ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

FORMAL DEFINITION
of the
SYNTAX OF COBOL

September 1970

Free copies of this document are available from ECMA,

European Computer Manufacturers Association,

114 Rue du Rhéne — 1204 Geneva (Switzerland)

ECMA

EUROPEAN COMPUTER MANUFACTURERS ASSOCIATION

FORMAL DEFINITION
of the
SYNTAX OF COBOL

September 1970

FORMAL DEFINITION
of the
SYNTAX OF COBOL

CONTENTS

Page
PREFACE ix
INTRODUCTION TO THE NOTATION xiii
FORMAL DEFINITION OF COBOL SYNTAX
G. Syntactic Definitions of General
. Nature
EMPTY 1
COBOL GRAPHICS 2
COBOL CONTROLS 4
SOME FREQUENTLY USED SEPARATORS 5
WORD 6
PROPER NONNUMERIC LITERAL 7
PROPER NUMERIC LITERAL 8
FIGURATIVE CONSTANT 9
LITERAL 10
ARITHMETIC OPERATOR 11
PROPER RELATIONAL OPERATOR 12
. PICTURE CHARACTER STRING 13
COMMENT STRING 14
OTHER LANGUAGE STRING 15
T. COBOL Text
SEPARATORS 16
GENERALIZED CHARACTER STRING 17

STRUCTURE OF COBOL TEXT 18

- ii -

Page

Names defined by the Implementors

HARDWARE NAMES 19
OTHER NAMES 20

COBOL Program

COBOL PROGRAM STRUCTURE 21

Identification Division

IDENTIFICATION DIVISION STRUCTURE 22
PROGRAM-ID PARAGRAPH 23
DATE COMPILED PARAGRAPH 24
OTHER PARAGRAPHS 25
COMMENT PARAGRAPH BODY 26

Environment Division

ENVIRONMENT DIVISION STRUCTURE 27
CONFIGURATION SECTION STRUCTURE 28
INPUT-OUTPUT SECTION STRUCTURE 29
SOURCE COMPUTER PARAGRAPH 30
OBJECT COMPUTER PARAGRAPH 31
SEGMENT LIMIT CLAUSE 52
SPECIAL-NAMES PARAGRAPH 33
SPECIAL-NAMES CLAUSE 34
CURRENCY-SIGN CLAUSE 37
DECIMAL-POINT CLAUSE 38
FILE-CONTROL PARAGRAPH 59
SELECT CLAUSE 41
ASSIGN CLAUSE 42
MULTIPLE REEL/UNIT CLAUSE 43
ALTERNATE AREA CLAUSE 44

FILE-LIMIT CLAUSE 45

- iii -

ACCESS MODE CLAUSE
PROCESSING MODE CLAUSE
KEY CLAUSE

I-0-CONTROL PARAGRAPH
RERUN CLAUSE

SAME CLAUSE

MULTIPLE FILE CLAUSE

Data Division

DATA DIVISION STRUCTURE
FILE SECTION

WORKING STORAGE SECTION
REPORT SECTION

FD SKELETON

SD SKELETON

RD SKELETON

FILE AND SORT FILE RECORD
DESCRIPTION SKELETON

WORKING-STORAGE DATA DESCRIPTION
SKELETON

REPORT-GROUP DESCRIPTION SKELETON
BLANK WHEN ZERO CLAUSE
BLOCK CLAUSE

CODE CLAUSE

COLUMN NUMBER CLAUSE
CONTROL CLAUSE

DATA RECORDS CLAUSE
GROUP INDICATE CLAUSE
JUSTIFIED CLAUSE

LABEL RECORDS CLAUSE
LINE NUMBER CLAUSE
NEXT GROUP CLAUSE
OCCURS CLAUSE

Page

46
47
48
49
50
51
52

54
25
56
5d
59
01

63

71
75
81
82
83

Q
(6]

85
86
87
88
89
90
91
92

PAGE LIMIT CLAUSE
PICTURE CLAUSE
RECORD CONTAINS CLAUSE
REDEFINES CLAUSE
RENAMES CLAUSE
REPORT CLAUSE

RESET CLAUSE

SOURCE CLAUSE

SUM CLAUSE
SYNCHRONIZED CLAUSE
TYPE CLAUSE

USAGE CLAUSE

VALUE CLAUSE

VALUE OF CLAUSE
IDENTIFIERS

Procedure Division

PROCEDURE DIVISION STRUCTURE
DECLARATIVE PORTION
NON-DECLARATIVE PORTION
SECTIONS

SECTION NAME

SECTION BODY

PARAGRAPH

PARAGRAPH NAME

PROCEDURE NAME

PARAGRAPH BODY

SENTENCES

IMPERATIVE SENTENCES
CONDITIONAL SENTENCE
COMPILER DIRECTING SENTENCES
DECLARATIVE SENTENCE

94

93
100
101
102
103
104
105
106
107
108
109
110
111
112

119
120
121
122
123
124
125
126
127
128
129
130
131
132
133

IMPERATIVE STATEMENTS
CONDITIONAL STATEMENTS
DECLARATIVE STATEMENTS

COMMON OPTIONS
COMMON TERMS

ARITHMETIC EXPRESSIONS

CONDITIONS

ACCEPT STATEMENT
ADD STATEMENT
ALTER STATEMENT
CLOSE STATEMENT
COMPUTE STATEMENT
DISPLAY STATEMENT
DIVIDE STATEMENT
ENTER STATEMENT
EXAMINE STATEMENT
EXIT STATEMENT
GENERATE STATEMENT
GO TO STATEMENT

IF STATEMENT
INITIATE STATEMENT
MOVE STATEMENT
MULTIPLY STATEMENT
NOTE STATEMENT
OPEN STATEMENT
PERFORM STATEMENT
READ STATEMENT
RELEASE STATEMENT
RETURN STATEMENT
SEARCH STATEMENT
SEEK STATEMENT

SET STATEMENT

Page

134
135
136
137
138
139
140
142
143
144
145
146
147
1438
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166

SORT STATEMENT

STOP STATEMENT
SUBTRACT STATEMENT
TERMINATE STATEMENT
USE STATEMENT

WRITE STATEMENT

L. COBOL Library

STRUCTURE OF LIBRARY CALLS
LIBRARY NAME

R. Reserved Words

INDEX OF THE ECMA TC6 SYNTAX
DEFINITION OF COBOL

EXPLANATORY NOTES

Appendix: A METALANGUAGE FOR THE
DESCRIPTION OF PROGRAMMING
LANGUAGES

167
168
169
170
171
172

173
174

175

177

195

199

PREFACE

-ix

PREFACE

This formal definition of the syntax of COBOL was prepared
by the ECMA Technical Committee on COBOL (TCO) .

The work was initially undertaken at the request of the
CODASYL COBOL Publication Subcommittee. It resulted in the
publication in 1967 of a Preliminary Edition based on
COBOL Edition 65. This new edition is based on the ISO
Draft Recommendation 1989 on COBOL.

The document comprises four distinct parts and an appendix.
The first part briefly describes the notation used, the
second part is the formal definition of the COBOL syntax,
the third part is an index showing where each meta-variable
is defined and where it is used, the fourth part contains
explanatory notes for those definitions marked with an
asterisk, and the appendix is a complete and rigorous de-
scription of the metalanguage. The second part is divided
into three sections: syntactic definitions of ceneral na-
ture, level 1 syntax defining the COBOL text and level 2
syntax defining the COBOL program. The level 1 syntax de-
scribes the basic structure of the COBOL lancuace. It de-
fines a set of strings, called COBOL texts, in terms of
generalized words C(including COBOL words, literals, arith-
metic and relational operators, etc.) and word separators.
The level 2 syntax describes the detailed structure of

the COBOL language. It defines a set of strincs, called
COBOL programs, in terms of specific sequences of ceneral-
i2ed words and word separators. Although a COBOL text and

a COBOL program have each been defined as a string of char-
acters, an attempt has been made to show the relationship
between such a string and the Reference Format.

The metalanguage used is an extension of the metalancuage
used in the ALGOL 60 Report, known as the Backus normal
form. It is introduced in the first part: “Introduction

to the notation used"” and described in detail in the ap-
pendix under the title "Formalism for syntactical defini-
tion". Most extensions have been introduced to reduce the
number and complexity of production rules constitutinc the
formal definition of the COBOL syntax. For example certain
extensions greatly simplify the description of the nested
structure of records. Whenever these extensions are used,
the usual Backus notation, based on Chomsky context-free
grammars (type 2), could have been used. However, the
convention adopted to show relationship between declara-
tion of data-names and the subsequent use of those data-
names is different in that this relationship could not be
expressed in Backus notation. This is a well known context-
dependent aspect of programming languages. English text has
been used where needed to adequately supplement the meta-
language.

