ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STUDY ON THE TRANSLATION OF THE
ODA FORMATTED FORM
INTO
PAGE DESCRIPTION LANGUAGES

ECMA TR/48

December 1988

Free copies of this document are available from ECMA,

European Computer Manufacturers Association

114 Rue du Rhéne — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

STUDY ON THE TRANSLATION OF THE
ODA FORMATTED FORM
INTO
PAGE DESCRIPTION LANGUAGES

ECMA TR/48

December 1988

ECMA/TC29/92/20

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

Status of ECMA TR/48

The attached report (ECMA TR/48 - Study on the translation of the ODA Formatted Form into page
description languages) was produced in 1987/88 and published in 1988.

While the principles and conclusions reached by the report are still considered by ECMA to be true, the
reader should be aware that the report does not reflect the many amendments and technical corrigenda applicable to
the Standard that have been agreed since the publication of this Technical Report. Therefore, some details included in

this report are not fully accurate and ECMA takes no responsibility for any consequent implementation or
conformance problems.

L. Lauri T28-020C.DOC 14-09-82 10,32

BRIEF HISTORY

This report details activities conducted under the auspices of the Print Format Task
Group (TGPF) of ECMA/TC29 to study issues related to the translation of ODA docu-
ments to current commercial page description languages.

As part of its programme of work ECMA TC29-TGPF undertook to study the problems
of translating documents conforming to the definition of ISO 8613 Office Document Ar-
chitecture and Interchange Format (ODA), to the existing page description languages of
Xerox Interpress™ and Adobe PostScript™.

The objectives behind this work item were:

- to inform the page description language companies of the capabilities of ODA for
describing imageable documents;

- toobtainfeedback from these companies as to the extensions required to ODA to sup-
port the requirements of high quality printing expected by the publishing industry;

~ toevaluate current page description languages as prototypical implementations of the
proposed SPDL and to examine their adequacy to support ODA Formatted Form.

This document is a report on the work to produce the ODA Formatted Form to PDL
translators. It consists primarily of two papers by Xerox Corporation and Adobe Systems
Incorporated specifying the results of their work. It also includes sections specifying the
technical problems encountered in developing the translation software.

Existing page description languages are, in general, designed to satisfy the requirements
of the publishing and printing industries. ODA is oriented towards the requirements of
office systems. The conclusions of the report specity the implications resulting from the
study for the design of a Printer Format or Standardized Page Description Language.
These are to be taken into account by the ECMA Task Group in specifying the Printer
Format standard.

Accepted as an ECMA Technical Report by the General Assembly of 15 December 1988.

INTRODUCTION

This is the final report of the work undertaken by the ECMA Task Group TC29-TGPF
to study the translation of ODA-Formatted Form documents (FF) to two contemporary
Page Description Languages (PDLs). The report consists primarily of two reports
prepared by Xerox Corporation and Adobe Systems Incorporated. These reports are
presented in Appendices A and B, respectively. These reports specify the work under-
taken to develop the ODA to PDL translation software. The reports also include the con-
clusions each company has reached concerning the complexity of the task, the suitability
of ODA for describing document images and the suitability of PDLs for describing ODA
FF documents.

The two appendices contained in this report are as follows:

Appendix A - Report on the translation of ODA to Interpress

Appendix B - Report on the translation of ODA to PostScript

For preparation of this report the following documentation was also available:
— Translation test documents, (Bull)

— Translation test results, (Xerox)

— Test document application profile, (ICL)

However, due to its size and nature this documentation is of interest only to implemen-
tors. The published information contained in this Technical Report is sufficient for all
but the very specialized readers.

REFERENCES

The following documents were used in the development of the ODA to PDL translation
software.

~ ECMA-101: Open Document Architecture (ODA) and Interchange Format - Parts 1,
2,4-8

~ ISO 8632: Information processing systems - Computer Graphics - Metafile for the
storage and transfer of picture description information - Part 1: Functional specifica-
tion - Part 3: Binary encoding.

—~ ODA: Document Application Profile H’87 (ESPRIT PODA deliverable)

'
o
'

- ODA: Document Application Profile H’88, Issue 1, October 1987 (ESPRIT PODA
deliverable)

- SPAG: Application profile Q/113
-~ ESPRIT: Project 1024 (PODA) Technical Annex
-~ STC ODA-100: The structure of a description of Document Application Profile

—~ NBS - ODA/ODIF: Implementation Agreement, Oct. 1987

SUMMARY

This document is the report of a study undertaken to develop "proof of concept" level
software capable of translating ODA-Formatted Form documents into the proprietary
page description languages of Interpress and PostScript.

This study was proposed at the inception of the ECMA Print Format standard work as a
practical mechanism by which one of the stated objectives could be attained. The objec-
tive was that ODA FF should be easily translatable into the Print Format standard.

This initial objective was refined and restated as the following threefold objectives. First-
ly, to inform the market leader page description companies participating in ECMA TC29-
TGPF of the capabilities of ODA for describing printable documents. Secondly, to decide,
as a consequence of practical experiences, whether extensions are required to ODA to
support the printing requirements of the publishing industry. Thirdly, to evaluate current
PDLs as prototypical implementations of the proposed Standard Printer Format and to
examine their adequacy to support ODA-Formatted Form.

The project was undertaken from July 1987 to June 1988. The project commenced by
determining a source of suitable ODA test documents. Since the relevant development
staff within Xerox and Adobe were not ODA experts the creation of the appropriate test
documents could have been time consuming and a potential source of error. Bull, a par-
ticipant in both TC29-TGPF and the ESPRIT PODA project, offered to make available
aset of ODA test documents.

These tests were to be developed by Bull as part of its ESPRIT PODA sub-task to develop
an ODA printer. ICL offered to develop an ODA Document Application Profile (DAP)
which would describe the subset of ODA to which the test documents would conform.
This DAP was based on work ICL was undertaking as a participant in the PODA project.
In the PODA project ICL was developing an ODA DAP suitable for use with proprietary
word processors.

The members of TGPF also decided on, and made available, a full set of the relevant
standards documents to be used. Many of these were still under development within the

standards bodies, most important of these being the ODA standard itself. Consequently,
availability of these documents was very limited. A full list of the standards documents
used is specified in this report under References.

- The ODA test sample documents were delivered to Xerox and Adobe in three phases.
The first being in November 1987 and then February 1988 and finally April 1988.

