ECMA Technical Report TR/66

June 1994

ECMA

Standardizing Information and Communication Systems

Mapping of PCTE to the
ECMA/NIST Frameworks
Reference Model

Phone: +41 22 849.60.00 - Fax: +41 22 849.60.01 - ECMANEWS: +41 22 73533.29 - Internet: Helpdesk@ECMA.CH

ECMA Technical Report TR/66

June 1994

ECMA

Standardizing Information and Communication Systems

Mapping of PCTE to the
ECMA/NIST Frameworks
Reference Model

This Technical Report describes a mapping of Standard ECMA-149 (Portable Common Tool Environment (PCTE)
Abstract Specification, 2nd edition, June 1993) with respect to Technical Report ECMA TR/55 (Reference Model for
Frameworks of Software Engineering Environments, 3rd edition, June 1993, published jointly by ECMA and NIST).

Phone: +41 22 849.60.00 - Fax:+4122 849.60.01 - ECMANEWS:+4122 735.33.29 - Internet: Helpdesk@ECMA.CH
TR66.DOC - 24.08.95 10,51

Brief History

This Technical Report describes a mapping of the Standard ECMA-149, the Portable Common Tool
Environment (PCTE), following the outlines laid down in the ECMA TR/55 document (NIST Special
Publication 500-201), “A Reference Model for Frameworks of Software Engineering Environments”
(third edition).

The Reference Model has been prepared jointly by ECMA/TC33/TGRM, for the Technical Committee
(TC33) for PCTE standardisation, and by the National Institute of Standards and Technology (NIST)
of the United States Department of Commerce.

PCTE is the specification of a public tool interface for an open standard repository. It defines a set
of operations that provide basic data integration facilities which can be used by tool and environment
builders.

Standard ECMA-149 describes the Portable Common Tool Environment in language independent
terms. It specifies the interface supported by any conforming implementation as a set of abstract
operation specifications, together with the types of their parameters and results. These operations
are referred to in this document, but are not fully described, since for a full description of their
specifications the Standard ECMA-149 should be used.

Standard ECMA-149 is supported by a number of standard bindings, i.e. representations of the
interface in standard programming language, however, no particular bindings are referred to in this
document.

This Technical Report describes a mapping of a framework specification, and does not map any
particular implementation of that specification.

The format and many of the terms contained within are either those given in the Reference Model
document, where compatible, or those of the Standard ECMA-149.

This ECMA Technical Report has been adopted by the ECMA General Assembly of June 1994.

Contents

1 Introduction 1

2 Introducing PCTE and the Reference Model 4
2.1 Software Engineering Environments and Frameworks 4
2.1.1 Tool Support Interfaces, 4

2.2 The Development of PCTE 6
2.2.1 The Ada Programming Support Environment 6
222 Evolutionof PCTE 7

2.3 The Reference Model 10
23.1 Imtegration 10
2.3.2 Integration in the Reference Model 14

2.4 An IPSE Architecture 14
25 Mapping PCTE, 17
2.5.1 RMservicedimensions L 18

3 Object Management Services 20
3.1 Metadata Service 20
3.2 Data Storage and Persistence Service L L L. 46
3.3 Relationship Service L 65
3.4 Name Service 73
3.5 Distribution and Location Service 92
3.5.1 Distributiono 92

3.6 Data Transaction Service L 98
3.7 Concurrency Service 100
3.8 Operating System (OS) Process Support Service 117
3.8.1 OS Process Execution 117

3.9 Archive Service 134
3.10 Backup Service 138
3.11 Derivation Service PO 139
3.12 Replication and Synchronisation Service U 140
3.13 Access Control and Security Services 141
3.14 Function Attachment Serviceo 117

3.15 Common Schema Service e 148

3.16 Version Service 149
3.17 Composite Object Service 149
3.18 Query Service o e e e e 155
3.19 State Monitoring and Triggering Service 156

3.19.1 PCTE Notification mechanism 157
3.20 Sub-Environment Service 159

3.20.1 Schema Definition Sets Lo 160

3.20.2 Schema Management 160
3.21 Interchange Service L e 163
Process Management Services 164
4.1 Process Definition Service L L 164
4.2 Process Enactment Service e 164
4.3 Process Visibility and Scoping Service 165
4.4 Process Monitoring Service L L e 165
4.5 Event Management Service e e e e e e 166
4.6 Process Resource Management Service 166
Communication Services 168
5.1 Communication Service e e e e 168

5.1.1 OS Process Execution e 168

5.1.2 Monitoring OS processest e e 168

5.1.3 Communication between OS processes - Message Queues 168
5.2 Message Queue Service Ll e 169
User Interface Services 173
6.1 Metadata Service Lo e e 173
6.2 Session Service e e e e e e e e 173
6.3 Security Service L. e e e 174
6.4 Profile Service L L e e 174
6.5 User Interface Name and Location Service 175
6.6 Application Interface Service L L 175
6.7 Dialog Service [RSP 176

6.8 Presentation Service L. L e 176

6.9 Internationalisation Service oo

7 Policy Enforcement Services

7.1 Mandatory Confidentiality Service L L.
7.2 Discretionary Security Service oL
721 Security oo e e e
7.3 Mandatory Integrity Service L. L
7.4 Discretionary Integrity Service L.
T4.1 Security o o o i e e e
742 Accounting e e
7.5 Mandatory Conformity Service
7.5.1 Security e e e e
7.5.2 Accounting e
7.6 Discretionary Comformity Service.
7.6.1 Security
7.6.2 Accounting e e e e e e
8 Framework Administration and Configuration Services
8.1 Tool Registration Service
8.2 Resource Registration and Mapping Service
8.3 Metrication Service L. oL e
8.3.1 Monitoring OS processes e
8.4 User Administration Service L L L
8.5 Self-Configuration Service
8.6 Auditing Service e e e
8.7 Accounting Service L L e e e

A Bibliography

178
179
191
191
205
205
205
206
206
207
207
208
208
209

210
210
210
210
211
211
212
212
218

225

1 Introduction

This Technical Report provides a mapping of the PCTE, Standard ECMA-149 [ECMA 149] relative
to the Reference Model (RM) for Frameworks of Software Engineering Environments [RM].

