
Unfortunately, rigorous language
specifications do not prevent bugs
in language implementations. SML
maintains a list of reported bugs, and
different implementations have differ-
ent sets of bugs. JavaScript has many
implementation bugs in the JavaScript
engines of various Web browsers.

More importantly, it is difficult to
get a rigorous language specification
right. Despite its complete formal se-
mantics, the WebAssembly 1.0 speci-
fication had bugs detected by mecha-
nized proofs of Conrad Watt.35 The
developers of the Verse programming
language2 described the language se-
mantics in rewriting rules and opened
a call for participation to the PL com-
munity for confluence proofs.

In this article, we present how to
automatically extract a mechanized
specification from a prose specifica-
tion and how useful it can be in prac-
tice. Using the example of JavaScript,
we show how mechanized specifi-
cations can be used to detect con-
formance bugs between language

PRO GR A M M I NG L A NGUAGE S H AV E been specified
using a wide variety of approaches. Most
programming language (PL) specifications are
written in unstructured prose, but some are written
rigorously to help developers build correct language
implementations. For example, Standard ML (SML) was
first designed with a formal specification that defined
the language syntax and semantics in mathematical
notation, followed by a reference implementation
of the specification. JavaScript is well known for its
language specification, which is written in highly
structured prose at the level of pseudocode algorithms.
Finally, the specification of WebAssembly provides the
syntax and semantics of the language in both highly
structured prose and mathematical notation.

JavaScript
Language
Design and
Implementation
in Tandem

DOI:10.1145/3624723

Proposing a new approach to programming
language development.

BY SUKYOUNG RYU AND JIHYEOK PARK

86 COMMUNICATIONS OF THE ACM | MAY 2024 | VOL. 67 | NO. 5

I
M

A
G

E
 B

Y
 Z

A
K

H
A

R
C

H
U

K

research

 key insights
	˽ JavaScript is the first programming

language for which each change to its
prose language specification is both “type
checked” and “tested” to identify bugs
and inconsistencies.

	˽ The primary enabler is the automatic
extraction of a “mechanized
specification” from a language
specification written in prose, which
allows the generation of a reference
implementation of the language from the
specification.

	˽ In addition to reference implementations,
mechanized specifications can be used
to detect conformance bugs between
language specifications and existing
JavaScript engines in major Web
browsers, and to generate more special-
purpose JavaScript implementations,
such as static analyzers, in a correct-by-
construction manner.

	˽ A promising approach to programming
language development is to first
design the language in a mechanized
specification and then generate both
human-friendly specifications written in a
variety of natural languages and correct-
by-construction implementations from
the mechanized specification.

https://dx.doi.org/10.1145/3624723
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3624723&domain=pdf&date_stamp=2024-05-01

MAY 2024 | VOL. 67 | NO. 5 | COMMUNICATIONS OF THE ACM 87

specifications and existing JavaScript
engines in major Web browsers, and
to generate more special-purpose
JavaScript implementations, such
as static analyzers, in a correct-by-
construction manner. We propose
a new approach to programming
language development as a promis-
ing direction for the future: first de-
sign the language in a mechanized
specification and then generate both
human-friendly specifications writ-
ten in diverse natural languages and
correct-by-construction implementa-
tions and tools from the mechanized
specification.

History of JavaScript
JavaScript is the most actively used
programming language on GitHub.17
All Web browsers include a JavaScript
engine. It was initially designed and
implemented by Brendan Eich in May
1995 as a simple dynamic language
that allowed code snippets to be in-
terpreted by Web browsers. In early
1996, companies including Netscape
and Microsoft were frequently releas-
ing browser technology, but language
standardization was slow and often
contentious. To ensure interoperabil-
ity between different browsers, TC39,
the Ecma Technical Committee re-
sponsible for standardizing JavaScript,
held meetings to create the JavaScript
language specification.

Unlike programming languages
that “grow up” via a single implemen-
tation, JavaScript began with multiple
implementations, which guided its
specification:36

Richard Gabriel, who attended some
of the working group meetings, recalled
in a personal communication a not un-
common interaction during these meet-
ings. Guy Steele would ask a question
about some edge-case feature behavior.
Sometimes Brendan Eich would say “I
don’t know,” and sometimes Eich and
Shon Katzenberger would be unsure or
disagree; in such cases, they would each
turn to their respective implementation
and try a test case. If they got the same
answer, that became the specified behav-
ior. If there were a difference, they would
discuss the issue until they reached an
agreement.

The history of JavaScript is de-
scribed in great detail in Wirfs-Brock
and Eich.36 The first edition of its lan-

guage specification ECMA-262, ab-
breviated ES1, was released in 1997,
edited by Guy L. Steele, Jr, in 95 pag-
es. JavaScript developers continued
to demand more advanced language
features, so ES2 and ES3 were re-
leased in 1998 and 1999, respectively.
However, attempts to define a fourth
edition were eventually abandoned
due to the radical changes in a single
update that included a variety of new
language features, and ES5 was final-
ly released in 2009. Starting with the
sixth edition, TC39 adopted the prac-
tice of using the year of publication
as an abbreviation. Thus, both “ES6”
and “ES2015” are informal abbrevia-
tions for “ECMA-262, 6th edition.”
TC39 also decided to release ECMA-
262 annually, starting with ES2015,
to ensure rapid adoption of new lan-
guage features. The latest ECMA-26210
is a much larger specification at 827
pages.