— The project to develop the ODA to PDL translators was completed at the June 1988
TC29 meeting with a presentation and demonstration by Xerox of their work. Also at
that time Adobe said that, regrettably, due to a lack of resources they would be unable
to complete the development of their translation software. They were however, able
to provide material for the technical report describing the work done so far. This
material included important conclusions from their design and development work.

CONCLUSIONS

The general conclusions that can be drawn from the work undertaken in this study by
Xerox and Adobe can be summarized as follows:

- Xerox and Adobe have both benefited from their exposure to the ODA standard (and
other associated standards) in the development of an ODA-based system prototype.
This has enabled them to develop ODA expertise in the ODA standard and to make
useful contributions to its future development.

- In order to satisfy the same objectives as PDLs concerning the fidelity of a printed
document to the originator’s intentions, ODA requires a more precise definition of
certain imaging aspects. For example, the definition of underline, strikeout and use
of fonts, etc in the character content architecture; the definition of hatched areas in
the geometric graphics content architecture.

- ODA requires extensions in order to satisfy the same publishing-oriented objectives
as PDLs concerning document imaging capabilities, e.g. arbitrary rotations and writ-
ing direction of characters; non-rectangular imaging areas.

- The development of a standard page description language should advisedly study and
incorporate the capabilities of existing PDLs.

- Software to convert ODA-Formatted Form documents to existing PDLs can be
developed at modest cost.

A.l

APPENDIX A
TRANSLATION OF ODA TO INTERPRESS, FINAL STUDY REPORT
Michael MacKay, Xerox Corporation

June 1988

INTRODUCTION

This report discusses the final results of the Xerox ODA-to-Interpress PDL translation
activity, and both extends and amplifies the results of the interim report generated in
February. The study has been very successful, the work yielding the following observa-
tions:

- Interpress provides powerful features for imaging that meet and exceed the
capabilities required for printing ODA documents, as defined by the current ISO 8613
standard.

— It is possible to translate ISO 8613 (and its affiliated content architectures) to Inter-
press with modest effort and prior knowledge.

— Very little extra work is required to process Formatted Processable Document Ar-
chitecture (FPDA) for imaging, as opposed to Formatted Document Architecture
(FDA).

— Itisdesirable to translate directly from FPDA to Interpress, since this eliminates the
intermediate step of translating FPDA to FDA.

- FDA offers no significant advantage for final processing of ODA documents for im-
aging.

— Xerox compressed RES raster encoding appears to reliably yield on the order of a
98% reduction in size for binary encoded rasters, as compared to the encoding used
in the TG-PF test cases (e.g. the RASTERC test case was reduced from 447,888 bytes
to 8401 bytes).

— Translation results in a reduction of execution complexity at imaging time. This is
achieved by transforming the hierarchical object structure of ODA to a flat and linear-
ly executable form.

- The weakest element of the ODA architecture, as currently defined, is in the area of
fonts and text handling between different content architectures.

Development of the translator through this final phase of the study completes the
demonstration that a PDL, in this case Interpress, can adequately represent imageable
ODA documents. Additionally, the study has also demonstrated that it is both viable, and
desirable, to create the PDL representation of an imageable document directly from
FPDA without the use of FDA.

A2 OBSERVATIONS AND ISSUES FROM THE TRANSLATION STUDY

A.2.1 Results of the Feasibility Study

The Xerox ODA-to-Interpress translation study has succeeded in implementing a sig-
nificant subset of ISO 8624, and whose completeness is appropriate for a feasibility
study.

Two primary observations have been made during the development of the translator.
The first is that adding support for the creation of PDL output to an existing ODA sys-
tem should represent a task of modest effort. ODA translates well, and in a reasonab-
ly straightforward fashion, to a PDL as demonstrated through the use of Interpress in
this activity. Most of the difficulty in translating ODA to a PDL is embodied in han-
dling document structure processing. It is, therefore, likely that a functional ODA docu-
ment system would have little difficulty supporting a PDL, since most of the work for
handling attributes and positioning would already be completed. With the availability
of acommon library of routines for outputting the PDL, the effort is further simplified
by requiring only modest knowledge of the PDL itself; such is the case with Interpress,
and the Interpress Toolkit by the Xerox Webster Research Center.

The second observation of the study is that FDA offers no significant advantage for the
translation of ODA to a PDL. In fact, it is desirable to translate directly from FPDA to
PDL, thus eliminating the FDA-specific processing step altogether. Although process-
ing elements are already ordered in the FDA datastream, and there are no logical ele-
ments to recognize and ignore, extension of a system that supports FDA in order to
handle FPDA does not represent a difficult task. The required extensions primarily in-
volve division of the single-pass processing which can be used for translating FDA, into
a two-pass process. The first pass over an FPDA document internalizes the structure,
caches the content, and constructs relationships between objects based on their types
and identifiers. The second pass uses this internalized structure to create the PDL rep-
resentation. Experience developing the Xerox translator suggests that most of the ex-
isting techniques for processing FDA can be used directly with only minor modification.
The amount of work involved in developing these extensions is mostly impacted by the
tractability of the internalized representation chosen by the designer. Architecturally,

once an imager has implemented this additional support for handling FPDA, there is
no reason to implement FDA-specific processing, since itis really justa subset of FPDA,;
the Xerox translator now handles both without difficulty.

These observations tend to indicate that the real question then, is not whether ODA
can be translated to a PDL, but rather, whether or not a PDL is viable and desirable as
the sole output data stream for imaging operations. The results of this activity suggest
that use of a PDL provides superior separation of composition and imaging functions
over FDA. The key distinction is that FDA actually leaves certain composition time
decisions, such as precise placement and image rendition, rather loosely specified until
executionof the document at imaging time. A PDL, such as Interpress, encourages com-
position time resolution of these decisions, thereby increasing the potential for faith-
ful rendering of the composer’s intent.

As noted inour interim report, the key difference between an FDA representation and
a PDL representation of a given document is embodied in the data structures utilized
and the complexity of processing required to compose an image based on those data
structures. In a PDL representation, such as Interpress, the activity of printing docu-
ment masters is generally amenable to linear execution which does not require main-
tenance of much context relative to the current page. This is desirable, since such a
reduction of context decreases the amount of searching and computation that must be
employed to determine the rendition and placement of an object in the image under
construction. Clearly, it is possible to build an application profile that would lead to a
highly simplified structure for FDA documents consisting of, perhaps, a single page
containing a single block. However, the nature of the ODA architecture encourages
development of hierarchical relationships between objects. These relationships can be-
come rather heavily nested, thereby increasing dependencies between objects affecting
calculation of relative placement and determination of attributes. Through use of a
PDL for representation of an imageable document, we can collapse higher level cal-
culations requiring nested contexts into direct imaging commands. Calculations such
as these are better left to the composer, and through translation to a PDL result in a
document description which provides for a more direct relationship with the imaging
environment.

