ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

| REMOTE DATABASE
® ACCESS SERVICE AND PROTOCOL

TR/30

Free copies of this document are available from ECMA,
European Computer Manufacturers Association

114 Rue du Rhéne — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

REMOTE DATABASE
ACCESS SERVICE AND PROTOCOL

TR/30

December 1985

Brief History

Work on an ISO Reference Model for Open Systems Interconnection started
in 1977 with the formation of ISO/TC97/SC16 and the development of a
Reference Model, now ISO TA498.

In ECMA, specifications have been developed for a series of standards
addressing various levels of the ISO model. Work on the Remote Data
Access Service and Protocol specification started in 1983 and was
preceded by ECMA standards for Transport Protocol (ECMA-72), Session
Protocol (ECMA-75), Presentation Protocols (ECMA-84 and ECMA-86) and
Virtual File Protocol (ECMA-85),

This ECMA Technical Report is one of a set of specifications for Open
Systems Interconnection, many of which are ECMA Standards. These
standards are intended to facilitate homogeneous interworking between
heterogeneous information processing systems. This specification is
within the framework for the coordination of standards for Open Systems
Interconnection which is defined in ISO 7498,

This specification is based on the practical experience of ECMA member
companies world-wide, and on the results of their active participation
in the current work of ISO and national standardization bodies in Europe
and the USA. It represents a pragmatic and widely based consensus.

A particular emphasis of this specificationis to specify the homogeneous
externally visible and verifiable characteristics needed for
interconnection compatibility, while avoiding unnecessary constraints
upon and changes to the heterogeneous internal design and implementation
of the information processing systems to be implemented.

In the interest of rapid and effective standardization this
specification is oriented towards well understood needs and is
consistent with emerging database standards being created by ANSI X3H2,
and being progressed by ISO TC97 SC21. It is intended to be capable of
modular extension to cover future needs and to exploit developments in
technology .

The principal characteristics of this Service and Protocol are that:

- it offers efficient remote access to databases,

- it supports a distributed database system.

This specification provides a general framework for remote access to

databases of many types, with specific encodings for access using the

Relational Model.

The report was adopted by the General Assembly of ECMA as ECMA/TR30 on
December 12th 1985,

TABLE OF CONTENTS

Page
GENERAL 1
1.1 Scope 2
1.2 References 2
1.3 General Description 2
1.3.1 DBMS Schema Facilities 3
1.3.2 Data Manipulation Facilities 3
1.5.3 DBMS Recovery Facilities 4
1.3.4 RDA Facilities 4
1.3.5 Underlying Presentation Service Facilities 4
1.4 Definitions 5
1.5 Acronyms S
DATABASE CONCEPTS 6
2.1 Introduction 7
2.2 The Database and Distributed Database Models 7
2.2.1 General Principles 7
2.2.2 Remote Access to a Database 8

2.2.3 A Distributed Database or Multi-database System 9

2.3 Distributed Database Attributes 10
2.3.1 Data Types 10
2.3.2 Columns 11
2.3.3 Rows and Tables 11
2.3.4 Integrity Constraints 12
2.3.5 Authorisation Identifiers 12
2.3.6 Privilege Descriptors 12

2.4 Activity Attributes 13
2.4.1 Association Attributes 13
2.4.2 Data Manipulation Attributes 13

2.5 Data Transfer Formats 14

SERVICE 16

3.1 Service Overview 1.7
3.1.1 Roles of Partners 17
5.1.2 Dynamic Structuring of an RDA Connection 17
3.1.3 Connection Services 19
3.1.4 Subschema Management Services 20
3.1.5 Data Manipulation Definition Services 20
3.1.6 Transactions 20
5.1.7 Data Manipulation Functions 21
3.1.8 Bulk Data Transfer 21

3.2 Service Definition 22
3.2.1 List of Services 22
3.2.2 Notation 24

3.3 Connection Management 24
5.3.1 Service Definition 24
3.3.2 The R-CONNECT Service Element 24

TABLE OF CONTENTS (cont'd)

3.3%.% The R-DISCONNECT Service Element
3.3.4 The R-ABORT Service Element
%2.%.5 The R-RELEASE Service Element
2.%.6 The R-RECONNECT Service Element

2.4 Transaction Management

Service Specification

The R-START-TRANSACTION Service Element
The R-SECURE Service Element

The COMMIT Service Element

The R-SECURE-AND-COMMIT Service Element
The R-ROLLBACK Service Element

The R-ROLLBACK-PLEASE Service Element

ing of Statements

w DN =

[INEOSEONNON NN R RN
o AP REPPE

w
o
()]
)
oA LUNRE T NOUus

rou

Service Definition

The R-BEGIN-GROUP Service Element

The R-END-GROUP Service Element

The R-DL-DO Service Element

DL SQL Statements

The R-STILL-PROCESSING Service Element

3.6 Bulk Data Transter

(SNSRI AR
Lo

The Service Description

The R-APPEND-TABLE Service Element
The R-READ-TABLE Service Element
The R-DATA Service Element

The R-END-TRANSFER Service Element
The R-END-READ Service Element
Restart during Bulk Transfer

The R-CHECK Service Element

The R-RESTART Service Element

.10 The R-CANCEL Service Element

2.7 Macro Declarations

3.7.1 The R-DEFINE-MACRO Service Element
3.7.2 The R-DROP-MACRO Service Element

THE RDA PROTOCOL
4.1 Protocol Overview

4.1.1 Roles of RDAP Entities
4.1.2 Descriptive Model
4.1.%3 Use of the Presentation Service

NN WU W W W
e NeXe X RerNeRe e e
OO ~NOUTHE WV

4.2 Protocol Description
4.3 Association Management
4.%3.1 The CON (Connect) Message
4.3.2 The CON-R (Connect Response) Message
4.%3.3 The REL Message
4.3%3.4 The REL-R Message

4.4 Data Definition and Manipulation Management

4.4.1 The MDF (Define Macro) Message
4.4.2 The MDF-R (Define Macro Response) Message

Page

26
21
Z{
28
29

51
32
32
33
53
34
34
34
35
35
55
%35
56
57
38

38
42
42
43
43
43
44
44
44
45

45

46
47

48
49

49
49
49

50
51

52
52
53
54

54

55
55

‘@

TABLE OF CONTENTS (cont'd)

The MDR (Drop Macro) Message

The MDR-R (Drop Macro Response) Message
The RDL (DL SQL Functions) Message

The RDL-R (RDL Response) Message

The SPR (Still Processing) Message

Transaction Management and Data Manipulation

AE A RS
AR s B
N R W

The STR (Start Transaction) Message

The STR-R (Start Transaction Response) Message
The SEC (Secure) Message

The SEC-R (Secure Response) Message

The SCM (Secure and Commit) Message

The SCM-R (Secure and Commit Response) Message
The COM (Commit) Message

The COM-R (Commit Response) Message

The RBK (Rollback) Message

.10 The RBK-R (Rollback Response) Message

.11 The RBP (Rollback Please) Message

Bulk Data Transfer

B i~ S S S
LUt ool an
OO~ A~ N -

4.6.1 The APT (Append Table) Message

4.6.2 The APT-R (Append Table Response) Message
4.6.3 The RDT (Read Table) Message

4.6.4 The RDT-R (Read Table Response) Message
4.6.5 The ERD (End Read) Message

4.6.6 The ETR (End Transfer) Message

4.6.7 The ETR-R (End Transfer Response) Message
4.6.8 The DAT (Data) Message

4.6.9 The CHK (Check) Message

4.6.10 The CHK-R (Check Response) Message

4.6.11 The CAN (Cancel) Message

4.6.12 The CAN-R (Cancel Response) Message
4.6.13 The RST (Restart) Message

4.6.14 The RST-R (Restart Response) Message
Grouping of RDAP Elements

4.7.1 The BGG (Begin Group) Message

4.7.2 The EGR (End Group) Message

4.7.3 The EGR-R (End Group Response) Message
Failure and Recovery within the RDA Service

.1 The DIS (Disconnect) Message

.2 The PAB (Presentation Abort) Message
The RCN (Reconnect) Message

.4 The RCN-R (Reconnect-Response) message
.5 Failure and Recovery States

B Sl S S S
[eeliiociio lNoolNoe]
[OF]

The Diagnostic Parameter
Presentation Service Mappings

4.10.1 RDAP Abstract Syntax for Messages
4.10.2 Abstract Syntax for RDAP Statements

APPENDICES
APPENDIX A

APPENDIX B
APPENDIX C
APPENDIX D
APPENDIX E
APPENDIX F

TABLE OF CONTENTS (cont'd)

BRIEF DESCRIPTION OF THE REFERENCE MODEL OF
OPEN SYSTEMS INTERCONNECTION

DATABASE LANGUAGE SQL - SYNTAX SUMMARY
NOTATION

THE ABSTRACT TRANSFER SYNTAX NOTATION
FORMAL DESCRIPTION

DIAGNOSTIC REASON CODES

Page

96
97

102
107
111
114
143

1'

GENERAL

162

1.3

SCOPE

This Technical Report ECMA-DB is a specification for a Remote Database
Access Service and Protocol. 1It:

- defines a database model (see Section 2);

- defines the operations on the database model as abstract
interactions between two users of the communications service, one
of which is acting on behalf of an application program whilst the
other is interfacing to a process that controls data transfers to
and from the database;

- defines the protocol to support the above service and its mapping
to the underlying presentation service;

This specification is targetted at database systems that support the
Relational Model. However, it is envisaged that other database
systems will support relational interfaces and that subsets or
supersets of the protocol may be used with other database systems.

The RDA Service and Protocol are for the Application Layer of Open
Systems Interconnection.
REFERENCES

ISO 7489 Data Processing - Open Systems Interconnection - Basic
Reference Model

ISO DP 8822 IPS - 0SI - Connection Oriented Presentation Service
Definition

Draft Proposed American National Standard - Database Language -
SQL

ISO DP 8824 IPS - 0SI - Specification of Abstract Syntax Notation
One (ASN.1).

ISO DP 8825 IPS - OSI - Basic Encoding Rules for Abstract Syntax
Notation One.

GENERAL DESCRIPTION

This Specification defines a communication protocol for the
interchange of control information and data between a database user,
the Client, and a database service provider, the Server.

The implementor at the Client end-system is required to provide
program interfaces to the RDA Service and to map this service
interface to the RDA Protocol.

1’3.

1.3.2

The implementor at the Server end system is required to provide a
database management system which also supports the RDA Protocol. For
definitional purposes (and to make use of the ANSI ¥3H2 Database
Language SQL specification) the Server is envisaged as comprising
three components:

- the Database Management System;
- the RDA communication facility;
- the Client/Server program.

The Client/Server program acts as an intermediary between the RDA
protocol machine and the DBMS, translating messages and data into
calls on the Database Control System.

The facilities that are the subject of this Specification may be
grouped into:

- DBMS schema facilities;

- DBMS data manipulation facilities;
- DBMS recovery facilities;

- RDA facilities.

The RDA protocol depends upon underlying OSI presentation, session,
and transport facilites.

1 DBMS Schema Facilities

These facilities consist of the Data Description subset and the
Macro Definition subset.

Whilst some form of schema definition is a logical necessity there
is no requirement to provide the facilities to users of the RDA
Service. Also, it would be possible to have macros defined using
some local interface instead of the RDA facility.

No facilities for manipulating the Schema or accessing its content
are defined in this version of the specification.

Data Manipulation Facilities

These facilities consist of the data manipulation statements:
DECLARE CURSOR, CREATE TEMPORARY TABLE, OPEN, CLOSE, FETCH, INSERT,
UPDATE, SELECT, TEST, INVOKE, DELETE. No subsetting of these
facilities is proposed, except for access control purposes.

L

1-3-3

1.3.4

1.3.5

DBMS Recovery Facilities

Four classes of recovery facilities are proposed:
- Class 0: No on-line recovery;
- Class 1: Minimum recovery;

- Class 2: One stage Commit and Rollback for transaction
back out;

- Class 3: Two stage Secure and Commit for distributed
processing.

The recovery facilities for distributed processing require an
extension to the DL SQL facilities. The current specification
supports Class 2 only.

RDA Facilities

The RDA facilities are structured at two levels. The first level
merely reflects the structuring of the DBMS capability. The second
level is concerned with the protocol and facilities for efficient
exploitation of the communication services.

The following facilities are mutually independent:

- Use of macros;

- Single Statements;

- Statement Grouping;

- Bulk Read facility;

- Bulk Write facility;
- Commitment Control.

Within the bulk transfer services there is the option of
checkpointing to enable transfers to be restarted at intermediate
points after a disruption of the transfer.

The same levels of commitment control apply as for DBMS recovery.

Underlying Presentation Service Facilities

Support of the Commitment Control facilities and of the Bulk
Transfer checkpointing facilities requires use of the ISO Session
Basic Synchronized Service with the Duplex Functional Unit.

Meaningful transfer of information requires agreement between the
Presentation Layer entities at each end-system of the encoding to
be used. Implementors will state which encodings are possible.

1.4

1.5

DEFINITIONS

Database terms are introduced in section 2.

Open Systems Interconnection terms are defined in Appendices A and C.
Terminology is consistent with International Standard 7598.

ACRONYMS

CCR Commitment, Concurrency and Recovery

DBCS Database Control System
DBMS Database Management System

DDBMS Distributed DBMS (.
DL SQL Database Language SQL .
IPS Information Processing Systems

PCI Protocol Control Information

0SI Open Systems Interconnection

RDA Remote Database Access

RDAP Remote Database Access Protocol

Many other acronyms are introduced within the document as
abbreviations for machines, states, and messages. The following
tables of these abbreviations may be referenced:

E.2 Protocol Machines
Table E/1 State Codes

Table E/2 Failure States
Table E/3 Message Suffices
Table E/4 Protocol Messages

DATABASE CONCEPTS

2.

2.1 INTRODUCTION

This section describes the characteristics of a database that are
assumed by the model and identifies specifically those characteristics
that are visible to remote users of the database. The Database
Management System (DBMS) consists of all the compilers, utilities and
database access software necessary to support the creation, management
and use of the database. The term Database Control System (DBCS)
specifically refers to the run-time component providing database
access and manipulation facilities to application programs.

This section is expository and does not form part of the RDA
Specification.

2.2 THE DATABASE AND DISTRIBUTED DATABASE MODELS

," 2.2.1 General Principles

A database is a co-ordinated body of data managed by a software
entity termed a Database Management System (DBMS). The DBMS
maintains the database in permanent storage. It controls and
facilitates the storage and retrieval of data in the database.

The logical structure of the database is defined by a database
description known as a Schema. This defines the names and
characteristics of all the data elements that may be stored, the
inter-relationships among data elements, and the constraints on the
values they may take. Details of the mapping of data to storage
and performance requirements are generally defined in the Internal
Schema or Storage Schema so that the logical capabilities that

are visible to programmers can be separated from the performance
concerns which are the responsibility of a data administrator.

Access to the database by application programs may be via a
procedural interface or by extensions to a programming language
which we can imagine being compiled into code that invokes the same

. procedural interface. Since different application programs require
access to different subsets of the database the data available at
the procedural interface for any single connection is defined in a
separate data definition, the Subschema or External Schema. The
procedural interface specification defines the data manipulation
functions available and their effects on the database.

Specifications of the data structure descriptions and the data
manipulation functions have been developed by ANSI X3H2. The
semantics of the functions described in this specification and
their effects upon the database are defined in the DL SQL
specifications, which will be the subject of an ISO Standard in
due course.

The current ANSI DL SQL does not include a Subschema definition
language. However, the Subschema required by this protocol may be

identical with the DL SQL schema so that there is no conflict.
Also, the Subschema invoked in RDA may be a relational database
description which an implementor has provided for non-relational
databases.

2.2.2 Remote Access to a Database

| client | | Server | | | DBCS [| Database |
| Process | | process | | | | | |
L |
|
| Remote | | Remote |
| Database | | Database I
| Access Protocol | | Access Protocol |
| Machine | | Machine |
| L
|
| Presentation I | Presentation |
| Entity | | Entity I

Fig. 1 - Structure of Remote Database Access Service

The Client process is the execution of an application program or
Query Language Processor that has a data processing job to do. The
RDA Protocol Machines are software components that handle the
communications on behalf of the Client process and the Server
process. At the database end the Server process is translating the
protocol messages into Data Manipulation Procedural Interface calls
and parameters and transmitting the results back using the
communications service provided by the RDA Protocol Machine.

Note that, when the client process is a query processor, the work
of analysing and executing the query is split between the front
end, possibly in a workstation, and the back end in the server.
The RDA provides independence between these components so that a
user may use the same front end to access several different
databases, and a single database may be shared by a population of
users with different workstations and styles of man machine
interface.

The diagram does not show the structure of the Client process.
However it is envisaged that the service interface on the Client
side will generally be driven by a component of a DBMS (or
Distributed DBMS) so that the user interface for remote access to
data is similar to the interface used for access to local data.

2.2.3 A Distributed Database or Multi-database System

A distributed database is a co-ordinated body of data that is
partitioned into separated databases, each managed by its own DBMS.
Co-ordination across the components is managed by a distributed
DBMS (DDBMS) which is itself distributed.

It is possible for a Client process (or application program) to
access the distributed database without being knowledgeable about
the location of the data elements. Figure 2 shows a Client process
calling a DDBMS component in its own end-system, which communicates
with peer entities (DDBMS components) in other end-systems via the
DDBMS connections,

| Client | / /
| Process | / 7
, | / /
) I DDBMS | | DDBMS-2 |
| I | I
[l
| Local | | Site-2 | 000 0
| DBCS | | DBCS |
| I
| Database | | Database |

| I | |
Fig. 2 - Distributed Database Scheme

Each connection between DDBMS components is a separate RDA Service
connection. The lower layer connections will handle many
transactions simultaneously, but the protocol defined in this
specification is concerned with the interaction between the site

with the Client process and one other site. Figure 3 shows the
structure of a single connection.

| Client |
| Process |
l | Subordinate | | DBCs I
| | Distributed | I
DDBMS		Database Process		
RDA I	RDA		Remote	
Protocol		Protocol I	Site	
Machine		Machine		Database

I l

| Presentation Service |

Fig. 3 - Distributed Database Single Connection

- -

-10 =

2.3 DISTRIBUTED DATABASE ATTRIBUTES

Each database has a database description (Schema) which describes the
structure of the database and the allowable data values. It also
contains authorization identifiers and privileges which constrain
users' access to data.

The database is identified within an open system by the name of the

application service and the database-name:

{database-name> ::= <database-service-name>
<local-database-name>

<database-service-name> ::= global name necessary to

establish connection to the
Database Server supporting the
remote database

{local-database-name> ::= name that must be passed to the
DDBMS to enable it to identify
the target database. The name
must be unique amongst the
database names known to the DDBMS.

The database terms used in this specification are defined hereafter.
They are wholly consistent with the ANSI X3H2 Database Language SQL.

2.3.1 Data Types
A data type is a set of representable values.,
A value is a null value or a non-null value.

The null value is a special value that is comparable with any value,
but is distinect from all non-null values.

A non-null value is a character string or a number. A character .
string and a number are not comparable values.

The relationship between database values and transferred values is
specified in 2.5.

2.3.1.1 Character Strings

A character string is a sequence of characters. The length of a
character string is the number of characters in the sequence.

All character strings are comparable.

9

11 -

2.3.1.2 Numbers

2.3.2

2.3.3

A number is either an exact numeric value or an approximate
numeric value. All numbers are comparable.

An exact numeric value has a precision and a scale. The
precision is a positive integer that determines the number of
significant decimal digits. A zero scale indicates that the
number is an integer. For scale N, the exact numeric value is
the integer value of the significant digits multiplied by 10 to
the power -=N.

An approximate numeric value consists of a mantissa and an
exponent. The mantissa is a single numeric value, and the
exponent is a signed integer that specifies the magnitude of the
mantissa. An approximate numeric value has a precision. The
precision is a positive integer that specifies the number of
significant digits in the mantissa.

Columns

A multi-set is an unordered collection of objects that are not
necessarily distinct.

A column is a multi-set of values that may vary over time. All the
values of the same column are of the same data type and are values
in the same table. A value of a column is the smallest unit of data
that can be selected from a table and the smallest unit of data that
can be updated.

A column has a description and an ordinality within a table. The
description of a column includes its data type, and an indication
of whether the column is constrained to contain only non-null
values. The description of a character string column specifies its
length attribute. The description of an approximate numeric column
specifies the precision of its numbers. The description of an

exact numeric column specifies the precision and scale of its
numbers,

Rows and Tables

A row is a non-empty sequence of values in a table. The row is the

smallest unit of data that can be inserted into a table and deleted
from a table,

A table is a multi-set of rows. Every row of the same table has
the same cardinality and contains a value of every column of that
table. The nth value in every row of a table is the value of the
nth column of that table.

A table has a description. The description includes a description
of each of its columms,

2.3.4

2.3.5

2.3.6

=12 =

A base table is a table that has a persistent storage representation
and description. The description of a base table includes its
name .

A derived table is an ephemeral table derived from one or more base
tables during the execution of a <statement>.

A viewed table is a derived table that has a persistent description.
The description of a viewed table includes its name.

A temporary table is a table whose storage representation and
description persists only for the duration of the association
between a Client and a Server. Temporary tables are not provided in
ANSI X3H2 DL SQL.

Integrity Constraints

Integrity constraints define the valid states of the database by
constraining the values that may be stored in the base tables of the
database. A constraint can be associated with a single base table
or with multiple base tables.

Integrity constraints are checked on execution of each statement
that attempts to change the database. If the base tables associated
with the integrity constraints do not satisfy the integrity

constraints, the statement has no effect and the SQLCODE parameter
is set to a negative value.

The ANSI DL SQL specification supports two types of constraint. A
UNIQUE constraint specifies that no two rows of a table are allowed
to have the same values for a specified column or colums. A NOT

NULL constraint specifies that a given column is not allowed to
have null values.

Authorisation Identifiers

An authorisation identifier is a string that designates a set of
privilege descriptors. An authorisation identifier 1is applicable to
the execution of every <statement>. For brevity, the term
nauthorisation ID" is used to refer to the applicable authorisation
identifier of a <statement>. The method of establishing the
authorisation ID is dependent on the implementation.

Privilege Descriptors

A privilege descriptor is a persistent object used by the
implementation to enforce constraints on operations. If the
operation specified in a <(statement> is a constrained operation, the
privilege(s) to perform that operation must be defined by the
privilege descriptors designated by the authorisation identifier.

For brevity, the phrase "applicable privileges" is used to refer to

the privileges defined by the privilege descriptors designated by
the authorisation identifier,

2.4 ACTIVITY ATTRIBUTES

A Client process must establish an association with a database Server
process before any manipulation functions can be carried out. The
state of this association can be described, in part, by a set of
activity attributes. These attributes may be classified as
association attributes and data manipulation attributes.

2.4.1 Association Attributes

These are attributes that are established on the first connection

within the association and remain constant until the connection
terminates.

2.4.1.1 1Identity of Initiator

This value is provided by the Client when the association is
established. It is used by the Server to determine the
Authorisation Identifier for the Client.

2.4,1.2 Account Code

This code identifies the account to which costs incurred on
behalf of the client are to be charged.

2.4.1.3 Authorisation Identifiers

These are values known to the database management system. Each
base table name and view name is associated with the

. authorisation identifier under which it was created. A Client
may access tables that have the same Authorisation Identifer.
For access to other tables the Client may need to use the
appropriate Authorisation Identifier in order to specify an
unambiguous reference. The attempted access will only be
successful if the access is subject to a privilege granted by an
authorised granter to his own Authorisation Identifier.

2.4,2 Data Manipulation Attributes

These are attributes that are created and deleted by the data
manipulation functions invoked through the protocol.