A mapping of PCTE should include a description of the SEE components defined in PCTE using the
common reference terms and structures provided by the RM. In this way it will provide a basis for
comparing components of PCTE with other SEE components and related standards.

The mapping consists of a section for each of the services described in the RM which are covered by
PCTE. The main part of this document is structured in a way corresponding to the RM in order to
facilitate comparisons and references to either other mappings, or with the RM document itself.

The services covered by the RM which are relevant to the aims of PCTE are as follows:

e Object Management Services:

— Metadata Service

— Data Storage and Persistence Service
— Relationship Service

— Name Service

— Distribution and Location Service

— Data Transaction Service

— Concurrency Service

— OS Process Support Service

— Archive Service

— Backup Service

— Derivation Service

— Replication and Synchronisation Service
— Access Control and Security Service

Functional Attachment Service

Common Schema Service

Version Service

— Composite Object Service

— Query Service

— State Monitoring and Triggering Service
— Sub-Environment Service

— Data Interchange Service

¢ Communication Services:

Data Sharing Service

— Interprocess Communication Service

Network Service

Message Service

Event Notification Service

e Policy Enforcement Services:

— Security Information Service
— Identification and Authenication Service

— Mandatory Access Control Service

Discretionary Access Control Service

Integrity Service
— Secure Exportation and Importation of Objects Service

Audit Service

References are provided in the text to relevant sections of the Standard ECMA-149 so that more
precise information about a service can be easily found should it be felt by a reader to be necessary.

For readers who wish to use this document as a mapping of PCTE with respect to the ECMA/NIST
reference model for Frameworks of SEE, it is recommended that you first read the Reference Model
document, then simply refer to those services of interest which are described in this document. The
only other chapter which is of direct interest for people who wish to use this document for mapping
purposes is the concluding chapter which summarises the mapping, describing, primarily, the inter-
service relationships of PCTE. '

In order to produce a document which might be used by readers as a means of finding out more about
PCTE, without necessarily having the RM available, a number of introductory sections are included
to give a little background about PCTE and the SEE issues that it addresses. For such readers, it
is not recommended that the services be read in the order laid out by the RM, nor is it necessarily
useful to read about all of the services, since some are more necessary for a basic understanding of
PCTE than others. For such readers a possible list of services to be read is as follows:

¢ Object Management Services:

— Data Storage and Persistence Service
— Metadata Service
— Relationship Service

— Name Service

|

Composite Object Service

Version Service

— Distribution and Location Service

Replication and Synchronisation Service

Concurrency Service

Data Transaction Service

— OS Process Support Service

— State Monitoring and Triggering Service
e Communication Services:

— Message Service
o Policy Enforcement Services

— Mandatory Access Control Service

— Discretionary Access Control Service

Conventions used in illustrations

Remarks

This mapping is the result of work carried out over a period of time which covered the release of
different versions of both the ECMA /NIST Reference Model and the PCTE Standard itself. It should
not, therefore, be considered at the definitive mapping for PCTE with respect to this Reference Model.

Nevertheless, it has been decided that this document is a useful contribution to the growing wealth of
information pertaining to PCTE and Software Engineering Environment Frameworks, and has been
included as an ECMA Technical Report for this reason. It should not in anyway be consider as
anything other than a technical report aimed at stimulating discussion and research, and at raising

awareness.

object_type

attribute_type

N

o

LV

>

key?...keyr .link_type

 Z

A 4

a

<>

object type

object subtype
relationship

attribute type

link type, of category
(c) composition

(e) existence
(r) reference
(i) implicit

link type, of category

(d) designation

relationship link type

|

[x..yl]

O
@)
>

link type of
cardinality one

link type of
cardinality many
lower limit is x
upper limit is y

object

object with
attribute

link with
attribute

4 -
2 Introducing PCTE and the Reference Model

2.1 Software Engineering Environments and Frameworks

The development and maintenance of modern, complex software applications needs the availability of
an environment to provide the means of producing the software required for these applications and
to manage the process of production and evolution. The executable software providing the necessary
services for the development projects are called tools.

PCTE is itself part of a tool support interface (or tool interface) that, with the addition of complemen-
tary components (other tool interfaces providing other services such as a user interface), will provide a
portable tool interface for the definition of a software engineering environment (SEE) framework. The
addition of appropriate tools, will then provide an environment for the development and maintenance
of software applications. The approach taken is to factor out those facilities required by tools in order
to simplify the development of tools and to be able to integrate them into a given specific environment.
These commonly needed features are provided through the creation of a set of tool interfaces, which
must be made available as the framework for software development environments.

This chapter describes the requirements of such a tool interface, and which aspects of the tool interface
PCTE aims to provide. It describes the development of PCTE, its relationship with some other tool
environments, and investigates a possible architecture for PCTE based SEE.