The results tend to indicate that there is serious reason to consider the use of a PDL as
the representation of choice for final imaging of ODA documents. The evidence indi-
cates that a properly constrained and sufficiently expressive PDL, such as Interpress,
provides the ability to more than adequately represent ODA documents, while provid-
ing for a better separation of imaging and composition decisions than FDA.

A3 GENERAL OBSERVATIONS REGARDING THE ISO 8613 STANDARD

A.3.1 Document Architecture

In general, the ODA document architecture as defined in ISO 8613, appears to provide
good support for structuring of documents, particularly in the area of specifying logical
relationships. The concept of well-factored entities such as layout styles and presenta-
tion styles provides a nice method of specifying and sharing information between
separate objects in a document.

The layout capabilities in ISO 8613 are quite reasonable for most typical applications
that would be encountered in office settings, but are over-constrained for many com-
mercial publishing requirements. This could be considered a limitation with the ISO
8613 document architectures, mostly to the degree that it would limit acceptance of ISO
8613 in more sophisticated environments. It might be appropriate for the standard to
be expanded with definitions to allow for broader domains of application. Two areas
which are particularly amenable to extend flexibility are the angular positioning of
frames and blocks, and the shape of frames and blocks. In the case of angular position-
ing of frames and blocks, enumerated limits could be relaxed, and specified only as fall-
back positions for systems which so choose to limit their implementation. In the case
of the shape of frames and blocks, it would be valuable to consider relaxing constraints
that currently limit the representation to a simple rectangular region (this is desirable
for performing wraparound setting of text). It is recognized that these extensions are
non-trivial. However, adegree of capability significant to sophisticated users in avariety
of publishing environments could be realized through their incorporation.

Notably absent from the document architecture is any specification of colour metrics
other than background, foreground, white, transparent, or colourless opaque. A sig-
nificant requirement exists for extension of the standard to support definition of colour
information, and colour mapping for grey-scale and monochrome devices. Consistent
implementation of colour across sophisticated systems requires specification of these
issues.

The ISO 8613 standard is also notably quiet on precise definition of errors and error
handling. This is a significant problem in terms of ensuring that implementations
provide consistent reactions to user inputs. Definition of likely errors and the ap-
propriate action for a system to take upon encountering them is problematic, but it is
reasonable to expect that the standard make an attempt at formally defining the most
obvious situations.

One of the more obtuse concepts regarding ISO 8613, involves the need for a Docu-
ment Application Profile (DAP). The concept appears to allow developers to make
agreements regarding constraints on the level of support implemented for particular
features specified in ISO 8613. This seems to thwart the goal of full and common docu-

-9

ment interchange. It is desirable to assert through some well-defined means such as a
DAP, that a document may have been created by a system capable of only a subset of
[SO 8613. The fine point that is unclear, and perhaps which is not explained sufficient-
ly in the standard, is whether conformance to any particular DAP is required for
functionality conformant to ISO 8613 for a fully capable ODA system. A possible solu-
tion to this problem, is to clearly enunciate that limits imposed by conformance to any
particular DAP should be handled as a dynamic set of constraints on a system, and that
flexible systems should conform firstmost to the full ISO 8613 standard. If DAPs are to
be handled as dynamic constraints rather than static limits, then it appears that an op-
portunity exists to develop a technique for electronically structuring and interchanging
DAP information.

Programmatic management of object identifiers provides an interesting challenge in
dealingwith the ODA documentarchitecture. The fact that identifiers are interchanged
as character strings seems to add overhead to the file, since information that could
otherwise be represented numerically in as little as one byte (octet), must be coded in
multiple bytes corresponding to a character string. The challenge for the implementor
in dealing with this representation of identifiers, is to determine the most efficient
method of internalizing the identifiers and their semantics. Possible choices for inter-
nal representation include converting the identifiers to binary representations, dispos-
ing of them completely through use of structural associations that directly implement
the semantics (internal pointer links between structural information which is resident
inmemory), or maintaining themin their character string representation. Clearly, there
is no requirement on the implementor to actually internalize these identifiers as
numeric character strings, although in the current Xerox implementation that is what
is done (for expediency, the implementation both retains the identifiers and builds
some structural links). It would be an interesting project to develop a binary repre-
sentation for identifiers, since these sequences are likely to become fairly lengthy for
non-trivial documents which may employ deep nesting.

A final thought regarding future directions for the document architecture, concerns its
potential relationship to database systems. The current standard does not seem to
provide atomic access to objects specified in a document; the external view of a docu-
ment is strictly constrained to the document as a whole. This means that individual ob-
jects cannot identify association with other objects external to the document in which
they are contained, nor can they be directly referenced through the standard, by other
objects which are external to the document. The concern is that the attractive document
structuring capabilities of ISO 8613 are inaccessible to external systems, except at the
level of the document. Expanding on the previous discussion of identifiers, it may be
desirable to revisit the topic of identifier semantics with regard for extensibility to
enable association of interchange Data Units and external objects. This topic is par-
ticularly germane to evolving developments in hyper-media, distributed databases, and
massive storage systems.

A3.2

A33

Al4

-10 -

Raster Graphics Content Architecture

The raster graphics content architecture ISO 8613-7.2 appears to lack precision of
specification and extensibility in several areas. Notably, there is no mention of how to
specify colour information using the presentation attributes. Adjunct to the topic of
colour, is specification of appropriate fall-back positions for grey-scale and
monochrome devices.

An area where it appears there is a lack of detail in specification is regarding the topic
of pel spacing and pel line spacing. The device independence implied by these attributes
appears to be under defined in terms of providing for image fidelity across disparate
implementations and devices. How should an implementation cope with adapting a
pixel array to the dimensions specified by these attributes? What are reasonable fall-
back positions? If a device chooses not to algorithmically adapt an image to these
dimensions, should it image to the best of its ability, or should it refuse to print the
image? This problem is all the more severe in the context of colour or grey-scale devices,
and demands attention.

RGCA is otherwise straightforward in terms of simple raster imaging.
Geometric Graphics Document Architecture

Overall, the geometric graphics content architecture ISO 8613-8.2 is probably the best
specified of the contentarchitecture. This is in no small part due to its reliance on CGM,
which is already a fairly mature standard. Only two areas of concern were identified in
ISO 8632, and these concern the need for more detailed specification of potentially im-
plementation-dependent rendering decisions.