It has been difficult to decide whether some COBOL rules
should be included in the syntax and somewhat arbitrary de-
cisions had to be made. The level of detail expressed in
the production rules is also somewhat arbitrary. It is
often founded on an attempt to facilitate the use of this
formal definition by the human reader, in conjunction with
the existing descriptions of COBOL. For the same reason,
the names of metavariables have been chosen to reflect
their meaning, and the names defined in the draft IS0
Recommendation on COBOL have been used wherever feasible.

The application of the production rules given in level 2
syntax will generate all valid COBOL programs. However,
invalid programs will also be generated. For example the
following is not reflected:

- uniqgueness of names

- relationship between qualifiers and the corresponding
data herarchy.

- relationships between subscripts or indices and the cor-
responding table declarations

- some relationships between clauses and/or statements
- possible indentation of data description entricss.

With the exceptions mentioned above, this formal defini-
tion is believed to be in agreement with the ISO Recommen-
dation on COBOL.

However, the modular structure of the ISO Recommendation
is not reflected; the syntax shown applies to the combina-
tion of the upper levels of all modules.

INTRODUCTION
TO THE NOTATION

-

a)

b)

c)

1.

*

- xiii -

Introduction to the NOTATION

General

In the following it is assumed that the reader is familiar with
the standard COBOL specification. This informal explanation is
intended to further the understanding of the notation used in
this Formal Syntactic Definition by way of examples where the
new symbols are described in the order of appearance. It is
followed by a summary of all the symbols concerned (*).

Observe that the standard COBOL specification already takes
advantage of the existence of a kind of formal syntactic de-
finition as shown by the Formats. The present Formal Syntactic
Definition is intended to be merely more rigorous, leaving
less or (hopefully) no place for ambiguous interpretation of
the syntax.

As a first example consider entry D12+ (page 22):

D124 <blogk-clause>::=
BLOCK # [CONTAINS #]
[<positive-integer> # TO #]
<positive-integer>
<[# CHARACTERS] | # RECORDS >

and the corresponding format of the COBOL specification (ref.
2 SEQ, chapter 7, 2.3.2) : .

_ , CHARACTERS
BLOCK CONTAINS [integer-1 TO] integer-2 {‘RECORDS }

Now, compare these two descriptions element by element

Formal Syntactic Definition COBOL Specification Format
BLOCK # BLOCK
[CONTAINS #] CONTAINS
[<positive-integer># TO #] [integer-1 TOI
<positive-integer> integer-2
¢[# CHARACTERS] '# RECORDS?» {FHARACTERS}
RECORDS

It will be seen that the formal notation has been designed to
be as closely related as possible to the COBOL specification
formats. Thus

the appearance of upper-case letters means, in both descrip-

tions, the actual occurrence of these letters in program text;

in both descriptions, square brackets [] mean that the con-

tents may or may not appear in the program text at the user’s
option;
Note, however, some differences

underlined upper-case words of the COBOL specification are not

underlined in the formal notation, whereas

A more formal and complete description of the notation is to
be found in the Appendix.

d)

e)

f)

g)

h)

- xiv -

noise words, shown with non-underlined upper-case words in

the COBOL formats, are described in the formal notation by
upper-case words enclosed in square brackets (comprising only
the noise word and possibly the smbol #, which is explained
below),
e.g. [CONTAINS #] instead of CONTAINS
[# CHARACTERS] instead of CHARACTERS

the symbol ! (‘or’ ‘represented by exclamation mark) has been
introduced to express that an alternative has to be selected
from two or more possibilities; thus

[# CHARACTERS] | # RECORDS
means that either # CHARACTERS or # RECORDS exclusively, may

appear in the program text. If the former, it may be omitted
as shown by the surrounding square brackets.

It will be noticed that the right hand part of D124 shows
the exact punctuation allowed or required in the COBOL text

means the actual occurrence of one or more spaces. Note
also the introduction of the symbols

<> € >
These are various types of delimiters.

Syntactic units representing parts of the program text to

be filled in at the user’'s option from a given set of possi-

ble words, strings of words or other entities are represented
by lower-case words (or hyphenated words) enclosed in Backus

brackets < >. In the above example 77777

<positive—-integer>

is such an instance. In fact such a lower-case word enclosed
in Backus brackets can be considered as a variable, that is,
a notation to be replaced by a variable content; “variables”
of this kind have been given the name meta-variables.

As will be seen a @gEg:ygEiQQLQ can be used to represent not

only an element (like positive-integer), but any specified
portion of a COBOL program. For instance, the whole compound

BLOCK # [CONTAINS #]
[<positive-integer> # TO #]
<positive-integer>

«[# CHARACTERS] | # RECORDS >

is represented in the example by the single meta-variable
<block=-clause>

This is possible because at entry D 124 <block-clause> has
been precisely defined as being equivalent to the above com-
pound.

This equivalence is specified by the symbol ::= separating
<block-clause> from its definition which is given by the com-
pound.

The symbol ::= means "is defined by"” and the whole entry is
called a meta-definition.

i)

k)

Notice in addition that the alternatives
[# CHARACTERS] 1 # RECORDS
appear enclosed in the special braces ¢ > as follows :
€<[# CHARACTERS] | # RECORDS >
The aim of the special braces
€ >

is to delimit a specific portion in the formal notation. In
this particular case the function of the braces is to deter-
mine the scope of the alternatives defined by the ! operator.
Later, other uses of delimitation by braces will be described

(in particular in connection with the ellipsis).
As a second example, consider the D 16 entry (page 57):
D 16 <fd-clauses> ::= ’

¢l<;><block-clause>] t
[<;><record-contains-clause>] t
<:><label-records-clause> %
[<;><value-of-clause>] T

¢[<;><data-records-clause>] |
<;><report-clause>>b

Here is a whole structure named (i.e. defining) <fd-clauses>,
of which the above mentioned <block-clause> is just one con-
stituent part, and moreover an optional one, since it is en-

closed in square brackets.
This second example introduces some new symbols.

There is the symbol <;> representing the occurrence of one

¢ ¥

meaning that all syntactic units contained between the per-
mutation brackets and delimited by the permutation separators
may appear in any order in the program text, at the user'’'s

It is now possible to interpret the meta-definition D 16. Re-
member that the | designates (and separates) two possible al-
ternatives. Thus, D 16 means that

<fd-clauses>

represents a compound of clauses optionally preceded by a
semicolon, where the compound comprises one mandatory clause,
namely

<label-records-clause>

three optional clauses, namely

<block-clause>
<record-contains—-clause>
<value-of-clause>

L)

m)

n)

- Xvi -

and either the <data-records-clause> which is optional or

the <report-clause> and, further, that these clauses may
appear in any order by virtue of the permutation brackets.

In the same way as <block-clause> was defined in the first
example as D124, the other meta-variables

<record-contains-clause>
<label-records-clause>
<value-of-clause>
<data-records—-clause>
<report—-clause>

are defined elsewhere in the book, that is at their proper
entries.
In D 16 only the meta-variable <fd-clauses> is defined.

Going one more step backwards consider now the entry D 15
(pageb57):

D 15 <ms-file-description> ::=

< FD # 7
t<sequential-ms-file-name—-declaration>!
<random-ms-file-name-declaration>?
€<;><copy-clause>!

<fd-clauses>¥<.>

In this third example new symbols are introduced, namely
<.>, ¢« and 7t

The symbol <.> represents the actual occurrence of a period

The symbol « (horizontal arrow) means that the next character
must be in area A of a new line of the reference format.

The symbol 7 (vertical arrow) means that the next character
must be in area B of either the same line or the following
one of the reference format.

Thus, this third example reads

<ms-file-description> 1is defined by the letter F in area
A of a new line, followed by the letter D, followed by one
or more spaces, then, beginning in area B,

then

EiEEEE one or more spaces optionally preceded by a semi-
colon, and followed by a <copy-clause>
or the <fd-clauses>

in each case, followed by a period and one or more spaces.

Looking further backwards it will be seen that <ms-file-
description> appears in the defimnition of <file-specification>

o)

- Xvii -

D 5 <file-specification> ::=

<non-ms—file—-description>
[<non-ms—-record-description>]...!
<ms—-file-description>
[<ms-record-description>].

This meta-definition demonstrates the usage of the last symbol
to be described in this introduction, namely the repetition
symbol, called ellipsis, and represented by three dots ...

The ellipsis specifies that the immediately preceding syntac-
tic unit may be repeated any number of times at the user’s
option, exactly as stated in the familiar COBOL specification.
The delimitation of the "immediately preceding syntactic unit”
may be found by searching for the immediately preceding closing
brace, bracket or Backus bracket and finding the logically
matching opening brace, bracket or Backus bracket. Between
these two lies the syntactic unit concerned.