2.1.1 Tool Support Interfaces

As a result of the growth in size and complexity of software applications, and of the increased diversity
of software-intensive systems, software engineers need to respond with high quality software, delivered
in a timely manner and meeting the customer’s requirements. To cope with the resulting increased
pressure on the software production process, engineers have realised that the traditional operating
system needs to be replaced by means to support tools that are both functionally richer and more
powerful.

Objectives

In addition to respecting a set of general model and design goals, the tool support interface must be
capable of providing project support environments with the following facilities:

e The interface should be able to support project support environments for the development of
both large and small real-time software systems. The language bindings of the interface should
allow interworking of tools written in different languages. The interface should also allow the
portability of tools between different implementations of the interface.

o The interface should provide the ability to manage entities, as described in the entity-relationship
model.

e The interface should support a wide range, but integrated set of simple-to-use tools, running
either in a centralised computing framework, or on a network of advanced workstations.

e The interface should provide a set of facilities that supports the complete management of all
the elements defined within the interface. The facilities in turn should be supported by a set of
standard language features provided by the language bindings.

e The interface should be machine and implementation independent. The interface should cousist
of orthogonal sets of functionalities that can evolve in a separate if consistent way.

e The interface should support extensibility by allowing the re-use of existing facilities of the
interface. These can be combined to created new higher-level interfaces and facilities.

e Not only should the interface present a uniform view to users, but it should also use self-
referential techniques in the modelling of the interface’s architecture and entity management
typing information.

e The interface should provide a set of program execution facilities that control the activation and
management of programs and processes.

e The interface should provide a level of security that embraces confidentiality, integrity, and
availability or denial of service.

o The interface should allow tools to control the allocation of resources, and the identification of
processes and data, independently of their distribution. It should also allow parts of the network
of resources to work in isolation.

e The interface should support the use of foreign tools.

Language bindings

A tool support interface should provide language bindings which will support the integration of tools
written in a number of required languages. That is, the tools should be able to work with each other,
regardless of the language they are written in. This allows the strengths of particular languages to be
exploited in particular circumstances and the use of libraries written in any language.

Management of entities

A tool support interface should be based on an appropriate data model such as the entity-relationship
model. This implies requirements that include the following:

e It must be possible to create and store data, and modify or delete that data.

e It must be possible to store relationships between the data, and the properties of the data.
It must also be possible to describe data (i.e. creation of metadata), and operate on that
description, and develop new descriptions by inheriting the properties of existing descriptions.

¢ There must be a means of defining the legality of operations, for enforcing those definitions, and
for accepting additional definitions of legality.

Program execution

e The interface should support the parallel execution of several processes created dynamically as
a result of tools activating programs. An activated process should be identifiable.

e The interface should provide a mechanism for processes to refer to processes, and in particular
to be able to stabilise a process such that it cannot be deactivated while it is referenced.

e A process should be able to terminate another process, either before or after normal completion,
and provide data about the termination. Conversely, a process should be able to deactivate
another process, and crase any information about the process or the deactivation.

-6 -

e The interface should provide a facility for the exchange of data between processes and the
synchronisation of cooperating processes.

Input and output interfaces

The tool support interface must provide an input and output interface that supports I/O between
processes, data entities, communication of devices and storage devices. In addition to supporting a
range of logical devices, the I/O interface should provide facilities that include the following:

e A text interface that supports a range of textual attributes.

e A graphical tool interface that allows the graphical description of tools and the combination of
graphics and text.

e Windowing interfaces that support the management of windows.

e Device connection interfaces that allow tools to connect to devices to receive output from or
input to those devices.

2.2 The Development of PCTE

The main design goals of PCTE are to support the construction of integrated tool sets which are widely
portable over a range of environments, and to support interoperability of tools and data between such
PCTE based environments.

A Project Support Environment contains a certain tool set. The interface, together with a complete
integrated set of tools required to support software design and production, are known as an Integrated
Project Support Environment (IPSE).

2.2.1 The Ada Programming Support Environment

One of the first IPSE design models was designed as a part of the Ada program for the US Department
of Defence. The resulting Ada Programming Support Environment (APSE) included a collection of
software tools that supported the programmer in the development of software systems written in
Ada. These tools included compilers, editors, debuggers, configuration management tools and text
formatters.

The architecture of the APSE model is illustrated in figure 2.1.

The architecture can be seen as comprising two layers surrounding a central core, referred to as the
Kernel APSE (or KAPSE). The KAPSE represents the traditional operating system with its services
made available to tools and applications. The set of functions offered by the KAPSE are intended to
be independent of the host machine, thus defining a portability interface, although to supply them
may mean placing constraints on what kind of host can be used.

The next layer is called the Minimal APSE (or MAPSE) and consists of a minimal set of software tools
for supporting software development. If these tools are written in Ada, since they use the common
services of the KAPSE, they are in principal transportable (portable) to some other APSE.

The top layer, called the APSE, contains the tools and applications that are unique to the particular
project or method of working.

MAPSE o : APSE
Text s
Formatters

Debuggers

KAPSE

Tool Support
Interface

Figure 2.1: The Ada Programming Support Environment PTI.

The underlying philosophy of the model was that an APSE should provide a coordinated and complete
set of tools, integrated through the use of a common database, managed by kernel-level operations.

2.2.2 Evolution of PCTE

During the formulation of the ESPRIT programme, the European Commission recognised the impor-
tance of establishing a common basis for development in each of the research projects. Such a basis
for a common environment would support free interchange between participants, provided that it was
portable and available on a number of popular workstations.