The first problem involves rendering of hatch filled areas. If there is a precise specifica-
tion of hatching other than the cursory suggestions in ISO 8632 regarding the angular
fidelity of the hatched lines, it was not available. The primary concern with this problem,
is that it is not only necessary to know the preferred angle of the hatched lines, but also
the density relative to the scaled size of the image.

The second problem concerns rendering of stroke ends and stroke joints. ISO 8632 does
not appear to provide a capability for precise control of rendering effects when strokes
formajoint, or for the end of astroke. Without specification, these non-trivial decisions
default to the choice of the implementation, and this can introduce irregularities in
rendering between different systems. Interpress provides a sophisticated capability for
controlling rendering choices affecting stroke ends and stroke joints, and may be found
to provide an interesting model for resolution of these details.

Character Content Architecture

The character content architecture ISO 8613-6.2 needs refinement to support
typographically sophisticated systems. Undoubtedly, the completion of ISO/DIS 9541

- 11 -

will yield significant opportunity for definition of more sophisticated font and charac-
ter handling in ISO 8613-6.2. However, at the present time problems exist in the areas
of underlining, strikeout, script placement, embedded style specifications, angular
positioning of text, justification, and text colour.

The underlining and strikeout operations share common problems in ISO 8613-6.2.
There is no specification of how to place the lines relative to the text to which they are
applied, and there is no description of what thickness to draw the lines. In the case of
strikeout, there is no specification for graphic style (frequently, asingle continuous line
is adequate, but certain applications may require other styles). Ideally, these operations
should be specified relative to the currently selected font. ISO/DIS 9541 enables this
through the attribute ISO/SCORES as described in ISO/DIS 9541-5, 6.16.2.3. In the
current version of the translator the offset and line width are set to values determined
as percentages of the currently selected point size. The line weight of the stroke is con-
stant regardless of the typeface style (i.e. bold or light). The values used in the trans-
lator are:

— offset below the baseline to the top edge of a single underline, or the upper line of
a double underline: 14% of the current font size

~ offset below the baseline to the top edge of the lower line of a double underline:
27% of the current font size

~ offset above the baseline to the bottom edge of a strikeout:
31% of the current font size

— line width for all of the above:
6% of the current font size

Interpress provides two operators which are used for setting underlines and strikeout.
The STARTUNDERLINE operator is called before the text sequence(s) to be imaged.
After the text has been imaged through calling the SHOW operator, the MAS-
KUNDERLINE operator is called with the thickness and offset. Double underlines
are created by calling MASKUNDERLINE twice, and strikeouts are created by call-
ing it with a negative offset.

Similar to the problems concerning underlining and strikeout, superscripting and sub-
scripting suffer from no specification of offset calculations or rendering effect. Again,
in a moderately sophisticated typographic system the ideal solution is to extract the
relevant information from the currently selected font, and ISO/DIS 9541 provides for
this. ISO 9541-5, 6.16.2.14 defines specification of variant scripts through the attribute
ISO/VARSCRPT. In the current version of the translator, the font rendition is un-
modified, and the offset is set to 30% either below the baseline for subscripting (PLD),
or 30% above the baseline for superscripting (PLU).

Embeddedstyle modifications pose significant problems, not so much because they can-
not be accommodated, but because they are typographically unsophisticated and re-
quire the translator to make inline calls for new fonts while processing the text. The
problems occur from the use of SGR to modify the currently selected font in terms of
posture or weight. This technique is typographically unsophisticated because the change
to the style specification actually results in a different typeface with different widths
and other characteristics. It is arguable that fixed-pitch office printing fonts do not re-
quire this sophistication. However, the test cases utilize a variety of fonts including
typographic faces, and it appears that the overall flexibility required for this mixture of
typography would benefit from a consistent model rather than assuming reliance on
embedded style codes.

Ideally, all of the typefaces used in the document should be specified in the document
profile, thus allowing the translator to collect, construct, or substitute all the required
fonts before processing the job. Instead of using SGR attributes, 1, 2, 3, 22 and 23 to
control weight and posture, the formatter would simply utilize attributes 10 through 19
to select typefaces designated in the associated presentation attributes. The desirability
of this technique is reinforced by observation that it closely parallels the common prac-
tice in Interpress of identifying all the fonts for a document in the Interpress preamble
construction. This technique enables association of numeric frame variables with the
font specifications thus alleviating inline font calls during execution of the master. Ad-
ditionally, this practice enables preprocessing of the document for acquisition of resour-
ces thereby reducing computation intensive operations at print-time.

Justification and line-breaking algorithms are under-specified in ISO 8613-6.2. The
standard must address in detail the topic of how to perform justification. How much
inter-character and inter-word expansion/compression is acceptable? Should these
values be derived from the selected font, or should they be static regardless of the font
(i.e.should maximum/minimum spacing compression/expansion come from a structure
specified in ISO/DIS 9541)? How should a system handle justification of short lines
consisting, for example, of as little as a single word (the current wording in ISO 8613-
62-5.2.2.d allows for spacing the word across the line measure by distributing the excess
space in the inter-character space, which clearly, is not appropriate).

Justification is currently implemented in the translator by calculating the excess line
width, and distributing it in the inter-word spacing (which is either expanded or com-
pressed). Specific control of inter-character spacing is not implemented, and no special
accommodations are made for punctuation. The translator will not justify a line if the
total of the character widths is less than 75% of the specified line measure. While this
does set some minimum threshold for determining the appropriateness of whether the
line should be justified, it does not take into consideration fine decisions about exactly
how the space should be distributed between words, characters, and punctuation. The
translator does not currently limit inter-word space compression, but this needs to be
addressed in the standard. A significant opportunity exists for definition of a preferred

-13-

justification algorithm in 8613-6.2. This is necessary in order to guarantee common text
alignment results across different implementations.

[t is valuable to note that the Xerox Interpress CORRECT operator is utilized by the
translator in the justification process to overcome precision errors due to the lack of
accurate widths information. Clearly, there is no substitute for having shared access to
accurate widths data, but when this is unavailable, CORRECT provides the capability
to produce pleasing results. End and centered alignment are less of a problem, and are
implemented by either offsetting the start of the text by the excess width (which in some
circumstances may be negative), or by using it to calculate an offset relative to the centre
line of the display area.