2.4.2.1 Temporary Tables

A temporary table is a table which is created by the <create
temporary table> statement. The values it contains are local to
the creating process and may be updated by the process with no
effect on other tables in the database. The cursor to a
temporary table remains positioned after a {commit statement>.
The table is deleted when the connection terminates.

2.,4,2,2 Cursor

A cursor is specified by a <declare cursor> statement. An open

cursor designates a table and a position relative to the rows of
that table.

2.4,2.3 Macros

A macro is a named sequence of data manipulation functions that
can be invoked by a single command. Macros may be permanent or
temporary. Temporary macros are a property of a given

association and cease to exist when the association terminates.

2.4.2.4 Transactions

A transaction is a logically complete unit of processing as
determined by the application process. Only one transaction may
be executed at any one time by a process, but the Server may be
processing many transactions concurrently on behalf of different
processes.

It is the Server's responsibility to guarantee transaction
serialisability. That is, whenever a set of transactions is
processed with overlapping existence times there must be some
sequence of the transactions that would give exactly the same
effect with no overlap between transactions. This specification
does not dictate the mechanism by which serialisability is to be
achieved.

2.5 DATA TRANSFER FORMATS

In this specification an abstract transfer syntax language, the ISO
Abstract Syntax Notation One (ASN.1), is used to define the data
content of messages exchanged between the Application Layer Entities.
ASN1 is compatible with CCITT Recommendation X.409.

There is an encoding of this Abstract Syntax which determines the
actual representation of data values. One encoding is defined in ISO
DP 8825 (see refs). Other encodings are possible, defining

=15 =

alternative representations. The choice of representation may be
negotiated between the communicating entities at connect time using
the facilities of the Presentation Layer. ASN.1 is used to define
both the Protocol Control Information and the user data.

In the RDA specifications the representation of data values is an
implementor choice, but it is constrained by the set of values to be
represented, which is defined in the DL SQL by the (data type) clause.

The data types that are specifiable in ASN.1 differ from the DL SQL
data types in one important respect. ASN.1 allows the definition of
Constructor types, which are named types whose values consist of
choices or aggregations of other values.,

The correspondence between the DL SQL types and the ASN.1 types is
defined in the following table.

DL SQL Type ASN.1 Type

CHARACTER [<length>] STRING

FIXED <precision> [<scale>] FIXED

NUMERIC <precision> [<scale>] FIXED

INTEGER INTEGER

FLOAT <precision> FLOAT precision base
REAL FLOAT precision base
DOUBLE PRECISION FLOAT precision base

Note that ASN.1 requires that precision and scale be stated
explicitly. However the representation as concrete syntax, the
encoding of actual data, carries the length and precision but not the
scale,

Floating point values will be encoded and sent with their
implementor-defined precision. It is possible that the value received

will not be identical with the value sent, but the difference between
the values will be within the limit of the specified precision,

L}
O
ot

!

3. SERVICE

=17

l 3.1 SERVICE OVERVIEW

This section provides an overview to the structure of a Remote Data
Access Service and defines the service elements provided. The purpose
of the facility is to enable a Client process to access and manipulate

data which is at a remote location under the control of a database
Server .,

3.1.1 Roles of Partners

an association with the Server. An association is a relationship
between the Client process and a responding Server process which
survives until it is terminated in an orderly fashion. In
particular it can survive interruptions in the underlying
communication service or in the remote database service.

Before any work can be carried out the Client process must establish I
|
|
i
|

(.\ . The communication service provides a connection between the Client
Y process and the Server process. This supports a real-time dialogue i
which is essentially driven by the Client process which sends data f
manipulation or data management requests to the Server process.
Hence the dialogue is asymmetrical.

However, there are phases within an RDA connection when data is [
being transferred in bulk. During these phases many data messages |
may be sent without individual acknowledgement. While bulk data
transfer is in progress, temporary leadership is assumed by the
sender of data, while the receiver acts as a slave, that is it can i
only accept data or report abnormal conditions. When bulk transfer
is complete, the roles revert to Client and Server.

In this specification the term Association is used to define the

relationship that exists between the Client and the Server from the

time when it is first established to the time when it is

terminated. An Association cannot be terminated without the

agreement of both parties. It therefore survives any interruptions t
‘ in the service however they may be caused. The term Connection is {

used to describe a live relationship that exists between the f

Client, the Server and the Communications Service. In the event of i

any sort of failure the connection is terminated and a new one must |

be established to continue with the Association. }

3.1.2 Dynamic Structuring of an RDA Connection

A single RDA connection supports the database functions of a single
Client process operating on one database. The Client process may
operate on other databases, either within the same system, or in
other end systems using other RDA connections. Also, other Client i
processes may operate on the same database concurrently using

different RDA connections., Over a single RDA connection, operations

on the database are executed in sequence in the order of submission.

=18 =

The work performed on the database over an RDA connection can be
modelled as a set of states, such that service elements, which imply
transitions between states, are only valid when the connection is in
an appropriate state.

Figure 4 shows the principal states and state transitions over an
RDA connection. This model is very much simplified, in particular
it does not show the effects of interruption and reconnection of the
communication service. The states are described briefly in 3.1.2.1

to 3.1.2.5 below.
<: IDLE)

R-CONNECT R-RELEASE

Data Manipulation
Definition Services

aCONNECTED
R-COMMIT R-START - R-ROLLBACK
R-ROLLBACK TRANSACTION R-SECURE -AND-
COMMIT
SECURE

RANSACTION Subschema
IDLE Manipulation

R-SECURE

R-READ, R-APPEND

BULK Data

TRANSFER Manipulation
R-TRANSFER-END

R-DATA

R-CHECK

Fig. 4 - State Transition of the Service for Normal Operation
3.1.2.1 Idle State

In this state no connection exists. The only allowable service
element is R-CONNECT.

=G -

3.1.2.2 Connected

In this state connection has been established. Service elements
. that affect association attributes are allowed but do not change
i the state. Either subschema manipulations or database

transactions may be started by the R-START-TRANSACTION service
elements.

3.1.2.3 Transaction Idle

In this state a transaction is in progress., Subschema
manipulation functions are allowed. The transaction shall be
terminated by R-ROLLBACK, R-SECURE, or R-SECURE-AND-COMMIT
service elements,

-

3.1.2.4 Bulk Transfer

In this state the service elements R-DATA and R-CHECK leave the
connection in Bulk Transfer state. When the transfer is
complete the RDA connection returns to the Transaction Idle
state.

3.1.2.5 Secure

In this state the processing for a transaction is complete and
the Server is awaiting confirmation from the Client that other
processes involved in the transaction have been completed.
R-COMMIT or R-ROLLBACK service elements return the RDA
connection to the Connected state.

Q@ . 3.1.3 Connection Services

The connection service elements provide for the establishment and
release of the RDA connection. Release may be orderly or abrupt.
Reconnection of a broken connection is also provided.

At connection establishment, there is negotiation of the particular
class of service to be used and of any special convention that may
be agreed.

Connection termination is normally requested by the Client process
when all work is complete. However, in an emergency the connection
may be abnormally terminated by either user at any point in time.

It may also be accidentally lost, in which case both users are
informed.

3.1.4

20 =

Reconnection is provided so that an interrupted bulk transfer can be
resumed, and so that a transaction left in a secure state can be
completed. Reconnection may be attempted by either the Client or
Server. Reconnection by the Server is useful if the presentation
service has been lost when the Server is in a secure state or when
the Server has requested suspension within a bulk transfer
operation,

Subschema Management Services

Subschema management service elements allow the user to create,
alter and delete information stored in the Subschema description.
Note that a change in the Subschema may necessitate a change to the
underlying schema. The mapping of the Subschema to the schema is
implementor defined. This information concerns database tables,
database views, user privileges and macros.

For the present, no facilities to access or alter the subschema data
defining the structure of tables or views are provided.

Users, or users groups, are identified by authority identifiers.
Permission to perform given data manipulation functions on data in
the database is granted explicitly to authority identifiers. Such
permissions are recorded in the Subschema and modified by R-GRANT
and R-REVOKE service elements.

Macro handling functions declare and delete macro definitions. A
macro defines a sequence of data manipulation functions that can be
invoked in a single service element. The R-CREATE-MACRO service
element is used to declare a macro and R-DROP-MACRO removes a macro
from the Subschema.

Data Manipulation Definition Services

The data manipulation definition services allow the Client to
condition the association outside a transaction context. They allow
temporary tables, cursors and temporary macros to be defined which
exist until they are deleted or until the association is terminated.
If these were created within a transaction they would disappear when
the transaction terminated.

Transactions

The start of a transaction is signalled by the R-START-TRANSACTION
service element when the association is in the connected state.
Within a transaction, service elements are provided for the orderly
completion or cancellation of the changes made to the database.
Rollback of the transaction may be caused by either the Client or
the Server in the event of a transaction or database error. If the

=D -

transaction affects this database only it may be completed by the
single R-SECURE-AND-COMMIT service element. If more than one
database is affected the Client will need a confirmed R-SECURE from
each Server before the transaction can be committed.

If the transaction fails when in the secure state it will be
necessary to reconnect so that the Client can either commit or

rollback the transaction. Reconnection may be attempted by either
the Client or Server.

Data Manipulation Functions

The service element in this category carries data manipulation
commands that operate on complete tables or on single rows of
tables. In some cases the operation is notional, in the sense that
a new table may be defined which is not actually materialised until
or unless it is required by another function.

All data manipulation commands take effect within a transaction
context and their effects are not visible to other database users
until and unless the transaction is committed.

The responses to commands are dependent on the type of the command.
Both the command and the response may carry data.

The commands available are listed below.

Command Description

DECLARE CURSOR Names a cursor

CREATE Create Temporary Table

OPEN Open cursor

CLOSE Close cursor

FETCH Get next row and move cursor
INSERT Create new rows in a table
UPDATE Update Rows of a table
DELETE Erase rows of a table

INVOKE Execute macro

SELECT Specify and return a table of one row
TEST Test for error response

Note that all commands except CREATE, INVOKE and TEST are defined
in the DL SQL specification.

Bulk Data Transfer

The bulk data transfer service elements provide for the transfer of
multiple rows, uninterrupted by data manipulation commands. The
data flow from sender to receiver may be for the purpose of
transferring a complete table to the Client or for appending a table
in the Client Process to a table in the database.

=22

Facilities are provided for:

- orderly termination of the transfer by the Sender with

acknowledgement by the Receiver,

- abnormal termination by either user,

- checkpointing and checkpoint acknowledgement,

- restart of a transfer from a negotiated checkpoint position.
This may be requested by either user and may follow a short
interruption and reconnection of the communication service.

3.2 SERVICE DEFINITION

This service carries DL SQL statements and data to the Server process
and carries responses and data from the Server to the Client process.
The communication service need not be cognizant of the meaning of the
statements except in so far as they affect the state of the protocol
machine. The aspects of the activity that need specific definition

are:

- Connection Management;

- Transaction Management;
- Grouping of Statements;
- Bulk Data Transfer,

3.2.1 List of Services

Table 1 lists all the service elements of the RDA Service.
service element it specifies the type (see Appendix C), the user who

can initiate it (CL: Client, SE: Server, SN: Sender, RC: Receiver)
and its purpose.

Service

R-CONNECT

R-RELEASE

R-DISCONNECT

R-ABORT

R-RECONNECT

Ty
2

2

CONNECTION
pe Init.
CL

CL

CL,SE

CL,SE

Description
Establish RDA Connection

Orderly release of RDA
Connection

Abrupt release of RDA
Connection

Loss of Presentation
Connection

Establishment of interrupted
Association

Table 3.1 Remote Data Access Service Elements (start)

For each

A |

Service

R-START-
TRANSACTION

R-SECURE

R-COMMIT

R-SECURE -AND-
COMMIT

R-ROLLBACK

R-ROLLBACK-
PLEASE

Service

R-BEGIN-GROUP

R-END-GROUP

R-DL-DO

Ty

2

Ty
2
2

2

R-STILL-PROCESSING 1

R-DEFINE-MACRO

R-DROP-MACRO

Service

R-APPEND-TABLE

R-READ-TABLE

R-DATA

R-END-TRANSFER

R-END-READ

R-CHECK

2

2

Ty
2

2

=23

TRANSACTION MANAGEMENT

pe Init.

CL

CL
CL

CL

CL

SE

Description

Start Transaction

Intention to commit
Transaction committed

Request to commit
Transaction

Rollback Transaction

Server cannot complete
transaction

GROUPING AND DATABASE ACTIONS

pe Init.
CL
CL
CL
SV
CL

CL

BULK TRANSFER
pe Init.

CL

CL

SN

CL

SN

SN

Description
Indicate start of group
Terminate group
Requests a DL SQL Action
Indicates delayed response
Defines a Macro

Drops a Macro

Description
Start bulk write
Start bulk read
Send data
Terminate Bulk Transfer
Notify end of data

Establish checkpoint

Table 3.1 Remote Data Access Service Elements (continuation)

<24 -

R-RESTART 2 SN, RC Interrupt and negotiate restart
R-CANCEL 2 SN,RC Cancel a transfer

Table 3.1 Remote Data Access Service Elements (end)

3.2.2 Notation

3.3

The notation used in the service specification is defined in
Appendix C.

CONNECTION MANAGEMENT

This clause describes the service primitives for connection and
disconnection of a Client process to a service being provided by a
Server. The Server is assumed to have a Presentation Service Address

which will enable the local presentation service to send a connection
request to the correct entity in the network. This clause does not

address the problem of network resources management, nor how the
Client gets to know the correct current Presentation Service Address.

A connection only lasts for the time between the acceptance of a
connection request and its orderly or abrupt (e.g. through
communication failure or Server failure) termination. An association
is a durable relationship which may span a number of connections. An
association may be suspended and restarted, or it may be restarted
after a break.

This clause describes the service elements necessary to support
associations and for checking their availability when the initial
connection is established.

3.3.1 Service Definition

The following service elements and primitives are described in this

clause:

R-CONNECT request, indication, response, confirm
R-DISCONNECT request, indication

R-ABORT indication

R-RELEASE request, indication, response, confirm
P-RECONNECT request, indication, response, confirm

3.3.2 The R-CONNECT Service Element

- Purpose: To request establishment of an association and

connection between the initiating (Client) service user and the
Server,

(

=25 -

- Structure: Confirmed, type 2, RC.

- Parameters:

Request Indic. Response Confirm

Called Address D U
Calling Address D U
Association ID D U
Responding Address D U
Class of R-Service D U D U
Quality of R-Service D U D U
Identity of Client D U
Current Account D U
User Data D U
Diagnostic D U

Called Address

The Called Address identifies the database Server to which a
connection is to be established. By implication, it also identifies

the presentation, session and transport addresses supporting the
remote entity.

Calling Address

The Calling Address is the R-service access point address from which
the connection is established. The remote entity will receive an
address which identifies the calling entity, and includes the
underlying presentation, session and transport addresses.

Association Identifier

The Association Identifier, together with the Calling Address,
uniquely identifies this association.

Responding Address

The Responding Address is the R-service access point address to be
used in re-establishing an association after failure. It is not
necessarily textually identical to the Called Address.

Class of R-Service

The Class of R-Service parameter conveys the service subset to be
used. The values indicate the set of optional service features
required in this association.

3.3.3

=206 =

Quality of R-=Service

The Quality of Service parameter conveys the quality of service
requested for the association, and the quality of service offered by
the responder.

Identity of Client

The Identity of Client parameter identifies the calling user. In

the RDA Service it used by the Server to determine the Authorisation
Identifier.

Current Account

The Current Account parameter identifies the account to which costs
incurred in this association are to be charged.
User Data

The User Data parameter allows for the transfer of application
service dependent information between users. It might, for example,
be used for the authentication and management aspects of the
application association.

In this application service the parameter carries an optional
Subschema name.

This data has a size limit,

Diagnostic

This parameter contains a severity and reason code which indicates
whether the connection has been established.

The R-DISCONNECT Service Element

- Purpose: To request immediate disconnection of a connection. It
may be used either by either the Client or by the Server
process. The service is disruptive and information may be
lost.

- Structure: Non-confirmed, type 1, RI.

- Parameters:
Request Indication

Suspend D U
User Data D U

(

T 4T

3.3.4

3.3.5

w3 =

Suspend

The Suspend parameter indicates whether the association or merely
the connection is being terminated. If true, and the quality of
service supports associations, then R-RECONNECT may be successful.
User Data

May be used to supply a reason for disconnection, to suggest a

suitable re-connect time, ete. This data is application dependent,

The R-ABORT Service Element

- Purpose: To inform application entities of the collapse of the
presentation service, possibly caused by failure of the
underlying transport service.

- Structure: Indication only, type 3, II.

- Parameters:

Indication

Diagnostic U

Diagnostic

This parameter contains a severity and reason code which indicates
whether or not the connection has been established.

The R-RELEASE Service Element

- Purpose: To request suspension or completion of an association
by agreement of both processes and without loss of information.

- Structure: Confirmed, type 2, RC.

- Parameters:

Request Indic. Response Confirm
Diagnostic D U
Suspend D U D U

User Data D U D U

3.3.6

Diagnostic

This parameter contains a severity and reason code which indicates
whether or not the connection has been terminated.

Suspend

To Suspend parameter indicates whether the association or merely the
connection is being terminated. If true, and the quality of service
supports associations, then R-RECONNECT may be successful.

User Data

May be used to supply a reason for disconnection, to suggest a
suitable re-connect time, etec. This data is application dependent .

The R-RECONNECT Service Element ()

- Purpose: To re-establish an association with a new connection
after voluntary or involuntary disconnection of a previous
connection. R-RECONNECT will not succeed unless the initial
connection established availability of the facility in the
quality of service negotiation. If both the Client and Server
issue an R-RECONNECT, the Client will not deliver the request
from the Server and the Server will respond to the Client.

- Structure: Confirmed, type 2, RC.

- Parameters:

Request Indic. Response Confirm
Called Address D U
Calling Address D U
Association Id. D U
Responding Address D U d
Class of R=Service D U D U
Quality of R-Service D U D U
Identity of Client D U
Current Account D U
User Data D U
Diagnostic D U

Parameters have the same meaning as in R-CONNECT (3.3.2). The
reconnecting entity shall re-establish the connection with the same
values for the association attributes as those negotiated for the
previous connection.,

3.4

=29 =

TRANSACTION MANAGEMENT

This clause is concerned with Commitment, Concurrency and Recovery

within a distributed system. The CCR service elements govern the
initiation of a recoverable unit of work and its orderly completion,

The discussion on CCR below applies to a wide class of distributed
processing applications. This class includes distributed databases.

A Commitment unit is a unit of processing that makes a consistent
change to the shared environment, principally the data resources that
are required by other processes, since these persist after the process
is complete.

The essential requirement for Concurrency is that the effect of
processes (Commitment units) which overlap in time should be the same
as it would have been if they had been executed one after the other.
This is termed serializability of Commitment units. The resource
providers are required to ensure that Commitment units never interfere
with one another. The requirement can be stated more formally as
follows. Whenever a set of Commitment units is processed there must
exist at least one ordering of the Commitment units such that the
effect of processing the Commitment units serially in the sequence
determined by the ordering is identical to that of processing the
set.

Recovery facilities must be provided by the resource managers. They
must ensure that once a commitment is completed, it stays completed.
it Also, if a Commitment unit does not successfully complete then must
have no effect on the "visible" environment, i.e. on the data
resources available to this or other Client processes. This
specification is not concerned with the mechanisms for handling
Recovery, but only with the inter-communication between the driving
processes and the independently recoverable sub-systems.

Commitment units may be local and simple, or at the other extreme they
may be distributed and complex. In order to handle the distributed
case correctly it is necessary to give each Commitment unit a
network-wide identifier. This consists of the identity of the master
process that initiates the Commitment unit and an identifier allocated
by that process.

Figure 5 shows a distributed Commitment unit in which the master
process spawns sub-processes, some of which spawn other
sub-processes,

30 =

[Master Process |

at site A				
	,			
Sub-process 1		Sub-process 2		Sub-process 5
at site A		at site B		at site D
Sub-process 3		Sub-process 4		
at site C__		at site D		

Fig. 5 - A Distributed Commitment Unit.

The sub-processes are not necessarily performing simple independent
tasks. Each could involve multiple interactions with the process or
sub-process that created them.

Note that sub-processes U and 5 are both at site D and may therefore
clash over resource requirements. Since both processes carry the same
Commitment unit identifier one process can release resources to the
other before the commit point without losing the integrity of the
Commitment unit.

In this application the Master Process is always a Client and a
terminal (leaf) sub-process is always a Server. However an
intermediate sub-process such as sub-process 2 may have both roles but
with respect to different connections.

The example given is of the most exacting requirement. Many
applications will require less complete facilities. The classes of
CCR service that are envisaged are described below.

- Class 0 - No Recovery

In the event of failure the state of the remote process is unknown .
On establishment of a new connection the Client process will have
to check and tidy up the environment before re-starting. For
example, an interrupted file transfer may result in an incomplete
file which would have to be deleted.

- (Class 1 - Minimum Recovery

In the event of failure the current activity is either completed or
rolled back. There is an understanding that certain operations or
sequences of operations constitute integral work units or
Commitment units.

- (Class 2 - Commitment

The definition of Commitment units is part of the application
protocol. When a Commitment unit is complete this is indicated to

3.4.1

-31 -

the remote process, which will either confirm that the process has
been completed or roll it back and request restart. This protocol
is not suitable for use by more than one recoverable sub=-process
within a Commitment unit. Note that when the master process
requests commitment it effectively relinquishes control over the
fate of the Commitment unit at that point.,

Class 3 - Distributed Commitment

This protocol involves negotiation between all the recoverable
sub-systems in the Commitment unit before the process is comitted.
Each sub-system is requested to secure its updates in such a way
that it can guarantee successful completion of the next request
from the Client which will either be to rollback the transaction or
to complete it. Only when all sub-processes have confirmed this,
is the unit ready to be committed.

The data secured by sub-units must be able to survive local system
failure or communications failure. It must be possible to

re-establish failed associations in order to complete secure
processing.,

Service Specification

The following service elements and primitives are defined in this
clause:

R=-START-TRANSACTION Class 2, 3
R-SECURE Class 3
R-COMMIT Class 3
R-SECURE-AND-COMMIT Class 2, 3
R-ROLLBACK Class 2, 3
R-ROLLBACK-PLEASE Class 2, 3

These service elements effectively bracket the work requested by the
driving process of a subordinate process,

If level 0 or level 1 CCR Quality of R-Service has been negotiated
none of the above service elements are available. In this case all
the service elements defined in this specification as available
within a transaction (in the TRANSACTION IDLE state) are

available after connection (in the CONNECTED state).

One stage commitment is available if level 2 or level 3 CCR Quality
of R-Service has been negotiated. Two-stage commitment negotiation
is only available when level 3 CCR Quality of R-Service has been
negotiated.

Any application protocol may impose its own rules governing the
states at which it is permissible to start and commit Commitment
units., For example, in a File Access Service, it may not be

3.4.2

<35

permissible to open a file outside a Commitment unit and close it
within it.

Also, it may be possible to support Commitment units but revert to a
level 1 Recovery strategy if the processing involves a single
recoverable sub-unit and the master process chooses not to invoke
the CCR service elements,

In a distributed process when one process has many subordinates the
sequence of commitment is such that no process may be committed
until all others are secure. It is possible for the last
sub-process to be committed using Secure-and-Commit, instead of
two-stage commit. If this is done then control over the fate of the
Commitment unit is effectively handed over to the last sub-ordinate
process until the Secure-and-Commit response is received.

The R-START-TRANSACTION Service Element

- Purpose: To indicate the start of a transaction and request
confirmation that the remote process has established a

rollback point. A transaction may not be initiated until any
previous transaction is complete.

- Structure: Confirmed, type 2, RC.

