
Unfortunately, rigorous language 
specifications do not prevent bugs 
in language implementations. SML 
maintains a list of reported bugs, and 
different implementations have differ-
ent sets of bugs. JavaScript has many 
implementation bugs in the JavaScript 
engines of various Web browsers.

More importantly, it is difficult to 
get a rigorous language specification 
right. Despite its complete formal se-
mantics, the WebAssembly 1.0 speci-
fication had bugs detected by mecha-
nized proofs of Conrad Watt.35 The 
developers of the Verse programming 
language2 described the language se-
mantics in rewriting rules and opened 
a call for participation to the PL com-
munity for confluence proofs.

In this article, we present how to 
automatically extract a mechanized 
specification from a prose specifica-
tion and how useful it can be in prac-
tice. Using the example of JavaScript, 
we show how mechanized specifi-
cations can be used to detect con-
formance bugs between language 

PRO GR A M M I NG L A NGUAGE S H AV E been specified 
using a wide variety of approaches. Most 
programming language (PL) specifications are 
written in unstructured prose, but some are written 
rigorously to help developers build correct language 
implementations. For example, Standard ML (SML) was 
first designed with a formal specification that defined 
the language syntax and semantics in mathematical 
notation, followed by a reference implementation 
of the specification. JavaScript is well known for its 
language specification, which is written in highly 
structured prose at the level of pseudocode algorithms. 
Finally, the specification of WebAssembly provides the 
syntax and semantics of the language in both highly 
structured prose and mathematical notation.
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 key insights
	˽ JavaScript is the first programming 

language for which each change to its 
prose language specification is both “type 
checked” and “tested” to identify bugs 
and inconsistencies.

	˽ The primary enabler is the automatic 
extraction of a “mechanized 
specification” from a language 
specification written in prose, which 
allows the generation of a reference 
implementation of the language from the 
specification.

	˽ In addition to reference implementations, 
mechanized specifications can be used 
to detect conformance bugs between 
language specifications and existing 
JavaScript engines in major Web 
browsers, and to generate more special-
purpose JavaScript implementations, 
such as static analyzers, in a correct-by-
construction manner.

	˽ A promising approach to programming 
language development is to first 
design the language in a mechanized 
specification and then generate both 
human-friendly specifications written in a 
variety of natural languages and correct-
by-construction implementations from 
the mechanized specification.

https://dx.doi.org/10.1145/3624723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624723&domain=pdf&date_stamp=2024-05-01
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specifications and existing JavaScript 
engines in major Web browsers, and 
to generate more special-purpose 
JavaScript implementations, such 
as static analyzers, in a correct-by-
construction manner. We propose 
a new approach to programming 
language development as a promis-
ing direction for the future: first de-
sign the language in a mechanized 
specification and then generate both 
human-friendly specifications writ-
ten in diverse natural languages and 
correct-by-construction implementa-
tions and tools from the mechanized 
specification.

History of JavaScript
JavaScript is the most actively used 
programming language on GitHub.17 
All Web browsers include a JavaScript 
engine. It was initially designed and 
implemented by Brendan Eich in May 
1995 as a simple dynamic language 
that allowed code snippets to be in-
terpreted by Web browsers. In early 
1996, companies including Netscape 
and Microsoft were frequently releas-
ing browser technology, but language 
standardization was slow and often 
contentious. To ensure interoperabil-
ity between different browsers, TC39, 
the Ecma Technical Committee re-
sponsible for standardizing JavaScript, 
held meetings to create the JavaScript 
language specification.

Unlike programming languages 
that “grow up” via a single implemen-
tation, JavaScript began with multiple 
implementations, which guided its 
specification:36

Richard Gabriel, who attended some 
of the working group meetings, recalled 
in a personal communication a not un-
common interaction during these meet-
ings. Guy Steele would ask a question 
about some edge-case feature behavior. 
Sometimes Brendan Eich would say “I 
don’t know,” and sometimes Eich and 
Shon Katzenberger would be unsure or 
disagree; in such cases, they would each 
turn to their respective implementation 
and try a test case. If they got the same 
answer, that became the specified behav-
ior. If there were a difference, they would 
discuss the issue until they reached an 
agreement.

