of the connectionless 0SI Network Service
over a set of interconnected heterogeneous subnetworks.
The Connectionless Internetwork protocol is defined in
such a subnetwork independent way so as to minimize
variability where subnetwork dependent and/or
subnetwork access protocols do not provide the 0SI
Network service.,

The subnetwork service required for the lower sublayers
by the Internetwork protocol is identified in 2.1.5.
This service may be provided either directly by a
subnetwork, or by a Subnetwork Dependent Convergence
protocol.




2.1.3 Model of Interworking

Two distinct types of models have been identified in
the internal organization of the Network layer as
necessary to represent the specifications needed in the
Network layer. This document employs the protocol model
therein described.

2.1.3.1 Protocol Model

A protocol is any set of rules by which the
interaction of two or more entities is governed.
such rules include the association of specific
meaning with lower layer service primitives and
parameters, and the establishment of a priori ‘y ﬂ'
agreements between cooperating peer entities. '
The operation of a protocol is modelled by exchanges
between pairs of entities, using a supporting
service, as illustrated below:
(o) {

. )=

é¢—— Protocol —»

SAP 1* SAP 2%

A~

I

Supporting Service

*) The same service is seen at SAP 1 as at SAP 2

Fig. 2 Operation of a Protocol

(
2.1.3.2 Application of the Protocol Model ' ’

As stated in IS0O/TC97/SC6 N2613 (see 1.3), the

general modelling for protocols described in the

internal organization of the Network layer may be

applied to the real world in whatever way is

indicated by the designer's choice of system

boundaries. An illustration of how the model applies

to the Internetwork protocol follows.

SNICP Internetwork Protocol Specification SNICP

'SNDCPl SNDCP?2

'SNAPl' 'SNAPZ
Data Link 1 Data Link 2

Fig. 3 Application of the Protocol Model

In this example, the specification of the Subnetwork

— B "




Independent Convergence protocol is combined with
the specification of relay and routing functions.
The format of the Subnetwork Independent Convergence
Protocol Data Unit transmitted by an intermediate
system is the same as that of the Subnetwork
Independent Convergence Protocol Data Unit it has
received.

2.1.4 Addressing

The Source address and the Destination address
parameters referred to in 2.4.4 are 0SI Network
Addresses. The precise nature and length of these
addresses are not defined in this Standard.

ﬂJ . 2.1.5 Service Provided by the Network Layer

The service provided by the protocol herein described
is a Connectionless Network service.

The Connectionless Network service is described in
document ISO/TC97/SCl6 N2713 (see 1.3). The network
service primitives provided are summarized in Table 1.

Primitives Parameters
N _UNITDATA Request NS Destination Address
Indication NS Source Address

NS Quality of Service
NS Userdata

Table 1 Network Service Primitives

y ’ It is not a requirement that a connectionless mode

service should support an unbounded NSDU size. This
Internetwork protocol supports a maximum length of
65535 octets for an NSDU. When the subset for LAN is
used, the maximum NSDU length is 1(24 octets less the
amount used for the IPDU header.

2.1.5.1 Network Quality of Service

Network quality of service refers to certain
characteristics of connectionless mode transmission
as observed between the service access points.
Quality of Service describes aspects of a
connectionless mode transmission which are
attributable solely to the Network Service Provider.
The quality of service parameters identified for the
network service are:

- transit delay

- protection against unauthorized access
- cost determinants

- maximum NSDU lifetime.




2.1.6 Service Assumed from Subnetwork Service Provider

The subnetwork service required to support the
Connectionless Internetwork protocol is defined as
comprising the primitives defined in Table 2.

Primitives Parameters
SN _UNITDATA Request SN Destination_ Address
Indication SN Source Address

SN Quality of Service
SN Userdata

Table 2 Subnetwork Service Primitives

2.1.6,1 Subnetwork Addresses

The Source and Destination addresses specify the
subnetwork service access points involved in the
transmission.,

The precise nature and exact length of subnetwork
addresses are not defined in this Standard.

2.1.6.2 Subnetwork Quality of Service

Subnetwork quality of service describes aspects of a
subnetwork connectionless mode service which are
attributable solely to the subnetwork service
provider.

Associated with each subnetwork connectionless mode
transmission, certain measures of quality of service
are agreed upon when the primitive action is
initiated. The requested measures (or parameter ‘, ,
values and options) are based on an a priori
knowledge by the Network service provider of the
service(s) made available to it by the subnetwork.
Knowledge of the nature and type of service
available is typically obtained through some
implementation-specific primitive action prior to
any invocation of the subnetwork connectionless mode
service,

The quality of service parameters identified for the
subnetwork connectionless mode service are:

- transit delay

- protection against unauthorized access
- cost determinants

2.1.6.,3 Subnetwork User Data

The Subnetwork User Data (SN _Userdata) is an ordered
multiple of octets, and is transferred transparently
between the specified subnetwork service access
points.

e e .. e




The Subnetwork service is required to support a
subnetwork service data unit size of at least the
size of the IPDU header plus one octet of

NS Userdata. When the subset for LAN is in use, the
Subnetwork service is required to support an SNSDU
size of at least 1M24 octets.

2.1.6.4 Subnetwork Dependent Convergence Functions

Subnetwork Dependent Convergence functions may be
performed to provide connectionless Subnetwork
service in the case where subnetworks provide a
connection-oriented service. If a subnetwork
provides the connection-oriented service, some
subnetwork dependent function is assumed to provide
a mapping into the required subnetwork service
described in the preceding text.