- Parameters:
Request Indic. Response Confirm

Commitment Unit ID D U

Commitment Unit Identifier

Identifies this Commitment unit. Tt identifies the master process
and has a unique serial number allocated by that process. In the
event that the remote process invokes another process it must start
a new transaction with that process using the same Commitment Unit
Identifier before accessing any data resources.

3.4.3 The R-SECURE Service Element

- Purpose: To request the remote process to secure its processing
so that the success of a subsequent R-COMMIT or R-ROLLBACK can
be guaranteed. R-SECURE indicates that the driver process has
completed the transaction and is preparing to commit it. When
the master process has requested R-SECURE the only permitted
request primitives are R-COMMIT and R-ROLLBACK. If the
underlying connection is interrupted (e.g. by R-ABORT) the
association must be re-established so that the Commitment unit
can be terminated.

3.4.4

3.4.5

=33 =

- Structure: Confirmed, Type 2, RC.

- Parameter:
Request Indic. Response Confirm

Diagnostic D U

Diagnostic

Indicates success or failure., If failure is indicated the remote
process has been rolled back.

The COMMIT Service Element

- Purpose: To inform the remote process that the Commitment unit
is complete. The remote process can relinquish its ability to
rollback to the previous commit point and release any locked
resources under its control.

- Structure: Confirmed, Type 2, RC.

- Parameters: None.

The R-SECURE-AND-COMMIT Service Element

- Purpose: To inform the remote process that the master process is
secure and request the remote process to commit its processing.
In a distributed Commitment unit this service element may be
used only when the requestor is a master or a process executing
an R-SECURE-AND-COMMIT and when all other sub-processes of the
requesting process are secure,

- Structure: Confirmed, Type 2, RC.
- Parameter:
Request Indic. Response Confirm

Diagnostic D U

Diagnostic

Indicates success or failure., If failure is indicated the remote
process has been rolled back.

34 -

3.4,6 The R-ROLLBACK Service Element

- Purpose: To abort the current transaction and revert to a
no-transaction context. An R-ROLLBACK request may only be made
after an R-START-TRANSACTION and before an R-COMMIT or
R-SECURE-AND-COMMIT.

- Structure: Confirmed, Type 2, RC.

- Parameter:
Request Indic.

Diagnostic D U

Diagnostic

A warning is given if rollback is attempted when no transaction is
in progress.

3.4.7 The R-ROLLBACK-PLEASE Service Element

3.5

- Purpose: To abort the current transaction within a Server
sub-process and revert to a no-transaction context.
R-ROLLBACK-PLEASE is used by the subordinate process when it
finds that it cannot complete the transaction for any reason.
The driving process must then rollback the subordinate process
using R-ROLLBACK.

- Structure: Unconfirmed, Type 1, RI

- Parameter:
Request Indic.

Diagnostic D U

Diagnostic

The Diagnostic parameter indicates either that the whole transaction
must be rolled back or that it is possible to restart this
sub-process independently of other sub-processes.

GROUPING OF STATEMENTS

Within the context of an association and a transaction the normal unit
of data manipulation between the client process and the server is the
equivalent of a DL SQL statement. The statement is the smallest unit
of work recognised by the DBCS and each statement either succeeds or
fails. If it fails it has no effect on the database or on the
association attributes such as cursors. A statement is manifested at
the service interface by a service element.

-35 -

Each statement sent to the Server elicits a response, but it is not
necessary for the Client process to wait for the response before
sending the next statement. However there are times when the
application logic requires a response before the next statement can be
determined and it is useful to indicate these times to the
communication service. This is accomplished by the service elements
R-BEGIN-GROUP and R-END-GROUP.

The Client's view is that the service elements (statements) following
the R-BEGIN-GROUP are actioned when the R-END-GROUP is sent and the
confirmations are received at this time. The underlying
communications service may deliver requests at any time (in the
correct sequence) but the R-END-GROUP forces delivery to the Server,

3.5.1 Service Definition

The following service elements and primitives are described in this
clause:

R-BEGIN-GROUP
R-END-GROUP
R-DL-DO
R-STILL-PROCESSING

R-BEGIN-GROUP signals the start of a sequence of statements, each of
which is carried by an R-DL-DO. The group is terminated by an
R-END-GROUP.

3.5.2 The R-BEGIN-GROUP Service Element

- Purpose: To indicate the start of a sequence of statements
which are to be responded to together.

- Structure: Unconfirmed, Type 1, RI.

- Parameters: None.

3.5.3 The R-END-GROUP Service Element

- Purpose: To indicate the end of the group of statements and to
request the responses.

- Structure: Confirmed, Type 2, RC.
- Parameters: None.

3.5.4 The R-DL-DO Service Element

- Purpose: To request the remote database Server to execute a

single DL SQL statement and to return a response. The effect
of the statement depends on the type of statement.

-36 -

- Structure: Confirmed, Type 2, RI.

- Parameters:
Request Indic.

Error Action D U
Statement D U
Status

User Data D U

Error Action

In the event that this statement does not have the expected result
the whole group may be terminated, or the next statement may be

obeyed regardless.

Statement

The DL SQL statement. The permissible statements are defined in

3.5.5 and 3.7.

Status

Contains the SQLCODE returned from the DBCS after execution of the

statement.

User Data

Contains data for storing in the database or data returned from the

database.

DL SQL Statements

In the DL SQL specifications there are statements for manipulating
schema information and statements for manipulating data in the
database. A statement is specified within a procedure, which is

part of a module.

In the RDA Service there are also data description statements and
data manipulation statements, but there are no module declarations.
Statements may either be specified within macros and given an
interface or they may be sent directly using the R-DL-DO service

element.

The meaning of the DL SQL statements to the DBMS is fully defined in

the DL SQL specification, with the exception of a small number of
extensions that are defined in this specification.

statements are as follows:

The permissible

3.5.6

<37 -

Schema Manipulation

CREATE TEMPORARY TABLE: Defines a new table in the schema

For the present the CREATE TEMPORARY TABLE statement represents a
DL SQL extension., The table created only exists for the duration
of the association.

Data Manipulation

DECLARE CURSOR : Declares a cursor and associates it with a table

OPEN ¢ Activates a cursor
CLOSE : Disables a cursor I
FETCH : Moves the cursor to the next row and retrieves
its column values
INSERT : Inserts a row in a table
UPDATE ¢ Changes column values in a row or rows
DELETE : Deletes a row or rows from a table
SELECT : Specifies a one-row table and retrieves values
TEST ¢ Checks for exceptions in a previous statement
INVOKE : Invokes a macro

Commitment Control

SECURE : Prepares a transaction for commitment

SECURE AND COMMIT :0One phase transaction commitment

COMMIT WORK : Terminates a transaction successfully

ROLLBACK WORK ¢ Terminates a transaction and cancels its
effects.

In the RDA Service Commitment Control is supported by specific j
service elements (see 3.U4),

In the DL SQL the statements are defined as setting values in a
parameter list, this being a reference to the parameters of the
enclosing procedure within the module. Within the R-DL-DO these
statements identify a row of values which is returned in the
response user data as a sequence of typed data values. Null values
are represented by the NULL representation. Indicator parameters
(to distinguish NULL from non null values) are not required in the
RDA Service though they may appear in a local service interface.

The R-STILL-PROCESSING Service Element

- Purpose: To inform the Client that an R-DL-DO is being
processed and that the response is likely to be some time in
preparation,

- Structure: Unconfirmed, Type 1, RI.

- Parameters:

Time

Time

-38 -

Request Indic.

D U

The estimated time to complete the processing, in seconds.

3.6 BULK DATA TRANSFER

The Bulk Data Transfer service elements provide for the transfer of
multiple rows, uninterrupted by data manipulation commands. The data
flow from sender to receiver may be for the purpose of transferring a
complete table to the Client or for appending a table in the Client

process to a table

in the database.

Facilities are provided for:

- orderly termination of the transfer by the sender with

acknowledgement

by the receiver;

- abnormal termination by either user;

- checkpointing and checkpoint acknowledgement;

_ restart of a transfer from a negotiated checkpoint position. This
may be requested by either user and may follow a short interruption
and reconnection of the communication service.

Note that the successful transfer of a table to the Server requires
that the table be consistent with the database and its schema. Data
errors such as duplicate rows will result in the cancellation of the
transfer by the Server and negotiation of a restart point before

continuation.

3.6.1 The Service Description

The service elements and primitives for normal operation (i.e. not

including error
the sequence of
Server and from
normal sequence
normal sequence

recovery) are shown in Fig.6 and Fig.7. These show
primitives for bulk transfers from the Client to the
the Server to the Client process. Fig.6 shows the
of primitives for R-APPEND TABLE, and Fig.7 the

of primitives for R-READ-TABLE.

For the duration of a bulk read, control is transferred to the
Server. It is returned to the Client by the exchange of
R-END-TRANSFER messages.

The R-DATA Service repeats while there is still data to be
transferred. The transfers may be interspersed by requests to
establish checkpoints.

Q0O ct® 0T O3

R-APPEND-TABLE

I
I
I
Request |
[\ R-APPEND-TABLE
| _ Indication
I
I |
| | Response
| /
Confirm | /
[I
| I
_ I I
[I I
| R-DATA | I
| Request | |
| [\ | R-DATA Indication
I I I
| I I
| I I
| R-CHECK | I
| Request | |
| [\ | R-CHECK
| I | \ Indication
[I I
| | | Response
I | | /
| confirm | / |
| [|
| I [
| [
[I
| I
R-END-TRANSFER | I
Request | |
[\ | R-END-TRANSFER
| | '\ Indication
| [
| | Response
I |/
Confirm | / |
I I

Fig. 6 Normal Sequence of Primitives
for R=-APPEND-TABLE

I |
I |
R-READ-TABLE | I
Request | |
[\ | R-READ-TABLE
| | \ Indication
[|
| | Response
| |/
Confirm | / |
I |
I I]
I | R-DATA |
R-DATA | | / Request |
' Indication | 7 | l
| [[r
| | | e
| | R-CHECK | p
R-CHECK | | / Request | e
Indication | 7/ | | a
| [| t
Response | | | e
[\ | | d
| | \Confirm |
I I i
I I
[|
| |
| | R-END-READ
R-END-READ | | / Request
Indication | / |
| |
| I
) | I
R-END-TRANSFER I |
Request | |
[\ | R-END-TRANSFER
I | \ Indication
[|
| | Response
| | /
Confirm | / |
[|
| I

Fig. 7 Normal Sequence of Primitives
for R-READ-TABLE

3-6.2

3.6.3

=42 -

The R-APPEND-TABLE Service Element

- Purpose: To indicate to the Server that the Client is entering
Bulk Transfer Mode.

- Structure: Confirmed, Type 2, RC.

- Parameters: |
Request Indic., Response Confirm

Table Name D U

Diagnostic D U

Table Name

Indicates a table in the database in which the new data will be w

stored. ‘

Diagnostic

Indicates either that the transfer has been accepted or the reason
why it has been rejected.

The R-READ-TABLE Service Element

- Purpose: These primitives specify a bulk transfer from the
Server to the Client. Only one transfer may be in operation on
the data object at any one time. The primitives signal a
transfer of control from the Client to the Server. The
R-READ-TABLE request may be rejected.

- Structure: Confirmed, Type 2, RC.

- Parameters: 0
Request Indic. Response Confirm

Table Name D U

Select Expression D U

Diagnostic D U

Table Name
Indicates a table in the database from which data will be read.

Select Expression

A DL SQL expression that specifies a derived table. This
parameter is an alternative to the Table Name.

3.6.4

3.6.5

3.6.6

=08 =

Diagnostic

Indicates either that the transfer has been accepted or the reason
why it has been rejected.

The R-DATA Service Element

- Purpose: The transfer primitives transfer data from the sending
process to the receiving process. The transfer of data may
start following an R-APPEND-TABLE confirm or following receipt
of an R-READ-TABLE indication. Data is transferred as sequences
of rows of tables, using the underlying presentation facilities.
Each row is a sequence of column values.

- Structure: Unconfirmed, Type 1, RI.

- Parameters:
Request Indic.

Database Data D U

Database Data

Each database data primitive carries an integral number of rows of
a table. Each row consists of a sequence of column values.

The R-END-TRANSFER Service Element

- Purpose: The primitives for R-END-TRANSFER mark the completion
of the transfer operation and return control to the Client
process. The confirmation primitive indicates that no further
error recovery actions will be requested for this transfer.

- Structure: Confirmed, Type 2, RC.

- Parameter:
Request Indic. Response Confirm

Diagnostic D U D U

Diagnostic

The Diagnostic parameter is supplied by the bulk transfer receiver.
So after R-READ-TABLE the Diagnostic may be used in the request
primitive; after R-APPEND-TABLE the Diagnostic may be used on the
response primitive. The Diagnostic indicates success or carries
warning information concerning the transfer.

The R-END-READ Service Element

- Purpose: To return control to the Client process after a bulk
transfer from the Server to the Client.

by -

- Structure: Unconfirmed, Type 1, RI
- Parameters: None.

3.6.7 Restart During Bulk Transfer

To protect themselves against failure in the Client process, Server
or in the communications, the sender and receiver of data may
establish checkpoints. 1In the event of failure the processes can
re-establish the connection (if necessary), then agree a suitable
point for restart of the transfer operation.

The commands included in this group are:
R-CHECK

R-RESTART
R-CANCEL

3.6.8 The R-CHECK Service Element

- Purpose: R-CHECK is used by the sender to propose a check point
to the receiver. Checkpoints are sequentially numbered within
the transfer operation. After receipt of a checkpoint
indication and before sending the checkpoint response, the
receiver must secure the data received up to that point and
thereby establish a restart point. The sending process does not
need to wait for the confirmation primitive, and the receiving
process need not respond to every indication.

- Structure: Confirmed, Type 2, RC
- Parameter:
Request Indic. Response Confirm

Checkpoint Number D U D U

Checkpoint Number

Checkpoints are numbered sequentially by the sender within each
transfer.

3.6.9 The R-RESTART Service Element

- Purpose: Restart primitives interrupt any activity in progress,
with possible loss of undelivered indications or confirms. They
negotiate a point at which data transfer can be restarted. If
the receiver and sender both issue a restart request so that the
requests cross, the receiving entity will not deliver the
indication from the sender.

=

45 -

- Structure: Confirmed, Type 2, RC

- Parameters:

Request Indic. Response Confirm
Restart Point D U D U
Diagnostic D U

Restart Point

Indicates the checkpoint number at which data transfer is to
restart. The bulk data Sender does not include the parameter. The
Receiver determines the last suitable checkpoint,

Diagnostic

If no restart is possible, indicates the reason.

3.6.10 The R-CANCEL Service Element

- Purpose: Any one of the Client process, the Server process or
the provider of the communications service may cancel a data
transfer activity. The two users may then have different views
of the state of the activity. The primitives interrupt any
activity in progress (including R-RESTART) and any undelivered

indications or confirms may be discarded. Further bulk
transfer operations may be attempted. However, if the receiver
is the Server and the Quality of Service includes recovery any
effect of the transfer on the database will be reversed.

- Structure: Confirmed, Type 2, RC.

- Parameter:

Request Indic. Response Confirm

Diagnostic D U D U

Diagnostic

Indicates the reason for the R-CANCEL and whether restart may be
attempted.

3.7 MACRO DECLARATIONS

A macro declaration consists of an interface spec and a body spec.
The interface spec defines the name of the macro and specifies the
parameters that are to be supplied when the macro is invoked and those

3.7.1

U6 -

that are returned as a result of its execution. The body defines the
function of the macro and consists of a list of statements, possibly
only one, that are obeyed in sequence each time the macro is invoked.

The macro declaration is equivalent to the following notional DL SQL
syntax:

{macro spec> &3

MACRO <scope> <interface spec>
<body spec>

<{scope> TEMPORARY | PERMANENT

{interface spec> -
<macro name> [UPDATE <parameter spec>...]
[IN <parameter spec>...]
[OUT <parameter spec>...]

{parameter spec> ::= <parameter name> <data type>

<body spec> {statement> ... END

{statement> 3o
{create temporary table> | <close statement> |
{cursor declaration> | <delete statement: positioned> |
{delete statement: searched> | <fetch statement> |
{insert statement> | <invoke statement> | <open statement> |
<{select statement> | <test statement> |

<update statement: positioned> | <update statement: searched>

The fetch and insert statements return or require a single row of

table data. The <data type> "row" designates a sequence of column
values and matches a row of any table.

The TEST statement may only be specified within a macro or group. It
serves to test the status of the previous statement and to
conditionally exit from the macro or terminate the group .

The R-DEFINE-MACRO Service Element

- Purpose: To specify a new macro for the use of the Client
process,

= Structure: Confirmed, Type 2, RC.

- Parameters:
Request Indic. Response Confirm
Scope D U
Macro Name D U
Macro Definition D U

Extended Diagnostic D U

3-7.2

=47 - §

Scope

Specifies whether the macro is to be permanently stored in the
database, and therefore available after the completion of this
association, or temporary in which case it will be dropped when the
association terminates,

Macro Name

Must be unique amongst the temporary macros or permanent macros.

Macro Definition

Defines the parameters on the user interface and the statements that
form the macro body.

Extended Diagnostic

The extended diagnostic includes the standard diagnostic. A
warning is returned if a temporary Macro Name clashes with a name
already recorded in the Subschema for a permanent macro. The
extended diagnostic also reports errors in the DL SQL statements.

The R-DROP-MACRO Service Element

- Purpose: To remove a macro from the Subschema .

- Structure: Confirmed, Type 2, RC.

- Parameters:

Request Indic. Response Confirm
Scope D U
Macro Name D U
Diagnostic D U
Scope

Specifies whether the macro is temporary or permanent.
Macro Name
Identifies the macro.

Diagnostic

Indicates that the macro has been deleted, warns that the macro does

not exist or reports an error if the attempt to delete the macro is
unsuccessful,

y THE RDA PROTOCOL

4.1 PROTOCOL OVERVIEW

The Remote Data Access Protocol determines the structure and content of
messages exchanged between the Client and Server processes. These
messages are sent as a result of Request or Response Service Primitives
and their arrival generally results in delivery of Indication or
Confirmation Service Primitives to the receiving service user. The
protocol specification determines the permissible ccntent of the
messages and the circumstances in which they may be dispatched. It
also defines the expected behaviour of the receiving entities and that

of

bho1.1

the users of the services, i.e. the client and server processes.,

Roles of RDAP Entities

The asymmetry of the RDA Service is reflected in the protocol. The
two protocol machines play different and complementary roles,
corresponding to the different roles played by their respective

users: Client and Server outside a bulk transfer, Sender and
Receiver when a bulk transfer is in progress.

Descriptive Model

The RDA Protocol is modelled as a set of elementary protocol
structures between abstract protocol machines which exist at either
end of the connection. A elementary protocol structure is a
dialogue for the purpose of an indivisible operation. As such, it
is totally successful or totally unsuccessful, never partially
successful. It is composed of a request, issued by one RDAP entity
and, for most but not all types of protocol structure, of a response
issued by the other RDAP entity. Each request or response is a
single protocol message.

A protocol message contains Protocol Control Information, PCI, (i.e.
one or more parameters) and may contain user data.

The arrival of a message and the occurrence of a request or response
service primitive are Events. An event causes the protocol machine
to carry out a sequence of actions which leave the machine in a
certain state. The actions performed by a machine depend on the
state of the machine when the event occurs and on the type of event.

Dynamic execution of the RDA protocol results in an ordered sequence
of protocol structures. To describe the protocol it is sufficient
to describe each of the structures (or messages), plus any
precedence relationships between structures (state transitions).

Use of the Presentation Service

The RDA Protocol makes use of the services provided by the

underlying Presentation Service, which includes facilities that are
provided by lower layers.

=50 -

The following services are used:

P-CONNECT Establish Presentation Connection
P-U-ABORT Abrupt Termination by User
P-RELEASE Orderly Termination

P-P-ABORT Presentation Service Failure
P-TYPED-DATA Send Application PCI and data
P-TOKEN-GIVE Send tokens

P-TOKEN-PLEASE Request tokens

P-SYNC-MINOR Synchronise Minor

P-SYNC-MAJOR Synchronise Ma jor

P-RESYNCHRONISE Resynchronise

Tt is assumed that negotiation of transfer formats will be carried
out by the presentation layer entities without requiring
communication between the RDAP entities. Negotiation between an
RDAP Entity and a Presentation Entity in a single end-system is not
part of the abstract service interface defined in this standard.

PROTOCOL DESCRIPTION

The text in this section is a plain English definition and explanation
of the protocol. It should not be at variance with the Formal
Description defined in Appendix E. Hopefully any ambiguities or
omissions in the informal description can be resolved by reference to
the formal definition.

The specification of the protocol is structured into groups of
primitive dialogue elements according to their function. These are:

- Association Management - concerned with the establishment and
release of connections and associations;

- Data Definition and Manipulation Management - concerned with schema
manipulation, macros and temporary tables;

- Transaction Management and Data Manipulation - concerned with
sharing, commitment, recovery from DBCS failure (e.g. deadlock),
and Relational Database Language data manipulation operations;

- Bulk Data Transfer - concerned with the continuous transfer of
complete tables, either from the Client to the database or vice
versa;

- Grouping - facilities to group protocol elements to minimise the
effects of transmission delays;

- Failure and Recovery within the RDA Service - concerned with abrupt
disconnections and failures in the communications service, and with
reconnection and resynchronisation after such failures.

)4.3

The protocol defines the permissible behaviour of the protocol
machines but not that of the remote DBCS. The protocol machine is not
concerned with the detailed semantics of the RDL statements. Because
of their complexity the permissible statements and transfer encodings
are described separately.

Within each of the sections defining functional groupings the protocol
definition defines the messages, the actions to be performed by the
sending and receiving entities and the mapping of the message to the
underlying Presentation Service.

The definition of each message follows the same form:

- Source (Client, Server, Sender or Receiver);

- Function;

- Message Content (parameters);

- Parameter Description;

- Sending Actions;

- Receiving Actions.

The mapping of RDAP messages to the service primitives of the
Presentation Service, and the encodings for all Protocol Control
Information are specified in Section 4.10. Abstract Syntax Notation
One, ASN.1, is used to specify the Transfer Syntax. Appendix D
describes the ASN.1 macros used in RDAP.

ASSOCIATION MANAGEMENT

This section defines the protocol elements concerned with the
establishment and release of connections and associations between the
Client and Server entities. The messages that support the service
primitives are listed in the table below.

Function Service Primitives Messages
Connection R-CONNECT CON Connect

CON-R Connect Response
Disconnection R-RELEASE REL Release

REL-R Release Response

These messages define establishment and controlled release of an
association. Abrupt termination and recovery of an association are
described in section 4.8,

40301

u.3.2

-52 -

The CON (Connect) Message

Source: Client

Function: To establish an association and set the initial values
of association attributes.

Contents:
Called Address
Calling Address
Association ID
Class of R=Service
Quality of R-Service
Identity of Client
Current Account
User data

Notes on Contents:

The meaning of the above parameters is defined in the Service
Description.

Sending Actions:

The CON message is sent following receipt of a valid R-CONNECT
Service Request and the establishment of a Presentation
Connection with the appropriate Server.

Receiving Actions:

Receipt of a CON message causes the receiving protocol entity to
deliver an R-CONNECT indication to the Server. The server is
expected to check the access permissions of the client, and the
possibility of the requested association attributes, before
responding with an R-CONNECT response.

The CON-R (Connect Response) Message

Source: Server

Function:

To respond to a CON message, either by confirming the

establishment of the requested association or by refusing it
with an appropriate diagnostic.

Contents:
Diagnostic
Responding Address
Association Identifier
Class of R=Service
Quality of R-Service
User Data

=53 -

- Notes on Contents:

If the request is refused only the Diagnostic is mandatory.
The Class of R-Service and the Quality of R-Service may be
different to the values requested in the CON message.