The history of JavaScript is de-
scribed in great detail in Wirfs-Brock 
and Eich.36 The first edition of its lan-

guage specification ECMA-262, ab-
breviated ES1, was released in 1997, 
edited by Guy L. Steele, Jr, in 95 pag-
es. JavaScript developers continued 
to demand more advanced language 
features, so ES2 and ES3 were re-
leased in 1998 and 1999, respectively. 
However, attempts to define a fourth 
edition were eventually abandoned 
due to the radical changes in a single 
update that included a variety of new 
language features, and ES5 was final-
ly released in 2009. Starting with the 
sixth edition, TC39 adopted the prac-
tice of using the year of publication 
as an abbreviation. Thus, both “ES6” 
and “ES2015” are informal abbrevia-
tions for “ECMA-262, 6th edition.” 
TC39 also decided to release ECMA-
262 annually, starting with ES2015, 
to ensure rapid adoption of new lan-
guage features. The latest ECMA-26210 
is a much larger specification at 827 
pages.

Now, ECMA-262 is maintained as an 
open source project11 and follows the 
TC39 process14 for handling proposals 
for new language features. JavaScript 
contributors propose new features 
along with specification changes and 
tests, which are maintained in a sepa-
rate repository6 over six stages. Since 
2015, TC39 has successfully published 
an updated edition of the ECMAScript 
specification every June, following the 
TC39 process.

As with the language specifica-
tion, various companies, including 
Microsoft and Google, have released 
their own open source test suites for 
JavaScript. In 2010, TC39 decided to 
maintain Test262,15 an open source 
JavaScript implementation con-
formance test suite. After working 
through many policy and licensing is-
sues, Test262 is now an integral part 
of TC39’s development process. Every 
new ECMAScript feature must be ac-
companied by its tests before it is in-
corporated into the ECMAScript stan-
dard. At the time of writing, Test262 
consists of 48,854 tests.

Correctness and Conformance 
of the Specification and 
Implementations
Along with its reputation as the most 
widely used language, JavaScript is 
also well-known for its unintuitive 
semantics due to its highly dynamic 

We propose a 
new approach 
to programming 
language 
development: 
design the language 
in a mechanized 
specification, then 
generate both 
human-friendly 
specifications 
written in diverse 
natural languages 
and correct-by-
construction 
implementations 
and tools from 
the mechanized 
specification.
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ECMA-262 also had a number of 
bugs. Consider the following built-in 
library function Math.round (specified 
in Section 20.3.2.28 of an ECMA-262 in-
ternal version):7

20.3.2.28 Math.round ​​​(​​x​)​​​​
1.	Let ​n​ be ? ToNumber ​​​(​​x​)​​​​.
2.	If ​n​ is an integral Number, return ​n​.
3.	If ​x < 0.5​ and ​x >= 0​, return ​+ 0​.
4.	If ​x < 0​ and ​x ≥ − 0.5​, return ​− 0​.
5.	 �Return the integral Number closest 

to ​n​, preferring the Number closer 
to ​+ ∞​ in the case of a tie.

It first converts the given parameter 
x to its numeric value n using ToNum-
ber. The remaining steps should be 
performed using n, but the specifica-
tion writer of this section mistakenly 
used x instead of n in steps 3 and 4. 
This bug was introduced in ECMA-262 
on September 11, 2020 and was later 
fixed by another contributor.

In addition, keeping a rapidly evolv-
ing language specification up to date 
and managing the many different lan-
guage implementations that conform 
to the specification is challenging even 
with a large test suite. The three edi-
tors of ECMA-262 had to manually re-
view new proposals and changes to the 
specification. In addition to Test262, 
various browsers maintain their own 
test suites, but they may still behave 
differently. Therefore, Ficarra,16 an 
editor of ECMA-262, said, “one of my 
primary goals has been to make the 
specification easier to consume for au-
tomated analysis tools.”