Examining D 5, it will easily be seen that <file-specification>
is defined as one of two alternatives. For instance, the se-
cond alternative (after the ! symbol) consists of

the appearance of <ms-file-description> followed
by no, one, or more occurrences of <ms-record-
description>

Notice also that since the latter is a meta-variable these
successive occurrences will in general represent successive
giijggggg representations of <ms—record-description>.
Following the track still further backwards, it will be seen
that <file-specification> appears in the definition of
<file-section-body> (D4), which, in turn, appears in
<file-section> (D3), and so on through <data-division-body>
(D2), back, eventually, to <data-division> (D1).

So, the Data Division is defined by means of a chaining of
successive meta-definitions, forming a completely determined
tree and showing the exact layout of the Data Division of
every syntactically correct COBOL program.

Having acquainted himself with the notation by working through
the above examples, the reader will then find no difficulty
going through the following summary thereby recapitulating

and refining the knowledge gained.

The Meta-Definition

A meta-definition is a syntax rule expressed in a formal no-
tation. Each meta-definition defines a new syntactical entity
as a specific arrangement of COBOL characters and other syn-
tactical entities. The name of the syntactical entity to be
defined appears on the left-hand side of the definition symbol
which is followed by the definition.

- xviii -

2.2 The Metalanguage
3.2.1 Definition Symbol

The following symbol, ::=, is used as definition symbol.
3.2.2 Meta-Variables (Syntactical Entities)

Lower—-case words and other symbols enclosed in Backus
brackets represent parts of the COBOL text, whose per-
missible structures are defined outside the containing
meta-definition.

3.2.3 Meta-Constants

Upper-case words, numbers and special characters not
enclosed in Backus brackets represent the actual oc-
currence of these upper-case words, numbers and special

characters in the COBOL text.

3.2.4 Meta-Operators and Meta-Delimiters
3.2.4a Alternatives
The OR Symbol, !, indicates and separates alternatives.
3.2.4b Braces

Braces, €), enclosing a portion of a meta-definition,
are used for two different functions:

i) to indicate that a selection of one of the options
listed between the braces and separated by the OR
symbol, !, must be made;

ii) to delimit a portion of the meta-definition, for
instance in connection with repetition (see 3.2.4c
below).

3.2.4¢ Repitition

An ellipsis, ..., indicates possible repitition of the
preceding element. The preceding element may be a
COBOL character, a meta-variable or a group of such
elements enclosed in brackets or braces.

3.2.4d Permutation

When the order of elements is immaterial these elements
are separated by the permutation-separator,f , and
grouped within permutation-brackets ¢ ».

Unless otherwise specified the sequence of elements
shown is compulsory.

3.3 O0ther Conventions
The following symbols are used
b to represent the COBOL character "space”

to represent one or more b

& to show that the following element must start in area A
of a new line of the reference format

T to show that the following element must start in area B
of the reference format.

#U_

FORMAL DEFINITION
OF COBOL SYNTAX

G. SYNTACTIC DEFINITIONS OF GENERAL NATURE

EMPTY

G1 {empty> ::=

COBOL GRAPHICS

G2

G3

Gl

G5

G6

G7

Go

G9

{non-zero-digit> ::=
112131415161 71819

{zero-diglty ::=

0

{digit) ::=
{zero-digit> | <{non-zero-digit>

{letter)> ::=
Al'B!'C!IDIE!IRFPI G
g!I!JIK!'L I M!N!
o!l!'rPl Q!RrR"!s ! T1U!
vIWIx!Y!1lZ

{spaced> ::=

{arithmetic-expression-character> ::=

+ 1 -1 %1/
{relation-character)> ::=
>1 L1 =

{eurrency-sign> ::=

G10

G11

G12

G13

G4

G15

G16

{terminating-character> ::=
! [

e ¥ 9 3

<quoﬁation-mark> g
{parenthesis> ::=
!

{proper-punctuation-character) ::=
{terminating-character) !
{quotation-mark> !
{parenthesis>

{special-character) ::=
{arithmetic-expression-character) |
{relation-character> !
{currency-sign> !
{proper-punctuation-character>

{cobol-character) ::=
ddigit> |
{letter> |
{space> |
{special-character>

{computer-character) ::=
{cobol=character> |
{additional-data-character>

ol

COBCL CONTROLS
* 017 <strophe-mark) :=
=

* G18 <skip-into-area-b> ::
1\

SOME FREQUENTLY USED SEPARATORS

G19 {spacesd> ::=
{spacedese

For readability purposes, the abbreviation # will
be used for <{spaces)> .,

G20 <o> i:=
. #
Gel <> =
[,] #
Gez2 <> i:=
) (3] #

G26

Ge7

Ge8

_6-

{word-element> ::=
{digit> | {letterd ! =

{word=terminator)> ::=
ddigitd> | {letter)

word> ::=
{word-terminator>
[[{word-element>...]
{word-terminator)]
The maximum number of characters is 30,

{alpha=-word> ::=
{word> containing <{letter)

{non-reserved-word) ::=
{word> diff <{reserved-word)>

{non-reserved-alpha-word> ::=
{alpha-word> diff <{reserved-word>

PROPER NONNUMERIC LITERAL

629 <literal=-string) ::=
{computer-characterd,..
not containing "
The maximum number of characters 1s 120,

630 <proper-nonnumeric-literald> ::=
" (literal-string> "

PROPER NUMERIC LITERAL

G31

G32

G33

G34

G35

G36

{integerd> ::=
<Alglthsse
The maximum number of digits is 18,

{decimal-fractiond> ::=
{decimml-point> <{integer>

{unsigned-proper-numeric=-literal) ::=
{integer> |
{decimal-fraction) !
{integer)> <{decimal-fractiond>
The maximum number of digits is 18.

{sign> ::=
+ 1 -

{proper-numeric-literal) ::=
[{sign>] <unsigned-proper-numeric-literal>

{positive-integer> ::=
{integer>
containing <non-zero-digit>

FIGURATIVE CONSTANT

637 <simple-figurative-constant> ::=
ZERO | ZEROS | ZEROES |
SPACE | SPACES !
HIGH=-VALUE | HIGH=-VALUES |
LOW=-VALUE | LOW=VALUES !
QUOTE | QUOTES

338 <compound=figurative=-constant)> ::=
ALL # <{simple-figurative-constant) |
ALL # <{proper-nonnumeric-literal)

@39 <figurative-constant)> ::=
{simple-figurative-constant) !
{compound=-figurative-constant)

clo <zero-figurative=-constant) ::=
ZERO | ZEROS | ZEROES

=10

LITERAL

Gh41 {nonnumeric-literald> ::=
{proper-nonnumeric-literal
{figurative-constant)

cl2 <numeric-literal)> ::=
{proper-numeric-literal> |
{zero-figurative=-constant)>

G433 <literal> ::=
{nonnumeric-literal)> !
{numeric-literal>

=11=

ARITHMETIC OPERATCR

chlt <arithmetic=-operator)> ::=
+ 1 =1 * 1 /1 **

PROPER RELATIONAL OPERATOR

* G5 <pr'oper'2relational-operator'>
> 1 | =

o] B

PICTURE CHARACTER STRING

G46 <picture-character-string> ::=
{picture>

-lla
COMMENT STRING

Guh7 <{comment-string> ::=
{computer-character>. ..
not containing <{.>

-15=-

OTHER LANGUAGE STRING

GU8

{other-language-string> ::
{computer=character>...

T. CORBCL TEXT

SEPARATORS

T1 <segarator> 1e=
#1C >G>0 Gy

T2 {other-language-string-terminator> ::=
{empty>

73 {generalized-separator) ::=

{separator)> |
{other-language-string-terminator>

-17=

GENERALIZED CHARACTER=-STRING

T4

{generalized-character-string=-type-one>
{word)> |
{proper-nonnumeric=1literal> !
{rroper-numeric-literal)> |
{arithmetic-operator> !
{proper-relational-operator>

{generalized=-character-string-type-two> ::=
{picture-character-string> |
{comment-string)> !
{other-language-string)>

{generalized-character-string> ::=
{generalized-character-string-type-one> !
{generalized-character=-string-type-two)>

-18-
STRUCTURE OF COBOL TEXT

T7 {structure> ::=
{generalized-character-string> |
{structure)
{generalized-separator> [<{skip-into-area-b>]
{structure)> !
({structured>)

T8 <{strophe> ::=
{s trophe-mark>
{structure>
{separator>

T9 {cobol=text> ::=
{strophe>...

w1 e

N. NAMES DEFINED BY THE IMPLEMENTOR

HARDWARE NAMES

N1

N2

N3

N4

N5

{computer-name)> ::=
{word>
specified by the implementor

{implementor-name-for-type-of-io-unit)>
{word)
specified by the implementor

{implementor-name-for-individuval-io-unit)
{word)>
specified by the implementor

{implementor-name=for-rerun-medium> ::=
{word)>
specified by the implementor

{implementor-name-for-individual-switch)>
{word>
specified by the implementor

=D
OTHER NAMES

N6 {additional-data-character)> ::=

This proper-meta-variable 1s specifiled
by the implementor.