- Sending Actions:

The CON-R message is sent following receipt of a valid R-CONNECT
Service Response. If the diagnostic indicates Success or
Success with Warning, then a new Association has been
established. The Server is in the Connected state.

If the diagnostic indicates failure, the connection request has

been refused. Any further messages received will be discarded,
with the exception of CON.

. - Receiving Actions:

The content of the CON-R is delivered to the Client using an
R-CONNECT Confirm primitive. If the diagnostic indicates
failure any messages queued for sending will be discarded and
the machine returns to the Idle state. If the Diagnostic
indicates Success or Success with Warning the Association has
been established and the state is Connected.

4,3.3 The REL Message

- Source: Client
- Function:

To terminate the connection in an orderly manner and,
optionally, to terminate the association.

f)) - Contents:
Suspend
User Data

- Sending Actions:

A valid R-RELEASE Request normally causes an REL release
message.

- Receiving Actions:

The receiving entity delivers an R-RELEASE indication and awaits
the response. If 'suspend' is requested the server is expected
to checkpoint the association attributes for re-use on a later
connection, otherwise it may delete the temporary tables and
macros belonging to the association.

-5 -

4,3.4 The REL-R Message

- Source: Server
- Function: to respond to a Release request

- Contents:
Diagnostic
User data

- Notes on Contents:

The diagnostic may indicate that a request to suspend has been
refused.

- Sending Actions:

The REL-R message is sent following a R-RELEASE Response. If
the diagnostic indicates Success or Success with Warning the
connection is terminated. If it indicates failure the
connection remains open.

If suspension is requested and accepted the connection is
terminated but the association is suspended in Fail State F1,
see 4.8.5.

- Receiving Actions:

A R-RELEASE Confirm is delivered to the Client. If the
Diagnostic indicated Success or Success with Warning the
Presentation connection is terminated and no further request
primitives can be accepted on this RDA connection. However if
the association has been suspended, it will be possible to
establish a new connection to resume it using R-RECONNECT.

If the REL-R diagnostic indicates failure the Client is still in
the connected state.

4.4 DATA DEFINITION AND MANIPULATION MANAGEMENT

This group of protocol elements covers the data definition and
manipulation facilities allowed outside a transaction context. These
include the definition of Macros for use within the transactions.
Macros may be defined for this association only or for general use.

The messages defined in this group are shown in the table below.

-55 -
{

Function Service Primitives Messages
Define macro R-DEFINE-MACRO MDF Define Macro

MDF -R Define Macro Response
Drop macro R=-DROP-MACRO MDR Drop Macro

MDR-R Drop Macro Response
Data R-DL-DO RDL DL SQL Functions
Manipulation RDL-R RDL Response

R-STILL-PROCESSING SPR Still Processing

Only the <create temporary table> and <cursor declaration> DL SQL
Functions are allowed in this context.

4.4,1 The MDF (Define Macro)Message

) - Source: Client
- Function: to define a new permanent or temporary macro

- Contents:
Scope
Macro name
Macro definition

- Sending Actions:

The MDF message is sent following a valid R-DEFINE-MACRO
request.

- Receiving Actions:

Receipt of a valid MDF message causes an R-DEFINE-MACRO
indication to be delivered to the server. The server is
expected to check the validity of the macro definition and, if

) correct, to record it in the subschema and make it available for
use within the association.

4.4.2 The MDF-R (Define Macro Response) Message

- Source: Server

- Function: to confirm the acceptability of the newly defined
macro or to provide a diagnostic

- Contents:
Diagnostic
Extended Diagnostic

- Sending Actions: The message results from an R-DEFINE-MACRO
response primitive.

56 =

- Receiving Actions: The receiver sends an R-DEFINE-MACRO
confirm primitive to the client.

4.4,3 The MDR (Drop Macro) Message

Source: Client

- Function: to delete a permanent or temporary macro

- Contents:
Scope
Macro name

- Sending Actions: The MDR message is sent following a valid
R-DROP-MACRO request.

- Receiving Actions:

Receipt of a valid MDR message causes an R-DROP-MACRO indication (»
to be delivered to the server. The server is expected to delete
the referenced macro from the association and subschema. It
will return a warning if the macro does not exist.

4,4.4 The MDR-R (Drop Macro Response) Message

- Source: Server

- Function: to confirm the deletion of a permanent or temporary
macro or to provide a diagnostic.

- Contents:
Diagnostic

- Sending Actions: The message results from an R-DROP-MACRO
response primitive.

- Receiving Actions: The receiver delivers an R-DROP-MACRO confirm (»
primitive to the client.

4,4,5 The RDL (DL SQL Functions) Message

- Source: Client

- Function: To carry one statement or one Macro invocation to the
DBCS for execution,

- Contents:
Error Action
DL SQL Statement
User Data

4.4,6

h.y4,7

-57 -

- Notes on Contents:

In the protocol, all statement types are permissible. However
the DBCS will reject statements that are not available to this
user or are being used in the wrong context. 1In particular,
statements that manipulate database data are not permissible
outside a transaction when database sharing and recovery are
being supported.

- Sending Actions:
The RDL message is sent following a valid R-DL-DO Request.
- Receiving Actions:
The receiver delivers an R-DL-DO Indication to the server. The

server is expected to cause the DBCS to execute the statement
and to return the results in an R-DL-DO Response.

The RDL-R (RDL Response) Message

- Source: Server

- Function: To confirm the execution of a DL SQL statement and to
return the results.

- Contents:
Status
User Data

- Sending Actions: The message is sent following a valid R-DL-DO
Response primitive.

- Receiving Actions: The receiver delivers an R-DL-DO Confirm to
the Client,

The SPR (Still Processing) Message

- Source: Server.

- Function: To inform the Client that processing is continuing and
may take an extended time period. Use of SPR is optional.

- Contents:
Time

- Sending Actions:

The message is sent by the Server on receipt of a valid
R-STILL-PROCESSING Request.

58 -

- Receiving Actions:

The Receiver delivers an R-STILL-PROCESSING indication to the
Client

4,5 TRANSACTION MANAGEMENT AND DATA MANIPULATION

The transaction maanagement messages are concerned with the initiation
and completion of transactions. A transaction may complete
successfully or it may be cancelled by either party. The DBCS uses
the rollback facilities to return the database to the rollback point
established at the start of the transaction.

Transaction Management messages are only available when level 2 or

level 3 CCR Quality of R-Service has been negotiated. TIf level 0 or
level 1 CCR has been negotiated the data manipulation messages are
available outside a transaction.

The messages in the transaction management and data manipulation (»
groups are shown in the table below: '

Function Service Primitives Messages

Start Transaction R-START-TRANSACTION STR Start Transaction
STR-R Start Transaction
l Response

Secure R-SECURE SEC Secure
SEC-R Secure Response

Secure and Commit R-SECURE=AND-COMMIT SCM Secure and Commit
SCM-R Secure and Commit

Response
Commit R-COMMIT COM Commit
COM-R Commit Response
Rollback R-ROLLBACK RBK Rollback ‘)
RBK-R Rollback Response
R-ROLLBACK-PLEASE RBP Rollback Please
w Data Manipulation R-DL-DO RDL DL SQL Functions
RDL-R RDL Response
R-STILL~-PROCESSING SPR Still Processing

Data Manipulation is included in this group and in the previous group
because the service elements may be used both inside and outside a
transaction., However when transactions are supported different sets
of statements may be sent within the different contexts. The messages
are described above in sections 4.4.5 and 4.4.6.

4.5.1

4.5.2

4.5.3

-59 -

The STR (Start Transaction) Message

Source: Client

Function: to indicate the start of a transaction and require the
DBCS to establish a rollback point.

Contents:
Transaction ID

Sending Actions:

The STR is sent following a valid R-START-TRANSACTION request

from the Client process. Transactions may not be nested, so the
primitive is only valid when the Client protocol machine is in
the connected state.

Receiving Actions:

The receiver delivers an R-START-TRANSACTION indication to the
server., The server is expected to establish a secure rollback
point so that the association's view of the database state can
be returned to this point if the transaction fails to complete.

The STR-R (Start Transaction Response) Message

Source: Server

Function: to confirm the establishment of a rollback point and
the start of the new transaction.

Contents:
empty.

Sending Actions: sent as a result of an R-START-TRANSACTION
response primitive.

Receiving Actions: The receiver delivers an R-START-TRANSACTION
confirm to the Client.

The SEC (Secure) Message

Source: Client

Function: To indicate the end of processing for the current
transaction and requests the server to prepare to commit it.

Contents: none

Sending Actions: A valid R-SECURE request primitive causes a SEC
message to be sent.

4.5.4

- Receiving Actions:

The receiver delivers an R-SECURE indication to the server. The
server is expected to preserve the effects of the transaction in
secure store prior to full commitment or transaction rollback.

- The SEC-R (Secure Response) Message

- Source: Server

Function: To inform the Client either that the server process
(and any subordinate processes) have successfully secured the
transaction or that they have failed to secure it and have
rolled it back.

- Contents:
Diagnostic
Transaction ID

- Notes on Contents:

The Secure request may be rejected with a Failure diagnostic,

indicating that the server has successfully rolled back the
transaction.

- Sending Actions:

The message is sent following an R-SECURE response. If the
diagnostic indicates success the server is in the secure state,
awaiting transaction commitment or rollback. If the diagnostic
indicates failure the server is in the connected state, i.e. it
is no longer within a transaction.

The server may repeat the R-SECURE Response primitive if it is
in the Secure state, causing a repeat SEC-R to be sent.

However, in the event of a clash between a SEC-R message and
either an RBK or a COM message the SEC-R is discarded.

- Receiving Actions:

Receipt of an SEC-R message causes an R-SECURE Confirm to be
delivered to the Client. If the diagnostic indicates failure,
the protocol machine is in the Connected state, outside a
transaction context.

(]

4.5, 9

4.5.6

=61 =

The SCM (Secure and Commit) Message

Source: Client

Function: To inform the server that this transation is complete
and that the server can commit the transaction. In the event
that no response is forthcoming from the server the message may
be repeated.

Contents:
Transaction ID

Sending Actions:

The message is sent following a valid R-SECURE-AND-COMMIT
request primitive from the client. If the message clashes with

an RBP the client loses and the Rollback request is passed to
the client.

Receiving Actions:

The SCM message causes the R-SECURE-AND-COMMIT indication to be
delivered to the server. The server is expected to attempt to
commit the transaction. If the attempt is unsuccessful the
transaction must be rolled back. The R-SECURE-AND-COMMIT
Response primitive must report the success or failure of the
attempt.

If an SCM message arrives referencing a transaction that has
already completed, a copy of the SCM-R is sent back.

The SCM-R (Secure and Commit Response) Message

Source: Server

Function: to confirm the success or failure of the attempt to
commit the transaction.

Contents:
Diagnostic

Sending Actions:

The message is sent following an R-SECURE-AND-COMMIT response.,
It completes the transaction and returns the server to the
Connected state, outside any transaction context. Note that the
server retains a memory of the disposition of the transaction.

Receiving Actions:

An R-SECURE-AND-COMMIT Confirm is delivered to the Client. The
client is then in a Connected state, outside any transaction
context.,

-62 -

4.5, The COM (Commit) Message

~J

- Source: Client
- Function: to inform the Server process that the transaction is

complete. The message may only be sent following receipt of
SEC-R, i.e. when the process is secure.

- Contents: none
- Sending Actions: Sent following an R-COMMIT request.
- Receiving Actions:

Receipt of a COM message causes an R-COMMIT indication to be
delivered to the server. This completes the transaction.

The server will release any resources, such as record locks, (ﬂ
retained by the transaction. ‘

4,5.8 The COM-R (Commit Response) Message

- Source: Client
- Function: to confirm the completion of the transaction.

- Contents: none.

- Sending Actions: A valid R-COMMIT Response causes this message
to be sent,

- Receiving Actions: The receiver causes an R-COMMIT Confirm to
be delivered to the client. This terminates the transaction
and leaves the connection in the Connected state.

4,5.9 The RBK (Rollback) Message ‘3

- Source: Client

- Function: To abort the transaction by requesting that the

server return the database to its state at the start of the
1 transaction.

- Contents:
empty .

- Sending Actions:

The message is sent following an R-ROLLBACK Request. Any
messages ahead of the RBK may be discarded. All messages
received from the server are discarded until the request is

63 -

acknowledged. If no RBK-R is forthcoming the request may be
repeated.

- Receiving Actions:

If this is the first RBK for this transaction the receiver
causes an R-ROLLBACK indication to be delivered to the server.
It may also discard any reply messages waiting to be
dispatched. If an RBK has already been received this one may
be discarded,

The server is required to roll back the transaction and cause
an R-ROLLBACK response.

4.5. 10 The RBK-R (Rollback Response) Message

- Source: Server

- Function: To confirm that the transaction has been rolled
back.

- Contents:
Diagnostic.

- Sending Actions:

The RBK-R is sent following an R-ROLLBACK response primitive.
The server is returned to the Connected state outside a
transaction context.

- Receiving Actions:
An R-ROLLBACK Confirm is delivered to the Client. The

connection is then in the connected state outside a transaction
context,

4.5. 11 The RBP (Rollback Please) Message

- Source: Server

- Function: to inform the Client that the transaction has been
aborted by the Server.

- Contents:
Diagnostic

- Notes on Contents:

The diagnostic indicates whether restarting the transaction
will inevitably repeat the failure or may possibly succeed.

- Sending Actions:

64 -

The message is sent following an R-ROLLBACK-PLEASE Request.
The server may delete any messages that are awaiting dispatch
ahead of the RBP, and will ignore any messages other than RBK
and disconnection messages, that would otherwise be allowed.

- Receiving Actions:

An R-ROLLBACK-PLEASE Indication is delivered to the Client.
The Client must issue an R-ROLLBACK Request in order to
re-synchronise the service and clear any unwanted messages.

4,6 BULK DATA TRANSFER

This section describes the protocol elements concerned with transfer
of bulk data. When bulk transfer mode is entered the roles of the
protocol machines change from Client and Server to Sender and
Receiver. However the change to the new roles does not happen

simultaneously at each end.

Bulk data transfer normally occurs within a transaction. In this case

the whole transfer may be rolled back, but the transfer must be
terminated before rollback can be invoked.

The messages defined in this section are shown in the table below:

Function Service Primitives Messages
Start Transfer R-APPEND-TABLE APT
APT-R
R-READ-TABLE RDT
RDT =R
Normal R-END-READ ERD
Termination R-END-TRANSFER ETR
ETR-R
Sending data R-DATA DAT
R-CHECK CHK
CHK-R
Error Control R-CANCEL CAN
CAN-R
R-RESTART RST
RST-R

Append Table
Append Table Response

Read Table
Read Table Response

End Read
End Transfer
End Transfer Response

Data
Check
Check Response

Cancel

Cancel Response
Restart

Restart Response

()

4,6.1

4.6.2

4.6.3

-65 -

The APT (Append Table) Message

Source: Client
Function: to request entry into Bulk Transfer sending mode.

Contents:
Table Name

Sending Actions: The message is sent following a valid
R-APPEND-TABLE Request. The checkpoint counter is set to zero.

Receiving Actions: An R-APPEND-TABLE Indication is delivered to

the Server. The server is expected to respond with an
R-APPEND-TABLE Response,

The APT-R (Append Table Response) Message

Source: Server
Function: To accept or reject an APT request.

Contents:
Diagnostic

Sending Actions:

The message follows an R-APPEND-TABLE Response primitive. If
the diagnostic indicates Success, the Server becomes a Receiver
and is in the Receiving state. If the diagnostic indicates
failure the state reverts to that prior to the APT, i.e.
Transaction Idle.

Receiving Actions:

The receiver delivers an R-APPEND-TABLE Confirm to the Client.
If the diagnostic indicates Success the Client becomes the
Sender and is in the Sending state. If the diagnostic indicates
failure the state reverts to that prior to the APT, i.e.
Transaction Idle.

The RDT (Read Table) Message

Source: Client

Function: to request entry into Bulk Transfer mode and specify
the data to be transferred to the Client.

Contents:
Table Name
Select Expression

4h.6.4

4,6.5

Sending Actions: The message is sent following a valid
R-READ-TABLE Request. The checkpoint counter is set to zero.

Receiving Actions: An R-READ-TABLE Indication is delivered to
the Server. The server is expected to respond with an
R-READ-TABLE Response.

The RDT-R (Read Table Response) Message

Source: Server
Function: To accept or reject an RDT request.

Contents:
Diagnostic

Sending Actions:

The message follows an R-READ-TABLE Response primitive. If the
diagnostic indicates Success, the Server becomes a Sender and is
in the Sending state. If the diagnostic indicates failure the
state reverts to that prior to the RDT, i.e. Transaction Idle.

Receiving Actions:

The receiver delivers an R-READ-TABLE Confirm to the Client. If
the diagnostic indicates Success the Client becomes the Receiver
and is in the Receiving state. If the diagnostic indicates
failure the state reverts to that prior to the RDT, i.e.
Transaction Idle.

The ERD (End Read) Message

Source: Sender, but only when the Sender is the Server.,

Function: To indicate that all data has been sent and to request
termination of the transfer.

Contents: none

Sending Actions: Sent following an R-END-READ Request. The

sender then waits for an ETR message to terminate the bulk
transfer.

Receiving Actions: The receiver delivers an R-END-READ
indication to the Receiver Entity, which is also the Client.
The client is expected to terminate the transfer with an
R-END-TRANSFER request, but it may still acknowledge
checkpoints, request cancellation or request restart.

l ~67 -

’ 4,6.6 The ETR (End Transfer) Message
- Source: Sender or Receiver, Client

- Funetion: To return from Bulk Transfer mode to normal
Client/Server working.

- Contents:
Diagnostic

- Notes on Contents:

The diagnostic parameter is only used following a read, i.e.
when the Client is also the Receiver,

- Sending Actions:

The message is sent following an R-END-TRANSFER request. When

b the Client is the Sender this is used to indicate the end of
data. If the Client is the Receiver it reverts to the Client

machine at this point; otherwise it must remain in the Sender
role because receipt of the data has not been confirmed.

- Receiving Actions:

An R-END-TRANSFER Indication is delivered to the Server. The |
server is expected to reply with an R-END-TRANSFER Response.
However if the server is also the receiver it should first
secure the data received, and it may send checkpoint
acknowledgements first, or request restart or cancel the
transfer.

4,6.7 The ETR-R (End Transfer Response) Message

- Source: Server

" - Function: To confirm the completion of Bulk Transfer and to |
revert to normal Client/Server working.

- Contents:
‘ Diagnostic

- Notes on Contents: |

The diagnostic parameter is only used following an append i.e.
when the Server is also the Receiver.

- Sending Actions: The message follows an R-END-TRANSFER Response.
It leaves the Server in the Transaction Idle State.

- Receiving Actions: An R-END-TRANSFER Confirm is delivered to the
Client, which is now in the Transaction Idle state.

&

-68 -

4,6.8 The DAT (Data) Message

- Source: Sender

- Function: To carry user data.

- Contents:
User Data

- Sending Actions:
Sent following an R-DATA Request primitive. Normally a sequence
of DAT messages will be sent. The order of these, and any

interspersed CHK messages is preserved by the RDAP and
Presentation Services.

- Receiving Actions: An R-Data Indication is delivered to the
Receiver.,

4,6.9 The CHK (Check) Message

Source: Sender

- Function: To mark a possible restart point in the data flow.

- Contents:
Checkpoint Number

- Sending Actions:

Sent following an R-CHECK request at the exact position in the
data flow. The checkpoint number is provided by the sender.
The protocol machine keeps a count of the number of
unacknowledged checkpoints outstanding.

- Receiving Actions:

An R-CHECK indication to the receiver. The receive is expected
to mark the checkpoint and to acknowledge reciept of the check
when it has been recorded in secure store. There is no
requirement for immediate acknowledgement.

4,6.10 The CHK-R (Check Response) Message

- Source: Receiver

- Function: To acknowledge the securing of a checkpoint.

4,6.11

’ h,6.12

-69 -

Contents:
Checkpoint Number

Sending Actions: Sent, against the data flow, following an
R-CHECK Response primitive.

Receiving Actions: The CHK-R receiver decrements the count of
outstanding checkpoints and delivers an R-CHECK Confirm to the
Sender .

The CAN (Cancel) Message

Source: Sender or Receiver

Function: To abort the transfer, but to leave the association
connected and within the transaction.

Contents:
Diagnostic

Sending Actions:

Sent as a result of an R-CANCEL Request. The protocol machine
first deletes any messages waiting to be dispatched and any

data, check or restart indications waiting to be delivered. If

the request clashes with an incoming CAN message, then the
Senders CAN wins. The protocol machine discards any further
incoming messages, except connection termination messages,
until the CAN is accepted.

Receiving Actions:

If the receiver is the Bulk Transfer Sender and it is waiting
for a CAN-R the CAN is discarded. Otherwise any messages
awaiting dispatch are discarded and an R-CANCEL indication is
delivered.

The CAN-R (Cancel Response) Message

Source: Sender or Receiver

Function: to acknowledge cancellation of the transfer and
return the connection to normal Client/Server working.

Contents:
Diagnostic

Sending Actions:

The CAN-R is sent following an R-CANCEL Response primitive.

The protocol machine then reverts to the Transaction Idle state
of the Client or Server machine. The next protocol exchange is
expected to be initiated by the Client.

ST0 =

- Receiving Actions:
An R-CANCEL Confirm is delivered to the recipient and the state

reverts to Transaction Idle within the Client or Server
machine.

4,6.13 The RST (Restart) Message

- Source: Sender or Receiver
- Function: To request restart from a checkpoint.

- Contents:
Restart Point

- Notes on Contents:

The restart point is the checkpoint number at which the

transfer is to resume. The Sender may offer a restart point,
but the Receiver may decide on an earlier one.

- Sending Actions:

Sent following an R-RESTART Request. This interrupts the
transfer of data and checkpointing messages and causes the
protocol machine to disregard any that are waiting for dispatch
or delivery and any received until the restart is acknowledged.

If RST messages clash the Receiver message wins., If an RST
message clashes with a CAN then the latter wins.

- Receiving Actions:

The receiver delivers an R-RESTART Indication and awaits a

response. Any data or check messages waiting for dispatch or
delivery may be discarded. (a

4.6.14 The RST-R (Restart Response) Message

- Source: Sender or Receiver
- Function: To acknowledge the restart request.

- Contents:
Restart Point
Diagnostic

- Notes on Contents:

The diagnostic may contain a warning, but refusal of a restart
request should be accomplished by a CAN.

- Sending Actions:

Sent following a R-RESTART Response. If the RST-R is from the
Sender it may be followed immediately by DAT data messages.
The count of outstanding checkpoints is set back to zero.

- Receiving Actions:

An R-RESTART Confirm is delivered and the state reverts to
Sending or Receiving. If the receiver is the Sender the count
of outstanding checkpoints is set to zero.

4.7 GROUPING OF RDAP ELEMENTS

In general, the protocol is described as if the Client protocol machine
waits for a response to each message it sends to the server before
initiating the next protocol structure. This method of description

’ simplifies the explanation of the protocol. However the RDAP permits
the Client to group together a sequence of messages to mitigate the
effect of end to end delays. Such a sequence is termed a Group and is
delimited by Begin Group and End Group messages.

The grouping of protocol structures corresponds to the grouping of
service structures described in 3.5. The effect of the grouping
mechanism on the protocol is briefly described here. The same
considerations apply to many messages and it would be confusing to
repeat the description in every case.

- Effects at the Client

First, it is necessary to verify that a request message can be

legally part of the current group before issuing the message.

Second, the state machine cannot immediately be progressed to the

pending state: the new state that the sending of the message should

l cause 1is enqueued in a first-in-first-out queue. The enqueued states
are successively dequeued as successful response messages are

\’ received and processed. The queue is purged when the end of group

response is received.