Now, ECMA-262 is maintained as an
open source project11 and follows the
TC39 process14 for handling proposals
for new language features. JavaScript
contributors propose new features
along with specification changes and
tests, which are maintained in a sepa-
rate repository6 over six stages. Since
2015, TC39 has successfully published
an updated edition of the ECMAScript
specification every June, following the
TC39 process.

As with the language specifica-
tion, various companies, including
Microsoft and Google, have released
their own open source test suites for
JavaScript. In 2010, TC39 decided to
maintain Test262,15 an open source
JavaScript implementation con-
formance test suite. After working
through many policy and licensing is-
sues, Test262 is now an integral part
of TC39’s development process. Every
new ECMAScript feature must be ac-
companied by its tests before it is in-
corporated into the ECMAScript stan-
dard. At the time of writing, Test262
consists of 48,854 tests.

Correctness and Conformance
of the Specification and
Implementations
Along with its reputation as the most
widely used language, JavaScript is
also well-known for its unintuitive
semantics due to its highly dynamic

We propose a
new approach
to programming
language
development:
design the language
in a mechanized
specification, then
generate both
human-friendly
specifications
written in diverse
natural languages
and correct-by-
construction
implementations
and tools from
the mechanized
specification.

88 COMMUNICATIONS OF THE ACM | MAY 2024 | VOL. 67 | NO. 5

research

ECMA-262 also had a number of
bugs. Consider the following built-in
library function Math.round (specified
in Section 20.3.2.28 of an ECMA-262 in-
ternal version):7

20.3.2.28 Math.round ​​​(​​x​)​​​​
1.	Let ​n​ be ? ToNumber ​​​(​​x​)​​​​.
2.	If ​n​ is an integral Number, return ​n​.
3.	If ​x < 0.5​ and ​x >= 0​, return ​+ 0​.
4.	If ​x < 0​ and ​x ≥ − 0.5​, return ​− 0​.
5.	 �Return the integral Number closest

to ​n​, preferring the Number closer
to ​+ ∞​ in the case of a tie.

It first converts the given parameter
x to its numeric value n using ToNum-
ber. The remaining steps should be
performed using n, but the specifica-
tion writer of this section mistakenly
used x instead of n in steps 3 and 4.
This bug was introduced in ECMA-262
on September 11, 2020 and was later
fixed by another contributor.

In addition, keeping a rapidly evolv-
ing language specification up to date
and managing the many different lan-
guage implementations that conform
to the specification is challenging even
with a large test suite. The three edi-
tors of ECMA-262 had to manually re-
view new proposals and changes to the
specification. In addition to Test262,
various browsers maintain their own
test suites, but they may still behave
differently. Therefore, Ficarra,16 an
editor of ECMA-262, said, “one of my
primary goals has been to make the
specification easier to consume for au-
tomated analysis tools.”

Academic Research into
the CI Systems
We helped Ficarra achieve his goal
in November 2022: Each ECMA-262
pull request (PR) runs a type checker
against the prose specification, and
all new or changed tests in Test262
PRs are run using an interpreter
extracted directly from the text of
ECMA-262. For example, if one sends
a PR of the Math.round function, the
type checker will detect a bug and
reject the PR. First, note that the pa-
rameter x can accept any JavaScript
value: string, boolean, number, ob-
ject, and so on. Applying ToNumber
to x in step 1 converts x to a number
or an exception. Exception cases are
filtered out using the question mark

nature and extensive use of implicit
type conversion. As a result, there
are many sophisticated JavaScript ex-
amples. Consider the following JavaS-
cript code:

function f(x) { return x == !x; }

Even for this simple function, it is
not easy to understand exactly what
its behavior is: the function f simply
compares the given argument x with
its negation, so it looks like it returns
false. However, when an empty ar-
ray is given as an argument, it returns
true due to a number of implicit con-
versions for the negation and equal-
ity operators. More specifically, when
f([]) evaluates [] == ![], the nega-
tion of the empty array ![] evaluates to
false because any object represents
true. The operands [] and false of
the equality operator are then both
converted to values of the same type
according to the implicit conversion
rules defined in ECMA-262. In this
example, they both get converted into
the same Number type value, 0, so the
final result becomes true.

Such counterintuitive semantics
often leads to various security vulner-
abilities and bugs in implementations.
Experienced JavaScript developers of-
ten introduce bugs that are difficult to
catch due to the extremely dynamic na-
ture of JavaScript. Mainstream JavaS-
cript engines such as V8, JavaScript-
Core, SpiderMonkey, and Chakra had
various bugs that were more harmful
than bugs in JavaScript programs.34
They also had security vulnerabilities
that could lead to remote attacks. For
example, a high-severity bug in V8,
tracked as CVE-2021-21224, was widely
exploited in April 2021.33 Besides, it is
more challenging to correctly develop
special-purpose JavaScript imple-
mentations that require a deeper un-
derstanding of the specification for
specialized language semantics. For
example, most existing JavaScript stat-
ic analyzers19,20,23 require a sound ab-
straction of the language semantics to
guarantee the soundness of their anal-
ysis. However, because they need to
consider not only concrete semantics
but also how to abstract them soundly,
they have been plagued by soundness
bugs25 for unusual edge cases in lan-
guage semantics.