A Subnetwork Dependent Convergence protocol may also
be employed in those cases where functions assumed
from the Subnetwork service provider are not
provided.

2.2 Protocol Functions

This section serves for explanation of the protocol
functions only. It does, however, not impose any rule or
restrictions on protocol implementations,

The functions described in the following subsections are
supplied by this Internetwork protocol.

2.2.1 IPDU Composition Function

This function is responsible for the construction of an
IPDU according to the rules of protocol given in 2.4.

Protocol Control Information required for delivering
the data unit to its destination is determined from
current state information and from the parameters
provided with the N UNITDATA Request; e.g. Source and
Destination addresses, Q0S, etc. User data passed from
the Network service user in the N UNITDATA Request form
the Data Field of the IPDU. B

During the composition of the IPDU, a Data Unit
Identifier is assigned to uniquely identify all
segments (there may be only one) of NS Userdata from a
particular service data unit. This identifier may be
also used for ancillary functions such as error
reporting. The "Reassemble IPDU" function judges
segments to belong to the same original SDU, hence
IPDU, if they have the same Source and Destination
addresses and Data Unit Identifier. The originator of
the IPDU must choose the Data Unit Identifier so that
it remains unique for this Source/Destination address
pair and protocol for the maximum lifetime of the IPDU,
or any segment thereof, in the network.




IPDU Decomposition Function

This function is responsible for stripping off the
Internetwork Protocol Control Information from the
IPDU., During this process, information pertinent to the
generation of the N UNITDATA Indication is retained.
The data field of the IPDU received is reserved until
all segments of the original service data unit have
been received; this is the NS Userdata Parameter of the
N _UNITDATA Indication.

Header Format Analysis Function

This function determines which Internetwork protocol
Data Unit Header Format is employed. If the IPDU has a
non-zero length IPDU header, then this function
determines whether an IPDU received has reached its
destination using the Destination address provided in
the IPDU. If the Destination address provided in the
IPDU is the same as the one which addresses a transport
entity served by this network entity, then the IPDU has
reached its destination; if not, it must be forwarded.
If the IPDU has a zero length IPDU header (see 2.4.9),
then the destination has bheen reached.

IPDU Lifetime Control Function

Closely associated with the header format analysis
function, this function determines whether an IPDU
received may be forwarded or whether its assigned
lifetime has expired, in which case it must be
discarded.

Routing and Forwarding Function

This function analyses the Destination NSAP address,
quality of service and/or other parameters and is able
to determine:

- whether this Destination address corresponds to the
local NSAP address so that the user data is
considered to have arrived at its destination;

- whether the destination domain ID corresponds to the
local subnetwork but the destination domain-dependent
ID does not correspond to a local NSAP, and then
determines the SNAP address that has to be offered to
the subnetwork to identify the end system to which
the IPDU has to bhe forwarded;

- the subnetwork that has to be chosen to access the
subsequent gateway to which an IPDU has to be
forwarded;

- the SNAP address that has to be offered to that
subnetwork so as to identify the subsequent gateway.

It has to update the header information of IPDUs to be

- L



forwarded.
NOTE 1

A routing management function is responsible for
controlling the operation of the Routing and Forwarding
functione

Segment IPDU Function

Segmentation is performed when the size of the
Internetwork Protocol Data Unit is greater than the
maximum size of the user data parameter field of the
subnetwork service primitive.

Segmentation consists of composing two or more new
IPDUs from the IPDU received. The IPCI required to
identify, route and forward an IPDU is duplicated. The
user data encapsulated within the IPDU received is
divided in such a way that the new IPDUs satisfy the
size requirements of the user data parameter field of
the subnetwork service primitive.

IPDU segments are identified as being from the same
original IPDU by means of

- the Source address;
- the Destination address;
- the data unit identifier.

A segment field offset field identifies where (i.e.
which octet) in the data field of the original IPDU the
segment begins. A Segment Length field specifies the
length in octets of the IPDU segment. A More Segments
flag is set to ONE if this segment is not the last
segment, and is set to ZERO if this segment is the last
one, A Total Length field specifies the entire length
of the IPDU (before segmentation) including both header
and data, if present. IPDU segments may be further
segmented without constraining the routing of the
individual segments.

A Segmentation Permitted flag is set to ONE to indicate
that segmentation is permitted. If the original IPDU is
not to be segmented at any (further) point during its
lifetime in the network, the flag is set to ZERO. When
the Segmentation Permitted flag is set to ZERO, the
Segment Length specifies the entire length of the IPDU
segment, including both header and data, if present.

Reassemble IPDU Function

Reassembly of the IPDU must be performed prior to the
IPDU Decomposition function (see 2.2.2).

Reassembly consists of reconstructing the original IPDU
transmitted by the destination internetwork entity from




the segment(s) generated during the lifetime of the
original data unit.

NOTE 2

Internetwork segmentation based solely on knowledge of
maximum SDU sizes of adjacent subnetworks requires that
the IPDU be reassembled at the destination. Other
segmentation schemes which:

- interact with the routing algorithm to favour path on
which fewer segments are generated;

- generate more segments than absolutely required in
order to avoid additional segmentation at some
subsequent point; or

- allow partial/full reassembly at some point along the
route where it is known that the subnetwork with the
smallest IPDU size has transited;

are not precluded. The information necessary to enable

the use of one of these alternative strategies may be

made available through the operation of an Internetwork

Management Function. The exact nature of this

management function is for further study.