- Effects at the Server

The only effect at the server is when a failed response is issued;

then, all incoming request messages are ignored by the Server until
the next end of group message.

The messages that control grouping are:

; Function Service Primitives Messages
Grouping R-BEGIN-GROUP BGG Begin Group
R-END-GROUP EGR End Group

EGR-R End Group Response

T2 =

4.7.1 The BGG (Begin Group) Message

- Source: Client

- Function: To mark the start of a group of protocol elements.,
- Contents: none.

- Sending Actions:

Sent following an R-BEGIN-GROUP Request. Groups may not be
nested, so the protocol machine may not already be within a
group. The sender sets up a queue for pending states for the
protocol elements that will follow within the group.
Confirmations from the Server need not be delivered to the
Client until the R-END-GROUP request is received.

- Receiving Actions:

The protocol machine delivers an R-BEGIN-GROUP indication to the
Server and enters group mode. In this mode messages within the
group are indicated to the server in the normal way, until any
event occurs that invalidates the rest of the group. If this
happens further incoming messages are discarded until the end of
the group is reached.

4,7.2 The EGR (End Group) Message

- Source: Client

- Function: To indicate the end of a group.

- Contents: none.

- Sending Actions:
Sent following an R-END-GROUP Request. This terminates the
group and may be used to force delivery of the messages within
the group.

- Receiving Actions:
An R—END-GROUP Indication is delivered to the Server. This

terminates the group mode. The server is expected to cause an
R-END-GROUP Response.

4.7.3 The EGR-R (End Group Response) Message

- Source: Server

4.8

T8 =

- Function: to acknowledge termination of the group and also to
terminate a group early.

- Contents: none
- Sending Actions:

Sent following an R-END-GROUP Response. This may occur ahead of
the EGR if the group has to be terminated because of an error,
or unfavourable database status. The Server will then ignore

incoming messages until the EGR is received. This will not be
delivered to the Server.

- Receiving Actions:

If the EGR-R is received ahead of the R-END-GROUP Request the

protocol machine will ignore any further Requests until the end
of the group. An R-END-GROUP Confirm is delivered to the
Client.

FATLURE AND RECOVERY WITHIN THE RDA SERVICE

It is posssible for a connection to be abruptly terminated by the
Client, the Server or by the failure of the Presentation Service.
After failure, provided that level 2 or level 3 CCR Quality of
R-Service has been negotiated, it is possible to establish a new
connection and continue with the association. Indeed, for application
and database integrity reconnection is required whenever the
disconnection leaves the database, or the Client, in a Secure state.

When the disconnection is abrupt, messages in transit may be lost and
the two application entities may have different understandings of the
state of the service. After reconnection it is necessary for them to
synchronise their states before resumption of normal working.

The initiative for reconnection normally comes from either the Client
or the Receiver, but the Server and Sender may also attempt
reconnection. Consequently there may be clashes and confusion, since
failure may occur when the application processes are changing roles.

The messages involved in failure and recovery are shown below:

Function Service Primitives Messages

User Abort R-DISCONNECT DIS Disconnect
Provider Abort P-ABORT PAB Presentation Abort
Reconnect R-RECONNECT RCN Reconnect

RCN-R Reconnect Response

T4 -

This section first describes the messages, then continues with an
explanation of the failure and resumption states.

4.8.1

4,8.2

4.8.3

The DIS (Disconnect) Message

Source: Client, Server, Sender or Receiver
Function: to unilaterally close down the connection
Contents:

Suspend

User data

Notes on Contents:

Suspend indicates whether an attempt to reconnect may be
successful.,

The user data field is of limited size. It may be used to carry
a reason for the disconnection, such as protocol error.

Sending Actions:

The messsage follows an R-DISCONNECT Request. The protocol
machine discards any messages waiting to be sent or delivered,
apart from a DIS or PAB. If either of these is present it takes
priority.

Receiving Actions:
On receipt of a DIS the receiving entity discards all messages

waiting to be sent or delivered, and terminates the Presentation
Connection.

The PAB (Presentation Abort) Message

Source: Presentation Service.
Function: to indicate the loss of the Presentation Connection.
Contents: none.

Receiving Actions:

All messages awaiting dispatch or delivery are discarded and the
Service User is informed by delivery of an R-ABORT Indication.

The RCN (Reconnect) Message

Source: Client, Sender, Server or Receiver,

4.8.4

=75 =

- Function: To request establishment of a new connection which is
a continuation of a previous Association,

- Contents:
Called Address
Calling Address
Association ID
Class of R-=Service
Quality of R-Service
Identity of Client
Current Account
Role
User data

- Notes on Contents:

The role parameter indicates which of Client, Server, Sender or
Receiver is attempting to re-establish the association. The

other parameters are the same as for the CON Connect message.
However the values of Called Address, Class of Service and

Quality of Service must be the same as those negotiated for the
prior connection.,

- Sending Actions:
Sent following a valid R-RECONNECT Request.

- Receiving Actions:
If the association can be recovered an R-RECONNECT Indication is
delivered to the Server. Otherwise the request is refused using

an RCN-R with a Failure diagnostic.

It is possible for RCN messages to clash. In this case the
message from the Receiver takes priority, but a message from a
Client wins against one from a Server,

The RCN-R (Reconnect Response) Message

- Source: Client, Server, Sender or Receiver

Function: to accept or refuse a reconnection request.

Contents:
Diagnostic
Responding Address
Association Identifier
Class of R-Service
Quality of R=Service
User Data

- Notes on Contents: These are the same as for CON-R.

-76 -

- Sending Actions:

Sent either because the recipient of the RCN message cannot
establish an entity to receive the R-RECONNECT Indication, or as
a result of an R-RECONNECT Response. If the diagnostic
indicates failure the connection is not established, otherwise
the association has a new connection and both entities are in a
resumption state that depends on the state of the service when
it was disrupted.

- Receiving Actions:

An R-RECONNECT Confirm is delivered and the protocol entity is
in a re-connected resumption state.

4,8,5 Failure and Recovery States

This section details the possible states of the protocol machines

at the time of failure. 1In all cases at least one machine must ‘
attempt reconnection, and this machine is identified, although in

some cases machine may do so. The expected action to effect
resynchronisation is also explained.

| Machine | Regime | State Code | Notes l
CL	Connected	F1	Outside transaction, inc STR-P
CL	Transact	F2	In transaction, inc SEC-P
CL	Secure	F3	Idle state I
€L	Secure	FY	Pending Commit or Rollback
[CL	Transact	F5	Pending Secure and Commit
cCL	Transact	F6	Pending Read Table, RDT-P l
cL	Transact	F16	Pending Append Table, APT-P
cL	Transact	F7	After RDT, ETR-P I
SV	Connected	F1	Outside Transaction
sV	Transact	F2	In transaction,inc RBP-P
sV	Secure	F3	Idle state
sv	Transact	Fl	Pending Secure and Commit RP
SN	Sending l F8	Sending, inc RST and RST-P	
SN	Sending	F9	(if SV) data sent, unsecure I
SN	Sending	F10	(if CL) data sent, unsecure
SN	Sending	F11	Cancelled by sender, CAN-P
			I
RV	Receiving	F8	Reving, inc RST, RST-P I
RV	Receiving	F9	(if CL) ERD, not yet secure
RV	Receiving	F10	(if SV) ETR, not yet secure
RV	Receiving	F11	Cancelled by receiver, CAN-P

Table 4.8.1 Failure States

I -

The table above lists the failure states. The same table appears
in the formal description, Appendix E. The text below lists the
combinations of failure states that can occur, and the actions
needed to effect resynchronisation.

Combination Number: 1 Brief Description: CL.F1 SV.F1
Explanation: Both machines outside a transaction.
Resynchronisation Sequence:

Client attempts reconnection; there is no guarantee that the last

message sent was delivered so the Client must repeat it and may get
a failure or warning diagnostic.

Combination Number: 2 Brief Description: CL.F1 SV.F2
Explanation: Client has attempted to start a transaction, and has
succeeded, but has not received confirmation.

Resynchronisation Sequence

Client attempts reconnection; the Start Transaction is repeated.
The Server aborts its current (and unstarted) transaction and
starts the new one.

Combination Number: 3 Brief Description: CL.F2 SV.F2

Explanation: Failure during a transaction, but outside a bulk
transfer.,

Resynchronisation Sequence

Note that the DBCS may rollback the transaction and release any
(implicitly) locked resources as soon as the failure is notified to

it. The Client attempts reconnection, and follows this with an
immediate Rollback.

Combination Number: U4 Brief Description: CL.F2 SV.F3
Explanation: Client has Secure Pending, Server is Secure.

Resynchronisation Sequence

Client and Server both attempt reconnection. If the Client
succeeds, and it would win a clash, it will rollback the

transaction. If the server succeeds it will repeat the SEC-R and
the Client may either Commit or Rollback the transaction.
Combination Number: 5 Brief Description: CL.F3 SV.F3

Explanation: Failure when a transaction is Secure,

78 -

Resynchronisation Sequence
The Server attempts reconnection and repeats the SEC-R.
Combination Number: 6 Brief Description: CL.F4 SV.F3

Explanation: Client has secured the transaction, but now has a
Commit or a Rollback pending; the Server is Secure.

Resynchronisation Sequence

Both Client and Server attempt Reconnection, if there is a clash
the Client wins. The Client repeats the Commit or Rollback, which

is acted upon, or if the server recoanects it repeats the SEC-R and
causes the Client to repeat the Commit or Rollback.
Combination Number: 7 Brief Description: CL.F4 SV.F1

Explanation: Client has secured the transaction and is waiting for (
confirmation of a Commit or Rollback. Server has completed and is

outside the transaction context.

Resynchronisation Sequence

Client attempts reconnection and repeats the Commit or Rollback.
The server responds with a Commit or Rollback response with a
Warning Diagnostic.

Combination Number: 8 Brief Description: CL.F5 SV.F2

Explanation: Client has Secure-and-Commit pending, Server is in
normal Transaction context.

Resynchronisation Sequence

Client attempts reconnection and repeats the Secure-and-Commit.
This is delivered to the Server. (J‘

Combination Number: 9 Brief Description: CL.F5 SV,.F1

Explanation: Client has Secure-and-Commit Pending, Server has
completed the Transaction.

Resynchronisation Sequence
The Client attempts reconnection and repeats the Secure-and-Commit.
The server repeats its previous response confirming the fate of the

transaction.

Combination Number: 10 Brief Description: CL.F6 SV.F2

Explanation: Client has Read Table pending, Server is still within
transaction and not in bulk transfer mode.

=79 =

Resynchronisation Sequence

The Client attempts reconnection. It then issues a CAN Cancel
which is responded to with a CAN-R. Both machines are then in
Transaction Idle state with the Client in control.

Combination Number: 11 Brief Description: CL.F6 SN.F8

Explanation: Client's Read Table has not yet been confirmed, but
the Server has already entered the Sending state.

Resynchronisation Sequence

The Client attempts reconnection. It then issues a CAN Cancel
which is responded to with a CAN-R. Both machines are then in
Transaction Idle state with the Client in control.

Combination Number: 12 Brief Description: CL.F16 SV.F2

Explanation: Client is waiting for response to Append Table, Server
has not yet received or acted upon it.

Resynchronisation Sequence

The Client attempts reconnection. It then issues a CAN Cancel
which is responded to with a CAN-R. Both machines are then in
Transaction Idle state with the Client in control.

Combination Number: 13 Brief Description: CL.F16 RV.F8

Explanation: Client is waiting for response to Append Table, Server
has entered Receiving state.

Resynchronisation Sequence

The Client and Receiver both attempt reconnection. If the Client
succeeds it then issues a CAN Cancel which is responded to with a
CAN-R. Both machines are then in Transaction Idle state with the
Client in control. However if the Receiver wins, the Client will
be in Sending state and the Receiver will issue a RST Restart.

Combination Number: 14 Brief Description: SN.F8 RV.F8

Explanation: Bulk transfer, and possibly restarting, are in
progress at both ends of the connection.

Resynchronisation Sequence

The receiver must attempt reconnection, and the sender may do so if
it is also the Client. The Receiver wins if there is a clash.

-80 -

After reconnection either a Restart is negotiated or the transfer
is cancelled.

Combination Number: 15 Brief Description: SN.F8 RV.F11

Explanation: Sender is sending but the Receiver has cancelled.
Resynchronisation Sequence

The receiver must attempt reconnection, and the sender may do so if
it is also the Client. The Receiver wins if there is a clash. The
Receiver's action depends on its identifying the remote entity as
the Sender and therefore knowing that the Cancel message had not
been received. 1In this case it ignores any attempt to restart and
issues another CAN.

Combination Number: 16 Brief Description: RV.F11 CL.F2

Explanation: The Receiver has cancelled, but this has not been (
confirmed, although the CAN has caused the Sender to revert to the
Client.

Resynchronisation Sequence

The Receiver attempts reconnection, and so does the Client. TIn
this special case the Client wins if there is a clash, and the
Receiver reverts to Transaction Idle status. However if the
Receiver succeeds in establishing connection its subsequent CAN
will be responded to with a CAN-R; the Client will then Rollback
the transaction.

Combination Number: 17 Brief Description: RV.F11 SV.F2
Explanation: The Receiver has cancelled, but this has not been
confirmed, although the CAN has caused the Sender to revert to the
Server,

Resynchronisation Sequence

The Receiver attempts reconnection and issues a CAN which is
responded to with a CAN-R. Both entities are then in Transaction
Idle state.

Combination Number: 18 Brief Description: SN.F11 RV.F8

Explanation: Sender has cancelled but the Receiver has not received
the CAN and is still receiving.

Resynchronisation Sequence

The receiver must attempt reconnection, and the sender may do so if
it is also the Client. The Receiver wins if there is a clash. The

-

receiver will attempt a Restart and be met with a CAN. If the
Sender establishes the connection it will immediately reissue the
CAN.

Combination Number: 19 Brief Description: SN.F11 CL.F2

Explanation: Sender has cancelled but not received confirmation,
Receiver has already reverted to Client, Transaction Idle.

Resynchronisation Sequence

Client and Sender both attempt reconnection, the Client wins if
there is a clash. If the Sender establishes the connection it will
issue a CAN, which is confirmed by the Client. If the Client
establishes the connection the Sender reverts to the Server,
Transaction Idle state.

Combination Number: 20 Brief Description: SN.F11 SV.F2
Explanation: The Sender has cancelled but has not received
confirmation, and the Receiver has reverted to the Server,
Transaction Idle state.

Resynchronisation Sequence

The Sender attempts reconnection and repeats the CAN, which results
in a CAN-R and returns the Sender to the Client role.

Combination Number: 21 Brief Description: SN.F9 RV.F8

Explanation: Sender (server) has sent all the data, but the
receiver has not received the ERD.

Resynchronisation Sequence

Receiver attempts reconnection. The Sender awaits End Transfer,
but the receiver will request Restart.

Combination Number: 22 Brief Description: SN.F10 RV.F8

Explanation: Sender (client) has sent all the data, but the
receiver has not received the ETR.

Resynchronisation Sequence

Receiver and sender may both attempt reconnection. If there is a
clash the receiver wins. If the receiver connects it requests
Restart and should succeed. If the Sender connects it repeats the
ETR. This is delivered as an End Transfer Indication, but there
may have been data loss and the receiver should request a Restart.

=82 -

Combination Number: 23 Brief Description: SN.F9 RV.F9Q

Explanation: Sender (server) has sent End Read, the Receiver has
received the Indication and may or may not have secured the data.

Resynchronisation Sequence
The Receiver attempts reconnection and awaits the End Transfer, or
possibly Restart, Request from the Service user.

Combination Number: 24 Brief Description: SN.F10 RV.F10

Explanation: the Sender (Client) has sent the ETR End Transfer.
The indication has been delivered and the server may or may not
have secured the data.

Resynchronisation Sequence

Sender and Receiver may both attempt reconnection. If they clash (
the Receiver wins. When the Receiver connects it delivers an End

Transfer Indication to the Server. This may result in an End

Transfer Response or in a Restart Request. If the Sender makes the
connection it repeats the ETR.

Combination Number: 25 Brief Description: SN.F10 SV.F2
Explanation: Sender (Client) has sent the ETR End Transfer, but not
received confirmation, but the receiver has already reverted to the

Server role.

Resynchronisation Sequence

The Sender attempts reconnection and repeats the ETR. The server
replies with an ETR-R, Success with Warning.

Combination Number: 26 Brief Description: SN.F9 CL.F7
Explanation: Client has secured a Read Table and sent an ETR, the (“
Sender (Server) is still awaiting the ETR. '

Resynchronisation Sequence
The Client reconnects and repeats the ETR.
Combination Number: 27 Brief Description: CL.F7 SV.F2

Explanation: The Client has sent the End Transfer and is waiting
for a response. This has been sent but not received.

Resynchronisation Sequence

The Client reconnects and repeats the ETR. This gets the response
Success with Warning.

4.9

-83 -

THE DIAGNOSTIC PARAMETER

The diagnostic parameter consists of two components, the Severity and
the Reason Code. The severity indicates relevant classes of error as
follows:

Indicates Success

Indicates Success with Warning
Indicates Recoverable Error
Indicates Uncorrectable Error

w N - O

An uncorrectable error is one that will reoccur if the sequence of

events that led up to the failure is repeated, and implies at least
the failure of the operation being performed.

A recoverable error also implies a failure in the present operation,
but it is possible that the error may not reoccur if the sequence is
repeated.

A warning does not require recovery and leaves the protocol machine in
the same state as success.

The second part of the diagnostic is the Reason Code. Appendix F
contains a list of possible values and their meanings.

PRESENTATION SERVICE MAPPINGS

This section defines the representation of all messages and data
types communicated by the Presentation Service on behalf of the
RDAP.

The Presentation Service provides several alternative ways of
transferring data between its users. For each RDAP message it is
necessary to define the presentation service element to be used and
the form of data within this service element. It is also necessary
to ensure that each message type can be distinguished from messages
of other types that may be carried using the same service element.

The content of messages is defined using the Abstract Syntax Notation
One (ASN.1), see also Appendix D. The concrete transfer syntax,
which determines the possible representations for messages, is
determined by applying a set of encoding rules to the ASN.1 message
definition. Such a set of encoding rules has been defined by ISO in
ISO DP 8825. These encoding rules enable any data type defined in
ASN.1 to be encoded and to be unambiguously recognised by the
receiver,

-84 -

Table 4.10.1 below, defines the mapping of RDAP messages to
Presentation Service primitives,

RDAP Message Presentation Service Mapping

CON P-TYPED-DATA Request

CON-R P-TYPED-DATA Request

REL P-RELEASE Request

REL-R P-RELEASE Response

BGG P-TYPED-DATA Request - start

MDF typed data (see below)

MDF =R typed data

MDR typed data

MDR-R typed data

RDL typed data

RDL-R typed data |
typed data { Within group - append to P-TYPED-DATA

{ Request message (
{ Outside group - P-TYPED-DATA Request

SPR P-TYPED-DATA Request

EGR P-TYPED-DATA Request - terminate

EGR-R P-TYPED-DATA Request - terminate

STR P-SYNC-MINOR Request, User Data

STR-R P-SYNC-MINOR Response, User Data

SEC P-SYNC-MAJOR Request, User Data

SEC-R P-SYNC-MAJOR Response, User Data

SCM P-SYNC-MAJOR Request, User Data

SCM-R P-SYNC-MAJOR Response, User Data

COM P-TYPED-DATA Request

COM=-R P-TYPED-DATA Request

RBK P-RESYNCHRONISE Request, User Data
RBK-R P-RESYNCHRONISE Response, User Data

RBP P-TYPED-DATA Request

APT P-TYPED-DATA Request

APT =R P-TYPED-DATA Request

RDT P-TYPED-DATA Request

RDT-R P-TYPED-DATA Request (
ERD P-TYPED-DATA Request

ETR P-SYNC-MINOR Request, User Data

ETR-R P-SYNC-MINOR Response, User Data

DAT typed data

CHK P-SYNC-MINOR Request, User Data

CHK-R P-SYNC-MINOR Response, User Data

CAN P-RESYNCHRONISE Request, User Data
CAN-R P-RESYNCHRONISE Response, User Data

RST P-RESYNCHRONISE Request, User Data
RST-R P-RESYNCHRONISE Response, User Data

DIS P-U-ABORT

RCN P-TYPED-DATA Request

RCN-R P-TYPED-DATA Request

Table 4.10.1 Mapping of RDAP Messages to the Presentation Service

-85 -

The type of Presentation Service primitive carrying an RDAP message
assists in the identification of the RDAP message type, but messages
carried by the same Presentation Service Primitive are distinguished
from each other by the Abstract Syntax. The Abstract Syntax is
therefore presented with messages grouped according to the
Presentation Service primitive to which they are mapped.

The syntax for statements is closely related to the syntax for the
Database Language SQL and follows the definitions for messages.