A4 PROBLEMS AND ISSUES WITH TG-PF TEST CASES

A.4.1 Specific Issues Regarding Processing of the Geometric Graphics Test Cases

datamod]l:

One error was discovered wherein the word "graphics" was misplaced in the first pie
slice. The coordinates specified in the text were 700,550 whereas the actual encoded
coordinates were 620,550. This error in the position value causes the word to overlap
the adjoining pie slice.

datamod2:

Four errors were uncovered in datamod2, one of which was corrected. The most sig-
nificant error involved the sequence length for element "1 1 2 0", which was incorrect-
ly specified as OxO1F4. Upon encountering the error induced by the apparently
mis-specified sequence length, the Xerox ASN.1 parser recovered gracefully by trans-
lating everything up to the error. However, since the length error made accurate loca-
tion of objects in the datastream impossible, it prevented processing of the GGCA
contentin"1 120" and the subsequent character content. The author was able to cor-
rect the test case by editing the sequence length to OxO1FA in the actual binary file.

The less severe errors in the test case specification involved the actual GGCA content
forelement"1 120" The second problem involved the first bar of the graph which rep-
resents the inflation rate for Italy, wherein the size of the graphic example did not cor-
respond to the coordinates specified in the text of the test case. The problem is that the
coordinates encoded in the test case for the bar were coincident with the coordinates
for the bounding box of the graph, which were specified using a polyline. In the encoded
master, the result of execution causes these lines to overlap, and the bar is therefore in-
distinguishable from the bounding box. Because of this problem, and that hatching
would obscure the rest of the graphic, hatching was not implemented for this test case.
The third error concerned the y axis text data tags, wherein the graphic example showed
astring for" +5.0"and the test case contained no correspondent string. The fourth error

A4.2

-14 -

was in the text representation of the metafile which was supplied with the test case,
wherein the third pair of VDC coordinates for the point (120, 80) on the polyline rep-
resenting the bounding box were not shown.

datamod3:
One error was discovered, wherein the text strings for the years "1986" and "1987" over-
lap because they are positioned at the same X coordinate.

Specific Issues Regarding Processing of the Raster Graphics Test Cases

In general the raster graphics test cases did not provide a realistic test of ODA em-
bedded raster content. Given that the raster test cases as supplied can be printed in an
ODA document only through a private agreement by PODA participants, this does not
represent a true test of the ISO 8613 standard itself. In fact, it did not appear that the
rasters conform to the description of a bitmap encoded raster image as specified in ISO
8613-7.2.

Despite these discrepancies, the rasters were successfully decoded, compressed and
printed as separate Interpress files. The processing mostly used existing tools which are
written in Mesa, and which run in the Xerox XDE environment on a D-series proces-
Sor.

The processing steps each yielded interesting results in terms of the compression
achieved from the original files. The rasters were first processed through a "C" program
written by the author to pack the bytes into bits. These files were then edited into Xerox
AIS (Array of Intensity Samples) files for display on a Xerox D-series machine. The
AIS files were then processed using an existing Mesa program into Xerox RES (Raster
Encoding Standard) compressed bitmaps. The overall result of this conversion yielded
up to a 98% reduction in size based on the original pixel-per-byte encoded test cases.
The detailed results are displayed in Table 1 below.

PODA AIS RES Net Reduction
Test Case Name Test Case compressed
(octets) (octets) (octets) (PODA/RES)
RASTER C 447°888 57010 8’401 98,12%
Company Names
RASTER C3 657152 83’168 18’903 97,12%
ODA Logo

Table 1

A5 PROJECT MILESTONES, RESOURCES, AND METRICS

The translator described in this paper has been under development by the author since
late July 1987, and is largely a clean-sheet design due to having no previous experience
with ODA. Much of the first two months was spent reading both the 1986 and 1987 drafts
of ISO 8613. Additionally, related standards were acquired, and TGPF correspondence
was assimilated. Design of the basic data structures and data flow continued through Oc-
tober, and the ISO Development Environment (ISODE) was acquired from Northrop
Research and Technology Centre. ISODE is a toolkit of OSI development code includ-
ing an ASN.1 scanner/parser. The ASN.1 scanner was extracted with slight modification,
and coding was started in November with Microsoft C under MS-DOS.

The firstintelligent file processing including a comprehensive logging facility was in place
by mid-November. Extraction of text corresponding to page objects and creation of a
simple Interpress master was operational by early December. By mid-January, structure
processing was reliable and simple unformatted text could be positioned correctly on the
page. Focus was then directed exclusively to character content processing. By early
February the translator could sense all embedded commands and was approximately 60%
capable of correctly processing the supplied test cases. (Lack of formal definition for font
handling contributed significantly to the lack of completeness).

The interim segment of the study was completed at the end of February, and work con-
tinued on adding support for GGCA, RGCA, and FPDA. The original program was heavi-
ly reworked from a structural perspective through the month of March, and support was
added for typographic fonts widths, and interactive as well as batch operation (the pre-
vious version supported only batch processing). The raster graphics files were reviewed,
but due to a misunderstanding regarding the structure, were not correctly decoded until
May.

Through April, work was directed at designing and implementing support for FPDA, in-
cluding separate functions for internalizing the document and creating output. Support
mechanisms were developed and handling content caching (structure is retained in
memory, and content is cached to a temporary file), and essential object identifier opera-
tions (such as procedures for deriving the identity of a superior object, generating the
identity of a subordinate object, and internal search routines for matching objects in a
list). Work was also begun on implementing GGCA/CGM support, and by the end of
April, FPDA was stable.

At the time of this report, the translator is stable for essential subsets for FPDA, FDA,
GGCA and CCA. Raster graphics were decoded, compressed, and printed, but RGCA it-
selfis formally untested (this is probably not a significant issue, given that the rasters were
correctly decoded despite the fact that they were not contained in an actual ODA struc-
ture). The program consists of approximately 14,000 lines of code, not including libraries
or other linked object files. Of the 14,000 lines of code, approximately 1,200 were derived

A.6

- 16 -

from the ISODE toolkit. The translator utilizes the Xerox WRC Interpress Toolkit for
Interpress output; the identical libraries are available publicity through the Xerox Sys-
tems Institute.

OVERVIEW OF THE TRANSLATOR STRUCTURE

The ODA to Interpress translator is written in the C language and is structured in four
layers. The top layer is responsible for program control, and provides a simple interactive
or batch user interface (operational mode is under command line control). The second
layer contains the internalizer (ODA parser) and the Output Generator (Interpress
creator). The internalizer’s ODA parser provides processing for capturing the ASN.1 en-
coded datastream into an efficient internal representation. The Output Generator works
from this internal representation to create the Interpress master. The third layer hand-
les content portions through modular components that implement the appropriate con-
tent architecture. The fourth and lowest layer implements low level functions, and
includes the ASN.1 stream scanner, the ODA identifier mechanism, the cache control
mechanism, and the font widths mechanisms.