Academic Research into 
the CI Systems
We helped Ficarra achieve his goal 
in November 2022: Each ECMA-262 
pull request (PR) runs a type checker 
against the prose specification, and 
all new or changed tests in Test262 
PRs are run using an interpreter 
extracted directly from the text of 
ECMA-262. For example, if one sends 
a PR of the Math.round function, the 
type checker will detect a bug and 
reject the PR. First, note that the pa-
rameter x can accept any JavaScript 
value: string, boolean, number, ob-
ject, and so on. Applying ToNumber 
to x in step 1 converts x to a number 
or an exception. Exception cases are 
filtered out using the question mark 

nature and extensive use of implicit 
type conversion. As a result, there 
are many sophisticated JavaScript ex-
amples. Consider the following JavaS-
cript code:

function f(x) { return x == !x; }

Even for this simple function, it is 
not easy to understand exactly what 
its behavior is: the function f simply 
compares the given argument x with 
its negation, so it looks like it returns 
false. However, when an empty ar-
ray is given as an argument, it returns 
true due to a number of implicit con-
versions for the negation and equal-
ity operators. More specifically, when 
f([]) evaluates [] == ![], the nega-
tion of the empty array ![] evaluates to 
false because any object represents 
true. The operands [] and false of 
the equality operator are then both 
converted to values of the same type 
according to the implicit conversion 
rules defined in ECMA-262. In this 
example, they both get converted into 
the same Number type value, 0, so the 
final result becomes true.

Such counterintuitive semantics 
often leads to various security vulner-
abilities and bugs in implementations. 
Experienced JavaScript developers of-
ten introduce bugs that are difficult to 
catch due to the extremely dynamic na-
ture of JavaScript. Mainstream JavaS-
cript engines such as V8, JavaScript-
Core, SpiderMonkey, and Chakra had 
various bugs that were more harmful 
than bugs in JavaScript programs.34 
They also had security vulnerabilities 
that could lead to remote attacks. For 
example, a high-severity bug in V8, 
tracked as CVE-2021-21224, was widely 
exploited in April 2021.33 Besides, it is 
more challenging to correctly develop 
special-purpose JavaScript imple-
mentations that require a deeper un-
derstanding of the specification for 
specialized language semantics. For 
example, most existing JavaScript stat-
ic analyzers19,20,23 require a sound ab-
straction of the language semantics to 
guarantee the soundness of their anal-
ysis. However, because they need to 
consider not only concrete semantics 
but also how to abstract them soundly, 
they have been plagued by soundness 
bugs25 for unusual edge cases in lan-
guage semantics.

operator, so n always points to a num-
ber. Because x is compared to several 
numbers with inequality operators 
on lines 3 and 4, the type checker re-
ports them as type mismatch bugs 
because non-numeric values are not 
valid arguments for inequality opera-
tors. Whenever a language feature is 
added to ECMA-262, it must be ac-
companied by its corresponding tests 
in Test262, which now leverage in-
terpreters extracted from ECMA-262, 
always checking for conformance to 
ECMA-262. These automated tools, 
heavily used in the continuous inte-
gration (CI) system of ECMA-262 and 
Test262, are based on a series of aca-
demic papers.

How have ideas from academia 
been integrated into real-world indus-
try? How did researchers convince the 
TC39 committee to use their ideas?

The KAIST Programming Lan-
guage Research Group (PLRG) has 
been researching JavaScript since 
2011. Initially, we mainly formal-
ized the semantics of the JavaScript 
language with various features, but 
now our research focuses on pro-
gram analysis and bug finding in Ja-
vaScript applications. Our research 
problems are often motivated by 
real-world customers in companies 
such as Samsung Electronics and 
IBM. This work had been challeng-
ing, interesting, rewarding, and fun 
until TC39 decided in 2015 to release 
ECMA-262 annually. As the JavaScript 
language has evolved more rapidly, 
developing and maintaining JavaS-
cript analysis tools has become in-
creasingly difficult.