4.,10.1 RDAP Abstract Syntax for Messages

RDAP-MESSAGE DEFINITIONS ::=

BEGIN

P-Typed-Data ::= CHOICE { [1] Connect, —-— CON
[2] Connect-Response, -- CON-R
[3] Begin-Group, -- BGG
(4] Define-Macro, -- MDF
[5] Define-Macro-Response, -- MDF-R
(6] Drop-Macro, -- MDR
[7] Drop-Macro-Response, -- MDR-R
[8] DL-SQL-Function, -- RDL
[9] DL-SQL-Response, -- RDL-R
[10] Still-Processing, -- SPR
[11] End-Group, -- EGR
[12] End-Group-Response, -- EGR-R
[13] Commit, -- COM
[14] Commit-Response, -- COM-R
[15] Rollback-Please, -- RBP
[16] Append-Table, -~ APT
[17] Append-Table-Response, -- APT-R
(18] Read-Table, -- RDT
[19] Read-Table-Response, -- RDT-R
[20] End-Read, -- ERD
[21] Data, -- DAT
[22] Reconnect, -- RCN
[23] Reconnect-Response } -- RCN-R

P-Release-Request ::= Release -- REL

P-Release-Response ::= Release-Response -- REL-=R

P-Sync-Minor = CHOICE {
(1] Start-Transaction, -- STR
[2] End-Transfer, -- ETR

[3] Check } -- CHK

-86 -
P-Syne-Minor-Response ::= CHOICE {
[1] Start-Transaction-Response, -- STR-R
[2] End-Transfer-Response, -- ETR-R
[3] Check-Response 1} -~ CHK-R
P-Sync-Ma jor ::= CHOICE {
[1] Secure, -~ SEC
[2] Secure-and-Commit } -— SCM
P-Sync-Ma jor-Response ::= CHOICE {
[1] Secure-Response, -~ SEC-R
[2] Secure-and-Commit-Response } -- SCM-R
P-Resynchronise ::= CHOICE ({
[1] Rollback, -- RBK
[2] Cancel, -= CAN
[3] Restart } -— RST
P-Resynchronise-Response ::= CHOICE { Q
[1] Rollback-Response, -- RBK-R
[2] Cancel-Response, -- CAN-R
[3] Restart-Response } -- RST-R
P-U-Abort ::= Disconnect

—-— Common Data Types -

Diagnostic ::= SEQUENCE {
Severity,
reason INTEGER }

Severity ¢:= ENUMERATED {
success (0)
warning (1)
| recoverable-Error(2)
uncorrectable-Error(3)

- Names —_— (
Identifier = PrintableString --Max 18 characters
Macro-Name ::= Identifier
| Parameter-Name 1= Identifier
‘ Table-Name ::= SEQUENCE {
CHOICE {Auth-ID ,NULL },
Table-Terminal-Name }
Auth-ID = Identifier

Table-Terminal -Name ::= Identifier

87 -
- Association Management -
Connect -Message ::= SEQUENCE {

Class-of-R-Service

Quality-of-R=Service

Cer

Bulk-=Transfer

Grouping

Connect-Response

Release-Message

Release-Response

Called-Address OCTETSTRING
Calling-Address OCTETSTRING
Class-of-R-Service
Quality-of-R-Service

SET {
[1] Identity-of-Client PrintableString
[2] Current-Account PrintableString
[3] User-Data OCTETSTRING

} }
SET { empty }

SET {
[1] cer
[2] Bulk-Transfer
[3]1 Grouping }

ENUMERATED {

no-cer (0), minimum-recovery (1)
commitment (2),
distributed-commitment (3) }

ENUMERATED {
none (0), without-checks (1),
with-checks (2) }

BOOLEAN

SEQUENCE {

Diagnostic,

CHOICE { SEQUENCE {
Responding-Address OCTETSTRING,
Association-Identifier OCTETSTRING,
Class-of-R-Service,
Quality-of-R-Service,

User-Data },

empty } }

SEQUENCE {
Suspend BOOLEAN,
User-Data OCTETSTRING }

SEQUENCE {
Diagnostic,
User-Data OCTETSTRING }

-88 -

- Data Definition and Manipulation Management --

Define-Macro ::= SEQUENCE {
Scope-Temporary BOOLEAN,
Interface,
Body }

Interface ::= SEQUENCE {

Macro-Name ,

Update-Parameters Parameters,
Input-Parameters Parameters,
Output-Parameters Parameters }

Parameters

SEQUENCEOF Parameter-Declaration

Parameter-Declaration

SEQUENCE { Parameter-Name, Data-Type }

Data-Type = CHOICE { [1] string-Length INTEGER,
[2] exact-Numeric-Scale INTEGER
[3] approx-Numeric-Precision INTEGER }
Body = SEQUENCEOF Statement
Statement = CHOICE {

Create-Temporary-Table,
Close-Statement,
Declare-Cursor,
Delete-Statement-Positioned,
Delete-Statement-Searched,
Fetch-Statement,
Insert-Statement,
Invoke-Statement,
Open-Statement,
Select-Statement,
Test-Statement,

, Update-Statement-Positioned, (
Update-Statement -Searched }

Define-Macro-Response

SEQUENCE {
COMPONENTSOF Diagnostic,
Extended-Diagnostic }

Extended-Diagnostic e SEQUENCEOF {
\ statement -Number INTEGER,
element-Number INTEGER,

fault-Code INTEGER }
| -~ Fault Code Convention +ve = syntax o
- 0 = unknown -
- -ve = no access -

Drop-Macro -

Drop-Macro-Response -

DL-SQL=Function -1

Data-~Values

DL-SQL-Response

Still-Processing

Start-Transaction
Transaction-ID
Start-Transaction-Response
Secure

Secure-Response :

Transaction Management and Data Manipulation

Secure-and-Commit i

Secure-and-Commit -Response
Commit

Commit-Response s
Rollback

Rollback-Response

Rollback-Please

-89

SEQUENCE {
scope-Temporary BOOLEAN,
Macro-Name }

Diagnostic

SEQUENCE {
Statement,
Data=Values

}

SEQUENCEOF ANY -- values from the

-- database

SEQUENCE {
COMPONENTSOF Diagnostic,
CHOICE {

[1] Extended-Diagnostic,
[2] Data-Values } }

time INTEGER

Transaction-ID

OCTETSTRING

empty
empty

SEQUENCE {
COMPONENTSOF Diagnostic,
Transaction-ID }

Transaction-ID

Diagnostic

empty

empty
empty

Diagnostic

Diagnostic

-90 -

- Bulk Transfer -

Append-Table ::= Table-Name

Append-Table-Response ::= Diagnostic

Read-Table ::= CHOICE { Table-Name,

Select Expression }

Read-Table-Response ::= Diagnostic

End-Read ::= empty

End-Transfer ::= CHOICE { Diagnostic,
empty }

End-Transfer-Response ::= CHOICE { Diagnostic,
empty }

Data ::= SEQUENCE {

Rows INTEGER,
SEQUENCEOF {Row } }

Row ::= SEQUENCEOF Column-Value
Column-Value ti= ANY
Check ::= Checkpoint
Checkpoint t:= INTEGER
Check-Response ::= Checkpoint
Cancel ::= Diagnostic
Cancel -Response ::= Diagnostic
Restart ::= Restart-Point
Restart-Point ::= INTEGER
Restart-Response ::= SEQUENCE {
COMPONENTSOF Diagnostic,
Restart-Point }
- Grouping -
Begin=Group 1= empty
End-Group = empty

End-Group-Response

empty

4,10.2

-91 -
e Failure and Recovery of the Service -
Disconnect ::= SEQUENCE {

Suspend BOOLEAN,
User-Data OCTETSTRING }

Reconnect ::= Connect
Reconnect -Response ::= Connect-Response
END

Abstract Syntax for RDAP Statements

RDAP-STATEMENTS tR=

BEGIN

Statement t:= CHOICE { [1] Create-Temporary-Table,
[2] Close-Statement,
[3] Declare-Cursor,
(4] Delete-Statement-Positioned,
[5] Delete-Statement-Searched,
[6] Fetch-Statement,
(7] Insert-Statement,
[8] Invoke-Statement,
(9] Open-Statement,
[10] Select-Statement,
[11] Test-Statement,
[12] Update-Statement-Positioned,
[13] Update-Statement-Searched }
Create-Temporary-Table ::= SEQUENCE { Table-Name,
SEQUENCEOF SEQUENCE
{Colum-~Name, Data-Type } }

Close=Statement Cursor-Name

Declare-Cursor = SEQUENCE { Cursor-Name,
Select-Expression }
Delete-Statement-Positioned ::= SEQUENCE { Table-Name,
Cursor-Name }
Delete-Statement-Searched ::= SEQUENCE { Table-Name,

CHOICE { Search-Condition, empty } }

Fetch-Statement SEQUENCE { Cursor-Name,

Parameter-List }

Parameter-L ist

SEQUENCEOF Parameter-Name

LG8 =

-- Within an RDL, Parameter-List is empty. It is used in Macros

Insert-Statement ::= SEQUENCE {Table-Name,

CHOICE { Column-List, NULL }
CHOICE { Value-List, Query-Specification }
}

Invoke-Statement ::= SEQUENCE { Macro-Name, SEQUENCEOF
parameter-Value ANY }

Open-Statement Cursor-Name

Select-Statement SEQUENCE { All BOOLEAN, Select-List,

Parameter-List, Table-Expression }

Test-Statement .+ =SEQUENCEOF CHOICE {
[1] error-code INTEGER,
[2] error-range SEQUENCE {

low INTEGER, high INTEGER } } '
Update-Statement-Positioned ::= SEQUENCE ({
Table-name, Cursor-name,
SEQUENCEOF Set-Clause }
Update-Statement -=Searched ::= SEQUENCE { Table-Name,

SEQUENCEOF Set-Clause,
CHOICE { Search-Condition, NULL } }

- Common Data Types -

= Names i

Identifier ::= Printable String -- Max 18

Cursor -Name ::= Identifier

Macro-Name ::= Identifier (
Parameter -Name ::= Identifier

Table-Name ::= SEQUENCE {

CHOICE {Auth-ID ,NULL },
Table-Terminal-Name }

Auth-ID = Identifier
Table-Terminal -Name = Identifier
Correlation-Name = Identifier
Colum-Name = Identifier

-

Data Type

Data-Type

n

- Selection

Select-Expression it

Query-Term tos

Sort-Spec teE

Query-Spec $v=

Select-List 1=

Table-Expression I

Table-Reference -

Column-Spec $eE

Search-Condition tez

Boolean-Term tis

<03 =

CHOICE { [1] string-Length INTEGER,
[2] exact-Numeric-Scale INTEGER,
[3] approx-Numeric-Precision INTEGER }

SEQUENCE {

SEQUENCEOF Query-Term,

SEQUENCEOF Sort-Spec -- may be --
} -- empty --

CHOICE {

Query-Spec,

SEQUENCEOF Query-Term }

SEQUENCE { asc BOOLEAN 5
CHOICE { INTEGER, Column-Spec } }

SEQUENCE {
distinet BOOLEAN,
Select-List,
Table-Expression }

CHOICE {
SEQUENCE OF Value-Expression,
all NULL }

SEQUENCE {
SEQUENCEOQF Table-Reference,
SET { [1] Search-Condition OPTIONAL,
- Where Clause --
[2] SEQUENCEOF Column-Spec

OPTIONAL, == Group by --
[3] Search-Condition OPTIONAL }
-- Having Clause -- }
SEQUENCE {
Table-Name,

CHOICE { Correlation-Name, NULL} }

SEQUENCE { CHOICE { Correlation-Name,
NULL },
Column-Name }

CHOICE { Boolean-Term, [3] SEQUENCEOF
Boolean-~Term }

CHOICE { Boolean-Factor, [2] SEQUENCEOF
Boolean-Factor }

Boolean-Factor

Boolean-Primary

Predicate

Comparison

Comp-o0p

Between

Quantified

Isin

Like

Exists
Null

Sub-Query

Value-Expression

SEQUENCE { not BOOLEAN, Boolean-Primary}

CHOICE { [1] Search-Condition,
COMPONENTSOF Predicate }

CHOICE {

[2] Comparison,
[3] Between,
(4] Quantified,
[5] Isin,

[6] Like,

[7] Exists,

(8] Null }

SEQUENCE { Comp-op, Value-Expression,
CHOICE { Value-Expression, Sub-Query } }

ENUMERATED { eq(1), 1t(2), 1le(3), gt(l),
ge(5), ne(6) }

SEQUENCE { not BOOLEAN,
sub ject Value-Expression,
low-value Value-Expression,
high-value Value-Expression }

SEQUENCE { all BOOLEAN,
Comp-op,

Value-Expression,
Multi-Set-Value-Expression }

SEQUENCE { not BOOLEAN,
Value-Expression,
Multi-Set-Value-Expression }

SEQUENCE { not BOOLEAN,
Column-Spec, OCTETSTRING }

Sub-Query
SEQUENCE { not BOOLEAN, Column-Spec }

SEQUENCE {

distinct BOOLEAN,

CHOICE { [1] Value-Expression, [2] NULL
- i.e, all -- }

Table-Expression }

CHOICE { Term, [1] SEQUENCE
{ Term, SEQUENCEOF SEQUENCE
{ minus BOOLEAN, Term } } }

Term

Factor

Primary

Value-Spec

Column=Spec

Function-Spec

All-=Function

Distinct-Function

Function

CHOICE { Factor [2] SEQUENCE
{ Factor, SEQUENCEOF SEQUENCE
{ recip BOOLEAN, Factor } } }

SEQUENCE { minus BOOLEAN, Primary }

CHOICE { COMPONENTSOF Value-Spec,
[5] Column-Spec,
COMPONENTSOF Function-Spec,
[9] Value-Expression }

CHOICE { [1] Parameter-Name,
[2] Embedded-Variable-Name,
[3] literal ANY,
(4] user BOOLEAN, NULL }

SEQUENCE { CHOICE
{ Table-Name, NULL }, Column-Name }
-=- correlation --

CHOICE { [6] count NULL,

[7] All-Function,

[8] Distinct-Function }

SEQUENCE { Function, Value-Expression }
SEQUENCE { Function, Column-Spec }

ENUMERATED { average (1), max (2),
min (3), sum (4), count (5) }

-96 -

APPENDICES

APPENDIX A

BRIEF DESCRIPTION OF THE REFERENCE MODEL OF OPEN SYSTEMS INTERCONNECTION

T
|
i
|
|
|

Rl SCOPE
This appendix is not an integral part of the standard.
This appendix provides a brief description of the Reference Model
of Open Systems Interconnection,

A.2 GENERAL DESCRIPTION

A2.1 Introduction

The Reference Model of Open Systems Interconnection provides a
common basis for the co-ordination of the development of new
standards for the interconnection of systems and also allows
existing standards to be placed within a common framework. The
model is concerned with systems comprising terminals, computers
and associated devices and the means of transferring information
between these systems.

A.2.2 Overall perspective

The model does not imply any particular systems implementation,
technology or means of interconnection, but rather refers to the
mutual recognition and support of the standardized information
exchange procedures.

A.2.3 The Open Systems Interconnection environment

Open Systems Interconnection is not only concerned with the
transfer of information between systems (i.e. with

, communication), but also with the capability of these systems to
interwork to achieve a common (distributed) task. The ob jective
of Open Systems Interconnection is to define a set of standards
which allow interconnected systems to co-operate.

The Reference Model of Open Systems Interconnection recognizes
three basic constituents (see fig., 1):

- application processes within an 0SI environment,
- connections which permit information exchange,

- the systems themselves.

A.2.5

-98 -

Note A.1

The application processes may be manual, computer or physical
processes.,

Management Aspects

Within the Open Systems Interconnection architecture there is a
need to recognize the special problems of initiating,
terminating, and monitoring on-going activities and assisting in
their harmonious operations as well as handling abnormal
conditions. These have been collectively considered as the
management aspects of the Open Systems Interconnection
architecture. These concepts are essential to the operation of
the interconnected open systems and therefore are included in
the comprehensive description of the Reference Model.

System A System B Aspects of system and
| | application process
| I of concern to OSI
| l

| |
| Physical interconnection media |

l l

Fig. 1 = General schematic diagram illustrating the basic
elements of Open Systems Interconnection.

Concepts of a Layered Architecture

The open systems architecture is structured in Layers. Each
system is composed of an ordered set of sub-systems represented
for convenience by Layers in a vertical sequence. Adjacent
subsystems communicate through their common interface.

A Layer consists of all subsystems with the same rank. The
operation of a layer is the sum of the co-operation between
entities in that Layer. It is governed by a set of protocols
specific to that Layer.

The services of a Layer are provided to the next higher Layer,
using the functions performed within the Layer and the services
available from the next lower Layer.

An entity in a Layer may provide services to one or more
entities in the next high Layer and use the services of one or
more entities in the next lower Layer.

90 -

A.3 THE LAYERED MODEL

The seven-Layer Reference Model is illustrated in fig.2.

LAYER peer-to-peer protocol

|

| \/
| Application --=> | | o >]
| I
Presentation --> | i e e e e i > |
| | |
Session -—> | S |
[| I |
Transport -—> | [> |
| | |
Network -=> | K== == mscm = > | |
| | | |
Link -=> | ([SR — > | |
[I | | |
Physical -=> | | Cmmmm e > | |
I I | I

/\

Physical media for interconnection

Fig. 2 - The seven-layer Reference Model and
peer-to-peer protocol.

A.3.1 The Application Layer

As the highest layer in the Reference Model of Open Systems
Interconnection, the Application Layer provides services to the
users of the OSI environment, not to a next higher layer.

The purpose of the Application Layer is to serve as the window
between communicating users of the 0SI environment through which
) all exchange of meaningful (to the users) information occurs.

The user is represented by the application-entity to its peer.

All user specifiable parameters of each communications instance
are made known to the OSI environment (and thus to the
mechanisms implementing the 0SI environment) via the Application
Layer.

A.3.2

A.3.3

A.3.4

-100 -

The Presentation Layer

The purpose of the Presentation Layer is to represent
information to communicating application-entities in a way that
preserves meaning while resolving syntax differences.

The nature of the boundary between the Application Layer and the
Presentation Layer is different from the nature of other Layer
boundaries in the architecture.

The following principles are adopted to define a boundary
between the Application Layer and the Presentation Layer:

internal attributes of the virtual resource and its
manipulation functions exist in the Presentation Layer;

- external attributes of the virtual resource and its
manipulation functions exist in the Application Layer;

- the functions to use the services of the Session Layer
effectively exist in the Presentation Layer;

- the functions to use services of the Presentation Layer
effectively exist in the Application Layer.

The Session Layer

The purpose of the Session Layer is to provide the means
necessary for cooperating presentation-entities to organize and
synchronize their dialogue and manage their data exchange. To
do this, the Session Layer provides services to establish a
session-connection between two presentation entities, and to
support their orderly data exchange interactions.

To implement the transfer of data between the
presentation-entities, the session-connection is mapped onto and

uses a transport-connection.

The Transport Layer

The Transport Layer exists to provide the transport-service in
association with the underlying services provided by the
supporting layers.

The transport-service provides transparent transfer of data
between session entities. Transport Layer relieves the
transport users from any concern with the detailed way in which
reliable and cost effective transfer of data is achieved.

The Transport Layer is required to optimize the use of the
available communication resources to provide the performance
required by each communicating transport user at minimum cost.
This optimization will be achieved within the constraints

AI3I5

A.3.6

A.3.7

=101 -

imposed by considering the global demands of all concurrent
transport users and the overall limit of resources available to
the Transport Layer. Since the network service provides network
connections from any transport entity to any other, all
protocols defined in the Transport Layer will have end-to-end
significance, where the ends are defined as the correspondent
transport-entities.

The transport functions invoked in the Transport Layer to
provide requested service quality will depend on the quality of
the network service. The quality of the network service will
depend on the way the network service is achieved.

The Network Layer

The Network Layer provides the means to establish maintain and
terminate network connections between systems containing
communicating application-entities and the functional and
procedural means to exchange network service data units between
two transport entities over network connections.

The Link Layer

The purpose of the Link Layer is to provide the functional and
procedural means to activate, maintain and deactivate one or
more data link connections among network entities,

The objective of this layer is to detect and possibly correct
errors which may occur in the Physical Layer. In addition, the
Link Layer conveys to the Network Layer the capability to
request assembly of data circuits within the Physical Layer
(i.e. the capability of performing control of circuit
switching).

The Physical Layer

The Physical Layer provides mechanical, electrical, functional
and procedural characteristics to activate, maintain and
deactivate physical connections for bit transmission between
data link entities possibly through intermediate systems, each
relaying bit transmission within the Physical Layer.

B.2

-102 -

APPENDIX B

DATABASE LANGUAGE SQL - SYNTAX SUMMARY

INTRODUCTION

This appendix contains a summary of the DL SQL syntax supported
by the RDA specification, in BNF notation. This syntax is an
extension of the syntax in the current ISO DL SQL specification.

THE DL SQL SYNTAX

{macro spec>
<{scope>

{interface spec>

{parameter spec>
<body spec>

{statement>

e

1}

{create temporary table>

<column definition>

{close statement>

MACRO <scope> <interface spec> <body spec>
TEMPORARY | PERMANENT

<{macro name>
[UPDATE <parameter specd...]

[IN <parameter specd...]
[OUT <parameter specd...]

{parameter name> <data type>
{statement>,.. END

{create temporary table> |
{close statement> |

{commit statement> |

<cursor declaration) |

{delete statement: positioned> |
{delete statement: searched> |
{fetch statement> |

<insert statement> |

<invoke statement > |

<open statement> |

<rollback statement> |

<{secure statement> |

<{secure and commit statement> |
{select statement> |

<{test statement> |

{update statement: positioned> |
{update statement: searched>

::= CREATE TEMPORARY TABLE <table name>
{column definition>...

{column name> <data type>

CLOSE <cursor name>

-103 -

{commit statement> ::= COMMIT WORK

{cursor declaration> ::= DECLARE <cursor name> CURSOR FOR <select
expression>

{delete statement: positioned> ¢:= DELETE FROM <table name> WHERE
CURRENT OF <cursor name> ’

{delete statement: searched> ::= DELETE FROM <table name> [WHERE
<{search condition>]

{fetch statement> ::= FETCH <cursor name> INTO <parameter 1list>

INSERT INTO <table name> [(<column list>)]
{VALUES <value 1list> | <query specification>}

<insert statement> %

{invoke statement> ::= INVOKE <macro name> USING <value list>

<open statement> ::= OPEN <cursor name>

<rollback statement> ROLLBACK WORK

11

SELECT [ALL | DISTINCT] <select list>
INTO <parameter list> <table expression>

{select statement> 52

{secure statement> ::= SECURE
<{secure and commit statement)> ::= SECURE AND COMMIT

{test statement> IF <error condition> THEN <action>

error condition> R

STATUS <range>

{range> = <element> | <element> , <range>

{element> = <number> | <number> THRU <number>

<action> ::= CONTINUE | RETURN (

{update statement: positioned> ::= UPDATE <table name> SET <set clause>
[{,<set clause>}...] WHERE CURRENT OF <cursor
name>

{update statement: searched> ::= UPDATE <table name> SET <set clause>
[{,<set clause>}...] [WHERE <search condition>]

<{set clause> ::= <column name> = {<value expression> | NULL }

<{select expression> ::= <query expression> [<order clause>]

{query expression> ::= {query term> | <query expression> UNION

[ALL] <query term>

-104 -

{query term> <query specification> | ({query expression>)

<order clause>

ORDER BY <sort specification> [{,<sort
specification> }...]

<{sort specification> ::= {<unsigned integer> | <column specification>}

[ASC | DESC]

<query specification> ::= SELECT [ALL | DISTINCT] <select list> <table
expression>

{select list> t:= <value expression> [,<value expression> J... | #

{table expression> ::= <from clause> [<where clause>] [<group by

clause>] [<having clause>]

{from clause> ::= FROM <table reference> [{,<table reference>}]

{table reference> {table name> [<correlation name>]

<where clause> WHERE <search condition>

"

{group by clause> ::= GROUP BY <column specification>

[,<column specification>]...

<having clause> ::= HAVING <search condition>

<{search condition> 3

<boolean term> | <search condition> OR <boolean
term>

<boolean factor> | <boolean term> AND <boolean
factor>

<{boolean term>

<boolean factor> ::= [NOT] <boolean primary>

(1]

<boolean primary> ::= <predicate> | (<{search condition>)

<{predicate> = <comparison predicate> | <between predicate> |
{quantified predicate> | <in predicate> |
<like predicate> | <exists predicate> |
<null predicate>
{comparison predicate> ::= <value expression> <comp op> {<value
expression> | <sub-query>}
{comp op> iz = [O[> K= >=

{between predicate> ::= <value expression> [NOT] BETWEEN <value
expression> AND <value expression>

{quantified predicate> ::= <value expression> <comp op>
[ALL | ANY | SOME] <sub-query>

<in predicate> s

{like predicate> s

<exists predicate> iz
<null predicate> Y=

<{sub-query> sez

<result specification> ::

{value expression> JE

{term> s s
{factor> =
{primary> te=

<column specification>

{function specification>

{distinct function> ::=

<all function> 3

<value list>

n

{parameter list> -

<value specification>

-105 -

<value expression> [NOT] IN {<sub-query> |
<value list>}

<ecolumn specification> [NOT] LIKE
<value specification>

EXISTS <sub-query>
<column specification> IS [NOT] NULL

(SELECT [ALL | DISTINCT] <result specification>
{table expression>)

= <value expression> | #

<term> | <value expression> {+ | -} <term>
{factor> | <term> {¥ | /} <factor>

[+] =] <primary>

<value specification> | <column specification> |
{function specification> | ({value expression>)

::= [<correlation name>.] <column name>

::= COUNT (#) | <distinet function) |
<all function>

{ AVG | MAX | MIN | SUM | COUNT} (DISTINCT
<column specification>)

{ AVG | MAX | MIN | SUM} ([ALL] <value expression>)

(<value specification> [,{<value
specification>}...1)

(<parameter specification> [,{<parameter
specification>}...])

::= <parameter specification> | <variable

specification> | <literal> | USER

<{parameter specification> ::= <parameter name> [<indicator parameter>]

<{indicator parameter>

{variable specification>

<indicator variable>

{parameter name>

::= <embedded variable name> [<indicator
variable>]

<embedded variable name>

-106 -

{data type> ::= <character string type> | <exact numeric type>
| <approximate numeric type>

{character string type> CHARACTERS <integer>

{exact numeric type>

FIXED <precision>, <scale>
{approximate numeric type> ::= FLOAT <precision>

{precision>

<integer>

{scale> <integer>

=107 -

APPENDIX C

NOTATION

INTRODUCTION AND SCOPE

This Appendix is an integral part of the specification.