N7 {implementor-name-for-paper-advance)> ::=
{word>
specified by the implementor

]

N8 {implementor-name=for-code-for-revort-groucs>
{word>
specified by the implementor

N9 <other-language-name> s =
{word>
specified by the implementor

=2]=

C. COBOL PROGRAM
COBOL PROGRAM STRUCTURE

c1 {cobol-programy ::=
{identification-division>
{environment-division>
{data-division)
{procedure-division>

I, IDENTIFICATION DIVISION
IDENTIFICATION DIVISION STRUCTURE

T1 {identification-division> ::=
«IDENTIFICATION # DIVISION <,>
{identification-division-body>

I2 <{identification-division-body> ::=
{program=-id=-paragraph>
[Cauthor-paragraph |
[{installation-paragraphd]
[{date-written-paragraphd]
[(date-compiled-paragraphd]
[{security=-paragraph)]
[<remarks-paragraph]

-23=
PROGRAM=-ID PARAGRAPH

13 {program-id-paragraph)> ::=
«~PROGRAM=ID <,>
{program-id-paragraph-body>

T4 {program-id-paragraph-body> ::=
{program-id-entry>

15 <program-id-entry> ::=
{program-name-declarationy> <.>

I6 <program-name-declaration)> ::=
{non-reserved-word>

- -
DATE=COMPILED PARAGRAPH

I7 {date-compiled-paragraph> ::=
~DATE-COMPILED <.>
[{comment-paragraph.body>]

OTHER PARAGRAPHS

18

I9

I10

I11

Il2

<auth0r- paragraph> o=
«AUTHOR <.>
[{comment-paragraph-body>]

{installation-paragraph) ::=
«INSTALLATION <,>
[{comment-paragraph=-body>]

{date=written-paragraphd> ::=
~DATE=WRITTEN <.>
[{comment~paragraph-body>]

{security=-paragraph> ::=
«SECURITY <.>
[{comment-paragraph-body>]

{remarks-paragraph> ::=
<REMARKS <.>
[<comment-paragraph-body>]

«26 e
COMMENT PARAGRAPH BODY
I13 <comment-paragraph-body> ::=

{comment-entry>...

T14 <comment-entry)> ::=
{comment-string> <{.>

E. ENVIRONMENT DIVISION
ENVIRONMENT DIVISION STRUCTURE

E1 {environment-division)> ::=
~ENVIRONMENT # DIVISION <.>
{environment-division=body)>

E2 <enviromment-division-body> ::=
{configuration-section)
[{input-output-section>]

0

D8
CONFIGURATION SECTION STRUCTURE

E3 {configuration-section) ::=
«~CONFIGURATION # SECTION <.>
{configuration-section-body>

E4 {configuration-section-body> :=
{source-computer-paragraph>
{object=computer-paragraph>
[{special-names-paragraph]

F

DG
INPUT=-0UTPUT SECTION STRUCTURE

E5 {input-output-section) ::=
«INPUT-OUTPUT # SECTION <.>
{input-output-section-body>

E6 <{input-output-section-body> ::=
{file-control-paragraph>
[{i-o=control-paragraph>]

-30-

SOURCE=-COMPUTER PARAGRAPH

E7

E8

E9

{source-computer-paragraph> ::
«SOURCE=COMPUTER <, >
{<copy-entry> |
{source-computer-paragraph-body>+

{source-computer-paragraph-body> ::=
{source-computer-entry>

{source-computer-entry> ::=
{ecomputer-name> <{,>

=31
OBJECT-COMPUTER PARAGRAPH

E10 <object-computer-paragraphd ::=
~0BJECT=-COMPUTER <.>
{<copy-entry> |
{ob ject-computer-paragraph=-body>$

E11 <object-computer-paragraph-body> ::=
{object-computer-entry>

E12 <object-computer-entry> ::=
{computer-name> [<,> <{memory-size-clause)]
[{,> {segment-limit-clause>] <{.>

E13 <memory-size-claused ::=
| . MEMORY # [SIZE #]
{integer> # &WORDS | CHARACTERS ! MODULES?

SEGMENT-LIMIT CLAUSE

E14 <{segment-limit-claused> ::=
SEGMENT-LIMIT # IS #
{priority-number-limit>

E15 <priority-number-limit> ::=
dirf £03...

SPECIAL-NAMES PARAGRAPH

E16 {special-names=paragraph> ::=
~SPECIAL-NAMES <.>
{<{copy-entry> !
{speclal-names-paragraph-body>}

E17 <special-names-paragraph-body> ::=
{specilal-names-entry>

E18 <special-names=-entry> ::=
{special-names-clauses>
[{,> <currency-sign-clause)]
[{,> <decimal-point-clause>] <.> !
{eurrency-sign-clause)
]‘?. [{,> <decimal-point-clause>] <{.> |
{decimal-point-clause> <{.>

E19 <special-names-clauses> ::=
{special-names-clause>
[{,> {specilal-names-clause>]...

=34
SPECIAL-NAMES CLAUSE

E20 <{special-names-claused ::=
<{non-switch-special-names-clause., !
{switch-special-names-clause>

E21 <non-switch-special-names-clause> ::=
{implementor-name-for-individual-io-unit> #
IS
<mnemonic-name-declaration-for—individual-io-unit)
|
{implementor-name-for-type-of-lo-unit> #
IS
{mnemonic=-name-declaration-for-type-of-io-unit> !
{implementor-name-for-paper-advance> # 0

{éngmonic-name-declaration—for-paper—advance> !
{implementor-name-for-code-for-report-groups> #
IS
{mnemonic-name-declaration=-for-code-for-report-
groups)

E22 <{switch-special-names-clause> ::=

{implementor-name-for-individual-switch> #

IS

f?nemonic-name-declaration-for-individual-switch>
>

<s&itch-status-name—assignment>] !

{implementor-name-for-individual-switch> #

{switch-status-name=-assignment>

=35

E23 <mnemonic-name-declaration-for-individuval-io-unit) ::=
{non-reserved-word>

E24 <{mnemonic-name-declaration-for-type-of=ioc-unit)> ::=
{non=reserved=-word>

E25 <mnemonic-name-declaration-for-paper-advance)> ::=
{non=-reserved-word>

E26 <mnemonic-name-declaration-for-code-for-report-groups>

{non-reserved-word>

E27 <mnemonic-name-declaration-for-individual-switch> ::=
<{non-reserved-word>

“' E28 <{mnemonic-name-for-individuval-io-unit) ::=
{non-reserved-word> which appears as a
{mnemonic-name-declaration-for-individuval=io-unit)>

}

| E29 <{muemonic-name-for-type-of-io-unit> ::=

| {non-reserved-word> which appears as a

| {mnemonic-name-declaration-for-type-of-io=-unit>

E30 <mnemonic-name-for-paper-advance) ::=
\ {non-reserved-word> which appears as a
‘ {mnemonic-name-declaration-for-paper-advance)

! E31 <{mnemonic-name-for-code-for-report-groups) ::=

| {non-reserved-word> which appears as a

1 {mnemonic-name-declaration=for-code=-for-report-
groups>

E32

E33

E34

E35

E36

-36-

{switch-status-name-assignment> ::
Con-statusd> [{,> <off-status>] |
off-status> [{,> <on-status)>]

{on-status> ::=
ON # [STATUS #] IS #
{switch-status-name-declaration>

Coff=-statusd> ::=
OFF # [STATUS #] IS #
{switch=status-name-declaration>

{switch-status-name-declaration> ::=
{non-reserved-alpha-word>

{switch-status-name> ::=
{non-reserved-alpha-word> which appears as a
{switch-status-name-declaration>

BT
CURRENCY=SIGN CLAUSE

E37 <{currency-sign-clause) ::=
CURRENCY # [SIGN #] IS #
" ¢eurrency-sign-declaration> "

E38 <currency-sign-declaration> ::=
{possible-character-for-currency-sign>

E39 <possible-character-for-currency-signd> ::=
{computer-character)> diff

ddigity> !
AlBI1CIDIPIRISIV! X! Z! {spacedy !
I U B P B B QR R PY

E4o <ecurrency-symbol> ::=
g | {possible-character-for-currency-sign>
which appears as a <{currency-sign-declaration)> .