Although the goal of the APSE model was to provide support for the development of tools written
in Ada, most of the concepts introduced for an APSE could apply equally to a non-Ada-specific
environments. The European Commission therefore decided to proceed with a project entitled Basis
for a Portable Common Tool Environment (PCTE), intended to define and prototype the interfaces
of such a common basis for a software development system. '

The PCTE project, which was partially funded by the Commission for the European Communities.
as part of the ESPRIT programme, started in 1983 and culminated in the definition of the PCTE
1.4 C interfaces. This was achieved as a result of the cooperation between Bull, GEC, ICL, Nixdorf,
Olivetti and Siemens. The CEC definition of the equivalent Ada interfaces was produced in 1987 by
System Designers and Mark V Business Systems. The PCTE Interface Management Board (PIMB)
and its interface control group were responsible for producing PCTE 1.5 in both C and Ada during
1988.

A prototype implementation of PCTE was used in the context of the PACT project (another Esprit
Project) and a SEE was based on the PCTE 1.5 C bindings. The project was made up of companies
" involved in the previous development of PCTE, as well as Eurosoft, Syseca, Systems and Management.

Figure 2.2 illustrates the architecture of an IPSE with the PCTE as the kernel.

In this model, the central core was an implementation of the PCTE interfaces, providing a set of func-
tions that were equivalent to that provided by the KAPSE. It presents a machine-independent interface

Minimum
set of tools

Tool Support
Interface

Figure 2.2: A PCTE-based APSE.

that provides database communication and run-time support functions that enable the execution of
tools and programs both interactively and conversationally.

The first layer is a minimum set of tools, supported by the PCTE interfaces, that provides sufficient
facilities for the development of applications and additional tools. As an example of a PCTE-based
IPSE, PACT tools included support for project management, document preparation, configuration
and version management, system administration and communication.

The second layer represents the IPSE that was constructed by extensions and additions to the minimal
set of tools provided in the first layer.

PCTE 1.5 addressed the following goals:

e To support an integrated software development environment, based on a cohesive, rather than
heterogeneous, collection of tools.

e To provide the basis for an open-ended environment that supports the development and acqui-
sition of new tools which can then become an integral part of the environment.

e To support an environment that is based-upon the entity-relationship model. That is, to provide
a distributed database management system that manages data as entities.

e To provide a distributed architecture that manages a set of workstations connected over a net-
work, each of which sharing common physical resources. The set of resources being be available
to all within the environment, distributed in a transparent manner among the various users and
physical components.

e To provide a user interface offering a window system, menu management, and basic editing of
text and graphics. To also offer a pointing device on bit-mapped terminals.

To meet these goals, the PCTE 1.5 interface provided:

e A distributed database. In a PC'TE-based environment the central database of information is
called the object base and is transparently distributed across the network of workstations. It is
structured in such as way that it reflects the software development activity it supports.

The PCTE Object Management System (OMS) is an information management system that
accesses and manages the object base in response to requests from tools. It defines objects (with
or without conilents), relationships between objects, and atiributes of objects and relationships.
as the basic items of the object base.

e A distributed architecture. This is based on a network of workstations each of which with one
or more user stations connected. All users share software, data and the common resources of
the network, such as printers and servers. It provides a single homogeneous system of resources.
distributed transparently among users and physical components.

o Although the purpose of PCTE 1.5 was to support tools, it did not provide operations on actual
tools. Instead, it supported the notion of programs and the execution of programs (that is,
processes). It also provided the notion of an activity, which together with processes allowed the
composition of tools from programs (and tools from tools).

The management of processes allowed, for example, the creation, suspension, resumption and
termination of processes through access to message gueue contents, and the application of dis-
tributed object base facilities to entities such as pipes, files and devices.

The Independent European Programme Group, Technical Area 13 (IEPG TA 13), was responsible for
managing the evolution of PCTE 1.5 to a standard tool interface for civil and defence uses. A language
independent tool interface called PCTE+ was developed satisfying all the tool interface requirements
outlined earlier in this document.

The PCTE+ definition was led by Emeraude with other principal companies participating in the
specification being Selenia Industrie Elettroniche Associate, Software Sciences, IABG and Praxis.

The extensions provided in PCTE+ to the facilities of PCTE 1.5 included the following:

e More explicit definition of Composite entities.
¢ Versioning of Objects.
e Enhanced security.

e Modelling of processes as objects.

[]

Multiple inheritance of entity type definitions.

Notification mechanism, for specified object accesses.

Accounting facilities.

A richer set of attribute types and link categories.

In addition to these extensions, constraints existing in PCTE 1.5 as a result of its aim for compatibility
with Unix were removed.

Upon the request from the PIMB, ECMA undertook to continue the development of PCTE to bring
it into a form suitable for publication as an ECMA standard. An ECMA Technical Committee
(ECMA/TC33) was formed in February 1988 with this objective. Initially it was intended to base
ECMA PCTE on PCTE 1.4, but this was soon changed to PCTE+.

T(33 established an ad hoc Task Group to consider the question of the user interface for ECMA
PCTE. and in April 1989 accepted its recommendation. that X-Library should be the portability
platform for PCTE-based tools with respect to the User Interface.

PCTE was accepted as an ECMA Standard by the General Assembly of December 1990.