operator, so n always points to a num-
ber. Because x is compared to several
numbers with inequality operators
on lines 3 and 4, the type checker re-
ports them as type mismatch bugs
because non-numeric values are not
valid arguments for inequality opera-
tors. Whenever a language feature is
added to ECMA-262, it must be ac-
companied by its corresponding tests
in Test262, which now leverage in-
terpreters extracted from ECMA-262,
always checking for conformance to
ECMA-262. These automated tools,
heavily used in the continuous inte-
gration (CI) system of ECMA-262 and
Test262, are based on a series of aca-
demic papers.

How have ideas from academia
been integrated into real-world indus-
try? How did researchers convince the
TC39 committee to use their ideas?

The KAIST Programming Lan-
guage Research Group (PLRG) has
been researching JavaScript since
2011. Initially, we mainly formal-
ized the semantics of the JavaScript
language with various features, but
now our research focuses on pro-
gram analysis and bug finding in Ja-
vaScript applications. Our research
problems are often motivated by
real-world customers in companies
such as Samsung Electronics and
IBM. This work had been challeng-
ing, interesting, rewarding, and fun
until TC39 decided in 2015 to release
ECMA-262 annually. As the JavaScript
language has evolved more rapidly,
developing and maintaining JavaS-
cript analysis tools has become in-
creasingly difficult.

In March 2019, Ph.D. candidate
Jihyeok Park cautiously shared an
outlandish idea. ECMA-262 had been
released annually since 2015, but ex-
isting JavaScript analyzers, includ-
ing our own, were still based on ES5,
which was released in 2009. It is im-
possible to manually keep up with
the changes in an 800-page specifi-
cation every year. Then he realized
something: the English phrases in
the specification had common pat-
terns. It might be possible to “parse”
the English sentences and “compile”
them into abstract algorithms in an
intermediate language. We consid-
ered this a clever engineering hack,
which could help us generate more

MAY 2024 | VOL. 67 | NO. 5 | COMMUNICATIONS OF THE ACM 89

research

behavior or detect bugs and security
vulnerabilities. WALA19 was initially
developed for Java pointer analysis and
has been extended to support more
languages, including Android Java and
JavaScript. TAJS23 is a dataflow analysis
for JavaScript that uses a model of ES3
and a partial model of ES5. It provides
partial support for the latest ECMAS-
cript language features with Babel,3
which compiles the latest features
down to lower versions. SAFE20 is a gen-
eral analysis framework for JavaScript
Web applications. These are all open
source projects for static analysis of Ja-
vaScript. In contrast, Jalangi31 is a gen-
eral framework for JavaScript dynamic
analyzers, such as memory profilers
and dynamic JIT-unfriendly code snip-
pet detectors.

While most of the research on JavaS-
cript is for ES3 and ES5, ECMA-262 has
been released every year since 2015.
Thus, manually updating the seman-
tic formalizations and analysis imple-
mentations is tedious, labor-intensive,
and error-prone.

To bridge the gap between the rap-
idly evolving ECMA-262 and its imple-
mentations, ESMeta generates various
tools directly from ECMA-262. Figure
1 illustrates the overall structure of
ESMeta. The first step is to extract a
mechanized specification from an in-
put ECMA-262 via JISET. Once a mech-
anized specification is available, it can
be used to check the validity of ECMA-
262. We can use JEST to synthesize new
kinds of conformance tests and JSTAR
to analyze the types of English phrases
in the specification. Finally, we can use
JSAVER to derive a static analyzer for a
given version of ECMA-262. We will de-
scribe them in order.

decided to integrate JSTAR and JISET
into the CI systems of ECMA-262 and
Test262, respectively. Since these tools
were prototype implementations to
see their feasibility in academic pub-
lications, we reimplemented all the
tools and rebranded them as ESMeta
to make them practically available to
all PRs in the ECMA-262 and Test262
repositories.

After the first meeting with ECMA-
262 editors on Nov. 24, 2021, we gave
a presentation at the TC39 meeting
on Jan. 27, 2022. ESMeta was then in-
tegrated into ECMA-262's CI system
on Nov. 3, 202212 and Test262's CI sys-
tem on Nov. 25, 2022.9 This was about
a year after the first meeting with the
TC39 committee. This is how the ini-
tial outlandish idea and subsequent
academic papers were integrated into
real-world PL development.

Technical Details
Researchers have proposed various
approaches to help developers build
correct JavaScript applications.1,32 One
approach is to formalize the JavaS-
cript language semantics described in
ECMA-262. Because ECMA-262 defines
semantics in prose, it is sometimes
ambiguous and contains bugs and
infeasible behavior. Researchers have
proposed formal specifications for Ja-
vaScript semantics to provide a solid
foundation for JavaScript research.
Maffeis et al.22 proposed a small-step
operational semantics for ES3; Guha
et al.18 used a desugaring process to
develop λJS, a core calculus of ES3; and
Park et al.24 defined ES5 using the K
framework.30

Another approach is to analyze Java
Script programs to reason about their

tests for features of ECMA-262 that
Test262 does not cover.