This notation is consistent with other ECMA standards and
specifications for Open Systems Interconnection,

DEFINITIONS

This terminology is for the notation defined in this Appendix.

(X) - service: a service element of the remote database access
service, of which (X) is its particular name.

(Service) primitive: a discrete component of an (X) - service.

(X) - Request primitive: a type of primitive by means of which a
RDA user causes an occurrence of the (X) - service.

(X) - Indication primitive: a type of primitive by means of which
a RDA user if informed of an occurrence of the (X) - service.

(X) - Response primitive: a type of primitive by means of which a
RDA user replies to an occurrence of an (X) - indication
primitive.

(X) - Confirmation primitive: a type of primitive by means of
which a RDA user is informed of an occurrence of an (X) - response
primitive.

Service structure: the series of one or more primitives of which

an (X) - service wholly consists,

Service structure type 1 RI: a service structure with a request
primitive and an indication primitive.

Service structure type 2 RC: a service structure with a request

primitive, an indication primitive, a response primitive and a
confirmation primitive.

Service structure type 3 1II: a service structure with two

indication primitives.

Event: the occurrence of a primitive.

Initiator: the RDA user who issues the request primitive to the
(X) - service concerned.

C.3

C.hu

-108 -

Acceptor: the RDA user who receives the indication primitive of

the (X) - service concerned.

SERVICE MODEL

The remote database access service is modelled as an abstract
service to which RDA users gain access at RDA-access-points. All
interactions are between two RDA users located at separate
RDA-access-points. A single RDA connection is modelled.

PRIMITIVES

The remote database access service is defined by means of service
primitives.

Primitives are conceptual and are not intended to be directly
related to remote database access protocol elements or to the
units of interaction across a procedural interface in an
implementation. The descriptive technique is independent of such
variable details.

Primitives which relate only to local conventions between a RDA
user and an implementation are not defined.

The subdivision of the remote database access service into the
particular primitives chosen is arbitrary, in that the same remote
database access service could be described by other logically
equivalent primitives. There is no notion that a primitive is
"elementary".

A primitive occurs at one service access point (not both). It
usually has parameters, containing values related to its
ocecurrence.,

The occurrence of a primitive is a logically instantaneous and
indivisible event. The primitive occurs at a logically separate
instant, which cannot be interrupted by the occurrence of another
primitive. It occurs either completely or not at all.

There are four types of primitives in this standard (see C.2):

a) request primitive

b) indication primitive

c) response primitive

d) confirmation primitive.

The primitives are given names prefixed by "R" to distinguish them
from primitives of adjacent layers. The names of the primitives
are written in upper case, e.g. R-DATA.

C.5

C.6

C.T

SERVICE STRUCTURE

Each service element consists of one or more primitives and
affects both service access points. There are three different
combinations of primitives. These combinations are referred to as
service structures. The three service structure types used in
this standard are defined in C.2.

Unlike the occurrence of its constituent primitives, the
occurrence of a service element is not logically instantaneous and
indivisible. The intervals between its constituent primitives may
be non-disruptively interspersed with the primitives of other
service elements, subject to restrictions particular to the
service concerned., Service elements may also be disrupted by the
occurrence of certain other primitives (see C.6).

EFFECTS OF SERVICES

The effects of a service are referred to as being sequentially
transmitted if its successive primitives at one service access
point result in the same sequence of corresponding primitives at
the other service access point (unless disrupted, see below).

The effects of a service are referred to as being disruptive if it
may destroy, and therefore prevent the occurrence of, indication
and confirmation primitives corresponding to previous request or
response primitives. The effects of disrupted services are
expedited, unless stated otherwise.

The effects of a primitive are referred to as being non-disruptive
if they do not have the above disruptive effects. Non-disruptive
effects may include effects relating to or delaying other events
without destroying them.

Unless otherwise specified, the effects of a service are
sequentially transmitted and non-disruptive.

PARAMETER NOTATION

For each service element, the parameters are defined by a table
followed by a list of parameter descriptions. The column headings
in the parameter tables indicate the primitive types: Request,
Indic. for Indication, Response, Confirm for Confirmation.

The values in the columns of the parameter tables obey the
following conventions:

D (down) : value supplied by the RDA user in the primitive

U (up) ¢ value supplied by the RDA service in the primitive

-110 -

B (both) . value supplied either by the user or by the RDA
service in the primitive

X or blank : parameter not used in the primitive.

The detailed description of a parameter includes its purpose, the
rule for setting its value, the default value and the legal
values,

Unless otherwise stated, the parameter value in the indication is
the same as that in the request, and the parameter value in the
confirmation is the same as that in the response.

Parameter values are only defined to a level which distinguishes
meaning, but generally without defining their absolute value or
encoding. These details are outside the scope of the standard,
being local conventions between the RDA user and the
implementation.

APPENDIX D

THE ABSTRACT TRANSFER SYNTAX NOTATION

D.1 INTRODUCTION

The notation used in this specification for the definition of the
permissible contents of RDAP messages is defined in ISO/DP 882y,
Specification of Abstract Syntax Notation One (ASN.1). ASN.1 is a data
definition language which permits the specification of data types. A
data type is a specification of a class of data values, such as integers
and Boolean values. ASN.1 includes the definition of a number of
generally useful types and it permits more complex data types to be
defined as structures or constructions from other types.

It is important that the receiver of any message should be able to
distinguish the data types of the elements that are contained within it
In ASN.1 each data type is assigned a tag, which is an integer value
that serves to identify it. The tags are not unique, but they will be
unique within the context within which they may occur.

Four classes of tag are specified in the notation.

The first is the UNIVERSAL class. These tags are only defined in the
ASN.1 Standard.

The second is the APPLICATION class. These may be defined within the
specifications for other standards, such as RDAP.

The third is the PRIVATE class. These tags are enterprise specific,
The final class is the context-specific eclass. These tags are freely
assigned within any use of the notation. They are interpreted according

to the context in which they occur,

The data types defined in the ASN.1 specification are shown in table

Character Strings | UNIVERSAL 18-22
|

Ds 15
Type	Tag
Boolean	UNIVERSAL 1
Integer	UNIVERSAL 2
Bit String	UNIVERSAL 3
Octet String	UNIVERSAL 4 [
Null	UNIVERSAL 5
Sequence and	UNIVERSAL 16
Sequence of	
I Set and Set of | UNIVERSAL 17 |
l l
I |

Table D.1 ASN.1 Data Types

-112 -

D.2 ASN.1 MACROS FOR RDAP

ASN.1 permits the notation to be extended by the use of Macros. In RDAP
the following macros are defined to permit the easy specification of

‘ numeric data equivalent to <exact numeric> and <approximate numeric> and
i to improve the readability of the message definitions (by use of

‘ ENUMERATED) .

D.2.1 Exact Numeric Data

FIXED MACRO ::= BEGIN
TYPE NOTATION ::= "FIXED" "SCALE" sign "number"
L : <Type ::= APPLICATION [1] Integer>
“ VALUE NOTATION ::= value (VALUE Type) scale p
w sign tiz Mgl | nom
scale = "EQ¥EN Mpumber" | "/10%%¥" "number"

j' END

" This macro allows fixed point numbers, i.e. exact numerics, to be

| declared by specifying the assumed position of the decimal point

,4 within the integer value that is the transfer encoding of the value.

! The value of the scale specifies the number of places to the right

{ of the decimal point. Hence the true value can be computed by
dividing the integer representation by ten to the power of the

} scale,

‘ D.2.2 Approximate Numeric Data
\
N FLOAT MACRO ::= BEGIN ‘

TYPE NOTATION ::= "FLOAT" precision base

{Type ::= APPLICATION [2] Sequence {Integer,
Integer, Integer } >

VALUE NOTATION ::

value (VALUE Type)

precision "number"

base 3

"number"

END

-113 -

This macro allows floating point numbers, i.e. approximate
numerics, to be declared. They are encoded as a sequence of three
integers. The value can be computed by the recipient using the
formula,

value = a * b ##¢,
where a,b,c are the first, second and third integers in the sequence

respectively.

Enumerated Data

ENUMERATED MACRO ::= BEGIN

TYPE NOTATION ::= "ENUMERATED" "{" NamedNumberList "}"
{Type ::= APPLICATION [3] Integer>

VALUE NOTATION ::= value (VALUE Type)

END

This macro provides a more readable alternative to the ASN.1 named
numbers and makes a clear distinction from numeric integer values.

E.3

=114 -

APPENDIX E

FORMAL DESCRIPTION

INTRODUCTION

This appendix is an integral part of the specification.

In section 4 of the specification, the RDA protocol interactions between
two RDA protocol entities are described. That description references
states, events and actions which in this appendix are consolidated into a
formal description of the protocol, as a finite state machine.

The formal description identifies the protocol entities and the states
that they may assume. It identifies all the events that may occur in each
state in a valid implementation and defines the action of the protocol
entities in each case.

PROTOCOL MACHINES

The protocol machines service the requests of the client and server
protocol user entities. We distinguish four machine roles:

CL Client
SV Server
SN Sender
RV Receiver

Both client and server protocol entities may assume the sender or receiver
role.

MACHINE STATES AND REGIMES

For convenience in design and modelling the states of the protocol
machines are grouped into regimes. Most service events and messages are
only valid in one regime. Table E/1 lists the regimes for each protocol
machine.,

The action of a protocol machine when it is notified of an event depends
on its state at the time. There are four types of machine state:

idle states - in which there are no uncompleted service elements;

- pending states - in which the machine is within a service element,
expecting a particular event;

- grouping states in which the normal flow is being modified by

grouping;

fail states after a disruption in service and during recovery.

-115 -

E.3.1 1Idle States

Table E/1 lists the machines, and the idle states associated with each

regime.

| Machine | Regime | State Code | State Name |
| | | | |
| CL | Connected | CNECTED | Connected I
| L | Disconnect | IDLE | Idle I
| CL | Transact | TR-IDLE | Transaction Idle |
l CL | Secure | SECURE | Transaction Secured l
| RV | Bulk Tran | RCVING | Bulk Transfer Read |
| SN | Bulk Tran | SENDING | Bulk Transfer Write |
I SV | Connected | CNECTED | Connected I
| SV | Disconnect | IDLE | Idle I
| SV | Transact | TR-IDLE | Transaction Idle I
| SV | Transact | SECURE | Transaction Secured l
| | | | |

Table E/1 Protocol Machines, Regimes and Idle States

E.3.2 Pending States

Pending states are associated with particular service events, and are
related to message types.

The postfixes -P, -PP, -PQ indicate pending states:

XXX-P indicates that the machine is waiting for a reply to message XXX
XXX-PP indicates waiting for a Service Response after XXX indication
XXX-PQ indicates waiting for a Service Request after XXX indication.

The latter state occurs very occasionally, when the service user has no
choice over the next service. ‘

E.3.3 Grouping States

The state event tables model the actions when grouping is not being
used. The effect of grouping are defined as a modification of the
normal behaviour in section E.7 .

E.3.4 Failure States

The normal flow of messages may be interrupted by failure in either of
the user nodes or in the Presentation Service. When failure occurs the
protocol machine is left in a failure state pending reconnection. There
are different failure states, depending on the state of the machines
when failure is detected. There are also special states associated

with the recovery, prior to resumption of the normal flow.

L

E.A4

-116 -

Many failures leave the service in an unc
message sent may or may not have been rec
it may or may not have been acted upon.

ertain condition. The last
eived, and if it was received

Table E/2 lists the failure states after disconnection for each protocol

machine role.

| Machine | Regime | State Code | Notes |
I | | | |
I CL | Connected | F1 | Outside transaction, inc STR-P |
I CL | Transact | F2 | In transaction, inc SEC-P |
I £l | Secure | F3 | Idle state |
| CL | Secure | Fl | Pending Commit or Rollback |
| CL | Transact | F5 | Pending Secure and Commit |
| CL | Transact | F6 | Pending Read Table, RDT-P I
| CL | Transact | F16 | Pending Append Table, APT-P |
| CL | Transact | F7 | After RDT, ETR-P I
| | | | |
I SV | Connected | F1 | Outside Transaction I
| SV | Transact | F2 | In transaction,inc RBP-P l
I SV | Secure I F3 | Idle state I
| SV | Transact | Fl4 | Pending Secure and Commit RP |
I | | | |
| SN | Sending | F8 | Sending, inc RST and RST-P l
I SN | Sending | F9 | (if SV) data sent, unsecure |
I SN | Sending I F10 | (if CL) data sent, unsecure I
l SN | Sending l F11 | Cancelled by sender, CAN-P |
| | | I |
| RV | Bulk Tran | F8 | Reving, inc RST, RST-P I
| RV | Bulk Tran | F9 | (if CL) ERD, not yet secure |
I RV | Bulk Tran | F10 | (if SV) ETR, not yet secure |
I RV | Bulk Tran | F11 | Cancelled by receiver, CAN-P |
l l | l |
Table E/2 Failure states following disconnection

During reconnection and recovery the reco
special RESUME or RES state generally exi

nnect pending states and a
st. These states are prefixed

by the failure state number, eg F10RCN-P would be the state pending a

Reconnect Response message following fail

EVENTS AFFECTING THE PROTOCOL MACHINES

ure F10.

There are Protocol Machine events for each Service Primitive and for the
receipt of each message defined by the protocol. Table E/3 shows the

convention for encoding events. These code
tables.

s are used in the State Event

E.S

~TH] =

Event Code

I
I
I
I
I
I
I
I
I
I

| Event Description
I
XXX I XXX request message
XXX-R I XXX response message
XXXRQ | Request Primitive causing XXX
XXXIN | Indication Primitive for XXX
XXXRP | Response Primitive for XXX-R
XXXCF | Confirmation Primitive for XXX
P-ABORT | Abrupt termination of the P-Service
|

Table E/3 RDA Protocol Machine Events

PROTOCOL MESSAGES

Table E/4 lists the message codes for the protocol messages.

These codes

are used in the State Event tables with the postfixes defined in table E/3

above.,
| Message | Sending Machine | Sending | Reply | Description |
| Code | | Regime | Message | I
CON	CL	Disconnect		Connect
RCN	CL, SV, SN, RV	Disconnect		Reconnect
REL	cL	Connected		Release
DIS	CL; SV	Any		Disconnect I
PAB	P-Service	Any		Abort
MDF	CL	Connected		Macro Define I
MDR	CL	Connected		Macro Drop
STR	CL	Connected		Start Transaction
SEC	¢k	Transact		Secure
scM™	CL	Transact		Secure and Commit
RBK	CL	Transact		Rollback
I [Secure I I			
CcoM	CL	Secure		Commit
RBP	sSv	Transact		Rollback Please I
BGG	CL	See E/6		Begin Group
EGR	cL	See E/6		End Group I
RDL	CL	Transact		DL SQL Functions
SPR	Sv	Transact		Still Processing
APT	CL	Transact I	Append Table	
RDT	CL	Transact		Read Table
ETR	CL (SN or RV)	Bulk Tran		End Transfer
ERD	SN	Bulk Tran		End Read I
CHK	SN	Bulk Tran		Checkpoint
CAN	SN,RV	Bulk Tran		Cancel Transfer
RST	SN,RV	Bulk Tran		Restart
DAT	SN	Bulk Tran		Data I
[I		
Table E/4 Protocol Messages

-118 -

E.6 STATE EVENT TABLES

The full State Event table has been segmented into a number of smaller
tables for ease of presentation.

Each smaller table applies to one of the Client, Server, Sender or
Receiver machine roles and generally applies to a single regime.

The component tables are:
Table E/5.1 Client Machine, Disconnected Regime
Table E/5.2 Client Machine, Connected Regime
Table E/5.3 Client Machine, Transact and Secure Regimes
Table E/5.4 Sender Machine, Bulk Transfer
Table E/5.5 Client Machine, Fail States
Table E/5.6 Sender Machine, Fail states
Table E/5.7 Server Machine, Disconnected Regime
Table E/5.8 Server Machine, Connected Regime
Table E/5.9 Server Machine, Transact and Secure Regimes
Table E/5.10 Receiver Machine, Bulk Transfer
Table E/5.11 Server Machine, Fail States
Table E/5.12 Receiver Machine, Fail States
Table E/5.13 All Machines, Failure During Recovery

The columns represent the states and the rows represent the valid events
that may occur when in that regime. Where the intersection of the row and
column contains a blank, or where the combination of state and event is
not represented, an occurrence of the event in that state represents a
protocol error. Protocol errors cause a disconnection of the service.

If level O or level 1 CCR Quality of R-Service has been negotiated, the
CNECTED state is the same as the TR-IDLE state and none of the
transaction management messages (STR, SEC, SCM, COM, RBK, RBP) are valid.
Also, the tables defining Fail States do not apply.

=119 -

The following conventions are used in the tables:

P-Service

Message Code

Service Event -

+ Oor +ve

- Oor =ve

+ or -

purge
resync
if

&

cket
ckno

CL,SV,SN,RV

R.

establish a Presentation Service connection if one does
not already exist

action, send the message

action, cause the event

- prior to action - execute the action if the
diagnostic is success or warning

- prior to action - execute the action if the
diagnostic indicates failure

- after message name - send success or failure
diagnostic respectively ‘

- prior to state name - move to new state
- destroy all queued messages

- request P-service to clear itself

- test condition true

- logical AND of two conditions

- count of outstanding checkpoints

- checkpoint number

- following "if" tests machine role
followed by ".,", qualifies a state name

- following "if" tests role of remote machine, .
e.g. "if R.CL" tests whether the remote machine is
the Client.

-120 -

| P-Service
| CON

EVENT

l
l
l
l

:CON=P

| CONCF

I
I
I
I

| +:CNECTED
| -ve

CON-R

:IDLE

CONCF =-ve
:IDLE

P-ABORT

DISRQ

Table E/5.1 Client Machine, Disconnected Regime

g =

REL-P

CNECTED

EVENT

:IDLE
-:CNECTED

RELCF
| +P-RELEASE

MDFCF
:CNECTED

r

:F1

:F1

F1

DIS
F1

]

=)

S o
o
QA -
[0}

o0
S
S H &
(e Ny

purge
DIS
F1

:F1 F1

purge
DISIN
F1

purge
DISIN
|

Table E/5.2 Client Machine Connected Regime

=122 -

EVENT

SEC
:SEC=-P

SECRQ

SCM
: SCM-P

SCM
: SCM=-P

SCMRQ

SCMCF
:CNECTED

RBK
:RBK-P

Ao
) [=}
=] MDy
Lm0
>3m0
Q o e g,
Ao
[0} L =
&0 M Dy
S M
>m /Ao
QA e £,
(@4
2=
e
m
[a

SECCF
:SECURE

l
l

SECCF
: SECURE
:CNECTED |

|
+

SEC-R

(o]
[ea]
I
= O
O [
M=
m O
o ee
o
[
o= 1
80 H A
S A Mm
3 m /~
Q, A ee
[a
1
=
= O
[N &]
O e
o
[a¥
o= |
&) H Ay
S A Mm
S m /.
Qo e
[«
(s}
= 1
—
A m
m ~
0 ee
~= o
] o<1
b 2] =
m m o
(o= ~ &)

:CNECTED

= = =

© H —

= m = n = n =

() < M — =

(&) A, e 0O ee 0O se
= =
H —
m = n = 0 =
< [= =
A, ee 0O .o O oo
= =
H H
m 0 0 0 0 un
< [= =
By we O e 0O ee
= =
—H —
m oM n ™M n ™M
< [— =
A, ee O oo O ee
= =
H H
m 0 N n AN
< = = =
A, oo [0O ee
= =
= H
m o n n N
< = o
Ay ee O oo O ee
e
2 (e}

a4 o =]

1 m n %3]

= < H =

o I a A

O [a

L 2

Transact and Secure Regimes

Table E/5.3 (start) Client Machine

STATE | I I I | [[
| TR-IDLE | RDL-P | APT-P | RDT-P | ETR-P | RBP-PQ |
EVENT | I [I | ex Bulk | |
| I Read I I
I RDL | [I |
| RDLRQ | :RDL-P | I | I I [
[I I | I
| cket =0 [| [|
| APTRQ | APT | I I | I I
| | :APT-R | | I | I I
I | I | | I I I
[| cket=0 | [| I I [
| RDTRQ | RDT I | I | | RBK
| | :RDT-R I [I I | :RBK-P |
I I | I
I | | ETRCF I
| ETR-R I | I I | :TR-IDLE | |
I I |
| SPRIN | I
| SPR I | :RDL-P I I I I I
[I I I
[| RDLCF I |
| RDL-R | | :TR-IDLE | | I I
I I
I APTCF |
| APT-R | I | -:TR-IDLE | I I [
I I I | + :SN. I I I I
[SENDING | |
I RDTCF [I
| RDT-R I | I | = :TR-IDLE | I I
I I I I | + :RV. I I I
I | | RCVING I |
| | | purge I |
| RBKRQ | | RBK | | I I |
| I | :RBK-P I | I I I
[I I I
| purge | purge purge I |
| RBP | see | RBPIN | RBPIN | RBPIN | I I
I | above | :RBP-PQ | :RBP-PQ | :RBP-PQ | | I
| resync | resync | resync | |
I I | I |
| P-ABORT | see | PABIN | PABIN | PABIN | PABIN | PABIN I
| | above | :F2 | :F16 | :F6 | :F7 | :FU |
I I I I I I I I
I I I I | | I |
DISRQ	see	DIS	DIS	DIS	DIS	DIS
	above	:F2	:F16	:F6	:F7	:FU
		I I I I				
[I	I I I [
DIS	see	DISIN	DISIN	DISIN	DISIN	DISIN I
	above	:F2	:F16	:F6	:F7	:F4
I I | | I | | |