- 10 -

2.3 The Reference Model

The Reference Model (RM) for SEE frameworks was developed jointly by ECMA and NIST (the Na-
tional Institute of Standards and Technology of the US department of Commerce) and is proposed as
a common basis for differentiating between framework specifications and implementations, in order to
see what functionalities particular frameworks provide, where they overlap and are compatible, and
where they overlap and are incompatible. The reference model is neither a standard nor and architec-
ture, though it provides a basis for defining interfaces between different environment components, and
for identifying areas in environment architectures for developing, improving and describing standards.

Work on the reference model was coordinated with standards work on PCTE in order to make sure
that PCTE cooperates with other existing and developing standards.

The RM was originally made up from seven main components which grouped services of related
functional or operational capabilities. These were sometimes summarised in the diagram shown in
figure 2.3 which is a slight customisation of the Toaster Model [Tatge 1989].

Tool slots

Object Management Services

+ Policy Enforcement Services
/ + Framework Administration
and Configuration Services

Process Management Services

User Interafce service

.
&N o
technical notes
on...

T
=l =0

t‘/__’. !

T

[Communication Service

Figure 2.3: Representation of the Reference Model

Although this is a convenient representation, it very often conflicted with the fact that the reference
model tries not to support any particular framework architecture, and that the groupings of services
is not supposed to be an architectural decision.

Work on the reference model has continued, especially in the United States, and in cooperation
with related reference model activities, to produce a more complete and comprehensive model. The
latest version aiming to better describe the aspects of Process Management and Communication, and
tying to incorporate more detailed descriptions of the Operating System Services. The main aims of
the reference model remain the same, namely to provide a basis for determining interfaces between
components of environment frameworks.

2.3.1 Integration

One concept identified in the Reference Model as being an issue in the development of SEE, and
consequently, in frameworks and tools, is that of integration [ATM].

In this context integration embodics the way in which various components of a framework work

- 11 -

together in a similar, compatible fashion. In the context of an environment this idea is extended to
include the interworkability of tools to provide a single common support for a development process
and is methods.

A number of areas of integration are identified in the RM. To target the discussion of integrability, the
aspects are categorised into three main orthogonal dimensions based on the Wasserman diagram [Wass]
namely, Data integration, Control integration and Presentation integration (see figure 2.4).

PRESENTATION
Look &
Feel
Tool
Kit
Window
System File Dara Object
Formar Buse Base
DATA
Call
Remote
- Procedure
Call (RPC)
Broadcast
CONTROL

Figure 2.4: Integration Diagram

Data Integration

Data integration is the ability to share information throughout the environment. For a framework it
is to provide common access to data, common data models, shared data dictionaries, and so forth, for
the tools which are to populate the SEE which it supports. Information sharing implies a number of
considerations that are outlined below. However, it is important at the outset to clarify what kinds of
sharing we are considering. Within an SEE there is a large quantity of information of widely differing
sorts. Many aspects of data sharing are largely independent of the precise kind of data in question.
while detailed understanding of data representation is required for all data to be manipulated by the
tools that provide operations on the elementary data (for end-users or other tools). We can talk about
environment-level and tool-level data integration.

Information sharing in an SEE is concerned with

e concurrent access and data integrity
e access rights and data security
e ownership and/or authorship

e access date-time stamps

as well as the modelling and management of relationships between data entities.

In a multi-user environment it is not acceptable to block access to entire libraries of information while
one person may be accessing some data. This is particularly so in an SEE where the period during

which the data are accessed is likely to include multiple operations and intellectual activity and can
last a long time. So the information is required to be structured into entities at a satisfactory level
to ensure adequate concurrency of access between users. A similar consideration applies to users’
ownership and access rights to information, particularly the right to modify data; a primary goal of
an SEE is to provide means to protect the integrity of the information that is produced.

In order to manage all these (and other) characteristics required for data integration, there is bound to
be some overhead associated with the entities so manipulated. This gives rise to the notion of coarse-
grain data as opposed to the fine-grain where only the application information itself is concerned
with no management overheads. Data integration at the coarse-grain is what the SEE is particularly
concerned with for its own needs; fine-grain integration is a more specific concern for certain tools
acting on certain shared information.

Files

Fine Coarse
Grain Grain
Data Data

Data Object
Dictionary Base

} paa \ /

Integration Object Base &
Data Dictionary

Figure 2.5: Data Integration

From a practical view point it is important to clarify further the notion of granularity. This can also
be illustrated by means of examples. File systems manage shared data at a coarse-grain level for
concurrency, access, links, etc. This does not imply that coarse-grain data information needs to be
modelled as files: although a document may only be decomposed into chapters (or source code into
modules), it is also possible to structure a document into paragraphs within sections within chapters
etc, with specific modelling of key words within text (or source into data declarations and procedures,
with specific modelling of inter-procedure calls and use or inclusion of texts). The characteristics
mentioned above apply to data integration at the coarse grain level even where this is a lot finer than
the file level.

Presentation Integration

Presentation integration is the degree of standardisation of presentation used by the SEE. Providing
a uniform user interface giving similar screen appearance and modes of interaction, allowing tools to
be built with a common “look and feel” throughout the SEL.

All tools use a common style and a set of common standards for user/tool interactions:

- 13 -

File

SEE has to
where flexibilit}y
o meet the varti:
but al

Configuring and
be carefully man.
and adaptability
needs of project.