In essence, it was the primary en-
abler; the direct extraction of “mech-
anized specifications” from prose-
written language specifications has
opened the door to the automatic
generation of language-manipulat-
ing tools. To bridge the gap between
ECMA-262 and its implementations,
ESMeta21 extracts mechanized speci-
fications to automatically generate
a variety of language-based tools
from a given version of ECMA-262. It
is based on several papers. JISET28
extracts a mechanized specifica-
tion from ECMA-262. A mechanized
specification consists of two parts: a
JavaScript parser constructed from
the syntax written in a variant of the
extended BNF (EBNF) notation, and
functions in an intermediate repre-
sentation (IR) compiled from abstract
algorithms written in English for the
language semantics. JEST27 synthe-
sizes conformance test programs and
checks discrepancies between JavaS-
cript engines and the specification.
Using this tool, we detected 44 bugs
in four engines (V8, GraalJS, Quick-
JS, and Moddable XS) and 27 bugs in
ES2020. JSTAR26 analyzed the types of
English sentences in ECMA-262 and
detected 93 type-related specification
bugs, which were confirmed by TC39.
JSAVER25 automatically generates a
JavaScript static analyzer from ECMA-
262, which outperforms the state-
of-the-art JavaScript static analyzers
that were manually developed. The
next section offers a description of the
technical details behind them.

Because the papers presented vari-
ous new techniques using mechanized
specifications, we used their bug-find-
ing capabilities to evaluate the effec-
tiveness of the techniques. Thus, we
submitted many bug reports to main-
stream JavaScript engine developers
and the TC39 committee for confirma-
tion. They kindly confirmed the bugs
and expressed a lot of curiosity. Then,
the ECMA-262 editors invited us to a
TC39 meeting.

The presentation was very well re-
ceived. All the excitement from the
TC39 committee and the detailed dis-
cussion can be found in the meeting
note.13 After mutually exciting meet-
ings with the TC39 committee, we

Figure 1. Overall structure of ESMeta.

Analysis
Result

JavaScript
Programs

Derived Static
Analyzer

JSAVER

3. Derivation of
Static Analyzers

JEST JSTAR

2. Specification
Validity Check

Mechanized
Specification

ECMA-262 JISET

1. Mechanized Spec.
Extraction

Conformance Test
Synthesis

Type Analysis
for Specification

</>

90 COMMUNICATIONS OF THE ACM | MAY 2024 | VOL. 67 | NO. 5

research

algorithm to the following function in
a domain-specific intermediate repre-
sentation, IRES:

syntax def ArrayLiteral[2].
Evaluation(

this, ElementList, Elision

) {

let array = [! (ArrayCreate 0)]

let nextIndex =
[? (ElementList.Array
 Accumulation array 0)]

if (! (= Elision absent))
[? (Elision.ArrayAccumula-
 tion array nextIndex)]

return array

}

We evaluated the correctness of the
semantics extracted from ES20195 by
running Test262. It took about three
hours to evaluate 18,064 applicable
tests: 1,709 tests failed due to nine
specification bugs in ES2019. Four of
these bugs were newly reported and
confirmed by TC39.

Synthesis of Conformance Tests
In addition to the annual updates to
ECMA-262, the various JavaScript en-
gines continue to provide various ex-
tensions to the specification to meet
rapidly changing user needs. Unfor-
tunately, these updates, both in the
specification and in implementations,
make synchronization difficult, lead-
ing to unexpected behavior.

Inspired by the ECMA-262 bugs de-
tected by the extracted semantics, we
devised an N+1-version differential test-
ing.27 Traditional differential testing
runs N implementations of a specifica-
tion simultaneously for each input and
detects problems when the outputs
do not match. N+1-version differen-
tial testing also tests the specification
using a mechanized specification ex-
tracted from the specification.

It consists of four steps:
1.	 Automatically synthesize pro-

grams according to the syntax and se-
mantics from a given language specifi-
cation.

2.	 Generate conformance tests by
injecting assertions into the synthe-
sized programs to check their final
program states.

Extraction of Mechanized
Specifications
ECMA-262 defines the language syn-
tax using a variant of EBNF and the
semantics using abstract algorithms
in a clear and structured manner. For
example, the following production
shows the syntax of ArrayLiteral in
ES2022:

ArrayLiteral[Yield, Await] :
[Elisionopt]
[ElementList[?Yield, ?Await]]
[ElementList[?Yield, ?Await] , Elisionopt]

It takes two boolean parameters
Yield and Await, and has three al-
ternatives. The following abstract al-
gorithm defines the semantics of the
third alternative:

ArrayLiteral : [ElementList , Elisionopt]
1.	Let array be ! ArrayCreate(0).
2.	�Let nextIndex be ?

ArrayAccumulation of ElementList
with arguments array and 0.

3.	If Elision is present then:
	• �Perform ? ArrayAccumulation of

Elision with arguments array and
nextIndex.