Table E/5.3 (end) Client Machine - Transact and Secure Regimes

-124 - |

STATE | | I I | STATE | |
| SENDING | ERD-P | SN.ETR-P | ETR-PP | | SN.ETR-P |
EVENT I | | (append | | EVENT | (append |
| I | table) | I | table) |
| | if cket< | | | | | |
| DATRQ | max DAT | I I | ETR-R | ETRCF I
I | :SENDING | I I I | :CL.TR- I
I I I I | IDLE I
I | CHK | I I I
| CHKRQ | inc cket | | | I I
I | :SENDING | I I | | I
I I | I I I
I | dec cket | dec cket dec cket | | |
| CHK-R | CHKIN | CHKIN | CHKIN | I I I
I | :SENDING | :ERD-P | :ETR-P | I I I
I | I I I I I |
I | if SV I | I I I I
| ERDRQ | ERD I I I I I
I | :ERD-P | I I I I I
| I I I I I I |
I | if CL | I [I I I
| ETRRQ | ETR I | I I I I
| | :SN.ETR-P | | I I I I
I I I I I I I I
I I I I I I | I
| ETR I | ETRIN I I I I I
I I | :ETR-PP | I I I I
| I I I l I I |
I I I I I I I I
| ETRRP I I I | ETR-R | I I
I I I | | :TR-IDLE | | |
I I I I I I I
| | purge | purge | purge | | [
| CAN | CANIN | CANIN | CANIN I I | I
I | :CAN-PP | :CAN-PP | :CAN-PP | I I I
| I I I I I I
| | purge | purge | purge | | |
| RST | RSTIN | RSTIN | RSTIN I | I |
I | :RST-PP | :RST-PP | :RST-PP | I I I
I I I I I I
| | purge | purge purge | purge | |
| P-ABORT | PABIN | PABIN | PABIN | PABIN I I I
I | :F8 | :F9 | :F10 | :F9 | I I
I I I I I I
| | purge | purge purge | purge | |
| DISRQ | DIS | DIS | DIS | DIS | I I
I | :F8 | :F9 | :F10 | :F9 | I I
I I I I I I
| | purge | purge purge | purge | |
| DIS | DISIN | DISIN | DISIN | DISIN | I I
: ; :F8 | :F9 | :F10 : :F9 I I :
I

| | |
Table E/5.U4(start) Sender Machine Bulk Transfer

-125 -

STATE | I | I I [I

| SENDING | RST-P | RST-PP | CAN-P | CAN-PP I I

EVENT I I I | I I I
I I I I I

I purge | purge purge I I | |
| CANRQ | CAN | CAN | CAN I I I I
I | :CAN-P | :CAN-P | :CAN-P I I I I
I I I I I |
I I I | I I
| CAN-R I I I | CANCF I | I
I I I I | :TR-IDLE | I I
I I I I I I I I
| | purge | | [| | |
| RSTRQ | RST I I I I I I
I | :RST-P I I I I I I
I I I I I I | |
I I | RSTCF I I I I I
| RST-R | | ckno rset | | l | |
I I | :SENDING | I CAN-P | | I
| I I I I I I I
I I I | RST-R [| I I
| RSTRP | | | ckno rset | | | |
| I I | :SENDING | I I I
I I I I | I I I
I I I I I I I I
| CANRP | I I I | CAN-R I I
I I I I I | :TR-IDLE | I
I I | | | I I
I I I I I I I
| CHK-R | ##%%% | dec cket | I I I I
I I | :RST-P I I CAN-P | I I
I I I I I I I
l | purge | purge | I | |
| CAN | wEEEx | CANIN | CANIN I I I I
I I | :CAN-PP | :CAN-PP | CAN-P | I I
I I I | I I I
I | purge [I I I |
| RST | wawEx | RSTIN I I I I I
I I | :RST-PP | | CAN-P | | I
I I I I I
| | purge | purge purge purge I |
| P-ABORT | ##%#*# | PABIN | PABIN | PABIN | PABIN I I
I | | :F8 | :F8 | :F11 | :CL.F2 or | I
I I I I :SV.F2 I |
| | | purge | purge purge purge | |
| DISRQ | wwew | DIS | DIS | DIS | DIS I I
| | | :F8 | :F8 | :F11 | :CL.F2 or | |
I I I I I | :SV.F2 | I
| | | purge | purge | purge | purge | |
| DIS | wEwEs | DISIN | DISIN | DISIN | DISIN I I
I I | :F8 | :F8 | :F11 | :CL.F2 or | I
I I I I I | :SV.F2 I |

Table E/5.4(end)

Sender Machine

Bulk Transfer

-126 -

RCN=R
- :F2
| +:F2RESUME

I
| F2RCNPP
I
I
I
I
|
|
|
I
I
I
|
|
|
I
I
I

F2RCN-P

RCNCF

- F2

+ RBPIN
: RBKPQ
F2RCN-P

P-Service |

RCN
:F2RCN-P

F2
RCNIN
:F2RCNPP

I
I
|
I
I
I
I
I
|
I
I
|
I
I
I
I
I

F1RESUME
As for
Connect
Regime

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I

F1RCN=-P
RCNCF

- :F1

+
:F1RESUME

P-Service |

RCN
:F1RCN-P

STATE
I
RCNRQ I
I
I
RCN=-R
Previous |
Request
N
RCNRP

EVENT

I
I
I
I
I
|
I
I

Client Machine Fail States

Table E/5.5-1

127 -

I I
| FARESUME |
I I
I I

FU4RCN-P

FY

I I
| F3RCNPP |
| I
I I

F3

F2RESUME

EVENT

S
o &
D
O
0 =
< N
5
ST 7
OR M@
= - m
O =
Z 1o+ =
o)
o A
o]
> =
s, O
0o ~
0 = =
IO
o .
n
)
5]
o ~ o
~ 1 >
= = 15}
O O [
= = o

:F4RCN-PP

RCNIN
¢ F3RCNPP

RCNRP

As
SEC-P

CAN=R
RBPIN
: RBKPQ

SEC-R

FU4SEC-P

EVENT

:FY

RCN-R
+:FUSEC-P

RCN-RP

SECCF
| + :SECURE
| - :CNECTED

Fail States

Client Machine

Table E/5.5-2

| F6RCN-P | F6RESUME

-128 -
FS5RESUME | F6

I

F5RCN-P

EVENT

P-Service |
I

-P |

I

RCN
:F6RCN

P-Service |

RCN
:F5RCN-P

I
RCNRQ |
|
|

I
I
I
I

I
I
I
I

RCNCF

- :F6

+

: FORESUME

As for
Regime

RCNCF
- :F5

+

: F5RESUME |

|
-PP |
I
I

| F16RCN

I
| F16RCN-P
I
I

F16

I I
F7RCN-P | FTRESUME |
I I
| I

RCN-R
CANRQ

EVENT

I
I
I
I

RCNCF
-:F16

| +:F16RES

I
I
I

P-Service |
RCN |
:F16RCN-P |

I

P-Service |
RCN
:FTRCN=P

|
I
I
I

RCNRQ

RCN-R

I
I
I
I

RCNIN
:F16RCN-PP

I
I
I
I

:CL.ETR-P

ETRRQ
RCN

I
G |
I
I

RCN-R
| +:SENDIN

| =:F16

RCNRP

Fail States

Client Machine

Table E/505-3

-129 -

F8RCN-P | F8RESUME | F8RCN-PP

EVENT

|
e |
|
|

P-Servic
:F8RCN-P

if CL
RCN

RCNRQ

: F8RESUME

RST
¢RST-P

¢

RCNIN
:FORCNPP

RCNIN
: FBRCN-PP

[
RCN I
I
I

RCN-R |
- :F8 |
+ |
:FBRESUME |

:F16RES

CAN
:SN .CAN-P

CANRQ

a9 o

=% [a¥
o= |1 o= |
&) H B+ N H =
“ B L=
S0~ S < O
Q.05 .o DO -

Fail states

Sender Machine

Table E/5.6-1

=130 =

I
I
I

I

STATE

| F10RESUME

| FIORCN-P | F10RCNPP

F10

FYRCNPP

EVENT

P-Service |

if CL
RCN
:F10RCN-P |

|
I
I
I

RCNRQ

I + @

:F10RESUME

I
I
P |
l

:F10RCNP

:F10RCNPP

RCNIN

I
|
I
I

I
I
-P |
I

| RCN-R

l
I
ERD-P |
|

| RCN-R

:F10
| +:SN.ETR

I

:F9
| +:SN.

RSTRQ

:SN.ETR-P

ETR

Sender Machine Fail States

Table E/5.6-2

=131 =

I |

| F11RESUME | F11RCN-PP |
I

I

F11RCN-P

STATE |

EVENT

P-Service
:F11RCN=P

RCN

(F11
:F11RESUME

CAN
:CAN=-P

:F11RCN-PP

:TR-IDLE
+&R. SV

:F11RESUME |

Fail States

Sender Machine

Table E/5.6-3

=132 -

CON-PP

EVENT

+:CNECTED |

CON=R
-ve :IDLE |
I

DISIN
:IDLE

P-ABORT

DISIN
:IDLE

Table E/5.7 Server Machine, Disconnected Regime

133 -

MDR-PP

MDF -PP

STR-PP

REL-PP

CNECTED

STATE

EVENT

RELIN
:REL -PP

STRIN
¢ STR-PP

I
I
I
I

| -:CNECTED

| REL-R
| +:IDLE

RELRP

STR-R
:TR-IDLE

STRRP

a
j£a]
B+
= O
| m
= =
a o
S -
a
[£3}
B
"~ o0
I =
=
a o
s -
~
L A
O
R_pC
[OREa]
= =
O~ O
(% -
[a3] o]
2= o]
[xs = =
a =) O
= = n

= () O =
— &0 Q) H
m 7 B [T B
< =S5 I S
A, ee Q. O oo Q, O e
= () O =
= &0 &) H
m S S)
< [=S H =S+
A, ee OO e Q.0 ..
= () O =
H &0 &) H
m L S
< = S H K 3+ &
0, ee Q0O ee O, O e
= (0] O =
= &) o) H
m L S
< [S H K S R
Ay e Q.0 e Q. O e
= () O =
— &0 a0 H
m — S L
<t = S S
N, e Q.0 .. Q, O e
=

a1

o o

m o~

<< n n

1 =)
ay (] a

Table E/5.8 Server Machine, Connected Regime

-134 -

|
=
=
-
=

:RBP-P

SECIN
:SEC-PP

:RBP-P

:RBP-PP

SCMIN

SCMIN
: SCM-PP

RBKIN
:RBK-PP

RBKIN
:RBK-PP

purge
RBKIN
:RBK-PP

RBKIN
: RBK=PP

SEC-R
:SECURE

SEC-R
+:SECURE
- :CNECTED |

I
I
I
I

SECRP

SCM-R
:CNECTED

SCMRP

RBK-R
:CNECTED

COMIN
: COM-PP

I

CAN-R
| warning
:TR-IDLE

PABIN
:F2

I

PABIN

PABIN

PABIN

PABIN

I

PABIN

P-ABORT

DIS
:F2

DIS
:F3

DIS
tFlY

DIS
:F3

DIS
:F2

DIS
:F2

DISRQ

=
—
v N
—
O ee
I
(0]
=)
o
80
(O]
= ~
I
n m [
= = 19
A .. =
(]
—]o
7p]
o
<
@
=
— L
0 = [}
—H 4]
A e]
=]
—_ | ®
19
|l
=
— -
n ™M Q
] =}
M oo o
<
- — _]lo
[
=
(9
[
= >
— 19
0 N Q
] n
0O .o
I.I')
i)
P
3]
)
= n
[| ~
v N
— (o)}
O oo °
0
I
=
V]
1
fo
©
n =gl
=
(=]

-135 -

I STATE | | I [[I [
' | TR-IDLE | RDL-PP | APT-PP | RDT-PP | COM-PP | RBP-P I
EVENT I I I | | [I
| | I I |
I RDLIN [I [| I
| RDL | :RDL-PP | | I I | :RBP-P I
I I I I I I
| APTIN I [I I I
| APT | :APT-PP | | I I | :RBP-P I
I I I I I
I RDTIN I I I I
| RDT | :RDT-PP | I I | | :RBP-P I
I | I I I I
| RDL-R [| I I I
| RDLRP I | :TR-IDLE | I I I I
I I I I |
I I I I I
| SPRRQ | | SPR I I I I I
| | | :RDL-PP | | | | | €
I I | | | | I
I I I APT-R I I I I
| APTRP I I | +:RV. I I I I
I I I | RVING | I I I
I I I -:TR-IDLE |
I I [RDT-R |
| RDTRP I | I | +ve:SN. I I I
I I I I | SENDING | I I
| I I I | —=:TR-IDLE | | I
I I | I | I [I I
| COMRP | I | I | COM-R I I
I I I I I | :CNECTED | I
| I | | I I I I
I I | purge I [| I I
| RBK | | RBKIN | I | | As above |
| | | :RBK-PP | I | | page 134 |
| | I I I I
| | purge purge purge | purge | | |
| RBPRQ | RBP | RBP | RBP | RBP I I I Q
| | :RBP-P | :RBP-P | :RBP-P | :RBP-P I I [
| I I I I
[| I [I
| P-ABORT | PABIN | PABIN | PABIN | PABIN | PABIN I I
I | :F2 | :F2 | :F2 | :F2 | :F3 I I
I | I I I I
| I I | | I I
| DISRQ | DIS | DIS | DIS | DIS | DIS | I
| | :F2 | :F2 | :F2 | :F2 | :F3 | |
1 I I | I I I I
I I I | [I I
| DIS | DISIN | DISIN | DISIN | DISIN | DISIN I I
| | :F2 | :F2 | :F2 | :F2 | :F3 | |
I I I I I I I I I
Table E/5.9 (end) Server Machine, Transact and Secure Regime
|

-136 -

DATIN
:RCVING

EVENT

CHKIN

l
l
l
I

2
0 o
& oo
R
=
O M
O T
T O --
)
S A
(S~ |
=)
O N D
O T M
T O oo
rh)
< =
O @
1>
0N O
0T &
T O -
[a WY
(=
1
e
e
O

ETRRQ

ETR-RP

o
o) [
&0 =
523
2o -
o
o]
&0 =
e
2o -
o,
o [
=4} =
S =
S <O
pCo-
]
~
=
<q
O

l

(a9
] I
&0 B
S B
S0/~
O, 05 .o

=¥
() 1
&0 I3
S BEH
0N K
Q, o ee

(2
(O] |
&0 4
“EH
S0/~
Q, 5 .o

RSTRQ

= =
H O o H
m «— 0 2]
< = =
O, e O ee o
= =
H —
m o 0 O n
< [) —
Ay ee 0O e ()
= =
— H
m <O 0 © 0
< = —
A, ee D-o D
B

o

o =

m —H

<< n n
1 — =
a A (]

Bulk Transfer

Receiver Machine

Table E/5.10

-137 -

=
=
[} a
=™ ~ = =
1 11 = =
= = ;@ m <) O) O
< < < I H =
O QO ee [a ™} [O ee
=
2} —
[o ¥ (a9 (=] (=9}
(o o= 1 1 [] = =
! HH= = (S = o~ — H o~
= L=< << = - << m «— wn — wn
< 3 << O (&) < B (& < = = — =
{) 0,0 e . O oo oo [a Y . = O e
=] &)
W [0) D_.. RN
= = = =
I H = I > — —
|3 S =< = O m <) ©) ©
n 3 << O n = << = = —
[» = Q.0 e s ee [a W) a . (=
=9 &
=} =9 =
a9 o= |1 | [H = =
I o H = e O = H =
I S = < 78] = O m <o) ©) ©
n 3 O o~ n ~ < = =
[a =4 0,0 e oo s e [« Y o D
[= 9] a
&) % o
= (O~ | = |1 = =
= & H = — = —H
= =< H N m oo) @) ©
[&] 3 << O 0/~ < M = —
~= Q0O e .. A, ee o . o .
[£a] =
e 2
< Ay 2] = 2} o =
B~ o] ~ 1 | m —
[72] | = = & = = B < n n
= << < 0] 7p] << 7] 1 = —
W [&] (&) ~ "~ (&} 2= oy A a
=3 I A R D MNP S —— E——m————USPEEEEEEEEE eI E R

Bulk Transfer

Receiver Machine

Table E/5.10 (end)

-138 -

(=}
m [=
Py 19 o 80 J
=) =™ L [a ¥ < A
%] = 1 = | (o |
= H oM O H K U =1 |
= M M) oo B [=S B«
N m A/~ S EH? = o B
[o ee =S) ee] 2 ee
Q,
o g
(=} jon]
I n
= ~ =3
(&) 1 QN
= = N [
N O [y oo
F o ee
+ 1
=]
(=¥
1
=
= 0O
H =
= N
N O &
=5 o oee
~ ~
m) A o) A
a [=leal S
jaml =1 «— -~ K
v " E e o O = o O
m O 0 1 s m 1 & @
m 3 M O = = o=
™ = m 30O o =0
B O Q) o~ oo O~ e
o g
=P jom]
2 =2
S =
[l
- O EMm
2N 0 o oo
+ 1
=]
[aW
1
=
= O
- =
N1
— (SN
o X ee
[£a]
=]
< [T
4 ~
n | = = 4] = 2= ~
= (&) O m o E I
jca] ~ ~ ~ [&] n ea]
-
= [RS AU SN A [———

SCMIN
¢ SCM-PP

SCM-R
| previous)
| :CNECTED

| (as

:TR-IDLE

CAN-R

Fail States

Server Machine

Table E/5.11 (start)

-139 -

|
I
l
|

FURESUME

STATE

EVENT

o e
=% o}
= = = i
(&) _Fm
~ = ee
= &) =
[(=<3 B
+
2y
(a9
1
=
= O
H =
= =
= (SR
[o ee
[+ 9]
i i
= ==
(&} HNH O
5} L= X
o 30O M
= QM
=9} =
=9 0~
1 ol
= = Mo
[&] 1 M@
= = N
%) O se
[= 1+
[« ¥ o
(=¥ o
1 -~
= >
= O S
—H = <))
= M 2]
o O i
[z o ee (=9

RCN
:F3RCN-P

RCNRQ

SCMIN
: F4SCM-PP

=
=
oD
O RO
= ec [
O n
e 1 ee
+

RCN-R

Fail States

Server Machine

Table E/5.11 (cont.)

-140 -

I
FORCN-P |
I
|

P-Service |

F9
RCN

| FBRESUME

F8RCN-P | F8RCN-PP

I
-P |
I

:FORCN

|
I
I
I

P-Service |
:F8RCN-P

RCN

|
RCNRQ |
I
I

EVENT

I
I
I
|

-:F8

RCNIN
: FBRCN-PP

RCN-R |

- :F8 |

| +:FBRESUME |
I

RCNRP

RST
:RST-P

RSTRQ

RSTIN
:RST-PP

CANIN
:CAN-PP

Fail States

Receiver Machine

(start)

Table E/5.12

F11RCN-P

RCNCF
-:F11
| +:F11RES

F11RCN=-P |

P-Service |

F11
RCN

|
I
I
I
l

| F10RES

=141 -
| F10RCN-PP

F10RCN-P

F10RCN-P |

F10
P-Service |
RCN

I

°
°

STATE

RCNRQ
RCN-R

EVENT

(2%
D_.. =9}
I
Z Z =
©n oo (&}
e D o O = M
o~ H
— LU S
e 30!
] ee o= O, D ee
=]
il
=
= O
H =
=
[N
~
2]
(] 2]
ay + (]
= 1 « =
H 2 «
[l n +-
= 0
[e —
o —
—_ e | —_—— | ® S| R N p—- P— ST VRS RSP, | |
= «
F
«n
[£a]
~=
~ oo
1 ~— «— o
=z o =] 0]
T ee oo o] <]
= 1 + < -~
9] <
e s —_— —_—— | s SEEI S e T Ve P | S| |
i g
Ay I
1 [} 2] n S
= > Ay = 3] 0]
O o 0 1 ~ ~ >
~ o m = ~— -~ o
= o = < = — o
— O — < O [= (o]
= e = QO e . oo ()
o 3 o~
—_—_— e | —_—_—— | ——_—— _—— e — —_—— _—— —_— O
K] ~
o, S el
[a¥ (o] 2 =}
1 (9] = ca] [
= ~ 1 n - ~
= O = N_M.I._D
= = O = — O H
= O A 2= I ™ o v— o | AN
s c ° - O 0 o8 ¥ H e
. T £ E 1o+ e + Ts
| - — > —— el —_— —_— — >
= =
o = (0]
— 5])
[a B} o] << 0] [« Ne]
= © |3 [a=] o~ «
= = = e 0 2] = = = B+ B
| &) O B+ = O << <z 7]
(2= ~ £3] <a] ~ (&} (&) [a=
=
PESHEG R NUSIPS I = —_——— e

-142 -

STATE | I | I | I

I Fi | FiRCN-P | FiRCN-PP | FiRESUME | |

EVENT 1 <1 <16 I | FiRES | |
I I | | | |

I I [I I I [
| P-ABORT | | PABIN | PABIN | PABIN | I
l | | :Fi | :Fi | :Fi | [
I I I I I I I
I I | purge | purge | purge [|
| DISRQ I | DIS | DIS | DIS I |
I I | :Fi | :Fi | :Fi | I
I I I I I | I
| | | purge | purge | purge | |
| DIS I | DISIN | DISIN | DISIN I I
I I | :Fi | :Fi | :Fi | |
| I I I I I I

Table E/5.13 All Machines, Failure During Recovery
‘ E.7 GROUPING
Table E/6 shows the permissible segences of service requests within

groups. These sequences are only permissible where they would be
valid with no grouping.

NEXT | RDL I I I | I I

| temporary | MDF | MDR | RDL | SEC | EGR |

PREVIOUS | table | | I | I |
I I I I I I I

I I I I [| I I
| BGG I Y I Y | Y | Y | | NS |
I I I I I | | I
| RDL I I [I [I [
| temporary | Y | Y | Y | | | Y |
| table | | | | | | |
I I I I [I I |
| MDF I Y I Y | Y | | I Y |
@ | | | | | | | |
I I I I I [I [
| MDR I Y I Y | Y | | | Y |
I I I I | I | I
I I I [[| | I
| RDL I I I | ¥ I Y | Y |
I I I I I I I I
I I I I I I | I
| SEC | I I I I I Y |
I I I | I I | I

Table E/6 Permissible sequences within groups

=145 =

APPENDIX F

DIAGNOSTIC REASON CODES

F.1 INTRODUCTION

Diagnostic reason codes define the presumed cause of an error, The
codes are classified into related groups and numbered accordingly.

In the tables below the Type column lists the possible Severity Codes
associated with the errors. The meaning of the severity codes is:

1

1]

Warning

2 Recoverable Error

3 = Uncorrectable Error

The groupings of error codes used below are:

General RDA Diagnostics;

- Protocol and Supporting Service Related Diagnostics;
- Association Related Diagnostics;

- Data Definition and Manipulation Management;

- Transaction Management;

- Bulk Data Transfer;

- Recovery Related Diagnostics.

F.1.1 General RDA Diagnostics

Type	1Identifier	Meaning
23	0	No Reason
[123	1	Server Error (unspecific)
23 l 2	System Shutdown I	
123	3	Server Management Problem
I 13 l il	Bad Account	
13 l 5	Security not passed	
[1 l 6	Expect delay	
123	7	Client error (unspecific)
123	8	Subsequent error

-4y -

F.1.2 Protocol and Supporting Service Related Diagnostics

I
I
I
I
I
I
I
I
I
I
I
I
I
I
|
I
I
I
I

Type | Identifier | Meaning
| I
3 I 1000 | Conflicting parameter values
3 I 1001 | Unsupported parameter values
3 | 1002 | Mandatory parameter not set
3 | 1003 | Unsupported parameter
3 | 1004 | Duplicated parameter
3 | 1005 | Illegal parameter type
3 | 1006 | Unsupported parameter type
3 | 1007 | RDA protocol error (unspecific)
3 | 1008 | RDA protocol - procedure error
3 | 1009 | RDA protocol - facility not
I I negotiated
3 | 1010 | RDA protocol - message error
3 | 1011 | Lower layer failure
23 I 1012 | Lower layer addressing error
23 I 1013 | Time out
23 | 1014 | System shutdown
I |

F.1.3 Association

Related Diagnostics

Type | Identifier | Meaning
I |
3 | 2000 | Association with user not allowed
3 | 2001 | Unsupported Quality of R-Service
3 | 2002 | Unsupported Class of R-Service
3 | 2003 | Bad Association Id
13 | 2007 | Bad current account
3 I 2010 | Suspend not supported
3 | 2011 | Server transaction secure
| I

F.1.4 Data Definition and Manipulation Management;

Type | 1Identifier | Meaning
I |
13 | 3000 | Macro name exists
| 3001 | Macro does not exist
3 I 3002 | Defective macro body
| |

=145 -
F.1.5 Transaction Management
Type	1Identifier	Meaning
123	4000	Unspecific database error
2	4001	Deadlock detected
23	4002	Subordinate process failure
I I | |
F.1.6 Bulk Data Transfer

| Type | 1Identifier | Meaning |

| | | |

l I 3 I 5000 | Invalid table name I
I I 3 I 5001 | No access |
| | 2 I 5002 | Data lost |
‘ | 2 | 5003 | Checkpoint unsecured |

I 3 I 5004 | Invalid data |

| 13 | 5005 | Outside Checkpoint Window |

| | | |

I

|

{

l F.1.7 Recovery Related Diagnostics
|

|

I

|

I

| Type | TIdentifier | Meaning |
I I I |
| 3 | 6000 | Invalid association parameters |
I 3 I 6001 | Association id unknown I
' I 3 I 6002 | Association complete I
, I 2 I 6003 | Awaiting database recovery |
I | 6004 | Association not recoverable [
I l | |