Upon programstartup, a file of user commands is scanned for information regarding fonts
and dynamic program capabilities. The program initializes itself relative to these
specifications by internalizing the widths for the requested fonts, and by building a tem-
porary cache on the local disk. If the program is in interactive mode (the default), avariety
of commands are provided which allow the user to internalize a named ODA document,
analyze its internalized structure, create Interpress output from the internalized repre-
sentation, reset the environment to allow processing of subsequent files, and to quit the
program. If batch processing is selected by a command line switch, a file name for an ODA
document must be supplied, and processing results in the creation of an Interpress master.

The program performs translation in two passes. In the first pass, the internalizer extracts
objects from the ODA datastream in the form of ISODE Presentation Elements using
the ISODE ASN.1 PSAP scanner. Each of Presentation Elements is analyzed semanti-
cally, and internalized into a linked tree structure based on its identity as an ODIF Inter-
change Data Unit. Structural information is maintained in resident memory in the form
of a context. Sequenced data associated with content portions is cached to a buffered tem-
porary file by the Cache Manager. The Cache Manager returns a handle which is stored
with the content information that can later be used to retrieve the sequenced content data
during output processing (or for editing). This design allows low-overhead access to struc-
tural information, and large linear storage for potentially long sequences of content in-
formation (such as GGCA metafiles and RGCA bitmaps).

A context is an abstraction used by the program to associate a collection of attributes with
an object. Context include information about the type of the object, its identity, all of the
rendition information and positioning information associated with it, and the object’s

A7

217 -

relationship to other objects, such as subordinates. Contexts are maintained by the Con-
text Manager. The Context Manager accommodates requests for allocating and deleting
contexts, inheriting information from superior contexts, and managing the relationship
between contexts.

The Context Manager provides a call-back mechanism to iterate a path on contexts con-
forming to the associated identifiers. A client can ask the Context Manager to iterate a
path of contexts either from a leaf towards the root (as might be the case when searching
for an attribute), or from the root towards a leaf (as might be the case when determining
the current position at the start of a block). The Context Manager relies on the 1D
Manager to handle the task of matching and constructing identifiers, and on other
routines for handling memory allocation and deallocation. The ID Manager is a separate
process that provides simple operations for constructing and interpreting ODA iden-
tifiers expressed in the form of numeric character strings.

The Output Generator performs the second pass processing which results in creation of
an Interpress master. The Output Generator utilizes the internalized structure by start-
ing at the document layout root, and processing layout objects in their sequential order
based on the associated identifier. As the processing encounters layout objects whose sub-
ordinates are content portions, the structure for the associated content portion is located,
its sequence data is retrieved from the cache, and it is processed by routines for the ap-
propriate content.

Separate processes are implemented for CCA and GGCA content. Character content
processing is implemented for a significant portion of ISO 8613-6.2; only embedded com-
mands that dynamically affect the style of the current font are unimplemented. Geometric
Graphics content processing is currently capable of parsing all of CGM, but only the min-
imum set of capabilities required for processing the supplied test cases is actually imple-
mented for output creation.

CONCLUSIONS

The translation of ODA to a PDL, in this case Interpress, is a tractable problem for which
the study has yielded valuable results. Firstmost, it has been demonstrated that a suffi-
ciently powerful and expressive PDL can effectively render imageable ODA objects for
printing. Secondly, it has been demonstrated that creation of pdl output directly from
FPDA is not only possible, but actually desirable. Thirdly, it has been demonstrated that
FDA is not requisite for processing imageable content. An finally, the study has
demonstrated the general strength of ISO 8613 and its affiliated standards, particularly
in terms of its ability to describe structured documents that contain information which
can be imaged.

B.1

B.2

-19-

APPENDIX B
TRANSLATION OF ODA TO POSTSCRIPT, INTERIM REPORT
Mr. J. Foley, Adobe System Incorporated

June 1988

INTRODUCTION

This is an interim report from the Adobe Systems contributor to ECMA TC29-TGPF,
regarding the currentstatus of the ODA-to-PostScript translator, and the information ac-
quired to date regarding the goals of this translation study.

The three goals of this translation study are:

- inform the current PDL vendors of the capabilities of ODA for describing printable
documents;

- evaluate the current PDLs for adequacy in supporting ODA Formatted Form;

~ obtain feedback from the current PDL vendors regarding extensions needed by ODA
for the support of publishing-quality printing.

Information pertinent to each of these three goals, in this order, is provided after the next
section.

CURRENT STATUS OF THE ADOBE PROJECT

Working implementation of the ODA FF-to-PostScript translator and imager has been
delayed both by the difficulty of implementing the Layout Structure analyzer, and by other
project demands on this contributor’s time. A recursive-descent parser for ODA Layout
Structure has been implemented, but is still not working reliably. Thus, completion of the
content architecture translators has been delayed.

However, work on the content imagers has yielded information that is of consequence in
meeting the above three goals. The greatest amount of information and suggestions is
available regarding the Character Content imager; the least complete content imager is
for Geometric Graphics.

The following interim report should be of use to TC29.

B.3 OBSERVED CAPABILITIES OF ODA

The first objective of the study was to inform the current PDL vendors regarding ODA
and its features.

This contributor greatly increased his familiarity with ODA during the course of this
study. The following section takes note of important features of ODA, and in some cases
contrasts them with the PDL approach.

B.3.1

B.3.2

Overall Layout Model

The possibility of overlapping frames seems to provide adequate flexibility for most "of-
fice document” layout tasks.

One obvious limitation is the orthonormality required of frames. This restricts the
domain of application of the overall layout model.

Another limitation on flexibility is the approach of enumerating finite lists of choices,
e.g., 0,90, 180 and 270 degree angles only. This means that such descriptions can only
be adequate for specific domains of application, i.e., those which use only the specified
choices. The language approach provided in PDLs seeks to assure that a broad range of
application domains may be served, particularly including new application domains that
may be invented AFTER the PDL is established.

However, it should be noted that implementing the finite-choice form of document
description may be easier, up to a point. This may be suitable for descriptions that are
meant to be specific to particular application domain(s). It may be acceptable to the
ODA community to accept the use of ODA with only "office documents".

Character Content Architecture

The ODA Character Content Architecture seems capable of achieving most
typographic effects, in environments with a suitable choice of fonts.