Discard IPDU Function

This function performs all of the actions necessary to
free the resources reserved by the network-entity in
any of the following situations (note that the list is
not exhaustive) :

an IPDU is received whose header cannot be analyzed;
- an IPDU is received whose lifetime has expired;

- segment(s) of an IPDU are being held at a reassembly
point, and the reassembly lifetime assigned to that
IPDU expires;

- an IPDU is received which cannot be segmented and
cannot be forwarded because its length exceeds the
maximum subnetwork service data unit size;

- an IPDU is discarded for the purpose of relieving
congestion,

NOTE 3

With respect to the last item, a requirement has been
identified for a congestion control function. The
mechanism for providing this function are for further
study.

IPDU Error Detection Function

This function protects network entities against
possible failure or malfunction due to the processing
of erroneous information in the IPDU header.




2.2.10

A mechanism to provide this function is not specified
by this version of this Internetwork protocol. However,
the possibhle future need for this function is
recognized. To permit compatible use of a version of
this protocol including such a mechanism, a two octet
field is included in the IPDU header, with the
designation: "Reserved for IPDU Header Error Detection
Function".

Optional Functions

Optional functions are functions that may or may not be
supported by an individual comforming implementation of
the Internetwork protocol. Optional functions will
comprise the Options part of the IPDU header.

No options are defined in this version of the Standard.

2.3 Description of the Internetwork Protocol

This section explains only the protocol functions and does
not impose any rules or restrictions on protocol
implementations.

The interrelationship of some of the Internetwork protocol
functions described in 2.2 can be represented as in
Fig. 4.
TRANSPORT LAYER
COMPOSITION DECOMPOSITION
*
REASSEMBLE
, K. 2
HEADER FORMAT ANALYSES
—%
LIFETIME
3
ROUTE IPDU
L n
SEGMENT IPDU DISCARD IPDU
& )
FORWARD IPDU

Fig.4 Subnetwork Dependent Service

2.4 Structure and Encoding of IPDUs

2.4.1

Structure

All the Internetwork Protocol Data Units (IPDUs) shall
contain an integral number of octets. The octets in an
IPDU are numbered starting from one and increasing in
the order in which they are put into an SNSDU. The bits
in an octet are numbered from 1 to 8, where bit 1 has




the least significant value.

When consecutive octets are used to represent a binary
number, the octet with the lowest number has the least

significant value.

When the encoding of an IPDU is represented using a

diagram in this section, the octets are shown with bit

8 to the left and bit 1 to the right of the diagram.
IPDUs shall contain, in the following order:

- the Header, comprising:

¢

- the Network Layer Protocol Identification part;

- the fixed part;
- the address part;
- the segmentation part, if present;
- the options part, if present;
and

- the Data Field, if present.

This structure is illustrated in Fig. 5.

Part Described in
Network Layer Protocol Ident. Part 2.4.2
Fixed Part 2.4.3
Address Part 2.4.4
Segmentation Part 2.4.5
Options Part 2.4.6
Data 2.4.7

Fig. 5 IPDU Structure

Network Layer Protocol Identification Part

This part contains information which allows the
Connectionless Internetwork protocol to be
distinguished uniquely from other protocols used in
Network layer of 0SI. It is illustrated in Fig. 6.

bit 8 bit 1 Octet

Network Layer Protocol Ident. 1

Fig. 6 IPDU Header - Network Layer Protocol Ident.

the

Part

L



2.4.2.1

Network Layer Protocol Identification

The value of this field is binary 16460 ¢0@#l. This is
the value assigned by ISO to identify the
Connectionless Internetwork protocol.

2.4.,3 Fixed Part

2.4.3.1

2.4.3.2

2.4.3.3

2.4.3.4

General

The fixed part contains' frequently occurring
parameters including the code of the IPDU. The
length and the structure of the fixed part are
defined by the IPDU code.

The fixed part is illustrated in Fig. 7.

bit 8 bit 1 Octet
Length Indicator 1
Version/Protocol 1ID 2
Lifetime 3
SP | MS Type 4
Segment Length 2
Reserved for use by IPDU 7
Header Frror Detection Function 8

Fig. 7 IPDU Header - Fixed Part
Length Indicator

This field is contained in the first octet of all
IPDUs. The length is indicated by a binary number,
with a maximum value of 254 (1111 111@). The length
indicated is the header length in octets, including
parameters, but excluding the length indicator field
and user data, if any. The value 255 (1111 1111) is
reserved for possible extensions,

Version/Protocol ID Extension

The value of this field is binary @@0@ 0001. This
field identifies version 1 of this Internetwork
protocol.

IPDU Lifetime

The Lifetime field is encoded as a binary number
that limits the time that the IPDU may remain in the
network. The original value of this field is
established by the source network entity. The




2.4.3.5

Lifetime field is decremented by each of the
network-entities which subsequently process the IPDU
according to the methods identified below. If the
Lifetime field reaches a value of ZERO before the
IPDU is delivered to the destination network-entity,
the IPDU will be discarded.

Network—entities processing an IPDU shall always
decrement the Lifetime field by at least one. They
should decrement the Lifetime field by more than one
if the sum of the transit delay in the subnetwork
from which the IPDU was received and the delay
within the system processing the IPDU exceeds or is
estimated to exceed 500 ms.

Under these circumstances the Lifetime field should
be decremented by one for each additional 50@ ms of
delay. While the determination of delay need not to
be precise,it is recognized that overestimates are
preferable to underestimates, since underestimates
could defeat the purpose of maintaining a Lifetime
field.