\insert(Figure: objects: Caption:"Objec
object base*}

E 4

iagram Edi!

| File _Edit_Misc_Help

LI B N ERY DS B B

SRR EE R R EET R B
1

Figure 2.6: Window System Interaction

o Windowing System Interaction: tools have the same underlying window system and present a
common interface for window manipulation commands. Windows have the same appearance (see
figure 2.6), the same commands for window movement, re-sizing, reshuffling (overlaying rules),
iconification, and so on.

e User Command Integration: tools have the same form of commands for comparable functions,
e.g. textual interface: syntax of command lines, naming of commands, parameters follow a
similar pattern; graphical: menus, buttons, mouse, similar command and options, have the
same name, location, format etc.

o Interaction integration: tools which carry out similar functionalities have similar operations
available for manipulating data entities (selection, deletion, editing, ...)

Control Integration

At the framework level, control integration describes the ability to combine functionality offered in an
environment in a flexible way so that tools can communicate with other tools in an easy manner. At
the environment level it describes the integration of the model for the software development process,
coordination of tools activation and use (this is some times referred to as Process Integration).

In general it is the ability of tools to interact with each other in order to accomplish a specified task.
Data integrated tools have a potential to work together. but to realise this potential to the full they
must be able to communicate with one another and to trigger actions in one another.

For example, a debugger communicating with an editor such that whenever the debugger stops at a
breakpoint that section of code is displayed in an editor running in parallel. Some of the mechanisms
which might be incorporated include Message queues, Notification mechanisms and Broadcast Message
Servers (BMS).

- 14 -

2.3.2 Integration in the Reference Model

Although Integration is well recognised as an important aspect of SEE and their frameworks it is touch
upon in a fairly general sense, and is some what reflected in the groupings of the services. For instance
Data Integration will be affected by the coverage of the services included in the Object Management
Services, whereas Control and Presentation Integration may be affected by the Communication and
User Interface Services respectively. However, no explicit Integration Services or descriptions are given
in the Reference Model, so this aspect of a SEE framework’s characteristics should be born in mind
continuously will reading this mapping.

2.4 An IPSE Architecture

Integrated Project Support Environments (IPSEs) are open environments which may be tailored to
support development in a number of different programming languages using different design methods
to provide SEEs. An architecture for such IPSEs [PCIS], was developed in the context of a PCIS
(Public Common Interface Set) Technical Study, an architecture based on this is shown in figure 2.7,
adapted for PCTE base environments.

Environment
Specification Design Coding Test : : Integration Validation
Tools Tools Tools Tools :: VERTICAL | Tools Tools
i TOOLS :
Framework e T R . A ,
Command Documentzmcfn : HORIZONTAL i ! Data Query Conﬁgt{ratxon
Language (Text + Graphic)| | TOOLS . . Management and Version
Interpreter Management : [: Management
Presentation Integration : i | Data Integration i | Control Integration
Common Services E_ . _i Common Services| | _; Common Services
Public Tool Interface - ->-
. . PCTE Interface
Platform X-Windows Implementation
1 Platform
Implementation

Figure 2.7: An IPSE Architecture

In this architecture a framework consists of a set of facilities including:

e a standard PTI,
¢ aset of common services which are offered to all tool developers for a higher level of integration.
e some horizonal tools or toolsets.
The architecture has a layering structure which corresponds quite closely to the APSE architecture
shown earlier. It is important to note that all services or tools developed directly on top of the PTI are

portable and can therefore be moved from one framework to another framework on the same PTI. It
is recommended that all tools of a given environment use the framework common services for a better

level of integration, though tools doing so will only be portable to frameworks with the same common
services. In this diagram common services corresponding to each of the dimensions of integration
identified earlier are included.

It is a framework defined policy to accept or not accept whether these additional services can be
bypassed by certain tools (shown in the diagram by allowing horizontal tools a surface with common
services and also the PTI). Notice also the similarities between the layering used here and that found
in the APSE architecture.

Other common services which may also be provided in such an architecture include:

Data Query There are several potential ways of interrogating an object base. It may be through
operators or through a specific language since there are many levels of the PTI basic
services.

Configuration Management Services
The Configuration Management Services should provide the ability to build tools
which help manage the development of several products with multiple inter-dependenci
and perhaps consisting of numerous versions.

- Object Oriented.Services

Object oriented services also provide possible facilities for control integration.
There are currently different approaches being explored in different industrial and
academic organisation. It is possible to map OO technology on to a PTI (e.g. ATIS
interface defined by the CIS group).

Message Dispatchers
Message dispatchers are also becoming used and therefore can be adopted as com-
mon services. An example is the Broadcast Message Server (BMS) of HP.

User Interface Services
The well known presentation packages MOTIF and OPENLOOK fall into this
category.

All tools which are applicable to several phases of the software development process which may be
re-used by other more phase specific tools are considered here to be what is called a horizontal tool
(and represented as a horizontal tool in the diagram). They offer services which are either generic or
common to several activities of the software development process.

Framework horizontal tools:

e Version and configuration management tools.

e Project Management Tools (and cost and estimation).

¢ Documentation Support Tools,

¢ Communication integration servers, such as BMS or Hyperweb,
An SEE built on this IPSE architecture is a framework populated by vertical tools and obeying a
given methodology or addressing a specific domain of applications development.
An environment therefore consists of

e a framework, possibly augmented with methodology oriented common services and horizontal
tools,

- 16 -

¢ a set of vertical tools implementing the dedicated software development process of the SEE.

Note that vertical tools normally use the relevant service of the framework. It is nevertheless possible
for a vertical tool to directly invoke the PTI, either because offered common services are not relevant
to it or because it was designed without knowledge of the existence of such a common service, for
instance to improve portability of the tool at the risk of devaluing the integration of the tool with the
rest of the SEE.