However, it does not seem to provide means to GUARANTEE particular effects un-
ambiguously and in an implementation-independent way. Greater detail on this issue
is presented in section 5.2 below.

One particular feature that the Character Content Architecture does not provide, that
can be extremely useful in typical office documents, is the ability to provide angled
column headings and labels on charts and tables. One should not have to use Geometric
Graphics to achieve this extremely useful typographic feature.

The concept of font substitution remains problematical from Adobe’s viewpoint. Clear-
ly, it would be wonderful to find a good way to do it, and the efforts of both ODA and
the 9541 Font Interchange Standard are worthwhile. But it remains to be seen if it can
be made typographically acceptable.,

B.3.3 Raster Graphics Content Architecture

Each basic component may contain only a single content portion. Therefore, there can
be no "stitching" problems, at least within a single block.

Only rectangular arrays of rectangular pels are allowed. Non-square pels are allowed.
This seems adequate for most purposes.

Pels extending beyond the basic layout object are clipped, and rectangular clipping is
provided.

Multiple "codings" are allowed in the processable form (bitmap, Group3, and Group4).
B.3.4 Geometric Graphics Content Architecture

A geometric graphics picture consists of a single CGM file containing a single CGM
Picture. There is essentially 100% compatibility with CGM, an established graphic
standard. Conversely, a full CGM interpreter (for CGM binary encoding only) must be
built into any ODA imager.

CGM is sufficiently rich to support most "office" or business graphics requirements. It
leans more toward stereotypical "computer" graphics (hatch patterns, vectors) than
toward "graphic arts" graphics typically used in publishing (continuous-tone/half-tone
colour variations, smooth high-order curves).

B.4 ADEQUACY OF POSTSCRIPT FOR IMAGING ODA FORMATTED FORM DOCU-
MENTS

The second objective of the study was to create a proof-of-principle demonstration that
the current PDL’s could adequately transcribe ODA Formatted Form documents. The
following provides some observations relevant to this goal.

B.4.1 Overall Imaging Model

Clearly the biggest challenge in writing this translator is the creation of the ODA-pars-
ing front end. My experience indicates that one would be much better off using general
ODA toolkits rather than attempting to build the ODA system from scratch.

It is equally clear, in my view, that adding a Formatted Form-to-PostScript translator
to apre-existing ODA system would be very straightforward. That project would involve

B.4.2

B.4.3

[8%]
(8]
'

only as much work as adding a PostScript driver to an ordinary application. For instance,
writing the translator for character content involves approximately the same effort as
writing a PostScript printer driver for a program like "WordStar".

Adding a PostScript translator/imager in this way would be tremendously simpler than
implementing a full RIP (raster image processor) and imaging technology. That task is
of a completely different order of magnitude.

The imaging capability of the PostScript language and printers is definitely a superset
of the functions needed by existing ODA content architectures. Therefore, given the
above observations it would seem that creating an ODA-to-PostScript driver is a prac-
tical way to implement ODA Formatted Form imaging.

Character Content Architecture

The Character Content imager in the ODA to PostScript translator is very straightfor-
ward:

- Acertain amount of formatting functionality has been left by ODA for the imaging
process (the "implementation-dependent" features). The resolution of the im-
plementation decision has been left flexible. The translator reads a "profile" file
before starting, so that the user may configure the translator to his taste on these is-
sues (e.g., how to do crossed-out graphic rendition).

- The remainder of the task is completely equivalent to writing an emulator for some
specific printer. I have been involved with PostScript emulation of HP PCL, Diablo
630, and APPS-5 imagers. Translation of ODA Character Content character strings
is not particularly different.

~ There is asmall challenge in writing emulators efficiently, since it is a programming
task that can be done many different ways. For the purpose of this study project, I
am using a fairly simple approach that will probably be less efficient than if I had
spent more time on it. However, optimization can be added later.

Raster Graphic Content Architecture

The Raster Graphic Content imager in the ODA to PostScript translator must perform
two tasks:

~ The image data must be provided to the PostScript interpreter in an appropriate
form. The document application profile for this study requires only the raster
graphics bitmap format to be supported in the test translator. In the general case,
facsimile format must also be supported. Adobe Systems has most of Group3 and
Group4 implemented in software, although it is not included in any of our current
products. (Please note that the Study Translator has not progressed to the stage of

-~ 23 =

actually testing this capability in the context of ODA raster graphics content trans-
lation).

~ The image data must be preceded by a very small amount of PostScript code, which
then causes the PostScript interpreter to read the image data directly out of the data
stream. No further "translation" is needed.

The current raster graphics content architecture allows only for bi-valued pels. If such
images happen to be transmitted at the resolution of the imaging device, the PostScript
interpreter will automatically take advantage of this fact to print the images very effi-
ciently. If the device resolution does not match, the PostScript interpreter is able to do
avery high quality rendering by using its built-in halftoning abilities.

When colour and gray-scale raster graphics are added to ODA’s capabilities, PostScript
interpreters will be able to print them with equal ease, as PostScript printers with gray-
scale, halftone, and colour capabilities are already on the market.

B.4.4 Geometric Graphic Content Architecture

The Geometric Graphics Content is the largest job to translate, because CGM has a
complete graphic and text imaging model.

Most elements of the CGM translate very readily and efficiently into PostScript lan-
guage. For instance, rotated and anamorphically scaled text is allowed in CGM, and the
PostScript interpreter does this easily. Polylines may also be imaged very efficiently,
thanks to the PostScript language’s procedure capability.

A few features of CGM require the translator to be more clever. For instance, Polygon-
Sets (not required in the Study Translator) allow some edges to be visible, while others
are invisible. This result can be described several different ways in PostScript, and care
must be taken to use an efficient representation. However, I have not encountered any
features that do not have a straightforward and efficient mapping into PostScript lan-
guage commands or command sequences.

As with the Character Content architecture, Geometric Graphics leaves many aspects
of the page image under-specified from the perspective of a PDL. For instance, the
issue of line joins and end caps is ignored. These attributes, needed by the PostScript
interpreter, must be supplied either in the translator itself or in a profile file.

B.5 SUGGESTED EXTENSIONS OF ODA CAPABILITIES

The following is simply a list of observations and suggestions for possible extensions to
ODA and its content architectures, which might improve ODA’s usefulness in electronic
publishing and other applications more sophisticated than those usually categorized as

"office applications”. Some of these comments are preceded by a sub-clause number in
parentheses, from the July 1987 DIS 8613.

B.5.1 Overall Layout Model (Part 2)

The inability to provide rotated frames is a serious lack. In particular, one should be
able to specify angled column headings and labels on textual charts and tables without
having to resort to Geometric Graphics.