In March 2019, Ph.D. candidate 
Jihyeok Park cautiously shared an 
outlandish idea. ECMA-262 had been 
released annually since 2015, but ex-
isting JavaScript analyzers, includ-
ing our own, were still based on ES5, 
which was released in 2009. It is im-
possible to manually keep up with 
the changes in an 800-page specifi-
cation every year. Then he realized 
something: the English phrases in 
the specification had common pat-
terns. It might be possible to “parse” 
the English sentences and “compile” 
them into abstract algorithms in an 
intermediate language. We consid-
ered this a clever engineering hack, 
which could help us generate more 
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behavior or detect bugs and security 
vulnerabilities. WALA19 was initially 
developed for Java pointer analysis and 
has been extended to support more 
languages, including Android Java and 
JavaScript. TAJS23 is a dataflow analysis 
for JavaScript that uses a model of ES3 
and a partial model of ES5. It provides 
partial support for the latest ECMAS-
cript language features with Babel,3 
which compiles the latest features 
down to lower versions. SAFE20 is a gen-
eral analysis framework for JavaScript 
Web applications. These are all open 
source projects for static analysis of Ja-
vaScript. In contrast, Jalangi31 is a gen-
eral framework for JavaScript dynamic 
analyzers, such as memory profilers 
and dynamic JIT-unfriendly code snip-
pet detectors.

While most of the research on JavaS-
cript is for ES3 and ES5, ECMA-262 has 
been released every year since 2015. 
Thus, manually updating the seman-
tic formalizations and analysis imple-
mentations is tedious, labor-intensive, 
and error-prone.

To bridge the gap between the rap-
idly evolving ECMA-262 and its imple-
mentations, ESMeta generates various 
tools directly from ECMA-262. Figure 
1 illustrates the overall structure of 
ESMeta. The first step is to extract a 
mechanized specification from an in-
put ECMA-262 via JISET. Once a mech-
anized specification is available, it can 
be used to check the validity of ECMA-
262. We can use JEST to synthesize new 
kinds of conformance tests and JSTAR 
to analyze the types of English phrases 
in the specification. Finally, we can use 
JSAVER to derive a static analyzer for a 
given version of ECMA-262. We will de-
scribe them in order.

decided to integrate JSTAR and JISET 
into the CI systems of ECMA-262 and 
Test262, respectively. Since these tools 
were prototype implementations to 
see their feasibility in academic pub-
lications, we reimplemented all the 
tools and rebranded them as ESMeta 
to make them practically available to 
all PRs in the ECMA-262 and Test262 
repositories.

After the first meeting with ECMA-
262 editors on Nov. 24, 2021, we gave 
a presentation at the TC39 meeting 
on Jan. 27, 2022. ESMeta was then in-
tegrated into ECMA-262's CI system 
on Nov. 3, 202212 and Test262's CI sys-
tem on Nov. 25, 2022.9 This was about 
a year after the first meeting with the 
TC39 committee. This is how the ini-
tial outlandish idea and subsequent 
academic papers were integrated into 
real-world PL development.

Technical Details
Researchers have proposed various 
approaches to help developers build 
correct JavaScript applications.1,32 One 
approach is to formalize the JavaS-
cript language semantics described in 
ECMA-262. Because ECMA-262 defines 
semantics in prose, it is sometimes 
ambiguous and contains bugs and 
infeasible behavior. Researchers have 
proposed formal specifications for Ja-
vaScript semantics to provide a solid 
foundation for JavaScript research. 
Maffeis et al.22 proposed a small-step 
operational semantics for ES3; Guha 
et al.18 used a desugaring process to 
develop λJS, a core calculus of ES3; and 
Park et al.24 defined ES5 using the K 
framework.30

Another approach is to analyze Java
Script programs to reason about their 

tests for features of ECMA-262 that 
Test262 does not cover.