In some environments, it may be policy to enforce the use of a given common service within all tools.
This approach cannot be excluded but tends to restrict the domain of tools which can be plugged
in to the environment (it has to be balanced with the advantage of enforcing a higher policy level of
integration, figure 2.8).

7 5 —
g s ||. 2 |B
» 2 “ EEEETRRERE PR F-"F¥ I l&iﬁi’ E:,U
> @ = Tool © S e o «» &
> ES 5 = Sg o B =
= o Q 5 =R O =
a T O[e-E P=S58| | £S5
8 ES = I Zg= £ o
= o — = 2 o o
3 % 2 s | |BECE| | 53
[a) s = T8 [“31
o | EEFTEE ! TP-CEl PERTETTEY > g il 23
17 &) = g =
2 0 fog
o T ¥ L]
I e x 9
o = g
i Ze
\ Z
[] []
Data Integfatioh CS
———, Framework Integrated [
Tool y -«
]
_______ + PTI Integrated Tool PCTE Data Schema Mechanism
PCTE @MS
L]
_______ » Platform (or foreign) .

Tool A 4

CS Common Service Platform Data

Figure 2.8: Levels of Tool Integration

An ideal environment should provide tools covering all phases which constitute the software process.
These phases are briefly summarised here after:

¢ Requirements

Specifications

e Design

Coding and debugging

Testing

Maintaining

Customer Support.
Tools can be classed as follows:

Methad Support tools
Graphical editing/checking facilities.

Document Preparation tools
support of writing documents.

Project Management tools
allow estimation of time required by a project, costs, etc., and facilities for generating manage-
ment reports on project states.

2.5 Mapping PCTE

Referring back to the IPSE architecture, it is apparent that the framework services which should be
address by a PCTE Interface implementation are those of the Object Management, Policy Enforcement
and Communication Service groupings.

Object Management
The general purpose of the object management grouping is the definition, storage, maintenance,
management, and access of object entities and the relationships among them.

This corresponds to the PCTE Object Management System (OMS).

Communication
These services provide for communication among the services of an SEE. Providing a standard
communication mechanism which may be used for inter-tool and inter-service communication.
The services depend upon the form of communication mechanism provided: messages, process
invocation and remote procedure call (RPC), or data sharing.

It is likely that SEE frameworks based on PCTE will use a number of different ways for allowing
communication, ranging from using the OMS and RPCs to message queues and notification mech-
anisms. Other communication mechanisms may also be used by including compatible components
such as Broadcast Message Servers (BMS).

Policy Enforcement
The general purpose of the Policy Enforcement Services is to provide support for confidentiality
and integrity in an SEE, for mandatory and discretionary security.

Integrity and Security of data, both mandatory and discretionary, are all treated by PCTE.

Others services may be provided on top of this basis in the form of Integration Common Services
provided by a particular framework, and may include the Process Management and Framework Con-
figuration groupings. The User Interface grouping, however, should has be provided by a PCTE
compatible interface.

Process Management

The general purpose of the Process Management Services in an SEE are the definition and the
computer assisted performance of software development activities across total software lifecycles.
In addition to technical development activities, these potentially include management, documen-
tation, evaluation, assessment, policy-enforcement, business control, maintenance, and other ac-
tivities.

It is probable that these services will be provided in an SEE framework based on PCTE by a
Process Management Common Service implemented on top of the PCTE OMS and the SEL
framework Communication Service, hence this area of the framework is not specifically covered

by PCTE.

- 18 -

User Interface
" The User Interface Services provide the main conduit for user involvement with the environment
and they provide the major path between tools and user.
The ECMA PCTE standard recommends that X-Library should be the portability platform for
PCTE-based tools, however, no explicit definition for PCTE User Interface (UI) are made in
Standard ECMA-149.

Framework Administration
The general purpose of the Framework Administration Services is to allow for the description of
Administration services which are provided for a given SEE framework.
PCTE does not impose a set of Framework Administration services, these may be implementation
specific, and are supported by services provided by other groupings.

2.5.1 RM service dimensions

The reference model for software engineering environment frameworks divides an environment frame-
work into functional elements which are called “services”. Services are grouped together where they
are closely related from the point of view of their functionality.

The descriptions of the services are structured to ensure that the descriptions of different systems under
review might be compatible and comparable, and are clear, precise, and comprehensive in describing
what the system does and does not provide. To do this “dimensions” have been chosen to provide the
necessary structuring of service descriptions, as shown in table 2.1.

HEADINGS Each service is dealt with individually, and when appropriate, the fol-
lowing headings are used to cover the points concerning the dimensions:
Conceptual (what a service is), the essence of a service should be described without

reference to either how it is implemented or to the way in which it may
be made available to other services or to people.

Operations a set of operations that implement the functionality described by the
conceptual dimension; although the explicit format of that functionality
is described by the external dimension and any implementation details
are given in the internal dimension.

Rules constraints placed upon the state of the data, and the applicability of
operations.
Types the possible tvpes of objects (or data model) used by the service, infor-

mation about these types (metadata), as well as the objects (instances
of these types.

External (the ways the service is made available externally), discusses how the
service is made available to be used, e.g. by tools, other services, users
etc.

Internal (the way the service is implemented), discusses implementation issues.

Related Services | (references to other services), the way the service interacts with other
services (statically or dynamically).