This language element is dependent on the
individual COBOL source program,

It equals g,

1f no <{currency-sign-declaration> 1s present
in the {special=names-paragraph> .

It equals
{possible-character-for-currency-signy
which appears as a
{currency-sign-declaration> ,

if a {currency-sign-declaration> is present
in the <{special-names=-paragraph> .

E41 <esy ::=
{currency=-symbol)>

-38-
DECIMAL=POINT CLAUSE

Elh2 <decimal-point-claused ::=
DECIMAL-POINT # IS # COMMA

EA43 <decimal-point> ::=

e 3

This language element is dependent on ths
individual COBOL source program,

It equals . (period) ,

if no <{decimal-point-clause> is oresent
in the {special-names-paragraph> .

It equals , (comma) ,

if a <{decimal-point-clause> is cresent

in the <{special-names-paragrarh> .

E4ly <{digit-separator> ::=

4 3

This language element is dependent on the
individual COBOL source program,

It equals , (comma) ,

if no <{decimal-point-clause> is present
in the <special—names-paragraph> o

It equals ., (period) ,

if a <{decimal-point-clause> is present

in the <{specilal-names-paragraph> .

FILE-CONTROL PARAGRAPH

E45 <file-control-paragraphd> ::=
«FILE-CONTROL <.>
{<{copy-entry> !
{file-control-paragraph-body>9

E46 <file-control=paragraph-body> ::=
{file-control-entry>...

EL7 <file-control-entry> ::=
{file-control-entry-for-non-ms-iled> !
{file-control-entry-for-sequential-ms-file> !
{file-control-entry-for-random-ms-£ile> |
{file-control-entry-for-sort-file>

e

wdlOw

E48 <file-control-entry=-for-non-ms-file> ::=
{select-clause-for-non-ms-£ile>
L<{assign-clause> | <{sort-output-assign-clause>3
[# <multiple-reel-clause>]
2<,> {alternate-area-clause)]
.

ELg <file-control-entry-for-sequential-ms-file> ::=
{select-clause-for-sequential-ms-filed>
Llassign-clause> ! <{sort-output-assign-clause>)
(# {(multiple-unit-clause>]
[<,> <alternate-area-clause)]
[{,> {file-limit=clause>]
[
[

<,§ {access-mode-sequential-clause,

{,> <{processing-mode-sequential-clause)]
<<,> {actual-key-clause)]

o

E50 <file-control=entry-for-random-ms-{ile> ::=
{select-clause=-for-random-ms-f£ile>
<assign=-clause)>
[{,> {file-limt-clause)]
{,> <access-mode-random-clause)>
{,> <{processing-mode-sequential-clause)
{,> <actual-key-clause>

<>

g51 <file-control-entry-for-sort-file> ::=
{select-clause-for-sort-file)
<{assign-claused> <{.>

SELECT CLAUSE

E52

E53

E54

E55

E56

{select-clause-for-non-ms-ile> ::

SELECT

[# <optional-phrase)]
(non-ms-file-named>

Il

{select-clause-for-sequential-ms-file>

SELECT

[/ <optional=-phrase)]
{sequential-ms=file-name>

{select-clause-for-random-ms=file>

SELECT

<{random-ms-file-name)>

{select-clause-for-sort-file>

SELECT

{sort-file-named>

{optional-phrase>
OPTIONAL

Il

=D
ASSIGN CLAUSE

E57 <assign-clause)> ::=
{assign-type-clause)> |
{assign-individuval=units-clause>

ES8 <assign-type-clause> ::=
ASSIGN [# T0]

[# <integer>]
<{implementor-name-for-type-of-1lo-unit)>

E59 <assign-individuval-units-clause)> ::=
ASSIGN [# TO]
<{implementor-name-for-individual-lo-unit)
[<{,> <{implementor-name-for-individual-io-unit>]...

E60 <sort-output-assign-clause) ::=
ASSIGN |# TO]
<{implementor-name-for-individual-io-unit)
#<,> {implementor-name-for-individual=io-unit>l...
OR
<{implementor-name-for-individual-io-unit>
[{,> <{implementor-name-for-individual-io-unit>l...

rF

MULTIPLE REEL/UNIT CLAUSE

E61 {multiple-reel-clause) ::=
[FOR #] MULTIPLE
REEL

E62 <multiple-unit-claused ::=
[FOR #] MULTIPLE
UNIT

Lyl
ALTERNATE AREA CLAUSE

E63 {alternate-area-claused> :3=
RESERVE # {<{integer> | NOJ
| # ALTERNATE]

{l# AREA] | [# AREAS])

E6L

E65 <

r

FILE-LIMIT CLAUSE

{file-limit-clause> ::=
#FILE-LIMIT # IS | FILE-LIMITS # AREJ
{file-limit> # {THROUGH | THRU$ # <{file-limit)
[(,> {file-limit)> # &THROUGH ! THRU} # <{file-
1imitd>]e o

file=-1limit> ::=
{data-name-identifier) ! <{literal)

-
ACCESS MODE CLAUSE

E66 {access-mocde-sequential-clause)d ::=
ACCESS # [MODE #] IS # SEQUENTIAL

E67 <access-mode-random-claused> :j3=
ACCESS # [MODE #] IS # RANDOM

| §

PROCESSING MODE CLAUSE

E68 <{processing-mode-sequential-clause) ::=
PROCESSING # [MODE #] IS # SEQUENTIAL

~}8=

KEY CLAUSE

E69

{actual-key~-clause) ::
ACTUAL # [(KEY #] IS #
{data-name-identifier>

I-0-CONTROL PARAGRAPH

E70

ET1

ET72

ET3

E7U4

ET5

{i-o=control-paragraphd> ::=
«I-0-CONTROL <.>
{<{copy-entry> |
{1-o=control-paragraph-body>+

{1-o=-control-paragraph.body> ::=
{i=-o=control-entry>

{i-o=control-entry> ::=
{rerun-clauses>
[{;> <{same=clauses)>]
[{;> <multiple-file-clauses>] <{.> !
{same=clauses)>
[{;> <multiple-file-clauses>] <.> !
{multiple=-file-clauses> {.>

{rerun-clauses> ::=
{rerun-claused
[{;> <rerun-clause>]...

{same-clausesd> ::=
{same-clause)>
[{;> <{same-claused>]...

{multiple-file=clauses> ::=
{multiple-file=clause)>
[<{;> <{multiple-file-clause>],..

-50=

RERUN CLAUSE

E76

ET'7

ET78

ET9

EBO

E81

E82

E83

{rerun-claused> ::=
RERUN # [<rerun-medium> #] <{rerun-condition-1> !
RERUN # <{rerun-medium> # <{rerun-condition-2>

{rerun-medium> ::=
ON # <non-sort-file-name)> !
ON # <{implementor-name=-for-rerun-mediim>

{rerun-condition-1> ::=
{end-of-reel=rerun-condition>

{end-of-reel-rerun-condition> ::=
[EVERY #] [END # [OF #]] {REEL ! UNIT) #
[OF #] <non-sort-file-name>

{rerun-condition-2> ::=
{integer-records-rerun-condition> !
{clock-units=rerun-condition> !
{switech=rerun-condition>

{integer-records-rerun-condition> ::=
[EVERY #] <positive-integer> # RECORDS #
[OF #] <non-sort-file-name>

{clock-units-rerun-condition> ::=
[EVERY #] <positive-integer> # CLOCK=-UNITS

{switch-rerun-condition> ::=
[EVERY #] <{switch-status-name>

SAME CLAUSE

E84 {same-claused> :=
{same-record-area-clause) !
{same-block-area-clause> !
{same-sort-area=-clause)

E85 <same-record-area-claused ::=
SAME # RECORD # [AREA #] [FOR #]
{file-name> £<{,> <{file-named>3...

E86 <same-block-area=-clause) ::=

SAME # [AREA #] [FOR #]

{non-sort-file-name> £<,> <{non-sort-file-name>3,..
E87 <same-sort-area-claused> ::i=

SAME # SORT # [AREA #] [FOR #]
{f1le-name> £<,> <{file-name>3}...

w

MULTIPLE FILE CLAUSE

E88 {multiple-file-claused> ::=
MULTIPLE # FILE # [TAPE #] [CONTAINS #]
{non=-sort-file-name> [# POSITION # <{integer>]
[{,> <non-sort-file-name> [# POSITION #
{integer>]l...

rF o

D. DATA DIVISION
DATA DIVISION STRUCTURE

D1 {data-division> ::=
«DATA # DIVISION <.>
{data-division-body)

D2 <{data-division-body> ::=
{file-section>
[{working-storage=-section)]
[{report-section>] !
[(working-storage-section)]

D3

DU

D5

FILE SECTION

{file-section> ::=
«FILE # SECTION <.>
{file-section-body>

{file-sectlon-body> ::=
°{<{file-specification) !
{sort-rile-specificationd3...