In essence, it was the primary en-
abler; the direct extraction of “mech-
anized specifications” from prose-
written language specifications has 
opened the door to the automatic 
generation of language-manipulat-
ing tools. To bridge the gap between 
ECMA-262 and its implementations, 
ESMeta21 extracts mechanized speci-
fications to automatically generate 
a variety of language-based tools 
from a given version of ECMA-262. It 
is based on several papers. JISET28 
extracts a mechanized specifica-
tion from ECMA-262. A mechanized 
specification consists of two parts: a 
JavaScript parser constructed from 
the syntax written in a variant of the 
extended BNF (EBNF) notation, and 
functions in an intermediate repre-
sentation (IR) compiled from abstract 
algorithms written in English for the 
language semantics. JEST27 synthe-
sizes conformance test programs and 
checks discrepancies between JavaS-
cript engines and the specification. 
Using this tool, we detected 44 bugs 
in four engines (V8, GraalJS, Quick-
JS, and Moddable XS) and 27 bugs in 
ES2020. JSTAR26 analyzed the types of 
English sentences in ECMA-262 and 
detected 93 type-related specification 
bugs, which were confirmed by TC39. 
JSAVER25 automatically generates a 
JavaScript static analyzer from ECMA-
262, which outperforms the state-
of-the-art JavaScript static analyzers 
that were manually developed. The 
next section offers a description of the 
technical details behind them.

Because the papers presented vari-
ous new techniques using mechanized 
specifications, we used their bug-find-
ing capabilities to evaluate the effec-
tiveness of the techniques. Thus, we 
submitted many bug reports to main-
stream JavaScript engine developers 
and the TC39 committee for confirma-
tion. They kindly confirmed the bugs 
and expressed a lot of curiosity. Then, 
the ECMA-262 editors invited us to a 
TC39 meeting.

The presentation was very well re-
ceived. All the excitement from the 
TC39 committee and the detailed dis-
cussion can be found in the meeting 
note.13 After mutually exciting meet-
ings with the TC39 committee, we 

Figure 1. Overall structure of ESMeta.
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algorithm to the following function in 
a domain-specific intermediate repre-
sentation, IRES:

syntax def ArrayLiteral[2].
Evaluation(

this, ElementList, Elision

) {

let array = [! (ArrayCreate 0)]

let nextIndex = 
[? (ElementList.Array 
 Accumulation array 0)]

if (! (= Elision absent)) 
[? (Elision.ArrayAccumula- 
 tion array nextIndex)]

return array

}

We evaluated the correctness of the 
semantics extracted from ES20195 by 
running Test262. It took about three 
hours to evaluate 18,064 applicable 
tests: 1,709 tests failed due to nine 
specification bugs in ES2019. Four of 
these bugs were newly reported and 
confirmed by TC39.

Synthesis of Conformance Tests 
In addition to the annual updates to 
ECMA-262, the various JavaScript en-
gines continue to provide various ex-
tensions to the specification to meet 
rapidly changing user needs. Unfor-
tunately, these updates, both in the 
specification and in implementations, 
make synchronization difficult, lead-
ing to unexpected behavior.

Inspired by the ECMA-262 bugs de-
tected by the extracted semantics, we 
devised an N+1-version differential test-
ing.27 Traditional differential testing 
runs N implementations of a specifica-
tion simultaneously for each input and 
detects problems when the outputs 
do not match. N+1-version differen-
tial testing also tests the specification 
using a mechanized specification ex-
tracted from the specification.

It consists of four steps:
1.	 Automatically synthesize pro-

grams according to the syntax and se-
mantics from a given language specifi-
cation.

2.	 Generate conformance tests by 
injecting assertions into the synthe-
sized programs to check their final 
program states.

Extraction of Mechanized 
Specifications
ECMA-262 defines the language syn-
tax using a variant of EBNF and the 
semantics using abstract algorithms 
in a clear and structured manner. For 
example, the following production 
shows the syntax of ArrayLiteral in 
ES2022:

ArrayLiteral[Yield, Await] :
[ Elisionopt]
[ ElementList[?Yield, ?Await] ]
[ ElementList[?Yield, ?Await] , Elisionopt]

It takes two boolean parameters 
Yield and Await, and has three al-
ternatives. The following abstract al-
gorithm defines the semantics of the 
third alternative:

ArrayLiteral : [ ElementList , Elisionopt]
1.	Let array be ! ArrayCreate(0).
2.	�Let nextIndex be ?  

ArrayAccumulation of ElementList 
with arguments array and 0.

3.	If Elision is present then:
	• �Perform ? ArrayAccumulation of 

Elision with arguments array and 
nextIndex.