4.	Return array.

It has four steps. In the HTML files
describing ECMA-262, each nonter-
minal, such as ElementList, or local
variable, such as array, has a <nt>
or <var> tag, respectively. From the
above production, the lookahead pars-
ing technique28 generates a parser in
Scala code as follows:

val ArrayLiteral: List[Boolean]
 => LAParser[T] = memo {

case List(Yield, Await) =>

"[" ~ opt(Elision) ~ "]"
	 ^^ ArrayLiteral0 |

"[" ~ ElementList(Yield,Await)
 ~ "]" 	 ^^ ArrayLiteral1 |

"[" ~ ElementList(Yield,Await)
 ~ "," ~ opt(Elision) ~ "]"
	 ^^ ArrayLiteral2

}

Each parser has the List[Boolean]
=> LAParser[T] type because each
production is parametric with boolean
values. Similarly, the algorithm com-
piler28 translates the above abstract

The direct
extraction of
“mechanized
specifications”
from prose-
written language
specifications has
opened the door
to the automatic
generation
of language-
manipulating tools.

MAY 2024 | VOL. 67 | NO. 5 | COMMUNICATIONS OF THE ACM 91

research

for detecting specification bugs.
To alleviate this problem, we devel-

oped JSTAR,26 which takes a mecha-
nized JavaScript specification from
JISET and performs type analysis of
compiled functions using the speci-
fication types defined in ECMA-262.
ECMA-262 contains not only JavaScript
language types, but also specification
types such as abstract syntax trees
(ASTs), internal list-like structures, and
internal records including environ-
ments, completions, and property de-
scriptors. For records and AST types,
we also defined their fields. We defined
their type hierarchies based on subtype
relations. The subtype relation between
types is shown in Figure 2; a directed
edge from τ′ to τ denotes a subtype re-
lation (that is, τ′ <: τ), and the relation
is reflexive and transitive. The subtype
relation depends on the nominal types
defined in ECMAScript. We extract the
subtype relation for AST types from the
JavaScript syntax. For example, consid-
er the following syntax:

FormalParameter[?Yield, ?Await]] :
BindingElement[?Yield, ?Await]]

Because the average number of up-
dated steps of abstract algorithms be-
tween consecutive releases from EC-
MAScript 2016 to 2019 was 9,645.5,28
manually checking for every update
is a daunting task. Thus, TC39 pushed
to add various manual annotations
to the abstract algorithms to reduce
specification bugs. First, it introduced
two kinds of annotations: assertions,
which indicate assumptions at specif-
ic points in abstract algorithms, and
the prefixes ? and !, which indicate
whether the execution of an abstract
algorithm completes abruptly. For ex-
ample, “Assert: Type(O) is Object” de-
notes that the variable O always has an
Object value at the point of the asser-
tion, and “? GetV(V , P)” denotes that
the execution of GetV(V , P) can com-
plete abruptly. These annotations help
readers understand specifications
clearly. Second, the committee de-
cided to support type annotations for
variables, parameters, and return val-
ues of abstract algorithms. However,
manual annotations of any kind are
laborious, prone to mistakes, and do
not provide an automatic mechanism

3.	 Run the conformance tests
against multiple implementations to
detect bugs in the specification and
implementations

4.	 Use statistical information to lo-
calize bugs in the specification.

We evaluated the effectiveness of
the synthesized tests with ES2020
and four JavaScript engines that fully
support modern JavaScript features
in ES2020: V8, GraalJS, QuickJS, and
Moddable XS. For evaluation, we in-
jected seven kinds of assertions: ex-
ception, abort, variable value, object
value, object property, property key,
and internal method and slot. For ex-
ample, to check whether a final pro-
gram state has the correct value for
each object property, we implemented
a helper $verifyProperty, which
checks the attributes of each property
for each object. Thus, the following
code checks the attributes of the prop-
erty of x.p:

var x = { p: 42 };
$verifyProperty(x, "p", {
value: 42.0,
writable: true,
enumerable: true,
configurable: true

});

The bug detection and localiza-
tion phase then uses the results of
running given conformance tests
on multiple JavaScript engines. If a
small number of engines fail in each
test, it reports a potential bug in the
engines that failed the test. If a large
number of engines fail, it reports a
potential bug in the specification. It
uses spectrum-based fault localiza-
tion (SBFL),37 a localization technique
that leverages the coverage of test
cases and pass/fail results, to local-
ize potential bugs. We detected 44
bugs in the engines and 27 bugs in
ES2020. One of the ES2020 bugs was
a newly detected bug confirmed by
TC39, caused by not handling abrupt
completions in property definitions
of object literals.

Type Analysis
of Specifications
Manually reviewing every specifica-
tion update is inherently labor-inten-
sive and error-prone, making ECMAS-
cript vulnerable to specification bugs.

Figure 2. Subtype relation <:

Nominal types Pre-defined types

AST types

Record types

···

··· ··· ···

FormalParameter

BindingElement

ObjectCompletion

Environment js

null

undefined

bool

bigint num

numeric

str

symbol

prim

[]
[]

Figure 3. Interpreter-based static analysis approach.