Segmentation Permitted and More Segments Flags

The Segmentation Permitted (SP) flag determines
whether segmentation is permitted. A value of ONE
indicates that segmentation is permitted, a value of
ZERO indicates that it is not.

When the Segmentation Permitted flag is set to ONE,
the More Segments (MS) flag indicates whether the
data unit identified by the Data Unit Identifier
field in the segmentation part of the IPDU header
has been segmented. When the More Segments flag is
set to ONE, then the Segment Offset field in the
segmentation part of the IPDU header indicates where
in the data field of the original TIPDU this segment
begins.

When the More Segments flag is set to ZERO, and the
Segmentation Permitted flag is set to ONE, then this
is the last segment of the original IPDU, and the
Segment Offset field again indicates where in the
data field of the original IPDU this final segment
begins.

When the Segmentation Permitted flag is set to ZERO,
the More Segments flag shall also be set to 7ERO.

When the Segmentation Permitted flag is set to ZERO,
the segmentation part of the IPDU header is not
present.




2.4.3.6 Type Code

The type Code field identifies the type of the
protocol data unit. The allowed value is given in
Table 3.

DT | DATA 111100

Table 3 Valid IPDU Type

2.4.3.7 1IPDU Segment Length

The Segment Length field specifies the entire length
of the IPDU segment including both header and data,
if present.

This field contains a binary number, with octets
ordered as described in 2.3

For unsegmented IPNUs it should be noted that the
value of this field is identical to the value of the
Total Length field located in the Segmentation Part
of the header, if present.

2.4.3.8 Octets 7 and 8

These octets are reserved for future definition of
an IPDU Header Error Detection Mechanism.

Address Part

Address parameters are distinguished by their location,
immediately following the fixed part of the IPDU
header. The address format is illustrated in Fig. 8.

bit 8 bit 1 Octet
Destination Address Length Indicator 9
. ; 10
Destination Address

m-1

Source Address Length Indicator m
Source Address i

n-1

Fig, 8 IPDU Header - Address Part

The Destination and Source Address are network service
access point addresses as defined in ECMA-TR/20 (see
1.3). The Destination Address Length Indicator field is
a binary number which specifies the length of the
Destination Address in number of octets. The
Destination Address field follows the Destination
Address Length Indicator field.




The Source Address Length Indicator field is a binary
number which specifies the length of the Source Address
in number of octets. The Source Address Length
Indicator field follows the Destination Address field.
The Source Address field follows the Source Address
Length Indicator field.

Segmentation Part

If the Segmentation Permitted flag in the Fixed Part of
the IPDU header (octet 4, bit 8) is set to ONE, the
segmentation part of the header illustrated below shall
be present.

bit 8 bit 1 Octet

n

Data Unit Identifier
n+1

n+2

Segment Offset n+3

n+4

Total Length N+ 5

Fig. 9 Segmentation Part

2.4.,5.1 Data Unit Identifier

The Data Unit Identifier identifies to which data
unit a segment bhelongs so that a segmented data unit
may be correctly reassembled by the destination
network-entity.

Values are serially assigned and may wrap around.
The Data Unit Identifier is a binary number whose
size is two octets,

2.4,5.2 Segment Offset

For each segment the Segment Offset field specifies
the relative position of the segment in the
original, complete data unit with respect to the
start of the data field. The offset is measured in
octets., The offset of the first segment is zero. The
Segment Offset is a binary number.

2.,4,5.3 1IPDU Total Length

The Total Length field is a binary number which
specifies the entire length of the IPDU header and
data, if present.

Options Part

The options part is used to define optional parameters.
If the option part is present, it shall contain one or




more parameters. The number of parameters that may be
contained in the option part is indicated by the length
of the option part which is: Length Indicator - (length
of fixed part + length of address part + length of
segmentation part).

Each parameter contained within the options part of the
IPDU header is encoded as described in Figure 10.

bit 8 bit 1 Octet
Parameter Code n
. Parameter Length (m) n+3
n+2

Parameter Value A4 24T

Fig. 1@ Encoding of Parameters

The Parameter Code field is coded in binary and,
without extensions, provides a maximum number of 255
different parameters. However, as noted below, bits 8
and 7 cannot take every possible values, so the
practical maximum number of different parameters is
less than 255. A Parameter Code of all ONE (1111 1111)
is reserved for possible extensions of the Parameter
Code.

The Parameter Length field indicates the length, in

. octets, of the parameter value field. The length is
indicated by a binary number "m", with a maximum
theoretical value of 255. The practical maximum value
of m is lower. For example, in the case of a single |
parameter contained within the variable part, two |
octets are required for the Parameter Code and the
Parameter Length indication itself. Thus the value of
"m" is limited to: 253 - (length of fixed part + length
of address part + length of segmentation part). For
larger fixed parts of the header and for each
succeeding parameter the maximum value of "m"
decreases.

The parameter value field contains the value of the
parameter identified in the Parameter Code field.

No Parameter Codes shall use bits 8 and 7 with the
value ZERO.

Implementations shall accept the parameters defined in

the options part in any order, providing that they are

processed according to their grouping. If any parameter
is duplicated, then the later value will be used.

B




No optional parameters are defined in this version of
the Standard.

2.4.7 Data Part

The Data part of the IPDU is structured as an ordered
multiple of octets, which is identical to the same
ordered multiple of octets specified in the NS-Userdata

parameter of the N UNITDATA Request and Indication
primitives.