4.	Return array.

It has four steps. In the HTML files 
describing ECMA-262, each nonter-
minal, such as ElementList, or local 
variable, such as array, has a <nt> 
or <var> tag, respectively. From the 
above production, the lookahead pars-
ing technique28 generates a parser in 
Scala code as follows:

val ArrayLiteral: List[Boolean] 
 => LAParser[T] = memo {

case List(Yield, Await) =>

"[" ~ opt(Elision) ~ "]"  
	 ^^ ArrayLiteral0 |

"[" ~ ElementList(Yield,Await) 
 ~ "]" 	 ^^ ArrayLiteral1 |

"[" ~ ElementList(Yield,Await) 
 ~ "," ~ opt(Elision) ~ "]"  
	 ^^ ArrayLiteral2

}

Each parser has the List[Boolean] 
=> LAParser[T] type because each 
production is parametric with boolean 
values. Similarly, the algorithm com-
piler28 translates the above abstract 

The direct 
extraction of 
“mechanized 
specifications” 
from prose-
written language 
specifications has 
opened the door 
to the automatic 
generation 
of language-
manipulating tools.
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for detecting specification bugs.
To alleviate this problem, we devel-

oped JSTAR,26 which takes a mecha-
nized JavaScript specification from 
JISET and performs type analysis of 
compiled functions using the speci-
fication types defined in ECMA-262. 
ECMA-262 contains not only JavaScript 
language types, but also specification 
types such as abstract syntax trees 
(ASTs), internal list-like structures, and 
internal records including environ-
ments, completions, and property de-
scriptors. For records and AST types, 
we also defined their fields. We defined 
their type hierarchies based on subtype 
relations. The subtype relation between 
types is shown in Figure 2; a directed 
edge from τ′ to τ denotes a subtype re-
lation (that is, τ′ <: τ), and the relation 
is reflexive and transitive. The subtype 
relation depends on the nominal types 
defined in ECMAScript. We extract the 
subtype relation for AST types from the 
JavaScript syntax. For example, consid-
er the following syntax:

FormalParameter[?Yield, ?Await] ] : 
BindingElement[?Yield, ?Await] ]

Because the average number of up-
dated steps of abstract algorithms be-
tween consecutive releases from EC-
MAScript 2016 to 2019 was 9,645.5,28 
manually checking for every update 
is a daunting task. Thus, TC39 pushed 
to add various manual annotations 
to the abstract algorithms to reduce 
specification bugs. First, it introduced 
two kinds of annotations: assertions, 
which indicate assumptions at specif-
ic points in abstract algorithms, and 
the prefixes ? and !, which indicate 
whether the execution of an abstract 
algorithm completes abruptly. For ex-
ample, “Assert: Type(O) is Object” de-
notes that the variable O always has an 
Object value at the point of the asser-
tion, and “? GetV(V , P)” denotes that 
the execution of GetV(V , P) can com-
plete abruptly. These annotations help 
readers understand specifications 
clearly. Second, the committee de-
cided to support type annotations for 
variables, parameters, and return val-
ues of abstract algorithms. However, 
manual annotations of any kind are 
laborious, prone to mistakes, and do 
not provide an automatic mechanism 

3.	 Run the conformance tests 
against multiple implementations to 
detect bugs in the specification and 
implementations

4.	 Use statistical information to lo-
calize bugs in the specification.

We evaluated the effectiveness of 
the synthesized tests with ES2020 
and four JavaScript engines that fully 
support modern JavaScript features 
in ES2020: V8, GraalJS, QuickJS, and 
Moddable XS. For evaluation, we in-
jected seven kinds of assertions: ex-
ception, abort, variable value, object 
value, object property, property key, 
and internal method and slot. For ex-
ample, to check whether a final pro-
gram state has the correct value for 
each object property, we implemented 
a helper $verifyProperty, which 
checks the attributes of each property 
for each object. Thus, the following 
code checks the attributes of the prop-
erty of x.p:

var x = { p: 42 };
$verifyProperty(x, "p", {
value: 42.0,  
writable: true,
enumerable: true,  
configurable: true

});

The bug detection and localiza-
tion phase then uses the results of 
running given conformance tests 
on multiple JavaScript engines. If a 
small number of engines fail in each 
test, it reports a potential bug in the 
engines that failed the test. If a large 
number of engines fail, it reports a 
potential bug in the specification. It 
uses spectrum-based fault localiza-
tion (SBFL),37 a localization technique 
that leverages the coverage of test 
cases and pass/fail results, to local-
ize potential bugs. We detected 44 
bugs in the engines and 27 bugs in 
ES2020. One of the ES2020 bugs was 
a newly detected bug confirmed by 
TC39, caused by not handling abrupt 
completions in property definitions 
of object literals.