Table 2.1: RM Service dimensions

PCTE is an interface to a set of facilities that forms the basis for constructing environments supporting
system engineering projects. These facilities are desigued particularly to provide an infrastructure for

- 19 -

programs which may be part of such environments. Such programs, which are used as aids to system
development, are often referred to as tools. No tools are defined by PCTE.

In this mapping of PCTE the extent to which a heading is used, for any given service may vary due
to the different natures of the various services described.

For the conceptual heading an informal description of the PCTE functionality which corresponds to
the service is given, describing the motivation for such a service and the way in which PCTE provides
such a service. :

Under the operations heading a list of the PCTE Operations provided is listed together with a

brief description of what the operation does. For a more complete description of any operations the
Standard ECMA-149 should be referred to.

For the rules dimension information from the specifications may be included where it is considered
to be of particular interest for the purposes of the mapping, but more detailed information about
the possible states of data and restrictions of particular operations should be sort from the Standard
ECMA-149.

For the types a description of the PCTE object, link and attribute types which are used in the service
is given, this is sometimes complemented by a relevant schema diagram.

The external dimension is not addressed by this mapping since it is considered that this dimension
is only relevant for a particular implementation of the PCTE bindings. In general it is expected,
however, that service will be made available by libraries of primitives based upon the bindings which
are currently available.

For the internal dimension a number of features are not completely defined in this ECMA standard,
some freedom being allowed to the implementor. Some of these are implementation limits, for which
constraints are defined. The other implementation-dependent features are defined in the appropriate
places in in the standard.

The reference dimension gives references to other services which may be relevant for a better under-
standing of the services in question.

=90 -

3 Object Management Services

The general purpose of the object management service grouping is the definition, storage, maintenance.
management, and access of data entities or objects and the relationships among them. Object managers
manage “things” (i.e., data or objects, and possibly processes) which support the activities of the life-
cycle. In this document we call these things “objects™.

3.1 Metadata Service

The Metadata Service provides definition, control and maintenance of metadata (e.g., schemas), typ-
ically according to supported data model.

Conceptual

In PCTE, data is stored within the PCTE data repository, known as the object base, as instances of
predefined data types. These predefined data types form a set of data known as metadata. In this
service we look at how PCTE allows the definition, control and maintenance of this metadata.

‘—@ +331 439032 12) (444 908324320 +44 231 321908)
person @ Mark Jane

. attribute_type
/
object_type instance 1 instance 2 instance 3
Type data Data
(data about types in metabase) (instance of types in object base)

Figure 3.1: Metadata is data about the data.

In the development of the PCTE interface a self-referential approach was adopted where possible. One
implication of this approach has been the development of a Metadata Service which makes use of the
data modelling facilities and data storage services (see section 3.2), designed for the PCTE repository,
to represent all of the metadata. As a result, all typing information is stored as sets of objects, links
and attributes in a subset of the object base known as the metabase.

Rationale for the Metabase

When defining the PCTE metadata service a number of supplementary objectives were targeted along
side the more general aim of providing the kind of Metadata service outlined in the RM, in particular,
e the ability of generic tools to query the metadata as well as the data,
¢ the ability to exchange metadata between PCTE installations as well as exchanging the data,

o the ability to associate user-defined information with types, using user-defined attributes, and
to create user-defined relationships between types. and possibly between types and other objects
of the object base (such as, for-example, relationships between objects and their object types).

-921 -

Representation of the Typing Information in PCTE

In PCTE, the set of all type definitions (the metadata) defined in a PCTE installation is organised into
subsets called SDSs (Schema Definitions Sets). This division of the metadata into SDSs has a number
of important consequences on both how the Metadata Service manages the metadata, and also how
the data in the object base can be used. Data in the object base can only be accessed, understood and
used by a PCTE process (see section 3.8) if the schema which the process is using (known in PCTE as
the process’ working schema) contains the metadata for the data which is concerned. These working
schemas, for a number of reasons which will become apparent later, consist, not of the complete set
of metadata that exists in the PCTE installation, but of a subset of the metadata, constructed from
one or more SDSs. This, amongst other things, allows definition and maintenance of the metadata at
the level of projects, teams, tools, individual users, and provides greater flexibility, evolutivity, tool
portability and security, and also explains some of the more subtle complexities of the PCTE Metabase
Service which will be seen in what follows.

As has been said, the metabase is divided into subsets known as SDSs, each SDS is then represented
in the metabase by a single object, and the typing information (or metadata) defined in the SDS is
stored as components of this object (see 3.17). A set of specific operations is provided to modify and
consult this metadata, as listed in the operations section.

Schema of the Metabase

The schema for the metabase describes how the object, links and attributes representing the typing
information of the object base are organised. This schema is called the metaschema and is itself
described in an SDS called the metasds. A description of this SDS can be found in Types section
using the PCTE defined Data Definition Language (DDL, see external section). We shall continue
in this section of the mapping by having a look at some of the more general aspects of the metadata
model defined in PCTE.

sds_directory
metasds
known_sds
sds_name system
known_sds known_sds
()
. ;’
sds
Metadata Data
(data about types) (instance of types in metabase)

Figure 3.2: The directory of SDSs.

The notion of SDS is fundamental in the PCTE model, and as a result, they form the central objects
for the organisation of the metabase. All SDSs are linked to a predefined object, for which only
one instance of its type can exist, called the sds_directory. In figure 3.2, the object types for the
sds_directory object and the sds objects are represented. together with a link type known_sds joining
the two. On the right of the figure instances of these type definitions are shown. These represent actual

-9 -

data stored in the metabase.

The known_sds link type has what is kn