{file-specification> ::=
{non-ms=~Ffile-description>
[{non-ms-record-description>]... |
{ms=-file-description)

[<ms-record-description>]...

{sort-file-specification> ::=
{sort-file-description>
{sort-record-descriptiond...

WORKING=STORAGE SECTION

D7 {working-storage=-section, ::=
~WORKING=STORAGE # SECTION <.>
{working-storage=section-body>

D8 <working-storage-section-body)> ::=
[{77-descriptions)]
{wg=-record-descriptions> !
{T7=descriptions)

D9 {77-descriptions> ::=
f(??-description>
{redefining-T77-descriptiond>]ecetese

D10 <ws-record-descriptions)d ::=
{ws=record-description)

<redefining-ws-record-description>]...4...

=56m
REPORT SECTION

D11 {report-sectiond> ::=
«REPORT # SECTION <.>
{report-section-body>

D12 <report-section-body> ::=
{report-specificationd...

D13 <report-specification> ::=
{report-descriptiond>
{report=group-descriptiond...

5 P
FD SKELETON

D14 <non-ms-file-descriptiond ::=
«FD # *
{non-ms=-file-name-declaration)>
£<;> <copy=-clause)> !
{fd-clauses>} <.>

D15 <ms-file-description> ::=
«FD # 1
{<{sequential-ms-file-name-declaration> !
{random=ns-file-name-declaration)>}
£<> <copy-clause> !
{fd=clauses>y <

D16 <fd-clausesd> ::=
{[<;> <block=-clause>] &
[{;> <{record-contains-clause>] +
) <label-records-clause> +
E(, {value-of-clause>] &
[{;> <{data-records-clause>] |
o <report clause>sp

|

D17 <non-ms-file-name-declaration)> ::=
{non-reserved-alpha=-word>

D18 <non-ms-file-named> ::=
{non-reserved=-alpha-word>
which appears as a
{non-ms-file-name=-declaration>

D19 <sequential=ms-file-name-declaration> ::=
{non-reserved-alpha-word>

D20 <sequential-ms-file-name> ::=
{non-reserved-alpha-word>
which appears as a
{sequential-ms-file-name-declaration>

D21 <random-ms=-file-name-declaration)> ::=
{non-reserved=-alpha=-word>

D22 <random-ms-file-named> ::=
{non=-reserved-alpha=-word)>
which appears as a
{random-ms=-file-name-declarationd>

D23 <sequential-file-name> ::=
{non-ms=File=name> !
{sequential-ms-file-name)>

D24 <ms=file-name> ::=
{sequential-ms-file-name> |
{random-ms=file-name)>

D25 <non-sort-file-named ::=
{non-ms-file=name> !
{ms-file-name>

D26 <file-named> ::=
{non-sort-file-name> !
{sort-file-name>

I

SD SKELETON

D

>
<

) 7
/
i

{sort-file-description> ::=
«SD # 1
{sort-file-name-declaration>
£<;> {copy-clause> !
{sd-clausesd} {,>

D28 <sd-clauses> ::=

{[<;> {record-contains-clause>] &
{;> {data-records-claused}

e

D29 <sort-file-name-declaration>
{non-reserved-alpha-word>

D30 <sort-file-name> ::=
{non-reserved-alpha-word>
which appears as a
{sort-file-name-declarationd>

RD SKELETON

D31 {report-description) ::=
«RD # 1
{report-name-declaration)>
£<;> <copy-clause> !
{rd-clauses>} <.>

D32 <{rd-clauses)> ::=
{[<;> {code-clause>] &
[<{;> <control-clause>] +
[{;> <{page-limit-clause>]}

o

D33 <report-name-declarationd ::=
{non=reserved-alpha-word>

D34 <report-named> ::=
{non=-reserved-alpha-word>
which appears as a
{report-name-declarationd

-63-

FILE AND SORT FILE RECORD DESCRIPTION SKELETON

D35 <non-ms=record-descriptiond ::=
4B 1 03 1 # 1
{non-elem-non-ms-record-name=-declarationd
£<;> <covy-clause> <> !
<non—elem-record-spec>) !

4 1031 #
{elem=non-ms=record-name-declarationd
£<;> <copy-clause> <.> |
{elem-record-spec>9

D36 <ms-record-descriptiond ::=
— B 1031 #1
<{non-elem-ms=-record-name-declaration)
£<;> <copy-claused> <{.> !
<non—elem-record-spec>) !
« & 101 #0
{elem-m s=-record-name-declarationd
£<;> <copy-clause> <{.> !
<e1em—record-spec>)

D37 <sort-record-descriptiond ::=
«4¥ 1 o1 #
<{non-elem-sort-record-nams-declaration)>
£<;> <copy-clause> <{.> !
{non-elem-record-specd} |
— 4B 1 031 # 1
{elem~-sort-record-name-declaration)
£<;> <copy-clause> <{,> !
{elem-record-specd>s

6l

D38 <non-elem-record-spec)> ::=
{non-elem-01=-clauses> <.>
[(88=entry>]...
{subordinate-entries>
[<66-entry>]es.
(;> <usage-is=-index-clause> <{.>
{subordinate-entries>
[<66-entr'y>] e o0

D39 <elem-record=-spec> ::=
{elem-01=77=clauses> <.>
[{88=entry>]e.. !

{;> {usage-is-index-clause> D>

'--E:__—————————————————————1--

-65-

D4o <66-entry> ::=
«66 # 1

<{non=-elem=66-1item=-name-declaration)
{;> <{non-elem-renames-clause) !

| 66 # 1

| {elem-66=-1item-name-declaration)>

{;> <Kelem-renames=-clause>

D41 <88=entry> ::=
@88r% 0
{condition-name-declaration>
{;> <88=value-clause> <{.>

)

-66=

D2 <subordinate-entries)> ::
« # {sub-number> # 1
{sub=-spec>
Ee # <{sub-number> # 1

{sub-spec> |
{redefining=-sub-spec>3]..,

D43 <sub-specd> ::=
{non-elem-specd>
{subordinate-entries> !
{index-non=-elem=-spec)
{subordinate-entries> !
{elem=-specd> |
{index-elem-spec)>

DL <redefining-sub-specd ::=
{redefining-non-elem-spec)
{subordinate-entries> !
{redefining=-1index-non-elem-spec)
{subordinate-entries> !
{redefining-elem-spec)> !
{redefining-index-elem-spec>

D45 <sub-numberd> ::=
{level=number>
with a value increased with respect to the entry to
which the <{subordinate-entries> are subordinate

D46 <{level-number) ::=
1 121 31 43 <digit> !
¥ | 0 <{non-zero-diglt)

’I-":_____________————————————————————————————————_____________

«57=

D47 <non-elem-spec) ::=
{non-elem-02-48=1tem-name-declaration>
{non-elem-clauses> <.>
[<88-entr’y‘>] e o0 e

DU8 <redefining-non-elem=spec) ::=
{non-elem-02-48-1tem-name-declaratlon>
{;> <{redefines-clause>
{non-elem-red-clauses> <.>
[<{88=entry>le.s

D49 <elem-specd ::=
{02=U49=-name-declaration>
{elem-clauses> <.>
[<(88=entry>l...

. D50 <redefining-elem-spec)> ::i=
{02=49-name-declaration)
{;> {redefines-clause)
{elem-red-clauses)> <.>
[<88=entry>le..