Type Analysis  
of Specifications
Manually reviewing every specifica-
tion update is inherently labor-inten-
sive and error-prone, making ECMAS-
cript vulnerable to specification bugs. 

Figure 2. Subtype relation <:
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Because the nonterminal Binding-
Element is the unique alternative of the 
production FormalParameter, we auto-
matically extract the subtype relation: 
BindingElement <: FormalParameter. 
Using the subtype relation, the expres-
sion e : τ checks whether the evaluation 
result of e has type τ′ satisfying τ′ <: τ. 
These subtype relations help enhance 
the precision of type analysis by keep-
ing track of the precise types of vari-
ables and expressions.

Using such type information, JSTAR 
performs type analysis and detects 
specification bugs using a bug detector 
consisting of four checkers: 1) reference 
checker, 2) arity checker, 3) assertion 
checker, and 4) operand checker. JSTAR 
also uses condition-based refinement 
for type analysis, which improves the 
precision of type analysis by using con-
ditions on assertions and branches to 
eliminate infeasible parts. We evalu-
ated JSTAR with all 864 versions in the 
official ECMAScript repository from 
2018 to 2021. The evaluation showed 
that the refinement technique can re-
duce the number of false-positive bugs 
due to spurious types inferred by im-
precise type analysis. JSTAR detected 
14 type-related bugs in ES2021,8 which 
were confirmed by TC39.

Derivation of  
Static Analyzers
Finally, we developed JSAVER,25 which 
automatically generates a JavaScript 
static analyzer from ECMA-262. First, 
JSAVER extracts definitional interpret-
ers29 from ECMA-262. A definitional 
interpreter provides a way to represent 
the language semantics of a defined 
language using its interpreter written 
in a defining language. We extract a Ja-
vaScript definitional interpreter from 
JISET. In the extracted definitional 
interpreter, the defined language is Ja-
vaScript, and the defining language is 
IRES. We then present meta-level static 
analysis, which uses the extracted 
interpreter to indirectly analyze Ja-
vaScript programs. Meta-level static 
analysis is an interpreter-based ap-
proach for static analysis of a defined 
language L1 using the static analyzer 
of a defining-language L2, as depicted in 
Figure 3. Since an L1 interpreter is an L2 
program, we can indirectly analyze an 
L1 program by taking the L1 program as 
input and using the static analyzer of 

Figure 4. Analysis results of TAJS and SAFE without and with Babel and JSAES2021 for 
applicable tests.
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tion. Watt et al.35 presented two mech-
anizations of WebAssembly 1.0 and 
found bugs in it, but mechanization 
of WebAssembly 2.0 will still be quite 
time-consuming because the entire 
mechanization process is done manu-
ally. Applying the ESMeta approach to 
WebAssembly can reduce the burden 
of such manual mechanization.

A promising new approach to pro-
gramming language development is 
to design languages with mechanized 
specifications from the beginning. For 
developers, mechanized specifications 
can be easier to understand than spec-
ifications in natural language because 
they are unambiguous and always ex-
ecutable. For non-developers, mecha-
nized specifications can be translated 
into diverse, human-friendly natural 
languages. Furthermore, implementa-
tions and tools that are extracted di-
rectly from mechanized specifications 
are correct by construction.