The data field is illustrated in Fig. 11.

hit 8 bit 1 Octet

Data il

Fig. 11 IPDU Data Field

2.4.8 Data (DT) IPDU

2.4.8.1 Structure

The DT IPDU shall have the structure defined in
Fig. 12.




bit 8 bit 1 Octet
Network Layer Protocol Ident. 1
Length Indicator 2
Version/Protocol ID 3
Lifetime 4
SP MS Type 5
6
Segment Length 7
Reserved for use by IPDU 8
Header Error Detection Function 9
Destination Address Length Indicator 10
. . 11
Destination Address
m-1
Source Address Length Indicator m
Source Address kL
n-1
Data Unit Identifier n
n+1
n+2
Segment Offset n+3
n+4
Total Length n+5
Options ath
p
Data p+l
Z

Fig. 12 IPDU - Variable Length Header Format




2.4.8.2

2.4.8.3

2.4.8.4

2.408‘5

2.4.8.6

Network Layer Protocol Identification Part
See 2.,4.2

Fixed Part

- Length Indicator see 2.4,3.2
- Version/Protocol ID see 2.4.,3.3
- Lifetime see 2.4.,3.4
- SP, MS see 2.,4.3.5
- Type see 2.4.3.6
- Segment Length see 2,4.3.7
- IPDU Header Error Indicator Function see 2.4.3.8
Addresses

See 2.4.4

Options

See 2.4.6

Data

See 2.4.7

2.4.9 Zero Length Header IPDU

2.4.9.1

2.4.9.2

2.4.9.3

Structure

The structure of the zero length header IPDU shall
be as defined in Fig. 13:

bit 8 bit 1 Octet
Length Indicator 1
Data 2
n

Fig. 13 IPDU - Zero Length Header

Network Layer Identification Field

This field contains the value ZERO (0000 @3@A0B) . This
is the value assigned by ISO to distinguish the
Inactive Network layer protocol (i.e. the absence of
explicit Protocol Control Information for the
Network layer) from other Network layer protocols.,

Data Field

See 2.4.7. The NS Userdata parameter is constrained
to be less than or equal to the value of the
SN _Userdata parameter minus ONE,




- 26 -

3 Interconnection of LAN




3. INTERCONNECTION OF LOCAL AREA NETWORKS

3.1 Introduction to Local Area Network Requirements

Within the scope of this Standard there is an identified
need for a simplified Connectionless Internetwork
protocol, suitable for the interconnection of Local Area
Networks (LAN) either directly or by simple Wide Area
Network Connection. Examples of such interconnections are
illustrated in Figures 14 to 16.

L

B e 05
Fig. 14 Direct Interconnection of two LAN

0 ee .

TR T

Fig. 15 Interconnection of two LAN by Single WAN

FED T, 000 L,
< oo,
g o

'@
NS

D PP

Fig. 16 1Interconnection of Multiple LAN

3.2 Technical Description

For the applications described in 3.1, some assumptions
may be made concerning the available Subnetwork service,
which permit use of a subset of the Connectionless



Internetwork protocol and still provide a complete
connectionless network service.
In particular:

- a maximum SNSDU size is available which is large enough
to avoid the need for segmentation;

- a uniform subnetwork quality of service is available;

- the topology of the internetwork is simple enough not to
require complex routing decisions.

The subset of the Connectionless Internetwork protocol to
be used in this application does not use the following
functions described in 2.2 of this Standard:

- Segmentation and Reassembly (see 2.2.6 and 2.2.7);

— IPDU Header FError Detection (not included in this
Standard) ;

- IPDU Options.

IPDU Formg&

The format of the IPDU header in this case is as shown in
Fig. 17.

bit 8 bit 1 Octet
Network Layer Protocol Ident. 1
Length Indicator 2
Version/Protocol ID 3
Lifetime 4

SP | MS Type 5

6

IPDU Length 7

Reserved for use by IPDU 8

Header Error Detection Function 9
Destination Address Length Indicator 10
. . 11

Destination Address 29

Source Address Length Indicator 23
Source Address 24

35

Data 36

Z

Fig.17 IPDU - Fixed Length Header Format




Format

3.4.,)1 Fixed Fields

- Network Layer Prot. Id. set to decimal value 129

- Length Indicator set to decimal value 34
- Version/Protocol 1ID see 2.4.3.3
- Lifetime see 2.4.3.4. May he set

initially to 1111 111¢m
for this subset

- SP, MS SP= @, MS = 0
- Type 1111040
- Segment Length see 2.4.3.7
- IPDU Header Error
Detection function see 2.4.3.8. Shall be set

to ZERO for this subset

3.4.2 Addresses

- Destination Address

Length set to decimal value 12
- Source Address Length set to decimal value 12
See also 2.4.4

3.4.3 Segmentation and Options

The Segmentation and Options parts of the IPDU header
are not present in this DT IPDU variant.

3.4.4 Data

See 2.4.7. The NS Userdata parameter is constrained to
be less than or equal to the value of the SN Userdata
parameter, minus 33.

IPDU Lifetime Control

For the application described in 3.1, the likelihood of
excessive IPDU lifetime is greatly reduced. Therefore a
simpler lifetime control mechanism may be used. The IPDU
lifetime field of the IPDU must be decremented by ONE
whenever the IPDU is forwarded, hut the timer rule does
not need to be applied. The initial value of the field may
be set to 254 to avoid the need for the originator of the
IPDU to have any knowledge of network topology, subnetwork
transit delay and other relevant factors.