Static Analyzer
of L2

conform L1: defined-language
L2: defined-language

L2 Program as
L1 Interpreter

L1 Program

Static
Analyzer

of L1

Specification
of L1

Analysis Result

92 COMMUNICATIONS OF THE ACM | MAY 2024 | VOL. 67 | NO. 5

research

Because the nonterminal Binding-
Element is the unique alternative of the
production FormalParameter, we auto-
matically extract the subtype relation:
BindingElement <: FormalParameter.
Using the subtype relation, the expres-
sion e : τ checks whether the evaluation
result of e has type τ′ satisfying τ′ <: τ.
These subtype relations help enhance
the precision of type analysis by keep-
ing track of the precise types of vari-
ables and expressions.

Using such type information, JSTAR
performs type analysis and detects
specification bugs using a bug detector
consisting of four checkers: 1) reference
checker, 2) arity checker, 3) assertion
checker, and 4) operand checker. JSTAR
also uses condition-based refinement
for type analysis, which improves the
precision of type analysis by using con-
ditions on assertions and branches to
eliminate infeasible parts. We evalu-
ated JSTAR with all 864 versions in the
official ECMAScript repository from
2018 to 2021. The evaluation showed
that the refinement technique can re-
duce the number of false-positive bugs
due to spurious types inferred by im-
precise type analysis. JSTAR detected
14 type-related bugs in ES2021,8 which
were confirmed by TC39.

Derivation of
Static Analyzers
Finally, we developed JSAVER,25 which
automatically generates a JavaScript
static analyzer from ECMA-262. First,
JSAVER extracts definitional interpret-
ers29 from ECMA-262. A definitional
interpreter provides a way to represent
the language semantics of a defined
language using its interpreter written
in a defining language. We extract a Ja-
vaScript definitional interpreter from
JISET. In the extracted definitional
interpreter, the defined language is Ja-
vaScript, and the defining language is
IRES. We then present meta-level static
analysis, which uses the extracted
interpreter to indirectly analyze Ja-
vaScript programs. Meta-level static
analysis is an interpreter-based ap-
proach for static analysis of a defined
language L1 using the static analyzer
of a defining-language L2, as depicted in
Figure 3. Since an L1 interpreter is an L2
program, we can indirectly analyze an
L1 program by taking the L1 program as
input and using the static analyzer of

Figure 4. Analysis results of TAJS and SAFE without and with Babel and JSAES2021 for
applicable tests.

9,114
(49.1%)

error unsound

4,679
(25.2%)

4,763
(25.7%)

8,913
(48.0%)

3,902
(21.0%)
5,741

(30.9%)

20K

15K

10K

5K

0K
2014 2016 2018 2020

20K

15K

10K

5K

0K
2014 2016 2018 2020

20K

15K

10K

5K

0K
2014 2016 2018 2020

20K

15K

10K

5K

0K
2014 2016 2018 2020

20K

15K

10K

5K

0K
2014 2016 2018 2020

18,556
(100.0%)

9,888
(53.3%)

206
(1.1%)

8,462
(45.6%)

710
(3.8%)

10,904
(58.8%)

6,942
(37.4%)

(a)

#t
es

ts

(b)

(c)

(d)

(e)
creation time (year)

creation time (year)

creation time (year)

creation time (year)

creation time (year)

#t
es

ts
#t

es
ts

#t
es

ts
#t

es
ts

sound

MAY 2024 | VOL. 67 | NO. 5 | COMMUNICATIONS OF THE ACM 93

research

tion. Watt et al.35 presented two mech-
anizations of WebAssembly 1.0 and
found bugs in it, but mechanization
of WebAssembly 2.0 will still be quite
time-consuming because the entire
mechanization process is done manu-
ally. Applying the ESMeta approach to
WebAssembly can reduce the burden
of such manual mechanization.

A promising new approach to pro-
gramming language development is
to design languages with mechanized
specifications from the beginning. For
developers, mechanized specifications
can be easier to understand than spec-
ifications in natural language because
they are unambiguous and always ex-
ecutable. For non-developers, mecha-
nized specifications can be translated
into diverse, human-friendly natural
languages. Furthermore, implementa-
tions and tools that are extracted di-
rectly from mechanized specifications
are correct by construction.

Designing a new programming lan-
guage by writing a mechanized specifi-
cation that correctly describes the lan-
guage's intended behavior can seem
daunting, but it is possible because
mechanized specifications allow us to
create a variety of tools. For example,
one can run the specification interac-
tively. Figure 5 shows another ESMeta
tool, the ECMAScript Double Debug-
ger.21 This tool extends the interpreter
extracted from ECMA-262 to help users
understand how JavaScript programs
are executed according to ECMA-262.
It supports step-by-step execution of
ECMA-262 abstract algorithms, line-
by-line execution of JavaScript code,
breakpoints by abstract algorithm
name in ECMA-262, and visualization
of ECMA-262 internal states. Language
designers can use the debugger to run
example code to debug their mecha-
nized specifications. For instance,
Verse introduced new features such as
logical variables, equality constraints
between variables, and choice that al-
lows multiple alternatives. Describ-
ing the intended behavior precisely is
cumbersome, but a double debugger
can ease the burden on language de-
signers.

Conclusion
JavaScript is the first programming
language for which each change to its
prose language specification is both

However, TAJS and SAFE still failed to
soundly analyze more than half of the
Test262 test programs, while JSAES2021
succeeded in soundly analyzing all
applicable test programs without the
need for Babel. The figures show that
JSAVER can reduce the burden of defin-
ing the abstract semantics of ES2015+
features for static analysis.