Designing a new programming lan-
guage by writing a mechanized specifi-
cation that correctly describes the lan-
guage's intended behavior can seem 
daunting, but it is possible because 
mechanized specifications allow us to 
create a variety of tools. For example, 
one can run the specification interac-
tively. Figure 5 shows another ESMeta 
tool, the ECMAScript Double Debug-
ger.21 This tool extends the interpreter 
extracted from ECMA-262 to help users 
understand how JavaScript programs 
are executed according to ECMA-262. 
It supports step-by-step execution of 
ECMA-262 abstract algorithms, line-
by-line execution of JavaScript code, 
breakpoints by abstract algorithm 
name in ECMA-262, and visualization 
of ECMA-262 internal states. Language 
designers can use the debugger to run 
example code to debug their mecha-
nized specifications. For instance, 
Verse introduced new features such as 
logical variables, equality constraints 
between variables, and choice that al-
lows multiple alternatives. Describ-
ing the intended behavior precisely is 
cumbersome, but a double debugger 
can ease the burden on language de-
signers.

Conclusion
JavaScript is the first programming 
language for which each change to its 
prose language specification is both 

However, TAJS and SAFE still failed to 
soundly analyze more than half of the 
Test262 test programs, while JSAES2021 
succeeded in soundly analyzing all 
applicable test programs without the 
need for Babel. The figures show that 
JSAVER can reduce the burden of defin-
ing the abstract semantics of ES2015+ 
features for static analysis.

A Promising New Approach 
to Programming Language 
Development
Designing and implementing real-
world programming languages is chal-
lenging. The ability to reason about 
program behavior often comes from a 
formal specification of the language's 
semantics, but the time-consuming ef-
fort of formalizing the semantics often 
falls behind actual implementation. 
For example, Rust is actively developed 
by a large and diverse community of 
contributors and is used in real-world 
software such as the Linux kernel and 
Mozilla Firefox. However, it has not re-
solved soundness bugs reported years 
ago4 because its strong, static type 
system does not yet cover various lan-
guage features and APIs. Applying the 
ESMeta approach to Rust can help ef-
ficiently generate machine-checkable 
proof sketches, especially with mecha-
nized semantics extracted from mech-
anized specifications.

Along with formalizing the seman-
tics of the language, it would be help-
ful to perform extensive testing of the 
semantics using implementations ex-
tracted from the mechanized specifica-

L2 to analyze the interpreter. Thus, we 
developed a static analyzer of IRES for a 
meta-level static analysis of JavaScript 
and showed that it can indirectly ana-
lyze JavaScript programs effectively. 
We also presented ways to indirectly 
configure abstract domains and analy-
sis sensitivities for JavaScript in the 
static analysis of IRES. First, we provide 
a method to configure abstract do-
mains for JavaScript values and struc-
tures. Second, we present AST sensi-
tivities to express analysis sensitivities 
for JavaScript, such as flow-sensitivity 
and k-callsite-sensitivity.

Figure 4 shows the analysis results 
of existing static analyzers (TAJS and 
SAFE) without and with Babel, and 
JSAES2021, the JavaScript static analyzer 
derived from ES2021 via JSAVER, for 
the applicable tests. In each chart, 
the x-axis represents the point in time 
when the tests were generated and the 
y-axis represents the number of tests 
generated before that point in time. 
The mark sound (green, filled) de-
notes a sound analysis, unsound (red, 
striped) denotes an unsound analy-
sis, and error (white, blank) denotes 
an unexpected error. Figures 4(a) and 
4(b) show that TAJS and SAFE analyzed 
most tests generated before 2015 in 
a sound way. However, the number of 
tests that cannot be soundly analyzed 
has been steadily increasing since 
2015. As shown in Figures 4(d) and 
4(e), Babel transpiles ES2015+ fea-
tures to ES5.1 to mitigate this issue 
and increase the number of programs 
that TAJS and SAFE analyze soundly. 

Figure 5. ECMAScript double debugger.
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“type checked” and also “tested” to 
identify bugs and inconsistencies. In 
this article, we presented our story of 
applying various ideas from academic 
papers to the continuous design and 
implementation process of the real-
world programming language in the 
wild. As one of the reviewers of the JI-
SET paper suggested, we believe that:

This is the right order to design and 
document languages: first the semantics, 
then the implementation and documen-
tation, ideally generated from the se-
mantics.
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