- 3¢ -

4 Formal Description of the Protocol




4., FORMAL DESCRIPTION OF THE PROTOCOL

4.1 Introduction

This section contains a formal description of the
Connectionless Internetwork protocol, modelled as a finite
state automaton, governed by a state variable with three
values. The behaviour of the automaton is defined with
respect to individual, independent IPDUs. This is a
consequence of the connectionless nature of the protocol.
The operation of the automaton is defined by the use of
the formal description techniques and notation specified
in IS0/TC97/5C16 N1347 (see 1.3). This technique is based
on an extended finite state transition model. It uses the
‘. Pascal programming language, with extensions to permit the
description of the extended finite state automaton.
This specification formally specifies an abstract machine
which provides the abstract connectionless network service
definition by use of the Connectionless Internetwork
protocol. It should be emphasized that this formal
specification does not in any way constrain the internal
operation or design of any actual implementation. For
example, it is not anticipated that the program segments
contained in the state transitions will actually appear as
part of an actual implementation. A formal protocol
specification is useful in that it does as far as possible
eliminate any degree of ambiquity or vagueness in the
specification of a protocol Standard.

4,2 Values of the State Variables

The Connectionless Internetwork protocol state variable
has three values:

" INITIAL The automaton is created in the INITIAL
state. No transition may bring the automaton
into the INITIAL state.

REASSEMBLING The automaton is in the REASSEMBLING state
for the period in which it is reassembling
IPDU segments into a complete IPDU.

CLOSED The final state of the automaton is the
CLOSED state. When the automaton enters the
CLOSED state it ceases to exist,




- 32 -

4,3 Type and Constants Definition

const
empty = a;
ZERO = a;
null = @;
CL_IP nlpi = 129;
type

NSAP addr_ type
NPAI addr_type
SN _addr_type

°
e e o g

°
e o o g

-
o o o 4

quality of service type = ...;
SN _QO0S_type

°
e o o g

data_type
buffer type

°
o o 0 j

W

°
o e o ¢

integer type
timer name type
timer data type
version_id type
boolean type
ipdu tp
options type
subnet 1d type
result type
error_type

oo.;

(lifetime timer);
..o;

(CL_IP version);
(FALSE, TRUE) ;
(DT) ;

°
e o o g

nuu

oo b

(FAILURE, SUCCESS);

(null,

DESTINATION UNREACHABLE,
DESTINATION UNKNOWN,

LIFETIME EXPIRED,

CONGESTION,

IPDU_HEADER ERROR,
SEG_NEEDED AND NOT_ PERMITTED,
PROTOCOL_ ERROR) ;

o

nsdu_type = record
da : NSAP addr type;
sa : NSAP addr_type;
qos : quality of service type;
data : data_ type; -

end;
ipdu_type = record
nlpi : integer type
hli : integer type;
vp_id : version_ id type;
lifetime : integer type;
sp : boolean_ type;
ms : hoolean type;

ipdu tp : ipdu tp type;
seg-len : integer type;
reserved : integer type;
da-len : integer type;




end;

da
sa_len
sa
du-id
SO

tot .len
options
data

sn_route type = record

end;

4,4 Interface Definition

subnet-id

sn_da
sn_sa
result
error

NPAI addr_type;
integer type;
NPAI addr type;
integer type;
integer type;
integer_ type;
integer type;
data_type;

subnet-id type;
SN_addr_type;
SN _addr_type;
result type;
error_type;

channel Network access point (User, Provider) ;

by User:

UNITDATA request

(NS Destination_address
NS Source-
NS_Quality_of_service

address

NS Userdata

by Provider:
UNITDATA indi

(NS_Destination—address
NS Source-
NS Quality of service

cation

address

NS Userdata

NSAP_ addr_type;
NSAP_addr_type;

quality of service type;
data_type); -

NSAP addr_type;

NSAP addr type;
quality of service_type;
data_type);

channel Subnetwork access point (User, Provider) ;

by User:

UNITDATA request

(SN_Destination-address
SN_Source—
SN Quality of service

address

SN_Userdata

by Provider:

UNITDATA_indication

(SN_Indication-address
SN_Source-
SN_Quality_of_service

address

SN _Userdata

SN_addr_type;
SN addr type;
SN QO0S_type;
ipdu_type);

SN _addr_type;
SN_addr_type;
SN_QOS_type;
ipdu_type) ;



channel system_access point (User, Provider);

by User:
TIMER request
(Time : integer type;
Name : timer_ name type;
Datum : timer data type);

TIMER_ cancel
(Name : timer_ name type);

by Provider:
TIMER indication
(Name : timer name type;
Datum : timer_data type);

4,5 Formal Machine Description

module IP _Machine

(N Network_access_point (Provider) common queue;

SN : Subnetwork access_point (User) common queue;

S ¢ System_access_point (User) individual queue;
var

nsdu nsdu_type;

ipdu : ipdu_ type;
rcv_buf : buffer type;

state : (INITIAL, REASSEMBLING, CLOSED) ;

initialize:
begin
state to INITIAL;
rcv_buf := empty;
end;

procedure send ipdu (ipdu : ipdu_type);

var
snr ¢ sn_route type;
max_data : integer type;
data_buf : buffer type;
more_seg : boolean type;
sn_qos : SN_QOS_type;

size to_ send integer type;
begin
snr := route (ipdu);

if (snr.result = SUCCESS) then
begin
max data := sn_data maxsize (snr.subnet_id)—ipdu.hli;

if (max_data =< ZERO then
release_ipdu (PROTOCOL ERROR, ipdu);