The designers of ODA document architecture might also consider issues of labels on
graphics (e.g., pie charts). If the labels are provided as part of the CGM graphic, they
are merely part of a unitary Picture, with no discrete semantics. On the other hand, if
theyare blocks of Character Content overlapped on the Geometric Graphic image, then
they might be recognized as a special type of content. Rules might be provided for "float-
ing" them on the graphic, so that a layout process could optimize their positioning. For
instance, changing the width of a layout column might move the labels on a pie chart
rather than causing the graphic to actually change size.

The text capability from CGM has many desirable features that Character Content
lacks, for instance the ability to scale and rotate. On the other hand, it is burdened with
a non-typographic model including character boxes and foreground and background
colours. It would be advantageous to provide a single enhanced text architecture, and
discourage use of CGM text in geometric content.

- (3.3.5)"Bordersare under-specified, especially with regard to the placement of thick
lines, and the specification and behavior of non-solid line types.

- (7.3.2) The page position may move around on the nominal page depending on
various factors. Insome circumstances, it is to be "positioned such that the possibility
of information loss is minimized". This is ambiguous.

- (3.3.2.2) Handling or errors in the document architecture is unspecified. In par-
ticular, if frames are NOT entirely contained within superior frames, what is the
desirable action?

B.5.2 Character Content Architecture (Part 6)

- (5.2.2 and later) The "justification process" is under-specified. The layout process
should decide exactly how to distribute excess whitespace among interword and in-
tercharacter spacing. Since ODA allows this process to be left for the imager to per-
form, it means the same "formatted form" document may be sent to two different
printers of EQUIVALENT functionality and yet result in quite different page im-
ages. This is not acceptable in publishing applications. It should also be noted that
"excess whitespace" may be negative in some line-justifying circumstances.

- (VARIOUS) There is a set of features which should be interpreted quite different-
ly for constant-spacing and variable-spacing fonts. In many cases, control
codes/presentationattributes are given which would be suitable for each type of font.
However, it is usually not observed that one control code or presentation attribute
is suitable for constant-spacing fonts and unsuitable for variable-spacing fonts (or
vice-versa). The following two comments describe some of these situations.

- (5.2.4 subscript/superscript) The simple forms that move up or down one half

line, and do not recognize a change in character size or width, are quite suitable
tor fixed-pitch fonts and daisy-wheel printing. They are very under-specified if
they are to be used with typographic (variable-pitch) fonts. Attributes which
must be specified in such a case include: how much to move up or down; what
size character to use if the font does not include special sub/superscript graphic
characters; and whether the line-justification process takes the potential change
in character width into account.
Conversely, there are control codes that provide (somewhat) more specificity.
The would be difficult to implement on most daisy-wheel style printers, yet the
Character Content Architecture specification does not seem to make normative
statements about whether and how they should be implemented across a range
of system capabilities. The result may be inability to depend on the specific im-
aging results.

- (11.1.8 character spacing) The different controls available for controlling the
character spacing behavior of each of constant-spacing and variable-spacing
fonts should be discussed and contrasted.

- (6.1.2) In the case where "posture" is changed without changing font, it should be
possible to specify what obliquing angle to use.

- (06.1.3) Underlining and double underlining are under-specified, with regard to: line
width, position, and variation of these attributes for different fonts within a docu-
ment and on a single line.

- (6.1.5) Textual image inversion is not a typical typographic feature. In most
typographic fonts, the line box is a figment of the formatter’s imagination, not a
characteristic of the font. Therefore, in order for the imager to perform image in-
version, the back and forward extents of the line box must be specified.

- (6.1.6) Cross-out is a useful feature which is quite under-specified. Cross-out may
be done with slashes, dashes, equal signs, x’s, or continuous lines, among other ways.
If done with continuous line, width and position must be specified. If done with
character overtype on variable-spacing fonts, one must specify character position-
ing rule, e.g., centered on each character or start-aligned with each character. Also
note the lawyers frequently require a double crossout, and use " =" signs to achieve
1t.

B.5.3

=26 -

- (6.2.3) Itis good that invocation of typographic font overrides attributes of "weight"

and "posture”. Butit SHOULD be possible to invoke a constant-spacing typographic
font and still specify weight and posture, since this is exactly the category of font
upon which it makes sense to perform algorithmic weight and posture modifica-
tions.

(11.1.5) Tt seems unspecified whether graphic renditions must nest or are inde-
pendent. For example, when a graphic rendition is turned on AFTER a subscript or
superscript control, does it remain effective after the sub/super is returned to nor-
mal?

(12.1.1.3.3 and 12.2.1.1) Alignment really should not be left for the imaging process
under any circumstances. It is formatting, plain and simple.

Finally, the methods of dealing with errors in Character Content seem to be un-
specified. This should be improved, because the method of dealing with errors will af-
fect imaging. For example, if font substitution is a formatted form character content
portion causes a string to extend beyond the end edge and/or beyond the edge of the
block, what is the appropriate result?

Raster Graphics Content Architecture (Part 7)

The ODA designers have already taken note of the need for support of colour and grays-
cale raster images.

~ (5.4) The section on positioning does not define the reference point for positioning

of an individual pel. It is "assumed to be within the image of the pel". Greater
precision is useful, and will be absolutely necessary for the Tiled Raster Graphics
architecture. We propose the following model: Each pel is considered to be a half-
closed region, "bounded" on the left and bottom edges including the lower left
corner, and"open” on the top and right edges including the three remaining corners.
Thus, every geometricpoint in the raster graphic is unambiguously contained within
exactly one pel. Further, let there be a precise positioning point for the pel. This
should logically be either the center of the pel or the lower left corner (which is in-
cluded in the pel). There are implementation advantages to using the corner rather
than the center, and this is what we recommend.

(5.4) Rotated images (beyond just 90-degree orientations) should be allowed. This
is absolutely required for advertising and newsletter applications. Skewed images
(mapped to non-rectangular parallelograms) are less frequently used but should also
be considered

B.5.4 Geometric Graphic Content Architecture (Part 8)

The appearance of the various marker types is under-specified.

CGM Text uses a variety of non-typographic attributes, including character boxes and
foreground and background colors, but provides some attractive features like rotation
and scaling.

It is useful to be able to clip to non-rectangular areas. This is especially necessary for
advertising applications in publishing,

CGM leaves a number of attributes unspecified or under-specified from the perspec-
tive of a PDL. This is properly the topic of a separate paper. Examples include line joins
and end caps.