A Promising New Approach
to Programming Language
Development
Designing and implementing real-
world programming languages is chal-
lenging. The ability to reason about
program behavior often comes from a
formal specification of the language's
semantics, but the time-consuming ef-
fort of formalizing the semantics often
falls behind actual implementation.
For example, Rust is actively developed
by a large and diverse community of
contributors and is used in real-world
software such as the Linux kernel and
Mozilla Firefox. However, it has not re-
solved soundness bugs reported years
ago4 because its strong, static type
system does not yet cover various lan-
guage features and APIs. Applying the
ESMeta approach to Rust can help ef-
ficiently generate machine-checkable
proof sketches, especially with mecha-
nized semantics extracted from mech-
anized specifications.

Along with formalizing the seman-
tics of the language, it would be help-
ful to perform extensive testing of the
semantics using implementations ex-
tracted from the mechanized specifica-

L2 to analyze the interpreter. Thus, we
developed a static analyzer of IRES for a
meta-level static analysis of JavaScript
and showed that it can indirectly ana-
lyze JavaScript programs effectively.
We also presented ways to indirectly
configure abstract domains and analy-
sis sensitivities for JavaScript in the
static analysis of IRES. First, we provide
a method to configure abstract do-
mains for JavaScript values and struc-
tures. Second, we present AST sensi-
tivities to express analysis sensitivities
for JavaScript, such as flow-sensitivity
and k-callsite-sensitivity.

Figure 4 shows the analysis results
of existing static analyzers (TAJS and
SAFE) without and with Babel, and
JSAES2021, the JavaScript static analyzer
derived from ES2021 via JSAVER, for
the applicable tests. In each chart,
the x-axis represents the point in time
when the tests were generated and the
y-axis represents the number of tests
generated before that point in time.
The mark sound (green, filled) de-
notes a sound analysis, unsound (red,
striped) denotes an unsound analy-
sis, and error (white, blank) denotes
an unexpected error. Figures 4(a) and
4(b) show that TAJS and SAFE analyzed
most tests generated before 2015 in
a sound way. However, the number of
tests that cannot be soundly analyzed
has been steadily increasing since
2015. As shown in Figures 4(d) and
4(e), Babel transpiles ES2015+ fea-
tures to ES5.1 to mitigate this issue
and increase the number of programs
that TAJS and SAFE analyze soundly.

Figure 5. ECMAScript double debugger.

94 COMMUNICATIONS OF THE ACM | MAY 2024 | VOL. 67 | NO. 5

research

17.	 GitHub. The Top Programming Languages (2022);
https://bit.ly/3utUMF1.

18.	 Guha, A., Saftoiu, C., and Krishnamurthi, S. The
essence of JavaScript. In Proceedings of the
European Conf. on Object-Oriented Programming.
Springer Berlin Heidelberg (2010), 126–150.

19.	 IBM Research. T.J. Watson Libraries for Analysis
(WALA), 2006; http://wala.sf.net.

20.	 KAIST PLRG. SAFE: Javascript Analysis Framework,
2012; http://safe.kaist.ac.kr.

21.	 KAIST PLRG. ESMeta (2022); https://bit.ly/48YjA77.
22.	 Maffeis, S., Mitchell, J.C., and Taly, A. An operational

semantics for JavaScript. In Proceedings of the Asian
Symp. on Programming Languages and Systems.
Springer Berlin Heidelberg (2008), 307–325.

23.	 Møller, A. et al. TAJS: Type Analyzer for JavaScript
(2012); https://bit.ly/3HRyMHb.

24.	 Park, D., Stefănescu, A., and Roşu, G. KJS: A
complete formal semantics of JavaScript. In
Proceedings of the 36th ACM SIGPLAN Conf. on
Programming Language Design and Implementation.
Association for Computing Machinery (2015),
346–356.

25.	 Park, J., An, S., and Ryu, S. Automatically deriving
JavaScript static analyzers from specifications using
meta-level static analysis. In Proceedings of the 30th
ACM Joint European Software Engineering Conf. and
Symp. on the Foundations of Software Engineering.
Association for Computing Machinery (2022),
1022–1034.

26.	 Park, J. et al. JSTAR: JavaScript specification type
analyzer using refinement. In Proceedings of the 36th
IEEE/ACM Intern. Conf. on Automated Software
Engineering. Association for Computing Machinery
(2021), 606–616.

27.	 Park, J. et al. JEST: N+1-version differential testing
of both JavaScript engines and specification.
In Proceedings of IEEE/ACM 43rd Intern. Conf.
on Software Engineering. IEEE, Association for
Computing Machinery (2021), 13–24.

28.	 Park, J., Park, J., An, S., and Ryu, S. JISET:
JavaScript IR-based semantics extraction toolchain.
In Proceedings of the 35th IEEE/ACM Intern. Conf. on
Automated Software Engineering. IEEE, Association
for Computing Machinery, (2020), 647–658.

29.	 Reynolds, J.C. Definitional interpreters for higher-
order programming languages. In Proceedings of
the ACM Annual Conf. 2. Association for Computing
Machinery (1972), 717–740.