else if (max_data <size (ipdu.data)) and
(not ipdu.sp) then

release_ipdu (SEG_NEEDED_AND NOT PERMITTED,

ipdu) ;
else
begin
more seq := ipdu.ms;
data_buf := make_ buffer (ipdu.data);
repeat
begin
size to_send := select segment size (min (max data,
size buf (data buf)), ipdu);
ipdu.data = extract (data_buf, size_ to_send);
ipdu.seg len := ipdu.hli + size (ipdu.data);
if (size buf (data_buf) = ZERO) then
ipdu.ms := more_seg;
else
ipdu.ms := true;
sn_gos := get sn dgos (snr.subnet id);
out SN[snr.subnet id].UNITDATA request
(snr.snda, snr.snsa, sn_qgos, ipdu);
ipdu.so := 1ipdu.so + size to_send;
end;
until (size buff (data buf) = ZERO);
end;
end;

else if (ipdu.ipdu_tp = DT) then
begin
release ipdu (sn.error, ipdu) ;
end;

end;

procedure allocate reassembly resources
(ipdu_tot len : integer_type);
primitive;

function data unit complete
(buf : buffer type) : boolean_type;
primitive;

procedure decrement lifetime
(lifetime : integer_ type);
primitive;




function extract

(buf : buffer type;

amount : integer_type) : data_ type;
primitive;

function get_data unit identifier = integer_ type;
primitive;

function release ipdu

(error : error_type;

ipdu : ipdu_type) : data type;
primitive; -

function get header len

(da len : integer type;

sa_len : integer type;

sp : boolean type;

options : options type) : integer type;
primitive; o

function get lifetime

(da : NSAP_addr_type;

qos 2 quality_of_service_type : lifetime type;
primitive;

function get_local NPAI addr : NPAI_address_type;
primitive;

function get_local NPAI_addr len : integer type;
primitive;

function get NPAI

(addr : NSAP_addr_type) : NPAI addr type;
primitive;
function get NPAI len

(addr : NSAP_addr_type) : integer type;
primitive;

function get NSAP addr

(addr ¢ NPAI addr_type;

ler : integer_type) : NSAP_addr_ type;
primitive;

function get seg permitted

(da : NSAP_addr_type;

qos : quality of service type) : boolean type;
"primitive; T - -

function get sn qos
(subnet_id : subnet_id_type) : SN_QOS type;
primitive;

function get qos : quality of service type;
primitive;




function make_ buffer
(data : data_type) ; buffer_ type;
primitive;

procedure merge seg

(buf : buffer type;
so : integer type;
data : data_type);

primitive;

function min

(i : integer type;

j : integer type) : integer_type;
primitive;

function NPAI addr_local
(addr : NPAI addr_type) : boolean_type;
primitive;

function route

(da : NPAI_ addr_type;

datalen : integer type9; sn route type;
primitive; - - o

function select segment size
(max size : integer type); integer type;
ipdu : ipdu_type); integer type;

(/ This function determines the size of the segment to
be formed during IPDU segmentation. The maximum
applicable size is passed as a parameter. The
function may use additional information (such as
knowledge of the possible IPDU route) to select a
lower value, for example to optimise segmentation
throughout the network /)

function size
(data : data _type;) : integer_type;
primitive;

function size buf
(buf tbuffer type) : integer_type;
primitive;

function sn_data maxsize
(subnet id : subnet id type) : integer_type;
primitive;

tran from INITIAL to CLOSED
when N.UNITDATA request
provided not NSAP addr_ local (NS_Destination_Address)



—

begin
nsdu.da = NS5_Destination Address;
nsdu.sa = NS __Source Address,

nsdu.qos
nsdu.data

NS Quallty of Service;
NS Userdata;

uu

ipdu.nlpi CL_IP nlpi

ipdu.vp id = CL IP _versionl;

ipdu.lifetime := get lifetime (nsdu da, nsdu.qos) ;
ipdu.sp = get seg _permitted (nsdu.da, nsdu.qos);
ipdu.ms FALSE;

ipdu.ipdu.tp DT;

ipdu.da_len get NPAI len(nsdu.da);

o ouwu

ipdu.da get NPAI(nsdu da) ;

ipdu.sa_len = get NPAI len(nsdu.sa); ‘ ‘
ipdu.sa = get NPAI(nsdu sa) ; 4
ipdu.data = nsdu.data;

ipdu.hli = get header len(ipdu.da_len,

ipdu.sa len,
ipdu.sp,
ipdu.options) ;

ipdu.seg_len := ipdu.hli + size(ipdu.data)
if (ipdu.sp) then

begin
ipdu.du_id = get_data_unit_ identifier;
ipdu.so = ZERO
ipdu.tot len = ipdu.seg len
end;
send ipdu(ipdu); |

end;

tran from INITIAL to CLOSED ‘
when N.UNITDATA request
provided NSAP_addr_ local (NS_Destination Address)

begin
nsdu.da = NS_Destination Address;
nsdu.sa = NS Source Address
nsdu.qos = NS Quallty of Serv1ce

nsdu.data NS Userdata
out N.UNITDATA indication

(nsdu.da, nsdu.sa, nsdu.qos, nsdu.data);
end;

tran from INITIAL to CLOSED
when SN,UNITDATA indication
|
\

provided SN Userdata.ipdu _tp = DT and
NPAI _addr local (SN_Userdata.da) and
SN Userdata.so = ZERO and

not SN_Userdata.ms



- 39 -
begin
ipdu := SN Userdata;
out N.UNITDATA indication
(get NSAP addr (ipdu.da_len, ipdu.da),
get NSAP addr (ipdu.sa len, ipdu.sa),
get _qos (ipdu.options)’,
ipdu.data) ;
end;