\ D51 <index-non-elem=specy> ::=
| {non-elem-02-48-1tem-name-declaration>
(<> {usage-is-index-clause>] <{.>

{non-elem-02-48-item-name-declaration>
{;> {redefines-clause)
1 [{usage-1s-index-clause>] <>

|
¥ D52 {redefining-index-non-elem-spec)> ::=

D53 <index-elem-spec) ::=
{02=49=-name-declaration>
[{;> {usage-is-index-clause>] <>

’ D54 <redefining-index-elem-spec)> ::=
{02=149=-name-declaration>
{;> <{redefines-clause)
[(usage-ls-index-clause>] <{.>

D55 <non-elem-clausesd> ::=
{non-elem=01=clauses> !
{non-elem-red-clauses> |
{var=-occurs-non-elem-clauses>

D56 <non-elem-0Ol-clausesd ::=
{[{;> Cusage-claused] &
[{;> <value-clause>]}

D57 <non-elem-red-clauses> ::=
{[<{;> <usage-clause>] &
[<;> <{fixed-occurs-clause>]}

D58 <var-occurs-non-elem-clausesd> : 3=
{[{;> <usage-clause>] &
;> <{variable-occurs-clause>}

D59 <elem-clauses) ::=
{elem=01=77=clauses) !
{elem-red-clauses> !
{var-occurs-elem-clauses>

D60 <elem-01=77-clausesd> ::=
{[{;> Cusage-claused] +
Gy <picture clause> +
;> {Justified-clause>] &
;> <{blank-when-zero-clause>] &
;> <synchronized-clause)>] &
;> {value-claused>]p

red-clauses> ::=

{;> <usage-clause>] +

;> <plcture-clause> +

;> {Justified-claused>] +

;> <blank-when-zero-clause>] &
;> <synchronized-clause>] &

;> {fixed-occurs-clause>]}

D62 <var-occurs-elem-clauses> ::=
{[{;> <usage-clause>] &
{5y <pieture- -clause) +
3> {Justified-clause>] &
é, {blank-when-zero-clause>] %
,
J

[

{synchronized-clause>] &
;> <variable-occurs-clause>}

[
[
&

D63

D64

D65

| D66

) D67

D68

D69

D70

| D71

> o

D73

D74

D75

| .

=69=

{non-elem-non-ms=record-name=-declaration)> ::=
{non-reserved=-alpha=-word>

{non-elem=non-ms=-record=-named> ::=
{non-reserved-alpha-word)>
which appears as a
{non-elem-non-ms-record-name-declaration>

{elem-non-ms=-record-name-declaration) ::=
{non-reserved-alpha=-word)>

{elem-non-ms=-record-name)d ::=
{non-reserved-alpha-word)
which appears as a
{elem-non-ms=record-name-declaration>

{non-elem-ms-record-name-declaration) ::=
{non-reserved-alpha=-word>

{non-elem-ms=record-named ::s=
{non-reserved-alpha-word>
which appears as a
{non-elem-ms=record-name-declaration>

{elem-ms=-record-name-declaration) ::=
{non-reserved-alpha-word)

{elem-ms=-record-named ::=
{non-reserved-alpha-word)>
which appears as a
{elem-ms-record-name-declaration)>

{non-elem=-sort-record-name-declaration) ::=
{non-reserved-alpha-word)>

{non-elem-sort-record-named> ::=
{non-reserved-alpha-word)
which appears as a
{non-elem-sort-record-name-declaration>

{elem=sort-record-name-declaration) ::=
{non-reserved-alpha-word)

{elem=8ort-record-named> ::=
{non-reserved=~alpha~-word)
which appears as a
{elem-sort-record-name-declaration)>

{non-elem-02-48-1tem-name-declaration) ::=
{non-reserved-alpha-word>

o T

D76 <non-elem-02-48=item-name> ::=
{non-reserved-alpha=-word>
which appears as a
<{non-elem-02=48=1tem-name-declaration>

D77 <02=49-name-declaration> ::=
{elem-02=49=-1item-name-declaration> !
FILLER

D78 <elem=02-49-item-name-declarationd> ::=
<{non-reserved-alpha-word>

D79 <elem-02-49-item-name> ::=
{non-reserved-alpha-word>
which appears as a
{elem-02=49=1item-name-declaration> ‘

D80 <non-elem-66-item-name-declaration> ::=
{non-reserved-alpha-word>

D81 <non-elem-66-item=named> ::=
{non-reserved-alpha-word>
which appears as a
{non-elem-66=1item-name-declaration>
D82 <elem-66-item-name-declaration> ::=
<{non-reserved-alpha=-word> |
D83 <elem-66-1tem-named> ::= 1
{non-reserved-alpha-word>

which appears as a
{elem-66=1item-name-declaration>

D84 <econdition-name-declarationd> ::=
<{non-reserved-alpha-word>

D85 <condition-named> ::=
{non-reserved-alpha-word>
which appears as a
{econdition-name-declaration>

’IIIIlllllllllllllIllllllllllllllIllIlllllIIlllllllllllIIIIIIIIIIIIIIIIIIIIIIII

=
WORKING-STORAGE DATA DESCRIPTION SKELETON

D86 (77=-descriptiond ::=
77 # 1
{77=-1item-name-declaration>
{elem=0l1=T77=clauses> <,
[<88=entry>l... !
<77 # 1
{77=1item-name-declaration)
{;> <usage-is-index-clause> <{,>

D87 <redefining-77-description) ::=

77 #1
{T7=-1item=-name=declaration)

. (3> {T7=redefines=-clause)>

_ {elem=01=T77=red-clausesd> <{,>
[<88-ent‘ry>]o) l
<77 # 1
{77=-1item=name-declarationd>
(3> {T7=redefines-claused
{;> <{usage-is=-index-clause> <{.>

D88 <ws-record-description) ::=
“ &Y 1 031 # 1
{ncn=elem-ws=-record-name-declaration>
£{<{;> <copy-claused <> |
{non-elem-record=-spec>y |
4B 1031 #
{elem-ws-record=-name-declaration)
{<{;> <copy-clause> <,> !
{elem-record-spec>9

| DEQ <{redefining-ws=record-description) ::=
’ - 4B 1 031 # 1
<{non-elem-ws-record-name-declaration)
; £<{;> <copy-clause> <.> !
w {redefining-non-elem-record-spec>} |
| & 1o T H#
{elem-ws=record-name=declaration)>

£{<;> <copy-claused> <.> |
{redefining-elem-record-spec>}

D

D90 <redefining-non-elem-record-spec> ::=
< > {redefines-record-clause>
> {usage=claused>] <.>
<88-entry>]...
<subord1nate-entries>
[<66-entI’Y/]. o e l
{;> <{redefines-record-clause>
< {usage=-is-index-clause> <{,>
<subordinate entries)>
[(B-entry>le..

DG1 <redefining-elem-record-spec)> ::i=
{;> <{redefines=-record-clause)
{elem-01 ~77=-red-clauses> <.>
[{88=entry>]...
{;> <{redefines-reccrd-claused>
< {usage-is-index-clause> <.>

| =73

D92 <elem-0l1=77=-red-clauses> ::=

{;> {usage-clause>] &

> <{picture-clause)> +

;> {Justified-clause>] +

;i {blank-when-zero-clause>] +
3

[
<
<
(s> <{synchronized-clause>]}

D93

DO4

D95

D96

D97

D98

~Tlm

{77=-1tem-name-declaration> ::=
{non-reserved-alpha-word>

{77-item=name> ::=
{non-reserved-alpha=word)
which appears as a
{TT7=-1item-name-declaration>

{non-elem-ws-record-name-declaration>
{non-reserved-alpha-word>

{non-elem-ws=record-name> ::=
{non-reserved-alpha-word>
which appears as a
{non-elem-ws-record-name-declaration)

{elem-ws-record-name-declarationd ::=
{non-reserved=-alpha-word>

{elem-ws-record-named> ::=
{non-reserved-alpha-word)>
which appears as a
{elem-ws-record-name-declaration>

k]

T
REPORT=GROUP DESCRIPTION SKELETON

D99 <report-group-description)> ::= |
- LB 1 03 1 # 1 |
[{ncn-elem-report-group=name-declaration)) |
£<{;> <copy-clause> <.> !
{non-elem=-report-group=spec>4 |
— LB 1oy 1 H#
[{sum-report-group-name-declaration)]
£<;> <eopy-clause> <{.> !
{sum-report-group=spec>$ |
4L 10} 1 #1
[(elem-non-sum-report-group=name-declaration)]
£<{;> <copy-clause> <> !

’ {elem-non-sum-report-group-spec>4

~76-

D100 <non-elem-report=group-specy ::=
{non-elem-group-clauses> <.>
{subordinate-report-entries)

D101 <{sum-report-group=specd> ::=
{sum=group-clauses> <{.>
D102 <elem=-non-sum=report-group=specd> :3

{elem=-non-sum-group-clauses> <{,>

==

D103 <{subordinate-report-entriesd> ::= i
{<{sub-number> # 1 |
{sUb-Teport-specd>d. ..