30.	 Roşu, G. and Şerbănuţă, T.F. K overview and SIMPLE
case study. In Proceedings of the 2nd Intern.
Workshop on the K Framework and Its Applications
304. Elsevier (2014), 3–56.

31.	 Sen, K., Kalasapur, S., Brutch, T., and Gibbs, S.
Jalangi: A tool framework for concolic testing,
selective record-replay, and dynamic analysis of
JavaScript. In Proceedings of the 30th ACM Joint
European Software Engineering Conf. and Symp. on
the Foundations of Software Engineering, Association
for Computing Machinery (2013), 615–618.

32.	 Sun, K. and Ryu, S. Analysis of JavaScript programs:
Challenges and research trends. ACM Computing
Survvey 50, 4 (Aug. 2017), 34.

33.	 Tung, L. Bugs in Chrome’s Javascript Engine
Can Lead to Powerful Exploits (2021); https://
zd.net/3HS2lbJ

34.	 Wang, Z. et al. An empirical study on bugs in
JavaScript engines. Information and Software
Technology 155 (2023), 107105.

35.	 Watt, C. et al. Two mechanisations of WebAssembly
1.0. In Formal Methods. M. Huisman, C. Păsăreanu,
and N. Zhan (eds). Springer Intern. Publishing, Cham,
(2021), 61–79.

36.	 Wirfs-Brock, A. and Eich, B. JavaScript: The first
20 years. Proceedings of the ACM on Programming
Languages 4, HOPL, Article 77 (June 2020), 189.

37.	 Wong, W. et al. A survey on software fault
localization. IEEE Transactions on Software
Engineering 42, 8 (2016), 707–740.

Sukyoung Ryu is a professor at KAIST, Daejeon,
Republic of Korea.

Jihyeok Park is an assistant professor at Korea
University, Seoul, Republic of Korea.

© 2024 Copyright held by owner(s)/author(s).

“type checked” and also “tested” to
identify bugs and inconsistencies. In
this article, we presented our story of
applying various ideas from academic
papers to the continuous design and
implementation process of the real-
world programming language in the
wild. As one of the reviewers of the JI-
SET paper suggested, we believe that:

This is the right order to design and
document languages: first the semantics,
then the implementation and documen-
tation, ideally generated from the se-
mantics.

Acknowledgments
We would like to thank all members
of the KAIST Programming Lan-
guage Research Group (PLRG) for
their collaboration, especially Jae-
min Hong for his insightful feedback.
This research was supported by Na-
tional Research Foundation of Korea
(NRF) (2022R1A2C200366011 and
2021R1A5A1021944), Institute for In-
formation & communications Tech-
nology Promotion (IITP) grant fund-
ed by the Korea government (MSIT)
(2022-0-00460 and 2023-2020-0-01819),
and Samsung Electronics Co., Ltd
(G01210570). 

References
1.	 Andreasen, E. et al. A survey of dynamic analysis and

test generation for JavaScript. Comput. Surveys 50,
5 (2017), 66:1–66:36.

2.	 Augustsson, L., Breitner, J. et al. The Verse calculus:
A core calculus for deterministic functional logic
programming. In Proceedings of ACM Program.
Lang. 7, ICFP, Article 203 (Aug. 2023), 31;
10.1145/3607845

3.	 Babel Team. Babel is a Javascript compiler. Babel
Community, 2022; https://babeljs.io/

4.	 Ben-Yehuda, A. Coherence Can Be Bypassed by an
Indirect Impl for a Trait Object(2019); https://bit.
ly/4bqvoAB.

5.	 Ecma International. ECMA-262, 10th Edition,
ECMAScript®2019 Language Specification (June
2019); https://bit.ly/488c9J9

6.	 Ecma International. Github Repository for
ECMAScript Proposals (2019); https://bit.ly/48az6M1

7.	 Ecma International. Github Repository for an
Internal Version of ECMA-262 (2020); https://bit.
ly/3Uzf8Y1.

8.	 Ecma International. ECMA-262, 12th Edition,
ECMAScript®2021 Language Specification; https://
bit.ly/3OzoHCo

9.	 Ecma International. CI: Integrate ESMeta #3730
(2022); https://bit.ly/3HQcLJ1.

10.	 Ecma International. ECMA-262, 14th Edition,
ECMAScript®2023 Language Specification; https://bit.
ly/3ODWNVX

11.	 Ecma International. ECMAScript Repository (2022);
https://bit.ly/49sM88x

12.	 Ecma International. Meta: Integrate ESMeta
Type Checker into CI #2926 (2022); https://bit.
ly/3Us6smm.

13.	 Ecma International. Tc39: 26 January 2022 Meeting
Notes; https://bit.ly/489mGnu.

14.	 Ecma International. The Tc39 Process (2022);
https://bit.ly/42BnEYK

15.	 Ecma International. Test262: ECMAScript Test Suite
(2022); https://bit.ly/3w9BQfj

16.	 Ficarra, M. Personal Communication (2021).

A promising
new approach
to programming
language
development is to
design languages
with mechanized
specifications from
the beginning.

MAY 2024 | VOL. 67 | NO. 5 | COMMUNICATIONS OF THE ACM 95

research