tran from INITIAL to REASSEMBLING

when SN.UNITDATA indication

provided SN lUserdata.ipdu_tp = DT and
NPAI addr local (SN _Userdata.da) and
((SN_Userdata.so > ZERO) or (SN_Userdata.ms))

begin
ipdu := SN _Userdata;
allocate reassembly resources (ipdu.tot len);
merge_seq -
(rcv buf,
ipdu.so,
ipdu.data) ;

out S.TIMER request
(ipdu.lifetime,
lifetime_timer,
null) ;

end;

tran from INITIAL to CLOSED
when SN.UNITDATA indication
provided not NPAI addr_ local (SN _Userdata.da)

begin
ipdu := SN_Userdata;

decrement lifetime (ipdu.lifetime);

if (ipdu.lifetime > ZERO then
send ipdu (ipdu);

else

release ipdu (LIFETIME_EXPIRED, ipdu) ;
end;

tran from REASSEMBLING to REASSEMBLING

when SN.UNITDATA indication

provided SN Userdata.ipdu_tp
SN _Userdata.du_id’
SN Userdata.da.len
SN Userdata.sa

DT and
ipqu.du id and
ipdu.da_len and
ipdu.sa

nwononu



begin
merge seq
(rcv_buf,

SN _Userdata.so,
SN _Userdata.data) ;
end;

tran from REASSEMBLING to CLOSED
delay (#.0)
provided data_unit_complete (rcv_buf)

begin
out N.UNITDATA indication
(get NSAP_addr (ipdu.da len, ipdu.da),
get NSAP addr (ipdu.sa_ len, ipdu.sa), .
get dos,
extract (rcv_buf, size buf (rcv buf)));

out S.TIMER cancel (lifetime timer);
end;

tran from REASSEMBLING to CLOSED
when S.TIMER indication

begin
release_ipdu (LIFETIME EXPIRED, ipdu);
end;




- 41 -

APPENDIX A




APPENDIX A

ERROR RECOVERY FUNCTION

INTRODUCTION

A possible need has been identified for an Error Reporting
Function. The exact need, nature and use of such a function
remains under study. Nevertheless, in order to allow interim
use of such a function this Appendix defines an IPDU format
and the circumstances in which it may be used.

NOTE

It is likely that future versions of this Standard will
contain, within the body of the Standard, a description of a
mechanism for an Error Reporting Function. It is likely that
this will be incompatible with the mechanism described in
this Appendix.

This Appendix does not form part of the Standard.
USE OF ERROR REPORTING FUNCTION

This function may return an Error IPDU to the source network
entity whenever an IPDU is discarded. The situations in
which an IPDU may be discarded, and an Error IPDU may be
issued, are as follows:

- the lifetime of an IPDU has expired;

- the destination is unreachable;

- the operation of congestion control requires that the IPDU
be discarded;

- an unsupported or unrecognized option appears in the IPDU;

- the IPDU Header Error Detection function has detected an
error;

- a violation of protocol procedure has occurred.

The Error IPDU identifies the discarded data unit, specifies
the type of error detected, and gives the location where the
error was detected. Part or all of the discarded data unit
may be included as part of the error report data field.
Error reports are not necessarily generated in all of the
cases described above, by all network entities. Error
reports are not sent to report the loss of an Error IPDU.
Non receipt of an Error IPDU does not imply correct delivery
of a Data IPDU.

This Appendix does not describe the procedure to be followed
by a network entity upon receipt of an Error IPDU.




A.3 ERROR REPORT IPDU

bit 8 bit 1 Octet
Network Layer Protocol Id. 1
Length Indicator 2
Version/Protocol ID 3
Lifetime 4

SP MS Type 5
Segment Length g
Reserved for use by IPDU 8
Header Error Detection Function 9
Destination Address Length Indicator 10
Destination Address ;El
Source Address Length Indicator m

Source Address m 1

n-1

Data Unit Identifier n

n+1

n+2

Segment Offset n+3

n+4

Total Length n+5

Options h+6

P

Error Report Data Field. p;l

Figure A.l1 Error Report IPDU



- 44 -
Fixed Fields

- Network Layer Protocol Id. see 2.4.2.1
- Length Indicator see 2.4.3.2
- Version/Protocol ID see 2.4.3.3
- Lifetime see 2.4.3.4
- SP, MS see 2.4.3.5
- Type see 2.4.3.6
- Segment Length see 2.4.3.7
— IPDU Error Detection Function see 2.4.3.8

Addresses

See 2.4.4. The Destination Address specifies the original
source of the IPDU discarded. The Source Address
specifies the intermediate system or end system network
Entity initiating the Error Report IPDU.

Options

See 2.4.5

Reason for Discard

This paramater is only valid for the Error Report IPDU.
It provides a report on the discarded IPDU.

- Parameter code ¢ 11a0 apel

- Parameter length : one octet

- Parameter value : the following values, in binary,
specify the type of error:

1l: incorrect source routing or
Destination Address unreachable;

2: IPDU Header Error detection

3: subject IPDU discarded due to
lifetime expiration;

4: subject IPDU discarded due to
presence of unsupported options;

5: subject IPDU discarded due to
congestion;

5: any other protocol procedure
violation.

Error Report Data Field

This field provides all or a portion of the discarded
IPDU. The octets comprising this field contain the
rejected or discarded IPDU up to and including the octet
which caused the rejection/discard.