D104 <{gub-report-specd ::= |
<{non-elem-report-spec)> |
{subordinate-report-entries> ! |
{elem=report-specd>

~78=

D105 <non-elem-report-spec) ::=
[<non-elem-field-name-declaration)]
{[<;> <{line-number-clause>] +
[{;> <usage-1ls=-display-clause>]p <.>

D106 {elem-report-specd> ::=
{sum-spec)> !
{elem=non=-sum=-spec>

D107 {sum-specd ::=
[(sum-field-name-declaration)]
{[<{;> <{line-number-clause>] &
> {column-number-claused> +
> <{usage-is-display-clause>] 4
{picture-clause> #+
:> {Justified-clause>] +
> <{blank=when-zero-clause>| +
{sum=-clause> #+
;> <{reset-clause>]p <{.> !
um=-field-name-declaration>
{;> <line-number-clause>] #+
> {usage-ls-display=-clause>] +
{pilcture-clause)> +
{sum-clause> +
;> {reset-clause>]d (oD

/\/\v /\\.-

;>
;>

\/\/‘-

&
s
|
<
<

D108 <elem-=non-sum=-spec) ::=
[<elem-non-sum-field-name-declaration)]
{[<{;> <{line-number-clause>] #+
<,> {column-number-clause> &

[<;> <group-indicate-clause>] +

[<usage-is-display-clau e>] +

{;> <{picture-clause> +

2 ;> <blank-when-zero-clause>] +

;> <{source=-clause> |
;> <value~claused>3dd <> |
E(elem—non-sum-field-name—declaration>]
>
2

{source=-claused> <.>

k.

=79=

D109 <non-elem-group-clausesd ::=
{;> <{type-clause)> +
[<{:5 <next-group-clause>] &
[<,> {line-number-clause>] +
[{;> <{usage~-ls-display-clause>]}

D110 <{sum-group-clauses> ::=
{<;> <type-clause) +

;> <{next-group-claused>] +

;> <line-number-clause)> &

;> {column-number-clause)> +

{;> <usage-is-display-claused>] &

{picture-claused> #+

;> {Justified-clause>] +

> <{blank-when-zero-clause>] &

{sum-clause> &

;> <{reset-clause>]} !

s> <{type-clause> #+

;> <{next-group=-clause>] +

;> <{line-number-clause) +

{;> <{usage-is-display-claused] &

;> <picture-claused> +

,>

>
3
3
>

(
<
<;
(
<;
[
[
| 3 {3
it [
<
[
<
|
<
(s> {sum-claused> &
[<{;> {reset-claused>]}
D111 <elem-ncn-sum-group=-clausesd> ::=
{{;> <{type-clause> +
[{;> <next-group=claused>] +
,> {line-number-claused> &
{column-number-clause> &
{group=indicate-claused>] #+
{usage-is-display-clause>] +
<picture-clause> &
{Justified-clause>] +
<{blank-when-zero-clause>] +
{source-claused> !
<Value-clause>}) !
{type=-clause> +
{next-group=-clause>] +
{line-number-claused> +
{source-clause> |}

ANANANSS: R NS

VAYAND
A A Y
vV VYV VvV VvV

AN

D112

D113

D114

D115

D116

D117

D118

D119

D120

D121

D122

=80=

<{non-elem-report-group-name-declarationd ::=
{non-reserved-alpha=-word>

{non-elem=report-group=name> ::=
{non=-reserved=-alpha-word)>
which appears as a
{non-elem=report-group-name-declaration>

{elem-non=-sum-report-group-name-declaration> ::
{non=reserved-alpha-word>

{elem-non-sum-report-group-named> ::=
{non-reserved-alpha-word>
which appears as a
{elem=non-sum-report-group=name-declaration>

{sum=report-group-name=-declaration> ::=
{non-reserved=-alpha-word>

{sum-report-group-named> ::=
{non-reserved-alpha-word>
whilch appears as a
{sum=-report-group-name-declaration>

{non=elem-field-name-declaration> ::=
{non-reserved-alpha-word>

{non-elem-field-name> ::=
{non=-reserved-alpha-word>
which appears as a
{non-elem-field-name-declaration>

{elem-non-sum-field-name-declaration>
{non-reserved-alpha-word>

{sum-field-name-declaration> ::=
<{non-reserved-alpha-word>

{sum=-field-name> ::=
{non-reserved-alpha-word>
which appears as a
{sum~field-name-declarationd>

3] -
BLANK WHEN ZERO CLAUSE

D123 <blank-when-zero=clause> ::=
BLANK [# WHEN] # ZERO

=80
BLOCK CLAUSE

D124 <block-claused> ::=
BLOCK # |CONTAINS #]
[<{positive-integer> # TO #]
{positive-integer>
(F# CHARACTERS% | " # RECORDS}

CODE CLAUSE

D125 <code-claused ::=
CODE #
{mmemonic=name-for-code-for-report=groups>

-8l
COLUMN NUMBER CLAUSE

D126 <column-number-claused ;3=
COLUMN # [NUMBER #] [IS #]
{positive-integer>

] B

-85«

CONTROL CLAUSE

D127 <econtrol-clause) ::=
| {CONTROL # [IS #] !
CONTROLS # [ARE # 19
{FINAL !
{item-name-identifier>s
[{,> <{item-name-identifiler>]...

=86-
DATA RECORDS CLAUSE

D123 <data-records-claused ::=
DATA #
{RECORD # [IS ## !
RECORDS # [ARE #1]9
<{non-ws-record-named>
[{,> <{non-ws-record-named]...

l

GROUP INDICATE CLAUSE

D129 <group-indicate-claused ::=
GROUP [# INDICATE]

JUSTIFIED CLAUSE

D130 <Justified-claused ::=
{JUSTIFIED | JUST} [# RIGHT]

-89=

LABEL RECORDS CLAUSE

D131 <label=-records-claused ::=
LABEL #
{RECORD # [Is #] |
RECORDS # [ARE #]9
{OMITTED | STANDARD !
{non=vs-record-name>
[{,> <{non-ws-record-named>l...?

LINE NUMBER CLAUSE

D132 <line-number-claused> ::=
LINE # [NUMBER #] [IS #]
{<{positive-integer> |
PLUS # <{positive-integer> |
NEXT # PAGE}

NEXT GROUP CLAUSE

D133 <next-group-clause)> ::=
NEXT # GROUP # [IS #]
{<{positive-integer> |
PLUS # <{positive-integer)> !
NEXT # PAGE3

OCCURS CLAUSE

D134 <fixed-occurs-claused> ::=
OCCURS #
{positive-integer> [# TIMES]
[5 {key=-option>l.,.
[# <{index-optiond>]

D135 <{variable-occurs-clause> ::=
OCCURS #
{integer> # TO #
{positive-integer> [# TIMES]
[# DEPENDING # [ON #]
{elem-1item-name-qualified>]
[# <key—0ption>] o0 0
[# <{index-option)]

D136 <key-option> ::=
ASCENDING ! DESCENDING) 7
KEY #] [IS #]
{elem-1ltem-name-qualified>
[(elem-1ltem=name-qualified>]...

D137 <{index-option> ::=
INDEXED # [BY #]
{index-name-declaration>
[<,> <{index-name-declaratlion>]...

=93

D138 <{index-name-declarationd> ::=
{non-reserved-alpha-word>

D139 {index-name)> ::=
{non-reserved-alpha-word>
which appears as a
{index-name-declaration)

PAGE LIMIT CLAUSE

D140 <page-limit-clause) ::=

PAGE #
f[LIMIT] [Is #] !
LIMITS #] [ARE #]9
{positive-integer> #
LINE | LINES
{,> HEADING
{positive=-integer>]
[<{,> FIRST # DETAIL #
{positive-integer>]
[<,> LAST # DETAIL #
{positive-integer)]
[<{,> FOOTING #
{positive-integer>]

PICTURE CLAUSE

D141 <plcture-claused ::=
{PICTURE | PIC} # [IS #]
{pilcture)

D142 <{picture) ::=
{numeric-victure> |
{numeric-edited-picture>
not ending with a period or a comma !
{nonnumeric-pictured

D143 <{numeric-cicture) ::=
[s] <dig-seqd>
[v [<{dig-seq>]] !
[(S] {dig=-seq>
[(<p>leos (V]!
[s) [v] [<p>)eee
{dig-seq>

| D144 <{numeric-edited-picture> ::=
| {sign=-float=plct)> !

t {ecs=float=-plct)> |

f {supp=-pict> !

| {fixed-insert-pictd>

1 D145 <nonnumeric-pilcture> ::=
<b09> Je o
<ax>o¢o [<b09>]000;000

«96=

D146 {sign-float-plct) ::=
[<es>] <{+-sead>
{point)> {+=seq)> |
[<es>] {-=seq>
{point> {~=seq> !
[<es>] <{sign-float)
[{9=seq>] <point)
[{9=seq-or-b0,>] !
[<es>] <{(sign=float)>
[{9=seq>] [<p>l.ee. [V] !
(V] [£03]ese
[<es>] <sign-float)>

D147 <{cs=float-pict) ::=
[+ | =] <cs=seq>
{pointd> <{ecs=-seq) !
[+ ! -] <{es=float)
[{9=seq>] <{pointd>
[{9=